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Abstract: The reduced density matrix that characterises the state of an open quantum system is
a projection from the full density matrix of the quantum system and its environment, and there
are many full density matrices consistent with a given reduced version. Without a specification
of relevant details of the environment, the time evolution of a reduced density matrix is therefore
typically unpredictable, even if the dynamics of the full density matrix are deterministic. With
this in mind, we investigate a two-level open quantum system using a framework of quantum
state diffusion. We consider the pseudorandom evolution of its reduced density matrix when
subjected to an environment-driven process that performs a continuous quantum measurement of a
system observable, invoking dynamics that asymptotically send the system to one of the relevant
eigenstates. The unpredictability is characterised by a stochastic entropy production, the average
of which corresponds to an increase in the subjective uncertainty of the quantum state adopted by
the system and environment, given the underspecified dynamics. This differs from a change in von
Neumann entropy, and can continue indefinitely as the system is guided towards an eigenstate. As
one would expect, the simultaneous measurement of two non-commuting observables within the
same framework does not send the system to an eigenstate. Instead, the probability density function
describing the reduced density matrix of the system becomes stationary over a continuum of pure
states, a situation characterised by zero further stochastic entropy production. Transitions between
such stationary states, brought about by changes in the relative strengths of the two measurement
processes, give rise to finite positive mean stochastic entropy production. The framework investigated
can offer useful perspectives on both the dynamics and irreversible thermodynamics of measurement
in quantum systems.

Keywords: stochastic entropy production; quantum measurement

1. Introduction

In classical statistical mechanics, entropy quantifies uncertainty in the adopted config-
uration of a system when only partial detail is available concerning the coordinates of the
component particles. This is a subjective uncertainty, a reflection of the personal state of
ignorance of a given observer. The capacity of an observer to predict future behaviour when
such a system is coupled to a similarly underspecified environment is limited and their
knowledge of the state worsens with time, even if the dynamics are entirely deterministic.
The total entropy of the system and environment increases as a consequence. In many
situations, such evolution can be associated with the dissipation of potential energy into
heat, and this underpins the role played by entropy in the (19th century) second law of
thermodynamics [1–3].

The 21st century concept of entropy production, however, is based on mechanics,
specifically a consideration of the probabilities of forward and backward sequences of
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events governed by an effective stochastic dynamics. In this framework of ‘stochastic ther-
modynamics’, entropy change is the expectation value of a ‘stochastic entropy production’,
clarifying a number of long-standing conceptual issues [4–8].

The central aim of this paper is to employ entropy as a description of uncertainty of
the adopted configuration at the level of a reduced density matrix in quantum mechanics.
Putting aside the issue of quantum measurement for the moment, the full density matrix
of a system together with its environment (a closed ‘world’) evolves deterministically
according to the unitary dynamics of the von Neumann equation. This can give rise to an
evolution of the reduced density matrix describing the system that preserves unit trace
and positivity but allows changes to von Neumann entropy and purity, corresponding to
thermalisation, for example [9–11]. But the trajectory followed will be unpredictable if the
complete initial state of the world is not specified. It is natural to regard this as producing
an effective Brownian motion of the reduced density matrix, and to concern ourselves
with the associated entropy increase. The concept is illustrated in Figure 1. This intrinsic
unpredictability holds whether or not we introduce ideas of randomness associated with
quantum mechanical measurement.

Figure 1. The box and the grey area represent the phase spaces of the density matrix of the world
ρworld and of the reduced density matrix ρ of a constituent open system, respectively. Deterministic
trajectories ρworld(t) that start at t = 0 from a macrostate subspace (shown as a red line), characterised
by a given initial value ρ(0) of the reduced density matrix, can be manifested as pseudorandom
trajectories for ρ(t) in the reduced phase space, shown as projections onto the right-hand face.

In developing this idea, we view the reduced density matrix as an analogue of classical
system coordinates and hence as a physical description of the quantum state, not merely
as a vehicle for specifying probabilities of projective measurements or a representation of
a state of knowledge. But coordinates that describe the physical state of a system ought
not to change discontinuously, which would seem to raise difficulties in connection with
the instantaneous projections normally considered to arise from quantum measurement. If
the density matrix represents a physical state, we are therefore obliged to model quantum
measurement in a fashion that avoids discontinuous jumps.

To this end, we pursue the idea that quantum measurement, namely the adoption by
a system of an eigenstate of an observable when interrogated by a measuring device, is
brought about by the deterministic dynamics of the density matrix describing the system
and its environment, of which the measuring device would be a part. We explore the idea
that quantum measurement arises from the unitary dynamics of the world, its apparent
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stochasticity being a consequence of a failure to specify the initial degrees of freedom of the
environment, or more precisely those of a measuring device. Such an origin of stochasticity
is reminiscent of ideas employed in classical statistical mechanics.

In such a scheme, the evolution of the system under the influence of its environment
would be governed by a nonlinear dynamics with attractors corresponding to the appropri-
ate eigenstates. It is not our aim here to derive such nonlinear dynamics from an underlying
evolution of the world. Instead, we seek a model of system dynamics that has the desired
effect, namely that the reduced density matrix under measurement should evolve along
continuous trajectories, terminating at eigenstates.

The modelling of ‘weak measurement’ in quantum mechanics produces continuous
stochastic quantum trajectories [12–14]. Random incremental changes in the state of an
open system are brought about by projective measurements of remote parts of the environ-
ment. We shall employ this mathematical framework (without the associated narrative of
remote projective measurement) to represent the envisaged nonlinear dynamical interac-
tions between the system and environment that guide the system towards eigenstates of
observables under certain conditions [15].

The framework known as quantum state diffusion (QSD) [16–20] is a broad category
of open quantum system dynamics that can represent the phenomenology of weak mea-
surement. A continuous, Markovian, stochastic evolution of the reduced density matrix
emerges. More elaborate schemes are also possible, for example, involving non-Markovian
dynamics. The approach can be used to model the continuous measurement of an open
system that is consistent with strong projective measurements as a limiting behaviour and
is compatible with the Born rule. Measurement in QSD is a process driven by specific
system–environment coupling and takes place without discontinuities [21–23]. This is a
quantum dynamics that resembles classical dynamics, but where the dynamical variables
are the elements of a reduced density matrix. It combines both aspects of quantum evolu-
tion: determinism of the von Neumann equation together with stochasticity representing
measurement or more general environmental effects [24].

