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Machine learning the electric field response
of condensedphase systemsusingperturbed
neural network potentials

Kit Joll 1, Philipp Schienbein 1,2 , Kevin M. Rosso 3 &
Jochen Blumberger 1

The interaction of condensed phase systems with external electric fields is of
major importance in a myriad of processes in nature and technology, ranging
from the field-directedmotion of cells (galvanotaxis), to geochemistry and the
formation of ice phases on planets, to field-directed chemical catalysis and
energy storage and conversion systems including supercapacitors, batteries
and solar cells. Molecular simulation in the presence of electric fields would
give important atomistic insight into these processes but applications of the
most accurate methods such as ab-initio molecular dynamics (AIMD) are
limited in scope by their computational expense. Herewe introduce Perturbed
Neural Network Potential Molecular Dynamics (PNNP MD) to push back the
accessible time and length scales of such simulations. We demonstrate that
important dielectric properties of liquid water including the field-induced
relaxation dynamics, the dielectric constant and the field-dependent IR spec-
trum can be machine learned up to surprisingly high field strengths of about
0.2 V Å−1 without loss in accuracy when compared to ab-initio molecular
dynamics. This is remarkable because, in contrast to most previous approa-
ches, the two neural networks on which PNNP MD is based are exclusively
trained on molecular configurations sampled from zero-field MD simulations,
demonstrating that the networks not only interpolate but also reliably extra-
polate the field response. PNNPMD is based on rigorous theory yet it is simple,
general, modular, and systematically improvable allowing us to obtain ato-
mistic insight into the interaction of a wide range of condensed phase systems
with external electric fields.

Electric fields are omnipresent in nature and technology. Their pre-
sence guides bumblebees to find nectar1, and they are believed to
cause a superionic ice VII phase on Venus2. They play a central role in a
myriad of electronic and energy conversion devices, including field
effect transistors, (super-)capacitors, batteries and solar cells. In
chemistry, electric fields can be used to steer selectivities in catalysis3

and to control reactivities4, whilst, in physics, they are used to accel-
erate particles close to the speed of light. The field strengths in these
examples span an extraordinarily large range. Atmospheric fields in
fair weather are on the order of 10−6 V Å−15, and electric fields acting as
floral cues can be as large as 10−5 V Å−11. In electrical components, the
field strength canvary significantlydependingon the actual design and
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the envisaged application from about 10−10 to 10−3 V Å−1. Particle
accelerators typically operate at a field strength of up to 5 × 10−3 V Å−1.
At charged electrodes, field strengths on the order of 0.1 V Å−1 6 can be
found, which also marks the onset of chemical bond activation7 and
electrofreezing of water8,9. The making and breaking of chemical
bonds may require more than 1 V Å−110,11.

Molecular dynamics (MD) or Monte Carlo simulations are the
most suitable methods to understand and predict the interaction of
liquids, electrolytes and liquid/solid interfaces with external electric
fields because they sample the correct equilibrium distribution of
molecular configurations. Many finite electric field simulations12 have
been carried out with classical force fields13–15, which typically give a
good description for pure solvents but tend to perform poorly on
more complex systems where charge transfer and polarisation effects
become important, e.g., electrode/electrolyte interfaces. Ab initio MD
(AIMD) simulations16 solve the electronic structure of the system from
first principles at everyMD time step (usually at the density functional
theory (DFT) level of theory) and thus give the most accurate
description for such cases. Indeed, AIMD simulations with finite elec-
tric fields have been carried out on a number of systems17, ranging
from crystals12 and pure liquid water18,19 to electrode/electrolyte
interfaces13,20–22. A serious disadvantage of AIMD simulations is that
they are still computationally demanding, with simulation times typi-
cally limited to a few 10 picoseconds and system sizes limited to a few
100 atoms depending on the density functional chosen. As such, AIMD
simulations of important field-induced phenomena, such as dielectric
relaxation, ionic conductivity15, electric double layer formation23 or
capacitive charging, are prohibitively expensive due to the large
number of atoms required to faithfully model such processes.

The advent of machine learning (ML) has transformed the field of
MD simulations. It is now possible to carry out nanosecond MLMD
simulations at virtually no loss in accuracy compared to AIMD by
training ML potentials from just a few hundred explicit electronic
structure calculations24–26. Originally, these ML models were designed
to calculate potential energies and forces only, including schemes that
decouple the total energy of the system into internal and environ-
mental contributions27,28. Over the last years, a full bouquet of ML
models has been published to predict dipole moments and
polarizabilities29–36, as well as other response properties, including
atomic polar tensors (APT)37. Following these developments, someML
models were recently introduced that explicitly describe the interac-
tion of a molecular system with external electric fields and were suc-
cessfully applied to such systems and liquids38–42. In most of these
approaches, the field dependence of the potential energy surface is
explicitly or implicitly part of the ML potential38–40,42. Hence, the elec-
tric field is an input parameter to the ML potential, and therefore,
training data for different field strengths are required, which is com-
putationally expensive at the AIMD level.

Herein, we introduce a simple and robust alternative for MLMD
with electric fields that learns the field response exclusively from zero-
fieldmolecular configurations, i.e., it circumvents the need to generate
training configurations by running AIMD simulations with electric
fields. We start from a standard potential energy surface and account
for the interaction with the electric field in a perturbative manner by a
series expansion truncated at first order, noting that the first
order force termcanbewritten in termsof theAPT37,43. TwoMLmodels
are trained: one standard ML potential for the unperturbed potential
energy surface (here, a committee neural network potential (c-
NNP)24,26,44) and oneMLmodel for the APT (here, an equivariant graph
neural network denoted “APTNN”37). Combined, they form a “per-
turbed ML potential” (here, “perturbed neural network potential”
(PNNP)). The two networks have no knowledge of electric field effects
(neither explicitly nor implicitly) because they are both trained
exclusively on configurations sampled at zero field, and the electric
field itself is not an input of the machine learning models. The

interaction with the field during MD simulation is, therefore, entirely
due to thefirst-order term in the series expansion given by the product
of the APT represented by the graph neural network and the external
field. The use of the APT and its ML representation to calculate the
field-induced forces on the atoms has not been explored before, to our
best knowledge, and represents the major conceptual advance of
this paper.

