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Abstract
1.	 The democratisation of next-generation sequencing has vastly increased the avail-

ability of sequencing data from metabarcoding. However, to effectively prepare 
these metabarcoding data for subsequent analysis, researchers must consistently 
apply several different bioinformatic tools—including those which denoise reads, 
cluster sequences and assign taxonomic identities. This often creates a bioinfor-
matics bottleneck in workflows for non-specialists due to obstacles around: (a) in-
tegrating different tools, (b) the inability to easily modify and rerun bioinformatic 
pipelines involving non-scripted (‘point-and-click’) elements and (c) the multiple 
outputs that may be required of a single dataset (e.g. amplicon sequence variants 
[ASVs] and operational taxonomic units [OTUs]), which often results in users run-
ning pipelines multiple times.

2.	 Here, we introduce SimpleMetaPipeline, an open-source bioinformatics pipeline 
implemented in R, which addresses these obstacles. SimpleMetaPipeline inte-
grates the most robust and commonly used existing bioinformatic tools in a sin-
gle reproducible pipeline, with a streamlined choice of parameters, to generate 
a sequence data table containing alternative clustering and assignment options. 
SimpleMetaPipeline accepts demultiplexed paired-end and single reads from 
multiple sequencing runs.

3.	 We describe the pipeline and demonstrate how alternative annotations en-
able the easy implementation of multi-algorithm agreement tests to strengthen 
inferences.

4.	 SimpleMetaPipeline represents a valuable addition to the existing library of pipe-
lines, providing easy and reproducible bioinformatics, including a range of com-
monly desired clustering and assignment options, such as OTUs and ASVs.
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1  |  INTRODUC TION

There is a growing interest in applying next-generation sequencing 
to a wide range of ecological questions. Metabarcoding or marker 
gene amplicon sequencing can now rapidly deliver an in-depth and 
complementary perspective on ecological communities to that pro-
vided by traditional biomonitoring (Porath-Krause et al., 2022). The 
declining cost of these approaches has resulted in increasing adop-
tion across ecological specialisms, thus generating vast amounts of 
raw sequencing data (Kodama et al., 2012). This includes published 
data, which can often be utilised to answer questions quite different 
from those the original authors intended if the data are published 
accessibly (Shea et al., 2023), and if it can be readily reanalysed.

However, there is a bottleneck for non-specialists using these 
approaches for high-throughput environmental monitoring at the 
bioinformatics step, which is required to convert raw sequencing 
data into annotated community matrices that can be used in analysis 
(Porath-Krause et al., 2022). This bioinformatics bottleneck is due to 
challenges non-specialists encounter in two related areas: (i) Ease-of-
use (Bolyen et al., 2019), that is, the extent to which the integration 
of different tools with a variety of native formats is facilitated; and 
(ii) reproducibility (Sandve et al., 2013; Powers & Hampton, 2019; 
Wratten et al., 2021), in general, the ease and reliability with which 
one can re-generate identical results from raw data, and in this case, 
specifically the ability to easily modify and rerun bioinformatic pipe-
lines using non-scripted (‘point-and-click’) elements.

Existing pipelines currently tend to trade-off ease-of-use against 
reproducibility. They either provide GUIs and other point-and-
click solutions to increase users' accessibility (see e.g. mifish (Sato 
et al., 2018); q2galaxy (Bolyen et al., 2019) and APSCALE (Buchner 
et  al.,  2022)), thereby limiting reproducibility. Alternatively com-
mand line pipelines can enhance reproducibility but often require 
computing skills beyond those of the general user—for example, 
mothur (Schloss & Westcott, 2011), DADA2 (Callahan et al., 2016), 
other QIIME2 interfaces (Bolyen et al., 2019) or stitching a bespoke 
combination of tools together in a bash script. It should be noted that 
in the case of QIIME2 extensive documentation and an active user 
community and forum provide an excellent learning opportunity for 
new users.

