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Abstract 

 
Perceptual experiences are fundamental to the human condition, and yet how 
experiences arise in the brain remains unknown. This thesis examines various aspects 
of conscious awareness to better characterise how perceptual experiences are generated 
in the brain. In an initial study, I analyse magnetoencephalography (MEG) and functional 
magnetic resonance imaging (fMRI) data to test whether established properties of neural 
magnitude codes extend to the neural processes governing reports of awareness and 
vividness. Using multivariate decoding and representational similarity analysis, I report 
how a content-invariant code supports perceptual vividness judgements and how this 
code extends across visual and frontoparietal regions of the brain. The second 
experiment extends these findings to the concept of numerical absence. This chapter 
provides the first neuroscientific exploration of the number zero in the human brain and 
establishes zero’s place on a neural number line that is independent of numerical format. 
This study relates to perceptual experience by providing support for an account of the 
relationship between basic sensory absences and more complex conceptual absences. 
In a third study, I analyse the fMRI data of patients with Alzheimer’s disease to assess 
whether classic neural markers of awareness are altered in the disorder. I report that 
neural correlates of awareness are diminished in Alzheimer’s disease and use this to 
argue for its characterisation as a disorder of consciousness, not just of memory. Finally, 
I provide the first validation of newly developed optically pumped MEG (OP-MEG) 
systems in a naturalistic social perception task. Across a series of analyses, I was unable 
to reproduce previously established neural markers of perspective-taking in a real-world 
task and discuss the reasons why this may have been the case. Overall, this thesis 
presents a number of novel insights into the neural basis of perceptual experience. It 
contributes empirical tests of candidate theories of consciousness, assessments of 
perceptual experience in disease, and, finally, ushers in a new era of ecological tests of 
awareness.  
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Impact Statement 

Perceptual experiences compose the foundation of human existence. Our goals, 
decisions, ethics, and culture all rely on the fact we are conscious of the world around us, 
experiencing the sights, sounds, and smells that we encounter every day. However, the 
neural basis of perceptual experience remains conceptually hard to examine and is as of 
yet unknown. This thesis’ impact lies in its multifaceted exploration of the neural basis of 
consciousness and its findings pertain to both academia and society at large, in both the 
laboratory, the clinic, and the classroom.  
 
Across two chapters of this thesis, I have tested hypotheses regarded neural magnitudes 
and their relationship with the neural correlates of perceptual experience. Across different 
neuroimaging modalities, I have provided evidence to support the idea that a simple 
neural code may govern different kinds of awareness reports. Using theoretically 
motivated hypotheses is fundamental to scientific progress, particularly in the 
neuroscience of consciousness, which faces a troublesome stasis as researchers fail to 
move beyond simple confirmatory tests of their preferred theory. This problem has been 
exemplified by the introduction of adversarial collaborations in the field, representing a 
deliberate effort to overcome these issues. My thesis provides one example of strong, 
theoretically motivated science that can help progress the neuroscience of consciousness 
beyond its present plateau. Moreover, within this line of research, I have provided the first 
characterisation of the concept ‘zero’ in the human brain, a notoriously abstract concept. 
This work has the potential to impact our understanding of concept development in 
children, as well as providing insight into the evolutionary origins of uniquely human 
capacities. 
 
In a separate study, I examined the contents of consciousness of patients suffering from 
Alzheimer’s disease. Alzheimer’s disease is a major cognitive disorder and afflicts over 
50 million people globally – it is the leading cause of death in the UK. Despite its 
prevalence, however, no study has yet explored the possibility that patients with the 
disease may have an altered or degraded experience of the world. In the first study of its 
kind, my research reveals that classic neural markers of awareness are diminished in 
Alzheimer’s patients, potentially highlighting the need to recharacterize the disease as a 
disorder of consciousness, and not simply a disorder of memory. This has the potential 
to impact millions of patients and caregivers alike, enabling a better understanding of 
what is and isn’t experienced by patients, and helping to improve and develop more 
effective care strategies. 
 
Finally, this thesis provides the first test of newly developed, wearable optically-pumped 
magnetoencephalography (OP-MEG) in a social and cognitive task. The potential for OP-
MEG to revolutionise cognitive testing in real-world situations is hard to overstate. The 
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ability for participants to move freely whilst being scanned can enable testing of social 
phenomena that have so far been assessed only in contrived and artificial settings. 
Moreover, it is a useful clinical tool in populations who cannot remain still for extended 
periods of time, such as epileptic children and Parkinson’s patients. My research provides 
a global first in attempting to validate these tools for use in social-cognitive neuroscience 
more broadly and provides a much-needed critical assessment of their promise.
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1. General Introduction 

 

1.1 Consciousness 
 
‘Birdwatchers often keep a life list of all the species they have seen. Suppose you and I are 

birdwatchers, and we both hear a bird singing in the trees above our heads; I look up and say "I 

see it—do you?" You stare right where I am staring, and yet you say, truthfully, "No. I don't see 

it." I get to write this bird on my list; you do not, in spite of the fact that you may be morally certain 

that its image must have swum repeatedly across your foveae.  

 

…Presumably it's not sufficient for reflected light from the object merely to enter your eyes, but 

what further effect must the reflected light have — what further notice must your brain take of it 

— for the object to pass from the ranks of the merely unconsciously responded to into …  

conscious experience?’  

 

Daniel Dennett, Consciousness Explained, 1991, p. 336. 

 

When you walk through the forest, you are confronted by a tapestry of sensations. 

Through widened eyes you examine the overbearing canopy, the dappled light on the 

forest floor, and the looming presence of the trees. You feel a dull ache in your heels as 

you reach the end of your walk. You hear sounds from every angle: the rustle of the leaves 

underfoot, and the creaking of tree trunks as they wave in the breeze. You are not, 

however, aware that your brain is sending signals to warm your body after hours spent 

out in the cold. Nor do you experience, as Daniel Dennett writes above, the bird your 
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partner expertly points out to you, despite the fact you set your eyes on its supposed 

location.  

 

Why are we aware of the nexus of leaves and branches overhead, but remain 

unconscious of our own internal thermoregulatory processes? What difference is there 

between your partner’s brain activity, which generates the breathless experience of 

spotting a new bird, and the neural signals inside your own brain, elicited by the foveated 

bird that you fail to consciously perceive? These questions form the basis of the problem 

of consciousness, often called the “hard problem” (Chalmers, 1995), which asks how 

mindless, inert electrical signals in the brain can generate the rich perceptual experiences 

that characterise our mental lives. 

 

1.2 The Hard Problem and The Easy Problems 
 

The hard problem describes the difficulty in bridging the apparent “explanatory gap” 

between the objective, biological workings of the human brain and the subjective, 

ineffable qualities of our perceptual experiences, or consciousness (Chalmers, 1995). At 

first pass, it seems difficult to explain our subjective phenomenology in physiological 

terms. Recasting the sights, sounds, and emotions that comprise our inner lives in terms 

of action potentials, mutual inhibition, and synaptic transmission seems implausible, as if 

it were some kind of category error. When viewed in this light, the hard problem demands 

a grand solution: how could a run-of-the-mill, neuroscientific theory bridge the gap 

between two worlds as conceptually distinct as the objective and the subjective? Such 

solutions have of course been proffered. Dualist accounts of consciousness propose that 

psychophysical laws – which supplement the physical laws already described by modern 

physics – provide the missing ingredient to bridge the explanatory gap (Chalmers, 1995). 

Alternatively, panpsychists propose that consciousness is a fundamental feature of the 

physical world, such that any form of physical matter is conscious to some extent (Goff, 

2019; Strawson, 2016). 
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The trouble with these metaphysical accounts of consciousness is that they operate 

outside the realm of empirical science, and thus offer very little in our attempts to provide 

a scientific explanation of how conscious experiences are formed in the brain. A more 

promising avenue is to consider the “easy problems” of consciousness (Chalmers, 1995), 

originally defined as the tractable neuroscientific questions associated with perceptual 

experience that fall short of tackling the hard problem. The easy problems consist of 

phenomena such as visual detection, attentional focus, and reporting one’s mental states. 

If you favour the idea that consciousness will eventually submit to an entirely physical 

explanation, the hard problem of consciousness dissolves, and the easy problems are all 

that remain (Dennett, 1991; Frankish, 2019). In fact, for a physicalist, the only hard 

problem is explaining why we think there’s a problem of consciousness in the first place 

(Chalmers, 2018; Frankish, 2019).  

 

Tackling so-called easy problems has already advanced our understanding of the neural 

mechanisms underpinning perceptual experiences. Attention has been shown to alter the 

appearance of simple stimuli (Carrasco, 2018; Carrasco et al., 2004), confidence in the 

visual periphery can be systematically inflated (Knotts et al., 2020; Odegaard et al., 2018), 

and the neural correlates of mental imagery are now known to overlap with those for 

perception (Dijkstra et al., 2020; Pearson, 2019; Siclari et al., 2017). Admittedly, these 

findings relate to perception and not necessarily to consciousness per se. However, with 

an increased focus on how perceptual systems and their computations relate to 

phenomenological reports, this approach promises to be the most practical and efficient 

means towards revealing the physical basis of consciousness (Dennett, 1991; Seth, 

2021; Varela, 1996). All that would be left to explain is why these perceptual processes 

end up being described, by the experiencer, in experiential terms (Frankish, 2019) – a 

hard but empirically tractable problem. This approach bears parallels to 20th century 

biology. The fall of vitalism – the belief that life would not submit to physical explanation 

– came about once it was no longer doubted that physical mechanisms could support the 

varied functions of life (Chalmers, 1995). It was continued testing of empirically tractable 

problems in biology that eventually ended the scepticism surrounding the limits of physical 
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systems, and such an approach now provides the best empirical means towards 

elucidating the brain basis of conscious experience. 

 

1.3 Theories of Consciousness 
 

Although consciousness has long been subject to neuroscientific examination (LeDoux 

et al., 2020), the rise of neuroimaging techniques at the end of the 20th century led to a 

proliferation of novel theories explaining how perceptual experience might arise from 

brain activity (Seth & Bayne, 2022). 

 

Theoretical work on consciousness can generally be divided into two broad frameworks. 

The first consists of First-Order theories of consciousness. First-Order theories propose 

that certain kinds of perceptual representations are sufficient for a phenomenal 

experience to arise. For example, Recurrent Processing Theory stipulates that top-down 

feedback signals in sensory cortices are the primary determinant of conscious experience 

(Lamme, 2006; Lamme & Roelfsema, 2000). Meanwhile, Global Workspace Theory 

(GWT) proposes that representation in sensory cortices alone is not sufficient for a 

perceptual experience. Instead, Global Workspace theorists suggest that sensory 

representations must be broadcast to the brain’s many cognitive systems (e.g., attention, 

working memory, planning, action, etc.) before it can be experienced by an agent (Baars, 

1993; Dehaene et al., 1998; Dehaene & Changeux, 2011). In GWT, making information 

available to these domains is associated with late activity in frontoparietal brain regions – 

the so-called Global Workspace (Dehaene & Naccache, 2001; Mashour et al., 2020).  

 

Empirical support for GWT emerges mostly from contrastive analyses that compare 

experimental conditions where participants are aware of a stimulus with conditions where 

they are not. Such studies generally find that conscious perception is associated with 

activity in frontoparietal regions (Sadaghiani et al., 2009; Sanchez et al., 2020; Van Vugt 

et al., 2018) or at late time points with respect to stimulus presentation (Berkovitch et al., 

2018; Charles et al., 2014; Noel et al., 2019). Such qualities are even observed when 

participants are not required to report whether they’ve seen a stimulus or not 
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(Hatamimajoumerd et al., 2022; Sergent et al., 2021). Nevertheless, concerns remain 

with respect to GWT, including the conflation of subjective experience with information 

processing (Lau, 2022), the difficulty of dissociating consciousness and cognition in such 

research (Block, 2019), and observations of unconscious content being represented in 

frontoparietal regions (Mei et al., 2022). 

 

A second broad class of theories of consciousness are Higher-Order theories (HOT).  The 

core claim behind HOTs is that a first-order sensory representation is not on its own 

sufficient for a conscious experience. Instead, the representation must be subject to re-

representation or monitoring from a meta-level cognitive system (Brown et al., 2019; Lau 

& Rosenthal, 2011). This criterion follows from an intuitive understanding of what it means 

to be conscious: if a system is not aware of itself as having a particular percept, then that 

percept cannot be consciously experienced (Brown et al., 2019). Like GWT, HOTs rely 

on empirical data showing higher-order brain regions to be associated with awareness. 

In contrast to GWT, however, they place importance on cases where conscious and 

unconscious conditions exhibit the same level of task performance (Lau & Passingham, 

2006; Persaud et al., 2011; Rounis et al., 2010). Such data cannot be explained by GWT 

since GWT would predict that the frontal activity driving awareness should also improve 

task performance. Additional support comes from the close theoretical correspondence 

between metacognition and perceptual experience (Fleming, 2020; Lau, 2022) and 

related empirical work showing that metacognitive confidence judgements are largely 

computed from the detectability of different stimuli (Cortese et al., 2016; Peters et al., 

2017). There are several different HOTs, diverging from one another with respect to the 

character of the higher-order representations in play. ‘Rich’ HOTs propose that perceptual 

experience is supported by complete or near-complete re-representations of perceptual 

content, wherein the first-order content is recapitulated in detail in higher-order regions 

(Brown, 2015; Cleeremans et al., 2020). In contrast, ‘sparse’ HOTs suggest that higher-

order representations only encode the precision or reliability of first-order sensory 

representations (Fleming, 2020; Lau, 2019).  
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1.4 Clinical Approaches to Consciousness 
 

Empirical insights into the neural basis of consciousness have rightly influenced clinical 

settings where the presence of consciousness is doubted. Disorders of consciousness 

such as coma, minimally conscious states (MCS) and vegetative states (VS) are 

characterised by varying degrees of disruption to arousal and awareness of one’s 

environment (Giacino et al., 2014) and correctly determining which level of awareness a 

patient has can be difficult given the impaired behavioural and communicative function 

associated with these conditions (Giacino et al., 2018). This is exemplified by the high 

number of erroneous diagnoses made in such situations (approximately 40%; Schnakers 

et al., 2009). Critically, the diagnosis given to a patient suffering from a disorder of 

consciousness informs potential treatments and even end-of-life decisions (Arzi et al., 

2020; Thibaut et al., 2019) so it is ethically imperative that research surrounding the neural 

correlates of consciousness is used to inform and aid clinical decisions where doubt 

persists. 

 

The principal way in which cognitive research has aided clinical neuroscience is by putting 

forward candidate biomarkers of conscious awareness to assist in diagnoses when 

patient communication is limited. As discussed earlier, GWT identifies consciousness with 

late-stage activity in frontoparietal networks of the brain (Dehaene and Changeux, 2011; 

Mashour et al., 2020). In line with this, the presence of frontal activity in certain tasks can 

reliably distinguish healthy controls from unresponsive patients (Bekinschtein et al., 

2009). For instance, in tasks where individuals passively listen to a sequence of tones, 

local (within trial) irregularities elicit sensory activity in the auditory cortex of controls and 

patients alike, but detection of global (across trial) irregularities produced late 

electrophysiological responses around 400 ms after stimulus onset in healthy controls 

only (Bekinschtein et al., 2009; King et al., 2013). Late electrophysiological responses to 

global irregularities are thus one potential marker for consciousness that can be used in 

a clinical setting. In line with this, event-related potentials such as the P300, which occurs 

around 300 ms after stimulus onset, have been shown to effectively classify awareness 
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– as well as the capacity to regain awareness – during recovery from disorders of 

consciousness (Zhang et al., 2017).  

 

Aside from GWT-inspired electrophysiological markers, measures of informational 

complexity such as the perturbational complexity index (PCI) have also shown great 

promise in detecting consciousness in non-communicative patients (Casali et al., 2013; 

Casarotto et al., 2016). Inspired by complexity-based theories of consciousness (Tononi, 

2008; Tononi & Edelman, 1998), the PCI measures the mathematical complexity of the 

brain’s response to perturbation from transcranial magnetic stimulation. The PCI value 

can readily be interpreted as providing evidence for conscious awareness if it is above a 

particular value (Casali et al., 2013), meaning it can easily be incorporated into clinical 

decision-making when behavioural assays of consciousness are insufficient. The PCI 

results in over 90% sensitivity when detecting awareness in MCS and VS patients 

(Casarotto et al., 2016) and provides an extremely rapid test of the capacity for 

consciousness, long before behavioural responsiveness emerges after injury. 

 

Determining to what degree a patient is aware of themselves and their environment is 

vital in clinical settings, and as the above approaches make evident, the neuroscience of 

consciousness continues to contribute to this effort. However, the degree of 

consciousness is only one dimension of our perceptual experience (Bayne et al., 2016). 

An alternative aspect, which has received considerably less attention with respect to 

disorders of consciousness, is that of the content of consciousness. If PCI and GWT can 

determine which patients have the capacity for conscious experience, how can we tell 

what that experience is like for the patient? What exactly are they aware of? In patients 

with disorders of consciousness, it would be helpful to know whether interventions or 

therapeutic care make a difference to them, or whether they can experience the faces 

and voices of the clinicians and family members that they interact with. Such concerns 

also exist for neurological conditions that are not typically thought of as disorders of 

consciousness and, in this thesis, I will present analyses that raise the question of whether 

dementia, typically understood as a disorder of memory, may also be described as a 

disorder of consciousness. 
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1.5 Ecological Approaches to Consciousness 
 

Although the cognitive neuroscience of consciousness has impacted the clinical domain, 

its relevance to common, everyday perceptual experiences has been called into question 

(Mudrik et al., 2024). The experimental methods that pervade consciousness science rely 

on strictly controlled stimuli whilst employing artificial apparatus and scenarios that rarely 

occur outside the laboratory. A technique called binocular rivalry, where different images 

are simultaneously presented to each eye (Breese, 1909; Leopold & Logothetis, 1996), 

provides an illustrative example. To the participant, this procedure results in a percept of 

one of the two images which, after a delay of a few seconds (Kim et al., 2020), switches 

to the alternative image. Rather than experiencing a mixture of the two images, this 

dynamic switching between the two competing stimuli continues over time. This 

procedure is useful for examining perceptual experience because it fixes the visual input 

while enabling the subjective experience to change. However, experiences of rivalry 

rarely – if ever – occur in our day to day lives (Arnold, 2011), and if they do, they are 

seldom noticed (O’Shea, 2011). Since the perceptual states evoked by binocular rivalry 

(as well as those evoked by other popular techniques such as masking (Dehaene et al., 

1998) and continuous flash suppression (Tsuchiya & Koch, 2005)) can only be induced 

under highly artificial settings, it’s unclear how much they can tell us about perceptual 

experiences in the real world (Mudrik et al., 2024). Indeed, previously established 

phenomena from other cognitive domains are either diminished or abolished completely 

in naturalistic settings (primacy-recency in memory: Lee & Chen, 2022; Weber’s law in 

motor acts: Ozana & Ganel, 2019). 

 

Attempts to introduce ecological validity into tests of perceptual experience have already 

extended or nuanced findings from lab-based studies. When participants were asked to 

explore naturalistic videos in a virtual environment, they were unable to detect drastic 

changes to their visual scene (Cohen et al., 2020). Specifically, a significant minority of 

participants failed to detect a gradual change to grayscale in the periphery, even when 

only 10º of viewing angle remained coloured (Cohen et al., 2020). The use of virtual reality 

has thus revealed a gross inability to detect substantial changes to our visual scene, 
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outstripping the limits of change blindness previously found in computer studies where 

only single items were removed or modified (Levin & Simons, 1997). Other ecological 

procedures such as “real-life” continuous flash suppression (Korisky et al., 2019) have 

nuanced our understanding of the gating mechanisms that regulate entry into conscious 

awareness. Use of this novel technique has indicated that real life objects are easier to 

detect than 2D or physically-impossible versions of the same object (Korisky & Mudrik, 

2021; Suzuki et al., 2019), implying a role for affordances and agential interaction in the 

formation of perceptual experience.   

 

Experiments with high ecological validity may be especially important when testing 

theories of consciousness that centre social computations, such as Attention Schema 

Theory (AST; Graziano, 2013). AST unites both our subjective experience of the world 

and our ability to model and predict the minds of others under one core principle: the 

modelling of attention (Graziano, 2019). AST suggests that consciousness of the self and 

the environment stems from a schematic and detail-poor model of our own attentional 

mechanisms (i.e., an attention schema), which facilitates the control of attention 

(Graziano, 2013; Webb & Graziano, 2015). In many ways, AST is a variant of a HOT: it 

defines subjective awareness as the modelling of low-level attentional mechanisms by 

higher-order processes (Graziano, 2013; Webb and Graziano, 2015).1 Thus, the attention 

schema is an evolved, functional mechanism that allows simple and efficient control of 

our own attention, and in doing so has resulted in subjective and phenomenal experience. 

According to AST, however, attention schemata are equally fundamental to predicting the 

behaviour of other people (Graziano, 2019). If we can infer the attentional state of other 

individuals, so AST claims, we can make accurate predictions regarding their behaviour. 

Although not deemed identical, AST therefore suggests that the attributions of 

                                            
1 AST goes further than other HOTs, however, because not only does it describe the conditions necessary 
for conscious experience, but it also explains why higher order modelling should make experiences feel the 
way they do: ineffable and ethereal (Dennett, 1988). It is because the attention schema is abstracted away 
from physical properties like action potentials and lateral inhibition that it depicts something physically 
incoherent that resists description in physical terms (Webb and Graziano, 2015; Graziano, 2019). This 
provides a built-in solution to the question of why humans perceive there to be a hard problem (Chalmers, 
2018; Frankish, 2019) and is one of the theory’s great strengths. 
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consciousness to self and other are grounded in the same core mechanism of modelling 

attentional processes (Graziano, 2019; Kelly et al., 2014).  

 

There is empirical evidence in favour of a shared foundation uniting self-awareness and 

social cognition. Notably, transcranial magnetic stimulation to subject-specific regions of 

the right temporoparietal junction (rTPJ), which were activated in a task involving 

attribution of awareness to cartoon faces, also influenced performance in a detection task 

in the same participants (Kelly et al., 2014). Additionally, examples of ‘altercentric 

perception’ – where the presence of a partner’s attentional focus spontaneously impacts 

the perceptual experience of the subject – give credence to the idea that neural 

mechanisms devoted to perceptual experience and social cognition may overlap or 

interact with one another (Kampis & Southgate, 2020; Seow & Fleming, 2019). For 

example, in a task involving the identification of rotated letters, performance was 

facilitated if the letter was upright from the perspective of a task-irrelevant agent (Ward et 

al., 2019) and, in a separate experiment, the preference of subjects’ face-sensitive N170 

component to inverted (over upright) faces tracked a confederate’s perspective, rather 

than the subject’s (Böckler & Zwickel, 2013). These results indicate that not only do 

subjects spontaneously take the perspective of others, but their inference as to the 

content of the other’s perception becomes the input to their own perceptual system as 

well. 

 

The findings presented above evince an interaction between perceptual and social 

processes in the brain and reinforce calls for increased ecological validity in the 

neuroscience of consciousness. As a final, illustrative example, consider a recent study 

that reported the face-selective N170 component was abolished for real (vs. 2D) faces 

(Sagehorn et al., 2023). With this result in mind, previous descriptions of altercentric 

interference to the N170 in studies with 2D faces (Böckler and Zwickel, 2013) lose some 

of their explanatory power because it is not clear whether such results will generalise 

outside of artificial settings that do not frequently occur in naturalistic social situations. 

Following this logic, ecological approaches towards testing social and non-social aspects 

of perceptual experience are in need of development. Only then can we be confident that 
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our neural theories of perceptual experience extend to the kinds of experiences we most 

care to explain.  

 

1.6 Neural Magnitude Codes 
 

To construct accurate theories of perceptual experience, it is crucial to consider the neural 

architectures that govern cognitive processing more broadly, such that theories of 

consciousness do not operate outside the bounds of how we understand the brain to 

work. Predictive processing, for example, is a general theory of neural computation 

(Friston, 2009; Rao & Ballard, 1999), and not specifically a theory regarding conscious 

experience. However, embedding predictive processing mechanisms within theories of 

perceptual experience (e.g., Fleming, 2020; Whyte & Smith, 2021) ensures a grounded 

approach to studying the neural basis of consciousness, since it constrains ideas about 

how experience is generated to computational processes already hypothesised to occur 

throughout the brain (Hohwy & Seth, 2020). The neuroscience of consciousness can 

therefore benefit from ‘theory-neutral’ frameworks that can help operationalise abstract 

concepts into established neural or computational architectures. 

 

One organising principle that motivated work contained within this thesis is that of 

magnitude coding (Summerfield et al., 2020; Tsouli et al., 2021; Walsh, 2003). 

Magnitudes are values along a one-dimensional manifold, or line, that describe the 

relative position a stimulus occupies along that line. Numerosity is a characteristic 

magnitude domain, with numbers each having their place on a number line from small to 

large magnitudes (Dehaene et al., 1993; Dehaene et al., 1998; Nieder, 2016; Piazza et 

al., 2004). However, many other cognitive domains also rely on magnitude estimation, 

such as size (Harvey et al., 2015), reward (McNamee et al., 2013), brightness and 

loudness (Stevens & Marks, 1965), decision-making (Shenhav & Greene, 2010), and 

confidence judgements (Mazor et al., 2022). As with predictive processing, magnitude 

coding does not relate to consciousness directly, instead focusing on the neural 

architectures responsible for encoding magnitudes in the brain. However, predictions 

from theories of consciousness, particularly sparse higher-order theories (e.g., Fleming, 
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2020), pertain to the neural encoding of certain magnitudes and therefore naturally 

interface with magnitude coding systems. 

 

A core feature of magnitude coding architectures is the tuning of neural responses to 

specific magnitudes (Tsouli et al., 2021). In the same way that visual neurons are tuned 

to different orientations (Hubel & Wiesel, 1968) and motion directions (Dubner & Zeki, 

1971), neurons throughout the brain are selective for different numerical magnitudes 

(Nieder & Dehaene, 2009). Numerosity-selective neurons fire maximally when their 

preferred numerosity is presented and the firing rate decreases as the presented number 

shifts away from that preferred numerosity. To model this, their tuning curves are typically 

described using Gaussian functions on a logarithmic scale (Figure 1.1; Dehaene et al., 

1998; Tsouli et al., 2021). This coding scheme is emphasised in functional magnetic 

resonance imaging (fMRI) adaptation studies, where repeated presentations of a 

particular numerosity (adaptor) desensitise the fMRI response to that numerosity (Piazza 

et al., 2004). As the distance between the test numerosity and adaptor grows, this 

adaptation systematically decreases (Piazza et al., 2004). This is illustrative of a distance 

effect, where numerosities closer together in numerical space share overlapping tuning 

curves and are thus represented as closer together in the brain (Dehaene, 1998). fMRI 

adaptation, direct electrophysiological recordings, and population receptive field 

modelling have all converged on this architecture, revealing numerical magnitude codes 

across high-level visual (Harvey & Dumoulin, 2017; Paul et al., 2022), medial temporal 

(Kutter et al., 2018, 2023), parietal (Piazza et al., 2004; Harvey et al., 2013) and pre-

frontal regions of the brain (Nieder & Miller, 2003, 2004). 

 

Tuned neurons are not specific to numerical magnitudes or even vision itself. Single 

neurons have been shown to encode specific stimulus durations (Duysens et al., 1996), 

line length (Tudusciuc & Nieder, 2007), object size (Harvey et al., 2015), auditory event 

duration (He et al., 1997), and haptic numerosity (Hofstetter et al., 2021). The fact that 

this coding architecture is shared across domains and modalities has inspired 

suggestions that there may be domain-general magnitude coding systems in the brain, 

which efficiently encode quantities irrespective of what kind of quantity is being processed 
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Figure 1.1. Tuning curves for numerical magnitudes. Different neurons exhibit selectivity for 
different magnitudes. However, tuning curves for nearby numerosities overlap, meaning tuned 
neurons will remain responsive to the presentation of neighbouring numerosities. This leads to 
the so-called distance effect. Gaussian curves are used to model neurons’ tuning functions when 
numerical magnitude is on a logarithmic scale. 

 

(Walsh, 2003; Summerfield et al., 2020). Evidence for a domain general magnitude 

coding system is typically taken from behavioural and neuroimaging studies showing 

interference or interaction between different magnitude domains (Walsh, 2003). The 

SNARC (spatial-numerical association of response codes) effect, for example, describes 

behavioural cases where higher numerical magnitudes are associated with the right side 

of visual space (Dehaene et al., 1993), a robust interaction between number and space. 

Neuroimaging studies in support of domain generality have shown overlapping regions of 

activation across different numerical formats such as dot arrays and numerals (Eger et 

al., 2003; Piazza et al., 2007) or representational similarity across cognitive domains 

(Luyckx et al., 2018). However, the greater spatial resolution afforded by single cell 

recordings and high field fMRI rarely show evidence for format- or domain-general 

magnitude encoding, instead indicating anatomically overlapping but distinct quantity 
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representations (Eiselt & Nieder, 2016; Harvey et al., 2015; Hofstetter et al., 2021; Kutter 

et al., 2018). 

 

Sparse HOTs of consciousness, such as the Higher Order State Space (HOSS; Fleming, 

2020) and Perceptual Reality Monitoring (PRM; Lau, 2019), make predictions regarding 

the relevance of unidimensional magnitudes in the computational architecture supporting 

perceptual experience. Specifically, HOSS describes a higher-order monitoring system 

tracking the reliability or precision of perceptual states, which can be represented on a 

one-dimensional axis (Fleming, 2020). PRM, on the other hand, tracks the reliability of 

these perceptual signals in order to classify whether or not they correspond to external 

events (Lau, 2019). Given the prevalence of magnitude coding systems in the brain, it is 

natural to use features associated with these systems, such as distance effects and 

format-invariance, to test hypotheses related to the relevant aspects of sparse higher-

order theories of consciousness. In this way, magnitude coding provides a helpful 

framework within which to examine the neural correlates of perceptual experience. 

 

1.7 Measuring Neural Responses During Perceptual Experiences 
 

To examine the brain basis of perceptual experience, we must use tools that allow us 

access, either directly or indirectly, to the brain’s activity. Non-invasive neuroimaging 

techniques have granted researchers this capability and it is no coincidence that the 

emergence of tools such as positive emission tomography and fMRI in the late 20th 

century co-occurred with the rapid rise of neural theories of consciousness (Crick and 

Koch, 1990).  

 

fMRI is a fundamental technique in the field of cognitive neuroscience and a method used 

in Chapters 2 and 4 of this thesis. fMRI measures the blood-oxygen-level-dependent 

(BOLD) signal, an indirect measure of neural activity based on the differential level of 

oxygen supplied to the blood surrounding different brain regions. The logic goes that, if a 

particular area of the brain is more active, it will require a greater supply of oxygenated 

blood. The different magnetic properties of oxygenated and deoxygenated blood are 
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detectable using MRI and are therefore able to identify active brain regions during 

different perceptual experiences. Since the BOLD signal tracks the oxygenation of blood, 

it is sluggish in comparison to the neural activity it represents. As such, fMRI analyses 

are often limited by their lack of temporal sensitivity and are better suited to questions 

requiring high spatial resolution, since fMRI can typically resolve brain activity to voxels 

sized only a few millimetres cubed.  

 

For questions that require greater temporal resolution, magnetoencephalography (MEG) 

is often used. Using sensors placed around the scalp, MEG directly measures the 

magnetic fields caused by the electrical activity of neurons. This procedure enables brain 

activity to be recorded at millisecond precision, enabling delineation of the precise onset 

of sensory processes. However, MEG suffers from a lack of spatial sensitivity, due to both 

the relatively large distance from the sensors to the scalp and the ambiguity surrounding 

which neural sources contribute to sensor-level data. As such, MEG can often only make 

broad statements regarding the localisation of neural activity. In Chapters 2 and 3 of this 

thesis, I use MEG to answer different questions regarding the magnitude-related 

properties of perceptual experience. 

 

Together, fMRI and MEG have been central to the field of cognitive neuroscience. 

