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Abstract 

Background The increasing prevalence of dementia and the introduction of disease‑modifying therapies (DMTs) 
highlight the need for efficient diagnostic pathways in memory clinics. We present a data‑driven approach to effi‑
ciently guide stepwise diagnostic testing for three clinical scenarios: 1) syndrome diagnosis, 2) etiological diagnosis, 
and 3) eligibility for DMT.

Methods We used data from two memory clinic cohorts (ADC, PredictND), including 504 patients with dementia 
(302 Alzheimer’s disease, 107 frontotemporal dementia, 35 vascular dementia, 60 dementia with Lewy bodies), 191 
patients with mild cognitive impairment, and 188 cognitively normal controls (CN). Tests included digital cognitive 
screening (cCOG), neuropsychological and functional assessment (NP), MRI with automated quantification, and CSF 
biomarkers. Sequential testing followed a predetermined order, guided by diagnostic certainty. Diagnostic certainty 
was determined using a clinical decision support system (CDSS) that generates a disease state index (DSI, 0–1), indi‑
cating the probability of the syndrome diagnosis or underlying etiology. Diagnosis was confirmed if the DSI exceeded 
a predefined threshold based on sensitivity/specificity cutoffs relevant to each clinical scenario. Diagnostic accuracy 
and the need for additional testing were assessed at each step.

Results Using cCOG as a prescreener for 1) syndrome diagnosis has the potential to accurately reduce the need 
for extensive NP (42%), resulting in syndrome diagnosis in all patients, with a diagnostic accuracy of 0.71, which 
was comparable to using NP alone. For 2) etiological diagnosis, stepwise testing resulted in an etiological diagnosis 
in 80% of patients with a diagnostic accuracy of 0.77, with MRI needed in 77%, and CSF in 37%. When 3) determining 
DMT eligibility, stepwise testing (100% cCOG, 83% NP, 75% MRI) selected 60% of the patients for confirmatory CSF 
testing and eventually identified 90% of the potentially eligible patients with AD dementia.

Conclusions Different diagnostic pathways are accurate and efficient depending on the setting. As such, a data‑
driven tool holds promise for assisting clinicians in selecting tests of added value across different clinical contexts. This 
becomes especially important with DMT availability, where the need for more efficient diagnostic pathways is crucial 
to maintain the accessibility and affordability of dementia diagnoses.
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Introduction
Due to the increasing prevalence of dementia and dis-
ease-modifying therapies (DMTs) becoming available for 
patients, there is a high demand for accurate diagnosis, 
whilst keeping the diagnostic work-up efficient [1]. Accu-
rate diagnosis is important to organize appropriate care 
and aid in future planning [2, 3]. With the availability of 
DMTs, an accurate etiological diagnosis is a prerequisite 
for deciding whether or not to initiate treatment [4].

Timely diagnosis and early identification of patients eli-
gible for treatment require biomarkers of amyloid pathol-
ogy [5, 6]. Currently available biomarkers for Alzheimer’s 
disease (AD) pathology (i.e., CSF, PET) are invasive and 
expensive, and healthcare systems are not ready for the 
anticipated changes due to a lack of resources and avail-
able expertise [7–9]. In regular clinical settings, only 
a small fraction of potentially eligible patients receive a 
biomarker-based confirmatory diagnosis [10]. Other fre-
quently used tests for dementia diagnosis include cog-
nitive screening, neuropsychological test batteries and 
magnetic resonance imaging (MRI) [11].

Despite the ongoing transition to a biological rather 
than a clinical disease model, clinicians in memory clin-
ics may prioritize adequate syndrome diagnosis for 
appropriate care organization in certain patient popu-
lations. Therefore, clinical contexts, such as a focus on 
syndrome diagnosis or etiological diagnosis, may vary 
among clinicians due to the nature of their patient pop-
ulation and are also influenced by patients’ preferences 
and needs [12]. The added value of a specific diagnostic 
test depends on the clinical context. For example, while 
CSF sampling may not be necessary for syndrome diag-
nosis, it is often necessary for determining etiology and 
crucial for establishing a patient’s eligibility for DMT [5, 
13]. The increasing demand for accurate diagnosis, along 
with an anticipated shortage of trained dementia special-
ists, requires alternative approaches to keep dementia 
diagnosis accessible and affordable [8, 14].

To reduce the workload of both primary care physi-
cians and dementia specialists, digital cognitive tests 
that can be administered to patients at home are promis-
ing [15]. Another solution is the use of a computerized 
decision support system (CDSS), an application that ana-
lyzes and visualizes all data to help healthcare providers 
make decisions and enhance patient care [16]. Our pre-
vious research demonstrated that a CDSS in memory 
clinics increased clinicians’ confidence in diagnosis [17]. 
Furthermore, a CDSS can aid clinicians in making diag-
nostic decisions and funnel patients through the optimal 

diagnostic pathway [7, 13]. Therefore, a CDSS could be 
a cost-effective solution to assist clinicians in choosing 
tests relevant to the clinical scenario at hand, without 
compromising diagnostic accuracy [18].

A European task force recently defined a patient-cen-
tered biomarker-based workflow for specialized out-
patient services, to aid clinicians in selecting the right 
biomarker at the right time  [19]. Although this work-
flow is a positive development, clinicians still need to 
decide which diagnostic tool to use and when to use it. 
We add to such an expert-based workflow by presenting 
a data-driven approach to stepwise diagnostic testing, 
with the objective of assessing whether the use of such 
an approach holds promise for effectively and efficiently 
guiding diagnostic decision-making for three common 
clinical scenarios: syndrome diagnosis, etiological diag-
nosis, and potential DMT eligibility.

Methods
Study design and clinical scenarios
Figure  1 illustrates the operationalization of the three 
clinical scenarios and their respective diagnostic tests. 
Note that blood/PET in light gray means that these tests 
may be considered (in the future) in the diagnostic tra-
jectory but are not included in the current study. A 
data-driven CDSS [17] was used to determine the prob-
ability of the diagnosis by generating a disease state index 
probability score (DSI, 0–1) through the weighted com-
bination of diagnostic test results [20], including digital 
cognitive screening, neuropsychological and functional 
assessment, MRI, and CSF biomarkers. A subsequent test 
is only performed if the diagnosis is inconclusive based 
on the probability for diagnosis in the previous step.

