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Abstract  11 

 12 

Using data collected from the Meili-I analog crewed mission hosted on a remote Scottish 13 

island during August 2023, we analyze GNSS traverse tracks to assess walking velocity in 14 

relation to terrain slope. A series of data sampling tests to derive models using a generalized 15 

form of Tobler’s Hiking Function indicates these models are only applicable to a similar 16 

resolution at which they were derived. Deriving walking velocity at 20-second intervals 17 

suggests a linear relationship between walking velocity and slope is useful for grid walking 18 

algorithms, but longer sampling intervals (>120 seconds) indicate a greater sensitivity to 19 

slope, likely recording long-period affects of exhaustion from prolonged 20 

ascending/descending of slopes. Findings are constrained by the limitations of 21 

environmental variables during the mission, including variable weather conditions and 22 

increasing familiarity with terrain. Applying calibrated hiking functions to grid walking 23 

algorithms (i.e., Dijkstra’s algorithm) offers time-optimal paths useful for walk-back 24 

contingency planning but is unsuited for planning exploration geology traverses.  25 

 26 

Key Words: Crewed Planetary Exploration, Analog, Hiking Function, Traverse Velocity, 27 

Fieldwork 28 

 29 

1.0 Introduction 30 

 31 

Crewed analog simulations provide a useful research methodology for investigating one or 32 

more aspects of future crewed spaceflight. Space Health Research organized Meili-I in the 33 

summer of 2023 as a two-week duration high-fidelity planetary exploration simulation 34 

approximating the remoteness, isolation, and scarcity of resources expected during 35 

upcoming planetary exploration. To assess the realistic possibility of field geology completed 36 

by humans on the surface of other planetary bodies (e.g., the Moon), analog fieldwork is 37 

necessary. Testing traverse planning strategies during in-situ exploration simulations has 38 

been a component for a number of analog missions [1–6].  39 

 40 

For Meili-I, the crew were the major decision makers, planning traverses to key geological 41 

targets prior to deployment and tasked with navigation plus geological data collection during 42 

the simulations. Exploration field geology involves continued observation, interpretation, 43 

development and testing of hypotheses in the field, requiring complex decision-making [7–9]. 44 

Trying to integrate this geological methodology into the rigid constraints of astronaut 45 

traverses makes planning future astronaut traverses challenging. A key variable to consider 46 

is crew velocity over the planetary surface, which dictates the allocation between travel and 47 

activities during a time-limited traverse.  48 
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Tobler (ref.[10]) introduced an influential exponential equation to derive a relationship 49 

between the vector slope and walking velocity, which has become known as Tolber’s Hiking 50 

Function (THF) — derived to estimate realistic time- or cost-distances between places. We 51 

classify “hiking function” as in Goodchild (ref [11]) referring to a general class of 52 

mathematical formula used to determine walking velocity considering the slope of the terrain. 53 

Hiking functions will most certainly be applicable for planning upcoming traverses for Artemis 54 

crewed landings on the Moon [12] but will need to consider different surface gravity.  55 

 56 

THF is a vector function where the direction of travel over a terrain is necessary for 57 

determining the expected travel time. As in Goodchild (ref [11]) we define “slope” as a vector 58 

quantity evaluated in the direction of travel — specifically the tangent of the change in height 59 

experienced by the crew member for any given unit of horizontal distance covered. This 60 

differs from the gradient of the terrain, which is the absolute inclination typically recorded in 61 

Digital Terrain Models (DTM), considered as the tangent of the angle of a terrain surface to 62 

the horizontal.  63 

 64 

A generalized form of THF can be written as:  65 

 66 

𝑤(𝑥) = 𝛼𝑒−𝑏|𝑥+𝑐| Equation 1 67 

 68 

Where w(𝑥) represents the walking velocity in km/h, α is the maximum velocity, b is an 69 

exponent that modifies the velocity depending on slope, and c offsets the maximum walking 70 

velocity. Given that b controls the rate of velocity decline as slope increases, we will argue 71 

that this variable should be considered the “sensitivity” of walking velocity to slope. In 72 