However, they both suffer from the same problem: ecological invalidity. In both modes of 

neuroimaging, participants are required to stay as still as possible: often movement of 

only a few millimetres introduces enough noise to render data unusable. The experience 

of lying or sitting down with restricted movement and interacting with a screen is not a 

valid model of real life, and, as I argued in Section 1.5, this limits the extent to which we 

can trust results from fMRI and MEG studies to generalise to real world experiences. One 

promising method to overcome this is optically-pumped MEG (OP-MEG; Brookes et al., 

2022). OP-MEG records the same magnetic fields as conventional MEG but does so 

without requiring superconducting coils and the associated helium cooling system 

(Tierney et al., 2019). The fact that OPM sensors need not rely on cumbersome cooling 

systems means they need not be fixed in place and can instead be attached to the scalps 

of participants (Boto et al., 2018). This brings the sensors to within a few millimetres of 
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the scalp, improving signal to noise ratio compared to conventional MEG, where the 

sensors are at best a few centimetres away (Boto et al., 2018). Perhaps more importantly, 

attaching sensors directly to participants’ heads means they are free to move whilst being 

scanned, since the sensors will move in tandem (Seymour et al., 2021). As illustrated in 

Chapter 5, this allows for the neural processes underlying real-world, ecological 

behaviours to be studied in a way that MEG and fMRI experiments do not permit. 

 

Finally, once participants have been scanned, there are still several different ways to 

analyse their neural data. More traditional analyses are univariate in nature, typically 

contrasting the average response of fMRI voxels or MEG sensors across different 

conditions. This approach allows for conclusions to be drawn regarding the brain regions 

that are more active in condition A vs. B, in the case of fMRI, or which time window or 

frequency band differentiates experimental conditions in MEG. Univariate analyses 

(Chapters 3, 4, and 5) are relatively simple and easy to interpret but because they address 

individual voxels or sensors in isolation they come at a cost of sensitivity (Haynes, 2015). 

Multivariate methods (Chapters 2, 3, and 4) were developed to overcome this exact issue 

(Haxby et al., 2001; Haynes & Rees, 2006). Multivariate methods, including decoding 

(Haxby et al., 2001) and representational similarity analysis (RSA; Kriegeskorte et al., 

2008), consider the covariance of activity occurring across voxels or sensors, rather than 

simply averaging over them. This increases power to detect differences in brain activity 

that may be distributed across different brain areas and allows us to reveal how particular 

mental contents are encoded in the brain (Haynes and Rees, 2006; Haynes, 2015).  

 

1.8 Thesis Outline 
 

This thesis describes various experiments pertaining to perceptual experience. In Chapter 

2, I re-analysed data from MEG (Andersen et al., 2016) and fMRI (Dijkstra et al., 2021) 

studies to test whether the neural code underlying reports of perceptual vividness are 

specific to the content of perception or whether they are content-invariant. This 

experiment was motivated by results mentioned in Section 1.6, which suggest magnitude 

codes in different cognitive domains, such as number, may be independent of the 
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presented perceptual format. It was also driven by sparse Higher-Order models of 

awareness, which predict the existence of content-invariant codes for phenomenal 

magnitude that monitor first-order neural signals. Using RSA and decoding analyses, I 

provide evidence for a content-invariant neural code for perceptual vividness, which 

extends throughout the visual, parietal, and frontal cortex. 

 

In Chapter 3, I characterise the neural representation of numerical absence, i.e., zero, as 

a means towards examining the explicit representation of absence predicted by certain 

HOTs. The number zero is a uniquely abstract number, and its cognitive appreciation 

shares several features with perceiving sensory absences. However, the representation 

of zero had yet to be studied in the human brain. By combining MEG, multivariate 

decoding, and source reconstruction, I reveal how zero is represented at the beginning 

of a neural number line in the posterior association cortex, and that representations of 

zero are shared across symbolic “0” and non-symbolic empty sets. This provides the first 

delineation of zero in the human brain and is a preliminary test of a shared representation 

between numerical absence and the perceptual experience of sensory absence.  

 

In Chapter 4, I explored whether patients suffering from dementia may exhibit differences 

in the content of their perceptual experience compared to healthy controls. By analysing 

the fMRI responses of patients and controls in a classic visual masking paradigm, I was 

able to characterise the neural responses associated with visual awareness. Decoding 

analyses revealed diminished neural correlates of consciousness in dementia patients 

across visual and frontoparietal regions. Taken together with findings associating 

frontoparietal activity with conscious awareness, I present evidence to suggest patients 

suffering from dementia may exhibit differences or degradations in perceptual 

experiences compared to healthy populations.  

 

Finally, in Chapter 5, I report a pilot study that aimed to develop a naturalistic perspective-

taking paradigm for use in OPMs. Throughout the course of this project, I transformed an 

established, computerised perspective-taking task into one involving real people in a 

naturalistic setting. Using time-frequency analyses and source reconstruction, I analysed 
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OP-MEG data from three subjects in an attempt to replicate findings from conventional 

MEG using a naturalistic task. I failed to reproduce previous findings pertaining to 

perspective taking, particularly in relation to the naturalistic condition. I interpret these null 

findings as potentially indicating a lack of power with a small sample, but also discuss 

whether OP-MEG systems may currently be insensitive to high-level cognitive effects. 

 

Overall, this thesis takes a varied approach to characterising the neural correlates of 

perceptual experience. It comprises theoretically motivated tests of awareness-related 

architectures, assessments of awareness in disease, and the evaluation of one promising 

methodology needed to address the lack of ecological validity in the neuroscience of 

consciousness.  
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2. Identifying content-invariant 
neural signatures of perceptual 
vividness 

 

2.1 Introduction 
 

Some experiences are more vivid than others. For example, seeing a bird on a clear day 

will be more vivid than seeing one on a foggy evening. Similarly, a car alarm outside your 

office can be very vivid until your attention is consumed by a task at work. The neural 

correlates of experience are therefore likely to involve some representation of the 

magnitude of perceptual vividness. While the neural basis of perceptual vividness is yet 

to be systematically characterised, neural codes for magnitude quantities in other 

cognitive domains, such as reward and numerosity, are better understood. Many neural 

magnitude codes exhibit a content-invariant component, where the magnitude property is 

represented independently of its sensory features (Chib et al., 2009; McNamee et al., 

2013; Piazza et al., 2007). For instance, the number “9” is represented as larger than the 

number “5”, regardless of whether we are comparing 9 vs. 5 apples, oranges, or 

saxophones. Here, I ask whether the magnitude properties of perceptual vividness are 

also invariant to stimulus content: i.e., is the difference in vividness between seeing a bird 

on a clear day compared to a foggy evening represented in a similar manner as the 

difference in vividness between hearing a car alarm when we are attending to it, 

compared to when are distracted? I investigate this question by testing the extent to which 

neural signatures associated with reports of perceptual vividness are independent of 

perceptual content. 
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Content-invariance is a well-established feature of several neural magnitude codes. In 

the orbitofrontal cortex, for example, common representations of reward magnitude are 

shared across vastly different reward identities (Chib et al., 2009; Howard et al., 2015; 

Klein-Flügge et al., 2013; McNamee et al., 2013; Padoa-Schioppa & Assad, 2006). 

Furthermore, presentation of the same numerosity elicits suppression effects across 

symbolic (Arabic numerals) and non-symbolic (dots) stimuli in the intraparietal lobe 

(Piazza et al., 2007), and multivariate cross-classification has revealed common 

representations of numerosity across symbolic and non-symbolic formats (Teichmann et 

al., 2018). There is also evidence that numerical and reward magnitudes (amongst 

others) are encoded in a domain-general manner where, for example, higher numbers 

are represented similarly to highly rewarding stimuli and lower numbers are represented 

similarly to stimuli with low reward values, indicating a shared neural system underpinning 

representations of magnitude in both domains (Luyckx et al., 2019; Summerfield et al., 

2020; Walsh, 2003).  

 

Given the evidence for content-invariant neural magnitude codes in other domains, it is 

intriguing to ask whether invariance to perceptual content is also a feature of the neural 

activity covarying with the magnitude of perceptual vividness. If perceptual vividness is 

only encoded in a content-specific manner, our experience of a stimulus such as a red 

circle may become vivid through the increased firing of neural populations representing 

this feature (Itti & Baldi, 2009; Figure 2.1, left). However, if neural activity covarying with 

perceptual vividness also contains a content-invariant component, we should be able to 

find neural signatures of vividness that are independent of those covarying with sensory 

features. The drivers of such content-invariant signals may include changes in attention, 

emotion, and other cognitive factors that surpass stimulus-specific salience, but 

nevertheless contribute to the vividness of experience (Morales, 2018, 2021) – an idea 

consistent with philosophical positions that distinguish the content of percepts from their 

‘force’ and ‘vivacity’ (Hume, 2000; Teng, 2022). As such, rather than being solely bound 

to content-specific representations, perceptual vividness might also covary with neural 

activity in a domain-general fashion, independently of stimulus content (Figure 2.1, right) 

(Levinson et al., 2021; Podvalny et al., 2019; Samaha et al., 2017; Sanchez et al., 2020).  
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Content-specific and content-invariant coding schemes should not be viewed as mutually 

exclusive. For instance, it is well-known that stimulus-driven aspects of perceptual 

salience such as stimulus contrast are reflected in modality-specific neural activity 

(Albrecht & Hamilton, 1982; Bartlett & Doty, 1974), and such properties in turn influence 

the subjective experience of vividness. Other studies have shown that activity in content-

specific brain areas is associated with changes in perceptual awareness, even when 

holding the stimulus constant (Boehler et al., 2008; Fisch et al., 2009; Moutoussis & Zeki, 

2002). Moreover, representations of magnitude in other domains such as reward or 

number often exhibit both content-specific and content-invariant components (Howard et 

al., 2015; McNamee et al., 2013; Teichmann et al., 2018). The present study aimed to 

investigate whether, beyond these content-specific codes, there is also evidence for 

content-invariant neural signatures of perceptual vividness 

 

To test whether the neural code for perceptual vividness exhibits a content-invariant 

component, I reanalysed both magnetoencephalography (MEG; Andersen et al., 2016) 

and functional magnetic resonance imaging (fMRI; Dijkstra et al., 2021) data to 

investigate how perceptual vividness is represented in the human brain. The difficulties 

in isolating pure correlates of vividness and awareness from co-varying neural signals 

(e.g. those related to arousal or performance) are well known, and I did not attempt to 

tackle these issues here (Aru et al., 2012; Lau, 2022). Instead, I sought to determine the 

representational structure of awareness and visibility reports about different stimulus 

contents, to ask whether neural signatures covarying with vividness did so in a content-

specific or content-invariant manner. To anticipate the results, I found evidence that 

neural representations of perceptual vividness generalize over stimulus content, exhibit 

a graded structure, and can be identified across visual, parietal, and frontal brain regions, 

consistent with signatures of magnitude codes in other cognitive domains. 
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2.2 Materials and Methods 
 

2.2.1 MEG Experiment 
 

To explore the structure and dynamics of abstract representations of awareness ratings, 

I re-analysed an MEG dataset previously acquired at Aarhus University (Andersen et al. 

2016). The data were recorded in a magnetically shielded room using an Elekta 

Figure 2.1. Hypothesised neural signatures of perceptual vividness. Left: Content-specific neural 
signatures associated with perceptual vividness. The subjective vividness of a red circle is associated with 
the strength of red circle-representing neurons (neuron A) while the vividness of a blue square is associated 
with the strength of blue square-representing neurons (neuron B). For example, as red circle-representing 
neurons increase their activity (top-left), the subjective percept of a red circle becomes more vivid. The neural 
signatures correlating with the vividness of red circles and blue squares are therefore different. Right: Content-
invariant neural signatures associated with perceptual vividness. The subjective vividness of both red circles 
and blue squares is associated with a common neural signature (i.e., the activity of neuron C), which tracks 
vividness over and above any stimulus-specific neural activity (i.e., neurons A and B). Attention, emotion, and 
other cognitive factors may drive a content-invariant neural signal of vividness. The hypothetical coding 
schemes represented here are not mutually exclusive, and it is possible that a combination of both schemes 
underpin the vividness of perceptual experience. 
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Neuromag Triux system with 102 magnetometers and 204 orthogonal planar 

gradiometers. Data were recorded at a frequency of 1000 Hz. 

 

2.2.1.1 Participants  
 

Nineteen participants took part in the experiment (Mean age = 26.6 years; SD = 4.4 

years). Two participants were excluded from the analyses: one for failing to complete the 

experiment and the other for not using the ‘almost clear experience’ rating at all (see 

procedure details below).   

 

2.2.1.2 Experimental Design and Statistical Analyses 
 

In order to obtain a range of awareness ratings from each subject, a visual masking 

paradigm was used (Figure 2.2A). First, a fixation cross was presented for either 500, 

1000, or 1500 ms, followed by a target stimulus for 33.3 ms. The target stimulus was 

either a square or a diamond presented in white/grey on a black (RGB value 0, 0, 0) 

background (Figure 2.2A). A static random noise mask followed the target and was 

presented for 2000 ms. Participants were required to identify the target during these 2000 

ms, before rating their awareness of the stimulus on the perceptual awareness scale 

(PAS). PAS consists of four possible responses: no experience (NE), weak glimpse (WG), 

almost clear experience (ACE), and clear experience (CE). Following identification of the 

target, participants reported their awareness of the stimulus. Participants pressed the 

upper button of a second response box (PAS response) to cycle through the different 

PAS categories. The lower button was then pressed to confirm the selection. The 

response boxes used for target identification and awareness report were swapped 

between hands every 36 trials to minimise lateralised motor responses contributing to 

MEG activity patterns. Additionally, the temporal sequence of responses offers protection 

against decoding preparatory motor signals when decoding awareness ratings, since 

participants were first required to report the stimulus identity. More details regarding the 

instructions given to participants about each PAS response can be found in Andersen et 

al. (2016). 
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The experiment consisted of one practice block and 11 experimental blocks, each with 

72 trials. A contrast staircase was used for the target stimuli in order to obtain a sufficient 

number of responses for each PAS rating. The staircase procedure had 26 contrast levels 

ranging from a contrast of 2% to 77%, with a step size of 3 percentage points. In the 

practice block and first experimental block, the staircase increased by 1 level if a 

participant made an incorrect judgement on the identification task, and decreased by 2 

levels if a participant made 2 successive correct identification judgements. For the 

remainder of the blocks, the staircase was adjusted based on which PAS rating the 

participant had used least throughout the experiment so far. Specifically, if NE had been 

used the least number of times throughout a block, 3 levels were subtracted after 2 

consecutive correct answers, and 1 added for a wrong answer. If WG was the least used 

response, 2 levels were subtracted and 1 added. For ACE, 1 level was subtracted and 2 

added. For CE, 1 level was subtracted and 3 added. This staircase procedure ensured a 

sufficient number of responses for each rating. 
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Figure 2.2. Experimental paradigms. A: Experimental paradigm for the MEG data collected by 
Andersen et al. (2016). First, a fixation cross was presented for 500, 1000 or 1500 ms. Then, 
either a square or a diamond was shown for 33.3 ms, followed by a static noise mask for 2000 
ms. While the mask was shown, participants reported the identity of the target. Finally, they 
reported their awareness of the stimulus using the PAS scale. B: Stimuli used in Andersen et al. 
(2016). C: Experimental paradigm for the fMRI data collected by Dijkstra et al. (2021). A stimulus 
was presented for 17 ms, followed by a 66 ms ISI and a 400 ms mask. Participants then indicated 
whether the stimulus was animate or inanimate, and finally rated the visibility of the stimulus on a 
four-point scale. D: Stimuli used in Dijkstra et al. (2021). 
2.2.1.3 Pre-processing 
 

MEG data were analysed using MATLAB 2019a and FieldTrip (Oostenveld et al., 2011). 

The data were pre-processed with a low pass filter at 100 Hz, as well as a Discrete Fourier 

Transform (DFT) and bandstop filters at 50 Hz and its harmonics. The data were split into 

epochs of -200 to 2000 ms around stimulus onset and down-sampled to 250 Hz. For 

baseline correction, for each trial, activity 200 ms prior to stimulus presentation was 

averaged per channel and subtracted from the entire epoch. During artefact rejection, 

trials with high variance were visually inspected and removed if they were judged to 

contain excessive artefacts. This procedure was performed blind to the experimental 

condition to avoid experimenter bias and was completed separately for the 

magnetometers and gradiometers in the Elekta Neuromag Triux system. Following 

artefact rejection the mean number of trials per PAS rating were as follows (numbers in 

brackets refer to standard deviations): No Experience: 180.35 (59.64); Weak Glimpse: 

168.10 (74.75); Almost Clear Experience: 186.35 (82.74); Clear Experience: 115.24 

(77.13). To further remove eye-movement artefacts, an independent components 

analysis was carried out on the MEG data, and the components with the highest 

correlation with each of the electro-oculographic (EOG) signals were discarded after 

visual inspection. Components showing topographic and temporal signatures typically 

associated with heart rate artefacts were also removed by eye.  

 

Since I re-analysed previously collected data, I was unable to fully control for neural 

signals that typically covary with awareness level. As such, to better characterise the 

contribution of these signals to ratings of awareness I created two additional analysis 

pipelines. First, to ensure the results were not entirely driven by the contrast level of the 

stimuli, I regressed stimulus contrast level on each trial out of the pre-processed MEG 
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data. Second, to investigate whether differences in pre-stimulus activity contributed to 

differences in perceptual visibility (Benwell et al., 2017; Podvalny et al., 2019; Samaha et 

al., 2017) I ran the data through the same pre-processing pipeline as above except for 

two adjustments: removing the baseline correction stage and lengthening the epochs to 

-450 ms to 2000 ms around stimulus presentation. The omission of baseline correction 

allows the analysis to be sensitive to differences in the pre-stimulus activity (in the offset 

or mean amplitude, for example) of trials associated with different awareness ratings 

which would otherwise be removed by baseline correction (the baseline correction 

procedure results in each trial’s pre-stimulus window having a mean activity of zero 

across all time points for each channel, such that my RSA (Representational Similarity 

Analysis) and decoding analyses would be unable to detect and characterise any pre-

stimulus contribution to visibility codes). 

 

2.2.1.4 Representational similarity analysis 
 

RSA allows one to directly compare bespoke hypotheses about the structure of neural 

data (Kriegeskorte & Kievit, 2013). In RSA, hypotheses are expressed as model 

representational dissimilarity matrices (RDMs), which define the predicted similarity of 

neural patterns between different conditions according to each hypothesis. Here, I defined 

4 model RDMs that make different predictions about whether or not awareness ratings 

generalise over perceptual content, and whether or not each rating leads to a graded 

activation pattern partially shared by neighbouring ratings (Figure 2.3A).  

 

In the Abstract-Graded RDM, I model awareness ratings as being independent of 

perceptual content (such that ratings of a clear experience of a square have an identical 

neural profile to those of a clear experience of a diamond), as well as being graded in 

nature (exhibiting a distance effect such that ratings of “no experience” are more similar 

to those of “weak glimpse”, than of “almost clear experience”). In the Specific-Graded 

RDM, awareness ratings are modelled as being graded in the same way, but they are 

now represented differently depending on which specific stimulus they are related to. 

Conversely, the Abstract-Discrete RDM represents PAS ratings as independent of 
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perceptual content but with no graded structure/distance effects (such that the neural 

code underpinning a report of “no experience” is equally (dis)similar to the neural code 

reflecting either a “weak glimpse” or a “clear experience”). Finally, the Specific-Discrete 

RDM reflects the null model, whereby there is no observable representational similarity 

structure among conditions, such that neural patterns reflecting one specific awareness 

rating are equally dissimilar to all other awareness ratings.  

  

RSA involves the comparison of the model RDMs with empirical RDMs constructed from 

neural data. To do this, I first ran a linear regression on the MEG data with dummy coded 

predictors for each of the eight conditions (Square trials: NE, WG, ACE, CE; Diamond 

trials: NE, WG, ACE, CE; trial condition coded with a 1, alternative classes coded with a 

0). This resulted in coefficient weights for each condition at each time point and sensor, 

with the weights representing the neural response per condition, averaged over trials. I 

then computed the Pearson distance between each pair of condition weights over 

sensors, resulting in an 8 x 8 neural RDM reflecting the similarity of neural patterns across 

different awareness ratings and stimulus types (Luyckx et al., 2019). Neural RDMs were 

subsequently smoothed over time via convolution with a 60 ms uniform kernel. 

 

I then compared this neural RDM with the model RDMs. To compare model RDMs with 

the neural RDM, I correlated the lower triangle of the model and neural RDMs using 

Kendall’s Tau rank correlation (Nili et al., 2014). I performed this procedure at every time 

point, resulting in a correlation value at each time point for each model. Importantly, I only 

correlated the lower triangle of the RDMs, excluding the diagonal to avoid spurious 

correlations driven by the increased similarity of on-diagonal values compared to off-

diagonal values (Ritchie et al., 2017). This precluded me from directly testing the Specific-

Discrete model, since it is represented by a uniform RDM, and as such would give 

identical rank correlation values regardless of the neural RDM it was compared to. 

However, since this RDM reflects the null model (i.e. that there is no observable 

representational structure amongst awareness ratings), this model is implicitly compared 

with the other model RDMs when I examine whether the correlation of these model RDMs 

with the neural RDM is greater than 0. 



- 39 - 
 

One concern with this approach is that the graded hypotheses may win due to the neural 

data itself being noisy. In other words, if the neural correlates of ratings are not cleanly 

dissociable, there will be greater overlap between all ratings in the empirical RDM, 

including those of close neighbours. To ensure I did not obtain spuriously high similarity 

with the Abstract-Graded model in virtue of this model’s low-frequency content, I 

performed a shuffling and blending procedure. This procedure involved shuffling the lower 

triangle of the Abstract-Discrete RDM before apportioning neighbours of the four 

(shuffled) high correlation cells with graded amounts of correlation. Correlation was 

blurred most to immediate neighbours, and less to diagonal neighbours, matching the 

format of the graded RDMs (Figure 2.3D). I ran this procedure 1000 times per subject, 

resulting in 1000 Shuffled-Discrete and 1000 Shuffled-Graded RDMs. I compared all 

shuffled-discrete and shuffled-graded RDMs with subjects’ neural data at each time point. 

Finally, I took the average correlation value for each time point across all permutations 

such that I had a Kendall’s Tau value for both the Shuffled-Discrete and Shuffled-Graded 

RDMs across time per subject. Through this approach, I was able to compare neural data 

with RDMs that shared no representational similarity with the Abstract-Graded RDM while 

controlling for differences in variance and frequency profile.  

 

2.2.1.5 Within-subject multivariate decoding analysis 
 

To support and extend conclusions drawn from the RSA analyses, I ran an exploratory 

analysis using temporal generalisation methods (King & Dehaene, 2014) to identify 

content-invariant and graded representations of awareness ratings while also 

investigating the stability of these representations over time. In this procedure, a separate 

classifier is trained on each time point (from 200 ms pre-stimulus to 2000 ms post-

stimulus) and tested on all other time points. This method results in a time-by-time 

decoding accuracy matrix indicating the extent to which neural representations are stable 

over time. Above chance decoding at a particular point in the decoding matrix indicates 

that neural representations present at the training and testing time points are similar, 

whilst chance decoding indicates the representations have changed.  
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I ran the above temporal generalisation analysis using both a within-condition and cross-

condition decoding procedure.  Within-condition decoding involved training and testing 

the decoder to classify PAS ratings on trials from one stimulus type (either squares or 

diamonds). In cross-condition decoding, I trained on trials from one stimulus type and 

tested on trials from the other (e.g. trained on square trials and tested on diamond trials, 

and vice-versa). In both cases, I used a 5-fold cross validation scheme, with a balanced 

number of trials per class within each fold. Cross-condition decoding, where a classifier 

trained to decode multivariate neural patterns in one class of stimuli is tested on an 

unseen class of stimuli, offers an empirical test of whether the neural patterns associated 

with each class share a similar neural code across conditions (Albers et al., 2013; 

Bernardi et al., 2020; Dijkstra et al., 2018). This analysis therefore complements the RDM 

analysis in being able to test for content-invariant perceptual visibility codes, while also 

providing information about their stability over time. I performed all multiclass decoding 

analyses with a multiclass Linear Discriminant Analysis (LDA) decoder using the MVPA-

light toolbox (Treder, 2020) with FieldTrip. Each of the four PAS ratings served as classes 

for the decoder to classify trials into. I used L1-regularisation of the covariance matrix, 

with the shrinkage parameter calculated automatically using the Ledoit-Wolf formula 

within each training fold (Ledoit & Wolf, 2004a). 

 

It is important to note that cross-validation is not technically necessary during cross-

condition decoding because the test data is never seen by the classifier during training, 

so there is no risk of overfitting. However, I employed a cross-validation scheme for all 

the decoders so that differences in their performance would not be due to differences in 

training procedures (e.g. number of trials in the training or test set). Data was smoothed 

over 7 samples (28ms) and classification analysis was run on individual time points 

throughout the whole trial to characterise the temporal dynamics of the representations (-

200 to 2000 ms post-stimulus).  

 

2.2.1.6 Stimulus decoding 
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One difficulty with interpreting a content-invariant representation of perceptual visibility is 

that it may reflect a lack of power to detect content-specific differences between 

conditions (e.g. square vs. diamond). To control for this possibility, I sought to ensure that 

the resolution of the data was sufficiently fine-grained to pick up differences in the neural 

encoding of different stimuli. To do this, I applied a binary decoding procedure using a 

binary LDA decoder with the same classification parameters as above. In this analysis, 

the two stimulus types (squares and diamonds) were used as classes for the decoder to 

classify trials into. For this analysis I grouped trials into low (NE and WG) and high visibility 

(ACE and CE) trials to ensure sufficient power, performing the decoding analysis 

separately in each group. Once again, data were smoothed over 7 samples (28ms) and 

analysed on individual time points throughout the whole trial (-200 to 2000 ms post-

stimulus). 

 

2.2.1.7 Statistical Inference  
 

To determine whether the RSA and decoding results were statistically significant, I used 

cluster-based permutation testing (Maris & Oostenveld, 2007) with 1000 permutations. 

For RSA, within each permutation I flipped the sign of each ranked correlation value at 

each time point for each participant and performed a one-sample t-test against 0. 

Resulting t-values associated with a p-value smaller than 0.05 were used to form clusters 

across the single time dimension. For each cluster, an associated cluster statistic was 

computed, the largest of which was stored per permutation to build a group-level null 

distribution. The cluster statistic computed from the observed data was then compared to 

this chance distribution to determine statistical significance with an alpha level of 0.05. 

This procedure controls for the multiple comparisons problem by only performing one 

comparison at the inference stage and specifically tests the null hypothesis that the 

observed data are exchangeable with data from the permuted (null) distribution (Maris & 

Oostenveld, 2007). I used the same cluster-based permutation procedure to compare 

how well different model RDMs predicted the neural data. In this case, I performed paired-

comparisons where ranked correlation values per RDM were randomly swapped within 

subjects per permutation to build up a group-level null distribution. 
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For decoding results, I used the same cluster-forming parameters, but this time randomly 

flipped the sign of individual subjects’ accuracy scores per permutation to build up a 

group-level null distribution. Additionally, I formed clusters over both time dimensions of 

the temporal generalisation matrices. I used the same cluster-based permutation 

procedure to compare performance between cross-condition and within-condition 

decoders.  

 

It is important to note that the cluster-based permutation testing procedure does not allow 

for inference as to the exact time points at which neural representations come into 

existence. This is because the algorithm does not consider individual time points at the 

statistical inference stage, since at this point it only relies on cluster statistics, which 

encompass multiple time points (Sassenhagen & Draschkow, 2019). Still, as I am not 

interested in the precise onset of content-invariant representations of awareness ratings 

but rather their general temporal profile, this method is sufficient for my purposes. 

 

2.2.2 fMRI experiment 
 

To help localise representations of perceptual visibility in the brain, I re-analysed a 

previously collected fMRI dataset (Dijkstra et al., 2021). It is worth noting that, while 

source-space decoding in MEG is certainly possible (Andersen et al., 2016; Sandberg et 

al., 2013), fMRI is much better suited to answering this question at a fine spatial scale, 

especially as I wish to compare the (potentially fine-grained) differences and similarities 

in regional activity covarying with perceptual content and/or visibility. 

 

2.2.2.1 Participants 
 

Thirty-seven participants took part in the study. Eight participants were excluded from the 

analyses. One was excluded because they quit the experiment early, and another 

because they failed to follow task instructions. The final six subjects were excluded 

because they did not have at least 10 trials in each visibility rating class after the grouping 
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procedure (see Within-subject multivariate searchlight decoding analysis below). Twenty-

nine subjects were thus included in the final analyses (mean age = 25.35; SD = 6.31). 

 

2.2.2.2 Stimuli 
 

The stimuli used were taken from the POPORO stimulus data set (Kovalenko et al., 2012). 

The stimuli selected were a rooster, a fish, a watering can, and a football (Figure 2.2D), 

and were selected based on familiarity and visual difference to maximise classification 

performance as well as both accuracy and visibility scores calculated in a pilot experiment 

run by Dijkstra et al. (2021). The mask was created by randomly scrambling the pixel 

values of all stimuli combined (Figure 2.2C). 

 

2.2.2.3 Experimental Design and Statistical Analyses 
 

The experiment consisted of two tasks: a perception task and an imagery task. Each of 

these tasks were executed in interleaved blocks and were counterbalanced across 

participants. The re-analysis used data only from the perception task and thus I omit 

details of the imagery component of the study. The perception task ran as follows. A 

stimulus was presented for 17 ms, followed by a backward mask for 400 ms. Participants 

then indicated whether the stimulus was animate or inanimate and rated the visibility of 

the stimulus on a scale from 1 (not visible at all) to 4 (perfectly clear). For both the 

discrimination and visibility decisions, button response mappings were randomised 

across trials, thus preventing preparatory motor responses from contaminating the neural 

signals of interest. The task was made up of visible and invisible trials. The difference 

between these trials was the length of the interstimulus interval (ISI) between the stimulus 

and the mask. In the visible trials the ISI was 66 ms, and in the invisible trials the ISI was 

0 ms. In the present study, I only analysed data from invisible trials (Figure 2.2C) because 

these were associated with the variation in the visibility ratings that I am interested in. 

Choosing to focus on a single ISI also means that differences in visibility ratings were not 

driven by differences in stimulus presentation characteristics. There were 184 trials in 

total, with 46 repetitions per stimulus divided over 4 blocks. More detailed information 

regarding the study protocol can be found in (Dijkstra et al., 2021).  
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2.2.2.4 Acquisition 
 

fMRI data were recorded on a Siemens 3T Skyra scanner with a Multiband 6 sequence 

(TR: 1 s; voxel size: 2 x 2 x 2 mm; TE: 34 ms) and a 32-channel head coil. The tilt of each 

participant’s field of view was controlled using Siemens AutoAlign Head software, such 

that each participant had the same tilt relative to their head position. T1-weighted 

structural images (MPRAGE; voxel size: 1 x 1 x 1 mm; TR: 2.3 s) were also acquired for 

each participant. 

 

2.2.2.5 Preprocessing 
 

Data were pre-processed using SPM12. Motion correction (realignment) was performed 

on all functional imaging data before co-registration to the T1 structural scan. The scans 

were then normalised to MNI space using DARTEL normalisation and smoothed with a 6 

mm Gaussian kernel, which has been shown to improve group-level decoding accuracy 

(Gardumi et al., 2016; Hendriks et al., 2017; Misaki et al., 2013). Slow signal drift was 

removed using a high pass filter of 128s.  
 

2.2.2.6 General Linear Model 
 

Coefficient weights were estimated per trial with a general linear model that contained a 

separate regressor for each trial at the onset of the stimulus convolved with the canonical 

HRF. Alongside nuisance regressors (average WM and CFG signals and motion 

parameters), the screen onset and button press of both the animacy and visibility 

responses were included as regressors, as well as a constant value per run to control for 

changes in mean signal amplitude across runs. 

 

2.2.2.7 Within-subject multivariate searchlight decoding analysis 
 

For decoding the fMRI data, I binarized the visibility ratings into low and high visibility 

classes. This is because in contrast to the MEG experiment, visibility was not staircased 
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per-participant, leading to a large number of participants failing to have enough trials at 

each of the four visibility ratings in both animate and inanimate trials. Because training a 

decoder on such a small number of trials would yield unreliable and noisy results, trials 

were therefore sorted into low visibility and high visibility classes on a subject-by-subject 

basis prior to analysis. This was performed as follows. The median visibility rating (from 

1 to 4) was extracted from each subject and trials with a lower visibility rating than the 

median were classed as low visibility trials, and those with visibility ratings equal to or 

greater than the median were classed as high visibility trials. This procedure allowed me 

to control for the fact that different subjects had different distributions of visibility ratings, 

such that the lower 1 and 2 ratings did not always correspond to low visibility trials, and 

likewise the higher 3 and 4 ratings did not always correspond to high visibility trials. For 

instance, one subject may have used visibility ratings 2 and 3 in around 50% of trials, 

rating 4 on the other 50%, and not used rating 1 at all. In this case, I would label ratings 

2 and 3 as low visibility, and rating 4 as high visibility. 