PNNPs are based on rigorous physical principles and follow pre-
cisely the treatmentof electricfields in quantumchemical calculations,
where the total energy is expanded at zero field45. The accuracy can
thus be systematically improvedby addinghigher-order contributions,
such as polarizabilities and hyperpolarizabilities, inML representation.
Since we do not introduce or modify ML models, the advantages and
accuracies, but also the limitations of the twoemployedMLmodels are
inherited. Importantly, a PNNP follows the spirit of the modern theory
of polarization46 because the APT relates to a change of polarization
and is thus not affected by the multivaluedness of the polarization in
periodic boundary conditions. This makes PNNP applicable to a broad
range of condensed phase systems typically modelled under periodic
boundary conditions, including solids, liquids, and interfaces.

In the following section, we describe the PNNP approach in detail.
After validation we apply the method to simulate the dielectric
response of pure liquid water. We demonstrate reversible polarization
and depolarisation of liquid water as the field strength is stepped up
and down. Then the dielectric relaxation dynamics are analysed in
detail, followed by the calculation of the dielectric constant from the
response of polarization with respect to the field strength resulting in
excellent agreement with the experimental value. Moreover, we show
that PNNP correctly predicts the field-induced red shift in the O-H
stretching mode and the field-induced blue shift in the librational
mode of liquid water, in very good agreement with results from AIMD.
In the Discussion section, we compare the PNNP to previously intro-
duced ML methods for the calculation of molecular systems with
electric fields and discuss current limitations and ways to
overcome them.

Results
Perturbed Neural Network Potential (PNNP)
In our approach, the interaction of the atomistic system with a
homogeneous external electric field E is treated perturbatively via a
series expansion truncated at first order in the field13,15,20,45

HEðrN ,pNÞ=H0ðrN ,pNÞ � E �MðrNÞ , ð1Þ

where H0ðrN ,pNÞ is the total unperturbed Hamiltonian comprised of
the kinetic energy of the N nuclei with momenta pN and the electronic
potential energy depending on all nuclear positions rN,
H0ðrN ,pNÞ = EkinðpNÞ+ EpotðrNÞ, and − E ⋅ M(rN) is the perturbation
induced by the electric field E acting on the total dipolemoment of the
system at zero field M(rN). The truncation to first order in the field is
expected tobe accurate for theweak andmedium strong electricfields
investigated in this work, as will be demonstrated further below. The
field dependence of the dipole moment or, equivalently, higher order
terms (polarizability, hyperpolarizability) may be added at stronger
fields to account for thefield-dependent perturbationof the electronic
structure47. Applying Hamilton’s equation of motion, we get the force
acting on atom i

Fiξ = � ∂EpotðrNÞ
∂riξ

+
X
ζ

∂Mζ

∂riξ
Eζ , ð2Þ

where ζ = x, y, z and ξ = x, y, z represent the three Cartesian coordi-
nates and Eζ is the ζ-component of E. The first term is the force on the
nuclei in the absence of an electric field, and the second term is the
field-induced contribution which can be written in terms of the
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transpose of the APT of atom i, Pi
37,43 (not to be confused with the

polarization P, Eq. (6)), with elements

∂Mζ

∂riξ
� ½PT

i �ξζ : ð3Þ

In our approach, we train twoMLmodels, one for the potential energy
(Epot(rN)) and one for the APT (Pi) and use the corresponding forces,
Eq. (2), to carry out MD simulations in the presence of an external
electricfield.We emphasise that both quantities are trainedwithout an
external field present, in contrast to the schemes suggested
before38–40,42. We use a committee44 of 2nd generation high-
dimensional Neural Network potentials24,26 (c-NNP) to model Epot(rN)
and an E(3)-equivariant graph neural network to model the APT
(APTNN) as recently introduced by one of us37. For details of the force
implementation, we refer to the Methods section. In the following, the
combined c-NNP and APTNN model for the electronic potential
energy, including the field term, Epot(rN) − E ⋅ M(rN), is simply referred
to as “perturbed neural network potential” (PNNP).

PNNP MD simulations give access to a number of important
dielectric properties of solids, liquids and ionic solutions. The time
derivative of the total dipole moment can be obtained by summing all
APTs multiplied by the respective velocities of the nuclei, viξ37

_M � dM
dt

=
X
i,ξ

∂M
∂riξ

viξ : ð4Þ

Thus, field-dependent IR spectra can be readily obtained from the
autocorrelation function of _M sampled along PNNP trajectories (see
Eq. (9) below). Time-integration gives the total dipole moment of the
cell,

MðtÞ=Mðt0Þ+
Z t

t0

d t0 _Mðt0Þ, ð5Þ

and the polarization P,

PðtÞ= MðtÞ
V

, ð6Þ

whereV is the volume of the simulation box. In passing, we refer to the
modern theory ofpolarization in solids47, where _MðtÞ=V is the transient
current density that, when integrated over time, gives the itinerant
dipole moment. The polarization in Eq. (6) is of major importance,
allowing for the calculation of relevant dielectric properties including
the dielectric constant (or relative permittivity, see Eq. (7) below),
capacitance and ionic conductivity.

Validation of PNNP
We demonstrate our approach by simulation of pure liquid water at
room temperature for different electric field strengths ranging from
about 0.002 to 0.2 V Å−1. Details on the training of the c-NNP and
APTNN for liquid water are given in the Methods section. Initialising a
trajectory from an equilibrated water configuration at zero centre of
mass momentum and running PNNP MD at an intermediate field
strength of 0.0129 VÅ−1, we obtain a drift in the conserved total energy
of − 2.2 × 10−9 Hartree atom−1 ps−1 and a mean magnitude of the con-
served centre of mass momentum of 8.4 × 10−9 au, see Supplementary
Fig. S1 A andB, respectively. Similar values are obtained for simulations
at all other applied electric field strengths, and they are also typical for
simulations without a field, attesting to the correct force
implementation.