The first scenario involves syndrome diagnosis, includ-
ing a diagnosis of CN, MCI, or dementia, which is often 
used in a primary care or (local) memory clinic setting, 
where the focus is mostly on arranging care. Diagnos-
tic tests included the (digital) cognitive screening test, 
cCOG [15], followed by neuropsychological assess-
ment (NP), and MRI. For the second scenario, etiologi-
cal diagnosis, encompassing differential diagnosis of AD, 
FTD, VaD, and DLB, diagnostic tests included cognitive 
assessment (cCOG, NP), MRI, and CSF analysis. In the 
third scenario, assessing potential eligibility for DMT 
according to the appropriate use criteria by Cummings 
[6], sequential diagnostic tests, including cCOG, NP, and 
MRI, were used to detect patients who should undergo 
CSF confirmation. Below, each diagnostic test battery is 
described in detail.
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Study participants
A total of 883 study participants from two memory clinic 
cohorts were included. From the Amsterdam Demen-
tia Cohort (ADC) [21], we included data from 758 par-
ticipants collected between 2004 and 2022, and from 
the PredictND cohort [17], we included data from 125 
participants collected between 2015 and 2016 in three 
European memory clinics. All participants received 
a standardized multidisciplinary diagnostic work-up, 
including medical history, physical and neurologi-
cal examination, cognitive and functional assessment, 
laboratory tests, brain imaging and CSF measurements. 
Participants were included if both brain MRI and CSF 
results were available. In the PredictND cohort, patients 
received a 12-month follow-up to confirm the diagnosis.

We included patients who were diagnosed with demen-
tia (n = 504) due to Alzheimer’s disease (AD, n = 302), 
frontotemporal dementia (FTD, n = 107), vascular 
dementia (VaD, n = 35), or dementia with Lewy bodies 
(DLB, n = 60), representing the most prevalent patient 
groups in clinical practice. Diagnoses were made accord-
ing to the criteria for probable AD [22, 23], FTD [24], 
VaD [25], and DLB [26]. Additionally, we included indi-
viduals with mild cognitive impairment (MCI, n = 191) 
[27]. Individuals who did not meet the criteria for MCI 
or dementia were diagnosed with SCD [28] and served as 
the cognitively normal (CN) group (n = 188). All clinical 

diagnoses were made in tertiary memory clinics through 
a consensus meeting in the ADC and after a 12-month 
follow-up in the PredictND cohort. Table 1 presents the 
clinical characteristics of the patients included in this 
study. All patients provided written informed consent for 
their data to be used for research purposes.

Digital cognitive screening
We aimed to apply a future-proof stepwise approach 
and thus incorporated a digital cognitive screening test, 
simulating a situation in which cognitive screening can 
start at home. As a part of the PredictND study, a sub-
set of patients (n = 111, 13%) completed a digital cogni-
tive screening test. cCOG is a web-based test tool that 
can accurately detect MCI and dementia [15]. cCOG has 
a completion time of 20  min and consists of a memory 
learning and recall task, and modified trail-making tests 
A and B. For the patients who had not performed cCOG, 
we simulated the results for each task from their neu-
ropsychological equivalents.

Neuropsychological assessment
Data from the following neuropsychological tests were 
included: the Mini-Mental State Examination (MMSE) 
was performed to assess global cognitive function [29]. 
The Rey auditory verbal learning task and the Consor-
tium to Establish a Registry for Alzheimer’s Disease 

Fig. 1 Clinical scenarios and the respective diagnostic tests used for each scenario. Note: blood/PET in light grey mean that these tests could be 
considered (in the future) in these steps, but they are not included in the current study. 1) Syndrome diagnosis, considering a diagnosis of CN, MCI 
or dementia. 2) Etiological diagnosis, considering a diagnosis of AD dementia, FTD, VaD, or DLB. 3) DMT eligibility, considering whether a patient 
would be eligible for DMT, based on appropriate use criteria by Cummings [6]. Abbreviations: cCOG: computerized cognitive test, MMSE: 
Mini‑mental state examination, RAVLT: Rey‑auditory verbal learning task, TMT‑A/B: trail making test A/B, GDS: geriatric depression scale, DAD: 
disability assessment for dementia, MRI: magnetic resonance imaging, cMTA: computerized medial temporal lobe atrophy, cGCA: computerized 
global cortical atrophy, WMH: white matter hyperintensities, APS: anterior–posterior score, CSF: cerebrospinal fluid, Aβ42: amyloid β1‑42, t‑tau: total 
tau, p‑tau: phosphorylated‑tau, DMT: disease‑modifying therapy
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word list memory test were used to assess learning and 
recall [30, 31], the Trail Making Test A and B (TMT-
A/B) for mental processing speed and executive func-
tion [32], animal fluency for language and executive 
function [33], and forward and backward digit span 
for attention and executive functioning [34]. To assess 
neuropsychiatric symptoms, we used the Geriatric 
Depression Scale (GDS) [35] and the Neuropsychiat-
ric Inventory (NPI, [36]). Missing data ranged from 
177 (20%) for the NPI to 4 (0.5%) for the MMSE. To 
assess functional decline, the disability assessment for 

dementia (DAD) [37] was used, for which we missed 
data on n = 373 (42%).

MRI acquisition and automated biomarkers
MRI data were acquired using 1.5 or 3  T scanners. 
Three-dimensional T1-weighted gradient echo sequence 
and fast fluid-attenuated inversion recovery (FLAIR) 
sequence images were used. In this study, we used auto-
mated biomarkers obtained with the cMRI quantifica-
tion tool as described in [38, 39]. The automated imaging 
biomarkers included: computed medial temporal lobe 

Table 1 Demographic and clinical characteristics for the pooled ADC and PredictND cohort (n = 883) according to diagnosis

Data presented in mean ± SD, median [IQR], or n(%)

Abbreviations: CN cognitively normal, MCI mild cognitive impairment, ADD Alzheimer’s disease dementia, FTD frontotemporal dementia, VaD vascular dementia, 
DLB dementia with Lewy bodies, MMSE Mini-Mental state Examination, cCOG computerized cognitive test, TMT Trail Making Test, GDS geriatric depression scale, NPI 
neuropsychiatric inventory, DAD disability assessment for dementia, cMTA computed medial temporal lobe atrophy, cGCA  computed global cortical atrophy, WMH 
white matter hyperintensities, Aβ42 β-amyloid 1–42, p-tau phosphorylated tau

N CN n = 188 MCI n = 191 ADD n = 302 FTD n = 107 VaD n = 35 DLB n = 60

Demographics
 Age, years 883 61 ± 8 66 ± 8 67 ± 78 63 ± 7 70 ± 8 69 ± 8

 Sex, female 883 80 (42.6) 70 (36.6) 163 (54.0) 46 (43.0) 11 (31.4) 8 (13.3)

 Education, years 836 13 [10‑17] 12 [9‑14] 10 [9‑13] 10 [9‑13] 10 [9‑13] 10 [9‑13]