Tobler’s original function, α = 6 km/h, b = 3.5 and c = 0.05 such that the maximum walking 73 

velocity is achieved on a slight downslope [13,14]. The argument of the function is the 74 

change in elevation with change in distance, commonly given as ∂h/∂x — meaning a slope of 75 

45° has a value of 1 [11].  76 

 77 

Pace (hr/km) can be considered as the reciprocal of velocity, derived by inversing Equation 1 78 

and expressed in a general form as [15]: 79 

 80 

𝑝(𝑥) =
1

𝛼
𝑒𝑏|𝑥+𝑐|  Equation 2 81 

 82 

Here, p(𝑥) provides the time taken to cover any given (horizontal) distance. A complimentary 83 

function is vertical pace v(𝑥), which provides the time needed to gain elevation (vertical 84 

displacement), and can be expressed as [15]:  85 

 86 

𝑣(𝑥) =
𝑝(𝑥)

|𝑥|
   Equation 3 87 

 88 

For a general THF, local minima in vertical pace v(𝑥) occur for negative and positive values 89 

of 𝑥, which can be interpreted as the ideal slopes for losing or gaining elevation, respectively 90 

[15]. Local minima in v(𝑥) indicate what degree of slope results in the fastest rate of elevation 91 

loss/gain. 92 

 93 
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The aim of this research was to use the passive geolocation datapoints collected during 94 

traverses during Meili-I to derive an accurate best-fit THF applicable for future traverse 95 

planning. Given that THF uses a slope vector input, it can be applied as an anisotropic cost 96 

function for accessibility analysis [16,17]. Here, cost function is defined in the context of 97 

network analysis as an attribute (e.g., slope, height gain, or time) used to model impedance, 98 

accumulated during traversal of a network. We derived data-driven THF models with variable 99 

sampling intervals, using the Meili-I mission data to assess the applicability of these models 100 

to grid walking, a popular method for route-planning [11,18,19]. An accurate model of crew 101 

walking velocity has implications for safety (including walk-back time [18]), minimizing crew 102 

workload, traverse planning to maximize time for data collection, and route-planning in 103 

otherwise topographically complex terrain.  104 

 105 

 106 

2.0 Study Context 107 

 108 

The study area used for the simulation was Lunga, an approximately 2 km2 uninhabited 109 

Scottish island in the Firth of Lorn. With a maximum elevation of 98 m, the island is rugged 110 

comprising at least one paleocoastline terrace featuring a raised wavecut platform and cliffs. 111 

Underfoot was predominantly broken ground (complex terrain with a mixture of vegetation 112 

and rock creating obstacles) (Fig. 1) and crew members created their own trails rather than 113 

following previously trodden routes. Meili-I was a two-week mission completed during August 114 

of 2023. One smartphone used for data collection was carried between a crew of six fit and 115 

able-bodied people who walked with small “daybag” rucksacks. As such, velocity data 116 

presented (Supplementary Material 1) is for a group of six people who walked together and 117 

took turns carrying the smartphone.  118 

 119 

The Meili-I crew navigated using Global Navigation Satellite System (GNSS) via the free 120 

mapping software Avenza Maps [20] hosted on a Motorola moto e30 android smartphone, 121 

using a georeferenced .pdf mapping product derived from the 1:25,000 ‘Explorer’ series 122 

Ordnance Survey map, which has 10 m topographic contours. Recorded crew velocity 123 

between geological localities is slowed by situations including: : (i) navigation of the complex 124 

terrain, and; (ii) review of geological features prior to deciding to stop and collect 125 

measurements. As such, velocity measurements represent a holistic spectrum of motion 126 

between hiking back to camp and slow, methodical exploration. This study did not consider a 127 

wide range of environmental variables that occurred during the two-week long study period 128 

which would have affected walking velocity, including: variable weather conditions, 129 

progressive exhaustion of crew members, and increasing familiarity with terrain aiding 130 

navigation. 131 

 132 

3.0 Methods 133 

 134 

Data processing was completed in Python v3.9, all code is available open-source on GitHub 135 