To our knowledge, none of the existing pipelines enable the easy 
and efficient generation of alternative sequence annotations (i.e. 
annotations which provide alternative answers to the same ‘ques-
tion’, such as alternative sequence clusters or alternative taxonomic 
assignments). Herein we define annotations as any information 
generated about a sequence, including with which other sequences 
from the dataset they form clusters, and any taxa to which they can 
be assigned. Examples of such alternative annotations include the 
concurrent generation of both amplicon sequence Variants (ASVs, 
also known as exact sequence variants [ESVs]), and operational tax-
onomic units (OTUs) or taxonomic assignments from multiple assign-
ment algorithms. Alternative annotations are important as it is now 
common practice for metabarcoding studies to present results for 
both ASVs and OTUs as a way to explore the influence of taxonomic 

resolution on their results (Antich et  al.,  2021). Furthermore, the 
taxonomic assignment of sequences is a source of uncertainty 
in metabarcoding studies as all methods have their strengths and 
weaknesses (Hleap et  al.,  2021), and comparing the assignments 
from multiple assignment algorithms is one way to address this. 
This need for alternative annotations can exacerbate the bottleneck 
challenges if they are produced by running raw data through bioin-
formatic pipelines multiple times. Even slight differences, acciden-
tally introduced, could make results incomparable. This problem is 
avoidable if identical commands are run within identical computing 
environments with identical random seeds (necessary if algorithms 
have probabilistic components as many bioinformatic tools do). But 
achieving this manually requires computational knowledge, can be 
time consuming, and is subject to user error that can be extremely 
difficult to trace (Grüning et al., 2018; Mangul et al., 2019).

Here, we present SimpleMetaPipeline, an easy-to-use, entirely 
scripted bioinformatics pipeline producing alternative annotations. 
It is open-source, implemented in R and combines well-established, 
existing and peer-reviewed bioinformatics tools. Implementing the 
pipeline in R helps make the source code more accessible to users, 
given the widespread use of R in ecology, and is appropriate given 
that multiple bioinformatic tools are native to R (DADA2, LULU and 
IDTAXA). Scripted pipelines in R are highly shareable, maintainable 
and reusable provided good scientific work flow practices are fol-
lowed (Djaffardjy et al., 2023). SimpleMetaPipeline requires a single 
short R script, defining all parameters, to be run alongside a correctly 
formatted directory of raw fastq files, including as many Illumina se-
quencing runs as desired. From this, the pipeline applies existing bio-
informatic tools (e.g. DADA2) to reproducibly generate a sequence 
data table containing denoised ASVs as rows, and columns contain-
ing all alternative clustering and assignment annotations.

SimpleMetaPipeline is novel in two important ways. First, it is 
clear, simple and easy to use, requiring only a single R script to be 
run, and has guaranteed reproducibility from this single R script, 
where other pipelines focus on either ease-of-use or reproduc-
ibility. Second, it utilises an underlying sequence data table struc-
ture to efficiently handle alternative annotations. Specifically, 
SimpleMetaPipeline retains all bioinformatic annotations produced 
in an accessible form in the output. This has the added benefit of 
enabling testing for agreement between the alternative annotations 
of multiple algorithms, providing new opportunities to improve in-
ferences from next-generation sequencing data.

2  |  OVERVIE W AND WORKFLOW

SimpleMetaPipeline integrates bioinformatics tools to trim, de-
noise, cluster and taxonomically assign raw, demultiplexed, 
input amplicon datasets from multiple Illumina sequencing runs. 
These tools include: Cutadapt v3.5 (trimming; Martin,  2011), 
DADA2 v1.24.0 (denoising; Callahan et  al.,  2016), VSEARCH 
v.2.4.1 (clustering; Rognes et  al.,  2016), Swarm v3.1 (clustering; 
Mahé et al., 2015), LULU v0.1.0 (clustering; Frøslev et al., 2017), 

 2041210x, 2024, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14434 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [18/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1951WILLIAMS et al.

DECIPHER v2.24.0 (taxonomy assignment with the IDTAXA func-
tion; Murali et al., 2018) and BLAST v.2.9.0–2 (taxonomy assign-
ment; Altschul et al., 1990). Please see the Supporting Information 
‘SimpleMetaPipeline Algorithms and Parameters’ for full details of 
parameter choices.