The idea that quantum jumps are not instantaneous but merely very rapid is not an
unusual one [25] and the non-locality of quantum mechanical evolution remains intrinsic to
the interpretation. Nevertheless, such a viewpoint is not without its controversies [26–29].
In particular, a suggestion that the quantum state represents a physical configuration of the
world might appear to conflict with various positions taken in the fundamental interpretation
of quantum mechanics, for example, those where a physical state (‘reality’) is considered to be
induced by the projective measurement process. Moreover, the supposed ‘hidden variables’
carried by the system and the environment, ignorance of which gives rise here to the effective
stochastic evolution, might seem to conflict with the breakage of Bell inequalities and other
similar statistical results [30,31]. Resolution of this issue might involve a deeper consideration
of the implications of determinism [32]. Alternatively, one could simply regard quantum
state diffusion as merely a mathematical framework for modelling continuous pseudorandom
quantum evolution.

If the evolution of the reduced density matrix can be modelled in a fashion that
avoids discontinuities, then the concept of stochastic entropy production in quantum
mechanics can be introduced in a straightforward way [33–42]. Entropy production arising
from evolution that includes quantum jumps can also be considered, but this introduces
difficulties that manifest as infinities in the change in system Gibbs entropy [37]. We believe
that such problems ought to be avoided if possible.

When dynamical variables evolve according to Markovian stochastic differential
equations (SDEs), or Itô processes [43], it is possible to derive a related Itô process for
the stochastic entropy production [7]. This allows us to compute a stochastic entropy
production associated with individual Brownian trajectories taken by the reduced density
matrix of a system. For situations where the system is guided towards an eigenstate of an
observable, we can compute the stochastic entropy production characterising a process
of measurement.
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A positive expectation value of such a stochastic entropy production represents in-
creased subjective uncertainty in the quantum state of the world. Growth in uncertainty
is natural since we model the evolution using stochastic methods starting from an incom-
pletely specified initial state. The state of the system can become less uncertain, a necessary
aspect of the performance of measurement, but uncertainty with regard to the state of the
rest of the world will increase by a greater amount, thereby allowing the second law of
thermodynamics to be satisfied. It should be noted that stochastic entropy production here
does not correspond to a change in von Neumann entropy, which instead describes the
uncertainty of outcome when a system is subjected to projective measurement in a specific
basis. We comment further on this in Section 2.5.

In Section 2, we develop these ideas in the context of the measurement of a single
observable in a two-level quantum system starting in a mixed state [44]. Mean stochastic
entropy production is found to be positive and without limit as the system is guided,
asymptotically in time, into one or the other of the two eigenstates. We go on in Section 3 to
consider the simultaneous measurement of two non-commuting observables and show how
the stochastic entropy production is finite, a consequence of the inability of the dynamics,
in this situation, to guide the system into a definite eigenstate of either observable.

We interpret the results in Section 4 and summarise our conclusions in Section 5,
suggesting that dynamics based on quantum state diffusion, with an interpretation of the
reduced density matrix as a set of physical properties of a state, together with the use of
stochastic entropy production to monitor the process of eigenstate selection, can provide
some conceptual clarification of the quantum measurement problem [31].

2. Measurement of σz

2.1. Dynamics

We consider a two-level system described by a reduced density matrix (hereafter,
simply a density matrix ρ) defined in a basis of eigenstates | ± 1⟩ of the σz operator. Pure
states denoting occupation of one of the two levels correspond to ρe

± = | ± 1⟩⟨±1|. Starting
in the mixed state ρ = 1

2
(
a+ρe

+ + a−ρe
−
)
, where a± are real coefficients, we use a quantum

state diffusion approach to model the stochastic evolution of the system into one or the
other of the levels in accordance with the Born rule.

We consider a minimal scheme [13] employing a rule for stochastic transitions given by

ρ → S±(ρ) = ρ′± =
M±ρM†

±
Tr
(

M±ρM†
±
) , (1)

with

M± =
1√
2

(
I− 1

2
c†cdt ± c

√
dt
)

, (2)

where c = αzσz, with real scalar parameter αz designated as the strength of measurement.
The M± are examples of Kraus operators, and the map in Equation (1) often appears in
descriptions of physical transformations of a density matrix. The probabilities for the
selection of one of the two possible outcomes ρ′± after an infinitesimal timestep dt are

p±(ρ) = Tr
(

M±ρM†
±

)
=

1
2

(
1 ± C

√
dt
)

, (3)

where C = Tr
(
ρ
(
c + c†)). The quantum map in Equation (1) preserves the trace of ρ. Fur-

thermore, since the Kraus operators in Equation (2) differ incrementally from (a multiple
of) the identity, the positive definiteness of ρ is maintained [24]. The operator identity
M†

+M+ + M†
−M− = I is also satisfied. This scheme defines a stochastic dynamics repre-

senting the effect of a device interrogating the occupation of levels of the system, whereby
the eigenstates of σz are stationary, i.e., p+(ρe

+) = p−(ρe
−) = 1, p−(ρe

+) = p+(ρe
−) = 0, and

S+(ρe
+) = ρe

+, S−(ρe
−) = ρe

−.
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The two possible increments dρ± = ρ′± − ρ available in the timestep dt under the
dynamics are

dρ± =

(
cρc† − 1

2
ρc†c − 1

2
c†cρ

)
dt −

(
ρc† + cρ − Cρ

)
Cdt

±
(

ρc† + cρ − Cρ
)√

dt, (4)

and by evaluating the mean and variance of this increment in ρ, it may be shown that the
evolution can also be represented by the Itô process

dρ =

(
cρc† − 1

2
ρc†c − 1

2
c†cρ

)
dt +

(
ρc† + cρ − Cρ

)
dW, (5)

where dW is a Wiener increment with mean ⟨dW⟩ = 0 and variance ⟨dW2⟩ = dt, with the
brackets representing an average over the stochasticity. Note that terms of higher order
than linear in dt will be neglected throughout. A continuous evolution of the stochastic
variable ρ driven by the infinitesimal stochastic variable dW has emerged, analogous to a
random walk or Brownian motion. This is what is meant by quantum state diffusion.