 

Trials were next grouped according to whether they contained an animate or inanimate 

stimulus. For each participant, if there were less than 10 trials in either the low or high 

visibility class for either the animate or inanimate trials, the participant was removed. This 

was the case for 6 participants. The mean number of trials per condition following this 

procedure were as follows (numbers in brackets denote the standard deviation): animate-

high visibility: 63.48 (11.34); animate-low visibility: 25.31 (10.38); inanimate-high visibility: 

61.10 (12.24); inanimate-low visibility: 28.86 (11.48).  

 

I used an LDA classifier on the beta estimates per trial to decode low and high visibility 

ratings within and across animate/inanimate stimulus conditions. Cross-condition 

decoding was performed by training the LDA classifier on low versus high visibility ratings 

in animate trials and then testing it on low versus high visibility ratings in inanimate trials, 

and vice versa. Cross-condition decoding was performed with the same logic as in the 

MEG analysis: if I train a classifier to decode visibility ratings in animate trials and use this 

classifier to successfully decode visibility ratings in inanimate trials, I can conclude the 

representations of visibility ratings are similar across different perceptual content. Once 
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again, I also performed within-condition decoding, where the classifier was trained on low 

versus high ratings in one condition (e.g., animate trials), and tested on trials in the same 

condition allow a direct comparison of within- and across-condition decoding 

performance. This comparison allowed me to determine where content-specific 

representations of perceptual visibility may exist in the brain. Decoding was performed 

with a 5-fold cross validation scheme using L1 regularisation with a shrinkage parameter 

of 0.2, and, similar to the MEG analysis, cross-validation was used for both within-

condition and cross-condition decoding. Trials were down-sampled prior to decoding, 

such that there was an equal number of low and high visibility trials in each fold. To ensure 

that the data were sensitive enough to show content-specific codes, I additionally ran a 

similar analysis that sought to decode stimulus content (animate or inanimate) rather than 

visibility. This analysis was similar in structure except the classifier was trained to decode 

animate vs. inanimate trials rather than visibility level. 

 

Decoding was performed using a searchlight method. Searchlights had a radius of 4 

voxels (257 voxels per searchlight). As such, at every searchlight the classifier was 

trained on 257 features (one beta estimate for each voxel in the searchlight) for each trial 

in every fold. The searchlights moved through the brain according to the centre voxel, 

meaning that each voxel was entered into multiple searchlights. After decoding in each 

searchlight, the accuracy of the classifier was averaged across folds and this value was 

stored at the centre of the searchlight to produce a brain map of decoding accuracy. 

 

2.2.2.8 Stimulus decoding in fMRI Regions of Interest (ROI) 
 

As in the MEG analysis, I again wished to establish that findings of content-invariant 

awareness representations were not due to an inability to decode content itself. I tested 

whether I could decode perceptual content within two ROIs with successful visibility 

decoding from the searchlight results. To do this, I created two masks, one visual and 

one frontal, and then selected the 200 voxels within this mask that had the highest mean 

visibility decoding accuracy averaged across all four decoding directions (within animate; 

within inanimate; train animate-test inanimate; train inanimate-test animate). For the 
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frontal mask I used a connectivity-based parcellation of the orbitofrontal cingulate cortex 

that spanned frontal regions with successful visibility decoding. These were regions 8m 

(x, y, z peak voxel coordinates per hemisphere LH: -14.6, 33.8, 43.3; RH: 13.5, 32.3, 44) 

and 32d (LH: -8.7, 37.5, 23.4; RH: 12.7, 40.4, 17.5) (Neubert et al., 2015). The visual 

mask spanned an area with successful visibility decoding in occipital regions VO1 (LH: -

27.1, -70.9, -11.3; RH: 27.5, -69.5, -10.6), VO2 (LH: -25.6, -64.3, -10.6; RH: 26.7, -59.9, 

-9.1), PHC1 (LH: -27.1, -54, -8.3; RH: 28.3, -53.2, -8.3), and PHC2 (LH: -28.6, -45.9, -8.3; 

RH: 29, -43.7, -9.8) (L. Wang et al., 2015). Coordinates for the clusters obtained within 

each ROI can be found in Supplementary Table 2.1. Using the 200 ROI voxels as 

features, I decoded animate (rooster and fish) versus inanimate (watering can and 

football) stimuli in low and high visibility trials separately using the same 5-fold cross 

validation procedure and LDA parameters as above, down-sampling trials prior to 

decoding to ensure an equal number of animate and inanimate trials in each fold. 

 

2.2.2.9 Group-level statistical inference  
 

Distributions of accuracy values from classification of fMRI data are often non-Gaussian 

and asymmetric around chance level. This means that parametric statistical comparisons, 

such as t-tests against chance decoding (50%), are unable to provide valid tests of 

whether group-level accuracy values are significant (Stelzer et al., 2013). Therefore, to 

determine where classifiers had performed significantly above chance, I compared mean 

performance across all participants with a null distribution created by first permuting the 

class labels 25 times prior to decoding per participant and then using bootstrapping to 

form a group-level null distribution of 10,000 bootstrapping samples (Stelzer et al., 2013). 

I did this separately for each decoding direction (within: train and test on animate; train 

and test on inanimate; cross: train on animate, test on inanimate; train on inanimate, test 

on animate). To perform statistical inference on an average cross-decoding map created 

by averaging the two cross-condition decoding directions, this average map was 

compared to a group-level null distribution formed by averaging the two null distributions 

created for the two separate maps. To compare within-condition and cross-condition 

classification performance, a group-level null distribution was formed by taking the 
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difference between cross and within decoding scores throughout the bootstrapping 

procedure. To control for multiple comparisons in the searchlight analysis, resulting p 

values were subsequently corrected for multiple comparisons with a false discovery rate 

of 0.01. 

 

2.3 Results 
 

2.3.1 Representational structure of perceptual visibility in whole-brain MEG 

data 
 
I used RSA to test whether perceptual visibility levels (PAS ratings) correlated with MEG 

activity patterns independently of perceptual content (Abstract RDMs) or together with 

perceptual content (Specific RDMs). I additionally tested whether neural activity patterns 

covaried with visibility levels in a graded or discrete manner (Figure 2.3A). A model 

instantiating graded and abstract representations of awareness ratings significantly 

predicted the neural data throughout most of the post-stimulus period (purple line; Figure 
2.3B). In contrast, a model with an abstract but discrete representational structure was 

able to predict the neural data only in an early phase of the trial between approximately 

100 to 500 milliseconds after stimulus onset (green line). Paired comparisons between 

these two models showed that the Abstract-Graded model was significantly better at 

predicting the neural data than the Abstract-Discrete model throughout the majority of the 

trial (purple and green dots). The Specific-Graded model did not significantly predict the 

neural data at any point during the trial (gold line), and likewise the Abstract-Graded 

model was found to be significantly better at predicting the neural data than the Specific-

Graded model in a direct comparison (purple and yellow dots), indicating that an abstract 

model of awareness ratings better described their neural representation. In line with this, 

multidimensional scaling of awareness ratings revealed a principal dimension encoding 

vividness that was shared by both square and triangle stimuli (Figure 2.3C). To assess 

the spatial distribution of Abstract-Graded signals across sensors, I repeated the analysis 

for frontal and occipital sensors separately (following Hu et al., 2018), finding similar 
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results in each case (Supplementary Figure 2.1). These results indicate that neural 

correlates of perceptual visibility generalise over perceptual content and exhibit distance 

effects, indicative of neural populations tuned to specific degrees of visibility with 

overlapping tuning curves.  

 

To ensure that the neural data did not exhibit spuriously high similarity with the Abstract-

Graded model in virtue of its increased variance and reduced frequency when compared 

to the Abstract-Discrete and Specific models, I performed a shuffling and blending control 

analysis (Figure 2.3D). This procedure revealed no significant prediction of the neural 

data for either the shuffled-discrete or shuffled-graded RDMs (Figure 2.3E). As such, 

RDMs with frequency and variance profiles matching that of the Abstract-Graded RDM, 

but without any relationship with awareness ratings, were not able to significantly predict 

neural data, in contrast to the Abstract-Graded model that captures the graded and 

content-invariant structure of awareness ratings. To additionally control for the possible 

influence of stimulus contrast on the RDM results, I confirmed that similar results were 

obtained when regressing out the linear component of contrast (Supplementary Figure 
2.2). It is possible that nonlinear or multivariate effects of contrast may have still driven 

some of my findings. Indeed, whilst we see a clear linear trend from no experience to 

clear experience across the first dimension in the original data, this dimension is 

somewhat compressed following the removal of the linear component of stimulus 

contrast. Along this compressed dimension, higher ends of the scale are represented 

more similarly than those at the lower end. This is potentially in line with a Weber scaling 

law in the neural representation of perceptual vividness, as also found for other magnitude 

codes (e.g. the ‘size effect’ in numerical cognition), and also hints at a role for stimulus 

contrast in driving some of the difference between CE and ACE in the original analysis. 

However, even after removing potentially confounding effects of stimulus contrast, the 

difference in perceptual vividness between NE, WG and ACE/CE is clearly distinguished 

in Supplementary Figure 2.3B. 
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To further characterize the graded representational structure of perceptual visibility, I 

computed confusion matrices between each rating and its neighbours. By plotting the 

proportion of predictions for each awareness rating made by the multiclass classifier 

separately for trials of each rating, I can visualise when the decoder makes mistakes, and 

which PAS ratings it most often confuses (Supplementary Figure 2.4). These confusion 

plots confirm the distance effects identified with the RSA model comparison, in which 

neighbouring PAS ratings are most often confused with each other by the classifier, and 

more distant ratings less so, suggesting that visibility is represented in a graded, ordinal 

manner. 

 

Finally, I asked whether the model RDMs could also predict pre-stimulus neural activity. 

If a graded, abstract structure for perceptual visibility is already evident prior to stimulus 

presentation, this would be indicative of trial-to-trial fluctuations in attention or arousal 

contributing to my ability to decode content-invariant visibility signals. Interpreting (a lack 

Figure 2.3. Neural representations of perceptual visibility are abstract and graded. A: From 
left to right: Abstract-Graded model where neural correlates of awareness ratings are independent 
of perceptual content and follow a graded structure; Abstract-Independent model where awareness 
ratings are independent of perceptual content but do not follow a graded structure; Specific-Graded 
model where  awareness ratings are specific to the perceptual content to which they relate and 
follow a graded structure; Specific-Discrete (Null hypothesis) model where there is no observable 
representational structure amongst awareness ratings (PAS ratings, NE: No Experience, WG: 
Weak Glimpse, ACE: Almost Clear Experience, CE: Clear Experience). B: RSA reveals that the 
Abstract-Graded model was the best predictor of the representational structure of neural patterns 
in whole-brain sensor-level MEG data. Solid horizontal lines represent time points significantly 
different from 0 for a specific RDM at p <.05, corrected for multiple comparisons. Horizontal dots 
denote statistically significant paired comparisons between the different models at p <.05, corrected 
for multiple comparisons. I obtained similar findings across occipital (Supplementary Figure 2.1A) 
and frontal (Supplementary Figure 2.1B) sensors separately, as well as in datasets with stimulus 
contrast level regressed out (Supplementary Figure 2.2) and without baseline correction 
(Supplementary Figure 2.5). We also examined the pattern of classifier mistakes during cross-
stimulus decoding, again revealing distance-like effects in perceptual visibility decoding 
(Supplementary Figure 2.4). C: Shuffling and blending procedure. This analysis was performed 
to control for naturally occurring low-frequency content in neural data. D: Results from both shuffled 
models reflect the average Kendall’s Tau over 1000 shuffling permutations. Purple, red, and blue 
lines represent similarity of the Abstract-Graded, shuffled-discrete, and shuffled-graded models 
respectively with neural data. The shuffled-discrete line varies only slightly from 0 and is thus hard 
to see. The Abstract-Graded model is the only model under consideration that significantly 
predicted the neural data. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 2.5). I also examined the pattern of classifier mistakes during cross-
stimulus decoding, again revealing distance-like effects in perceptual visibility decoding 
(Supplementary Figure 2.4). C: Shuffling and blending procedure. This analysis was 
performed to control for naturally occurring low-frequency content in neural data. D: Results 
from both shuffled models reflect the average Kendall’s Tau over 1000 shuffling 
permutations. Purple, red, and blue lines represent similarity of the Abstract-Graded, 
shuffled-discrete, and shuffled-graded models respectively with neural data. The shuffled-
discrete line varies only slightly from 0 and is thus hard to see. The Abstract-Graded model 
is the only model under consideration that significantly predicted the neural data. 
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of) pre-stimulus decoding from the previous RSA analyses is confounded by the baseline 

correction procedure applied during pre-processing. To address this issue, I re-ran my 

analysis on data that had not been baseline corrected. I found that pre-stimulus activity 

was not captured by any of the candidate RDMs, and that stimulus-triggered responses 

continued to show the same graded/abstract pattern of results as in the initial analysis 

(Supplementary Figure 2.5). Together these results indicate that pre-trial fluctuations in 

attention and/or arousal are unlikely to drive my results. 

 

2.3.2 Temporal profile of perceptual visibility codes 
 

Next, I performed a temporal generalisation analysis to further unpack the content-

invariant nature of neural signatures of perceptual visibility and to characterize how and 

whether their patterns change from timepoint to timepoint. Off-diagonal panels in Figure 
2.4 (top right and bottom left) depict temporal generalisation matrices for both directions 

of cross-condition decoding (top-right: train on squares-test on diamonds; bottom-left: 

train on diamonds-test on squares). Within these panels, above-chance decoding on the 

major diagonal indicates that representations of visibility begin to show content-invariance 

from just after stimulus onset up until the moment of report. Contrasting cross-condition 

decoding with within-condition decoding resulted in no significant differences in decoding 

accuracy for either comparison (train on squares, test on diamonds vs. within squares: all 

p > 0.89; train on diamonds, test on squares vs. within diamonds: all p > 0.4). In other 

words, I did not find any evidence that there was content-specific visibility information 

available over and above content-invariant information. Furthermore, the lack of off-

diagonal decoding in each temporal generalisation matrix indicates that the format of 

content-invariant neural signatures of visibility change rapidly over time.  

 

I again replicated this analysis in a dataset that had not undergone baseline correction to 

test whether activity contributing to participants’ awareness ratings could be decoded 

prior to stimulus presentation. In line with the RSA analysis on this dataset, I could not 

decode awareness ratings prior to stimulus presentation when data had not been 

baseline-corrected (Supplementary Figure 2.6). 
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2.3.3 Content-invariant representations of visibility are found across visual, 

parietal, and frontal cortex 
 

To localise brain regions supporting content-invariant representations of perceptual 

visibility, I re-analysed an existing fMRI dataset (Dijkstra et al., 2021). I used a searchlight 

approach to identify brain regions that represent perceptual visibility in an abstract 

manner. Both cross-condition and within-condition decoding resulted in above chance 

accuracy in a number of regions across the visual, parietal, and frontal cortex (Figure 

Figure 2.4. Abstract representations of perceptual visibility evolve rapidly over time. 
Temporal generalisation results for the classification of PAS ratings from MEG data (4 PAS 
responses; chance = 0.25). For each row, statistical comparisons between the two columns 
showed no significant differences in decoding accuracy between within- and cross-condition 
decoding. Non-translucent regions within solid lines highlight above chance decoding, as 
revealed by cluster-based permutation tests. I replicated these findings in non-baseline-
corrected data (Supplementary Figure 2.6). 
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2.5). To assess whether these representations of perceptual visibility were stimulus-

dependent, I compared cross-condition decoding to within-condition decoding in both 

animate and inanimate trials (training on animate trials vs. within animate trials; training 

on inanimate trials vs. within inanimate trials) and found no significant differences. In other 

words, I could find no evidence that stimulus-specific visibility information was present 

over and above stimulus-invariant visibility information. See Supplementary Table 2.2 

for details of the clusters found to be significantly above chance in both cross-condition 

and within-condition decoding analyses. 

 

2.3.4 Stimulus content can be decoded from both MEG and fMRI data 
 

I next considered the possibility that a content-invariant neural signature of visibility may 

be obtained because of insufficient sensitivity to perceptual content in the dataset. To 

address this, I sought to decode stimulus identity, rather than visibility level. Stimulus 

decoding was above chance in both datasets for high visibility trials. In the MEG data, I 

was able to decode stimulus identity (square vs. diamond) in trials in which participants 

used the upper two PAS ratings (ACE/CE), but not when participants used the lower two 

PAS ratings (NE/WG; Figure 2.6A). Similarly, in the fMRI data, the decoding of animate 

vs. inanimate stimuli was significantly above chance in a visual cortical ROI during trials 

reported as high visibility (mean accuracy = 0.52; p = 0.007) but not in trials reported as 

low visibility (mean accuracy = 0.496; p = 0.655; Figure 2.6B). It was not possible to 

decode stimulus content from a frontal cortical ROI in either low (mean accuracy = 0.5; p 

= 0.406) or high visibility trials (mean accuracy = 0.507; p = 0.159). Together, these 

analyses indicate that stimulus content could be reliably decoded in posterior visual 

regions. 
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2.3.5 Stimulus Content and Visibility are Encoded in Dissociable Brain 

Regions 
 

To further probe the relationship between neural signatures of content and visibility, I ran 

a searchlight decoding procedure to decode animate versus inanimate stimuli in the fMRI 

data. Since content could only be decoded in high visibility trials in the ROI analysis 

(Figure 2.6B), I restricted the analysis to these trials. I then compared the overlap 

between the content-decoding searchlight and the content-invariant visibility searchlight 

maps. To do this I computed mean content cross-decoding accuracy averaged over the 

Figure 2.5. Abstract representations of perceptual visibility are found across visual, 
parietal, and frontal cortex. Searchlight decoding in fMRI data revealed significantly above-
chance accuracy in both cross-condition (off-diagonal cells of matrix) and within-condition (on-
diagonal cells) in decoding of visibility ratings. Clusters of successful cross-condition decoding 
were found across the frontal, parietal, and visual cortex. The statistical comparison of cross and 
within-condition decoding accuracy (comparing the on- and off-diagonal statistical maps) revealed 
no significant differences anywhere in the brain. Significance was assessed at p < .05, corrected 
for multiple comparisons with an FDR of 0.01. Clusters are reported in Supplementary Table 2.2. 
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two cross-decoding directions (train on animate, test on inanimate; train on inanimate, 

test on animate) prior to group-level inference (see Methods).  

 

Overall, there was minimal overlap between representations of content and visibility 

(Figure 2.6C).  Despite overlapping clusters being obtained in the superior and inferior 

lateral occipital cortex (see Supplementary Table 2.3 for full list of individual and 

overlapping clusters), clear anatomical distinctions in occipital regions can be seen 

between representations of stimulus content and visibility, with the former being decoded 

from more lateral regions of the occipital cortex, while the latter was decoded closer to 

the medial surface (Figure 2.6C, Supplementary Table 2.3). Fewer clusters of above-

chance stimulus content decoding were found in frontal regions, whereas content-

invariant representations of visibility were more abundant in these areas 

(Hatamimajoumerd et al., 2022). Distinct decoding patterns for content and visibility 

representations further strengthens the notion that content-invariant representations of 

visibility exist partly independently of perceptual content, even in regions typically 

associated with the encoding of stimulus content such as the visual cortex (Kamitani & 

Tong, 2005; Kriegeskorte et al., 2008; Mazor et al., 2022). 

 

2.4 Discussion 
 
In this study I asked whether perceptual vividness covaries with neural activity patterns 

in a content-specific and/or content-invariant manner. By applying multivariate analyses 

to MEG and fMRI datasets in which participants rated their awareness of visual stimuli, I 

found that the vividness of experience is represented in a similar way across different 

stimulus contents and exhibits signatures of an ordered and graded magnitude code. 

Furthermore, neural representations of perceptual vividness were found to change rapidly 

over time and were localized to visual, parietal, and frontal cortices.   
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Figure 2.6 Perceptual content can be decoded in high visibility trials and shows distinct 
representations to visibility. A: Decoding of perceptual content on each trial (squares or 
diamonds) from participants’ whole-brain sensor-level MEG data for low visibility (NE and WG) 
and high visibility (ACE and CE) trials separately. Successful decoding was possible in high 
visibility trials up to approximately 700ms post-stimulus onset. Lines are smoothed using a 
Gaussian-weighted moving average with a window of 20 ms. Shaded area denotes 95% 
confidence intervals. The solid horizontal line reflects above-chance decoding, as revealed by 
cluster-based permutation tests. B: Decoding of perceptual content on each trial (animate or 
inanimate) from participants’ fMRI data for low visibility and high visibility trials separately. 
Decoding was successful in a visual ROI in high but not low visibility trials, and unsuccessful in a 
frontal ROI. Asterisks denote significance at p < .01. Error bars illustrate 95% confidence intervals. 
C: Searchlight decoding accuracy for content decoding in high visibility trials (blue) and for 
content-invariant visibility decoding (red). Clusters illustrate areas where content or content-
invariant visibility could be decoded significantly above chance. Content-invariant representations 
of visibility were more widespread than content representations and extended into the prefrontal 
cortex, whereas both content and visibility could be decoded in distinct locations of the visual 
cortex. Significance was assessed at p < .05, corrected for multiple comparisons with an FDR of 
0.01. Clusters are reported in Supplementary Table 2.3. 
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The identification of content-invariant representations of perceptual vividness is in line 

with recent work highlighting a dissociation between neural correlates of awareness and 

perceptual content. For example, Sanchez et al. (2020) found neural patterns that 

indicated whether an individual was aware of a stimulus or not, irrespective of which 

sensory modality it was presented in. Likewise, Mazor et al. (2022) reported that, while 

stimulus identity was best decoded from occipital regions, perceptual visibility (stimulus 

presence vs. absence) could be effectively decoded from a wider range of areas including 

the parietal and frontal cortex. Notably, a recent study also found that graded changes in 

perceptual vividness could be reliably decoded from the prefrontal cortex, even in the 

absence of report, consistent with a contribution to the vividness of experience 

(Hatamimajoumerd et al., 2022). Whilst I do not claim that representations of vividness 

are solely content-invariant, I build on these findings by showing that neural signals 

underlying graded awareness ratings – ranging from the absence of an experience of 

particular content, to a clear and vivid experience – exhibit a content-invariant neural 

signature. 

 

Content invariant representations of vividness may also provide a new understanding of 

the mechanisms supporting intensity-matching in psychophysical tasks. For example, 

studies of cross-modal intensity matching have demonstrated that subjects can reliably 

match intensities across sensory domains (Marks et al., 1986, 1988; Stevens & Marks, 

1965), and even provide some evidence for absolute equivalences between intensities in 

different modalities (Marks et al., 1986). Success in such tasks could be mediated by 

some form of common currency for intensity that is modality-invariant. My findings offer a 

potential neural framework within which to explain this capacity. Specifically, if the 

intensity of an experience is mapped onto a low-dimensional and content-invariant neural 

code for vividness, it should be possible to leverage this representation to reliably match 

the intensity of stimuli across sensory modalities. This is the essence of ‘mapping theory’ 

(Krantz, 1972), and could be directly tested by combining intensity-matching 

psychophysical methods with neuroimaging to examine the degree to which 

psychophysical estimates of cross-modal magnitudes rely on the same low dimensional 

neural manifolds associated with vividness observed here. 
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Although I find evidence for content-invariant signals underlying perceptual vividness, the 

mechanism by which these signals influence vividness remains to be determined. One 

candidate mechanism may be the top-down modulation of content-specific 

representations, driven by content-invariant attention signals. For example, fluctuations 

in the (content-invariant) degree of attention may increase the perceived contrast of 

stimuli (Carrasco et al., 2000, 2004), perhaps through the modulation of content-specific 

neuronal responses. In line with this model, there may be multiple components to a neural 

representation of perceptual vividness: content-invariant signals that are associated with 

the degree of attention or other domain-general factors, and content-specific 

representations modulated by such attentional signals. Such a model neatly exemplifies 

how content-invariant and content-specific neural signatures may together contribute to 

the subjective experience of perceptual vividness. Indeed, on this view, content-specific 

modulations may be subtle compared to changes in abstract representations determining 

the degree of attention, which could in turn explain why the content-specific vividness 

model did not provide a good fit to the neural data. 

 

The finding that neural representations of awareness ratings display a distance effect is 

suggestive of perceptual vividness relying on similar schemes to those encoding 

magnitude in other domains such as number. Specifically, my results are consistent with 

the possibility that distributed populations of neurons are tuned to specific phenomenal 

magnitudes, in the same way that specific populations of neurons are sensitive to certain 

numerical magnitudes (Harvey et al., 2013; Kutter et al., 2018; Piazza et al., 2004). Such 

a prediction could be tested through repetition suppression experiments (Piazza et al., 

2004), and/or by collecting single-unit recordings from human patients while they provide 

subjective awareness ratings (Pereira et al., 2021). A variety of analogue magnitudes 

have been shown to rely on common magnitude representations (Luyckx et al., 2019; 

Pinel et al., 2004; Yallak & Balcı, 2021), prompting a hypothesis that domain-general 

representations are responsible for encoding low-dimensional quantities in the brain 

(Summerfield et al., 2020; Walsh, 2003). Therefore, an intriguing possibility is that 

perceptual vividness is supported by similar domain-general magnitude codes. Future 

work could explore this hypothesis by assessing whether representations of vividness 
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share neural resources with other analogue magnitude codes such as those for reward 

or number (Luyckx et al., 2019).  

 

The existence of stimulus-independent representations of perceptual vividness in visual 

cortical areas was unexpected, since these areas have been shown to distinguish 

stimulus features rather than subjective vividness in previous studies (Kamitani & Tong, 

2005; Kriegeskorte et al., 2008; Mazor et al., 2022). One concern is that neural 

representations of vividness ratings as revealed by decoding analyses may look similar 

across stimuli if content-specific information encoded in separate neural populations is 

treated as belonging to the same population (i.e. within the same voxel). Successful 

cross-stimulus decoding of vividness ratings could then occur by way of decoding the 

amplitude of (content-specific) neural responses in these voxels (Fisch et al., 2009; 

Moutoussis & Zeki, 2002). As a step towards addressing this concern, I show that 

stimulus-specific decoding remains possible specifically in visual areas on high- (but not 

low) visibility trials, suggesting that the content-invariant nature of perceptual vividness 

signals in this region is not due to a lack of power to detect stimulus-specific effects. 

Moreover, I show anatomical distinctions between content and visibility encoding, again 

indicating that the unexpected above-chance decoding of visibility in the visual cortex is 

unlikely to be an artefact of a failure to detect content-specific representations.  

 

Another possibility is that content-invariant signals of perceptual vividness in visual cortex 

reflect pre-stimulus activations that have been shown to contribute to participants’ 

awareness level in previous studies (Podvalny et al., 2019). Here I could not identify pre-

stimulus contributions to visibility codes in the MEG data, supporting a hypothesis that 

the content-invariant and graded representations I report here are largely stimulus-

triggered. As such my results suggest that the content-invariant signals related to 

awareness level in the current data are partly distinct to those reported by Podvalny et al. 

in temporal profile. In any case, it is worth noting that fluctuations in (pre- or post-stimulus) 

attention and arousal affecting the intensity of experience (as well as other psychological 

factors such as emotional state or motivation) may provide domain-general sources of 

perceptual vividness signals.  
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By applying temporal generalisation analysis to the MEG data, I was able to reveal the 

dynamics of vividness representations over time. This analysis indicated that neural 

patterns covarying with perceptual vividness are unstable, changing during the course of 

a trial, consistent with a sequence of different neural populations correlating with 

awareness level over time (King & Dehaene, 2014). Given that I find that vividness is 

tracked across a variety of cortical regions, such a rapidly changing temporal profile may 

reflect dynamic message passing between distinct neural populations, consistent with the 

reverberation of predictions and prediction errors in hierarchical generative models. 

Future work to directly test this hypothesis could leverage informational connectivity 

analyses (e.g. Seeliger et al., 2021) to determine the direction of information flow across 

interacting brain regions, or use RSA to combine M/EEG and fMRI data collected using 

the same task and stimuli (Cichy et al., 2014). 

 

In summary, I show that perceptual vividness covaries with content-invariant neural 

representations that exhibit graded distance effects similar to those observed for 

analogue magnitude codes in other cognitive domains. These representations are 

spatially distributed and rapidly evolve over time, consistent with the flow of awareness-

related information across the visual, parietal, and frontal cortices. This pattern of results 

adds to growing evidence for a content-invariant neural component contributing to the 

strength of conscious experience. 
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2.5 Supplementary Materials 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2.1. Awareness Ratings Show Similar Representational Structure 
Across Occipital and Frontal Sensors. RSA analysis performed over occipital sensors (top) and 
frontal sensors (bottom) only. Purple, green, and gold lines represent similarity of the Abstract-Graded, 
Abstract-Discrete, and Specific-Graded models respectively with neural data. Solid horizontal lines 
represent time points significantly different from 0 for a specific RDM at p <.05, corrected for multiple 
comparisons. The Abstract-Graded model significantly predicted the neural data throughout the 
majority of the trial (purple line) across frontal sensors, and for a shorter duration when analysis was 
restricted occipital sensors only. The Abstract-Discrete model was only successful at predicting the 
neural data across two clusters of time-points post-stimulus when using occipital sensors, but was a 
significant predictor of neural data for larger portions of the epoch when using frontal sensors. The 
Specific-Graded model did not significantly predict the neural data at any time point in frontal or 
occipital sensors. Horizontal dots denote statistically significant paired comparisons between the 
different models at p <.05, corrected for multiple comparisons. Across frontal sensors, the Abstract-
Graded model was a significantly better predictor of the neural data than the Specific-Graded model, 
and likewise across the occipital sensors, both abstract models significantly outperformed the Specific-
Graded model. In this split-sensor analysis, the Abstract-Graded model did not significantly outperform 
the Abstract-Specific model, however there was a noticeable trend in the same direction as in the RSA 
performed across all sensors, where the difference in performance was significant (Figure 2.3B). 
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Supplementary Figure 2.2 RSA on MEG data with stimulus contrast level regressed out. 
When stimulus contrast level was regressed out of the MEG data, an RSA still produced 
comparable results to the original analysis. The Abstract-Graded model still predicted the neural 
data better than either alternative model. Solid horizontal lines represent time points significantly 
different from 0 for a specific RDM at p <.05, corrected for multiple comparisons. Horizontal dots 
denote statistically significant paired comparisons between the different models at p <.05, 
corrected for multiple comparisons. 
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Supplementary Figure 2.3 Multidimensional scaling of neural activity covarying with 
awareness reports. A: Prior to stimulus contrast being regressed from the data, MEG activity 
covarying with awareness reports exhibit a linear trend from No Experience to Clear Experience 
along the first dimension, which tracks perceptual vividness. B: Following the removal of the linear 
component of stimulus contrast, the dimension which tracks perceptual vividness becomes 
compressed at the higher end, with ratings of “clear experience” (CE) and “almost clear 
experience” (ACE) becoming less distinct. Red squares illustrate ratings for squares, and blue 
diamonds illustrate ratings for diamonds. Data are averaged over the 100ms – 1000ms post-
stimulus time window.  
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Supplementary Figure 2.4 Cross-decoding shows the graded nature of the PAS scale. For each 
cross-condition decoder (A: Train on Squares; B: Train on Diamonds), the four sub-plots illustrate 
the proportion of PAS ratings the classifiers decoded trials as. The subplots correspond to trials 
where the true PAS rating reported by subjects were (from left to right) ‘No Experience’, ‘Weak 
Glimpse’, ‘Almost Clear Experience’, and ‘Clear Experience’. Each coloured line represents the 
proportion of trials classified as each PAS rating across time. For example, in trials where 
participants reported No Experience, the majority of trials were classified correctly (blue line), with 
the classifier most often misclassifying these ‘No Experience’ trials as ‘Weak Glimpse’ ratings 
(orange line), and rarely misclassifying them as ‘Almost Clear Experience’ or ‘Clear Experience’ 
trials (gold and purple lines, respectively). Shaded areas represent 95% confidence intervals. 
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Supplementary Figure 2.5 RSA analysis for MEG data without baseline correction. None of the 
model RDMs significantly predicted pre-stimulus activity in non-baseline-corrected data. Instead, 
the predominant neural signature was stimulus triggered, as in the main analysis (Figure 2.3B), 
with the Abstract-Graded model being the best predictor of neural representations of phenomenal 
magnitude. 
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Supplementary Figure 2.6 Temporal Generalisation matrices for MEG decoding analyses 
on data without baseline-correction. For each row, statistical comparisons between the two 
columns showed no significant differences in decoding accuracy between within and cross-
condition decoding. Pre-stimulus decoding of awareness ratings was not possible, even when 
data had not been baseline-corrected. 
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Supplementary Table 2.1 Clusters within both the visual and frontal regions of interest. 
Used for fMRI ROI decoding analyses. Clusters smaller than 5 voxels not shown. 