Briefly, the pipeline starts by using DADA2's robust error es-
timation to generate a reliable list of all ASVs present and their 
frequencies across samples (Callahan et al., 2016). All subsequent 
tools in the pipeline are then applied to these ASVs, and their 
standard outputs are captured. First, LULU is used to annotate 
each ASV with the ‘curated ASV’ to which it belongs (Frøslev 
et  al.,  2017). LULU curation uses sequence similarity and distri-
bution to cluster sequences together, these clusters are thus 
sometimes referred to as ‘distribution-based OTUs’ (Frøslev 
et  al.,  2017). Second, either VSEARCH or Swarm (according to 
user-specified preference) is used to annotate each ASV with 
the OTU to which it belongs (note that these are similarity-based 
OTUs specifically; Mahé et  al.,  2015; Rognes et  al.,  2016); then 
(in the only step not applying directly to ASVs) LULU is applied 
to ‘curate’ these OTUs, and each ASV is then annotated with the 
‘curated OTU’ to which it belongs (Frøslev et  al.,  2017). Even in 
this case information is recorded for each ASV independently. 
Thus, there are always three types of clusters produced by 
SimpleMetaPipeline, depending on the option chosen these will 
either be LULU, VSEARCH and VSEARCH+LULU; or LULU, Swarm 
and Swarm+LULU. (SimpleMetaPipeline is not designed to com-
pare VSEARCH and Swarm clusters within a single pipeline run).

Finally, if desired, the pipeline will assign taxonomy to ASVs. 
IDTAXA can be used to annotate each ASV with a k-mer-based tax-
onomic assignment (Murali et al., 2018). BLAST can be used to anno-
tate each ASV with a similarity-based taxonomic assignment (Altschul 
et al., 1990). This creates a range of information about each ASV, in-
cluding both the assignments themselves and various metrics quan-
tifying the degree of uncertainty associated with these assignments. 
We provide a workflow diagram to illustrate the input data required, 
steps in the pipeline and outputs (Figure 1).

Bioinformatic tools were chosen for their complementarity from 
among those that have been robustly tested, benchmarked and peer-
reviewed. Crucially, no preference was given to tools based on their 
native format. Combining DADA2, VSEARCH, Swarm and LULU in 
a single pipeline provides all of the most commonly used comple-
mentary sequence and clustering annotations simultaneously (e.g. 
Antich et al., 2021; Brandt et al., 2021). These algorithms are com-
plementary in the sense that they each use sequencing information 
in slightly different ways to estimate clusters. Briefly, VSEARCH uses 
a global sequence similarity threshold (Mahé et al., 2015); SWARM 
iteratively adds sequences to clusters using a small local similarity 
threshold and abundance information (Rognes et  al.,  2016); LULU 
combines a sequence similarity threshold with a co-occurrence 
threshold (Frøslev et  al.,  2017). As noted including these alterna-
tive annotations in the final output enables uncertainties associated 
with taxonomic resolution and choice of clustering algorithm(s) to 
be assessed in analysis without rerunning bioinformatics. IDTAXA 

and BLAST were combined as they determine taxonomic assignment 
of sequences in radically different, but widely accepted and well-
justified ways, with BLAST tending to minimise under-classifications 
and IDTAXA minimising over-classifications (Altschul et  al.,  1990; 
Murali et  al.,  2018). Comparing the two assignments can thus in-
crease the confidence in an assignment (if a conservative approach 

F I G U R E  1  Diagram of the SimpleMetaPipeline workflow. Ovals 
represent the different steps in the pipeline and the order in which 
they occur—either in series or in parallel. The table on the right 
represents the format of the output ‘Sequence Data Table’ (as 
shown in Table 1) in simplified graphical form. Arrows indicate the 
step in the pipeline where each set of information in the Sequence 
Data Table is generated.
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1952  |    WILLIAMS et al.

is taken where agreement between algorithms is required) or help 
understand the degree of uncertainty (e.g. by calculating the propor-
tion of ASVs in a cluster which received the same assignment from 
both algorithms at a given rank).