A process of averaging then leads to the standard Lindblad equation [45]:

dρ̄

dt
= cρ̄c† − 1

2
ρ̄c†c − 1

2
c†cρ̄, (6)

with ρ̄ = ⟨ρ⟩. Such a deterministic equation describes the average dynamical behaviour of
an ensemble of density matrices. The actual trajectory followed by a system as it responds
to external interactions, however, is specified by the stochastic Lindblad Equation (5) [46,47].
The environment disturbs the system in a manner represented by one of the transformations
or moves given in Equation (1), selected at random with probabilities (3) that arise from the
underspecification of the environmental state and hence of ρworld in Figure 1.

If we represent the density matrix in the form ρ = 1
2 (I+ rzσz), it may be shown that

the dynamics of Equation (5) correspond to the evolution of the real stochastic variable
rz(t) according to [13]

drz = 2αz

(
1 − r2

z

)
dW. (7)

Example realisations of such behaviour, starting from the fully mixed state at rz(0) = 0,
are shown in Figure 2. Notice that rz evolves asymptotically towards ±1, corresponding
to density matrices ρe

±, and note also that the average increment ⟨drz⟩ over the ensemble
satisfies ⟨drz⟩ = d⟨rz⟩ = 2αz

(
1 − ⟨r2

z⟩
)
⟨dW⟩ = 0, implying that ⟨rz⟩ is time-independent

and that ⟨ρ⟩ is as well. A similar conclusion can be reached simply by evaluating the
right-hand side of Equation (6).

The standard Lindblad equation cannot capture system ‘collapse’ to an eigenstate, but
instead describes the average behaviour of an ensemble of collapsing systems. For a closer
consideration of the dynamics and thermodynamics of collapse, we need to ‘unravel’ the
standard Lindblad equation into its stochastic version (5), using it to generate an ensemble
of trajectories that model possible physical evolutions of the open quantum system.

Using Itô’s lemma, it can be shown that the purity of the state, P = Trρ2 = 1
2
(
1 + r2

z
)
,

evolves according to
dP = 8α2

z(1 − P)2dt + 4αzrz(1 − P)dW. (8)

The dynamics take the purity asymptotically towards a fixed point at P = 1, or the
density matrix towards one of ρe

±, which is clearly a natural consequence of the process
of measurement.

The Fokker–Planck equation describing the evolution of the probability density func-
tion (pdf) p(rz, t) for the system variable rz is
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∂p
∂t

=
∂2

∂r2
z

(
2α2

z

(
1 − r2

z

)2
p
)

, (9)

and this provides further insight into the dynamics. Figure 3 illustrates the development
starting from a Gaussian pdf centred on the maximally mixed state at rz = 0. The ensemble
of density matrices is separated by the dynamics into equal size groups that evolve asymp-
totically towards the eigenstates of σz at rz = ±1. The preservation of the ensemble average
of rz is apparent.

Figure 2. Four stochastic trajectories rz(t) derived from Equation (7) with strength of measurement
αz = 1. Starting at rz(0) = 0, they evolve towards eigenstates of the σz observable at rz = ±1.

Figure 3. A probability density function p(rz, t), evolving according to the Fokker–Planck Equation (9),
describing the evolution of an ensemble of density matrices under measurement of σz. A Gaussian
centred initially at the origin separates and probability density accumulates asymptotically at rz = ±1.
This approach complements the direct computation of trajectories rz(t) illustrated in Figure 2.
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2.2. Stochastic Entropy Production

The (total) stochastic entropy production associated with the evolution of a stochastic
variable in a certain time interval is defined in terms of probabilities for the generation of a
‘forward’ set of moves in the phase space and the corresponding ‘backward’ set [4]. For the
coordinate rz and the time interval dt, we need to consider the quantity

d∆stot(rz, t → rz + drz, t + dt) (10)

= ln(Prob(forward)/Prob(backward))

= ln
p(rz, t)∆rz(rz)T(rz → rz + drz)

p(rz + drz, t + dt)∆rz(rz + drz)T(rz + drz → rz)
,

where the T are conditional probabilities for the transitions indicated. For stochastic
variables that are odd under time reversal symmetry, additional features have to be included
in this definition, but since rz is even, we can ignore such complications [7,48].

It may be shown that the expectation or mean of d∆stot is never negative, which
ultimately provides an underpinning for the second law of thermodynamics [4].

We shall discuss the contributions to d∆stot involving the pdf p(rz, t) and the vol-
ume increment ∆rz(rz) shortly, but first, let us consider the ratio of conditional proba-
bilities. The two choices of forward move ρ → ρ′± in Equations (1) and (2) are selected
with probabilities

p± =
1
2

(
1 ± 2αzrz

√
dt
)

. (11)

The corresponding backward moves ρ′± → ρ are described by the quantum maps

ρ =
M̃∓ρ′±M̃†

∓
Tr
(

M̃∓ρ′±M̃†
∓
) , (12)

in terms of reverse Kraus operators M̃∓ that can be identified from the condition that the
initial density matrix is recovered. Inserting Equation (1) into Equation (12), we have

ρ =
M̃∓M±ρM†

±M̃†
∓

Tr
(

M̃∓M±ρM†
±M̃†

∓
) , (13)

which requires M̃∓M± to be proportional to the identity, up to linear order in dt. For c = c†,
this can be achieved using

M̃∓ =
1√
2

(
I− 1

2
c2dt ∓ c

√
dt
)
= M∓, (14)

and specifically for c = αzσz, we have

M̃∓M± =
1
2

(
1 − 2α2

zdt
)
I. (15)

Hence, the probabilities for the backward moves are

p′∓ = Tr
(

M̃∓ρ′±M̃†
∓

)
=

Tr
(

M∓M±ρM†
±M†

∓
)

Tr
(

M±ρM†
±
) , (16)

leading to

p′∓ =

(
1 − 4α2

zdt
)

2
(

1 ± 2αzrz
√

dt
) . (17)
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The ratio of conditional probabilities T(rz → rz + dr±z )/T(rz + dr±z → rz) is then

p±
p′∓

= 1 ± 4αzrz
√

dt + 4α2
z

(
1 + r2

z

)
dt. (18)

The two possible increments in rz are

dr±z = Tr
(
ρ′±σz

)
− rz

= −4α2
zrz

(
1 − r2

z

)
dt ± 2αz

(
1 − r2

z

)√
dt, (19)

and we note that the mean and variance over the two possibilities are

⟨drz⟩ = p+dr+z + p−dr−z = 0, (20)

and

σ2
rz = p+

(
dr+z − ⟨drz⟩

)2
+ p−

(
dr−z − ⟨drz⟩

)2

= 4α2
z

(
1 − r2

z

)2
dt, (21)

confirming that the evolution is consistent with the SDE for rz in Equation (7). The moves
and their probabilities are illustrated in Figure 4.

rz

Figure 4. Available incremental moves on a set of locations on the rz axis according to the stochastic
dynamics of measurement of σz, illustrating Equations (11), (17) and (19). The size of the cir-
cles represents the local probability density p(rz, t). The shaded rectangle represents the volume
∆rz = 1

2
(
dr+z − dr−z

)
of the continuum phase space associated with a given location rz.