Next,weassess thequality of the PNNPbyvalidating thepredicted
forces along the trajectories against an unseen test set. At each field

strength, 101 configurations are equidistantly extracted from 100 ps
PNNP trajectories. Then the total force on each atom is computed
using DFT reference calculations at the same field strength and com-
pared to the total force from PNNP (data shown in Fig. 1A for an
exemplary field strength of 0.0129 V Å−1). We then decompose the DFT
reference force into unperturbed and electric field-induced contribu-
tions by performing an additional DFT calculation on the same con-
figurations but without the external electric field. The difference
between the forceswith andwithout the field isolates thefield-induced
forces. This allows us to separately validate the unperturbed c-NNP
force contribution, first term on the right-hand side of Eq. (2), with the
unperturbed DFT contribution (Fig. 1B) and the electric field-induced
APTNN contribution, second term on the right-hand side of Eq. (2),
with the field-induced DFT contribution (Fig. 1C). Evidently, we obtain
a strong correlationbetween PNNP andDFT for the total forces and for
the unperturbed and field-induced contributions.

The root-mean-square-error (RMSE) in the atomic forces as a
function of field strength is shown in Fig. 1D. The total force RMSEs are
on the order of 90meV Å−1 and thus in line with previously published
high-dimensional NNPs and c-NNPs on various systems44,48–50, yet
somewhat larger than most recently reported values (see Discussion).
Remarkably, we find that the RMSE for the unperturbed contribution
remains almost constant at about 90meVÅ−1 even atfield strengths up
to 0.2057 V Å−1, although the training set is only composed of unper-
turbed, i.e., zero-field equilibrium configurations of liquid water. The
field-induced force contributions are about two orders of magnitude
smaller than the unperturbed contribution, and so are their RMSEs.
Notably, the field-induced forceRMSE increases in proportionwith the
field strength from 8.6 × 10−2 meVÅ−1 at 0.0026 VÅ−1 to 9.05meV Å−1 at
the largest simulated field of 0.2057V Å−1. Dividing the RMSE by the
range of field-induced forces one obtains 1.1% error at 0.0129 V Å−1 and
1.2% error at 0.2057 V Å−1. Alternatively, dividing the RMSE by the root-
mean-square of the reference DFT forces, as is commonly done in the
literature50 (see also Supplementary Note 4), we obtain a relative RMSE
for the field-induced contribution of ≈ 8.2% up to a field strength of
about 0.02 V Å−1 and 9.8% at 0.2057V Å−1 (Fig. 1E). Hence, the relative
forceerror onboth errormetrics exhibits remarkably constancy across
the range of field strengths investigated.

Lastly, we validate the calculation of the total dipole moment
along the PNNP MD trajectories as obtained by integration of the
time derivative of the dipole moment according to Eq. (5). We find
that the dipole moment tracks the reference dipole moments
obtained from explicit DFT calculations very well for about 10–100
ps depending on the field strength (see Supplementary Fig. S1C).
However, at longer times, deviations become larger due to the
accumulation of errors when integrating over the finite time steps,
even though _MðtÞ is accurately reproduced. This problem is addres-
sed here by calculating reference DFT dipole moments along PNNP
MD trajectories in periodic intervals and integrating the time deri-
vative of the dipole moment obtained from APTNN only from one
DFT reference value to the next. Using this integration procedure, we
calculated the mean dipole moment averaged over the 100 ps PNNP
MD trajectories, 〈M(t)〉, as a function of the time interval between
two DFT reference values. The relative errors with respect to the
reference DFT mean dipole moments averaged over the same 100 ps
PNNP MD trajectories (calculated using a sampling frequency of 1
ps−1) are shown in Fig. 1F. We find that the error decreases rapidly, to
below 5% for spacing between two DFT reference dipole moments of
10 ps, for all field strengths. This integration procedure with a spa-
cing of 10 ps is used for the total dipole moments reported in this
work. Hence, in practice, only a very small number of additional DFT
calculations are necessary to accurately calculate the dipole moment
along the PNNP MD trajectories at a resolution that is only limited by
the MD time step.
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Orientational relaxation dynamics
Having validated the forces and polarization against DFT reference
data, we now apply the PNNP to simulate the relaxation of water
orientation in response to interaction with an electric field. We extract
20 independent configurations from a sample of liquid water equili-
brated for 1 ns with field-free c-NNP MD and use them as starting
configurations for 40 ps PNNP MD simulations, each run at a field
strength of 0.0257 V Å−1. In addition, we take the same initial config-
urations and perform explicit AIMD simulations at the same field
strength and integration time step (1 fs). The orientation of the water
molecules at a given time, t, is described by the angle between the
direction of the applied electric field and the bisector between the two
intramolecular OH bond vectors averaged over all water molecules,
〈Θ〉(t). The results are shown in Fig. 2. At t = 0, the initial average
orientation is very close to 90∘ corresponding to the expectation value
of the randomly oriented water molecules at equilibrium. When the
field is switched on at t = 0, the relaxation dynamics obtained from
PNNP MD are in very good agreement with the results from AIMD.
Exponential fits give time constants τ = 5.9 ps−1 (R2 = 0.99) for PNNP

compared to τ = 6.6 ps−1 (R2 = 0.99) for AIMD.Moreover, the PNNP and
AIMD simulations converge to nearly the same final average angle of
60∘ and 61∘, respectively. Since the standard deviations in 〈Θ〉 overlap
for the twomethods (shaded areas in Fig. 2), we ascribe the remaining
small differences to statistical uncertainty. A much larger number of
trajectories totalling several nanoseconds would be needed to clarify
this point, but this is unfeasible due to the computational expense
of AIMD.