Digital cognitive screening, cCOG
 cCOG, learning 111 23 ± 8 19 ± 4 15 ± 5 17 ± 6 19 ± NA 15 ± 8

 cCOG, recall 110 9 ± 2 6 ± 2 4 ± 2 7 ± 5 8 ± NA 6 ± 3

 cCOG, TMT‑a (s) 110 48 ± 16 65 ± 22 77 ± 32 163 ± 173 63 ± NA 84 ± 35

 cCOG, TMT‑b (s) 104 171 ± 98 231 ± 82 322 ± 153 153 ± NA 283 ± NA 246 ± 91

Neuropsychology
 MMSE [0–30] 879 29 [28‑30] 27 [25‑29] 23 [19‑25] 25 [23‑27] 26 [23‑27] 24 [22‑26]

 Memory, learning 839 42 ± 9 31 ± 8 22 ± 8 28 ± 8 24 ± 8 25 ± 9

 Memory, recall 839 9 ± 3 4 ± 3 2 ± 2 4 ± 3 3 ± 3 4 ± 3

 TMT‑A (s) 861 36 ± 14 48 ± 19 72 ± 39 59 ± 30 90 ± 37 92 ± 38

 TMT‑B (s) 710 85 ± 36 133 ± 67 191 ± 82 161 ± 77 224 ± 82 218 ± 87

 Animal fluency 855 23 ± 6 19 ± 5 13 ± 6 12 ± 7 11 ± 5 13 ± 6

Neuropsychiatric symptoms
 GDS [0–15] 783 3 ± 3 3 ± 3 3 ± 2.3 3 ± 3 4 ± 3 4 ± 3

 NPI, total score 706 8 ± 10 10 ± 11 11 ± 10 21 ± 17 14 ± 9 14 ± 12

Functional assessment
 DAD [0–100] 510 100 [92–100] 93 [86–98] 88 [75–96] 83 [63–97] 70 [66–83] 77 [60–96]

Automated MRI biomarkers
 cMTA, left 883 0.35 ± 0.61 0.94 ± 1.00 1.53 ± 0.92 2.07 ± 1.33 1.79 ± 1.24 1.08 ± 0.75

 cMTA, right 883 0.37 ± 0.58 0.96 ± 0.99 1.48 ± 0.93 1.72 ± 1.27 1.73 ± 1.10 1.07 ± 0.85

 cGCA 882 0.51 ± 0.58 0.80 ± 0.71 1.30 ± 0.74 1.37 ± 0.68 1.70 ± 0.68 1.19 ± 0.59

 cFazekas 881 0.65 ± 0.66 1.15 ± 0.93 1.06 ± 0.80 0.90 ± 0.81 2.64 ± 0.53 1.01 ± 0.75

 WMH, volume 881 3.71 ± 6.23 10.58 ± 18.83 8.29 ± 11.85 6.36 ± 11.40 50.54 ± 31.58 6.08 ± 6.99

 Anterior–posterior score 883 0.35 ± 1.21 0.01 ± 1.29 0.30 ± 1.68 ‑2.68 ± 2.39 0.28 ± 1.52 0.42 ± 1.37

 AD similarity 882 0.39 ± 0.10 0.47 ± 0.12 0.60 ± 0.11 0.44 ± 0.12 0.60 ± 0.10 0.51 ± 0.10

Cerebrospinal fluid
 Aβ42, pg/ml 883 1034 ± 246 830 ± 297 617 ± 164 1017 ± 266 798 ± 215 845 ± 249

 Total tau, pg/ml 883 284 ± 152 446 ± 274 717 ± 413 383 ± 205 302 ± 163 311 ± 158

 p‑tau, pg/ml 883 48 ± 18 65 ± 32 86 ± 38 49 ± 22 42 ± 20 47 ± 21
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atrophy (cMTA): which was calculated from hippocam-
pal volumes and inferior lateral ventricles from both 
hemispheres, and obtained using a multi-atlas segmen-
tation algorithm [38, 40]. Computed global cortical atro-
phy (cGCA): grey matter concentration measured by 
voxel-based morphometry analysis [40]. The white mat-
ter hyperintensities (WMH) volume was automatically 
extracted from FLAIR images. The computed Fazekas 
(cFazekas) was estimated from these volumes combined 
with deep WMH [38, 40]. The anterior–posterior score 
(APS) is the ratio of cortical volumes in the frontal and 
temporal lobes relative to those in the parietal and occip-
ital lobes, providing a specific measure for characteriz-
ing frontotemporal atrophy [39]. The AD similarity scale 
was derived by representing the region of interest (ROI) 
in the patient image as a linear combination of the corre-
sponding ROIs from a database of previously diagnosed 
patients [13]. All imaging markers were corrected for 
head size, age, and sex.

Fluid biomarkers
The CSF biomarkers amyloid β1-42 (Aβ42), total tau 
(t-tau), and phosphorylated tau (p-tau) were meas-
ured locally with commercially available enzyme-linked 
immunosorbent assays (ELISA) (Innotest®, Fujirebio and 
Elecsys, Roche). Elecsys results were mapped to Innotest 
according to [41]. A drift-corrected cutoff of < 813  pg/
ml was applied to determine Aβ42 abnormalities 
[42], and > 375 pg/ml was applied for total tau abnormali-
ties [43]. AD pathology was defined using the total-tau/
Aβ42 ratio with a cutoff of ≥ 0.46 [44].

Simulating stepwise testing for different clinical scenarios
Disease state index probability
To predict the diagnosis at each step, we used the dis-
ease state index (DSI) classifier. The DSI is a simple, data-
driven, machine-learning method that compares different 
diagnostic (either syndrome or etiological) groups with 
each other (e.g., CN vs. dementia, or AD dementia vs. 
VaD) based on a training set of diagnosed patients. The 
DSI was previously validated in the European PredictND 
project [17]. For each diagnostic test, the patient data are 
compared to the distributions of the diagnostic groups in 
the training set, yielding a scalar index between zero and 
one that indicates the probability of a specific diagnosis 
[45]. Patients with low or high DSI values are typically 
more likely to be correctly classified than patients with 
intermediate DSI values. The DSI handles different types 
of variables, such as demographic information, cognitive 
test results, CSF biomarkers, and MRI data, and tolerates 
missing data. To reflect real-world practice, we included 
patients with missing data on neuropsychological tests 

[20]. The dataset was normalized according to age and 
sex. Tenfold cross-validation was performed with ten 
different test/train set divisions. Each time, 10% of the 
individuals were used as the test set and the remain-
ing 90% were used as the training set. The test sets were 
separated, meaning that each subject appeared in exactly 
one test set and nine training sets in each round of cross-
validation. The results over the ten cross-validations were 
combined and averaged to obtain the final result. The 
method is described in detail in the supplementary files 
Appendix A.

Probability cutoffs
In this study, the probability cutoffs varied depending 
on the clinical scenario. Cutoffs were determined visu-
ally by plotting sensitivity and specificity against prob-
ability cutoff values for each step in each scenario (see 
supplementary files: Supplementary Figs.  1–5). In clini-
cal practice, there are established cutoffs for certain tests, 
such as amyloid positivity. However, decisions based 
on combined data from multiple sources and clinical 
impressions rely on the confidence of the clinician. Clini-
cians make decisions based on their confidence level and 
they may request additional testing or delay the diagno-
sis if they lack confidence. Confidence is subjective and 
depends on factors such as the clarity of the findings, the 
data available, the clinicians’ expertise, and their person-
ality. Probability cutoffs aim to make the decision process 
more objective when interpreting all acquired data.