We now write
d∆s±tot = d∆s±A + d∆s±B , (22)

where

d∆s±A = ln
(

T(rz → rz + dr±z )
T(rz + dr±z → rz)

)
= ln

(
p±
p′∓

)
, (23)

and

d∆s±B = ln
(

p(rz, t)∆rz(rz)

p(rz + dr±z , t + dt)∆rz(rz + dr±z )

)
. (24)

Inserting Equation (18), we have

d∆s±A = ±4αzrz
√

dt + 4α2
z

(
1 − r2

z

)
dt, (25)

which provides two choices of incremental contribution to the stochastic entropy production
in the forward move. We can compute the mean of d∆s±A :
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⟨d∆sA⟩ = p+d∆s+A + p−d∆s−A

= (p+ − p−)4αzrz
√

dt + (p+ + p−)4α2
z

(
1 − r2

z

)
dt

= 4α2
z

(
1 + r2

z

)
dt, (26)

and the variance:

σ2
A = p+

(
d∆s+A − ⟨d∆sA⟩

)2
+ p−

(
d∆s−A − ⟨d∆sA⟩

)2

= 16α2
zr2

zdt, (27)

from which we conclude that the evolution can be represented by an Itô process for a
stochastic variable ∆sA:

d∆sA = 4α2
z

(
1 + r2

z

)
dt + 4αzrzdW. (28)

We next consider the contribution d∆s±B to the stochastic entropy production given in
Equation (24). The volume ∆rz(rz) is the region bounded by increments 1

2 dr±z starting from
rz. It is the patch of phase space associated with coordinate rz, as illustrated in Figure 4. We
write ∆rz =

1
2 (dr+z − dr−z ) = 2αz

(
1 − r2

z
)√

dt and then

d∆s±B = −d ln p± + d∆s±C , (29)

where d ln p± = ln p(rz + dr±z , t + dt)− ln p(rz, t) and

d∆s±C = ln
(

∆rz(rz)

∆rz(rz + dr±z )

)
= 4α2

z

(
1 − r2

z

)
dt ± 4αzrz

√
dt. (30)

The mean of d∆s±C is

⟨d∆sC⟩ = p+d∆s+C + p−d∆s−C

= 4α2
z

(
1 + r2

z

)
dt, (31)

and the variance is

σ2
C = p+

(
d∆s+C − ⟨d∆sC⟩

)2
+ p−

(
d∆s−C − ⟨d∆sC⟩

)2

= 16α2
zr2

zdt, (32)

so the Itô process for this component of stochastic entropy production is

d∆sC = 4α2
z

(
1 + r2

z

)
dt + 4αzrzdW. (33)

Similarly, it may be shown that the term −d ln p± in Equation (29) makes a contribution
of −d ln p to the Itô process for d∆stot. Combining this with Equations (22), (28), (29) and (33),
the stochastic entropy production can be shown to evolve according to the Itô process

d∆stot = −d ln p(rz, t) + 8α2
z

(
1 + r2

z

)
dt + 8αzrzdW. (34)

The term −d ln p(rz, t) is usually referred to as the stochastic entropy production of the
system, d∆ssys. The remaining terms are then regarded as stochastic entropy production in
the environment (in this case the measuring device), and denoted d∆senv or d∆smeas. Note
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that the evolution of the stochastic entropy production in Equation (34), with a system
contribution that depends on the pdf p(rz, t) over the phase space of the density matrix,
is continuous. This is in contrast to implementations of stochastic entropy production
in quantum mechanics that involve the probability distribution over eigenstates of the
measured operator in the formalism, or that invoke projective measurements causing
discontinuities that are potentially infinite in magnitude [37].

2.3. Derivation of d∆stot from the Dynamics

The derivation of d∆stot in the previous section is intricate, but there is an alternative
approach that is much more straightforward [6,7] and does not require the identification of
reverse Kraus operators [49]. Let us consider an Itô process for a stochastic variable x in
the form

dx =
(

Arev(x, t) + Airr(x, t)
)

dt + B(x, t)dW, (35)

where the terms proportional to Arev and Airr represent modes of deterministic dynamics
that satisfy and violate time reversal symmetry, respectively. Then, the stochastic entropy
production is given by

d∆stot = −d ln p(x, t) +
Airr

D
dx − Arev Airr

D
dt +

∂Airr

∂x
dt

−∂Arev

∂x
dt − 1

D
∂D
∂x

dx +
(Arev − Airr)

D
∂D
∂x

dt

−∂2D
∂x2 dt +

1
D

(
∂D
∂x

)2
dt, (36)

where D(x, t) = 1
2 B(x, t)2. This expression might not seem particularly intuitive, but for

dynamics that possess a stationary state with zero probability current, characterised by a pdf
pst(x), Equation (36) reduces to the simpler expression d∆stot = −d ln(p(x, t)/pst(x)), and
hence, the stochastic entropy production is seen to arise from deviation from stationarity.

For the dynamics of rz given by Equation (7), we have Arev = Airr = 0 and
B = 2αz

(
1 − r2

z
)
. Hence, D = 2α2

z(1− r2
z)

2, leading to dD/drz = −8α2
zrz(1− r2

z), d2D/dr2
z =

−8α2
z(1 − 3r2

z), and

d∆stot = −d ln p − 1
D

dD
drz

drz −
d2D
dr2

z
dt +

1
D

(
dD
drz

)2
dt

= −d ln p + 8α2
z

(
1 + r2

z

)
dt + 8αzrzdW. (37)

This is in agreement with Equation (34), but the derivation is much more direct. Extension
to sets of coupled Itô processes for several stochastic variables {xi} is straightforward, and
we shall encounter an example of such a generalisation in Section 3.