Electric field sweep
In the following we vary the strength of the field in time and monitor
the structural and dielectric response of the water sample as obtained
from PNNP simulations. The results are presented in Fig. 3. The tem-
poral profile of the applied electric field strength is shown in panel A,
the average water orientation 〈Θ〉(t) in panel B and the total dipole
moment in the direction of the applied electric field,Mz(t), in panel C.
We obtain an approximately linear response in the average orientation
and a concomitant linear increase in the dipole moment as the field is
stepped up from0 to 0.0154VÅ−1 (in increments of 0.0026V Å−1). This

Fig. 1 | Errormetrics of the trainedPerturbedNeuralNetworkPotential (PNNP).
Scatter plots are presented comparing the predicted PNNP forces on the atoms
with the corresponding reference density functional theory (DFT) forces for the
total force (A), which is broken down into the unperturbed force contribution
predicted by the committee Neural Network Potential (c-NNP) (B) and the field-
induced force contribution predicted by the Atomic Polar Tensor Neural Network
(APTNN) (C). Thefield strengthwas0.0129VÅ−1, and 101 configurationswere tested
against. Forces acting on O and H atoms are colour-coded in blue and red,
respectively. The root-mean-square-error (RMSE) of the PNNP forces relative to
DFT forces as a function of the field strength is shown in panel (D), where the total

force, unperturbed force contribution and field-induced force contribution are
depicted in squares, circles, and left-facing triangles, respectively. The corre-
sponding relative RMSE, defined by the ratio of the force RMSE (FRMSE) to the root
mean square of the DFT forces (FRMS), is displayed as a percentage in panel (E) (see
Supplementary Note 4 for detailed definition). The relative error of the mean
polarization in the direction of the field (〈Pz〉), obtained by integrating the total
dipole moment time derivative (Eq. (5)), is shown in panel (F) as a function of the
number of DFT reference calculations of dipolemoments per 100 ps, seemain text
for details. Source data are provided in the Source Data files.
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is in line, albeit somewhat lower than, previously published estimates
for the upper bound of the linear regime, 0.03 to 0.07 V Å−1 17,51. At
larger field strengths, the dielectric response becomes weaker, indi-
cating that the non-linear regime is reached. At 0.2057 V Å−1, a strong
orientational alignment along the field direction is observed, 〈Θ〉 = 20∘.
Notice that at these high field strengths, the PNNP still predicts rea-
sonably accurate forces (see Fig. 1D, E) despite the absence of elec-
tronic polarization terms and any field-dependent training data. At
0.4114 V Å−1, we observe water splitting into a proton and a hydroxide
ion, in line with previous reports that chemical bond activation occurs
at these field strengths7. Here, one could train the c-NNP further to
include proton and hydroxide species, and thereby test even larger
field strengths. However, an accurate description of these species
would require explicit inclusion of nuclear quantum effects52,53, which
is beyond the scope of this work. Instead, an additional set of simula-
tions is run where the field strength is reversed from the value at the
end of the linear regime, 0.0154V Å−1, down to 0 in increments of
0.0026 V Å−1. That sweep is detailed in Supplementary Fig. S2. We
obtained very similar mean orientations and dipolemoment as for the
forward sweep, demonstrating that the sample can be reversibly
polarized and depolarised.

Dielectric constant
The time series of dipolemoments shown in Fig. 3C are time-averaged
for each applied electric field strength to obtain the mean of the
polarization (Eq. (6)) along the field direction, 〈Pz〉, as a function of the
field strength. The results are shown in Fig. 4 for the forward and
backward sweeps (data in blue and red, respectively). The data points
in the linear regime are shownmagnified in the inset of Fig. 4. They are
fit to straight lines, and the slopes used to obtain the static dielectric

constant, ϵr, according to Eq. (7),

ϵr = 1 +
1
ϵ0

∂hPzi
∂Ez

, ð7Þ

where ϵ0 is the vacuum permittivity. We obtain values ϵr = 77.9 ± 2.7
(R2 = 0.99), 80.6 ± 2.7 (R2 = 0.96) for forward and backward sweep and
ϵr = 79.3 ± 2.2 (R2 = 0.99, data in green) from a linear fit to the weighted
average data for forward and backward sweep, in agreement with the
experimental value of ϵr = 78.454. Similar values would be obtained
using only one data point due to the robust linear correlation.
Remarkably, the dielectric constant was converged after only about
175ps of simulation time per applied electric field (see Supplementary
Fig. S3), similar to what was previously reported for classical MD
simulations employing finite field Hamiltonians13. This is an order of
magnitude less simulation time than what is required to calculate the
dielectric constant from the fluctuations of the polarization13,55–57,

ϵr = ϵ1 +
1

3ϵ0kBVT
hM2i � hMi2

� �
, ð8Þ

Ez

Ez
t=0ps

t=40ps

Ez

Fig. 2 | Electric field-induced orientational relaxation of liquid water. The
change in the average orientation of the water molecules defined by 〈Θ〉 is shown
for the Perturbed Neural Network Potential molecular dynamics (PNNP MD) (blue
circles), and ab initio molecular dynamics (AIMD) (red circles) after an electric field
along the z-direction with field strength Ez = 0.0257 V Å−1 is switched on at t = 0.
The angleΘ is defined for eachwatermolecule as the angle between the bisector of
the two intramolecular OH bond vectors and the applied electric field vector, as
illustrated in the inset at the top right corner. The average, 〈Θ〉, is obtained by
averaging Θ overall water molecules in a given configuration. The shaded areas
indicate the standard deviations obtained from 20 independent trajectories. The
data are fit to exponential decay functions (solid lines). The insets show a snapshot
of an equilibrated water sample at t = 0, where 〈Θ〉 ≈ 90∘ corresponds to randomly
orientatedwatermolecules, and a snapshot at t = 40ps,where thewatermolecules
are polarised at an average angle of about 60∘. Source data are provided in the
Source Data files.