It is important to note that the CDSS does not consider 
clinical impressions, which are an essential part of the 
diagnostic process, so it should be considered supportive, 
as diagnosis is ultimately a clinical judgment. Addition-
ally, there is a trade-off between accuracy and the num-
ber of tests. Acquiring more data can increase confidence 
and accuracy, but it also comes at a cost. Finally, decisions 
are always a compromise between sensitivity and speci-
ficity, i.e., how we value false positives and false negatives. 
For syndrome diagnosis, high sensitivity was considered 
important for minimizing the number of false-negative 
cases, while a balance between sensitivity and specificity 
was chosen for accurate etiological diagnosis.

Clinical scenarios
Figure  1 shows the diagnostic tests considered for each 
diagnostic scenario. Diagnostic strategies followed a pre-
determined order based on clinical guidelines and cur-
rent practice. At each step, DSI values were calculated for 
the combination of diagnostic tests used. At each step, we 
assessed whether the DSI values exceeded the predeter-
mined cutoff. If DSI values exceeded the cutoff, a diag-
nosis was made, and the diagnostic process was stopped. 
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For patients for whom the diagnosis remained uncertain, 
i.e., for whom the DSI did not exceed the cutoff, addi-
tional tests were added to the diagnostic trajectory.

We used letter value plots [46] to depict the distribu-
tion of DSI values among different diagnostic groups. 
Letter value plots provide statistical insights in a visually 
intuitive manner. Each group is visually represented by 
boxes. The length of the box represents the interquartile 
range (IQR), which contains the middle 50% of the data 
in the group.

Scenario 1: syndrome diagnosis For scenario 1, syn-
drome diagnosis, we included all patients. We used a 
pairwise classifier (‘CN’ vs. ‘dementia’). A DSI close to 
one increases the likelihood of a dementia diagnosis, and 
a DSI close to zero suggests CN. Patients with intermedi-
ate DSI values were considered to have MCI in the final 
step. We divided the scenario into two different pathways:

• Scenario 1A: Cognitive and functional assessment 
(NP)—The approach used in clinical practice today 
(base case). In choosing the cutoffs, we aimed to 
reflect decision making in clinical practice and used 
a DSI cutoff of 0.3 for CN and 0.7 for dementia 
patients. Patients with a DSI > 0.3 would require addi-
tional MRI testing.

– Step 1: NP

▪ DSI (CN/dem) < 0.3: CN; no next test
▪ DSI (CN/dem) 0.3–0.7: MCI; next test, MRI
▪ DSI (CN/dem) > 0.7: dementia; next test, MRI

• Scenario 1B: To enhance the current base case, in 
scenario 1B we used the digital cCOG as a prescreen-
ing step. We aimed for detecting clearly cognitively 
normal participants (DSI < 0.1, low probability) and 
patients with clear cognitive problems (DSI > 0.95, 
high probability), while the patients in between 
require additional NP testing (intermediate probabil-
ity). For steps 2 and 3, the cutoff values were 0.3 for 
CN and 0.7 for dementia patients.

– Step 1: cCOG

▪ DSI (CN/dem) < 0.1: CN; no next test
▪ DSI (CN/dem) 0.1–0.95: indeterminate result, 
next test, NP
▪ DSI (CN/dem) > 0.95: dementia, next test, MRI

– Step 2: cCOG + NP

▪ DSI (CN/dem) < 0.3: CN; no next test
▪ DSI (CN/dem) 0.3–0.7: MCI; next test, MRI
▪ DSI (CN/dem) > 0.7: dementia; next test, MRI

Scenario 2: etiological diagnosis For the purpose of etio-
logical diagnosis, we excluded patients with MCI because 
the question of differential diagnosis only becomes rel-
evant at the stage of dementia. We included 1) cognitive 
testing using cCOG and NP, 2) MRI, and 3) CSF. For step 
1, we used the two-class DSI classifier (‘CN’ vs. ‘demen-
tia’) with a low cutoff (DSI < 0.25) to prioritize sensitivity. 
Only after MRI can differential diagnosis be performed. 
Here, we used a multiclass DSI classifier, averaging the 
DSI value of each of the etiological groups against all 
other groups (i.e., for AD it is the average of: FTD vs. AD, 
DLB vs. AD, and VaD vs. AD). In this way, a DSI value 
(continuous value between zero and one) is provided for 
each patient and each diagnostic group (AD-FTD-VaD-
DLB), estimating the probability of the specific diagno-
sis. The highest average DSI value defines the most likely 
class for the patient. For steps 2 and 3, we set the DSI 
cutoff at > 0.6 to balance between the number of patients 
who could be given a diagnosis and the accuracy of that 
diagnosis. As soon as the DSI ≥ 0.6 for any etiological 
diagnosis was reached the diagnostic process was con-
cluded. If the DSI remained < 0.6, the data did not sup-
port a confident diagnosis. Additional data, such as CSF 
in step 3 or other tests, such as more detailed neuropsy-
chological testing, electroencephalography (EEG), FDG-
PET, or DaT-scan are required (not addressed in this 
paper).

– Step 1: cCOG & NP

▪ DSI (CN/dem) ≤ 0.25: CN, no next test
▪ DSI (CN/dem) > 0.25: dementia; next test, MRI

– Step 2: cCOG & NP + MRI

▪ DSI (multiclass) > 0.6 for AD, FTD, VaD, DLB: 
diagnosis; no next test
▪ DSI (multiclass) ≤ 0.6 for AD, FTD, VaD, DLB: next 
test: CSF

– Step 3: cCOG & NP + MRI + CSF

▪ DSI (multiclass) > 0.6 for AD, FTD, VaD, DLB: 
diagnosis; no next test
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▪ DSI (multiclass) ≤ 0.6 for AD, FTD, VaD, DLB: 
next test or follow-up required (not addressed)

Scenario 3: DMT eligibility In scenario 3, we included 
all patients and defined potential DMT eligibility accord-
ing to Cummings’ appropriate use recommendations [6] 
and the available data in the dataset. Potential eligibility 
was defined as a diagnosis of MCI/dementia due to AD, 
with MMSE ≥ 22, cFazekas < 2.5, and positive amyloid 
biomarkers. According to these criteria, our dataset con-
sisted of a total of 230 potentially eligible patients. The 
goal of this scenario is to perform a minimum number 
of CSF tests while identifying a maximum number of eli-
gible patients. We applied the following steps to select 
patients for confirmatory CSF testing: 1) cCOG, 2) NP, 
and 3) MRI. Unlike scenarios 1 and 2, the gold standard 
for diagnosis in this case is amyloid status based on CSF 
rather than clinical diagnosis. Step 4 involves CSF test-
ing for confirmation of the biomarkers status. For steps 1 
and 2, we used a pairwise classifier (CN vs. dementia). At 
step 1, the DSI threshold was set at 0.1 All patients with 
a DSI > 0.1 proceeded to step 2, involving NP. Here, the 
threshold increased to 0.3. All patients who were pre-
dicted to be ‘potentially eligible’ after the first two steps 
continued to step 3, MRI. For step 3, we used a different 
pairwise classifier (‘AD’, ‘other’), with a cutoff of 0.1, to 
select patients for CSF. A cutoff of < 0.1 points for a non-
AD diagnosis and amyloid confirmation is not needed.