2.4. Results

Let us now consider the character of the stochastic entropy production described by
Equation (37). It is straightforward to evaluate ∆stot(t) numerically, employing solutions to
the Fokker–Planck Equation (9) and the Itô process for rz(t). Example evolutions of ∆stot(t)
associated with trajectories rz(t) are shown in Figure 5, for αz = 1. The mean stochastic
entropy production over a sample of trajectories appears to rise linearly in time. The
increase reflects the fact that the pdf p(rz, t) does not reach a stationary state, but instead
progressively sharpens towards two δ-function peaks at rz = ±1. The system approaches
one of the eigenstates but does not reach it in finite time. A system that continues to evolve
in response to time reversal asymmetric dynamics (which includes the noise term as well
as the deterministic contribution proportional to Airr in Equation (35)) is characterised by
stochastic entropy production.



Entropy 2024, 26, 1024 11 of 22

1.0 1.2 1.4 1.6 1.8 2.0

0

2

4

6

8

10

12

Figure 5. Four trajectories illustrating the stochastic entropy production ∆stot(t) for the dynamics of
Equation (7) in the interval 1 ≤ t ≤ 2, starting from a Gaussian pdf centred on rz = 0 at t = 0, and
with αz = 1. The mean over a sample of 40 trajectories is consistent with an asymptotic average rate
of production equal to 8α2

z , as suggested in Equation (47).

The calculations of ∆stot in Figure 5 were obtained after performing a transformation
of the stochastic variable to avoid difficulties arising from the singularities in p(rz, t) as
t → ∞. It is possible to do this since the stochastic entropy production is invariant under a
coordinate transformation. Consider, then, the variable y = tanh−1 rz, which evolves in
time according to

dy = 4α2
z tanh y dt + 2αzdW, (38)

using Itô’s lemma. The phase space −1 ≤ rz ≤ 1 maps to −∞ ≤ y ≤ ∞. We identify
Arev(y) = 0, Airr(y) = 4α2

z tanh y, D(y) = 2α2
z and write

d∆stot = −d ln p(y, t) +
Airr

D
dy +

dAirr

dy
dt

= −d ln p(y, t) + 4α2
z

(
1 + tanh2 y

)
dt + 4αz tanh y dW, (39)

where the pdf for y satisfies the Fokker–Planck equation

∂p
∂t

= −4α2
z

∂

∂y
(tanh y p) + 2α2

z
∂2 p
∂y2 . (40)

Solving Equations (38)–(40) numerically produces the trajectories in Figure 5.
We can perform an analysis of the evolution at late times, where rz is close to 1 or −1

such that |y| is large. The dynamics are then approximated by

dy = ±4α2
zdt + 2αzdW, (41)

employing the plus sign if y > 0 and the negative if y < 0. The Fokker–Planck equation is

∂p
∂t

= −4α2
zsgn(y)

∂p
∂y

+ 2α2
z

∂2 p
∂y2 , (42)
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which has an approximate asymptotic solution:

p(y, t)∝
1

t1/2

[
exp

[
− (y − 4α2

zt)2

8α2
zt

]
+ exp

[
− (y + 4α2

zt)2

8α2
zt

]]
, (43)

consisting of two Gaussians in the y phase space, drifting with equal and opposite velocities
towards ±∞ and simultaneously broadening.

From Equation (39), we obtain stochastic entropy production for a trajectory with
y ≫ 0 of

d∆stot ≈ −d ln p+(y, t) + 8α2
zdt + 4αz dW, (44)

with

p+ ∝
1

t1/2 exp
(
− (y − 4α2

zt)2

8α2
zt

)
, (45)

and hence,

d∆stot ≈ d
(
(y − 4α2

zt)2

8α2
zt

)
+

1
2

d ln t + 8α2
zdt + 4αz dW, (46)

the average of which is

d⟨∆stot⟩ ≈
1
t

dt − ⟨(y − 4α2
zt)2⟩

8α2
zt2 dt + 8α2

zdt

=
1
t

dt − 4α2t
8α2t2 dt + 8α2

zdt, (47)

which reduces to 8α2
zdt as t → ∞. A similar conclusion can be reached if y ≪ 0, so we

expect mean stochastic entropy production at a constant rate 8α2
z as t → ∞, confirming the

behaviour seen in Figure 5.

2.5. Contrast with Von Neumann Entropy

At this point, we should consider whether stochastic entropy production is related to
a change in the von Neumann entropy SvN = −Trρ ln ρ, a commonly employed expression
for entropy in quantum mechanics.

The mean stochastic entropy production is the change in subjective uncertainty with
regard to the quantum state adopted by the world. We are unable to make exact predictions
when the dynamical influence of the environment on the system is not specified in detail.
The dynamics then become effectively stochastic and our knowledge of the adopted state is
reduced with time.

In contrast, the von Neumann entropy is the uncertainty inherent to a quantum state
with regard to the outcomes of projective measurement in a basis in which the density
matrix is diagonal. It is a Shannon entropy −∑i Pi ln Pi where Pi is the probability of
projection into eigenstate i of the observable. For a two-level system, the number of such
outcomes is two, and so the von Neumann entropy has an upper limit of ln 2.

In contrast, the upper limit of the mean stochastic entropy production, representing
the change in uncertainty in the adopted quantum state of the world, is infinite, since there
is a continuum of possible states that could be taken. The continued mean production of
stochastic entropy associated with measurement, discussed in previous sections, represents
this progressively greater uncertainty.

Note also that the stochastic entropy production we have been considering has no
connection with heat transfer or work. The two-level system under consideration does
not possess a Hamiltonian H and the adoption of one or the other level as a result of mea-
surement does not involve a change in system energy; specifically, TrHρ = 0 throughout.
Stochastic entropy production is not necessarily associated with the dissipation of potential
energy into heat. Indeed, it need not be in classical mechanics, for example in the free
expansion of an ideal gas. In both classical and quantum settings, the purpose of entropy is
to specify the degree of configurational uncertainty of a system. In classical mechanics, the
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configurations are described by sets of classical coordinates; in quantum mechanics, they
are specified by collections of (reduced) density matrix elements.