 

Decoding Type Atlas Label Cluster Size 
(voxels) 

MNI 
Coordinates of 

maximum 
accuracy 

Maximum 
accuracy 

Cross (train 
animate) 

Postcentral 
Gyrus 

23,838 -46, -36, 54 0.593 

Cross (train 
animate) 

Temporal 
Fusiform Cortex 

474 -31.5, -36.1, -
25.8 

0.567 

Cross (train 
animate) 

Paracingulate 
Gyrus 

192 -8, 44, -6 0.563 

Cross (train 
animate) 

Frontal Orbital 
Cortex 

168 -30, 34, -10 0.570 

Cross (train 
animate) 

Cingulate Gyrus, 
posterior division 

109 4, -44, 10 0.563 

Cross (train 
animate) 

Occipital Pole 89 -22, -96, 2 0.562 

ROI Cluster Size 
(Number of Voxels) 

MNI coordinates of Central Voxel 
(X, Y, Z) 

Visual 52 -21.9 -68 -15.7 
 

Visual 51 -19.7 -82 -20.1 
 

Visual 33 -35.9 -84.2 -20.1 
 

Visual 19 -41.8 -54 -23.8 
 

Visual 5 26 -85.7 -20.1 
 

Frontal 60 -4.2 30.1 32.2 
 

Frontal 51 -4.2 38.2 18.2 
 

Frontal 44 8.3 26.7 35.9 
 

Frontal 10 -21.9 32.3 38.1 
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Cross (train 
animate) 

Frontal Pole 75 32, 36, -10 0.561 

Cross (train 
animate) 

Temporal 
Occipital 

Fusiform Cortex 

59 20, -52, -18 0.566 

Cross (train 
animate) 

Lingual Gyrus 56 10, -38, -6 0.555 

Cross (train 
animate) 

Left Cerebral 
White Matter 

56 -22, -38, 8 0.566 

Cross (train 
inanimate) 

Supramarginal 
Gyrus, anterior 

division 

23,564 -54, -36, 30 0.593 

Cross (train 
inanimate) 

Subcallosal 
Cortex 

512 5.85, 10.6, -6.63 0.575 

Cross (train 
inanimate) 

Left Caudate 176 -10, 2, 16 0.575 

Cross (train 
inanimate) 

Middle Temporal 
Gyrus, posterior 

division 

166 -52, -42, -2 0.585 

Cross (train 
inanimate) 

Frontal Orbital 
Cortex 

152 -32, 36, -12 0.570 

Cross (train 
inanimate) 

Left 
Hippocampus 

106 -20, -16, -14 0.567 

Cross (train 
inanimate) 

Central 
Opercular 

Cortex 

100 38, 0, 18 0.571 

Cross (train 
inanimate) 

Frontal Pole 78 22, 42, -12 0.565 

Cross (train 
inanimate) 

Insular Cortex 71 -38, -20, -4 0.564 

Cross (train 
inanimate) 

Lateral Occipital 
Cortex, superior 

division 

62 32, -88, 14 0.555 
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Within (animate) Cingulate Gyrus, 
anterior division 

49,130 -2, 36, 20 0.616 

Within 
(inanimate) 

Postcentral 
Gyrus 

32,710 62, -8, 18 0.601 

Within 
(inanimate) 

Right Caudate 79 18, 10, 16 0.565 

 

Supplementary Table 2.2 fMRI Searchlight Decoding Results. Clusters with above chance 
decoding of perceptual visibility for both cross-condition and within-condition decoding. Clusters 
are significant at p < .05, corrected for multiple comparisons with an FDR of 0.01. Region names 
are found for the peak co-ordinate using the Harvard-Oxford Cortical and Subcortical Structural 
Atlas. 

 
Decoding Type Atlas Label Cluster Size 

(voxels) 
MNI 

Coordinates of 
maximum 
accuracy 

Maximum 
accuracy 

Content Inferior Lateral 
Occipital Cortex 

2768 -48, -70, -8 0.572 

Content Cerebellum 2150 0, -48, -10 0.558 

Content Inferior Frontal 
Gyrus 

1837 -52, 32, 6 0.556 

Content Superior Lateral 
Occipital Cortex 

919 -40, - 58, 54 0.557 

Content Superior Lateral 
Occipital Cortex 

907 -8, -64, 60 0.554 

Content Angular Gyrus 735 44, -52, 20 0.557 

Content Superior Parietal 
Lobule 

626 20, -44, 62 0.548 

Content Frontal Orbital 
Cortex 

375 38, 24, -2 0.557 
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Content Paracingulate 
Cyrus 

371 -6, 26, 34 0.547 

Content Inferior Frontal 
Gyrus 

356 46, 20, 20 0.563 

Content Superior Frontal 
Gyrus 

209 16, 24, 58 0.546 

Content Frontal Pole 201 -24, 42, 44 0.546 

Content Superior 
Temporal Gyrus 

192 -54, -2, -10 0.549 

Content Postcentral 
Gyrus 

189 -62, -22, 38 0.547 

Content Posterior 
Cingulate Gyrus 

178 -8, -26, 44 0.547 

Content Left Cerebral 
White Matter 

133 6, -24, 16 0.544 

Content Cerebellum 98 34, -64, -40 0.547 

Content Superior Lateral 
Occipital Cortex 

76 20, -66, 46 0.553 

Content Anterior 
Cingulate Gyrus 

74 6, -4, 40 0.551 

Content Parietal 
Operculum 

Cortex 

56 44, -32, 20 0.546 

Content Precentral Gyrus 52 44, -16, 58 0.542 

Mean Cross-
Condition 
Visibility 

Precentral Gyrus 16,638 -50, 8 32 0.584 
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Mean Cross-
Condition 
Visibility 

Postcentral 
Gyrus 

2863 -50, -30, 48 0.58 

Mean Cross-
Condition 
Visibility 

Right 
Accumbens 

278 10, 14, -6 0.561 

Mean Cross-
Condition 
Visibility 

Left Cerebral 
White Matter 

167 -16, 0, 16 0.568 

Mean Cross-
Condition 
Visibility 

Frontal Medial 
Cortex 

166 -4, 48, -10 0.555 

Mean Cross-
Condition 
Visibility 

Middle Temporal 
Gyrus 

150 -52, -42, -2 0.556 

Mean Cross-
Condition 
Visibility 

Central 
Opercular 

Cortex 

138 -36, -10, 18 0.563 

Mean Cross-
Condition 
Visibility 

Frontal Orbital 
Cortex 

133 32, 28, 2 0.556 

Mean Cross-
Condition 
Visibility 

Occipital 
Fusiform Gyrus 

116 14, -84, -22 0.557 

Mean Cross-
Condition 
Visibility 

Cerebellum 103 -28, -42, -34 0.559 

Mean Cross-
Condition 
Visibility 

Frontal Orbital 
Cortex 

95 -36, 36, -10 0.563 

Mean Cross-
Condition 
Visibility 

Temporal 
Occipital 

Fusiform Cortex 

91 -40, -62, -24 0.554 

Mean Cross-
Condition 
Visibility 

Inferior Lateral 
Occipital Cortex 

58 42, -80, 4 0.553 

Mean Cross-
Condition 
Visibility 

Frontal Pole 58 22, 38, -12 0.557 

Mean Cross-
Condition 
Visibility 

Occipital Pole 56 12, -90, -2 0.557 
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Mean Cross-
Condition 
Visibility 

Superior 
Precentral Gyrus 

53 26, -12, 52 0.552 

Visibility and 
Content Overlap 

Cerebellum 1587 -6, -82, -32 N/A 

Visibility and 
Content Overlap 

Frontal Orbital 
Cortex 

1521 -28, 16, -24 N/A 

Visibility and 
Content Overlap 

Superior Lateral 
Occipital Cortex 

782 -32, -74, 20 N/A 

Visibility and 
Content Overlap 

Precuneous 
Cortex 

474 -14, -58, 18 N/A 

Visibility and 
Content Overlap 

Inferior Lateral 
Occipital Cortex 

412 46, -68, -10 N/A 

Visibility and 
Content Overlap 

Supramarginal 
Gyrus 

383 64, -28, 34 N/A 

Visibility and 
Content Overlap 

Frontal Pole 339 40, 36, 12 N/A 

Visibility and 
Content Overlap 

Cingulate Gyrus 315 0, 36, 16 N/A 

Visibility and 
Content Overlap 

Frontal Orbital 
Cortex 

213 36, 22, -14 N/A 

Visibility and 
Content Overlap 

Middle Frontal 
Gyrus 

181 -24, 36, 32 N/A 

Visibility and 
Content Overlap 

Posterior 
Cingulate Gyrus 

156 -4, -30, 36 N/A 

Visibility and 
Content Overlap 

Middle Frontal 
Gyrus 

147 24, 28, 34 N/A 

Visibility and 
Content Overlap 

Right Cerebral 
Cortex 

145 20, 2, -14 N/A 
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Visibility and 
Content Overlap 

Cerebellum 115 26, -58, -26 N/A 

Visibility and 
Content Overlap 

Cerebellum 111 -24, -36, -38 N/A 

Visibility and 
Content Overlap 

Superior Parietal 
Lobule 

107 34, -50, 36 N/A 

Visibility and 
Content Overlap 

Postcentral 
Gyrus 

101 -60, -20, 24 N/A 

Visibility and 
Content Overlap 

Postcentral 
Gyrus 

74 -36, -22, 44 N/A 

Visibility and 
Content Overlap 

Lingual Gyrus 74 -14, -56, -2 N/A 

Visibility and 
Content Overlap 

Cerebellum 63 20, -72, -32 N/A 

Visibility and 
Content Overlap 

Cerebellum 52 34, -56, -48 N/A 

 

Supplementary Table 2.3 fMRI Searchlight Content Decoding in High Visibility Trials, 
Average Cross-Condition Visibility Decoding, and Overlapping Cluster Information. 
Decoding type = Content: Clusters with above chance decoding of perceptual content (animate 
vs. inanimate) in high visibility trials. Decoding type = Mean Cross-Condition Visibility: Clusters 
with above chance decoding of perceptual visibility for cross-condition decoding when accuracy 
from both decoding directions (training on animate and training on inanimate) was averaged 
together. To aid the identification of individual clusters in this map, clustering was performed at 
an increased accuracy threshold of 0.54. Decoding Type = Awareness and Content Overlap: 
Clusters where decoding of content and cross-decoding of visibility were both successful (i.e. the 
intersection of the Content and Mean Cross-Condition Visibility clusters). Clusters are significant 
at p < .05, corrected for multiple comparisons with an FDR of 0.01. Region names are found for 
the peak co-ordinate using the Harvard-Oxford Cortical and Subcortical Structural Atlas and the 
MNI Structural Atlas. 
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3. Creating something out of 
nothing: Symbolic and non-
symbolic representations of 
numerical zero in the human 
brain 

 

3.1 Introduction 
 

Sparse higher-order theories of consciousness (e.g., Fleming, 2020; Lau, 2019) make the 

claim that low-dimensional neural codes tracking the reliability of perceptual states may 

underlie awareness judgements. Chapter 2 provided initial evidence for such a neural 

code, which abstracts over the content of perception and encodes only the vividness of 

perceptual experiences. According to these theories, and particularly the HOSS model 

(Fleming, 2020), such codes should extend to capturing neural activity related to the 

absence of experience, which is described in HOSS as a higher-order mechanism 

inferring an absence of perceptual input. Most importantly with respect to absence, the 

HOSS model describes how the brain should actively represent the absence of 

experience, rather than simply not representing the presence of sensory stimulation 

(Fleming, 2020). One way of exploring this aspect of the HOSS model is to examine active 

representations of absence in other cognitive domains with a view to informing theories 

of perceptual absences. This chapter follows this method. It offers the first 
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characterisation of the neural representation of numerical absence (i.e., the number zero) 

in the human brain and, in addition, begins to explore ideas that suggest perceptual 

experiences of absence may provide the scaffolding through which more complex 

absence-related concepts are developed (Nieder, 2016). 

 

The number zero plays a central role in science, mathematics, and human culture 

(Kaplan, 1999; Nieder, 2016) and its symbolic representation is considered a unique 

property of abstract human thought (Bialystok & Codd, 2000; Nieder, 2016). The 

psychological basis of zero is unusual: while natural numbers correspond to the 

observable number of countable items within a set (e.g., one bird; three clouds), an empty 

set does not contain any countable elements. To conceptualise zero, one must instead 

abstract away from the (absence of) sensory evidence to construct a representation of 

numerical absence: creating ‘something’ out of ‘nothing’ (Butterworth, 1999; Nieder, 2016; 

Wellman & Miller, 1986). Given these differences, it remains an open question as to how 

zero is represented in relation to other numbers. 

 

In contrast to zero, the neural representation of natural numbers is better understood. 

Distinct neural populations are selective for specific numerosities, exhibiting overlapping 

tuning curves with neighbouring populations tuned to adjacent numerosities (Kutter et al., 

2018; Piazza et al., 2004). This architecture underpins a so-called distance effect 

(Dehaene et al., 1998), where numbers close together in numerical space have similar 

neural representations. For instance, neural responses to numbers one and two are more 

similar than neural responses to one and ten (Borghesani et al., 2019; Luyckx et al., 2019; 

Piazza et al., 2004). Importantly, a component of this neural code is thought to be invariant 

to numerical format (Damarla et al., 2016; Eger et al., 2003, 2009; Piazza et al., 2007; 

Teichmann et al., 2018) such that, for example, neural representations of ‘six’ are shared 

across symbolic and non-symbolic formats (e.g., both the Arabic numeral ‘6’ and six dots; 

although see (Cohen Kadosh et al., 2007)). In humans, these format-invariant 

representations of numerical magnitude have been localised to the parietal cortex 

(Damarla et al., 2016; Eger et al., 2009; Piazza et al., 2007), with topographic maps 
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underpinning numerosity perception found more broadly across association cortex 

(Harvey et al., 2013; Harvey & Dumoulin, 2017). 

 

Although behavioural evidence suggests that zero occupies a place at the beginning of 

this mental number line (Dehaene et al., 1993; Pinhas & Tzelgov, 2012; Zagury et al., 

2022), zero is also associated with unique behavioural and developmental profiles 

compared to natural numbers. For instance, the reading times of human adults are 

increased for zero compared to non-zero numbers (Brysbaert, 1995) and zero concepts 

emerge later in children than those for natural numbers (Krajcsi et al., 2021; Merritt & 

Brannon, 2013; Wellman & Miller, 1986). Distinct behavioural characteristics associated 

with zero are not surprising given the heightened degree of abstraction required to 

conceptualise numerical absence. In turn, it is plausible that neural representations of 

zero are distinct to the scheme that has been discovered for natural numbers (Schubert 

et al., 2020). Initial research in non-human animals has indicated that numerical zero 

shares some neural properties with natural numerosities, such as overlapping tuning 

curves and associated distance effects, along with invariance to particular stimulus 

properties (Kirschhock et al., 2021; Okuyama et al., 2015; Ramirez-Cardenas et al., 

2016). Moreover, behavioural evidence for zero representations has been reported in a 

number of animals, including macaque monkeys (Merritt et al., 2009), African grey parrots 

(Pepperberg & Gordon, 2005), and honeybees (Howard et al., 2018). However, it remains 

unknown whether the symbolic, human conceptualisation of numerical zero, which 

emerges later than natural numbers in human culture (Ifrah, 1985; Kaplan, 1999), 

engenders representations of zero that are both distinct from other numbers and which 

studies in non-human animals may have failed to reveal.  

 

I tackled this question by employing two qualitatively different numerical tasks in humans 

while leveraging methodological advances to reveal the representational content of neural 

responses to numerical stimuli in magnetoencephalography (MEG) data (Kriegeskorte & 

Diedrichsen, 2019; Luyckx et al., 2019). The choice of tasks was guided by previous work 

examining both non-symbolic (Ramirez-Cardenas et al., 2016) and symbolic (Luyckx et 

al., 2019) numerosity representations. Importantly, the use of two distinct tasks required 
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participants to adopt distinct mathematical attitudes towards zero, ensuring that any 

commonalities between symbolic and non-symbolic neural representations of zero were 

not confounded by task-related processing. I assay both neural representations of non-

symbolic numerosities (dot patterns), including zero (empty sets), and symbolic numerals, 

including symbolic zero. Numerosities ranged from zero to five, allowing me to examine 

the fine-grained representations of numbers close to zero. My results reveal that neural 

representations of zero are situated along a graded neural number line shared with other 

natural numbers. Notably, symbolic representations of zero generalised to predict non-

symbolic empty sets. I go on to localise abstract representations of numerical zero to 

posterior association cortex, extending the purview of parietal cortex in human numerical 

cognition to encompass representations of zero (Harvey & Dumoulin, 2017; Piazza et al., 

2007). 

 

3.2 Materials and Methods 
 

3.2.1 Study Participant Details 
 

Twenty-nine participants (Mage: 29.27 years, SDage: 10.69) took part in the MEG 

experiment at the Wellcome Centre for Human Neuroimaging, University College London. 

Five participants either failed to follow task instructions (chance performance on one or 

more tasks) or did not complete the experiment and were therefore excluded from 

analysis. All analysis was performed on the remaining sample of 24 participants. Informed 

consent was given before the experiment and ethical approval was granted by the 

Research Ethics Committee of University College London (#1825/005). 

 

3.2.2 Stimuli  
 

Numerical dot stimuli were created using custom MATLAB 2021b (Mathworks) scripts 

and consisted of different numbers of dots (from zero to five) on grey backgrounds 

(Figure 3.1E). There were two sets of dot stimuli, a standard set and a control set. In the 



- 79 - 
 

standard set, dot size was pseudorandomly specified, and each dot was pseudorandomly 

located around the centre of the screen. In the control set, low level visual properties of 

the stimuli (total dot area, density, luminance) were constant across numerosities. Total 

dot area was controlled for by systematically reducing the size of the dots as the number 

of dots increased, such that the total number of pixels included in a stimulus were constant 

across numerosities. To control for density, dots were located within an invisible circle, 

with the radius of the circle determined by the number of dots. Larger numerosities had 

larger circles, thereby ensuring that patterns with more dots were not systematically 

denser. Finally, in both stimulus sets, 50% of dots were black and 50% were white, such 

that the contrast of the dot patterns did not increase with numerosity (the increase in 

contrast generated by an increasing number of black dots was cancelled out by the 

increased number of white dots). Supplementary Figure 3.1 reports the correlation 

between these non-numerical features and numerosity in the controlled stimulus set, 

highlighting how the stimulus-generating procedure successfully controlled for the 

association between low-level visual properties and numerosity. Empty set stimuli 

contained only a grey background in both stimulus sets. 

 

To help prevent participants relying on low level visual cues in identifying empty set 

stimuli, the background luminance was varied within and across stimulus sets and the 

background square size was randomly varied across all stimuli. The two stimulus sets 

allowed me to test whether numerical representations generalised across controlled and 

uncontrolled stimulus sets, which if successful indicates that numerosity representations 

are not merely picking up on low-level stimulus features correlated with number. Indeed, 

a control analysis confirmed that numerical information was extracted from the stimuli 

independently from physical features (see Representational Similarity Analysis; 

Supplementary Figure 3.2). As such, both standard and control stimulus sets were 

included in the analysis of the non-symbolic data. 
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3.2.3 Experimental Procedure 
 

The tasks were presented to subjects using MATLAB (Mathworks) and the 

Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007). Participants practiced the 

tasks on a computer before the MEG session. In the MEG scanner, the tasks were 

performed in alternating miniblocks with 35 symbolic trials and 54 non-symbolic trials per 

MEG recording block. The order of the tasks would swap on each block, and the starting 

order was counterbalanced across participants. There were 9 MEG blocks in total, 

resulting in 315 symbolic numeral trials and 486 non-symbolic dot trials across the whole 

experiment. Participants responded using two buttons on a button box and their right 

thumb.  

 

3.2.3.1 Non-symbolic Task 
 

Participants performed a match to sample task on dot stimuli (Kirschhock et al., 2021; 

Ramirez-Cardenas et al., 2016). On each trial, participants saw a sample image 

containing between zero and five dots for 250ms followed by a fixation cross for 800ms. 

A test image, also containing between zero and five dots, was then presented for 250ms, 

followed before another 800ms fixation period (Figure 3.1A). Within a trial, a single 

stimulus set was used for both the sample and test image. Participants reported whether 

the number of dots in the test stimulus matched that of the sample stimulus, or not. The 

response was followed by feedback in the form of a coloured rectangle surrounding the 

response options, with green and red used to indicate correct and incorrect answers, 

respectively. Response options were positioned randomly on each trial to eliminate any 

correlation between the decision and motor response. Intertrial intervals were also 

sampled randomly from a uniform distribution between 500-1000ms.  

 

3.2.3.2 Symbolic Task 
 

I adapted the symbolic numeral averaging task introduced by (Luyckx et al., 2019) to 

include the number zero. In one trial, ten numerals ranging from zero to five were 
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presented in a random order (Figure 3.1B). Five of the numerals were blue and five were 

orange. Each numeral was displayed for 250ms with an interstimulus interval of 100ms. 

The numerals were randomly selected on each trial to obey the constraint that the mean 

of the blue numerals could not equal the mean of the orange numerals. The response 

required at the end of each trial was counterbalanced across subjects, with half of the 

subjects reporting which set of numerals (orange or blue) had the highest average, and 

the other half reporting the set with the lowest average. Participants had 2000ms to 

respond, after which they were given feedback in the form of a green (correct) or red 

(incorrect) rectangle surrounding the response options. Again, to disentangle participants’ 

decisions from motor responses, response options were positioned randomly on each 

trial. Intertrial intervals were randomly sampled from a uniform distribution between 500-

1000ms.  

 
Figure 3.1. Experimental Procedure. A. Trial structure for the non-symbolic match to sample task. 
Participants observed a sample dot pattern followed by a test dot pattern before reporting whether the two 
patterns had the same or different numbers of dots. B. Trial structure for the symbolic averaging task. 
Participants observed a sequence of blue and orange numerals before reporting which set of numerals had 
the higher or lower average. C. Behavioural tuning curves in the non-symbolic task. Each curve reflects the 
percentage of trials that participants judged the test numerosity to be the same as the sample numerosity. 
Each colour represents trials with specific sample numerosities. The peak of each curve illustrates correct 
performance when the sample and test numerosities matched. Data points either side of the peak represent 
non-match trials. Error bars indicate SEM. D. Accuracy in the symbolic task split across participants who judged 
which set of numbers was higher, and those who judged which was lower. E. Stimulus sets for non-symbolic 
task. Dot size was pseudorandomised in the standard set, while low level properties of the dots including total 
dot area, density, and luminance were held constant in the control set. Across both sets, frame size of the dot 
patterns was randomly varied, to limit reliance on visual cues when identifying empty sets. 
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3.2.4 MEG Preprocessing 
 

MEG data were analysed using FieldTrip (Oostenveld et al., 2011). MEG was recorded 

continuously at 600Hz using a 273-channel axial gradiometer system (CTF Omega, VSM 

MedTech) while participants sat upright inside the scanner. To remove line noise, the raw 

MEG data were preprocessed with a Discrete Fourier Transform and bandstop filter at 

50Hz and its harmonics. The numeral task was segmented into epochs of -500ms to 

4000ms relative to trial onset. For the dot task, the segments were from -200ms to 

2500ms. Baseline correction was performed where, for each trial, activity in the pre-trial 

window was averaged and subtracted from the entire epoch per channel. The data were 

downsampled to 300Hz to conserve processing time and improve signal to noise ratio. 

During artefact rejection, trials with high kurtosis were visually inspected and removed if 

they were judged to contain excessive artefacts. To assist in removing eye-movement 

artefacts, an independent components analysis was carried out on the MEG data, and 

the components with the highest correlation with eye-tracking data were discarded after 

visual inspection. Components showing topographic and temporal signatures typically 

associated with cardiac artefacts were also removed by eye. This procedure was 

performed separately for the numeral and dot task. Finally, a second stage of epoching 

was performed to generate trials of individual numerosities. In the numeral task, trials 

were segmented into -100ms to 800ms epochs around each numeral onset. Trials were 

then baseline corrected again using the pre-stimulus window. In the dot task, trials were 

segmented into two different -200ms to 800ms epochs with respect to the onsets of the 

sample and test stimuli. All analyses used the sample images only. Finally, all analyses 

focusing on shared representations across notational formats were performed on the 

shared timepoints of -100ms to 800ms relative to stimulus presentation.  

 

3.2.5 Representational Similarity Analysis 
 

Representational Similarity Analysis (RSA) allows us to test specific hypothesis about 

how neural representations are structured (Kriegeskorte & Kievit, 2013). Here, I tested 

for the existence of a distance effect across numerosities. To do this, I defined a model 
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representational dissimilarity matrix (RDM) that describes the dissimilarity of two 

numerosities as a function of their numerical distance. To compare this model dissimilarity 

matrix with the neural data I first created a neural dissimilarity matrix that represents the 

similarity in neural patterns associated with each numerosity. To do this, I first ran a linear 

regression on the MEG data with dummy coded predictors for each of the six numerosities 

(trial numerosity coded with a 1, alternative numerosities coded with a 0). This produced 

a coefficient weight for each numerosity at each time point and sensor. These weights 

were then combined into a vector, representing the multivariate neural response for each 

numerosity, averaged over trials. To create the neural RDM, I computed the Pearson 

distance between each pair of condition weights over sensors, resulting in a 6x6 neural 

RDM reflecting the pairwise similarity of neural patterns associated with each numerosity. 

These neural RDMs were smoothed over time via convolution with a 60ms uniform kernel. 

To compare the neural and model RDMs, at every time point I correlated the lower triangle 

of each matrix (excluding the diagonal) using Kendall’s Tau rank correlation (Nili et al., 

2014).  

 

Cross-task RSA was performed in the same manner, except here there were 12 

predictors in the linear regression (0-5 symbolic, 0-5 non-symbolic). This resulted in a 

12x12 neural RDM, of which I used the quadrant representing the cross-task pairwise 

similarities between numerosities when comparing with the model RDM. The whole 

quadrant including the diagonal was used in this analysis. This is because here the 

diagonal does not contain redundant information, but rather the similarity of the same 

numerosity across two different formats, and cells in the upper triangle represent different 

pairwise similarities to those in the lower triangle. 

 

Finally, to test whether numerical information was decodable from non-symbolic stimuli 

over and above the physical features of the stimuli, I ran a cross-stimulus set RSA in the 

same manner as above, except now I tested exclusively within the non-symbolic task. As 

such, the 12 predictors were: 0-5 from the standard set and 0-5 from the control set.  This 

RSA established whether representations of numerical magnitude generalised across 
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stimulus set, and therefore went beyond information that could be derived solely from 

physical features of the stimuli. 

 

3.2.6 Decoding Analyses 
 

To examine the representational structure of the number zero more specifically across 

symbolic and non-symbolic formats, I employed different decoding techniques using both 

multiclass and binary decoders. First, to reveal the temporal profile of numerosity 

representations, I trained a multiclass Linear Discriminant Analysis (LDA) decoder to 

decode numerosities zero to five. This was performed in a temporal generalisation 

procedure, whereby the classifier was trained on each time point and tested on all other 

time points (King & Dehaene, 2014). This process results in a train time x test time 

decoding accuracy matrix, which illustrates how stable representations of numerosity are 

over time.  

 

I performed both within-format and cross-format decoding procedures. Within-format 

decoding involved training and testing a classifier to identify numerosities on trials from 

one format (e.g. numerals or dots). In cross-format decoding, I trained the classifier on 

one format and tested it on the other (e.g., training on symbolic trials and testing on non-

symbolic trials, and vice versa). For the within-format approach, I implemented a 5-fold 

cross-validation strategy. Prior to decoding, five trials per numerosity were averaged and 

the resulting average trials was balanced per numerosity. It is worth noting that cross-

validation is not required in cross-format decoding because the test data is never seen by 

the classifier during training, and thus there is no risk of overfitting. Cross-format decoding 

allows us to empirically assess whether the neural patterns associated with numerals 

share a common neural code across formats. 

 

To complement the RSA analyses and isolate the representational structure underpinning 

numerical zero specifically, I extracted the confusion matrices from the decoders. 

Confusion matrices indicate how often different stimulus classes (i.e., numerosities) are 

confused for one another, and this information can be used to infer the organisation of 
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neural representations. For example, a decoder that confuses zero with the number one 

more than the number two displays evidence for a numerical distance effect. The data 

used to train the decoders from which these confusion matrices were extracted was time-

averaged over the timepoints where the initial multiclass decoder could decode 

numerosity significantly above chance (non-symbolic: 70ms – 800ms, symbolic 56.7ms – 

800ms). I also computed confusion matrices across time. 

 

To examine whether representations of zero could reliably be dissociated from 

numerosities presented in the alternative format, I created a decoding procedure using a 

binary LDA classifier to decode zero vs. non-zero numerosities. Within this training 

regime, the number of trials per non-zero numerosities was kept equal, and the number 

of zero trials vs. non-zero numerosity trials was also balanced. The resulting ‘zero’ 

decoder was uniquely trained to identify neural representations of numerical zero in 

symbolic or non-symbolic format and was tested on the other format to identify format-

invariant representations of zero.  

 

Finally, to reveal whether abstract representations of numerical zero exist on a graded 

number line, or whether they are categorically distinct from other numbers, I ran a new 

cross-format decoding analysis using binary classifiers. Here, I trained the decoders to 

discriminate zero vs. all non-zero numerosities (one to five) separately, and then tested 

these binary decoders on the corresponding numerosities in the opposite format. This 

resulted in five different classifiers per format. Specifically, I trained five different decoders 

to dissociate: symbolic zero vs symbolic one, symbolic zero vs symbolic two, symbolic 

zero vs symbolic three, symbolic zero vs symbolic four, and symbolic zero vs symbolic 

five. I then tested these decoders on empty sets vs one dot, empty sets vs two dots, 

empty sets vs three dots, empty sets vs four dots, and empty sets vs five dots, 

respectively. This was also done in the reverse direction: training on non-symbolic trials 

and testing on symbolic numerals. I used the area under the receiver operating 

characteristic (AUROC) as a metric for discriminability between each pair of classes. In 

line with the hypothesis that format-invariant representations of zero exist on a graded, 

abstract neural number line, I expected the discriminability to improve as the numerical 
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distance from zero increased. To statistically test whether this was the case, I performed 

one-tailed, paired comparisons between the discriminability of successive numbers with 

zero (e.g., by comparing 0-2 vs. 0-1, 0-3 vs. 0-2, etc.).  

 

For all decoding analyses, I utilized multiclass or binary LDA decoders in conjunction with 

the MVPA-light toolbox (Treder, 2020) integrated with FieldTrip. To improve the 

robustness of the classifier, I applied L1-regularization to the covariance matrix, and the 

shrinkage parameter was automatically determined using the Ledoit-Wolf formula within 

each training fold (Ledoit & Wolf, 2004). 