[21]. Initial GPS-tracking data was collected as part of the Meili-I mission recording circular 136 

traverses defined as containing a common start/end location. A total of 7 circular or almost-137 

circular traverses were analyzed, selected between day five and day thirteen of the mission. 138 

Traverses vary in distance walked between 1.9 km and 7.4 km, constrained by the total 139 

length of the island of approximately 2 km laterally from the basecamp (Fig. 2). This distance 140 

is comparable to the 2 km radius of exploration expected for Artemis crewed landings — 141 
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defined as the maximum possible distance for a walking EVA [22,23]. As such, we treat the 142 

traverse data presented here for Meili-I in the context of a lunar analog. Data are provided in 143 

full in Supplementary Material 1. 144 

 145 

Internal GNSS tracking with Motorola moto e30 android smartphones was used with only 146 

satellite fixes enabled. This technology was chosen due to budget restrictions and because 147 

smartphones for communication were already imbedded within the analog mission design. 148 

Avenza has the functionality to navigate upon multiple custom georeferenced .pdf 149 

basemaps, in additional to tracking capabilities. Default settings of low-accuracy location 150 

fixes (ignoring GNSS fixes with >32 m accuracy) were maintained, with a horizontal 151 

accuracy of 4.3 m [5.4/3.8 m] (median [Q3/Q1]; n=16941) and vertical accuracy of 2.8 m 152 

[4.2/1.9 m] (median [Q3/Q1]; n=16941) (Supplementary Material 2). This error is consistent 153 

with previous tests of similar smartphone technology [24]. Location fixes were recorded once 154 

two default thresholds had been overcome: (i) moving a horizontal distance >2 m, and; (ii) 155 

>2 seconds have passed. On average across the all analyzed traverses, this resulted in a 156 

location fix every 4.0 seconds [7.0/3.0 seconds] (median [Q3/Q1]; n=16934) (Supplementary 157 

Material 3). GNSS data recorded as a vector path was mapped onto a 5 m/pixel Ordnance 158 

Survey (OS) Terrain 5 DTM [25], which uses the British National Grid (BNG) grid reference 159 

system. The DTM is a raster grid of heightened points with a regular 5 m spacing and a 160 

typical vertical accuracy greater than 2 m Root Mean Squared Error (RMSE) — better than 161 

the elevation for GNSS location fixes recorded via the Avenza Maps mobile application. 162 

 163 

To ensure continual and representative location fixes during the entirety of a circular 164 

traverse, the time-series data was downsampled via interpolation of the group mean. As this 165 

risked potential aliasing, a sensitivity test was run to assess the impact of time-series 166 

downsampling on derivation of a general hiking function (Fig. 3) — this sensitivity test 167 

investigates the effect of the spatial resolution of slope data. A filter of travelling a minimum 168 

distance of 5 m (the pixel size of the DEM raster) was used to threshold when the crew were 169 

walking — this data was used to derive general THF best-fits. The downsampling 170 

interpolation interval for location fixes was varied between 10 seconds and 300 seconds in 171 

10 second steps (Supplementary Material 4). For each iteration, velocity and distance 172 

estimates were made using a straight-line distance from point-to-point with constant slope. A 173 

general THF was fitted to derive α, b, and c parameter values (Fig. 3). We note that straight-174 

line distances between resampled geolocation points will fail to capture expected sinuosity in 175 

the actual path taken by crew members. Undulation in the terrain is also possible, indeed the 176 