Fig. 3 | Electric field sweep for liquid water. The applied electric field along the z-
direction, Ez, the average angle 〈Θ〉 measuring the orientation of water dipoles
along the z-axis (as defined in Fig. 2) and the dipole moment of the simulation cell
along the z-direction, Mz, are shown in panels (A–C), respectively, as a function of
the simulation time. The vertical dashed line indicates the upper limit of the linear
response regime at 0.0154V Å−1. It was determined from the data shown in Fig. 4 as
the threshold above which the polarization versus electric field response starts to
deviate from linearity. Perturbed Neural Network Potential molecular dynamics
(PNNP MD) simulations were carried out for 200 ps at each field strength until the
end of the linear regime was reached and for 100 ps at each field strength in the
non-linear regime. A change in colour indicates a step change in the electric field
strength. Mz was obtained by integration of the Atomic Polar Tensor Neural Net-
work (APTNN) prediction of the time derivative of the dipolemoment according to
Eq. (5), as explained in the main text. Source data are provided in the Source
Data files.
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where the total dipolemoment,M, is sampled at zero electric field and
ϵ∞ = 1.7258 is the optical dielectric constant for liquid water. Indeed,
sampling the total dipole moment M along zero field c-NNP
trajectories, we obtain a converged value ϵr = 90.6 ± 1.7 only after 3
ns (see Supplementary Fig. S4), similarly as in previous simulations59.
The reason for the difference in the dielectric constant from the field
sweep and from zero field simulation is not known but could be due to
a number of reasons. The fluctuations of the polarization are likely to
be more sensitive to simulation details than the mean values, e.g.,
thermostat used, finite system size and remaining inaccuracies of the
PNNP. Moreover, the approximations made to derive the dielectric
constant in terms of the polarization fluctuations from Eq. (7)60 could
also contribute to the difference.

Field-dependent IR spectra
TheAPTs and nuclear velocities along the PNNP trajectories give direct
access to the timederivative of thedipolemoment, _M, according to Eq.
(4), and the frequency (ω)-dependent Beer-Lambert absorption coef-
ficient of IR spectroscopy, α(ω),

αðωÞnðωÞ= π
3Vcϵ0kBT

1
2π

Z 1

�1
dt e�iωt _Mð0Þ _MðtÞ

D E
, ð9Þ

where n(ω) is the frequency-dependent refractive index, c is the speed
of light in vacuum, kB is the Boltzmann constant and T the
temperature. In Fig. 5 we present the calculated spectrum as obtained
from c-NNPMD at zero field strength and from PNNPMD at finite field
strengths. The experimental IR spectrum at zero-field61 is very well
reproduced using the RPBE-D3 functional, as reported previously37.
The spectrum remains remarkably insensitive to the presence of an
electric field in the linear regime and beyond, up to about 0.0514 V Å−1.
For larger fields, we observe a systematic red-shift of the intramole-
cular OH stretching vibration at around 3500 cm−1, by approximately
100 cm−1 at 0.2057V Å−1. A redshift of the OH stretch is generally
ascribed to the formation of stronger intermolecular hydrogen
bonds62–64, here induced by the external electric field. This notion is
further supportedby the systematicblue shift of the librational band at
around 600 cm−1 by approximately 200 cm−1 at 0.2057 VÅ−1 suggesting
that the interaction with the field leads to a stiffening of the potential
for rotational motion of the water molecules65. This is in line with a
previous study describingwater at thesefield strengths to bemore ice-
like8,9. The trends in the IR spectra agree very well with previously
published results obtained from other approaches that differ in many
aspects fromourmethod, e.g., AIMD simulations with external electric
fields8 and MLMD simulations using the FIREANN-wF model42. The
computed band shifts are thus a sensitive fingerprint of the local
electric fields. In turn, such calculationsmay provide a way to estimate
the local field strength in a sample from their measured IR spectrum.

Discussion
In this work, we extend MLMD simulations to include the interaction
with an external electric field by adding the field-induced perturba-
tion up to first-order to the unperturbed Hamiltonian (Eq. (1)). The
resulting force equation (Eq. (2)) allows us to separately calculate the
unperturbed forces from a standard machine learning potential
(here: a c-NNP) and the field-induced forces from the APTNN. The
force calculation, therefore, rigorously follows the laws of electro-
statics without any additional approximations.

The resulting scheme termed PNNP MD has several advantages:
First, the approach ismodular because the electric field contribution is

Fig. 4 | Polarization and dielectric constant. The time-averaged polarization of
liquid water, 〈Pz〉, is shown as a function of the applied electric field along the z-
direction, Ez. Data points obtained from the field sweep in the forward (backward)
direction, where the field is stepped up (down), are depicted in blue (red) triangles.
Data points in the linear response regime between 0 and 0.0154 V Å−1 are fit to
straight lines with zero intercept. The data were averaged over the Perturbed
Neural Network Potential molecular dynamics (PNNP MD) trajectories shown in
Fig. 3 (Supplementary Fig. S2) for forward (backwards) sweep and converted to
polarization according to Eq. (6). The number of polarization samples averaged
over was 180001 in the linear regime and 80001 in the non-linear regime. The
standard error of the mean (SEM) is displayed and was calculated as the standard
deviation of the sample divided by the square root of the sample size, adjusted for
statistical inefficiency. To this end, a literature autocorrelation time of 10ps was
used99. The weighted averages over data from forward and backward sweeps are
depicted in green circles and fit into a straight line. The linear response regime is
shown enlarged in the inset. The slope is used to obtain the dielectric constant
according to Eq. (7). Source data are provided in the Source Data files.

Fig. 5 | Field-dependent Infrared (IR) spectrum of liquid water. The product of
Beer-Lambert absorption coefficient and refractive index,αðeνÞnðeνÞ, Eq. (9), is shown
as a function of the vibrational wavenumber ~ν for different applied electric field
strengths, as indicated. The time derivative of the polarization is directly obtained
from the Atomic Polar Tensor Neural Network (APTNN) and the atomic velocities
sampled along the Perturbed Neural Network Potential molecular dynamics (PNNP
MD) trajectories via Eq. (4). The experimental spectrum at zero field (shown in
shaded grey) is taken from ref. 61. Sourcedata are provided in the SourceDatafiles.
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independent of the employed unperturbed potential energy surface.
As such, the APTNN can be coupled with any ML potential (not only
NNPs) or even with force fields to include the interaction with an
external electric field. The level of theory of the reference electronic
structure calculations for the training of APTNN and ML potential can
be chosen differently in accord with the accuracy requirements for
unperturbed and perturbed potentials. Moreover, the modular
approach allows one to assess the accuracy of each component
separately. Second, APTs are well-defined for any atomistic system,
and thus, APTNNs can be trained out of the box, without requiring any
conceptual tailoring or adjustment or the use of arbitrarily defined
proxies (e.g., atomic charges, molecular dipolemoments, or similar)37.
Importantly, APTs are uniquely defined when using periodic boundary
conditions as they quantify a change in the total dipole moment or
polarization. This is in contrast to the total dipole moment, which is
multi-valued in periodic boundary conditions46. Third, the approach
does not require sampling training configurations as a function of the
applied electric field. Yet, the interaction with electric fields is pre-
dicted at nearDFT reference accuracy up to high field strengths on the
order of 0.2V Å−1. Fourth, the method can be systematically improved
by including higher order terms to the perturbation, e.g., polarizability
and hyperpolarizability45. This would allow for more accurate simula-
tions at very high field strengths exceeding 0.2 V Å−1.