The pipeline includes a conda environment definition that installs 
each of the tools mentioned previously, along with R version 4.2 (R Core 
Team,  2022) and the following R packages: SeqinR v4.2–16 (Charif 
& Lobry,  2007), ShortRead v1.54.0 (Morgan et  al.,  2009), gridExtra 
v.2.3 (Auguie & Antonov, 2017), ggplot2 v.3.4.0 (Wickham, 2011) and 
dplyr v1.1.1 (Wickham et al., 2023). SimpleMetaPipeline source code 
is available for UNIX/Linux and macOS environments and is archived 
on Zenodo (Williams et al., 2024a). The development version can be 
accessed on GitHub at https://​github.​com/​J-​Cos/​Simpl​eMeta​Pipeline, 
where installation instructions are available.

A supporting R package is also provided, which can quickly and 
reproducibly generate a variety of standardised annotated community 
matrices from the alternative annotations stored in a sequence data 
table (e.g. matrices reflecting OTUs or ASVs, or including taxonomic 
assignments produced by IDTAXA or those produced by BLAST). This 
division of functionality between pipeline and package is thus crucial 

to enabling efficient handling of alternative annotations. Specifically, 
the package generates ‘phyloseq objects’, derived from the Phyloseq 
R package commonly used in the analysis of metabarcoding data 
(McMurdie & Holmes, 2013). The package source code is archived on 
Zenodo (Williams et al., 2024b), and the development version can be 
accessed on GitHub at https://​github.​com/​J-​Cos/​Simpl​eMeta​Package, 
where installation instructions are available.

3  |  INPUT DATA PREPAR ATION AND 
PAR AMETER CHOICES

3.1  |  Control scripts

SimpleMetaPipeline requires running a single R script, known as a 
control script. An example control script is provided in the codebase 
with sensible defaults (or guidance where a sensible default value is 
impossible) for all adjustable parameters. The example also includes 
detailed descriptions of what each adjustable parameter controls 
and links to underlying tools where applicable. Where parameters 

TA B L E  1  An example of sequence data table format if both IDTAXA and BLAST assignment options are selected.

Source of output Column description

Example row content

Example 
row 1

Example 
row 2

Example 
row 3

Example 
row 4

Example 
row 5

DADA2 ASV ASV1 ASV2 ASV3 ASV4 ASV5

Sequence TACG… ATTT… GTAC… CCTT… AAAT…

Sample 1 11 0 4 589 98

… … … … … …

Sample n 34 55 0 0 7

LULU Curated ASV ASV1 ASV1 ASV2 ASV2 ASV2

Curated ASV Representative 
Sequence

1 0 0 0 1

VSEARCH/Swarm OTU OTU1 OTU1 OTU1 OTU2 OTU2

OTU Representative Sequence 1 0 0 0 1

VSEARCH/Swarm + LULU Curated OTU OTU1 OTU1 OTU1 OTU1 OTU1

Curated OTU Representative 
Sequence

1 0 0 0 0

IDTAXA Rank 1 Taxa1 Taxa2 Taxa1 Taxa3 Taxa3

… … … … … …

Rank n Taxa4 NA Taxa5 Taxa6 Taxa7

Rank 1 Confidence 100 43 78 81 83

… … … … … …

Rank n Confidence 46 0 46 55 63

BLAST Blast Percent Identical 98 77 89 88 92

Blast evalue 0 0 0 0 0

Blast Query Coverage 99 100 100 97 58

Rank 1 Taxa1 Taxa2 Taxa1 Taxa3 Taxa3

… … … … … …

Rank n Taxa4 NA Taxa5 Taxa6 Taxa7

Note: Note that this table is transposed to aid presentation. Column names, as output from the pipeline, are abbreviated and do not include spaces.
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for underlying tools do not appear in the control script they are not 
adjustable and the default values are used.

3.2  |  Demultiplexed fastq directory

SimpleMetaPipeline accepts demultiplexed paired-end or single read 
fastq or fastq.gz files, with each R1/R2 pair or single read file named 
by sample. These files can be generated from any marker gene ampli-
con, and SimpleMetaPipeline has been tested with COI gene, 18S rRNA 
gene, 16S rRNA gene, ITS rRNA gene, 23s rRNA gene and 12s rRNA 
gene marker datasets. The fastq files from each Illumina sequencing run 
should be stored in separate directories. This is important as it allows 
DADA2 denoising to learn error rates for each sequencing run inde-
pendently (Callahan et al., 2016). In some cases, samples may appear 
multiple times across a batch of sequencing runs (as commonly occurs 
in multi-run experiments to address low quality or failed sequencing 
of certain samples). SimpleMetaPipeline can handle this scenario as a 
unique sequencing run identifier is automatically appended to each 
sample name, allowing decisions about how to handle these duplicates 
to be made downstream, without needing to rerun bioinformatics.