DTM has a roughness value of 1.243±5.144 (mean±2σ; n=279189) over the 5 m/pix raster 177 

for the study area — calculated as the largest height difference of a central pixel and its 178 

surrounding cell of eight pixels [26].  179 

 180 

Additionally, a cost analysis was developed applying Dijkstra’s algorithm [27] weighted using 181 

an anisotropic THF model to effectively create a shortest-path tree — from which the most 182 

optimal route from a source node to specified target can be derived [28,29]. This cost-map is 183 

a raster representation of the study area where each cell contains a value representing how 184 

difficult it is to traverse that area. In our analysis, “cost” is the estimated time it takes to walk 185 

across the raster cell, calculated using a generalized THF. A shortest-path tree was derived 186 

from the starting coordinate to all other coordinates within the study area, using the 5 m/pixel 187 

OS Terrain 5 DTM raster grid. The algorithm was weighted using THF with parameters of α 188 

= 2.34, b = 1.00, and c = -0.01 (Modal B) to calculate the estimated travel time to adjacent 189 

Jo
urn

al 
Pre-

pro
of



pixels weighed against slope. The search cell size for each pixel comprised the surrounding 190 

eight pixels, which limited the algorithm search to the eight cardinal (compass plus ordinal) 191 

directions. This is known to introduce erroneously longer travel time for non-cardinal 192 

bearings (which require a combination of cell moves) independent of raster cell size [11]. 193 

Change of direction at each pixel is also instantaneous. To ensure the cost analysis was 194 

realistic, slopes larger than 20° between any two grid pixels were made impassable.  195 

 196 

4.0 Results 197 

 198 

Across the downsampling interpolation interval sensitivity test for location fixes ranging from 199 

10 to 300 seconds, we see variation in α, b, and c parameter values (Fig. 3). The b value — 200 

which effects the rate of velocity decline as slope increases (Equation 1) — stabilizes at 201 

approximately 2.96 for resampling intervals of 80–180 seconds, after which the value 202 

continues to increase. This stable b parameter represents a downsampling interval of 120 203 

seconds and approximates ~50 m walking distance on flat terrain. At this downsampling 204 

interval, we derived a best-fit THF (R2 = 0.175, no. points = 630) with parameter values of α 205 

= 1.58, b = 3.04, and c = 0.00, which equates to local minimal in the vertical pace (5.23) at 206 

slopes of ±18.26° (Equation 3). A symmetrical THF using values of α = 3.6, b = 3.5, and c = 207 

0.00 suggested for off-path travel [10], provides excellent constraints for the maximum 208 

walking velocity on any given slope (Fig. 4a). Across all realistic downsampling intervals for 209 

the traverse tracks (Fig. 3) we see a lack of asymmetry (the c parameter approximates zero) 210 

meaning that uphill and downhill travel for a given slope takes the same amount of time. The 211 

R2 value for downsampling intervals becomes stable with a value of ~1.7 for all windows of 212 

60 seconds and longer, indicating these general THF share a similar goodness of fit and a 213 

consistent variability.  214 

 215 

To assess the applicability of generalized THF models derived from differing downsampling 216 

intervals for grid walking, we compared the data collected for all seven traverses to two THF 217 

models — the first (Model A) using values of α = 1.58, b = 3.04, and c = 0.00 (R2 = 0.175, no. 218 

points = 630) derived from the 120 second interpolation down-sampling interval (Fig. 4A; 219 

Equation 4), and the second (Model B) with values of α = 2.34, b = 1.00, and c = -0.01 (R2 = 220 

0.108, no. points = 2342) derived for a 20 second interval (Fig. 4B; Equation 5). Note that 221 

the geolocation fixes of the original data have a median spacing of 4.0 seconds 222 

(Supplementary Material 3). Model B differs in having a higher maximum walking velocity (α 223 

parameter) and a lower sensitivity to slope (higher b parameter) resulting in a near-linear 224 

change of walking velocity against slope which for the two near-symmetrical limbs (x-offset c 225 

= -0.01) can be estimated as straight line fit (R2=0.999) with a gradient of ±0.035 (Fig. 4b). 226 

Note this best-fit gradient is significantly steeper than the velocity calculated using the cosine 227 

of slope — i.e., this line is not because linear map distances are used for the slope vector 228 

input or THF. This straight line fit results in local minimal in the vertical pace at slopes of 229 