– Step 1: cCOG

▪ DSI (CN/dem) ≤ 0.1: CN, not eligible, no next 
test
▪ DSI (CN/dem) > 0.1: probable eligible; next test, 
NP

– Step 2: cCOG + NP

▪ DSI (CN/dem) ≤ 0.3: CN, not eligible, no next test
▪ DSI (CN/dem) > 0.3: probable eligible; next test, 
MRI

– Step 3: cCOG + NP + MRI

▪ If DSI (AD/other) < 0.1 and DSI for any of the other 
etiologies > 0.85: non-AD, not eligible, no next test
▪ DSI (AD/other) > 0.1: probable AD and DSI for any 
of the other etiologies < 0.8, probably eligible; next 
test, CSF

– (Step 4: Confirmatory CSF testing)

Statistical analyses
All statistical analyses were performed using R ver-
sion 4.0.3. DSI analyses were performed using a Python 
implementation of DSI algorithm in Python 3.10.13.

The predicted diagnoses in scenarios 1 and 2 were 
compared to the clinical diagnoses as made in the 
respective memory clinics. In scenario 3, the predicted 
eligibility was compared to actual CSF results. For each 
scenario, we assessed the share of correct diagnoses 
(estimated by summing the number of true positive 
and true negative cases), sensitivity, specificity, and the 
need for additional testing at each step. The calcula-
tions for scenarios 1 and 3 were repeated using the sub-
set of patients with real cCOG data.

Sub analyses were performed to compare the groups 
of patients with and without diagnosis using analysis 
of variance (ANOVA) and chi‐squared tests to evalu-
ate differences between the groups in diagnosis, demo-
graphics, or clinical characteristics.

Results
Syndrome diagnosis
Scenario 1 was divided into two sub scenarios that 
included all patients (N = 883). Scenario 1A represents 
the base case, where the syndrome diagnosis is based 
on NP. In scenario 1B, the digital cognitive test cCOG 
was added as a prescreener. A visual representation of 
both scenarios is shown in Fig. 2.

Scenario 1A. syndrome diagnosis using NP
When applying the cutoff of < 0.3 for CN and > 0.7 for 
dementia, 203 participants were classified as CN, 131 
as MCI, and n = 549 as having dementia. Using this sce-
nario led to a diagnostic accuracy of 0.74 and would 
require MRI in 77% of patients. Table 2 shows the cor-
responding confusion matrix.

Scenario 1B. cCOG + NP + MRI
In scenario 1B, diagnostic tests were added sequentially 
to reduce NP testing to only when digital screening 
was insufficient and expanded with MRI when neces-
sary. Table 2 shows the confusion matrices for the con-
secutive steps. In the first step, cognitive screening with 
cCOG, the threshold was low (< 0.1) for CN and high 
(> 0.95) for dementia. In this step, 152 participants were 
predicted to be CNs, and 355 were predicted to have 
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dementia. Additional NP testing was added for the 376 
participants with indeterminate DSI values (43%). The 
combination of the two steps resulted in a diagnostic 
accuracy of 0.71 (Table  3) and required MRI in 76% 
(n = 667). Supplementary Table 1 shows the results for 
the subset of patients for whom real cCOG data were 
available.

Etiological diagnosis
For the second scenario, we included CN (n = 188) and 
dementia patients (302 AD, 107 FTD, 35 VaD, 60 DLB). 
We started with cognitive testing to distinguish between 
controls and dementia patients. Subsequently, we 

sequentially added MRI and CSF to determine etiology 
(Fig. 3).

Based on initial cognitive and functional testing, 162 
individuals were identified as CN and 530 were identi-
fied as having dementia, with a sensitivity of 97% and 
specificity of 75% (DSI cutoff < 0.25; supplementary 
Table  2). Subsequently, 77% of the participants pro-
ceeded to the next step, which involved MRI. Following 
MRI, DSIs were calculated for each of the diagnostic 
groups (AD, FTD, VaD, DLB) for each individual patient 
(Supplementary Fig. 6). A DSI > 0.6 for any of the etio-
logical diagnosis confirmed that diagnosis. Of the 
531 patients who underwent MRI, 275 patients (52%) 
received a diagnosis (Supplementary Table  3), and the 

Fig. 2 Visual representation of scenario 1, syndrome diagnosis, for scenario 1A) syndrome diagnosis using NP, and scenario 1B) stepwise syndrome 
diagnosis, making use of letter‑value plots. NOTE: The figure includes letter‑value plots for DSI scores. The length of the first box represents 
the interquartile range (IQR), which contains the middle 50% of the data in the group, the second box (E) 12.5% at each end, the third box covers 
(D) 6.25% on each end, and the fourth box (C) 3.13%. The longer the box, the greater the variability. The percentages indicate the proportion 
of the total population that requires additional testing. Red dashed lines depict the DSI cutoff‑vales. MCI: mild cognitive impairment, MRI: magnetic 
resonance imaging
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remaining 256 patients proceeded to the final step of 
CSF examination. Of the 256 patients who underwent 
CSF examination (Supplementary Fig.  6), 120 (47%) 
were ultimately diagnosed with sufficient confidence 
(DSI > 0.6) (Supplementary Table  4). The combination 
of all steps led to diagnosis in a total of 556 participants 
(80%) with an accuracy of 0.77, as shown in Table 3A.

After CSF testing, the diagnosis remained uncertain for 
20% of the patients, requiring additional diagnostic test-
ing or follow-up. Of these patients, 16% were CN, and 
84% had dementia. The demographic and clinical charac-
teristics of these patients are shown in Table 4. Compared 
to patients who received a diagnosis, patients without a 
diagnosis after the stepwise approach were more likely 
to have a clinical diagnosis of FTD or DLB, were older 
and had worse neuropsychological and neuropsychiatric 
assessment outcomes. Furthermore, patients without a 
diagnosis had a greater vascular burden on MRI (cFaze-
kas, p = 0.032), suggesting the presence of mixed etiolo-
gies in these patients.