3.3  |  Taxonomic assignment

An appropriate IDTAXA classifier and/or BLAST database, gener-
ated from any reference library one wishes to use, will need to be 
provided alongside the fastq files if sequence classification is re-
quired. Details of how to generate IDTAXA classifiers and BLAST 
databases are provided by each of these tools respectively (Altschul 
et al., 1990; Murali et al., 2018).

4  |  OUTPUTS

4.1  |  Sequence data table

SimpleMetaPipeline outputs a sequence data table with ASVs as rows 
and information on each ASV generated by the pipeline as columns. 
Columns contain ASV annotations themselves—for example OTU2 or 
Taxa3—and useful information about these annotations (Table 1). This 
information includes a variety of assignment certainty measures pro-
vided by the underlying algorithms: sequence similarity and e-value 
from the BLAST algorithm and assignment confidences from the 
IDTAXA algorithm, as well as TRUE/FALSE values showing whether 
ASVs were identified as representative sequences of their clusters. An 
example of pipeline output is included in the Supporting Information.

4.2  |  Diagnostic outputs

SimpleMetaPipeline generates additional outputs that enable the 
inspection of performance of different steps in the pipeline. These 

diagnostic outputs include a set of tables displaying: (1) a count of all 
primer sequences removed by cutadapt; (2) the number of derepli-
cated sequences in each sample at each DADA2 step (input, filtering, 
denoising, merging and chimera removal); (3) the distribution of ASV 
lengths (number of bases) and (4) the number of clusters produced 
under each clustering approach. Further, standard diagnostic fig-
ures are provided from DADA2 (quality profiles and error plots) and 
IDTAXA (taxonomic assignment plot).

5  |  E X AMPLES AND BENCHMARKING

Sequence data tables, as output by SimpleMetaPipeline, enable 
easy comparison between clustering and assignment methods. This 
allows testing for multi-algorithm agreement to better understand 
uncertainties in annotations. Such tests can be conducted for agree-
ment between (1) clustering algorithms, (2) assignment algorithms 
and (3) clustering and assignment algorithms (Figure 2). The concept 
of multi-algorithm agreement tests is that the different annotations 
given to ASVs by the robust and widely used, yet methodologically 
distinct, algorithms deployed in SimpleMetaPipeline each contain 
information about the biology of the ASV.

In the case of two clustering algorithms, there is no straightfor-
ward rule that can be applied to require agreement. However, the 
variation between clustering algorithms can be used to interrogate 
clusters of interest to understand their potential relationship to 
other clusters and internal sequence diversity. In the case of two as-
signment algorithms, SimpleMetaPackage enables the application of 
the conservative rule of, for each sequence at each taxonomic rank, 
only accepting a taxonomic assignment agreed upon by both algo-
rithms. In the case of agreement between clustering and assignment 
algorithms (e.g. testing whether all sequences in a cluster receive the 
same assignment), SimpleMetaPackage enables phyloseq objects to 
be generated with clusters receiving taxonomic assignments only if 
the proportion of their reads receiving that annotation is above a 
user specified threshold. For example, if this threshold is set to 85% 
for a given rank then, for each cluster at that taxonomic rank, an 
assignment is only accepted if at least 85% of reads from that cluster 
have received the assignment at that rank.

5.2  |  Benchmarking speed and memory

Run times and resource requirements for multi-step bioinformatic 
processing of metabarcoding data vary depending on marker genes, 
sequencing depth and the number of sequencing runs processed to-
gether. If algorithms, bioinformatic parameters and reference data-
bases are also adjustable, as in the case of SimpleMetaPipeline, then 
this variation is further increased. We do not attempt to exhaus-
tively benchmark how all combinations of these variables influence 
run times and resource requirements. However, by benchmarking 
pipeline performance in processing published datasets we provide 
real world examples of what users can expect.

 2041210x, 2024, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14434 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [18/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1954  |    WILLIAMS et al.