±45° (Equation 3).  230 

 231 

Model A: 𝑤(𝑥) = 1.58𝑒−3.04|𝑥+0.00| (𝑘𝑚/ℎ)  Equation 4 232 

 233 

Model B:  𝑤(𝑥) = 2.34𝑒−1.00|𝑥−0.01|  (𝑘𝑚/ℎ)  Equation 5 234 

 235 
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Each of the seven traverses were rasterized to the 5 m/pixel OS DTM with each recorded 236 

time interval between GNSS location measurement, compared to estimates from the two 237 

models (Supplementary Material 5) (Fig. 5). Where the distance covered between GNSS 238 

location fixes was zero (e.g., for a rest break or activity station) the modelled time step 239 

instead used the measured time from the data. These values are excluded when comparing 240 

the error between the two models on a step-wise basis (Fig. 5b). Across all modelled 241 

traverses (Fig. 5c), 46% of the time steps were taken from the actual data due to distance 242 

travelled being less than the 5 m between adjacent pixels. As such we estimate that for a 243 

typical traverse, about 54% of the time (assuming no significant variation in time between 244 

location fixes) is spent walking between locations. The procedure for comparing Model A 245 

and Model B against recorded traverses (Fig. 5) was not used to assess goodness-of-fit to 246 

the data from which models were derived, but to evaluate the influence of sampling interval 247 

when applying these models to grid walking.  248 

 249 

Depicting the Dijkstra’s algorithm as a cost-map analysis for the whole study area (Fig. 6) we 250 

find it should take approximately 1.5 hours to cross the 2 km length of the study area — and 251 

thus a minimum of 3 hours for a circular traverse from the crew basecamp to the maximum 252 

extent of the study area and back. This time estimate assumes no stops. Indeed, during the 253 

Meili-I mission it took the crew approximately 3 hours to traverse the 2 km length of the 254 

island (6-hour circular journey).   255 

 256 

 257 

 258 

5.0 Discussion 259 

 260 

The sensitivity test at different downsampling interpolation intervals for location fixes 261 

highlights the importance of statistics when planning future planetary exploration traverses, 262 

notably if using straight line distances at scales up to ~100 m — in this case, the maximum 263 

distance covered if using the best-fit THF at the 300 second downsampling interval. Applying 264 

the general THF parameters from Model A (120-second interval) to the rasterized traverse 265 

(location fix every 4.0 seconds median) shows the model systematically overestimates 266 

walking velocity during relatively flat sections of the traverse (Fig. 5a). The model’s higher 267 

sensitivity to slope (b-value) means it predicts travel times between location fixes ~5× slower 268 

than reality (Fig. 5b).On qualitative comparison, Model B (20-second interval) appears to be 269 

much more representative of travel-time (Fig. 5a) yet systematically underpredicts the time 270 

needed for traversing steeper slopes. Combining these insights with the sensitivity test (Fig. 271 

3) effectively investigates how the spatial resolution of slope data effects model parameters. 272 

Indeed, we draw very similar conclusions to Pagneux et al. (ref. [30]): (i) the resolution of 273 

slope data (or slope data sampling) — compare Figure 4a and 4b —significantly impacts 274 

modelling outcomes for a general THF; (ii) a finer resolution increases similarity between the 275 

model and real data (Fig. 5), and; (iii) models are only applicable to a similar resolution from 276 

which they were derived. As such, we agree with Pagneux et al. (ref. [30]) that consistent 277 

spatial resolution is more important than cost functions for cost-path analysis.  278 