Von Neumann entropy does play a role in computing the thermodynamic entropy
of a quantum system in a situation where it is subjected to projective measurement and
thereafter regarded as occupying one of the eigenstates. However, it is not straightforward
to employ von Neumann entropy in discussions of the second law and the arrow of time.
The first issue is that the von Neumann entropy −Trρ̄ ln ρ̄ of the ensemble averaged density
matrix ρ̄ remains constant under the measurement dynamics employed here (because
ρ̄ remains constant). In contrast, the von Neumann entropy of a typical member of the
considered ensemble of density matrices falls to zero under the dynamics. This is illustrated
in Figure 6 for the two-level system where ρ evolves towards one of the ρe

±; the latter are
pure states with SvN = 0. The mean von Neumann entropy change −∆Tr⟨ρ ln ρ⟩ associated
with the measurement process is then negative. In order to protect the second law, we need
to consider entropy change in the environment. The total stochastic entropy production
includes such a contribution and so provides a more inclusive framework for discussions
of irreversibility.

Figure 6. Evolution of the von Neumann entropy of the reduced density matrix of the two-level
system, for 10 stochastic trajectories governed by the dynamics of Equation (7) with αz = 1. Mean
behaviour is also shown. Asymptotic values of zero imply that the system is purified.

3. Simultaneous Measurement of σz and σx

3.1. Evolution Towards Purity

Now we turn our attention to a more complicated case of stochastic entropy produc-
tion associated with the dynamics of an open quantum system. We continue to use the
framework of quantum state diffusion, involving transformations according to Equation (1),
but we now represent the stochastic influence of the environment on the system using two
pairs of Kraus operators, given by

M1± =
1
2

(
I− 1

2
c†

1c1dt ± c1
√

dt
)

M2± =
1
2

(
I− 1

2
c†

2c2dt ± c2
√

dt
)

, (48)

with c1 = αzσz and c2 = αxσx. The first and second pairs describe the dynamics of
continuous measurement of observables σz and σx, respectively, and together therefore
represent the performance of simultaneous measurement. Since σz and σx do not commute,
we expect this not to result in a fixed outcome, and quantum state diffusion provides an
interesting illustration of what this means.
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Probabilities of stochastic changes in the reduced density matrix of the system, brought
about by interactions with the environment, may be deduced for these operators, and a
stochastic Lindblad equation for its evolution may be derived:

dρ = ∑
i=1,2

(
ciρc†

i −
1
2

ρc†
i ci −

1
2

c†
i ciρ

)
dt

+
(

ρc†
i + ciρ − Ciρ

)
dWi, (49)

with Ci = Tr
(
(ci + c†

i )ρ
)
. Upon inserting the representation ρ = 1

2 (I+ rzσz + rxσx), the
dynamics can be expressed as

drz = 2αz

(
1 − r2

z

)
dWz − 2α2

xrzdt − 2αxrzrxdWx

drx = 2αx

(
1 − r2

x

)
dWx − 2α2

zrxdt − 2αzrxrzdWz, (50)

where dWx and dWz are independent Wiener increments. Example stochastic trajectories
starting from the maximally mixed state at rx = rz = 0 are shown in Figure 7. The purity
P = Trρ2 = 1

2
(
1 + r2), where r2 = r2

x + r2
z , evolves according to

dP = 4
(

α2
x

(
1 − r2

x

)
+ α2

z

(
1 − r2

z

))
(1 − P)dt

+ 4αxrx(1 − P)dWx + 4αzrz(1 − P)dWz, (51)

such that P = 1 is a fixed point reached asymptotically in time. Examples of such system
purification are shown in Figure 8.

1.00.5

Figure 7. Two trajectories of the density matrix coordinates (rx(t), rz(t)) generated by the dynamics
of simultaneous measurement of σx and σz, Equation (50), starting from the maximally mixed state
at the origin and for equal strengths of measurement αx and αz. The outer black circle represents a
condition of purity, towards which the system evolves. Eigenstates of σx and σz lie at θ = ±π/2 and
θ = 0, π on the circle, respectively.
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Figure 8. Evolution of purity for the system trajectories in Figure 7.

The dynamics can be recast in terms of Y = tanh−1 r2, which tends to ∞ as r → 1, and
an angle θ = tan−1(rx/rz). For αx = αz = α, the SDEs for these variables are

dY =
4α2

(1 + tanh Y)2

(
2 + tanh Y + 3 tanh2 Y

)
dt

+
4α

√
tanh Y

1 + tanh Y
dWY

dθ = 2α dWθ/
√

tanh Y, (52)

where dWY = r−1(rzdWz + rxdWx) and dWθ = r−1(−rxdWz + rzdWx) are independent
Wiener increments. As t → ∞, Equation (51) implies that r2 → 1 and hence tanh Y → 1, in
which case we can write

dY ≈ 6α2dt + 2α dWY, (53)

and so for late times, we have Y ≈ 6α2t + 2αWY + const. The SDE for θ in this limit is
dθ = 2αdWθ , such that the pdf becomes uniform over θ. We write p(Y, θ, t) → (2π)−1F(Y, t),
in terms of a travelling and broadening Gaussian in Y:

F(Y, t) =
1

(8πα2t)1/2 exp
[
− (Y − 6α2t)2

8α2t

]
. (54)

The stochastic entropy production can now be computed using the framework of Y
and θ coordinates. We shall do so first for late times where Y → 1 and the dynamical
Equation (52) become independent. We can identify coefficients Airr

Y = 6α2, Arev
Y = 0,

DY = 2α2, and Airr
θ = 0, Arev

θ = 0, Dθ = 2α2 and use Equation (36) to identify contributions
to the stochastic entropy production. The system stochastic entropy production can be
computed using the pdf in Equation (54). After some manipulation, we find that

d∆stot ≈ 18α2dt + 6α dWY, (55)

and thus, the stochastic entropy production increases at a mean rate of 18α2. This is more
than twice the mean rate of production in Equation (46) for the case of measurement of σz
alone. The continued increase is once again a consequence of the non-stationary character
of the evolution; the dynamics have the effect of purifying the system, but only as t → ∞.
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For the more general situation, without taking t to be large, it is possible to compute
the stochastic entropy production numerically, based on the more elaborate coefficients of
the SDEs in Equation (52), and a general solution to the associated Fokker–Planck equation.
Mean stochastic entropy production over an ensemble of 10 trajectories is given in Figure 9,
separating ⟨∆stot⟩ into contributions ⟨∆ssys⟩ = −∆⟨ln p⟩ and ⟨∆smeas⟩ = ⟨∆stot⟩ − ⟨∆ssys⟩.
The significance of this separation is that