 

3.2.7 Source Reconstruction 
 

Both FieldTrip’s template single shell head model and its standard volumetric grid (8mm 

resolution) were warped to participants’ individual fiducial points, generating a subject-

specific forward model aligned in MNI space.  Source reconstruction was performed using 

a linearly constrained minimum variance (lcmv) beamformer(Van Veen et al., 1997) which 

applies spatial filters to the MEG data to generate source-level time courses. To reduce 

the impact of noise on the source estimates, I used a regularisation parameter of lambda 

= 5%. For each task, spatial filters were calculated by combining the leadfield matrix with 

the data covariance matrix across all numerosities and the timepoints coinciding with the 

stable cluster of significantly above-chance decoding in the zero vs. non-zero cross-task 

classifier (100 – 450ms). These spatial filters were then applied to zero trials and non-

zero trials separately, generating reconstructed maps of source activity for these two trial 

types. I contrasted the broadband source power of zero > non-zero trials in a mass-

univariate procedure across subjects for each task separately with an alpha parameter of 

p < .05, corrected for multiple comparisons. For binary LDA classifiers, this is equivalent 

to localising the classifier weights (Haufe et al., 2014), and therefore gives an indication 

of which brain regions drove the decoding results.  I computed the conjunction of these 

two contrasts, revealing the voxels where zero stimuli were dissociable from other 

numbers in both symbolic and non-symbolic formats. 
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Multidimensional scaling of source space activity was performed using the same 

beamforming parameters to calculate spatial filters over combined non-symbolic and 

symbolic trials. Using these filters, virtual channels were created for each source location 

within the map defined by the conjunction analysis. The virtual channels were then used 

to create a cross-task representational dissimilarity matrix in the same manner as 

described for the cross-task RSA sensor-level analysis. This was then submitted to 

MATLAB’s cmdscale function for multidimensional scaling. 

 

3.2.8 Statistical Inference 
 

Across sensor and source level analyses, cluster-based permutation testing was used to 

statistically test hypotheses and correct for multiple comparisons (Maris & Oostenveld, 

2007). For all analyses (decoding, RSA, and source-level contrasts), 1000 permutations 

were used with cluster-forming alpha parameter of .05 and a significance threshold of .05. 

It is important to emphasize that this cluster-based permutation testing approach does 

not provide information about when neural representations emerge. This limitation arises 

because the statistical inference process does not focus on individual time points; instead, 

it relies on cluster-level statistics that encompass multiple time points (Sassenhagen & 

Draschkow, 2019). 

 

3.3 Results 
 

Twenty-nine human participants (24 after exclusions; see Methods for details) took part 

in a magnetoencephalography (MEG) experiment involving two numerical tasks. The first 

was a non-symbolic match-to-sample task (Figure 3.1A) where participants observed two 

sequentially presented dot patterns that ranged in number from zero dots (empty set) to 

five dots (Ramirez-Cardenas et al., 2016). Participants were asked to report whether the 

patterns contained the same or different number of dots. I employed two sets of dot 

patterns: a standard set which randomised the size of dots within each pattern, and a 

control set which kept total dot area, density, and luminance constant across numerosities 
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(Figure 3.1E). To ensure participants could not rely on low level visual cues in identifying 

empty set stimuli, the background luminance was varied within and across stimulus sets, 

the background square size was randomly varied across all stimuli, and 50% of dots were 

of opposite contrast (white rather than black). The second task was a symbolic averaging 

task (Luyckx et al., 2019) (Figure 3.1B). Here, participants observed a rapid serial 

presentation of 10 symbolic numerals from zero to five (0, 1, 2, 3, 4, 5), divided into orange 

and blue sets (5 numbers in each). Participants were asked to report the set of numbers 

with the higher or lower average. Decision type (higher or lower) was counterbalanced 

across participants. Employing different tasks per each notational format with different 

task requirements and decision types also ensured neural patterns induced by the 

perception of zero are unlikely to be driven by specific task features or calculation 

requirements. All analyses were exploratory and were not pre-registered prior to data 

collection. 

 

In the non-symbolic match-to-sample task, participants accurately determined whether 

dot patterns had the same or different numbers of dots (Meanaccuracy: 0.92, SE: 0.16). 

Plotting behavioural tuning curves revealed near-ceiling performance across all 

numerosities (Figure 3.1C), with the exception of five-dot patterns which were more often 

confused with four-dot patterns than three-dot patterns (t(23) = 4.97, p < .001) – 

consistent with numerosity tuning curves becoming wider as number increases 

(Dehaene, Dehaene-Lambertz, et al., 1998). In the symbolic task, participants could 

reliably perform the task regardless of whether they were reporting the higher 

(Meanaccuracy: 0.71, SE: 0.23) or lower (Meanaccuracy: 0.68, SE: 0.27) average (Figure 
3.1D), and there was no difference between performance across decision types (t(22) = 

-0.88, p = 0.39). As expected, performance was significantly higher in the non-symbolic 

match-to-sample task compared to the symbolic averaging task (t(23) = 8.82, p < .001). 
 

3.3.1 Identifying Neural Representations of Number 
 

I next asked whether neural patterns recorded by MEG were sensitive to numerosity, by 

timelocking the data to the presentation of the dot pattern/symbolic numeral stimuli. 
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Multiclass decoders were trained to classify different numerosities (zero to five) in both 

the non-symbolic and symbolic tasks. The frequency with which the decoders confused 

numerosities for one another is illustrated in Figure 3.2A. Here, individual panels 

represent trials where a particular numerosity was presented to the classifier, and the 

coloured lines indicate the proportion of those trials where the classifier predicted each 

one of the possible classes (zero to five) over the trial epoch. For example, the ‘NS-one’ 

panel shows that when one dot is presented in the non-symbolic task, the classifier 

predominantly and correctly labels this stimulus as numerosity one (yellow curve), with 

the next most likely error being a misclassification as the number two (green curve). 

Across all numbers and both formats, the classifiers successfully predicted the 

numerosity participants were viewing from their neural data, including zero numerosities 

(time-points where classifier significantly exceed chance level: non-symbolic: 70ms – 

800ms; symbolic: 56.7ms – 800ms). 

 

I next leveraged temporal generalisation analysis to ask whether numerosity 

representations were stable over time (King & Dehaene, 2014). When training and testing 

on all combinations of time points, stable time-windows where numerical information 

could be decoded above chance level were identified in both tasks from shortly after 

stimulus presentation up until the end of the analysed time window Figure 3.2B. This 

analysis was also used to generate Figure 3.2A, such that time-points at which classifiers 

exceed chance level are identical (non-symbolic: 70ms – 800ms; symbolic: 56.7ms – 

800ms). These time windows in which stable numerosity representations were identified 

were used to create time-averaged data for use in subsequent population tuning curve 

(Figure 3.2D) and multidimensional scaling (Figure 3.2E) analyses. 

 

3.3.2 A Neural Number Line from Zero to Five 
 

A fundamental feature of neural codes for natural numbers is a distance effect, whereby 

numbers closer together in numerical space are closer together in representational space 

(Dehaene et al., 1998; Nieder & Dehaene, 2009). Here I asked whether numerical zero 

exhibits similar distance effects with other numbers, consistent with it sharing a neural 
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number line with countable numerosities. A Representational Similarity Matrix (RDM) 

describing a distance effect from zero to five successfully predicted neural data across 

both non-symbolic and symbolic numerical formats (Figure 3.2C). In the non-symbolic 

task, an RDM generalising numerical information across the two non-symbolic stimulus 

sets significantly predicted neural responses throughout the trial, indicating that neural 

correlates of number were independent of the physical properties of the dot stimuli 

(Supplementary Figure 3.2). Multidimensional scaling of neural representations of 

numerosity in turn illustrates a distance effect (Figure 3.2E), with the numbers zero to 

five occupying positions along a single, ordered dimension, while a second dimension 

loosely distinguished intermediate numerosities (one to four) from the extremes (zero and 

five).  

 

A stronger test of a distance effect in neural data is furnished by examining the 

confusability between neighbouring numerosities using population tuning curves (Figure 
3.2D). These plots are time-averaged versions of the classifier confusion matrices in 

Figure 3.2A, i.e., the proportion of trials where the classifier predicted a particular 

numerosity as a function of the true numerosity within the time window in which numerical 

information could be reliably decoded (Figure 3.2B). For example, the red curve in Figure 
3.2D indicates that the proportion of trials predicted as being zero peaks when the 

numerosity seen by the decoder was also zero, is next highest when the numerosity seen 

by the decoder was one, and so on.  

 

In the non-symbolic task (Figure 3.2D, left), the classifier confuses zero with one 

(𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.218) more often than it confuses zero with two 

(𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.138) (t(23) = 6.23, p < .001). Similarly, it confuses one with 

two (𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.206) more often than with three (𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ 

= 0.155) (t(23) = 4.76, p < .001). This pattern of results is indicative of a gradedness in 

the representation of numerical magnitude across non-symbolic numerosities. In contrast, 

in the symbolic task (Figure 3.2D, right), the multiclass classifier does not confuse zero 

with one (𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.159) significantly more than it confuses zero with 

two (𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.163) (t(23) = -0.61, p = 0 .54), nor does it confuse one 
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with two (𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.153) significantly more than it confuses one with 

three (𝑀𝑒𝑎𝑛௣௥௢௣௢௥௧௜௢௡ ௣௥௘ௗ௜௖௧௘ௗ = 0.143) (t(23) = 1.67, p = 0 .11).  This difference in 

distance effects between non-symbolic and symbolic formats was statistically significant 

for both zero (t(23) = 5.45, p < .001) and one (t(23) = 3.48, p = .002), and is suggestive 

of more gradedness in the representation of non-symbolic than symbolic numerosities, 

consistent with previous work describing narrower tuning curves for symbolic numerals 

(Eger et al., 2009; Kutter et al., 2018). I note that a graded RDM still captured a significant 

portion of variance in the symbolic data (Figure 3.2C), due to (graded) confusions 

between non-neighbouring numerosities (e.g., 5 is predicted more often when the 

classifier sees a 4 than when it sees a 0). 

 

3.3.3 Representations of Zero are Shared Between Symbols and Empty 

Sets  
 

Together, the previous analyses establish that neural representations of zero are graded 

(especially for non-symbolic numerosities) and situated within a number line spanning 

other countable numerosities from 1 to 5. I next asked whether representations of zero 

were format- and task-independent – generalising across non-symbolic (empty set) and 

symbolic (‘0’) stimuli, and across the same/different and averaging tasks. As a first step 

towards testing for cross-format representations of number, I first computed the Exemplar 

Discriminability Index (Bang et al., 2020; Luyckx et al., 2019; Nili et al., 2021) as a 

measure of how similar matching cross-format numerosities were (e.g. ‘1’ and one dot, 

‘2’ and two dots, etc.) compared to non-matching numerosities (e.g. ‘1’ and five dots). 

This EDI analysis indicates a significantly higher degree of similarity for matching cross-

format numerosities from ~200ms onwards (Figure 3.3A).  

 



- 92 - 
 

 
Figure 3.2. A Neural Number Line from Zero to Five. A. Across-time confusion matrices for 
multiclass decoders classifying non-symbolic (top) and symbolic numerosities (bottom). Individual 
panels represent trials where particular numerosities were presented to the classifier. Coloured 
lines indicate the proportion of those trials where the classifier predicted each numerosity. B. 
Temporal generalisation of multiclass decoders trained to decode numerosities zero to five in the 
non-symbolic (left) and symbolic (right) task reveals stable numerical representations over time 
in both tasks emerging shortly after stimulus presentation. Black lines illustrate timepoints where 
decoding was significantly above chance (p <.05, corrected for multiple comparisons). These 
stable time windows were used in the time-averaged analyses depicted in panels D and E. C: A 
model representational dissimilarity matrix (RDM) describing a distance effect from zero to five 
significantly predicted neural data in both non-symbolic and symbolic tasks. The diagonal of the 
RDM was not included in this analysis, preventing the self-similarity of each number from trivially 
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explaining the results. Shaded areas indicate 95% confidence intervals. Horizontal lines show 
clusters of time where dissimilarity correlations were significantly above 0, p <.05 corrected for 
multiple comparisons. D. Population level tuning curves derived from decoder confusion matrices. 
Each curve represents the proportion of trials the classifier predicted a particular numerosity 
(indicated by the curve’s colour) as a function of the numerosity the decoder actually saw. For 
example, the red curve illustrates how the prediction of numerosity zero is distributed across 
different presented numerosities. For non-symbolic numerosities, the classifier confused numbers 
as a function of their numerical distance, consistent with a graded representation of numerical 
magnitude. In the symbolic task, representations were more categorical than the non-symbolic 
task. Error bars represent SEM. E. Multidimensional scaling of numerical representations in both 
tasks revealed a principal dimension which tracks numerical magnitude and a second dimension 
distinguishing extreme values from intermediate values.  

 

Next, to specifically test for a cross-format representation of zero, I performed decoding 

analyses focused on dissociating numerical zero from non-zero numerosities. If a binary 

classifier trained to distinguish zero from non-zero numerosities in one numerical format 

is subsequently able to separate zero from non-zero numerosities in another numerical 

format, this furnishes evidence for an abstract neural representation of numerical absence 

that is common to both formats.  

 

Decoders trained to distinguish numerical absence within each format separately 

revealed stable representations of numerical zero from approximately 100ms to 450ms 

after stimulus presentation, before exhibiting a more dynamic temporal profile until the 

end of the trial epoch (Figure 3.3B, top). Crucially, these decoders could also 

successfully classify representations of zero in the opposing format to which they had 

been trained (Figure 3.3B, bottom) – both when generalising from empty sets to the 

decoding of symbolic numerosities, and when generalising from symbolic zero to non-

symbolic dot stimuli. This cross-decoding was successful over the initial 350ms period 

where the within-format decoders identified stable representations of numerical absence, 

although generalisation was generally stronger when generalising from symbolic zero to 

empty sets than vice-versa. 
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Figure 3.3. Cross-format, Graded 
Representations of Numerical Absence.  A. The 
Exemplar Discriminability Index was calculated over 
time as a measure of the similarity numerosities have 
to their cross-format counterparts (e.g., testing 
whether symbolic zero was more similar to empty 
sets than different dot patterns). Significant EDI was 
found from around ~200ms after stimulus onset. B. 
Representations of numerical absence generalise 
over numerical format. Top: A decoder trained to 
decode zero from natural numbers reveals stable 
representations of zero up to ~450ms after stimulus 
presentation for both non-symbolic (left) and 
symbolic (right) formats, with more dynamic / 
unstable representations observed towards the end 
of the epoch. Bottom- left: A decoder trained to 
decode empty sets also distinguished symbolic zero 
from non-zero symbolic numerals. Bottom-right: A 
decoder trained to distinguish symbolic zero from 
non-zero symbolic numerals also distinguished 
empty sets from non-symbolic numerosities. Black 
lines indicate clusters of significantly above chance 
decoding, p <.05, corrected for multiple 
comparisons. C. Left: Illustration of the hypothesis 
that abstract representations of numerical absence 
are situated on a graded number line that 
generalises across format, with empty sets 
represented as more similar to symbolic numeral one 
than numeral five (top), and symbolic zero as more 
similar to one dot than five dots (bottom). Centre:  
Training a classifier to decode non-symbolic empty 
sets from non-symbolic numerosities and testing it 
on symbolic numbers in a pairwise manner revealed 
increasing discriminability as distance from zero 
increased (top). The same cross-format distance 
effect is observed when training a classifier on 
symbolic zero and testing it on non-symbolic 
numerosities (bottom). Shaded areas represent 95% 
CIs. Right: clusters of significant differences between 
different numerosities’ discriminability from zero, 
p<.05, corrected for multiple comparisons. An 
increase in discriminability for numbers further from 
zero reveals a cross-format distance effect. 
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3.3.4 Graded Representations of Zero are Invariant to Numerical Format 
 

The previous analyses were designed to reveal whether representations of numerical 

zero generalise across formats, but did not provide a test of whether a binary or graded 

architecture supports zero representations. To probe the representational structure of 

cross-format representations of zero, I leveraged the numerical distance effect already 

identified for within-format representations (Figure 3.2). To test for such effects, I used a 

one-vs-one decoding approach to compute the discriminability between zero and each 

non-zero numerosity in the alternative numerical format (Figure 3.3C, middle). This 

approach allowed me to specifically examine how numerical zero is represented with 

respect to other numerosities. Tests of cross-format representations across all 

numerosities from zero to five are presented in Supplementary Figure 3.3 and 

Supplementary Figure 3.4. Strikingly, neural representations of symbolic zero (‘0’) were 

more often confused with one or two dots in the non-symbolic task, than they were with 

four or five dots (Figure 3.3C, middle). Similarly, neural representations induced by non-

symbolic zero (empty sets) were more often confused with the symbolic numeral 1 or 2 

than they were with symbolic numerals 4 or 5. Pairwise tests comparing the 

discriminability of different non-zero numerosities from zero revealed clusters of 

significant differences in discriminability (Figure 3.3C, right), with an increased distance 

from zero increasing discriminability. Together, these cross-format analyses support a 

hypothesis that an approximate, graded representation of numerical absence is engaged 

not only by symbolic zero (‘0’) but also by non-symbolic empty set stimuli. 

 

I also sought to test a more stringent hypothesis that abstract, format-independent neural 

representations of zero are themselves situated within a cross-format neural number line 

– thus extending the question of format-independence to now include all numerosities 

from 0 to 5. A representational dissimilarity matrix situating abstract numerosity 

representations within a graded number line significantly predicted the neural data 

(Supplementary Figure 3.3, left). Testing for cross-format distance effects between all 

numerosities using RSA also revealed a qualitative distance effect, although this did not 

reach statistical significance (Supplementary Figure 3.3, right). Finally, multidimensional 
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scaling of neural representations induced by symbolic and non-symbolic numerosities in 

a shared space corroborated evidence for a distance effect for zero across tasks 

(Supplementary Figure 3.4). 

 

Finally, to explore how similar cross-format representations of zero were to one another, 

the zero-specific decoders trained in Figure 3.3B were presented with all the cross-format 

numerosities from zero to five. The decoder’s decision evidence was taken as a measure 

of the discriminability of each numerosity from its cross format zero. I found several 

timepoints where the zero was significantly less discriminable from its cross-format 

counterpart than any other numerosity (Supplementary Figure 3.5), suggesting that 

representations of symbolic zero are most closely related to representations of non-

symbolic empty sets than other non-symbolic numerosities, and vice versa. 

 

3.3.5 Format-Invariant Representations of Numerical Zero are Localised to 

Posterior Association Cortex 
 

Finally, I sought to localise representations of format-invariant numerical zero in the brain. 

To do this, I reconstructed and compared source-level neural activity for zero and non-

zero numerosities in both the non-symbolic and symbolic tasks. By performing mass-

univariate contrasts of broadband source power (zero > non-zero numerosities) in both 

the non-symbolic (Figure 3.4A, top; peak voxels (xyz): left hemisphere = -36, -24, 56; 

right = 60, -64, -24) and symbolic (Figure 3.4A, bottom; peak voxels (xyz): left 

hemisphere = -28, -56, 32; right = 28, -72, 8) tasks and computing the conjunction 

between these two contrasts (Figure 3.4B; peak voxels within conjunction (xyz): non-

symbolic task: left hemisphere = -20, -64, 32; right =  60, -64, -24; symbolic task: left 

hemisphere = -28, -56, 32; right = 20, -48, -64), I was able to show that neural activity 

induced by numerical absence is distributed across the posterior association cortex 

(Figure 3.4B). To explore whether the zero representations localised to this region 

exhibited a graded structure (as found in sensor-level analyses, Figure 3.3C), I performed 

multidimensional scaling on source level activity patterns for each numerosity and format. 

Neural responses to zero within this conjunction map were again situated within a number  
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line populated by non-zero numbers, with numerical magnitude increasing along a single 

dimension that was similar for both symbolic and non-symbolic formats (Figure 3.4B, 

bottom-right).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. Neural activity induced by numerical zero localised to posterior association cortex. 
A: Mass univariate contrasts of source power revealed regions more active following presentations of 
zero vs. non-zero numerosities in non-symbolic (top) and symbolic (bottom) tasks. Colour represents t-
value and only clusters significant at p < .05 are presented, corrected for multiple comparisons. B: A 
conjunction of zero > non-zero contrasts in both numerical formats yielded a map identifying broad 
regions of the posterior association cortex as representing numerical absence across numerical 
formats. Multidimensional scaling of each numerosity’s neural pattern within these regions revealed a 
graded representational structure of numerical magnitude along a single dimension that was similar for 
both formats.  
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3.4 Discussion 
 

The number zero is associated with unique psychological properties compared to natural 

numbers. Here, I characterise the neural representation of numerical zero in the human 

brain. I describe how numerical zero occupies a slot at the lower end of neural number 

lines for both symbolic and non-symbolic numerical formats. I go on to show that a 

component of this representation is both task- and format-independent, such that empty 

sets – the absence of dots – generalised to predict the neural profiles and distance effects 

observed for symbolic zero. These abstract, format-invariant representations of zero were 

situated at the lower end of a neural code for number that was localised across the 

posterior association cortex.  

 

The finding that representations of numerical absence have a format-invariant component 

extends previous work documenting neural representations of numerosity that generalise 

across countable non-symbolic elements and their symbolic counterparts (Eger et al., 

2009; Libertus et al., 2007; Piazza et al., 2007). Here I show how neural representations 

of non-symbolic empty sets, which do not contain any countable items, also share 

variance with symbolic zero across qualitatively different tasks with distinct behavioural 

profiles. These abstract representations of zero were localised to regions of the posterior 

association cortex that have previously been associated with numerical processing 

(Arsalidou & Taylor, 2011; Eger et al., 2003; Harvey & Dumoulin, 2017; Piazza et al., 

2007).  

 

That zero is situated at the lower end of a neural number line in the human brain is 

consistent with an emerging body of work examining representations of zero in non-

human animals (Kirschhock et al., 2021; Okuyama et al., 2015; Ramirez-Cardenas et al., 

2016). Across two different studies, single neurons selective for non-symbolic empty sets 

were found in the parietal and prefrontal cortex of non-human primates (Okuyama et al., 

2015; Ramirez-Cardenas et al., 2016). In line with the present results, many of these 

neurons – but not all – were found to exhibit distance effects with non-zero numbers. 

When comparing non-symbolic and symbolic instances of zero, I found symbolic 
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instances were more discrete and less graded than non-symbolic instances, consistent 

with work describing sharper tuning curves for symbolic number representations (Eger et 

al., 2009; Kutter et al., 2018). Recent single-cell recordings in the human medial temporal 

lobe have also identified discrete non-symbolic zero-selective neurons that did not exhibit 

graded activations in relation to non-zero numerosities (Kutter et al., 2023). Strikingly, 

however, the majority of my analyses revealed a graded representation of zero that 

generalised across both symbolic and non-symbolic formats. This is in keeping with 7T 

fMRI data showing that neural populations at the lower boundary of numerically-tuned 

topographic maps exhibit a monotonic decrease in response to increasing numerical 

magnitude (Paul et al., 2022), a finding suggestive of evidence for neural populations 

tuned to numerosities below one.  

 

I took care to ensure that the neural representations of zero identified in the data were 

not trivial consequences of zero being classified as the ‘lowest’ stimulus in the tasks. The 

concern here is that if the tasks required participants to adopt a particular mathematical 

attitude towards zero, then decoding of this task-dependent concept would confound any 

results aimed at identifying task-invariant representations of numerical absence. I 

consider this explanation of the results as unlikely, however, as, by design, the symbolic 

and non-symbolic tasks required adopting qualitatively distinct mathematical attitudes 

towards zero stimuli: the match-to-sample task necessitated deciding whether two dot 

stimuli were the same or different, whereas the symbolic task required maintenance of 

condition-specific numerical averages. Because the non-symbolic task did not require 

participants to order stimuli, any format-invariant representations of zero cannot be 

explained by a generic requirement to identify lower vs. higher numerosities. Despite 

these task differences, explicit numerical processing of the stimuli was common to both 

tasks, and by design, both of these tasks afford the locking of the MEG data to the onset 

of examples of zero (and other numerical) stimuli that are embedded in a wider task 

context. 

 

In both cross-decoding and RSA analyses, I observed cross-format representations 

emerging initially between 100-200ms post-stimulus before diminishing and re-emerging 
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approximately 300ms after stimulus presentation. The small number of previous studies 

which have explored the time course of abstract numerical representations in the human 

brain document generalisation from symbolic formats to non-symbolic formats or 

alternative magnitude domains from ~300ms onwards (Luyckx et al., 2019; Teichmann et 

al., 2018), consistent with this later peak in the data. The earlier peak, in contrast, is 

consistent with other studies documenting decodability of non-numerical conceptual 

representations (such as animate/inanimate and artificial/natural) as early as ~100ms 

post-stimulus (Carlson et al., 2013; Cichy et al., 2014). It remains debated whether 

findings of format-invariant numerical codes are explained by single neurons coding for 

the same numerosities across formats, or whether they reflect the recruitment of 

neighbouring format-specific neural populations that are interdigitated within a numerosity 

map (Cohen Kadosh & Walsh, 2009). Future intracranial recording studies will be required 

to determine whether single cells in the human brain code for numerical zero in both non-

symbolic and symbolic formats. However, the finding of cross-format distance effects is 

more consistent with a shared neural code, as it is less likely that spatially overlapping 

but format-specific neural codes would also generalise to exhibit cross-format distance 

effects with more distant numerosities. Furthermore, the finding of a cross-format code 

for numerical zero is in keeping with behavioural studies that have found format-invariant 

distance effects for both symbolic zero and empty sets (Zaks-Ohayon et al., 2022). 

 

Behavioural tasks have previously been used to investigate zero in relation to a mental 

number line (Dehaene et al., 1993; Fischer & Rottmann, 2005; Merritt & Brannon, 2013; 

Pinhas & Tzelgov, 2012). For example, the SNARC (spatial-numerical association of 

response codes) effect extends to numerosity zero, with faster response times when zero 

responses were given with the left hand (Dehaene et al., 1993). Similarly, the size-

congruity effect (Henik & Tzelgov, 1982) has been exploited to suggest that zero occupies 

a definite position on a mental number line: responses to zero are facilitated when it is 

physically smaller than an alternative numeral (Pinhas & Tzelgov, 2012). Notably, ‘end 

effects’ have been established in size congruity paradigms, whereby stimuli perceived to 

be at the ‘end’ of the number line exhibit facilitated response times. End effects have been 

found for symbolic zero even when presented amongst negative numbers (Pinhas & 
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Tzelgov, 2012) and in response to non-symbolic empty sets during numerical comparison 

tasks (Zagury et al., 2022), suggesting both symbolic and non-symbolic zero may be 

situated at the beginning of a mental number line. Such findings obtained using elegant 

behavioural assays are consistent with my findings that numerical zero is incorporated 

into a graded neural number line amongst other non-zero numbers (at least in some 

contexts (Zaks-Ohayon et al., 2021, 2022)).   

 

Classical accounts of how symbolic representations of number are mapped to their non-

symbolic counterparts do not readily explain how the symbolic concept of zero is 

generated from non-symbolic empty sets. These models describe a neural architecture 

in which specific numerosities are mapped onto numerosity-tuned neural populations that 

form a neural number line, or place-coding system (Dehaene & Changeux, 1993; Piazza 

et al., 2007). However, according to such models, non-symbolic stimuli only proceed to 

this place-coding system via a summation procedure, where an increase in the number 

of non-symbolic elements accumulate a greater degree of activation (DeWind et al., 2019; 

Park et al., 2016; Verguts & Fias, 2008; Zorzi & Butterworth, 1999). A summation 

explanation therefore fails to account for how non-symbolic empty sets may be mapped 

to symbolic zero, since empty sets offer no countable elements to accumulate (Pinhas & 

Tzelgov, 2012). Computational models of object recognition have, however, documented 

the emergence of spontaneous representations of non-symbolic zero without any training 

on numerical stimuli (Nasr et al., 2019), suggesting that the concept of zero can be readily 

acquired from statistical regularities in visual input without necessarily relying on a 

summation procedure.  

 

A shared neural representation underpinning both non-symbolic empty sets and symbolic 

zero is consistent with recent suggestions that representations of numerosity zero may 

have emerged from more fundamental representations of sensory absence (Nieder, 

2016). On this account, low-level perceptual representations indicating an absence of 

sensory stimulation (Goh et al., 2023; Merten & Nieder, 2012) provide the perceptual 

grounding for a conceptual representations of numerical zero (Nieder, 2016) – consistent 

with a broader principle that the human brain co-opts basic sensory and motor functions 
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in the service of more complex cognitive abilities (Dehaene & Cohen, 2007). Such a 

hypothesis aligns with similar behavioural signatures for the processing of absence 

across perceptual and numerical domains. For instance, reading times are increased for 

number zero compared to non-zero numbers (Brysbaert, 1995), whilst reaction times for 

deciding a stimulus is absent are higher than for deciding a stimulus is present (Mazor et 

al., 2020, 2021). Additionally, judgements about the absence of features mature later in 

children than judgements about presence (Coldren & Haaf, 2000; Sainsbury, 1971), a 

developmental pattern mirrored by the late mastery of numerical zero in children (Krajcsi 

et al., 2021; Merritt & Brannon, 2013; Wellman & Miller, 1986). I note however that the 

neural responses recorded in this study to empty-set stimuli were still within the context 

of a numerical task – and, as such, my results are specific to the concept of numerical 

absence and do not provide a direct test of a link between numerical zero and sensory 

absence. This study offers a path towards a formal test of this hypothesis in future work - 

for instance, investigating relationships between numerical absence and non-numerical 

perceptual absences (Chapter 2; Mazor et al., 2020; Merten & Nieder, 2012).  

 

Non-numerical perceptual absences can be particularly useful in determining the 

cognitive basis of consciousness, particularly self-awareness (Mazor, 2021). One recent 

study, for example, found that when participants were required to make detection 

decisions about stimuli hidden behind differing degrees of occluding barriers, decisions 

about absence were associated with the modelling of one’s own visual system (Mazor et 

al., 2024). To be specific, when participants decided that a stimulus was absent, they 

implicitly modelled the likelihood function mapping environmental states to perceptual 

states, essentially asking the question ‘if the stimulus was presented, would my visual 

system have detected it?’ In this way, exploring the unique computations underlying 

decisions about absence can reveal the extent to which humans maintain an internal 

model of their own cognition – a fundamental component to self-awareness and 

consciousness more broadly. Indeed, the unique properties associated with decisions 

about absence are reflected in the HOSS model (Fleming, 2020), where the asymmetry 

between decisions about absence vs. presence are used to explain the ‘ignition’ effects 

usually referenced by Global Workspace theorists. As such, the HOSS model makes the 
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explicit prediction that sensory absences should be actively encoded in neural responses 

to (an absence of) sensory evidence.   

 

The adoption of the number zero has enabled great advances in science and 

mathematics (Kaplan, 1999). Here, I show that the human brain represents this unique 

number by incorporating representations of numerical absence into a broader neural 

coding scheme that also supports countable numerosities. Representations of numerical 

zero were found to be format-invariant and graded with respect to non-zero numerosities, 

and were localised to regions of the posterior association cortex previously implicated in 

numerical cognition. My results demonstrate that neural number lines include zero, and, 

more importantly, provide initial evidence that the abstract concept of symbolic zero is 

linked to representations of non-symbolic empty sets. This study lays the foundations for 

a deeper understanding of how the human ability to represent the number zero may be 

grounded in perceptual capacities for detecting an absence of sensory stimulation.  
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3.5 Supplementary Materials 
 
 

 

 

Supplementary Figure 3.1. Non-symbolic control stimuli are successfully controlled for low level 
visual properties. Total dot area was measured as the number of pixels covered by all dots. Density was 
computed as the negative median Euclidean distance between dots, such that higher distances between 
dots results in lower density scores. Contrast was computed using Michelson contrast. Values are Pearson 
correlation (r) coefficients. 
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Supplementary Figure 3.2. Cross-stimulus set representations of numerosity in non-symbolic stimuli. 
A representational dissimilarity matrix (RDM) was constructed that modelled the distance effect between non-
symbolic numerosities across stimulus sets (top). This model tests whether numerical information is shared 
across the standard and control set, independently of their unique physical features. Numerical distance 
effects could be extracted from the neural data independently of the stimulus set soon after stimulus 
presentation and for the remainder of the epoch (bottom). Horizontal line represents time points where the 
correlation of the model RDM with the neural data was significantly above zero with an alpha of p <.05, 
corrected for multiple comparisons. 
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Supplementary Figure 3.3. Cross-Task RSA reveals a format-invariant neural code for number. An 
RDM modelling numerical information as shared between numerical format successfully predicted the 
neural data at two different timepoints. Removing the diagonal from this RDM removes the shared 
exemplars from the model (empty sets and zero, one dot and symbolic one, etc.) providing a strong test of 
the hypothesis that abstract numerical information also exhibits a distance effect. This model showed a 
similar pattern of prediction to the full model with shared exemplars yet failed to reach statistical significance. 
Broad confidence intervals, represented by the shaded area, suggest this may be an issue of limited 
statistical power. Horizontal lines indicate clusters where the model RDM correlated with the neural data 
significantly more than zero, p <.05, corrected for multiple comparisons. Shaded areas represent 95% 
confidence intervals. 
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Supplementary Figure 3.4. Multidimensional scaling of numbers across format. Performing 
multidimensional scaling on numerosity representations in a shared space revealed alignment along 
an axis defining numerical magnitude (dimension two). This illustrates the cross-task distance effect, 
where empty sets (blue zero) are represented more closely to symbolic one (red one) than symbolic 
five (red five), and vice versa. Dimension one discriminates between the two tasks. 
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Supplementary Figure 3.5. Cross-format zeros are most similar to each other. Decoders 
trained to identify zero stimuli were presented with cross-format numerosities and the decoder’s 
decision evidence was taken as a metric of discriminability of that numerosity from its cross-format 
zero. The different coloured lines represent the discriminability of a particular number from its 
cross-format zero. Lower values represent less discriminability (and higher similarity to zero). The 
lower values of discriminability for zero trials (red lines) indicate that representations of zero are 
most similar to the cross-format zero compared to non-zero numerosities. Black horizontal bars 
represent time points where zero was significantly less discriminable from the cross-format zero 
than one. 
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4. Dementia as a disorder of 
consciousness 

 

4.1 Introduction 
 

Alzheimer’s disease (AD) is a debilitating cognitive disorder characterised by a slow but 

steady decline in cognitive functioning, with impairments occurring across multiple 

cognitive domains (World Health Organization, 2011). Typically, characterisations of AD 

have centred on the compromised cognitive faculties observed throughout disease 

progression, such as learning, executive function, planning, and communicating (Sperling 

et al., 2011). However, as the disease severity increases, patients with AD can lose the 

capacity to recognise relatives and caregivers, and may also exhibit an unawareness of 

features of their environment (Clare, 2010; O’Shaughnessy et al., 2021). Awareness-

related deficits such as these are the most distressing aspects of AD for both patients 

and caregivers alike (Rice et al., 2019) and there is an urgent need for the effects of AD 

on conscious experience to be better understood so that effective and patient-centred 

care protocols can be developed accordingly (Huntley et al., 2023; Huntley et al., 2021).  