These features make our PNNP method distinct from other
approaches introduced to model the interaction with external electric
fields in ML simulations38–40,42. The FIREANN-wF model42 is trained on
atomistic forces in the presence of an electric field to perform finite-
field simulations of liquid water and thus requires field-dependent
training data. The model adds a pseudo atom to each real atom which
is explicitly dependent on the electric field and thereby captures the
response to an applied electric field in an effective atomic dipole
moment. It has been used remarkably successfully to calculate
response functions, such as dipole moments and polarizabilities, and
subsequently, field-dependent vibrational spectra of liquid water were
computed from these quantities. In principle, this approach allows one
to accurately model arbitrarily large electric fields and field gradients,
as the relevant polarized configurations are explicitly included in the
training set. By contrast to PNNP, in FIREANN-wF the field-induced
contribution to the total energy and forces is not learned explicitly but
“implicitly in the force-only training”42. It remains to be seen whether
implicit learning is a robust strategy that can be applied to awide range
of systems.

FieldSchNet39 incorporates external field effects by introducing
vector-valued representations of atomic environments, e.g., utilizing
fictitious atomic dipole moments. It then uses vector fields to model
interactions between molecules and arbitrary external environments
by adding terms for dipole-field and dipole-dipole interactions. In
contrast to PNNP, it is trained on data that include molecular struc-
tures in various dielectric environments and field strengths. Electro-
static response properties of the field are available as analytical
derivatives of the network and have been used to compute vibrational
spectra from MD simulations conducted at zero field. Certain limita-
tions of this method have recently been pointed out, e.g., an incom-
plete description of the field-system interaction when atomic dipoles
are orthogonal to the applied field direction42.

Complementary to the abovemethods, SCFNN40 relies on training
the position of Wannier centres around water molecules. The method
has been introduced with the main goal of incorporating long-range
electrostatics but also allows one to evaluate configurations in the
presence of external electric fields. The method can indeed be gen-
eralised such that molecules other than water can be treated, but “the
set of possible molecules must be known in advance”40. Moreover, a
reference frame around each kind of molecule needs to be defined; in
the case of a water molecule, this was done by associating four Wan-
nier centres with themolecule and examining their coordinates within

the local molecular frame. This construction thus likely introduces an
overhead when more molecules need to be treated, molecular frames
cannot be constructed (e.g., a simple ion), or reactions occur during
the MD simulations (e.g., proton transfer in water).

Returning to PNNP MD, we have shown that our method predicts
accurate dipolar response dynamics (Fig. 2) and electric field-
dependent IR spectra when compared to AIMD (Fig. 5) as well as an
accurate dielectric constant when compared to the experimental
value (Fig. 4). The almost quantitative agreement obtained for the
dielectric constant is remarkable because one generally cannot expect
perfect agreement between electronic structure calculations at the
level of DFT and experiments. Moreover, nuclear quantum effects52,53

were ignored in our simulations. The RPBE-D3 functional, in combi-
nation with classical MD simulation, is known to describe water, aqu-
eous solutions and interfaces over a wide range of temperatures and
pressures very well37,59,65–70. With the help of PNNP simulations, we
could show that the strong performance of the RPBE-D3 functional in
describing radial distribution functions, self-diffusion, orientational
relaxation processes, and vibrational spectra of liquid water with
respect to experimental data extends to its dielectric response prop-
erties. This is in part because the remaining deficiencies of this func-
tional tend to be effectively compensated bymissing nuclear quantum
effects. Indeed, our computed IR spectrum at zero-field is in almost
quantitative agreement with experimental data. Moreover, our com-
putedpeak shifts in the IR spectra in thepresence of anapplied electric
field are in almost quantitative agreement with the results reported for
the FIREANN-wF model42. Therein a more accurate and computation-
ally expensive revPBE0-D3 hybrid functional was employed in combi-
nation with path integral MD simulations to explicitly account for
nuclear quantum effects.

The performance of PNNP might be surprising considering that
the typical field-induced contribution to the total force, in the order of
10meV Å−1 at moderate field strengths of 0.01 V Å−1 (Fig. 1C), is even
smaller than the RMSEs of the unperturbed force contribution and the
total force, about 90meV Å−1 (Fig. 1D). We explain this by noting that
the error in the unperturbed force contribution is approximately
Gaussian distributed and does not have a directional preference
whereas the field-induced force contribution has, of course, a net
direction along the field. Thus, when averaged over many configura-
tions and atoms, the error in the unperturbed force contribution
cancels out, whereas the field-induced force contribution does not.
Therefore, the RMSE in the unperturbed force contribution does not
compromise the accuracy of the electric field response.