−∆⟨ln p⟩ = −
∫

p(Y, θ, t) ln p(Y, θ, t)dYdθ

+
∫

p(Y, θ, 0) ln p(Y, θ, 0)dYdθ, (56)

is the change in Gibbs entropy ∆SG of the system when described using the pdf in Y, θ
coordinates. Note that the Gibbs entropy is coordinate frame-dependent and is therefore a
measure of the uncertainty of adopted state in a specific coordinate system. In contrast, the
mean stochastic entropy production is independent of coordinate frame.

Figure 9. Mean stochastic entropy production ⟨∆stot⟩ for simultaneous measurement of observables
σx and σz, separated into contributions associated with the system and measuring device, ⟨∆ssys⟩
and ⟨∆smeas⟩, respectively. The strengths of measurement αx and αz are both set to unity and
the numerically generated ensemble is composed of ten trajectories. The mean stochastic entropy
production is consistent with the estimate in Equation (55).

3.2. Measurement of Two Non-Commuting Observables for a Pure State

Simultaneous measurement of σz and σx leads asymptotically to a pure state located
on a circle of radius r =

√
r2

x + r2
z = 1 in the (rx, rz) coordinate space. It is of interest now to

consider how the pdf over the angle θ (shown in Figure 7) depends on the relative strengths
of measurement of the two observables, and to compute the stochastic entropy production
arising from changes in this ratio.

We therefore return to Equation (50), set rx = sin θ, rz = cos θ and derive an SDE for θ
in the form

dθ =
(

α2
x − α2

z

)
sin 2θdt + 2αx cos θ dWx − 2αz sin θ dWz

=
(

α2
x − α2

z

)
sin 2θdt + 2

(
α2

x cos2 θ + α2
z sin2 θ

)1/2
dW, (57)
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which depends on the two measurement strengths αx and αz, and where dW is a Wiener
increment. The Fokker–Planck equation for the pdf p(θ, t) reads

∂p(θ, t)
∂t

= − ∂

∂θ

[(
α2

x − α2
z

)
sin 2θ p(θ, t) (58)

− 2
∂

∂θ

(
α2

x cos2 θ + α2
z sin2 θ

)
p(θ, t)

]
, (59)

and has stationary solutions (with zero probability current) given by

pst(θ) =

√
2µ2(1 + µ2 −

(
1 − µ2) cos 2θ

)−3/2

E(1 − µ2) + µE(1 − µ−2)
, (60)

where E(x) =
∫ π/2

0

(
1 − x sin2 ϕ

)1/2dϕ is the complete elliptical integral of the second kind
and µ = αx/αz is the ratio of the two measurement strengths. Examples of stationary pdfs
for various values of µ are shown in Figure 10. Clearly, a greater strength of measurement
of observable σx produces higher probability density in the vicinity of the eigenstates of σx
at θ = ±π/2 than in the vicinity of the eigenstates of σz at θ = 0 and π, and vice versa.

Note that a form of Heisenberg uncertainty is exhibited by the stationary pdf. In
quantum state diffusion, rx = Tr(ρσx) and rz = Tr(ρσz) are properties of the quantum state
that are correlated in their evolution. The expectation value of each in the stationary state
is zero:

⟨rz⟩ =
∫ π

−π
cos θ pst(θ)dθ = 0

⟨rx⟩ =
∫ π

−π
sin θ pst(θ)dθ = 0, (61)

while the variances ⟨r2
z⟩− ⟨rz⟩2 =

∫ π
−π cos2 θ pst(θ)dθ and ⟨r2

x⟩− ⟨rx⟩2 =
∫ π
−π sin2 θ pst(θ)dθ

sum to unity. A higher measurement strength for one observable drives up the variance
of the associated variable (namely, the adopted values lie close to either 1 or −1) while
driving down the variance of the other variable (the value of which lies close to zero).

Figure 10. Stationary pdfs pst(θ) for simultaneous measurement of σx and σz with strengths αx and
αz, respectively, and strength ratio µ = αx/αz, when the system is a pure state.
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The stochastic entropy production associated with the dynamics of θ is specified by
Arev

θ = 0, Airr
θ =

(
α2

x − α2
z
)

sin 2θ, and Dθ = 2
(
α2

x cos2 θ + α2
z sin2 θ

)
, which leads to

d∆stot =

(
6
(

α2
x − α2

z

)
cos 2θ +

9
(
α2

x − α2
z
)2 sin2 2θ

2
(
α2

x cos2 θ + α2
z sin2 θ

))dt

+
3
(
α2

x − α2
z
)

sin 2θ(
α2

x cos2 θ + α2
z sin2 θ

)1/2 dW − d ln p(θ, t). (62)

The dynamic and entropic consequences of changing the ratio of measurement strengths,
for an initially pure state, can be established by solving Equations (57), (58) and (62) for
a given protocol. However, we instead focus attention on a case with an analytic result.
The asymptotic mean production of stochastic entropy for a transition from a uniform
stationary pdf over θ, at equal measurement strengths αi

x = αi
z, to a final stationary state

brought about by an abrupt change in measurement strengths to α
f
x = µα

f
z at t = 0, takes

the form of a Kullback–Leibler divergence or relative entropy, an often used measure of
distance between probability densities:

⟨∆stot⟩∞ =
∫

pi
st(θ) ln

(
pi

st(θ)/p f
st(θ)

)
dθ, (63)

where the pi, f
st (θ) correspond to Equation (60) with the insertion of α

i, f
x and α

i, f
z . This can

be derived by noting that d∆stot = −d ln(p(θ, t)/pst(θ)) in this case. We plot ⟨∆stot⟩∞
for various ratios of final measurement strengths µ in Figure 11. Note that elevation of
the measurement strength of one of the observables relative to the other leads to positive
mean stochastic entropy production, in accordance with the second law, and the effect for
enhanced measurement of σx relative to σz is the same as for enhanced measurement of σz,
i.e., the same production emerges for ratios µ and 1/µ.