 

Previous research suggests AD patients can suffer from compromised awareness in high-

level tasks and judgements (Huntley et al., 2021). For instance, most AD patients suffer 

from an impaired awareness of their own cognitive deficits and can even be unaware of 

their diagnosis altogether (Starkstein, 2014). Anosognosia may be driven by a reduced 

capacity for updating self-relevant knowledge in AD, resulting in the reliance of out-of-

date knowledge regarding oneself (Mograbi et al., 2009). Disrupted awareness of the self 

has also been demonstrated in AD using mirror tasks, where the ability to recognise 
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oneself becomes increasingly impaired as the disease progresses (Biringer & Anderson, 

1992; Grewal, 1994). Given the close theoretical link between metacognition and 

awareness (Fleming, 2020; Lau, 2019), deficits in metacognitive performance in AD also 

provide support for disrupted awareness in dementia. Patients with AD, for example, 

exhibit difficulties in differentiating imagined from external events (Fairfield & 

Mammarella, 2009), while also showing impaired metacognition in episodic memory 

tasks, even in mild stages of the disease (Dodson et al., 2011; Mimura & Yano, 2006). 

Metacognition of memory has even been shown to relate to the degree of tauopathy in 

cognitively unimpaired adults (Vannini et al., 2019). The above findings provide an initial 

indication that conscious experience may be systematically altered in AD and motivates 

calls for an improved understanding of the neurobiological markers of awareness in AD. 

 

Testing whether proposed neural correlates of consciousness (NCCs) are present in 

patients with AD is a promising method for identifying characteristics of awareness in the 

disorder (Huntley et al., 2021). The NCCs are defined as the neural processes that are 

both necessary and sufficient for a conscious experience to occur (Crick and Koch, 1998), 

and different theories of consciousness propose different NCCs as the determinants of 

awareness. The Global Neuronal Workspace Theory (GNWT), for example, states that 

stimuli are consciously perceived when their representations are broadcast across 

different cognitive domains (e.g., attention, planning, motor systems) in a global 

workspace that is subserved by frontoparietal regions of the brain (Dehaene and 

Naccache, 2001; Mashour et al., 2020). According to GNWT, entry into awareness is 

facilitated by an ‘ignition’ process that underlies the ascendence of sensory 

representations into these networks (Dehaene and Naccache, 2001; Mashour et al., 

2020). Accordingly, frontoparietal activation and late-stage event-related potentials 

(ERPs) such as the late positivity (LP) are defined as NCCs in a GNWT framework 

(Dehaene and Changeux, 2011). In a proof-of-concept study, Huntley et al. (2021) used 

the GNWT framework to examine consciousness in AD, finding that AD patients exhibited 

a diminished LP response when stimuli were presented above perceptual threshold. This 

is suggestive of a diminished frontal response to conscious versus unconscious stimuli. 

However, as a proof-of-concept study involving only four patients with AD, the findings 
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reported in Huntley et al. (2021) are preliminary and require replication in a larger sample. 

Here, I conduct a group-level fMRI study (N = 44) using the same task as Huntley et al. 

(2021) to provide a robust assessment of the neural correlates of awareness in AD under 

a GNWT framework. 

 

The task used in the present study originates from tests of consciousness in infants 

(Kouider et al., 2013). Images of faces are presented at varying durations and are 

preceded and followed by scrambled face masks, rendering the face image unconscious 

when presented at short durations. This results in trial-by-trial variations in awareness, 

enabling comparisons of the neural activity associated with visible and subliminal stimuli. 

To compensate for the cognitive deficits associated with AD, task instructions were 

minimal and trial-by-trial reports of awareness were not required. Instead, I relied on 

previous findings using the same procedure and stimuli which indicate that the threshold 

for conscious perception of faces is approximately 50 ms in adult humans (Gelskov & 

Kouider, 2010). To mitigate the risk of incorrect trial labelling, trial durations were selected 

with a large margin either side of this perceptual threshold. As such, I defined subliminal 

and visible stimuli as those that were presented for 33 ms and 200 ms, respectively. 

 

To anticipate my findings, I provide evidence to suggest that neural activity associated 

with conscious perception is degraded in mild-moderate AD patients compared to 

controls. Using multivariate decoding analyses, I find that neural correlates of visibility-

related information within visual and frontoparietal regions are reduced in mild-moderate 

AD patients. Furthermore, I characterise the neural responses of four individual patients 

with severe AD, finding qualitative signatures of frontal ignition in the only patient who 

displayed explicit behavioural signs of awareness. This potentially indicates that ignition-

like responses to visual stimuli may be a potential biomarker for awareness in AD, 

although caution is needed when interpreting this result. These findings represent a novel 

contribution of the neuroscience of consciousness in understanding awareness in AD and 

justify calls to further examine AD as a disorder of consciousness. 
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4.2 Materials and Methods 
 

4.2.1 Participants 
 

Forty-four participants took part in the fMRI experiment at the Wellcome Centre for 

Human Neuroimaging, University College London. The full sample of 44 participants 

consisted of 26 healthy controls (Meanage = 75.88, SDage = 5.49), 14 mild-to-moderate AD 

patients (Meanage = 75.92, SDage = 6.01), and 4 patients with severe AD (Meanage = 84.75, 

SDage = 8.14). Three clinical rating tools were used to classify patients according to the 

severity of AD symptoms: Clinical Dementia Ratings (CDR; Morris, 1997), The Global 

Deterioration Scale (GDS; Reisberg et al., 1982), and the standardized Mini-Mental State 

Examination (sMMSE, Molloy et al., 1991). Participant scores on each of these scales 

are presented in Supplementary Table 4.1. As participants with severe AD lacked 

capacity to consent, following the legal framework of the Mental Capacity Act (2005), 

personal consultees were identified and provided a declaration that the person would 

have wished to take part in the study (HRA, 2017). The study was approved by the Wales 

6 NHS ethics committee (18/WA/0012). 

 

4.2.2 Experimental Procedure 
 

The experimental procedure is illustrated in Figure 4.1. Trials began with a fixation cross 

of 1000ms. On each trial, the critical stimulus was either a face or a mask and was 

presented for either 33ms (subliminal condition) or 200ms (visible condition). The critical 

stimuli were flanked by a forward mask (300ms) and a backward mask (33ms), followed 

by a final mask (1500ms). Jitter between trials was randomly drawn from a uniform 

distribution between 0 and 1 seconds. Stimuli were presented in a random order 

throughout the experiment, with 60 trials per scanning run across 3 runs, totalling 180 

trials overall, with 45 trials per condition (visible-face, subliminal-face, visible-mask, 

subliminal-mask). Participants were instructed to passively attend to the stimuli and the 
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experimenter ensured their eyes stayed open throughout the experiment via an eye-

tracking monitor. 

 

4.2.3 fMRI Scanning Parameters 
 

fMRI scans were performed using a 3 Tesla Siemens Prisma MRI scanner with a 32-

channel head coil. I acquired structural images using an MPRAGE sequence (1x1x1 mm 

voxels, 176 slices), followed by a double-echo FLASH (gradient echo) sequence with TE1 

= 10 ms and TE2 = 12.46 ms (64 slices, slice thickness = 2 mm, gap = 1 mm, in plane 

FoV = 192 x 192 mm2, resolution = 3 x 3 mm2) that was later used for field inhomogeneity 

correction. Functional scans were acquired using a 2D EPI sequence (3x3x3 mm voxels, 

TR = 3.36 s, TE = 30 ms, 48 slices, matrix size = 64 x 72, Z-shim = 0). 

 

Figure 4.1. Experimental Design. Target stimuli (faces or masks) were presented 
for 33 (subliminal) or 200 (visible) ms. They were flanked by forward and backwards 
masked to further manipulate their visibility. 
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4.2.4 fMRI Data Preprocessing 
 

fMRI preprocessing followed a standard procedure reported in Morales et al. (2018) and 

Mazor et al. (2020). All fMRI preprocessing was performed using SPM12 (Statistical 

Parametric Mapping; www.fil.ion.ucl.ac.uk/spm). The first five volumes of each run were 

discarded to allow for T1 stabilization. Functional images were realigned and unwarped 

using local field maps (Andersson et al., 2001) and then slice-time corrected (Sladky et 

al., 2011). Each participant's structural image was segmented into gray matter, white 

matter, CSF, bone, soft tissue, and air/background images using a nonlinear deformation 

field to map it onto template tissue probability maps (Ashburner & Friston, 2005). This 

mapping was applied to both structural and functional images to create normalized 

images to Montreal Neurological Institute (MNI) space. Normalized images were spatially 

smoothed using a Gaussian kernel (8 mm FWHM). I set a within-run 1 mm rotation and 

3 mm affine motion cut-off criterion, which led to the removal of one block for a patient 

with severe AD. Preprocessing and construction of first- and second-level models used 

standardized pipelines and scripts available at 

https://github.com/metacoglab/MetaLabCore/.  

 

4.2.5 General Linear Model (GLM) 
 

The GLM consisted of four regressors of interest per block, one for each stimulus 

condition. As such, for each block, there was a regressor for the visible-face, subliminal-

face, visible-mask, and subliminal-mask trials. Trials were modeled by specifying stick 

functions aligned with the onset of the critical stimulus. Motion correction parameters were 

included as covariates of no interest for each run, alongside a unique constant term per 

run. Regressors were convolved with the canonical haemodynamic response function. 

Low-frequency drifts were excluded with a 1/128 Hz high-pass filter. 

 

 

https://github.com/metacoglab/MetaLabCore/
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4.2.6 Univariate Contrasts 
 

All univariate analyses were conducted using (Statistical Parametric Mapping; 

www.fil.ion.ucl.ac.uk/spm). For control and AD groups, whole-brain single-subject 

contrast images were computed to examine neural markers of visual awareness (visible-

faces > subliminal-faces). Contrast images were then submitted to second-level random-

effects analyses. One-sample t tests against zero were used to visualise within-group 

contrasts and two-sample independent t tests were used to visualise differences between 

the control and mild-moderate AD group. For severe AD patients, owing to the small 

number of patients, only single-subject contrast images were computed. Because of the 

ethical implications associated with null findings of neural correlates of awareness in 

patient populations (particularly those that are false negatives), I visualised univariate 

contrasts at a liberal voxelwise threshold of p < .05 uncorrected, with an arbitrary cluster-

forming threshold of 250 for the purposes of visualisation. As such, results from univariate 

contrasts in the present study provide only qualitative illustrations of neural responses to 

conscious and unconscious stimuli, while my multivariate decoding analyses (below) 

provide valid whole-brain statistical inference.  

 

4.2.7 Multivariate Decoding 
 

To demonstrate statistical differences in neural correlates of consciousness between 

patients and controls, I performed whole-brain searchlight decoding analyses. Decoding 

analyses are sensitive tools used to identify multivariate neural patterns associated with 

specific cognitive processes and have been used widely to characterise the neural basis 

of consciousness (Chapter 2; Mazor et al., 2022; Andersen et al., 2016; Taschereau-

Dumouchel et al., 2020). Importantly, they can provide greater sensitivity in neuroimaging 

analyses as they consider the covariance in voxel activity, rather than simply estimating 

the mean activation over all voxels. As such, I preferred them to univariate analyses to 

statistically test for differences in neural correlates of consciousness in AD patients. To 

perform the decoding analysis, I computed beta estimates per trial (Mumford et al., 2012) 

and used the estimates for visible-face and masked-face trials to train a binary LDA 
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decoder. Decoders were trained to distinguish beta patterns associated with visible-face 

trials from patterns associated with subliminal-face trials in a searchlight procedure. 

Searchlights had a radius of 4 voxels, resulting in 257 voxels per searchlight. The 

searchlights moved throughout the brain, with each voxel included as the centre voxel in 

a searchlight. Above chance (50%) accuracy of such a decoder indicates that neural 

activity covarying with an individual’s awareness of a particular stimulus is present within 

the searchlight, and as such this procedure can be used to examine which neural regions 

are associated with visual awareness.  

 

The decoder was trained with a 5-fold cross-validation scheme and a shrinkage 

parameter of 0.1. Trials were balanced such that there was an equal number of visible 

and invisible trials within each fold. The accuracy of each searchlight’s decoder was 

averaged across folds, and this value was stored at the centre of the searchlight, 

producing a whole brain map of decoding accuracy. All decoding analyses were 

performed using custom MATLAB (2021b) scripts. 

 

4.2.8 Statistical Inference on Decoding Accuracies 
 

Distributions of accuracy values from the classification of fMRI data are often non-

Gaussian and asymmetric around the chance level. This means that parametric statistical 

comparisons, such as t tests against chance decoding (50%), are unable to provide valid 

tests of whether group-level accuracy values are significant (Stelzer et al., 2013). 

Therefore, to determine where decoders had performed significantly above chance, I 

compared mean performance across all participants with a null distribution created by 

first permuting the class labels 25 times prior to decoding per participant and then using 

bootstrapping to form a group-level null distribution of 10,000 bootstrapping samples 

(Stelzer et al., 2013). To compare decoding performances across AD and control groups, 

a group-level null distribution was formed by taking the difference between the AD and 

control groups’ mean decoding accuracy values throughout the bootstrapping procedure. 

The observed empirical accuracy maps were then compared with the null distributions to 
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compute p values. The p values for all presented decoding maps are significant at p < 

.05, corrected for multiple comparisons with a false discovery rate of 0.05. 

 

4.3 Results 
 

4.3.1 Controls and AD patients are sensitive to face stimuli 
 

To ensure participants were sensitive to the target face stimuli presented in the 

experiment, I trained a decoder to decode visible face stimuli from scrambled masks. 

Across both groups, decoding was successful throughout the brain. In healthy controls, 

decoding was successful across visual, parietal and frontal cortices (Figure 4.2, top; 

Supplementary Table 4.2). AD patients also showed sensitivity to faces throughout 

visual, parietal, and frontal regions (Figure 4.2, middle; Supplementary Table 4.2), 

suggesting that even during passive viewing, AD patients were sensitive to the 

experimental paradigm and face stimuli. Controls showed greater sensitivity to faces in 

small regions of the visual and parietal cortex (Figure 4.2, bottom; Supplementary Table 
4.3), but no difference was found in frontal regions. 

 

4.3.2 Ignition related activity in AD 
 

To explore whether the neural activity associated with conscious visual perception is 

diminished in AD, I first produced visualisations of the neural response to conscious 

stimuli in AD patients and controls. These maps provide a qualitative demonstration of 

univariate increases in activity for visible versus subliminal face stimuli at a liberal 

uncorrected threshold, but do not allow for whole-brain corrected statistical inferences to 

be drawn from them (see Section 4.3.3 for valid statistical inference with awareness-

related analyses). As mentioned above, the reason for producing such maps is to offer 

protection against false negatives when testing for neural markers of awareness in patient 

groups. To produce the visualisations, I contrasted the activity from visible face trials with 

subliminal face trials in both groups. In healthy controls, increased activity in the fusiform  
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Figure 4.2. Healthy controls and AD patients both show sensitivity to visible faces. 
Searchlight decoding analysis reveal regions across occipital, fusiform and medial pre-frontal 
regions where face information could be decoded, indicating that face stimuli were processed by 
participants. Healthy controls showed significantly better face decoding in regions of the visual 
and parietal cortex, but no difference was found in frontal cortices. Maps are thresholded at p 
<.05, corrected for multiple comparisons. Clusters are presented in Supplementary Table 4.2 
and Supplementary Table 4.3.  
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gyrus and dorsolateral prefrontal cortex (dlPFC) was associated with awareness of the 

face stimuli (Figure 4.3, top; Supplementary Table 4.4). In contrast, a markedly smaller 

number of voxels across motor and prefrontal regions showed this increase in the AD 

group, even at a liberal threshold of p < .05 uncorrected (Figure 4.3, middle; 

Supplementary Table 4.4). Most importantly to the endeavour of distinguishing 

differences in neural markers of awareness in AD, however, is the contrast between 

awareness-related activity in the control and patient groups. Here, awareness-related 

activity in the left fusiform gyrus, right anterior insula, and right dlPFC was larger in 

controls compared to AD patients (Figure 4.3, bottom; Supplementary Table 4.4) 

 

4.3.3 Decoding analyses reveal degraded visibility information in AD 
 

Although qualitative examination of the neural response to conscious vs. unconscious 

stimuli revealed larger frontal activation in controls than AD patients (Figure 4.3), this 

analysis does not allow for valid statistical inference due to the liberal uncorrected 

threshold used. To overcome this limitation and to ask whether AD patients show a 

statistically significant degradation in neural correlates of awareness compared to 

controls, I performed a searchlight decoding analyses throughout the entire brain to 

identify multivariate neural patterns that correlated with visual awareness. 

 

In keeping with the univariate visualisations, searchlight decoders trained to classify 

visible and subliminal trials throughout the brains of healthy controls showed significantly 

above chance (50%) performance throughout visual, parietal, and frontal cortices (Figure 
4.4, top; Supplementary Table 4.5). In AD patients, decoders were also able to isolate 

representations of visibility across fusiform and prefrontal regions (Figure 4.4, middle; 
Supplementary Table 4.5), suggesting that with sensitive multivariate techniques, visual 

and frontal neural patterns associated with visual awareness are still observable in 

patients with mild to moderate AD. Despite this, decoding of awareness-related activity 

was significantly better for healthy controls throughout visual, parietal, and prefrontal 

regions (Figure 4.4, bottom; Supplementary Table 4.6), indicating degraded 

awareness-related information in the brains of AD patients. 



- 120 - 
 

  

Figure 4.3. Qualitative visualisation of univariate responses to conscious faces in AD 
patients and controls. Contrasting trials where participants viewed visible faces vs. 
subliminal faces reveals neural activity associated with visual awareness. In controls, this 
contrast was associated with activity in the fusiform gyrus and prefrontal cortex (top panel). 
Only a limited number of prefrontal voxels were identified as increasing for visible vs. 
subliminal faces in the AD group, even at the liberal threshold of p <.05 uncorrected (middle 
panel). Notably, when comparing the activity associated with awareness across the two 
groups, the controls showed greater frontal activation (bottom panel). Maps are presented at 
p <.05 uncorrected. Clusters are reported in Supplementary Table 4.4. 
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Figure 4.4. Decoding analyses reveal existing, albeit diminished, NCCs in AD. Searchlight 
decoding analyses where decoders were trained to classify visible and subliminal face trials in 
searchlights throughout the brain. In healthy controls, the decoder could classify visible from subliminal 
trials significantly above chance throughout visual, parietal, and frontal regions (top). In AD patients, 
decoders were also successful in identifying neural patterns associated with awareness in visual and 
prefrontal regions (middle). In keeping with univariate analyses, there was a significant increase in 
decoding accuracy for controls vs. AD patients, indicative of diminished neural markers of awareness 
in AD. Maps are thresholded at p <.05, corrected for multiple comparisons. Clusters are reported in 
Supplementary Table 4.5  and Supplementary Table 4.6. 
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4.3.4 Global Ignition as a Biomarker for Awareness in Severe AD 
 

Although I have demonstrated differences in the neural correlates of visual awareness in 

mild-to-moderate AD, a question remains with regards to how the neural responses 

associated with awareness are affected in latter, more severe, stages of AD. To explore 

this, I again produced visualisations illustrating increases in univariate neural activity for 

conscious vs. unconscious stimuli in 4 patients with severe AD and compared these 

visualisations with the patients’ scores on clinical scales of cognitive functioning and 

disease severity. To do this, I first contrasted visible face trials with subliminal face trials 

at the single subject level for each patient. In all but one patient, no neural activity related 

to conscious perception of faces was identifiable. For visualisation purposes, these 

contrasts are illustrated at different weak thresholds (Figure 4.5; subjects 2-4). One 

participant with severe AD, however, still exhibited a classic ‘ignition’ like neural profile 

associated with a contrast of visible and subliminal faces, extending across bilateral 

fusiform, parietal, and medial and lateral pre-frontal cortices (Figure 4.5; subject 1; 

Supplementary Table 4.7). 

 

Strikingly, patient #1 was the only patient in the severe group to be able to speak in 

intelligible sentences. Moreover, they could maintain some eye contact and offer 

appropriate responses to staff. Importantly too, their general cognitive screening (resulted 

in a ‘moderate-severe’ rating (sMMSE = 12/30), and their dementia-specific clinical 

ratings were both ’moderate-severe’ as well (GDS = 6; CDR = 14). This contrasts with 

patients #2-4, who were non-verbal and unable to follow command or engage with any 

cognitive assessments (sMMSE = 0/30). These patients showed limited eye contact, and 

while they did offer occasional moments of emotional expression, these seemed 

unrelated to external circumstances. Family and carers of patients #2-4 reported limited 

or no evidence of the patients recognising those closest to them. 
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Figure 4.5. Severe AD leads to abolition of responses to visible faces. For single subjects 
with severe AD, contrasting trials where patients viewed visible faces vs. subliminal faces 
illustrates the abolition of neural markers of awareness in most patients (#2 – #4). For 
visualisation purposes, maps for these patients are presented at arbitrary low thresholds. One 
patient with severe AD (#1) showed awareness-related activity across posterior and frontal 
regions. Notably, patient #1 was the only patient with severe symptoms to maintain some 
communicative and cognitive abilities (see main text). All maps are qualitative visualisations of 
neural activity, produced using a lenient uncorrected threshold of p < .05 uncorrected to protect 
against false negatives. Clusters are reported in Supplementary Table 4.7. 
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To assess whether an absence of single subject clusters in these single-subject 

qualitative maps was unique to subjects with severe AD, I extracted functional regions of 

interests (ROIs) from the equivalent group-level contrast in healthy controls. Two ROIs 

were created. First, an ROI that comprised of the right fusiform cluster (Supplementary 
Table 4.4). Second, by combining the two largest frontal clusters (ACC and dlPFC; 

Supplementary Table 4.4), I created a functional ROI which spanned lateral and medial 

portions of the PFC. Both these ROIs exhibited sensitivity to the visibility of face stimuli in 

healthy controls. Extracting the peak t-value in both ROIs for each single subject contrast 

of visible > subliminal faces allowed me to compare the single subject responses to visible 

versus subliminal faces across all groups (Figure 4.6). As illustrated in Figure 4.5, all but 

one severe AD patient registered t-values near zero in the right fusiform (Figure 4.6, top-

left) and PFC (Figure 4.6, top-right), suggesting no increase in activity for visible versus 

subliminal faces in these patients. However, across both ROIs, the Control and Mild AD 

groups also contained subjects that failed to exhibit a single-subject increase in activity 

for visible versus subliminal faces. As such, despite exclusively finding ignition-like activity 

in the only severe AD patient to exhibit cognitive and communicative abilities, the null 

findings in the other severe AD patients cannot conclusively be attributed to an absence 

of such abilities, as null results also occur in a proportion of healthy individuals (Figure 
4.6, top). Additionally, within the same ROIs, the t-values computed from a visible face 

versus scrambled mask contrast were clustered around 0 for all three patients with severe 

AD who showed no response to the visibility of faces (Figure 4.6; bottom). This is an 

indication that an absence of neural markers of awareness in these patients may have 

been due to a global failure to respond to face information at all, rather than a specific 

dissolution of awareness-related mechanisms.  
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4.4 Discussion  
 

People with AD suffer from debilitating cognitive deficits and exhibit an impaired ability to 

communicate with family members and caregivers. For caregivers and patients, 

degradations in awareness are the most distressing aspect of the disorder (Rice et al., 

2019). In the present study, I provide the first systematic exploration of NCCs in AD in 

an initial attempt to characterise the subjective experience of AD patients. In a masking 

paradigm, I found that, while patients with mild-moderate AD still show sensitivity to faces, 

they exhibit degraded information pertaining to whether they consciously perceived a face 

or not. This reduction in sensitivity to the visibility of stimuli was present across visual and 

Figure 4.6. Single subject 
contrasts of visible vs. 
subliminal faces in 
functional ROIs. Top row: 
Peak t-values from 
functional ROIs in fusiform 
and prefrontal regions reveal 
subjects within each control 
and patient group who 
display no increase in 
activity for visible vs. 
subliminal faces at the single 
subject level. As such, a 
failure to reach statistical 
significance in such an 
analysis cannot conclusively 
be attributed to a patient’s 
AD diagnosis. Bottom row: 
Peak t-values from the same 
ROIs for the visible face vs. 
scrambled mask contrast. 
Only one severe AD patient 
showed sensitivity to faces, 
suggesting that null findings 
of ignition profiles may be a 
result of a global insensitivity 
to the paradigm, rather than 
being tied to patients’ 
awareness.    
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frontoparietal regions of the brain. Visualisations of univariate activity also illustrated 

larger frontal responses to conscious versus unconscious information in controls 

compared to AD patients. Finally, analyses of patients with severe AD revealed qualitative 

single-subject NCCs that corroborated clinical scores of disease severity and cognitive 

functioning. Although this final analysis suggests that ‘ignition’ processes may be a useful 

biomarker for awareness in AD in future, a control analysis showing an absence of ignition 

processes in individual healthy controls suggests this interpretation should be taken with 

caution. 

 

The term ‘disorder of consciousness’ is usually applied to conditions where arousal (i.e., 

the state of consciousness) is negatively affected, such as comas and vegetative states 

(Giacino et al., 2014). However, this negates the impact that alterations in the content of 

consciousness play in cognitive disorders such as AD (Huntley et al., 2021). To improve 

wellbeing of AD patients, it is not sufficient to ask to what extent they are awake. Instead, 

we must examine what the content of their awareness appears to be – how do they 

subjectively experience the world? According to GNWT, whether stimuli are detected 

depends on propagation of perceptual information from sensory cortices to frontoparietal 

regions (Dehaene and Changeux, 2011; Mashour et al., 2020). In line with this, reportable 

experiences have been shown to rely on sustained neural responses in the PFC of 

monkeys (van Vugt et al., 2018). Moreover, failures to detect stimuli are seemingly driven 

by a loss of information transmission from both low- and high-level visual regions to 

frontoparietal areas (van Vugt et al., 2018). Taking this into consideration, the finding of 

reduced awareness-related information in frontal regions of AD patients may reflect a 

decrease in the amount of sensory information reaching awareness in individuals with 

AD.  

 

Neurodegeneration in AD results in the progressive disconnection of cortical networks 

often associated with awareness and selfhood, such as the default mode and 

frontoparietal networks (Buckner et al., 2005; Hallam et al., 2020; Menon, 2011; Weiler 

et al., 2016). These networks are comprised of regions commonly associated with the 

content of consciousness, such as lateral and medial frontal cortex, anterior cingulate 
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cortex, and insula (Chapter 2; Bor & Seth, 2012; Dijkstra & Fleming, 2023; Lau & 

Rosenthal, 2011). Metacognitive deficits in AD are also associated with similar regions, 

further indicating disruptions to brain areas responsible for self-awareness and insight in 

AD (Hallam et al., 2020). Dysfunction of large-scale cortical networks in AD may have a 

destabilising effect on the representation of perceptual content in the global workspace, 

resulting in weaker frontal responses to visible stimuli. Interestingly, multivariate decoding 

analyses highlighted significantly improved decoding of stimulus visibility in visual regions 

for controls compared to patients. This suggests that sensory representations were of 

greater precision in controls. One mechanism that could explain the improved awareness 

decoding in both visual and frontal regions is that in AD, sensory representations may 

lack the stability or precision required to undergo ignition into the global workspace. This 

would also explain why decoding of perceptual content (i.e., face vs. mask decoding) was 

more successful in the visual cortex of controls compared to patients. It should be noted, 

however, that other models of AD progression have been proposed, particularly in relation 

to a global deterioration of myelination (Bartzokis, 2004). In this case, the effect of AD on 

consciousness may have less to do with neural circuits that typically support perceptual 

experience, and more to do with a breakdown of neural functioning more generally. Still, 

the core claim of this chapter, that AD should be considered a disorder of consciousness, 

is not impacted by such a position – it remains agnostic as to whether AD is ‘only’ a 

disorder of consciousness, or whether it is a global cognitive disorder. Indeed, it is far 

more likely, given the widespread destruction of neural regions, that the latter be true. 

What is important is that the conscious experiences of AD patients begin to be considered 

from a neuroscientific perspective. In any case, to isolate the processes responsible for 

degraded neural correlates of perceptual experience in AD, further neuroimaging studies 

involving direct measures of functional and structural connectivity during near-threshold 

tasks are needed. 

 

Given the difference in ignition-like signatures between AD patients and controls, it may 

be appealing to classify frontal activity in perceptual threshold tasks as a neurobiological 

marker of awareness in AD. Indeed, when visualising the neural activity of individual 

patients with severe AD, the presence of frontal responses to visible stimuli corroborated 
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clinical scores, with ignition-like activity only present in the one patient that continued to 

exhibit communicative abilities. However, null findings were also present within the 

healthy control group, indicating that frontal activity could not reliably distinguish 

conscious and unconscious processing at the single subject level. To mitigate discomfort 

for patients partaking in the experiment, experiment duration was kept short and trial 

numbers were limited, constraining the power of single-subject analyses to detect effects 

in both patients and controls (Mei et al., 2022) and likely contributing to these null findings. 

Additionally, there is a concern that null findings in severe AD patients may reflect an 

inability to attend to the stimuli, rather than an absence of awareness. This was supported 

by a further control analysis, which showed how the patients for whom no marker of 

awareness was found also exhibited no response to faces at all, indicating a global failure 

to respond to the experimental paradigm. For the mild-moderate AD patients, however, 

the sensitivity to faces and visibility in decoding analyses suggests that patients in this 

group were visually attending and responsive to the stimuli throughout. Overall, I provide 

novel evidence in support of the notion that awareness may be degraded in AD at the 

group level. However, if neural activity in perceptual tasks is to provide a neurobiological 

marker of awareness in single AD patients, the challenge of recording larger datasets 

from attentive individual patients must first be overcome. 