We would like to point out that the total force RMSE of our PNNP,
about 90meV Å−1, is in line with typical values that have been pre-
viously reported for ML models, see e.g., refs. 26,48–50. Yet, some
recent studies reported RMSEs that are about a factor of 2–3 smaller,
for instance, an RMSE of 39.4meV Å−1 was reported for the FIREANN-
wF model42. The training set used herein for c-NNP was not very
exhaustive and consisted of only 260 configurations of a 128-meter
molecule box. Hence, it is much smaller than the training set used in
ref. 42. Similarly, the APTNNwas trained on only 27 randomly selected
configurations of liquid water37. Another important aspect is the
quality of the underlying reference DFT calculations. For consistency
reasons, we employed exactly the same DFT setup that was used in
previous AIMD studies on liquid water67,68. In particular, we adopted a
kinetic energy cutoff of 600 Ry, whereas, in the case of the FIREANN-
wF model42, a very tight cutoff of 1200 Ry was used. It is well known
that tighter convergence of the electronic structure calculations leads
to less noise and smaller RMSEs in the ML model26. Thus, we expect
that the RMSEs of our ML models could be further lowered by
increasing the training set in combination with the use of tighter
convergence criteria for the DFT calculations. The strong performance
of our PNNPmodel compared toAIMDandexperimentaldata suggests
that the current RMSE is sufficiently low for the purpose of this study.
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Aswith anymethod, our current implementation of PNNPMDhas
some limitations, which wewould like to discuss in the following. First,
the itinerant cell dipolemoment is obtained by integrating the current
density according to Eq. (5). Therefore, cell dipole moments are only
indirectly obtained by numerical integration, in contrast to previously
published techniques39,40,42. To compensate for the accumulation of
integration errors, the integration is restarted periodically by explicitly
calculating the dipole moment by the underlying electronic structure
method (Fig. 1F). While this significantly reduces the amount of elec-
tronic structure calculations required, the additional DFT calculations
may become performance-limiting for very large system sizes that can
no longer be routinely treated at DFT level (e.g., 1000s of water
molecules). Yet, the DFT calculations do not restrict the accessible
time scale that can be accessed by PNNPMD. As we show in Fig. 1F, it is
sufficient to carry out DFT calculations in periodic intervals (10 ps) on
the time scale accessible to PNNPMDsimulations (tens of ns). Notably,
these DFT calculations are only post-processing of the PNNP MD such
that they can be calculated in parallel. Moreover, many relevant
properties do not require knowledge of the itinerant cell dipole
moment, e.g., vibrational spectra, or transport properties, where the
current density (Eq. (4)) is sufficient. The latter is readily available in
the PNNP scheme and does not require numerical integration.

While theAPT rigorously accounts for all long-range electrostatics
and non-local charge transfer effects, our neural network representa-
tion of the APT (APTNN) only uses local descriptors, i.e., it does not
contain explicit long-range electrostatics information. This is similar in
spirit to the 2nd generation c-NNP used here to represent the intera-
tomic potential. MLmodels with local descriptors are bound to fail for
vapour phases or apolarmedia where long-range electrostatics are no
longer effectively screened, or in situations where the electric field
induces a long-range charge transfer. Yet, this is where the modularity
of our PNNP approach offers a distinct advantage because it allows us
to replace the underlyingMLmodels as required. For example, the 2nd
generation c-NNP currentlymodelling the interatomic potential canbe
replaced by a 4th generation c-NNP26,71,72 which explicitly takes long-
range electrostatics and non-local charge transfer into account. Simi-
larly, the APTNN with local descriptors could eventually be replaced
with a version including non-local descriptors. The idea introduced
here to perturb an interatomic potential with an electric field using the
APT is generally valid. It is amatter of the underlyingmachine learning
models to incorporate non-locality when needed.

We also note that the perturbation series expansion in the
electric field Eq. (4) only contains the dipolar term. The low relative
RMSE in the field-induced force contribution suggests that higher
order terms (dipole polarizabilities and hyperpolarizabilities) are
not needed up to high field strengths of about 0.2 V Å−1 (Fig. 1E). Yet,
the RMSE slowly but steadily increases at this point indicating that
dipole polarizability becomes increasingly important in this electric
field regime. In principle, the polarizability tensor can be learned in
a similar way as the APT, and we are currently exploring efficient
schemes for this purpose. Finally, another limitation of the current
scheme is that we only considered homogeneous electric fields. For
simulation under inhomogeneous fields induced, e.g., by an STM tip
or an electrode interface, one would need to supplement the mul-
tipole expansion Eq. (4) with the quadrupolar interaction terms
(since field gradients interact with quadrupole moments). This
could be done using the Born charges obtained from the APT for the
calculations of the quadrupole moment.

In conclusion, we have implemented an ML methodology, deno-
ted PNNP, to run MD simulations in the presence of an external
homogeneous electric field. Key to this development is the APT, which
is trained by an ML model and used to compute the field induced
forces. The latter are combined with the forces obtained from a stan-
dardML potential describing the interatomic potential. Themethod is
modular, it makes use of the APT which is well defined in periodic

boundary conditions, it does not require training as a function of the
applied electric field and it is systematically improvable.

We performed PNNP simulations at several different field
strengths and compared our results against reference AIMD calcula-
tions and experimental literature data. In general, we found very good
to excellent agreement for all properties investigated. We demon-
strated reversible orientational polarization and depolarisation of the
water molecules as the electric field is stepped up and down, with
orientational relaxation times within the statistical accuracy of the
AIMDdata (Fig. 2). This permitted successful calculation of the relative
permittivity, ϵr, on simulation time scales that are an order of magni-
tude shorter than in more standard approaches that suffer from the
very slow convergence of the polarization fluctuations at zero field
(Fig. 4). The value obtained was in good agreement with experiment
validating our approach in the linear response (low electric field)
regime. We also calculated the IR spectra and compared them with
previous explicit AIMD simulations8. The systematic peak shifts for
libration and intramolecular OH stretch vibration at high electric fields
match AIMD reference data very well, thereby validating our approach
also for the non-linear response (high electric field) regime.

We expect PNNPMD to become a useful tool for the ab initio-level
simulation of a wide range of condensed phase systems interacting
with external electric fields and for the calculation of electric field-
dependent properties not investigated in this work, including ionic
conductivity and capacitance. The implementation of higher-order
terms in the energy expansion with respect to the electric field will
enable accurate simulations at even higher field strengths and give
access to Raman and Sum-Frequency-Generation spectra of con-
densed phase systems within the APT framework. Moreover, owing to
the modularity of our approach, one can readily take advantage of
future developments in non-local ML potentials, which might be
necessary for simulation in media where dielectric screening is not as
strong as in water.