 279 

At the time of writing, the highest resolution DEM of the lunar south pole region [31] has a 280 

resolution of 5 m/pix (the same used in this analog study) albeit with a typical data coverage 281 

of 10% meaning that 9 in 10 pixels are interpolated. This has implications for grid walking 282 

models weighted to slope — it can be expected that for any 50 m section of traverse only 5 283 
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m has a known elevation (with error). As such, applying path-finding algorithms to this 284 

resolution DEM when planning future lunar exploration may be ineffectual given a lack of 285 

granularity (level of detail represented in the data) and if longer averages are used, the 286 

appropriate hiking functions needs to be determined. So far, hiking functions applicable to 287 

lunar EVA has only been estimated for the Apollo era without a consistent spatial sampling 288 

window  [12,18,32]. Uncertainty for future exploration to south polar regions of the Moon will 289 

need additional considerations including the influence of regolith bearing capacity on higher 290 

slopes [33], metabolic expenditure walking on more topographically complex terrain, and 291 

maneuverability of future EVA spacesuits. Given this uncertainty, a more general approach 292 

to deriving time estimates for a traverse exploring another planetary surface may provide 293 

more useful insight— for example cumulative elevation change and distance covered (as in 294 

ref. [1]). Applying Model B (20-second interval) to measured traverses we see a roughly 295 

linear relationship between traverse length and model error (error = 0.0031*traverse length + 296 

82.34; no=5, R² = 0.44, units = m) which can be summarized as approximately accurate for 297 

a 6 km traverse with a cumulative +3.1% error for each additional kilometer (Fig. 5c). This 298 

consistent error suggests it can be corrected by adapting the hiking function, such as 299 

combining it with other pace functions (e.g., ref. [14]). Although at short 20-second intervals 300 

walking velocity varies linearly with slope (Fig. 4b) the cumulation of errors over longer 301 

periods (Fig. 5) shows small inclines in undulating terrain do not affect walking velocity as 302 

significantly as continued periods of ascending/descending. The higher-sensitivity to slope 303 

captured in the curve of Model A, and indeed the original THF [10], is likely a superposition 304 

of: (i) increased path sinuosity not captured in straight-line distance averages, and; (ii) a 305 

decrease in walking velocity due to the effort needed for periods of ascent/descent. As such, 306 

averaging THF parameters over longer periods of time results in different apparent 307 

behaviors. Indeed, we infer a lower maximum velocity in Model A compared to Model B is 308 

because of larger averaging intervals, resulting in actual routes becoming longer relative to 309 

the straight-line distance between sampling points. Ideally, a cost function for future crewed 310 

exploration — e.g., an upcoming Artemis lunar surface EVA — should consider an initial 311 

pixel-resolution equation of walking velocity with slope superposed with a second model for 312 

longer-interval running average considering prolonged ascent/descent as well as crew 313 

exhaustion. For the Moon, any function will have to consider differences in gait as a result of 314 

both lunar gravity and EVA suit design [34,35]. Although such a hiking function could be 315 

derived from the Meili-I mission, it is evident the detailed calibration necessary is at odds 316 

with the benefit of having a cosmopolitan “rule of thumb” equation that it applicable within 317 

dynamic and flexible mission planning. 318 

 319 

This study could be improved by increased location accuracy, using more sophisticated 320 

GNSS receivers in combination with Real-Time Kinematic (RTK) correction services. 321 

However, location inaccuracy would still be expected for short dwell-times and moving 322 

instrumentation. For cost-map analysis applying models to a raster DEM, inferences are 323 

limited by both the accuracy and resolution of the dataset. Although a high-resolution (small 324 

pixel size) local DEM could be generated (e.g., by LIDAR) no comparable dataset for the 325 