 

Behavioural tests of perceptual awareness in AD have thus far been inconclusive. The 

tools used to explore sensory consciousness in healthy populations (e.g. trial by trial 

awareness reports, subjective ratings, psychophysical paradigms) are not viable in 

studies with AD patients who lack basic cognitive functioning. As such, drawing 

conclusions from such studies can be difficult. For instance, some studies that have 

argued for maintained perceptual awareness in dementia have monitored facial 

expressions and physiological measures in response to unpleasant and pleasant stimuli 

(Asplund et al., 1991; Beach et al., 2021). In these cases, facial expressions, heart rate, 

and respiratory rate all remain sensitive to the pleasantness of stimuli, ostensibly 

indicating intact sensory awareness (Asplund et al., 1991; Beach et al., 2021; 

O’Shaughnessy, 2019). However, different metrics of facial expression have shown 

limited agreement (Asplund et al., 1995) and physiological markers do not necessarily 
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track subjective emotional experiences (Taschereau-Dumouchel et al., 2018, 2020). The 

paucity of viable behavioural measures of perceptual awareness in AD motivates studies 

like ours, which seek to identify objective neural characteristics of AD that can indicate 

differences in awareness. However, the approach of using candidate NCCs as a test bed 

for awareness in AD must also be used with caution. Identifying the neural basis of 

consciousness is still an ongoing research programme and no single NCC has been 

identified. Indeed, it is likely that different NCCs pertain to different aspects of awareness 

(Seth and Bayne, 2022). As such, reduced decoding of visibility in the frontal cortex of AD 

patients should not be used to classify patients as categorically unaware. GNWT is, after 

all, a cognitive theory of consciousness (Baars, 1988; Seth and Bayne, 2022), so it may 

be that reduced ignition in AD reflects an impaired ability to report or evaluate perceptual 

experiences, rather than an absence or degradation of experience itself. It would be 

ethically egregious to deny awareness to a patient who still maintained a subjective 

consciousness, so any reverse inference based on hypothesised NCCs should be 

caveated with the acknowledgement that results may reflect only one small component 

of patients’ perceptual experiences (Bayne et al., 2016; Pérez et al., 2024). Thus, 

although I provide evidence in favour of a dysfunction of awareness in AD, future studies 

will be needed to fully characterise the different dimensions of awareness impacted by 

the disorder. 

 

In summary, I provide the first neurobiological test of awareness in patients with mild-

moderate and severe AD. I find that mild-moderate AD patients exhibit reduced decoding 

of stimulus visibility across visual and frontoparietal cortices compared to controls. 

Additionally, single subject visualisations of four patients with severe AD showed an 

ignition like effect in the only patient to maintain communicative abilities, although control 

analyses suggested it would be premature to use such effects as biomarkers of 

awareness in AD. When interpreted in a GNWT framework, my results provide evidence 

for a degraded or compromised perceptual awareness in patients with AD and motivates 

further investigation into the dimensions of consciousness impacted by the disorder. 
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4.5 Supplementary Material 
 

 Control (n= 26) Mild (n = 14) Severe (n=4) 

AGE (SD) 75.88 (5.49) 75.92 (6.01) 84.75 (8.14) 

MALE/FEMALE 10/16 7/7 1/3 

CDR  
(Median, IQR) 

0 (0) 4.25 (4.75)* 18 (1) 

GDS 
(Median, IQR) 

1 (0) 4 (1.5)* 7 (0.25) 

sMMSE 29.62 (0.59)** 22.42 (6.71)* 4.25 (5.68) 

*n = 12 as 2 participants refused/would not participate with cognitive assessment. 
**n = 21 as added sMMSE to controls later in the course of the study. 
 
Supplementary Table 4.1 Demographic information. Including three different measures of 
cognitive abilities and dementia symptoms (CDR, GDS, sMMSE). As the CDR and GDS are 
ordinal scales, the interquartile range (IQR) is reported instead of the SD.  

 
 

Contrast Region Peak 
Accuracy 

No. Voxels x y z 

Controls Fusiform 
Gyrus 

0.59 4430 40 -50 -16 

Controls Lateral 
Occipital 
Cortex 

0.58 2834 -40 -78 16 

Controls Inferior Frontal 
Gyrus 

0.55 214 -44 8 26 

Controls Posterior 
Cingulate 

0.55 202 -6 -72 16 

AD Supplementary 
Motor Area 

0.59 82 8 -6 72 

AD Inferior 
Parietal 

0.57 52 52 -34 50 
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AD Medial 
Prefrontal 

0.58 42 -4 58 14 

AD Lateral 
Occipital 
Cortex 

0.57 23 -48 -60 -2 

 

Supplementary Table 4.2. fMRI clusters associated with the Visible Face vs. Scrambled 
Mask decoding. XYZ coordinates are MNI coordinates of peak voxel.  

 
Region Peak 

Difference in 
Accuracy 

No. 
Voxels 

x y z 

Intraparietal 
Sulcus 

0.09 92 -26 -60 54 

Posterior 
Superior 
Temporal 

Sulcus 

0.10 75 50 -60 10 

Lateral 
Occipital 
Cortex 

0.09 59 -42  -86 18 

Intraparietal 
Sulcus 

0.09 42 32 -64 42 

 

Supplementary Table 4.3 fMRI clusters where controls show greater Visible Face vs. 
Scrambled Mask decoding than AD patients. XYZ coordinates are MNI coordinates of peak 
voxel. 

 
Contrast Region Peak t No. Voxels x y z 

Controls Right dlPFC 4.72 2440 50 26 24 

Controls Anterior 
Cingulate 

4.08 973 12 18 -18 

Controls Right Fusiform 
Gyrus 

6.26 856 42 -44 -16 

Controls Left Fusiform 
Gyrus 

5.02 778 -44 -42 -18 

Controls Superior 
Temporal Sulcus 

4.05 630 44 -44 14 
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Controls Inferior Frontal 
Gyrus 

4.70 521 -38 10 28 

Controls Right 
Intraparietal 

Sulcus 

3.89 411 36 -60 42 

Controls Anterior 
Temporal Lobe 

3.89 397 46 12 -28 

Controls Left Intraparietal 
Sulcus 

3.97 303 -36 -60 54 

Controls Corpus Callosum 3.32 261 -10 -28 26 

AD Right vmPFC 3.83 593 2 62 -12 

AD Premotor Cortex 3.01 354 -16 4 64 

AD Precentral 
Sulcus 

3.53 326 40 0 36 

AD White Matter 4.26 317 36 -46 16 

AD White Matter 4.02 311 -22 -42 22 

AD Brainstem 5.94 304 -6 -14 -24 

AD Left vmPFC 3.22 275 -22 56 6 

Controls > 
AD 

Right dlPFC 3.68 1044 40 38 18 

Controls > 
AD 

Intraparietal 
Sulcus 

3.84 800 -40 -40 40 

Controls > 
AD 

Anterior 
Temporal Lobe 

4.08 736 62 6 -24 

Controls > 
AD 

Parahippocampal 
Cortex 

3.53 486 12 -42 -10 

Controls > 
AD 

Superior 
Temporal Sulcus 

3.38 485 52 -40 10 
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Controls > 
AD 

Cerebellum 3.35 421 -42 -52 -46 

Controls > 
AD 

Premotor Cortex 2.81 366 52 -2 34 

Controls > 
AD 

Brainstem 3.44 350 8 -30 -16 

Controls > 
AD 

Anterior 
Cingulate  

2.72 328 10 16 34 

Controls > 
AD 

Inferior Temporal 3.06 320 -54 -48 -18 

Controls > 
AD 

Fusiform Gyrus 3.50 318 -34 -36 -24 

Controls > 
AD 

Putamen 2.97 318 24 -10 0 

Controls > 
AD 

mPFC 3.32 303 26 40 16 

Controls > 
AD 

Cingulate Cortex 2.84 290 4 -14 38 

Controls > 
AD 

Thalamus 3.41 267 -14 -16 -4 

Controls > 
AD 

Posterior 
Cingulate 

3.14 253 8 -36 40 

 

Supplementary Table 4.4 fMRI Clusters associated with the Visible Face > Subliminal Face 
group-level contrasts and the subsequent between-group comparison. XYZ coordinates are 
MNI coordinates of peak voxel. 

 
 

Group Region Peak 
Accuracy 

No. Voxels x y z 

Controls Right 
Fusiform 

Face Area 

0.60 33,692 46 -54 -20 

Controls dmPFC 0.56 2337 18 46 36 

Controls dmPFC 0.56 481 -8 54 36 
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Controls Superior 
Temporal 

Sulcus 

0.55 329 52 -16 -10 

Controls vmPFC 0.55 240 0 26 -18 

Controls Anterior 
Insula 

0.55 223 34 20 -12 

Controls Anterior 
Temporal 

Lobe 

0.55 208 50 -8 -32 

Controls dlPFC 0.55 178 30 10 54 

Controls Anterior 
Temporal 

Lobe 

0.55 177 -24 0 -30 

AD Posterior 
Temporal 

Sulcus 

0.58 473 -58 -64 6 

AD Left 
Fusiform 

Gyrus 

0.57 172 -38 -44 -18 

AD Occipital 
Cortex 

0.58 152 -12 -84 -20 

AD Inferior 
Frontal 
Gyrus 

0.58 84 56 22 0 

AD Amygdala 0.56 58 16 0 -24 

AD V5/MT 0.57 58 56 -66 2 

AD Right 
Fusiform 

Face Area 

0.57 54 40 -54 -26 

 

Supplementary Table 4.5 fMRI Clusters associated with significantly above-chance 
decoding in searchlight analyses in the control and AD groups separately. Decoders were 
trained to classify visible face trials from subliminal face trials and therefore reveal brain regions 
associated with visual awareness of faces. XYZ coordinates are MNI coordinates of peak voxel. 
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Region Peak 
Difference in 

Accuracy 

No. Voxels x y z 

Posterior Temporal 
Sulcus 

0.10 531 56 -66 10 

Right Fusiform Face 
Area 

0.12 404 40 -48 -16 

Intraparietal Sulcus 0.09 340 -28 -66 34 

Parahippocampal 
Cortex 

0.09 339 14 -66 18 

Intraparietal Sulcus 0.09 334 46 -54 56 

Motor Cortex 0.10 326 36 -16 70 

Intraparietal Sulcus 0.09 266 42 -36 46 

mPFC 0.09 140 24 68 -2 

Precuneus 0.11 103 6 -46 50 

 

Supplementary Table 4.6 fMRI Clusters associated with significantly higher decoding 
accuracies in the control group compared to the AD group. XYZ coordinates are MNI 
coordinates of peak voxel. 

 
Region Peak t No. Voxels x y z 

Intraparietal 
Sulcus 

4.11 13757 -26 -44 46 

Anterior Insula 3.51 774 -26 32 4 

Right dlPFC 3.40 1598 52 18 26 

Paracingulate 
Gyrus 

3.28 4511 14 8 44 
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Supplementary Table 4.7 fMRI Clusters associated with the Visible Face > Subliminal Face 
single-subject contrast for patient #1, the only patient with severe AD who showed a 
statistically significant response to visible faces versus hidden faces. XYZ coordinates are 
MNI coordinates of peak voxel. 

  

Superior 
Temporal 

Sulcus 

3.06 287 46 -18 -10 
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5. Towards a naturalistic 
neuroscience of social 
cognition 

 

5.1 Introduction 
 

Thus far, this thesis has approached questions of perceptual experience by studying 

individual subjects in isolated and artificial settings. Whilst this approach has succeeded 

in characterising a vast array of neural phenomena, it is limited with respect to 

understanding the nature of perceptual experiences in unconstrained and naturalistic 

settings, such as social interactions. This is particularly relevant to the neuroscience of 

consciousness when one considers that certain theories of consciousness, such as AST, 

make explicit claims regarding the role of social cognition in generating perceptual 

experience (Chapter 1.5; Graziano, 2013; Carruthers, 2009). Newly developed optically-

pumped MEG systems (OP-MEG; Boto et al., 2018) offer a promising means towards 

assessing the interaction between social cognition and perceptual experience, since they 

enable participants to move freely whilst their neural activity is recorded. Before such 

studies are possible, however, the use of OPMs in complex, multi-person paradigms 

needs to be validated. This chapter describes the development of a novel naturalistic 

perspective-taking task, adapted from an artificial paradigm used in conventional MEG 

experiments, with the purpose of assessing whether wearable OPM systems can reliably 

detect known electrophysiological correlates of social cognition. 
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Theory of Mind - defined as the ability to infer the mental states of other people (Frith & 

Frith, 2007; Tomasello et al., 2005) – is a fundamental feature of human cognition. 

Although the brain basis of Theory of Mind is well-studied (Frith & Frith, 2007; Siegal & 

Varley, 2002), like studies of perceptual experience, most studies examining social 

cognition have been performed in tightly controlled settings that do not reflect real-world 

social interactions (Fan et al., 2021; Stangl et al., 2023). Here, I harnessed a fundamental 

component of Theory of Mind, perspective taking (Kessler & Rutherford, 2010; Seymour 

et al., 2018; Wang et al., 2016), to explore one aspect of social cognition in an ecological, 

real-world task while assaying the underlying neural dynamics using wearable OPMs 

(Boto et al., 2018).  

 

Studying social cognition with artificial proxies of real-world settings can prevent findings 

from generalising to truly social situations. There is ample evidence to indicate that 

processing ecologically valid social stimuli may recruit, at least in part, distinct neural 

mechanisms compared to the processing of ‘social’ 2D images (Stangl et al., 2023; Fan 

et al., 2021). For instance, the classic face-sensitive N170 ERP does not respond to 

realistic 3D faces presented in virtual reality (Sagehorn et al., 2023), challenging the 

existing consensus that the N170 reflects the neural correlate of face processing 

(Rossion, 2014). Additionally, gaze-behaviour seemingly operates differently across 

natural and artificial tasks (Hayward et al., 2017) and is supported by distinct neural 

correlates across different settings as well (Pönkänen et al., 2011). Even if neural 

mechanisms are unchanged in ecological settings, more naturalistic tasks often evoke 

stronger behavioural and neural responses. For instance, real life objects attract more 

attention (Gomez et al., 2018) and are remembered better (Snow et al., 2014) than 

artificial counterparts. Moreover, live interactions viewed over video elicit greater neural 

response in social cognition brain regions than watching a pre-recorded video of the same 

interaction (Redcay et al., 2010). However, even live interactions over video do not evoke 

the same neural mechanisms as face-to-face interactions (Fan et al., 2021; Hirsch et al., 

2017). 
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Newly developed OP-MEG offers the potential to record neural activity with a high signal-

to-noise ratio from mobile participants (Boto et al., 2018; Seymour et al., 2021), lending 

itself to the study of social cognition in naturalistic settings. OP-MEG sensors operate at 

room temperature, which obviates the need for large cooling systems used in 

conventional MEG (Boto et al., 2018), meaning that sensors can be fitted close to the 

scalp of participants, improving signal-to-noise, and enabling participants to move freely 

during experiments (Boto et al., 2018; Seymour et al., 2021). To date, however, OP-MEG 

systems have largely been used in proof-of-concept studies exploring basic 

electrophysiological responses in sensorimotor tasks. For instance, OP-MEG has been 

used to identify beta band activity during finger-tapping (Boto et al., 2018), auditory 

evoked fields (Borna et al., 2017; Seymour et al., 2021), and visual gamma oscillations 

(Iivanainen et al., 2020). Despite tantalising progress, no studies have yet validated the 

use of OP-MEG in social cognition tasks, likely owing to their increased complexity.  

 

To address this, the present study adapted an existing perspective-taking paradigm 

(Kessler and Rutherford, 2010; Wang et al., 2016; Seymour et al., 2018) to create an 

analogous “real-world” version that could be examined in OP-MEG alongside a matched 

computerised task. The task differentiates between perspective-tracking (monitoring what 

is or isn’t perceived by another individual) and perspective-taking (imagining the world 

from another’s visuospatial perspective). Perspective-tracking is thought to rely on the 

relatively simple processing of others in relation to the environment (Kessler & Rutherford, 

2010; Michelon & Zacks, 2006), while perspective-taking is understood to be a more 

complex process, perhaps unique to humans, which requires the capacity to imagine 

another’s viewpoint (Firth and Frith, 2007; Tomasello et al., 2005). Previous studies using 

this paradigm have shown that reaction times for perspective-taking decisions are 

modulated by the angle of rotation required to occupy an avatar’s perspective, whereas 

rotation has no effect on perspective-tracking decisions (Kessler & Rutherford, 2010; 

Kessler & Wang, 2012; Surtees et al., 2013; Van Elk & Blanke, 2014). This is explained 

by the fact that perspective-tracking decisions merely require a geometric computation of 

the sort required to infer an avatar’s line of sight. In contrast, perspective-taking decisions 

require the participant to assume the avatar’s perspective, which is increasingly difficult 
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the further from their own perspective it is. In two MEG studies, theta band activity in the 

right temporoparietal junction (rTPJ) and medial prefrontal cortex (mPFC) has been 

shown to correlate with this behavioural effect (Wang et al., 2016; Seymour et al., 2018). 

This provides a useful paradigm to validate the use of OP-MEG in naturalistic social 

settings since it allows me to test if OPMs are sensitive to a robust social cognition effect 

that has been replicated in conventional MEG. Moreover, by developing a naturalistic 

version of the task, I can examine the present suitability of OPMs for use in ecologically 

valid social situations. 

 

In a modified perspective taking task, I recorded OP-MEG signals from three participants 

with the aim of replicating previous findings suggesting theta band activity in social 

cognition regions contributes to perspective-taking decisions. To validate OPMs for use 

in real world scenarios, I tested this in both naturalistic and computerised versions of the 

paradigm. To pre-empt my results, in both naturalistic and computerised versions of the 

task, I found no evidence for theta band activity underlying decision-making in either 

perspective-taking or perspective-tracking decisions. There was, however, some 

evidence for a role of parietal alpha in perspective-taking decisions, although this was 

only present in the computerised version of the task. Finally, epoching trials with respect 

to response – rather than stimulus – onset did not reveal any further effects.  

 

5.2 Materials and Methods  
 
5.2.1 Participants 
 

Three female participants aged 43, 25, and 29 took part in the experiment. All participants 

provided written consent and ethical permission was granted by the University College 

London Research Ethics Committee.  
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5.2.2 OPM Data Acquisition 
 

OP-MEG data were acquired in a Magnetically Shielded Room (MSR; Magnetic Shields 

Ltd) located at University College London. The room has internal dimensions of 438 cm 

x 338 cm x 218 cm and is constructed from two inner layers of 1 mm mu-metal, a 6 mm 

copper layer, and then two external layers of 1.5 mm mu-metal.  

 

A combination of dual and tri-axis OPMs (QuSpin Inc., QZFM second and third 

generation) were used in the study. Participant-specific 3D-printed “scanner-casts” (Boto 

et al., 2017) were designed using each participant’s structural MRI scan (Chalk Studios), 

see Figure 5.1A. The scanner-cast was designed to keep the sensors in slots fixed in 

relation to the brain during participant movement, and to minimise co-registration errors. 

As each scannercast was printed by first creating a 3D image in the same coordinate 

space as the participant’s structural MRI brain scan, a sensor’s position and orientation 

could be calculated offline relative to the slot in which it was placed. Sensor position was 

set as the centre of the cell of the OPM sensor, which was slightly offset from the physical 

centre. As shown in Figure 5.1A, custom plastic clips were used to arrange the OPM 

sensor ribbon cables for effective cable management. In addition, the larger cables were 

organised into bundles and fixed to a wearable backpack, to facilitate participant comfort 

during movement.  

 

As scannercasts were made specifically for each subject, the number of OPM sensors 

they were designed to hold varied. In two subjects, 54 sensors were used, and in the third 

subject 56 were fitted. The sensors were arranged to cover the whole head in an even 

manner.   

 

Before the start of the experiment, the MSR was degaussed to minimise the residual 

magnetic field in the MSR. Before the start of each experimental run, the OPM sensors 

were calibrated using a manufacturer-specific procedure. This involves energising coils 

within an OPM to produce a known field, and the output of the sensor is then measured 
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and calibrated to this known field. Data were recorded using a 16-bit precision analogue-

to-digital converter (National Instruments) with a sample rate of 6000 Hz.  
 

5.2.3 Experimental Procedure 
 

The experiment consisted of both a naturalistic and a computerised session, which were 

counterbalanced in order across participants. In the naturalistic condition, the participant 

was joined in the MSR by two confederates, one in blue and one in green, who were 

unknown to the scanned participant. The confederates were sat at a white, circular table 

with a 90cm diameter and were positioned exactly opposite one another throughout the 

entire experiment (Figure 5.1, middle). The participant sat in the centre of the MSR facing 

the table head on. Relative to the participants’ perspective, the confederates could occupy 

four positions around the table (45°, 135°, 225°, 315°), which when collapsed over left 

and right, created two positions relative to the participant: a small angle of rotation (45° 

left or right) and a large angle of rotation (135° left or right) (Figure 5.1, middle and right). 

On top of the table sat a cardboard fixture which held four red LED lights at each of the 

four possible confederate positions and an occlusion screen which blocked the 

confederates from viewing the light directly opposite their current position. The LED lights 

were controlled by custom MATLAB (Mathworks) scripts and an Arduino Uno controller. 

 

The participant performed both perspective-taking and perspective-tracking trials in 

alternating blocks of 32 trials, with 1 practice block and 10 experimental blocks each. 

Before each block, the participant was instructed by audio cue which task to perform. In 

the perspective-taking trials, an auditory cue (“blue” or “green”) would indicate which 

confederate’s perspective the participant should adopt (Figure 5.1B). Following the cue, 

an LED light on either the left or the right of the cued confederate would turn on. Using a 

button box, the participant reported whether the light was on the left or right of the cued 

confederate (LR decision). Confederates remained in their positions in miniblocks of 8 

trials, before a small pause indicated by audio cue allowed them to adopt new positions 

around the table. Within each miniblock, each possible combination of cued confederate 
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Figure 5.1. Experimental set up and design. A: Left: A participant with their scannercast and 
OPM sensors. Middle: Experimental Set up with participant and two confederates. Right: Example 
artificial stimulus from the computerised session. B: Task structure for perspective-taking (top) 
and perspective-tracking (bottom) tasks. 

 
 

and light position (i.e., green-right, green-left, blue-right, blue-left) was activated twice in 

a randomised order. The order of confederate positions was randomised across blocks, 

and in every block each position was occupied exactly once by both confederates. The 

perspective-tracking trials followed the same structure, the only difference being the 

decision the participant had to make. Here, the LED light either in front of or hidden from 
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the cued confederate was illuminated. The participant was then asked to report whether 

the light was visible or occluded from the cued participant (VO decision). Again, each 

possible combination of cued confederate and light position (i.e., green-visible, green-

hidden, blue-visible, blue-hidden) was presented twice in each miniblock, with 4 

miniblocks per each block.  

 

The computerised session matched the naturalistic session in all aspects except that the 

participant sat alone in the MSR and viewed confederate avatars on a projector screen. 

The artificial stimuli consisted of two avatars, one in green and one in blue, sat in the 

same four positions around a white table relative to the participant’s perspective. The 

table again contained red lights in front of each position (Figure 5.1A, right). To match 

the experience of the naturalistic session as closely as possible, the avatars and table 

were consistently present on the screen, with the illumination of the light the only activity 

at trial onset. This prevented any confound caused by the entire stimulus appearing at 

trial onset. Again, to match the naturalistic session, avatars stayed in position for 

miniblocks of 8 trials, and the tasks alternated between perspective taking and tracking 

in blocks of 32 trials.  

 

To ensure the confederates were fixating the light display in the same manner as the 

artificial avatars, they were instructed to perform a 1-back task on the light position, 

pressing a button every time a light was illuminated in the same position in a row. 

Unbeknownst to the confederates, however, due to limitation in the number of recording 

channels available in the MSR, only data from one confederate was recorded.  

 

Participants had a break from the experiment of at least an hour between the two 

sessions. The full procedure resulted in 640 trials for both the computerised and 

naturalistic sessions. Within each session, there were 160 trials per each condition of 

interest (LR-small, LR-large, VO-small, VO-large).  
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5.2.4 Paradigm Development 
 
The paradigm described above was developed from the computerised perspective-taking 

task used in Wang et al. (2016) and Seymour et al. (2018). To modify the task for a 

naturalistic setting, it was necessary to make several modifications to the original 

paradigm. This process of paradigm development consisted of iterative changes to the 

computerised task with subsequent pilot tests to ensure the original behavioural effect of 

rotation angle on perspective-taking reaction time was still present.  

 

The original task consisted of only a single avatar, with the participant asked to judge 

whether an illuminated light was either visible/hidden or left/right of the avatar. At the 

onset of each trial, an image appeared with the avatar sat at a different position at a table 

that contained the illuminated light. However, in a real-life task, the avatar (i.e., 

confederate) would not ‘appear’ in different locations at the onset of each trial, but would 

be visible before, during, and between trials. This visual information could contribute to 

pre-trial computations regarding the positions of the lights with respect to the confederate. 

For example, the participant may have the thought “if I see this particular light turn on, I 

will press ‘left’ as quickly as possible.” To prevent any pre-trial computations that may 

have aided participants’ decisions, I included a second avatar in the design, sat opposite 

the original avatar. This way, the participant would not know which avatar was relevant 

before trial onset and would thus be unable to compute task-relevant information prior to 

the trial starting and the relevant avatar being cued. The next alteration was to keep the 

avatars’ positions fixed for miniblocks of 8 trials, rather than changing on each trial. This 

was to limit the amount of movement the confederates would have to make in the 

naturalistic task. Finally, I modified the intertrial screens to keep the avatars and table 

visible to the participant, such that at trial onset the only change was the illumination of 

the light. This was chosen to reflect the naturalistic setting, where participants would be 

able to see the confederates and table in between trials. Following these changes, 

participants still exhibited extended reaction times for perspective-taking decisions when 

the avatar’s perspective was far from their own and, as such, was used throughout the 

OP-MEG recordings. 
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5.2.5 Preprocessing 
 

Data were initially downsampled to 350 Hz for computational efficiency. The power 

spectra for the individual channels were plotted to identify channels with excessive levels 

of noise and these were removed from all analyses. For the first subject, 6 channels were 

removed from the computational session and 5 from the naturalistic session. For the 

second subject 5 and 15 channels were removed. For the final subject, 1 and 2 channels 

were removed. Data were then high-pass filtered at 2 Hz and low-pass filtered below 45 

Hz. To remove any artefacts from line noise, a bandstop filter around 50 Hz was also 

applied. To reduce interference from the background magnetic field, homogenous field 

correction (HFC) was then applied to the data (Tierney et al., 2021). Independent 

components analysis was used to identify and remove components related to heartbeats 

and eye movements. Finally, incorrect trials were removed and the data were epoched 

and time-locked at -1.7 s to 1.5 s around the light onset. 

 

5.2.6 Source-Level Analysis 
 

A participant’s T1-weighted structural MRI scan was used to create a forward model 

based on a single-shell description of the inner surface of the skull (Nolte, 2003). Using 

SPM12, a nonlinear spatial normalisation procedure was used to construct a volumetric 

grid (8 mm resolution) registered to the MNI brain. Source analysis was conducted using 

a linearly constrained minimum variance (LCMV) beamformer in the time domain (Van 

Veen et al., 1997) and a Dynamical Imaging of Coherent Sources (DICS) beamformer in 

the frequency domain (Gross et al., 2001), both of which apply a spatial filter to the MEG 

data at each point of the 8 mm grid. A lambda regularisation parameter of 1% was used. 

Beamformer weights were calculated by combining lead-field information with a sensor-

level covariance matrix, computed over the entire trial epoch. Source reconstruction maps 

were baseline corrected against the baseline window (prior to the auditory cue; -1.7 s – -

0.9 s) prior to visualisation or comparison with other maps. 
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5.2.7 Virtual Channel Analysis 
 

I iterated over each parcellation in the Destrieux Cortical Atlas (Destrieux et al., 2010), 

obtaining a time-course of the data within each parcel. At each atlas location I performed 

a principal components analysis on the concatenated filters of each grid-point within the 

parcel, multiplied by the sensor-level covariance matrix, and extracted the first component 

(Seymour et al., 2021). The pre-processed, sensor-level data were multiplied by this 

spatial filter to obtain a “virtual channel” at each parcel location. This procedure generated 

virtual channel information at 64 parcels throughout the cortex which could be submitted 

to Time-Frequency analyses.  

 

5.2.8 Time-Frequency Analyses 
 

Time-frequency representations (TFRs) were calculated using a single Hanning taper 

between frequencies of 2–30 Hz in steps of 1 Hz. The entire 3.2 s epoch was used, with 

a sliding window of 500 ms. TFRs were baseline corrected against the baseline window 

(prior to the auditory cue; -1.7 s – -0.9 s) prior to visualisation or comparison with other 

TFRs. 

 

5.3 Results 
 

5.3.1 Reaction Times Indicate Increased Difficulty for Larger Angles During 

Perspective-Taking  
 

To first ensure the experimental manipulation was successful and that the behavioural 

effects reported in Seymour et al. (2018) had been replicated, I plotted the reaction times 

for LR and VO decisions as a function of the angle of rotation (Figure 5.2A). In line with 

both Seymour et al. (2018) and my pilot testing, an interaction between decision type and 

angle size was observed. Specifically, decisions following large angles of rotation took 

longer compared to small angles for LR decisions but not for VO decisions. This was true 
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for both the naturalistic (Figure 5.2A left) and computerised tasks (Figure 5.2A, right). 

When analysing each subject’s reaction times separately, for subjects 1 and 3 the 

interaction between angle and decision type was significant in both computerised and 

naturalistic tasks (subject 1: naturalistic, F(1, 629) = 41.48, p < .001; computerised, 

F(1,625) = 25.07, p < .001; subject 3: naturalistic, F(1, 611) = 9.68, p = .002; 

computerised, F(1,595) = 7.83, p = .005). Subject two, on the other hand, showed no 

interaction on reaction times in either task (naturalistic, F(1, 587) = 0, p = .97; 

computerised, F(1,596) = 0.08, p = .78). 

 

5.3.2 Observable Motor Response in OPMs 
 
Before I examined the neural correlates of the social decision process, I performed source 

reconstructions of the motor response ERF to validate both my source reconstruction 

procedures and the OPM’s ability to effectively localise neural signals in a naturalistic 

task. Reconstructing the broadband power occurring 100ms after participants reported 

their decision with a right-hand button press revealed a lateralised cluster of activity in the 

left motor cortex (Figure 5.2B). This was replicated across both naturalistic and 

computerised tasks, illustrating that the OPMs were sensitive to localised neural activity 

and, importantly, that my reconstruction procedures could identify the loci of such activity. 

 

5.3.3 No Evidence for Theta Oscillations in Perspective-Taking 
 

Seymour et al. (2018) reported an increase in theta power across temporoparietal and 

prefrontal regions associated with perspective-taking (i.e., Left-Right) decisions. To 

replicate this result in OPMs, I examined the source-level Time-Frequency 

Representations (TFRs) associated with both LR and VO decisions in both the naturalistic 

and computerised tasks. First, a TFR computed over all virtual channels (see Methods) 

and all trials revealed a spectral profile in line with an involvement of theta-band activity 

in perspective taking and tracking decisions (Figure 5.3A). From approximately 250ms 

following the light onset, theta band activity increased from baseline, potentially indicating 

a role for low-frequency oscillations during social-visual decision-making processes.  
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To determine whether this theta band activity originated from regions typically associated 

with social cognition, I localised the increase in theta band power revealed in the source 

level TFR (3.3 - 6.3 Hz; 220 – 570 ms; Figure 5.3A). Surprisingly, in both tasks the low-

frequency oscillations following the light onset were localised to left-lateralised motor 

regions (Figure 5.3B). This suggests that the theta power increase illustrated in Figure 
5.3A is simply a result of motor preparation effects before participants reported their 

decision. However, it is also possible that, given the rotational demands of the task, task-

specific effects may have originated in motor regions. To ascertain whether there were 

any effects specific to the social-visual decision-making nature of the task in these 

Figure 5.2. Reaction times are greater for LR decisions with large angles of rotation. 
A. In both naturalistic and computerised tasks, the reaction time for LR decisions was 
selectively increased in trials with large angles of rotation. The size of the angle did not 
impact reaction time during VO decisions. This interaction replicates the behavioural effect 
found in Seymour et al. (2018). B. Average source reconstructions of participants’ motor 
responses indicate successful localisation to the motor cortex in both tasks. Source maps 
arbitrarily thresholded for visualisation purposes. 
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regions, I created a virtual channel at the peak voxel of the motor cortex clusters from 

each task (Figure 5.3B) and used the virtual channels to compute and contrast TFRs 

from trials of different conditions. No features of the spectral profile were systematically 

higher for LR decisions versus VO decisions (Figure 5.3C), suggesting that the theta 

band activity observed when averaging over all conditions (Figure 5.3A) was likely not a 

consequence of the decision-making task, but instead a confound of response 

preparation. Likewise, when comparing LR-large with LR-small trials, there was no 

evidence for an increase in theta power for larger angles of rotation (Figure 5.3D).  