DMT eligibility
Finally, we studied how a CDSS can efficiently support 
the determination of eligibility for DMT. We included 
patients with complete data on amyloid status, MMSE, 
and cFazekas score (n = 187 CN, n = 190 MCI, n = 500 
dementia (all causes)). To determine potential eligibility 
for DMT, it is important to first detect the clinical stage, 
followed by the etiology. In contrast to scenarios 1 and 2, 
where clinical diagnosis was considered the gold stand-
ard, scenario 3 used amyloid status as determined in CSF 
as the gold standard. Therefore, CSF testing is not a sepa-
rate step as in other scenarios, but rather is performed as 

Table 2 Confusion matrices for syndrome diagnosis scenarios 1A and 1B

In the confusion matrix each column represents the actual diagnosis and each row the diagnosis suggested by the classifier; the cells show the number of patients in 
each category

Abbreviations: CN cognitively normal, MCI mild cognitive impairment, cCOG computerized cognitive testing, NP neuropsychological and functional assessment, MRI 
magnetic resonance imaging

Scenario 1A. NP (all)

CN MCI DEM
CN 147 32 24

MCI 31 65 35

DEM 10 94 445

Cutoffs < 0.3 0.3–0.7 > 0.7

Sensitivity 0.92 0.34 0.88

Specificity 0.78 0.90 0.73

Accuracy 0.74

Scenario 1B. cCOG Scenario 1B. cCOG + NP

CN MCI DEM CN MCI DEM
CN 113 19 20 148 35 33

MCI 69 132 175 29 56 44

DEM 6 40 309 11 100 427

Cutoffs < 0.1 0.1–0.95 > 0.95 < 0.3 0.3–0.7 > 0.7

Sensitivity 0.94 0.69 0.61 0.90 0.29 0.85

Specificity 0.60 0.65 0.88 0.79 0.89 0.71

Accuracy 0.63 0.72

Table 3 Confusion matrix for patients receiving diagnosis after 
stepwise application of cCOG, cognitive testing, MRI and CSF

In the confusion matrix each column represents the actual diagnosis and each 
column the diagnosis suggested by the classifier; the cells show the number of 
patients in each category

Abbreviations: CN cognitively normal, AD Alzheimer’s disease, FTD 
Frontotemporal dementia, VaD vascular dementia, DLB dementia with Lewy 
bodies

CN AD FTD VaD DLB

CN 141 4 12 1 3

AD 4 182 3 2 3

FTD 14 23 51 2 2

VaD 2 12 4 19 1

DLB 5 23 8 2 33

Cutoffs > 0.6 > 0.6 > 0.6 > 0.6 > 0.6

Sensitivity 0.85 0.75 0.65 0.73 0.79

Specificity 0.93 0.95 0.90 0.96 0.91

Total accuracy 0.77
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a confirmatory test in all potentially eligible patients. The 
goal of this scenario is to perform a minimum number of 
CSF tests, while identifying a maximum number of eligi-
ble patients. Figure 4 shows a visual representation of the 
stepwise eligibility testing.

The first steps are used to identify MCI and dementia, 
since CN are not eligible for DMT. Based on digital cog-
nitive screening, 152 patients were identified as non-
eligible (DSI cutoff < 0.1). The remaining 725 patients 
(83%) continued to NP, after which 63 were identified 
as non-eligible (DSI cutoff < 0.3). Based on the cognitive 
assessment, 662 patients (75%) were selected for MRI as 

the next step to detect potential eligibility. After MRI, 
all patients with a DSI for AD > 0.1 and < 0.8 for any 
of the other etiologies (n = 528, 60%) were considered 
potentially eligible and were thus selected for confirma-
tory CSF testing. Of those patients, 191 met the eligi-
bility criteria (MCI/dementia due to AD, MMSE ≥ 22, 
cFazekas < 2.5, and positive amyloid biomarkers) 
whereas 337 did not. Supplementary Table 5 shows the 
confusion matrix for each step for all patients (A) and 
the subset with real cCOG data (B), Table 5 shows the 
confusion matrix of all three steps combined. Stepwise 
diagnostic testing correctly selected 191/230 potentially 

Fig. 3 Visual representation of scenario 2, stepwise etiological syndrome diagnosis, making use of letter‑value plots. NOTE: The figure includes 
letter‑value plots for DSI scores. The length of the first box represents the interquartile range (IQR), which contains the middle 50% of the data 
in the group, the second box (E) 12.5% at each end, the third box covers (D) 6.25% on each end, and the fourth box (C) 3.13%. The longer the box, 
the greater the variability. The percentages indicate the proportion of the total population that requires additional testing. Red dashed lines depict 
the DSI cutoff‑vales. MCI: mild cognitive impairment, MRI: magnetic resonance imaging

Fig. 4 Visual representation scenario 3, stepwise eligibility testing, making use of letter‑value plots. NOTE: The figure includes letter‑value plots 
for DSI scores. The length of the first box represents the interquartile range (IQR), which contains the middle 50% of the data in the group, 
the second box (E) 12.5% at each end, the third box covers (D) 6.25% on each end, and the fourth box (C) 3.13%. The longer the box, the greater 
the variability. Red dashed lines depict the DSI cutoff‑vales. Abbreviations: AD: Alzheimer’s disease, MCI: mild cognitive impairment, MRI: magnetic 
resonance imaging, CSF: cerebrospinal fluid, PET: positron emission tomography
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eligible patients (true positive, 83%) for confirmatory 
CSF. Furthermore, 349 patients were identified as non-
eligible, 310 of whom did not meet the eligibility crite-
ria (true negative). The distribution of AD diagnoses of 
the 39 false negative patients is showed in Table 6, indi-
cating that the sensitivity for detecting eligible patients 
with AD dementia is 90%. Half of the cases were stable 

MCI patients, who showed no disease progression in 
the 12-month follow up of the PredictND study.

Clinical application
To illustrate the practical application of the stepwise 
testing process using the CDSS, we present an exam-
ple of the stepwise approach in clinical practice, using a 

Table 4 Demographic and clinical characteristics for patients receiving a diagnosis (n = 556) or no diagnosis (n = 136) after stepwise 
cognitive testing, MRI, and CSF

Data presented in mean ± SD, median [IQR], or n(%). aPost hoc pairwise comparisons indicate group differences after false discovery rate correction

Abbreviations: CN cognitively normal, MCI mild cognitive impairment, AD Alzheimer’s disease, FTD frontotemporal dementia, VaD vascular dementia, DLB dementia 
with Lewy bodies, MMSE Mini-Mental state Examination, RAVLT Rey Auditory Verbal Learning Test, TMT Trail Making Test, GDS geriatric depression scale, NPI 
neuropsychiatric inventory, DAD disability assessment for dementia, cMTA computed medial temporal lobe atrophy, cGCA  computed global cortical atrophy, API 
anterior posterior index, WMH white matter hyperintensities, Aβ42 β-amyloid 1–42, p-tau phosphorylated tau