Methods
Implementation of PNNP
The unperturbed potential energy, Epot, and the corresponding forces,
the first term on the right-hand side of Eq. (2), are modelled by a
committee of 2nd generation high-dimensional Neural Network
potentials24,26, as recently implemented in the cp2k software
package44. The field-dependent force contribution related to the APT,
the second term on the right-hand side of Eq. (2), is modelled by an
APTNN, which is based on the E(3)-equivariant graph neural network
e3nn73 based on the PyTorch library74. A new force evaluation envir-
onment was added to cp2k, linking the Fortran-based cp2k and the
Python/C++ based PyTorch in a client/server approach. Inspired by
the i-PI implementation75cp2k launches and connects to a Python
server that waits to receive configurations and sends back APTs pre-
dicted by the APTNN model. The APTs are then used in cp2k, to
evaluate the corresponding force contributions. They are added to the
c-NNP forces using the built-in mixing force environment to obtain
the total forces for propagation of the atoms using the velocity-Verlet
algorithm.

Training of c-NNP and APTNN
The committee members of the c-NNP were trained using n2p276. The
parameters for the neural network were taken from a previous ML
potential study on liquid water59, in conjunction with generic sym-
metry functions44. The c-NNP is trained on the energies and forces
obtained from DFT calculations at the level of RPBE-D3, as detailed
further below using the active learning procedure reported in ref. 44.
With regard to the APT, we use the recently published APTNN devel-
oped by one of us37 containing APTs from only 27 snapshots of an
equilibrated 128 water molecule box in its training set at the level of
RPBE-D337. The resultant 10,368 APTs were obtained by single-point
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finite difference calculations, which required significant computa-
tional effort. Notice that the goal of the present work was to introduce
the PNNP approach and to give a proof-of-principle demonstration,
not to optimise the training protocol. Here, we just used the largest
training set that was already available from our previous work37. This
has allowed us to benchmark the accuracy of PNNP whilst ensuring
that possible errors from using too small training sets are minimised.

We are very confident that the computational effort for the gen-
eration of training data for APTNN can be significantly reduced in the
near future. First, we previously showed that the IR spectrum requires
only 9 training configurations for a 128 water molecule box (i.e., 3456
APTs) to accurately reproduce the reference spectrum, reducing the
required reference calculations by a factor of three. We anticipate that
this applies to other observables of interest as well. Second, our cur-
rent training strategy for the APTNN has not yet been optimised. Cal-
culating APTs for all atoms in a given configuration likely includes
redundant data due to the high correlation between APTs of neigh-
bouring atoms. Training on a per-atom basis, where APTs are calcu-
lated for a subset of atoms only, is expected to be more efficient. This
method could also be combined with active learning, where the net-
work iteratively selects atoms for the training set; for example, by
using a query-by-committee approach as in the c-NNP44. We expect
that these two strategies allow us to reduce the number of reference
APT calculations by an order of magnitude, if not more. Finally, the
method for calculating APTs could also be made more efficient, for
example, by using analytic density functional perturbation theory77

rather than finite difference calculations. Exploring these strategies is
beyond the scope of this manuscript but will be addressed in
future work.

Reference DFT calculations
Electronic structure calculations for the generation of reference
training and test data were performed using cp2k78 version 2023.1 and
the quickstep module79. The RPBE functional was evaluated by the
libxc package80 and supplemented by D3 dispersion corrections81.
We employed a mixed Gaussian orbital/plane wave (GPW) basis set82

with a plane wave cutoff of 600 Ry and a relative cutoff of 20 Ry, and
the Gaussian orbitals are constructed using the triple-ζ quality TZV2P
basis set83, including polarization functions as employed
previously65–68. Core electrons are described by norm-conserving
Goedecker-Teter-Hutter (GTH) pseudopotentials84,85. Homogeneous
electric fields were treated by the approach introduced by Umari and
Pasquarello86 as implemented in cp2k. Dipole moments of the simu-
lation cell (M) were obtained from the DFT calculations via maximally
localised Wannier functions16.

Charge conservation
Charge conservation is strictly enforced in PNNP via the acoustic sum
rule for the atomic polar tensors77,87,88,

Xatoms

i

∂Mζ

∂riξ
=0 8 ζ , ξ : ð10Þ

This is done by calculating the sumof every component divided by the
number of atoms and distributing any small excess evenly across all
atoms in the system. Note that this correction is akin to correcting
atomic charges, as it has previously been done in the literature, dis-
tributing any excess charge evenly across the total system89–91.

Simulation details
All calculations, including training, testing and production runs, were
carried out for a 128watermolecule box of length 15.6627Å employing
periodic boundary conditions (density 0.996 kg L−1). Finite field PNNP
MD simulations were carried out in the NVT ensemble using a CSVR
thermostat with a time constant of 1 ps92 and a MD integration time

step of 1 fs, zero field c-NNP MD simulations were carried out in the
NVT ensemble using a Nose-Hoover thermostat93,94 and a time step of
0.5 fs, except where indicated otherwise. The simulations of the
orientational relaxation dynamics and the IR spectra were carried out
in the NVE ensemble. The Beer-Lambert absorption coefficients were
calculated as in previous work65. For each electric field strength
(0.0514, 0.1028, and 0.2057V Å−1), 20 independent configurations
were chosen from the field sweep PNNP simulation. For each of these
configurations short (20 ps) PNNP simulations in the NVE ensemble
were conducted. The spectrum was calculated for each of the
20 simulations and then averaged.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source figure data are available on figshare with the following
https://doi.org/10.6084/m9.figshare.2671663195. The supplementary
data are also available on figshare with the following https://doi.org/
10.6084/m9.figshare.2666935096.

Code availability
All field simulations were performed using the cp2k-2023.1 software
package, which has been customised in-house. This is a development
version and is publicly available on: https://github.com/kjaj98/cp2k-apt-
pnnp-paper, https://doi.org/10.5281/zenodo.1362784997. The atomic polar
tensor neural network and all scripts used to train and predict atomic
polar tensors are publicly available at: https://github.com/pschienbein/
AtomicPolarTensor, https://doi.org/10.5281/zenodo.1332358798. Version
2.1.0 of n2p2 was used to train the committee neural networks.
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