Moon exists, hampering extraterrestrial application. We recommend future work towards 326 

running similar studies in higher-fidelity settings — e.g., more comparable lunar analog 327 

environments with crew members wearing restrictive EVA suits. Understanding the factors 328 

affecting mobility and thus walking velocity would improve hiking function models. As stated 329 

previously by Pingel (ref. [36]) using THF to weight path-finding algorithm generates time-330 

optimal paths but fails as a descriptive model for how humans actually find routes through 331 
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topography, partly because slope imparts both a time and metabolic effort. Geological target 332 

allocation adds another variable to this. Typically, field geologists’ endeavor to walk parallel 333 

to dip/orthogonal to the strike of the geological strata to investigate the widest variation in 334 

rock ages — which for this study area is E-W over the steepest sections of terrain. Both from 335 

human experience during the Meili-I mission and indeed by deriving a weighted cost-map 336 

analysis (Fig. 6) it is evident that N-S routes are optimal for traversing the study area. As 337 

such, Meili-I crew members were frequently not walking the most optimal routes. This 338 

behavior limits the application of grid-walking algorithms for route-planning future analog 339 

missions at this study area — and indeed for future lunar traverse featuring geological 340 

exploration. Least-cost routes derived for the study area from Figure 6 would all avoid the 341 

central N-S ridge of study area which is topographically complex but contains the richest 342 

geological exposures. However, generating cost-maps (Fig. 6) provides an important product 343 

for estimating walk back time [18,37] — the time for crew to return to the base in case of 344 

emergencies. Indeed, emergencies necessitate the most optimal/efficient routes back to 345 

safety and as such, we recommend hiking functions are most applicable in those scenarios 346 

rather than planetary exploration.  347 

  348 

6.0 Conclusions  349 

 350 

Using a data-driven approach to analyze crew traverses during the Meili-I mission, organized 351 

by Space Health Research for two weeks during August 2023, we analyzed GNSS tracks to 352 

determine models relating walking velocity to terrain slope. Application of THF indicates 353 

findings comparable to Pagneux et al. (ref. [30]), specifically that consistent spatial resolution 354 

is important when applying models to cost-path analysis. Comparison between two models 355 

— Model A; 20 second GNSS location fix average, and Model B; 120 second GNSS location 356 

fix average — indicates increasing sensitivity of crew velocity to slope when averaging over 357 

longer straight-line distances. Although this reflects the limitations of the methodology 358 

assumed in THF, it highlights the importance of defining and calibrating suitable models for 359 

future planetary exploration. Notably if planning future traverses in the lunar south polar 360 

region where the most recent DEM [31] has a 5 m/pixel resolution with 9 in 10 pixels being 361 

interpolated, the application of path-finding algorithms needs to be considered. Given the 362 

complexity of science targets during Meili-I and expected for upcoming Artemis missions, 363 

optimal route-finding via a calibrated hiking function may be more applicable to contingency 364 

planning for emergencies rather than exploration.  365 
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 500 
Fig. 1. Photograph showing the terrain and topography of the Scottish island used as a 501 

study area for the duration of the Meili-I two-week mission.  502 
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 503 
Fig. 2. A topographic map of the study area. The basemap is a 1:25,000 ‘Explorer’ series 504 

Ordnance Survey map; this was rescaled to 1:10,000 and printed as A4 size for navigation 505 

during the mission. Annotations: a simplified summary of the geology is provided with a N/S 506 

trending uncomfortable contact marked, separating the island into east and west areas — 507 

inset on the bottom left shows rock bed orientation measurement and the means are plotted 508 

as symbols on the map; the “basecamp” used as the beginning and end of circular traverses 509 

is marked with a star; a 2 km radial distance (R) was the furthest extend travelled by analog 510 

crew members; the red line is the recorded GNSS track of traverse route on the ninth day of 511 

the mission. Geological localities visited during this day are marked by open black triangles. 512 
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 513 
Fig. 3. Results on the sensitivity test to assess the time-series downsampling of GNSS 514 

location fixes between a 10 second and 300 second interpolation interval. The average 515 

GNSS location fix was calculated and straight-line distances used to derive the three 516 

parameters for a generalized Tobler’s Hiking Function (THF) best-fit (see Equation 1).  517 
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 518 
Fig. 4. Plots of walking velocity against slope for two generalized THF fits: (A) Model A 519 

derived from a 120 second downsampling interpolation interval (Equation 4), and; (B) Model 520 