 

Rather than testing a virtual channel formed via analyses collapsing over all trials, an 

alternative method is to compare condition specific TFRs within each virtual channel 

separately.  However, across the brain, there were no ROIs that demonstrated an 

increase in theta band power for either LR vs. VO or LR-large vs. LR-small decisions. 

Taken together, I was thus unsuccessful in replicating reports of low-frequency 

oscillations driving perspective-taking decisions (Wang et al., 2016; Seymour et al., 

2018). 

 

5.3.4 Evidence for Visual and Parietal Alpha Desynchronisation in 

Computational Perspective-Taking 
 

Alongside an increase in theta power following light onset, source level TFRs also 

revealed a cluster of alpha desynchronisation following light onset in the computerised 

task (Figure 5.3A; Figure 5.4A). Across all trials and virtual channels, alpha power was 

reduced from approximately 100ms to 650ms following light onset in the computerised 

task only (Figure 5.3A; Figure 5.4A). Following a similar procedure as for the theta band 

analyses, source reconstruction of the alpha desynchronisation (9 – 12.5 Hz; 70ms – 

660ms; Figure 5.4A) yielded a cluster across the parietal cortex (Figure 5.4B). However, 

as in the previous theta band analyses, a virtual channel computed at the peak of this 

cluster did not return any condition-specific effects (i.e., LR vs VO or LR-large vs. LR-

small) in the alpha band. 
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Figure 5.3. No evidence for Theta Oscillations in Perspective-Taking. A. Source-level TFRs computed 
over all virtual channels and trials reveal an increase in theta power following light onset. B. Theta power 
was localised to the left-lateralised motor cortex. C. Computing virtual channels at the peak voxel in 2B 
and contrasting the TFRs from LR and VO trials revealed no oscillatory effects associated with 
perspective-taking vs. perspective-tracking. D. Comparing LR trials with large angles of rotation to those 
with small rotations similarly yielded no oscillatory effects in the same virtual channels. 
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Figure 5.4. Evidence for Visual and Parietal Alpha Desynchronisation in Computational 
Perspective-Taking. A. In the computerised task, collapsing over all trials and virtual channels 
revealed a cluster of alpha desynchronisation following light onset. B. This cluster was localised 
to the parietal cortex. Map thresholded at an arbitrary value for visualisation purposes. C. 
Contrasting LR decisions with VO decisions at each virtual channel separately revealed a number 
of channels around parietal and visual cortices where alpha desynchronisation was larger for LR 
trials. D. A one-tailed cluster-based permutation test contrasting the alpha power associated with 
LR and VO trials revealed regions of visual and parietal cortex in two out of three participants 
where alpha desynchronisation was significantly larger for LR decisions (p < .05, corrected for 
multiple comparisons).  
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When performing condition-specific comparisons at each virtual electrode separately, a 

consistent pattern of greater alpha desynchronisation following light onset in LR trials 

compared to VO trials was found in regions surrounding the cuneus and lateral parietal 

lobe (Figure 5.4C), potentially indicating a role for alpha band activity in the occipital and 

parietal cortex during perspective-taking in the computerised task. To test whether the 

increased alpha desynchronisation in LR trials was statistically significant, I localised the 

frequency band and time window that captured this alpha desynchronisation across 

occipital-parietal virtual channels (10 – 15 Hz; 500 – 800 ms; Figure 5.4C) and contrasted 

maps for LR trials vs. VO trials at the single-subject level. Using a lenient one-tailed 

cluster-based permutation test (Maris and Oostenveld, 2007), in two out of three subjects, 

regions across occipital and parietal cortex exhibited significantly increased alpha 

desynchronisation during LR trials compared to VO trials (Figure 5.4D), providing limited 

evidence for a role of alpha desynchronisation in the computerised perspective-taking 

task. No significant differences were found in the naturalistic task. 

 

5.3.5 Time-locking to Motor Response Does Not Reveal Condition-Specific 

Neural Effects 
 

It is possible that the inability to find robust neural responses associated with social 

perspective taking is due to the previous analyses being locked to the stimulus (i.e., light) 

onset. However, time-locking the analyses to participants’ responses may provide a more 

sensitive test of the neural bases of such processes. To explore this possibility, I 

contrasted LR and VO decisions, as well as LR-large and LR-small decisions, across all 

virtual electrodes. In both the naturalistic and computerised task, there were no 

differences in frequency profile for the LR trials compared to the VO trials (Figure 5.5A), 

replicating the stimulus-locked analyses. Moreover, comparing LR-Large to LR-Small 

trials revealed no systematic oscillatory effects (Figure 5.5B). A weak increase in beta 

power was observed around 500ms after motor responses to LR-large decisions in the 

naturalistic task and a weak increase in alpha power following the same decisions in the 

computerised task. However, source reconstruction failed to identify robust neural loci of 

these spectral clusters in either task. 
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Figure 5.5. Time-locking to motor response does not reveal condition specific 
effects. A. Contrasting LR and VO trials, time-locked to responses, across all virtual 
channels failed to reveal any oscillatory difference between decision types. B. Contrasting 
LR-Large and LR-Small trials showed no systematic oscillatory difference between 
decision types. A weak increase in beta power accompanied LR-Large trials in the 
naturalistic task (left) while a small increase in alpha power accompanied LR-Large trials 
in the computerised task (right).  
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5.4 Discussion 
 

Theory of Mind is a fundamental component of human cognition (Frith and Frith, 2007; 

Tomasello et al., 2005), yet most of the neuroscientific research dedicated to elucidating 

its neural basis has relied on constrained and artificial scenarios that do not reflect the 

multidimensionality and complexity of naturalistic social settings. To address this, I 

combined wearable OP-MEG recordings with a novel and ecological perspective-taking 

task to validate a new generation of mobile neuroimaging devices for use in naturalistic 

social settings. In a series of exploratory analyses, I failed to replicate previous MEG 

results identifying theta band activity in social cognition brain regions as neural correlates 

of perspective taking (Wang et al., 2016; Seymour et al., 2018). There was, however, 

limited evidence for a role of parietal alpha in perspective-taking, although this was only 

present in computerised versions of the task.   

 

There is some evidence to suggest oscillations in the alpha band may contribute to 

perspective-taking processes. In a study using the original version of the present task, 

alpha band effects similar to those reported here were also observed, with greater alpha 

desynchronisation observed in perspective-taking trials compared to perspective-tracking 

trials (Wang et al., 2016). However, the reported alpha effects were also sensitive to the 

degree of rotation in the perspective-taking trials, with smaller angles of rotation eliciting 

greater alpha suppression (Wang et al., 2016). In the present study, alpha oscillations 

were only sensitive to the task, with no difference found between angles of rotation. 

Furthermore, in Wang et al. (2016), alpha effects were deemed less reliable than effects 

in the theta band, so further localisation analyses were not performed to better 

characterise the relationship between alpha oscillations and perspective-taking. There is, 

however, evidence to suggest that the mu rhythm – alpha oscillations stemming from 

sensorimotor cortices – is associated with perspective-taking, particularly during action 

observation (Angelini et al., 2018; Drew et al., 2015; Fu & Franz, 2014). Although mu 

suppression is typically highest for first-person perspectives (Angelini et al., 2018; Fu and 

Franz, 2014; Drew et al., 2015, although see Frenkel-Toledo et al., 2013) and the present 

study required participants to make decisions only in a third person perspective, the 
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sensitivity of mu oscillations to perspective-taking in general aligns with the fact I found 

increased alpha suppression when participants were performing perspective-taking, as 

opposed to perspective-tracking, computations. 

 

It should be emphasised that I only observed perspective-taking related alpha 

suppression in the computerised version of the task and not in the naturalistic version. 

Since alpha oscillations are strongly associated with attentional processes (Klimesch, 

2012; Klimesch et al., 1998), one potential explanation for this result is that perspective-

taking decisions require greater attentional resources than perspective-tracking 

decisions, but only in computerised tasks. It is possible that perspective-taking is 

facilitated in real-world settings, since it is a situation more often encountered in day-to-

day life. Indeed, reaction times were marginally faster for the naturalistic task, perhaps 

indicative of reduced attentional load. Studies linking mu rhythms with social cognition 

have been criticised for lacking control conditions that rule out a confounding role of 

attention-related alpha oscillations (Hobson & Bishop, 2017), and it is certainly plausible 

that attention confounds the alpha band result in the present study. However, it represents 

a strength of the ecological approach to the present study that an easily testable 

hypothesis regarding the difference between attentional demands in artificial vs. 

naturalistic settings was generated. Of course, it should be mentioned that effects of alpha 

oscillations in the computerised task were only present in two out of three participants, 

and that was only by virtue of lenient and exploratory one-tailed significance tests. As 

such, the reported effects will need to be replicated in appropriately powered group-level 

studies before any real conclusion regarding alpha rhythms in naturalistic perspective-

taking decisions can be drawn. 

 

Power limitations may also underlie my inability to find differences in the theta band 

between experimental conditions. In previous work, this task has evoked an increase in 

theta power between perspective-taking and perspective-tracking decisions, as well as 

between large and small angles of rotation (Wang et al., 2016; Seymour et al., 2018). 

Theta oscillations were localised to the rTPJ in both studies. Transcranial magnetic 

stimulation (TMS) to the rTPJ was found to impact perspective-taking decisions (Wang et 
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al., 2016) and functional connectivity analyses revealed that theta activity in medial and 

lateral prefrontal regions acts as inputs to activity in the rTPJ (Seymour et al., 2018), 

replicating previous findings of mPFC and rTPJ coupling in non-visual perspective-taking 

tasks (Bögels et al., 2015). An obvious explanation for the present failure to replicate this 

effect – in both naturalistic and computerised tasks – is because of a lack of statistical 

power. Previous studies revealed the association between theta oscillations and 

perspective-taking at the group level, and it may be that only group-level analyses of the 

current paradigm will suffice to uncover similar effects. However, it may also reflect the 

current limitations of OPM systems for detecting subtle low frequency effects. OP-MEG 

is especially sensitive to low-frequency interference, either from motion or features of 

urban environments, such as moving cars and construction work (Seymour et al., 2021, 

2022), which may prevent detection of high-level cognitive effects in low-frequency bands. 

So far, only one study has identified theta band activity in a cognitive task using OP-MEG 

(Barry et al., 2019). Here, hippocampal theta activity was shown to underlie imagination 

behaviour. To show this, imagination was contrasted with a counting task, two vastly 

different cognitive processes, which may have facilitated detection of theta effects 

compared to the more high-level and subtle contrast of perspective-taking vs. 

perspective-tracking computations. Moreover, participants performed this task fixed in 

place, with movement levels not far beyond conventional MEG. This likely had a beneficial 

effect on reducing low-frequency movement artefacts but does little to validate OP-MEG 

for use in a naturalistic cognitive neuroscience. Thus, the challenge of validating OP-MEG 

for use with high-level social cognition tasks in real world settings is yet to be overcome. 

 

Given the inability to replicate previous results describing electrophysiological correlates 

of social cognition in OP-MEG, it is a fair question to ask whether other wearable imaging 

modalities are, at this time, better suited to explore social cognition in naturalistic settings. 

For instance, wearable electroencephalography (EEG; Gwin et al., 2010; Krugliak & 

Clarke, 2022; Niso et al., 2023) has supported the investigation of naturalistic social 

encounters for a number of years and does not require magnetically shielded rooms for 

proper functioning, meaning it can be used in authentic social situations. Most notably, 

wearable EEG has been central in hyperscanning studies that examine the role of neural 
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synchrony (either phase locking or correlations between different individuals’ brain 

activity) in social interactions (Czeszumski et al., 2020). Such studies have been very 

informative with regards to neural synchrony in real world settings. For instance, in 

classrooms, increasing levels of brain-to-brain synchrony predict levels of student 

engagement (Dikker et al., 2017) and students’ closeness with teachers (Bevilacqua et 

al., 2019). Moreover, at museums and festivals, different pairs’ empathy, social 

closeness, and eye contact predicted their level of interbrain coherence (Dikker et al., 

2021). At present, the relative ease with which naturalistic data can be collected using 

wearable EEG may make it more appealing for use in ecological research compared to 

OP-MEG. However, OP-MEG does offer significant future promise for ecological 

research. Specifically, artefacts from muscle activation are lower in OP-MEG than EEG 

by a factor of ten (Boto et al., 2018). Moreover, the improved spatial resolution granted to 

MEG via insensitivity to volume conduction during source reconstruction is an ever-

present advantage compared to EEG techniques (Baillet, 2017). It may be then, that as 

the validation and development of OP-MEG systems continue, the optimum strategy for 

ecological research is to opt for more established wearable EEG systems, with the 

promise of low noise and high spatial resolution in ecological settings being delivered by 

OP-MEG systems in the near future. 

 

Overall, I attempted to validate novel OP-MEG systems for use in naturalistic social 

cognition tasks. I failed to replicate conventional MEG results that show an increase in 

theta band power associated with perspective-taking. I did show limited evidence for a 

role of alpha desynchronisation in perspective-taking, but this was only present in the 

computerised version of the task and may be a result of attentional confounds. The 

present study provides the first test of OP-MEG systems in a truly social task and is an 

important datapoint in the continued development of this exciting technology, which offers 

great promise for the investigation of social cognitive processes in naturalistic settings. 
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6.  General Discussion 

 

6.1 An overview 
 

Throughout this thesis, I have examined various hypotheses related to the neural basis 

of perceptual experience. In Chapter 2, I used findings from magnitude coding studies to 

generate hypotheses about how perceptual vividness might be encoded in the brain. 

Using MEG and fMRI data in concert with RSA and decoding analyses, I showed how 

reports of awareness and perceptual vividness are driven by an ordered and content-

invariant neural code that exists throughout visual, parietal, and frontal cortices. In 

Chapter 3, I demonstrated, for the first time, how zero is represented in the human brain. 

Using multivariate decoding analyses with MEG data, I revealed how symbolic zero and 

non-symbolic empty sets exist on a neural number line, with zero situated at the 

beginning. Moreover, I showed a cross-format effect, whereby representations of empty 

sets (i.e., blank squares) could generalise to the symbolic format, being most similar to 

symbolic zero and least similar to symbolic five (and vice versa). I localised this abstract 

number line to the posterior association cortex, a finding in line with previous work on 

numerical representations in the human brain. In Chapter 4, I explored the neural 

correlates of perceptual awareness in patients suffering from Alzheimer’s disease using 

a classic masking paradigm. I illustrated a degradation in the neural correlates of visibility 

in patients compared to healthy controls, perhaps indicating the contents of 

consciousness may be altered or diminished in Alzheimer’s patients. Furthermore, I 

explored the potential for using frontoparietal ignition as a neural biomarker for 

consciousness in noncommunicative patients with severe AD.  Finally, in Chapter 5, I 

conducted a technical development study using wearable OP-MEG in a novel and 

ecological perspective-taking paradigm. Although this chapter described mostly null 
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results, it provides a unique data point in the development of wearable neuroimaging 

technology as the first attempt to explore high-level cognitive effects using OP-MEG in a 

multi-agent, ecologically valid paradigm. 

 

6.2 Magnitude Codes and Perceptual Experience 
 

Both Chapters 2 and 3 were inspired by work seeking to reveal the architectures 

supporting different magnitudes in the brain. These chapters provide a rich example of 

bidirectional influence between different research programmes because not only do they 

inform the magnitude coding literature and extend its purview – both to the perceptual 

case of vividness and the numerical case of zero – but they also act as tests of 

hypotheses derived from specific theories of consciousness, namely Perceptual Reality 

Monitoring (PRM; Lau, 2019) and the Higher-Order State Space (HOSS; Fleming, 2020).  

 

The PRM theory of consciousness (Lau, 2019) is a higher-order theory describing reality 

judgements as central to the generation of subjective experience. More specifically, PRM 

is based on the notion that, at any one time, the brain is generating a vast number of 

signals. Some of these signals correspond to perceived features of the environment, 

others underlie internally generated percepts (i.e., imagination), while others simply 

reflect noise within the system. PRM’s central thesis is that there is a higher-order 

mechanism tracking the extent to which first-order activity represents one of these three 

options – real, imagined, or noise (Lau, 2019). When this reality monitoring system tags 

a first-order representation as real, this representation is gifted an ‘assertoric force’ – an 

unshakeable belief that this is the current state of the world right now, and in doing so is 

consciously experienced (Lau, 2019). The HOSS model (Fleming, 2020), on the other 

hand, is less concerned with determining whether a percept reflects reality. Rather, HOSS 

describes a computational architecture supporting awareness reports that includes a 

metacognitive system tracking the reliability of first-order perceptual states (Fleming, 

2020). According to HOSS, the high-dimensional mental states supporting perceptual 

content are monitored by a simple, low-dimensional system that quantifies the precision 

of the first-order representations, ultimately leading to reports of awareness when high, 
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or unawareness when low. The critical feature of each of these models with respect to 

this thesis is their proposal of a ‘sparse’ higher-order system that does not re-represent 

perceptual states, but instead monitors their statistical properties in the process of 

generating reports of awareness.  

 

If sparse HOTs such as PRM and HOSS are correct, the metacognitive systems they 

describe should not contain information regarding perceptual content, and we should be 

able to find representations of the statistical properties of perceptual content that are 

independent of the content itself. Indeed, this is exactly what I found in Chapter 2, where 

I showed how reports of perceptual visibility are, at least in part, subtended by a content-

invariant neural code. This provides one of the first empirical tests of this relatively new 

generation of HOT theories of consciousness, which are opposed to more classical HOTs 

that describe higher-order representations as recapitulating the perceptual content in 

higher-order regions (Brown, 2015; Rosenthal, 2005). To be clear, if higher-order 

representations re-represented perceptual information in this ‘rich’ manner, the cross-

decoding analysis of perceptual visibility in Chapter 2 would not have been successful, 

since the features the decoder would use to learn what denotes a highly visible trial for 

one stimulus would not be present in trials featuring the alternative stimulus.  

 

The finding of content-invariant codes for vividness also leads to more ambitious 

hypotheses about whether perceptual vividness may rely on an extreme form of content-

invariance: domain-general magnitude coding (Walsh, 2003; Summerfield et al., 2020). If 

sparse HOTs predict a low-dimensional, content-invariant, magnitude code governing 

awareness, then the prediction that this may be encoded in a system suspected to govern 

other magnitudes (Walsh, 2003; Summerfield et al., 2020) naturally emerges. Results 

from Chapter 3 are in line with the proposal that there may indeed be shared 

representation between visibility and numerical magnitude. Specifically, the fact that 

empty set stimuli, which – when taken out of context – are simply blank squares, share 

representational currency with symbolic representations of the number zero, fits with 

hypotheses suggesting more fundamental representations of sensory absences may 

have given rise, evolutionarily speaking, to the numerical concept of zero (Nieder, 2016). 
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Of course, further experiments will be required to test this hypothesis directly by including 

a non-numerical detection task to evoke representations of sensory absence that are not 

contaminated by a numerical task framing. Moreover, it remains to be seen whether a 

shared magnitude representation extends beyond sensory and numerical absence – the 

shared representation between vividness and other magnitudes need not necessarily 

stop at zero.  

 

One component of magnitude coding schemes that wasn’t examined in this thesis was 

their logarithmic coding. Magnitudes are typically modelled as symmetrical Gaussian 

functions when set on a logarithmic scale. This is because neural tuning is less precise 

as magnitudes increase, causing asymmetric tuning curves unless plotted logarithmically 

(Dehaene et al., 1998; Tsouli et al., 2021). This is a form of the Weber-Fechner law, a 

general perceptual rule stating that as magnitudes increase, a larger difference between 

them is required to maintain a constant discrimination performance (Droit-Volet et al., 

2008; Harvey et al., 2020; Merchant et al., 2008; Tudusciuc & Nieder, 2007). Despite 

being a fundamental component of magnitude codes and perceptual coding more 

generally, examining whether higher-order representations of vividness or awareness are 

situated on a logarithmic code was outside the scope of this thesis, most notably because 

the central aim of this thesis was to test hypotheses generated from different theories of 

consciousness. Assessing whether reports of vividness were underpinned by content-

invariant and graded neural codes were explicit tests of sparse HOTs’ hypothesis that low 

dimensional higher-order systems track properties of perceptual content independently 

of the content itself (Fleming, 2020; Lau, 2019). These theories, however, make no firm 

commitment with respect to the linear or logarithmic coding of such phenomenal 

magnitudes and, as such, this was not explored here. Given the Weber-Fechner law’s 

ubiquity in perceptual domains, however, it would be a natural next step to examine 

whether neural representations of vividness also demonstrate logarithmic coding 

properties. If found to be the case, this would further motivate tests of shared 

representational architectures between awareness reports and other magnitudes. 
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6.3 Consciousness and Social Cognition 
 

Findings supporting the existence of a content-invariant neural code for awareness also 

pertain to the hypothesised link between social cognition and consciousness (Section 1.5; 

Graziano, 2013), and in Chapter 5 I tested the suitability of novel, wearable OP-MEG 

systems for examining this relationship in future studies. Although AST may be the most 

prominent exponent of an association between social cognition and consciousness, the 

link between mindreading and metacognition has been developed previously. For 

instance, Carruthers (2009) has argued that having direct introspective access to our own 

propositional attitudes is unlikely, and instead we must turn our Theory of Mind skills 

inwards to make inferences about our own beliefs and judgements. This idea gains 

empirical support from a meta-analysis revealing that the brain regions governing 

metacognitive judgements also largely overlap with those that enable judgements about 

other minds (Vaccaro & Fleming, 2018), as well as the various examples of altercentric 

perception introduced in Section 1.5.  

 

How might awareness-specific magnitude codes interface with a shared system for 

mentalising and self-awareness? It may be that the kinds of codes identified in Chapter 2 

are also fundamental in forming inferences about other people’s awareness. In the HOSS 

model, for example, the higher-order awareness layer tracks the precision of an 

individual’s own perceptual states (Fleming, 2020). But it could also perform inference on 

the observable perceptual states of another individual, for example through monitoring 

their reaction time, attentional gaze, emotional state, etc. This would result in the low-

dimensional neural code for awareness also encoding the inferred awareness of other 

people. Examples of altercentric perception could be explained by such a phenomenon. 

Specifically, the facilitation of detection judgements when sharing the perspective of 

another agent (e.g., Seow & Fleming, 2019) could result from both self and other inputs 

to the awareness layer driving inference of high detectability. Likewise, cases of 

altercentric interference – when inconsistent perceptual experiences between oneself 

and a partner disrupts perceptual judgments (e.g., Nielsen et al., 2015) – may arise as 

simultaneous but conflicting inferences are made by the same higher-order system.  
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These ideas remain to be assessed, and Chapter 5 aimed to validate OP-MEG systems 

to test such questions in ecologically valid scenarios – utilising real human-to-human 

interactions rather than avatar proxies or other artificial stimuli. Unfortunately, the null 

results reported in Chapter 5 most likely indicate that the subtle interference or facilitation 

effects elicited by shared perception are unlikely to be captured by OP-MEG systems at 

present. To pursue such hypotheses, then, two options seem to be available. The first is 

to attempt an ecological experiment of this sort using the slightly more established mobile 

EEG set ups typically used in hyperscanning studies (Czezumski et al., 2020; Krugliak 

and Clarke, 2022; Stangl et al., 2023). Alternatively, as a scientifically less risky approach, 

one could resort to less ecologically valid techniques, perhaps conventional MEG or fMRI. 

Given the lack of neural research on this topic, it may be more sensible to opt for the 

latter. In such a case, it would be exciting to test, perhaps, whether one could cross-

decode reports of one’s own awareness with judgements about a partner’s – or avatar’s 

– awareness. Additionally, one could examine the interaction between social cognition 

regions (e.g., rTPJ) and visual cortex during altercentric perception tasks: does the 

decoding of perceived gratings in early visual cortex improve when a partner shares my 

perspective, and is this effect driven by a coupling between rTPJ and visual regions? 

These ideas offer exciting avenues for future research, and importantly this thesis has 

provided the initial groundwork towards pursing them: first, by characterising the neural 

basis of reports of one’s own awareness, and subsequently by assessing the most 

promising imaging modality for extending these findings to judgements about others. 

 

6.4 Theories and Disorders of Consciousness 
 
In Chapter 4, I described preliminary evidence in favour of labelling Alzheimer’s disease 

(AD) as a disorder of consciousness. In contrary to the data in this chapter, previous calls 

to consider the impact of AD on awareness have largely focused on higher-level features 

of consciousness such as self-awareness (Huntley et al., 2021), owing largely to the high 

rates of anosognosia co-occurring with the disease (Starkstein et al., 2014). However, 

Chapter 4 introduced neuroimaging evidence to suggest that AD may impact perceptual 

features of awareness, at least according to a GWT framework. 
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The suggestion that AD patients may experience a degraded perceptual awareness of 

their world is perhaps surprising, not least because previous behavioural reports of 

sensory awareness in AD have largely proved positive (O’Shaughnessy et al., 2021), and, 

as mentioned, self-awareness is typically taken to be the major casualty in AD (Huntley 

et al., 2021; O'Shaughnessy, 2021). Do my results generate evidence for a degradation 

in perceptual awareness or are they representative of the major cognitive difficulties 

encountered in AD? This is, of course, dependent on the theory of consciousness used 

to interpret them. GWT entails some degree of identification of consciousness with 

cognition since it defines sensory consciousness as the entry of sensory representations 

into a global, cognitive, workspace (Baars, 1988), and, as such, consciousness and 

cognition are hard to disentangle here. This poses a challenge, most notably in 

determining to what extent awareness relies on, or is distinct from, cognition, and how we 

can interpret biomarkers of awareness accordingly. Exploring awareness in AD may, 

however, also provide a novel route towards solving this challenge. AD provides a unique 

testbed for studies that can compare the severity of cognitive aberrations with awareness 

measures to see if there is a linear relationship between the two or whether the 

association is more complex – where awareness is not necessarily degraded in line with 

cognition but shows some degree of independence. This could provide similar evidence 

to previous experiments highlighting a dissociation of task performance and subjective 

experience (Lau & Passingham, 2006; Weiskrantz, 1995) but has the potential to provide 

stronger evidence outside the bounds of matched performance on a narrowly defined 

task. Specifically, it has the potential to test for markers of awareness when cognitive 

functioning is disrupted on a global scale. This holds promise for shaping different 

theories of consciousness, particularly with respect to their reliance on cognition. Of 

course, the challenge with this approach comes with garnering experiential reports from 

patients with minimal cognitive functioning. However, the advent of no-report paradigms 

(Tsuchiya et al., 2015) could play a role here, at least in demarcating when patients 

become aware of a stimulus or not.   

 

There is further scope for bidirectional influence between theories of consciousness and 

cognitive disorders, particularly in relation to findings discussed in this thesis. For 
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instance, if there are shared neural representations across numerical and sensory 

domains, as posited in Chapter 3, then it may be worth exploring whether individuals with 

dyscalculia, a developmental impairment of numerical cognition associated with 

intraparietal regions (Molko et al., 2003), exhibit altered signatures of perceptual 

experience. Difficulties in visual perception are known to co-occur with dyscalculia (Cheng 

et al., 2018; Szucs et al., 2013), but psychophysical detection tasks evoking reports of 

awareness are yet to be conducted in these individuals. Likewise, theories of 

consciousness that support interactions between awareness and social cognition 

(Graziano, 2013; Fleming, 2020) could explore how differences in mentalising abilities 

impact self-awareness. There is already empirical work in support of this relationship, 

where autistic individuals exhibit lower metacognitive abilities than the general population 

(Nicholson et al., 2021; van der Plas et al., 2021), for example, but whether or not autistic 

individuals exhibit significant differences in perceptual experience remains to be tested. 

One intriguing example of cognitive disorders informing theories of consciousness comes 

from tests of the meta-problem of consciousness encountered in Section 1.2: exploring 

why humans perceive consciousness to be ethereal and ineffable (Chalmers, 2018). One 

account holds that such dualistic tendencies arise because of the folk-psychological 

understandings that other individuals can act according to invisible beliefs and desires 

(Berent et al., 2022). Critically, autistic individuals, who hold a compromised Theory of 

Mind, are less dualistic in their beliefs than the general population, evincing a role for 

social cognition in the meta-problem of consciousness (Berent, 2022). Theories of 

consciousness are important in generating hypotheses with regard to the perceptual 

experiences of individuals with cognitive disorders, but, in this way, they may 

subsequently benefit from the use of such disorders as testbeds for refining their own 

theoretical commitments.     

 

6.5 Dogmatic Approaches to Consciousness 
 
Throughout this thesis, I have used different theories of consciousness to motivate 

experiments and interpret their results. Higher-order theories motivated the studies 

described in Chapters 2 and 3, while GWT underpinned the interpretation of results in 
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Chapter 4. Finally, AST influenced the desire to validate ecological approaches to the 

neuroscience of consciousness in Chapter 5. However, despite revealing several features 

of the neural basis of perceptual experience, I have not made a commitment to any of the 

above theories. Indeed, I believe the approach used throughout this thesis, to employ 

different theories to generate and test different hypotheses without staunchly advocating 

for any theory in particular, represents one of its strengths.  

 

There is a danger that an individual’s commitment to a single theory can impede progress 

over time. For instance, while HOTs, GWT, and AST are all theories of consciousness, it 

can be argued that, when being precise, they do not necessarily share the same 

explanatory target (Seth and Bayne, 2022). More practically, dogmatic commitment to 

individual theories has resulted in a certain stasis in consciousness research, where 

theories are coevolving without impacting on one another (Yaron et al., 2021) and 

progress on the problem of consciousness is being hindered. This results from the fact 

that post-hoc confirmatory tests are used significantly more than a priori disconfirmatory 

tests when probing favoured theories of consciousness and because different theories 

are subject to entirely different methodological procedures when being tested (Yaron et 

al., 2022).  

 

The solution to this problem is twofold. First, tests of consciousness theories should be 

better constrained such that predictions neatly distinguish between opposing theories, 

with results used to amend and develop theory, rather than used as post-hoc support for 

existing iterations. This thesis followed this rule, particularly in Chapter 2, where 

competing predictions from sparse vs. rich HOTs of consciousness were tested, with the 

data being more in line with sparse theories. Indeed, this result, in tandem with the more 

exploratory analyses of Chapter 3, allows this thesis to fall down on the side of sparse 

HO theories of consciousness that predict the lean neural representation of graded 

degrees of awareness, from a complete absence of sensory stimulation to a clear and 

vivid experience. The second, non-mutually exclusive solution, is to remain light on 

commitment to any one theory and, critically, to appreciate that each theory can help 
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guide us towards a better understanding of consciousness in some partial way. This is 

the approach I have taken throughout the latter half of the thesis.  

 

 

6.6 Conclusion 
 

Let us return to the question posed in the introduction: how does the inert, electrical 

activity of the brain generate the rich perceptual experiences that comprise your life as a 

conscious being? Recall one solution to this problem: solving the ‘easy’ problems 

(Chalmers, 1995). By examining and testing these ‘easy’ problems (the neural systems 

and processes contributing to our perception of the world), and with a particular focus on 

the subjective experience of that perception, it has been proposed that the hard problem 

of consciousness might dissipate (Dennett, 1991; Varela, 1996; Seth, 2016; Frankish, 

2019). Across four chapters of this thesis, I have taken this approach, revealing and 

exploring different neural architectures underpinning perceptual experience.  

 

In Chapter 2, I used MEG and fMRI data to reveal a content-invariant component to the 

neural basis of vividness and awareness judgements. In Chapter 3, I showed how 

numerical absence, i.e., the number zero, is situated on a neural number line in the 

posterior association cortex and illustrated the invariance of this number line to numerical 

format, laying the groundwork for studies exploring a shared representation of absence 

across sensory and conceptual domains. In Chapter 4, I used fMRI to show how patients 

with Alzheimer’s disease exhibit degraded neural correlates of consciousness, perhaps 

indicative of altered perceptual awareness. Finally, I developed and tested a novel 

perspective-taking paradigm in OP-MEG systems to validate the new, wearable imaging 

modality in a naturalistic social cognition task, such that we may soon have access to 

ecologically valid tests of social theories of consciousness.  

 

Perceptual experiences are fundamental to each of us as humans. Without them, there 

would be no reason to do anything: life would not be worth living (Cleeremans & Tallon-

Baudry, 2022). The findings presented throughout this thesis provide a multifaceted 
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exploration of perceptual experience and its neural basis, drawing inspiration from a 

variety of psychological domains, and ultimately providing several important steps 

towards a full understanding of how the brain generates our conscious experience of the 

world.  
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