Without diagnosis after stepwise approach 
n = 136

With diagnosis after stepwise approach 
n = 556

p-value

True diagnosis, n (%) 0.003
  CNa 22 (16) 166 (30)

 AD 58 (43) 244 (44)

  FTDa 29 (21) 78 (14)

  VaDa 9 (7) 26 (5)

 DLB 18 (13) 42 (8)

Demographics
 Age, years 66 ± 8 65 ± 9 0.044
 Sex, female 66 (48.5) 242 (43.5) 0.339

 Education, years 13 [10‑16] 15 [12‑17] 0.080

Neuropsychology
 MMSE [0–30] 25 [22‑27] 25 [22‑28] 0.078

 Memory, learning 26 ± 8 30 ± 12 0.002
 Memory, recall 4 ± 3 5 ± 4 0.015
 TMT‑A (s) 73 ± 40 60 ± 36  < 0.001
 TMT‑B (s) 178 ± 91 145 ± 83  < 0.001
 Animal fluency 14 ± 6 16 ± 8 0.029
Neuropsychiatric symptoms
 GDS [0–15] 4 ± 3 3 ± 2 0.001
 NPI, total score 15 ± 14 12 ± 12 0.011
Functional assessment
 DAD [0–100] 78.0 ± 22.8 84.3 ± 18.3 0.006
Automated MRI biomarkers
 cMTA, left 1.38 ± 1.12 1.24 ± 1.11 0.169

 cMTA, right 1.26 ± 1.01 1.17 ± 1.07 0.372

 cGCA 1.19 ± 0.77 1.09 ± 0.77 0.166

 cFazekas 1.14 ± 0.89 0.97 ± 0.85 0.032
 WMH, volume 10.47 ± 16.58 8.26 ± 15.22 0.137

 Anterior–posterior index ‑0.33 ± 2.12 ‑0.09 ± 1.96 0.195

 AD similarity 0.53 ± 0.13 0.51 ± 0.15 0.048
Cerebrospinal fluid
 Aβ42, pg/ml 824 ± 269 821 ± 293 0.925

 Total tau, pg/ml 439 ± 277 5056 ± 378 0.057

 p‑tau, pg/ml 59 ± 29 65 ± 36 0.065
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fictive patient (Fig.  5). Patient A is a 69-year-old female 
who presented to the memory clinic with memory com-
plaints. She underwent cCOG, and based on her cCOG 
results (DSI = 0.87), she was classified as MCI with an 
indeterminate DSI value, and it was recommended to 
continue to the next step to confirm the syndrome diag-
nosis. As such, cognitive and functional assessments 
were performed, after which the DSI increased to 0.94, 
indicating a greater likelihood of dementia. If the main 
focus is on syndrome diagnosis, the clinician may choose 
to conclude the diagnostic process. Alternatively, the 
clinician can continue to investigate the etiology, start-
ing with the addition of MRI. The MRI results revealed 
the highest probability for AD as the underlying etiology 
(0.55). Since this value was below the predefined cutoff of 
0.6, the clinician might decide to proceed with CSF test-
ing. When CSF was subsequently is added, the probabil-
ity of AD increased to 0.71, which concurrently reduced 
the likelihood of the other diseases. Note that this patient 
would also be selected for CSF testing to assess eligibil-
ity for DMT given that the DSI cutoff for AD after MRI 
exceeded the defined cutoff (> 0.1), and none of the other 
diagnoses had a DSI value of > 0.8.

Discussion
In an era where disease-modifying therapies are becom-
ing available for the first time, timely and accurate 
diagnosis of dementia is more important than ever. A 
data-driven tool can be beneficial for assisting clinicians 
in determining which tests add value in different clinical 
contexts. In this study, we applied a data-driven stepwise 
testing approach using a CDSS in three clinical scenarios 
to assess its potential to guide diagnostic decision-mak-
ing. The stepwise testing approach results indicated that 
different scenarios require different quantities of diag-
nostic tests and thus reduce the number of tests required 
while maintaining diagnostic accuracy. Such an approach 
holds promise for ensuring that the diagnosis of dementia 
is accessible and affordable in the future. For the purpose 
of this proof-of-principle study, we divided the scenarios 
into three separate clinical scenarios. In real-world prac-
tice, the three could be combined into one harmonized 
workflow, as illustrated by the hypothetical patient case.

To address the challenges healthcare systems face with 
increasing patient volumes due to the growing preva-
lence of dementia and the introduction of DMTs and 
the significant national and regional differences in the 
accessibility and availability of diagnostic services it is 
crucial to improve diagnostic strategies [8, 47–49]. An 
ideal diagnostic pathway is tailored to the needs of both 
individual patients and clinicians, while being efficient at 
the same time. In this study, we assessed efficient path-
ways for three clinical scenarios based on different goals 
that clinicians have for which they deploy diagnostic 
testing. These different situations define an important 
role for a CDSS that can be flexible in the way it rec-
ommends ancillary testing to assist with the interpreta-
tion of complex, multimodal diagnostic data to provide 
accurate diagnostic predictions derived from reference 
populations. Although the diagnostic accuracies in this 
study were already decent, the CDSS could be further 
extended to increase the accuracy even further by incor-
porating other data, such as the extended cCOG version 
for DLB [50], and amyloid PET [13]. Currently, it is being 
extended by the development of FDG-PET and DaT-scan 
modules.

Timely diagnosis and early identification of patients 
eligible for DMT require biomarkers of amyloid pathol-
ogy, but in regular clinical settings, only a small fraction 
of potentially eligible patients receive a biomarker-based 
confirmatory diagnosis [10]. Blood-based biomarkers 
(BBB) are rapidly evolving and have the potential to pro-
vide accessible evaluation of AD pathology [51, 52]. It is 
conceivable that for scenario 2 – differential diagnosis – 
BBBs may quickly replace CSF biomarkers [51]. In [53], 

Table 5 Confusion matrix for patients classified as potentially 
eligible after stepwise application of cCOG, cognitive testing and 
MRI

In the confusion matrix each column represents the actual diagnosis and each 
row the diagnosis suggested by the classifier; the cells show the number of 
patients in each category. Note that potentially eligible patients are: AD or MCI 
with positive Aβ biomarkers, MMSE ≥ 22, and Fazekas < 2.5