B derived from a 20 second downsampling interpolation interval (Equation 5). The dashed 521 

line shows the original THF for off-path travel. The gray zone shows the range of positive 522 

and negative slope values (±20°) over which the THF best-fit was estimated via a least-523 

squares approach. Additionally, GNSS fixes were binned in 2° intervals and the mean ±2σ 524 

are plotted for each bin. Slope values larger than ±20° are likely due to GNSS location 525 

errors. 526 
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 527 
Fig. 5. Summary of traverse nine (shown in Fig. 2) showing: (A) the topographic height 528 

profile against distance (red) and the three profiles of cumulative distance versus time for the 529 

traverse, (black = data; orange = Model A; blue = Model B) — note that model profiles are 530 

only for geolocation fixes where the distance travelled was more than 5 m, depicted 531 

graphically at the bottom of plot where black represents modelled datapoints; (B) plot of 532 

recorded time between GNSS location fixes and modelled time derived from generalized 533 

functions (orange = Model A; blue = Model B), lines of best fit for both models show 534 

deviation from a gradient of 1 which would represent a perfect match between data and the 535 

models; (C) Plot of cumulative distance of each traverse against the percentage error 536 

between the actual time and modelled time (Model B) at the end of the traverse, a linear line 537 

of best fit is for all traverses.  538 
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 539 
Fig. 6. Cost-map analysis plot calculated using a Dijkstra’s algorithm weighted against slope 540 

(Model B, Equation 5) initiating at the crew basecamp labelled to every pixel of the 5 m/pixel 541 

OS Terrain 5 DTM raster grid. The colored heatmap depicts the time estimate for the most 542 

optimal path from the pixel back to the starting location (basecamp, blue star). Time contours 543 

constrain distance with the same estimated time for optimal paths in 10-minute intervals. The 544 

extent of the exploration area on the island is shown in black (mean high water springs; 545 

MWHS). Areas in white are inaccessible, either because they are beyond the coastline in the 546 

sea or the ground has a gradient greater than 20°, meaning crew would need to either climb 547 

or scramble, rather than walk.  548 
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Supplementary Information 1. Spreadsheets exported from the Avenza maps mobile 549 

application providing the GNSS location fixes for the seven recorded traverse.  550 

 551 

Supplementary Information 2. Boxplots of the location accuracy of (A) spatial XY error and 552 

(B) elevation Z error, for every GNSS location fix across all seven traverses.  553 

 554 

Supplementary Information 3. Variation in periodicity of GNSS location fix showing: (A) 555 

histogram of time periods between GNSS location fixes, and; (B) boxplot of time periods 556 

between GNSS location fixes — including magnified view.  557 

 558 

Supplementary Information 4. Results on the sensitivity test to assess the time-series 559 

downsampling of GNSS location fixes between 10 second and 300 seconds, with a best-fit 560 

generalized Tobler’s Hiking Function (THF) for each 10-second interval. See Figure 4 for 561 

more detail regarding individual plots, and Figure 3 for a summary of the generalized THF 562 

parameters resulting from each fit.  563 

 564 

Supplementary Information 5. Summary of each traverse (as in Figure 5) showing: (A) the 565 

topographic height profile against distance (red) and the three profiles of distance versus 566 

time for the travers (black = data, orange = Model A, blue = Model B) — modelled profiles 567 

are only for geolocation fixes where the distance travelled more than 5 m, depicted 568 

graphically at the bottom plot where black represents modelled datapoints; (B) plot of 569 

recorded time between GNSS location fixes and modelled time derived from generalized 570 

functions (orange = Model A; blue = Model B), lines of best fit for both models show 571 

deviation from a gradient of 1 which would represent a perfect match between data and the 572 

models 573 
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Highlights 

• Tracking of crew during a mission simulation shows how walking velocity changes with 

slope 

• Data sampling tests show hiking functions only apply to a resolution similar to their 

derivation 

• Sensitivity of velocity to slope increases when averaging over longer straight line 

distances 

• Paths from grid walking algorithms are suited to contingency planning rather than 

exploration  
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