We conducted all benchmark runs on a laptop with a 4-
core CPU and 32GB of RAM. All benchmark runs included all 
SimpleMetaPipeline steps, including taxonomic assignment and 
made use of different reference databases appropriate to the 
marker gene. See Table 2 and Supporting Information for full de-
tails. In the case of single Illumina MiSeq runs a relatively shallowly 
sequenced COI dataset (total raw reads = ca. 11 million; sam-
ples = 20) completed in 3.5 h, whereas a more deeply sequenced 
23S rRNA dataset (total raw reads = ca. 22 million; samples = 20) 
completed in 11.5 h. Multiple MiSeq runs take substantially lon-
ger, for a given depth of sequencing, due to the previously noted 
requirement that DADA2 learns the error rate for each MiSeq 
run separately (Callahan et al., 2016). A dataset of four shallowly 
sequenced 18S rRNA gene MiSeq runs (total raw reads = ca. 15 
million; samples = 238), where the sequences were merged be-
fore publication substantially speeding up the DADA2 step while 
reducing its reliability, completed in 13.5 h. Finally, a dataset of 
three shallowly sequenced 16S rRNA gene MiSeq runs (total raw 

reads = ca. 27 million; samples = 110) completed in 32 h. These fig-
ures are intended to provide an indication of orders of magnitude, 
while making clear that exact results will vary depending on the 
variables mentioned previously.

The performance of the pipeline is largely dependent on the 
underlying algorithms that compose it and different algorithms 
within the pipeline scale differently as the number of input se-
quences increases. The time required for denoising with DADA2 
and assignment with BLAST and IDTAXA scales roughly linearly, 
but the time required for clustering with LULU, VSEARCH and 
Swarm scales exponentially. Further, the memory requirements 
can become large when large numbers of MiSeq runs (>10 runs) 
are processed together (LULU) or a large taxonomic classifier 
(>1 GB) is used (IDTAXA) thus requiring the use of a high perfor-
mance computing cluster. All algorithms used are parallelised, thus 
enabling big data applications and substantial speed improve-
ments from the use of additional cores if running the pipeline on a 
high performance cluster.

F I G U R E  2  Varieties of multi-algorithm agreement. Only two-way algorithm agreements are visualised, three-way and four-way algorithm 
agreement tests are also possible by combining the two-way varieties visualised here. (a) Agreement between assignment and clustering 
algorithms. Three clusters are shown, with the proportion of component ASVs assigned to each taxa at each rank visualised, with taxonomic 
assignments in large blue circles representing those received by all component ASVs. For example, Cluster1 contains three ASVs all assigned 
to the phylum Arthropoda and class Malacostraca, but they are assigned to different orders (Decapoda and Euphausiaceae). A conservative 
approach would therefore be to assign the cluster to the class Malacostraca but leave it unidentified at lower ranks. (b) Agreement between 
clustering algorithms. Two alternative clustering outputs are shown (red and blue ovals containing ASVs represented by black bars). For 
example, the blue Cluster1 contains two red clusters containing three and four ASVs each. In this case, agreement and disagreement 
between clustering algorithms provides additional information to interrogate the internal structure of, or potential relationships between, 
specific clusters of interest. (c) Agreement between assignment methods. Two ASVs are shown, each receiving an assignment from both 
IDTAXA and BLAST. ASV1 receives diverging assignments at lower ranks (family and genus), while ASV2 receives the same assignment from 
both algorithms at all ranks. A conservative approach would therefore assign ASV1 to the Order Charchariniformes but leave it unidentified 
at lower ranks.
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6  |  CONCLUDING REMARKS

SimpleMetaPipeline provides a novel and accessible tool that generates 
robust bioinformatic outputs and usable annotated community matrices 
from raw metabarcoding data. It will be particularly useful for workers 
with a knowledge of R but a limited background in bioinformatics (a com-
mon combination in ecology) and where: (a) multiple sequencing runs 
need to be compared, as in large projects and meta-analyses; (b) there 
is uncertainty about what outputs are required; or (c) there is an estab-
lished need for multiple alternative annotations, such as ASVs and OTUs. 
It thus represents a valuable open-source addition to the existing library 
of pipelines, helping democratise bioinformatics in ecology.
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