Not eligible Potentially 
eligible

Not eligible 310 39

Potentially eligible 337 191

Sensitivity 0.83

Specificity 0.47

Table 6 Distribution of AD diagnoses of patients classified as 
eligible in the stepwise approach

pMCI progressive MCI cases, patients who had progressive disease after 
12-month follow up in the predictND cohort, sMCI stable MCI cases, patients 
who did not progress after 12-month follow up AD Alzheimer’s disease 
Dementia

sMCI due to AD pMCI due to AD AD dementia

Potentially eligible 42 38 150

Classified as not eli‑
gible

16 6 17

Percentage 38.1 15.8 11.3

Sensitivity 0.72 0.86 0.90
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it was suggested that CSF or amyloid PET confirmation 
is needed only for the intermediate probability group 
based on BBB results. The same concept of the high/ 
intermediate/low probability was followed for cognitive 
testing in this study and illustrated in Fig.  1. However, 
as BBBs are not yet widely in clinical use, it is still neces-
sary to conduct CSF or amyloid-PET investigations when 
determining DMT eligibility. Therefore, it is highly rel-
evant to find efficient ways to conduct CSF assessments 
for the right patient at the right time. We demonstrated 
that a stepwise approach can reduce the number of diag-
nostic tests while maintaining diagnostic accuracy. For 
example, our approach required only 61% of all MCI and 
dementia patients to undergo amyloid testing to identify 
potentially eligible patients, while still identifying 84% of 
the truly eligible patients. The 16% of patients who were 
missed were probably missed due to mixed pathologies. 
Nonetheless, one should note that our approach did not 
consider some of the factors that could render a patient 
ineligible, such as medication use or imaging features 
such as microbleeds [5, 6]. Improving the underlying 
models, also with respect to the other eligibility criteria, 

is currently ongoing in the European PROMINENT 
study [54].

The early and accurate identification of individuals who 
may develop dementia due to AD, i.e., ‘preclinical disease’ 
[55], and who are eligible for DMT requires the imple-
mentation of broader large-scale screening measures 
and cost-effective detection and diagnostic tools [6, 48]. 
In this regard, the development of digital cognitive test 
tools holds considerable promise [56]. In this study, we 
showed that (digital) cognitive screening is a powerful 
tool for identifying cognitively normal individuals who 
are not eligible for treatment. This can importantly sup-
port primary care in their role as a ‘gatekeeper’, ensuring 
that only those who need it are referred to memory clin-
ics. However, primary care physicians often have limited 
time and resources available [9]. Therefore, using digital 
cognitive tests, such as cCOG, as a first step, at home 
can alleviate the burden on general practitioners [15]. 
Although cCOG has shown high accuracy in detecting 
cognitively healthy participants and dementia patients its 
ability to detect earliest subtle cognitive changes remains 
to be elucidated [15, 50].

Fig. 5 Example of the stepwise approach in clinical practice. Abbreviations: DSI: disease state index, cCOG: computerized cognitive screening, NP: 
neuropsychological and functional assessment, CN: cognitively normal, MCI: mild cognitive impairment, MMSE: mini‑mental state examination, CSF: 
cerebrospinal fluid, MRI: magnetic resonance imaging, AD: Alzheimer’s disease, DLB: dementia with Lewy bodies, FTD: frontotemporal dementia, 
VaD: vascular dementia
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Our data-driven approach is limited in that it does not 
consider the preferences and wishes of patients and care 
partners, or clinical impressions of clinicians. However, 
the results of our study indicate that using a stepwise 
approach has the potential to complement patient-cen-
tered biomarker-based workflows for specialist outpa-
tient services as recently defined by a European task force 
[19], by offering data-driven and visually supported diag-
nostic probabilities for clinicians. Furthermore, patients 
and their care partners have their own needs and pref-
erences regarding diagnostic testing, which are often 
not addressed during the consultation [12]. Stepwise 
diagnostic testing, along with the graphical counterpart, 
which makes interpretation of results to clinicians more 
transparent, and the option to visualize test results in 
easy-to-understand patient report [57], can guide cli-
nicians in explaining diagnostic tests or test results, 
enhancing patient comprehension and contributing to 
shared decision-making.

Another often mentioned and important limitation of 
data-driven CDSSs is that they require multiple pieces of 
data that are not readily available to the clinician, or that 
the models are too complex, which limits their clinical 
footprint [16]. The CDSS should be intuitive (i.e., not a 
complex black box), time-efficient, and assist rather than 
replace the clinician [58]. The latter also means that if the 
tool’s result conflicts with the clinician’s opinion, the cli-
nician would always have the final say and could choose 
to disregard the tool’s outcome. Although the CDSS 
that we used in this study was developed with the aim of 
meeting these criteria and has been validated in clinical 
practice, it is not yet widely used in daily practice [17]. 
The implementation of new technologies in existing clini-
cal workflows is often hindered by the need for integra-
tion with electronic patient files, a lack of experience with 
these tools and high workloads hindering adequate learn-
ing of how to use a tool. In other words, tools need to be 
tailored to real-world practices and meet the needs and 
preferences of clinicians. Follow-up research focusing on 
the implementation of the CDSS in daily practice should 
address these main requirements.

Strengths and limitations
A major strength of our study is the use of data from two 
different memory clinic cohorts. All patients came to 
the memory clinic seeking medical help. The data thus 
reflect real-life clinical patients. In each clinic, patients 
were diagnosed using a comprehensive clinical workup, 
and we were able to use measures that overlapped. Since 
ground-truth diagnosis was obtained from a clinical 
diagnosis, not from a neuropathological confirmation, 
the true accuracy cannot be determined. However, the 

clinical workup was comprehensive; the material sec-
tion describes only the data that were used in this study, 
but more comprehensive data were available for clinical 
diagnosis, and all clinical diagnoses were made in ter-
tiary memory clinics through a consensus meeting in the 
ADC and after 12 months of follow-up in the PredictND 
cohort. In other words, the ground truth represents the 
current state of the art in clinical diagnosis. Another 
limitation is that we categorized patients as having a sin-
gle pathology, while on average 20–40% of patients have 
multiple pathologies underlying their dementia diagno-
sis. The fact that we were able to correctly classify 80% 
of patients in the etiology scenario may be attributed to 
mixed pathology.

Finally, a limitation of this study is the choice of cutoffs 
applied in the stepwise approach. The cutoff values were 
selected ad hoc with the aim of, for example, empha-
sizing sensitivity over specificity in a certain scenario. 
Although other strategies could have been applied to 
optimize the use of cutoffs, we did not employ these in 
the current study for the purpose of readability and clini-
cal applicability. Future research should address optimi-
zation strategies for optimal cutoff values. The stepwise 
approach shows promise in reducing the number of diag-
nostic tests performed. However, we did not consider any 
costs in the present study. To pursue the clinical applica-
tion of a data-driven approach in real-world practice, a 
cost-efficiency study is warranted.

Conclusion
The anticipated challenges in real-world dementia prac-
tices call for improved diagnostic strategies to establish 
a tailored diagnostic pathway that meets the specific 
needs of individual patients and clinicians while keep-
ing dementia diagnosis accessible and affordable. In this 
study we demonstrated the promising value of a step-
wise, data-driven approach for reducing the number of 
diagnostic tests required while maintaining diagnostic 
accuracy.
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