Figure 11. The asymptotic mean stochastic entropy production brought about by an abrupt change
in the ratio µ = αx/αz, starting from equal measurement strengths. The final stationary pdfs for
µ2 = 0.2, 2 and 5, from Figure 10, as well as the initial uniform state, are shown in the insets together
with arrows indicating the change in shape brought about by the process.
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4. Interpretation

We return now to the physical interpretation of stochastic entropy production in open
quantum systems. By analogy with situations in classical dynamics, the average of the
stochastic entropy production ∆stot that accompanies the evolution expresses change in
subjective uncertainty concerning the details of the quantum state of the world. We have
argued that this uncertainty is generated in the same way as in classical physics. We have
taken the dynamical evolution of the world to be deterministic, but we do not or cannot
attempt to solve the equations of motion for the coordinates exactly. We instead coarse-
grain aspects of the description and employ a set of stochastic equations that capture the
resulting unpredictability in evolution, again just as in a classical situation. Such modelling
methods can only provide statistical predictions, and hence are characterised by an increase
in entropy of (our perception of) the world. This is not a physical effect, but merely a
measure of the absence of subjective knowledge, again just as in classical thermodynamics.
The key point is that we take the quantum state vector of the world, and hence the reduced
density matrix of an open system, to be the appropriate physical description, analogous to
classical phase space coordinates.

It is possible to build such stochastic models from an underlying Hamiltonian describ-
ing the system and environment [42], but here we have adopted a more direct approach,
using a framework of quantum state diffusion to represent the environmental disturbances.
The resulting Markovian stochastic rules of evolution, specified by Kraus operators, are de-
signed to drive a system continuously and (pseudo)randomly towards one of its eigenstates.
This is our conception of the process of quantum measurement, in contrast to instantaneous
projection. The resulting evolution of the reduced density matrix resembles a path taken by
a Brownian particle, and it can be described using a Fokker–Planck equation for a pdf over
a suitable phase space, or an Itô process that specifies a stochastic trajectory.

The purpose of stochastic entropy production, in both classical and quantum sys-
tems, is to provide a measure of the apparent irreversibility of evolution and hence an
arrow of time. Both of these depend on the scale of the coarse-graining. The definition in
Equation (10) involves a comparison between the likelihoods, computed according to the
stochastic model employed, of forward and backward sequences of events. A departure of
∆stot from zero indicates that the model dynamics generate one of these sequences prefer-
entially; that the dynamics are irreversible in the sense of breaking time reversal symmetry.
The preferred sequences will exhibit effects such as dispersion rather than assembly.

Nevertheless, parts of the world can become better defined as time evolves according
to these models. Entropy production in a quantum framework can be used to characterise
the approach of an open system towards an eigenstate under measurement, but also more
generally towards a stationary state in some circumstances. Entropic cost of quantum
measurement is analogous to such a cost in simple models of classical measurement [50].
Furthermore, we can conceive of quantum processes that are reversible, in the sense that the
average of ∆stot is zero. This would arise, as in classical circumstances, when the driving
of the system, for example the rate of change of coupling to a measuring device, becomes
quasistatic. Hence, quantum measurement need not be irreversible, neither in the dynamic
nor in the entropic sense.

5. Conclusions

Entropy production represents increasing subjective uncertainty of microscopic con-
figuration brought about by employing stochastic models of the dynamics instead of the
underlying deterministic equations of motion that are responsible for complex, dispersive
behaviour. These ideas can apply to quantum systems, for which we regard the reduced
density matrix as a physical property analogous to a set of physical coordinates of a classical
system. The reduced density matrix evolves pseudorandomly through interactions with
an underspecified environment, which we represent in a minimal fashion using Kraus
operators and a framework of Markovian quantum state diffusion. We concern ourselves
with the uncertainty in the reduced density matrix that is actually adopted by the sys-
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tem. Stochastic entropy production can then be computed using analysis of the relative
probabilities of forward and backward Brownian trajectories of the reduced density matrix.

The crucial features of quantum mechanics are captured by such a dynamics, in partic-
ular the stochastic selection of an eigenstate according to the Born rule. A further feature has
been explored, for a simple two-level system, where the simultaneous measurement of two
observables represented by non-commuting operators can be considered. The system is pre-
vented from selecting an eigenstate of either operator, in line with expectation, and instead
adopts a state of correlated stationary uncertainty with respect to the two observables.

The model of measurement used here has the effect of purifying the system, i.e., elimi-
nating any initial entanglement between the system and its environment. The effect is a
consequence of the simplicity of the model, but it is perfectly in line with the idea that a
system takes an eigenstate of a system observable after the process of measurement. The
final state of the environment (the measuring device) is nevertheless correlated with the
final state of the system, and this is the means by which it is able to convey information
about the system observable and preserve a record of the measurement.

We suggest that the reduced density matrix typically used to describe an open quantum
system is an average over an ensemble of adoptable states, pure as well as those entangled
with the environment. Moreover, the ensemble average is not suitable for modelling
eigenstate selection, which takes place at the level of ensemble members. This problem is
traditionally accommodated by introducing a process of projective measurement that takes
place outside the regular dynamics and changes the ensemble average, but such a difficulty
is not present when considering the dynamics of ensemble members.

The dynamics we employ therefore conceptualise quantum mechanics as the evolution
of physical properties that behave in a complex but relatively unmysterious fashion. The
quantum state is more than a provider of information about probabilities of projective
measurement outcomes. The reduced density matrix, and by implication the quantum
state vector of the world, are treated as physical coordinates and not merely bearers
of information.

Using such a dynamical framework, the main purpose of this paper has been to
provide explicit examples of stochastic entropy production for a simple open quantum
system, and to suggest that this quantity is the most appropriate extension into the quantum
regime of the modern concept of entropy production. We have studied stochastic entropy
production for scenarios involving the measurement of one and then two observables.
Mean stochastic entropy production in this context measures the change in subjective
uncertainty concerning the adopted quantum state of the world. It never decreases, thus
satisfying the second law of thermodynamics. The von Neumann entropy is a measure of
uncertainty in measurement outcome, but compared to mean stochastic entropy production,
it plays a rather different role. The connections between the two are worth exploring further.
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