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Dense urbanization highlights the need to explore metabolic processes and mechanisms
for developing resilient and adaptive solutions to ecological challenges. The recent
pandemic intensified the pressure to re-evaluate the existing urban foodscapes by
revealing disparities in food accessibility. Studies indicate that food deserts are present
even in the centre of metropoles, bringing forth the question of the relation between food,
segregation and urban morphology. This research introduces a Machine Learning-
assisted computational tool that evaluates food networks and identifies optimal new
spatial configurations based on curated data analytics, unsupervised machine learning
models and space syntax. Its primary focus is the creation of a unified model connecting
urban morphology, socioeconomic and temporal data. The output provides the planners
and local authorities with a set of possible intervention patterns for food-related functions
aiming to assist decision-making processes.
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INTRODUCTION

Dense urbanisation leads to the transformation of
urban environments as the main human habitat
(Boeri, 2022), highlighting their expansion as
moderators for the growth of their complexity
(Hanna, 2022). The new urban fluidity, perceived as
“hyperreality” (Picon, 2003) where physical and
digital boundaries are blurred, accepts that dynamic
information flows consist of an additional layer in
spatial perception (Manovich, 2005).

This research presents a computational design
tool, in the form of a novel ensemble of conventional
and machine learning (ML) techniques. More
precisely, said tool is based on data analytics,
unsupervised machine learning methods and space
syntax. It aims to identify optimal intervention
strategies and generate new spatial configurations
by evaluating the existing food and spatial networks

through the exploitation of these additional data
layers.

The recent pandemic exposed the fragility of the
urban food system and the need for adaptable
approaches, equivalent to aresilient urban ontology.
A plethora of researchers (Specht et al, 2014;
Krupitzer et al, 2022; Su et al, 2017; Janatabadi et al,
2024) have developed prototypes accommodating
urban agriculture, or focused on analysing food
accessibility and food systems. However few
methods address the topic on the urban scale taking
into consideration the existing morphology and
combining spatial analytics methods such as space
syntax (Hillier, 2006) with unsupervised machine
learning models.

The developed methodology operates in three
distinct stages, defined by variation of input data,
urban scale and algorithmic approach. The workflow
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is based on the quadrilateral decomposition of the
urban space where the main parameters of each
stage are projected. During the first stage, datasets
related to food accessibility are projected as a value
on the aforementioned grid while dimensionality
reduction methods such as K-means and Principal
Component Analysis assist in the identification of
correlation patterns on a large scale.

Subsequently, the depicted clusters are further
analysed during the second stage where high
granularity datasets along with spatial analytic
values deriving from space syntax methodologies
function as input to the proposed algorithm
resulting in an “activation” pattern of grid cells. The
algorithm is divided into two parallel functions, a
stochastic and a deterministic method that develop
variations in the outcome. During the final step of
the algorithm, the depicted “activated” cells are
identified as potential food-related functions
through an evaluation process of balanced
distribution of the existing food system.

Developing such a tool allows the possibility of
adaptability and evaluation during the first stages of
design practice and policy development for planners
and local authorities. On one hand, it can be included
as an indicator in the decision-making processes,
and on the other it can be incorporated as a virtual
reality application, receiving feedback and
encouraging collective participation. Overall, this
work intends to bridge the gap between data, spatial
analytics, machine learning and foodscapes in a
virtual environment equal to the hybrid identity of
its urban context.

DECONSTRUCTING

URBAN FOOD RELATIONS

The hybrid urban space is characterized by the
abundance of information flows and the
connectivity between scales. Kluitenberg (2006)
emphasizes that the urban environment cannot be
perceived as solely local, due to its interference with
the global scale through wireless networks. This
overlay of information, knowledge and innovation
permits function optimisation for the new urban
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entity (Komninos et al, 2020), navigating through
complex data structures. Under that notion, urban
food systems should be included in the optimisation
process, aiming for the transformation towards
equal neighbourhoods.

“We may no longer live in walled citadels, but we
rely justas much on those who feed us as any ancient
city-dweller did” (Steel, 2008). Food flows remain
invisible in the urban context but they affect the
urban morphology since the formation of the first
settlements. In recent years, the distribution system
of alimentation has changed from a fine-grained
network of local shops to larger supermarket chains
without an equal transformation of its urban context
(Steel, 2008). That transition affected food
accessibility indiscriminately even in large
metropoles creating the phenomenon of “food
deserts”.

Food deserts are defined as areas with low
accessibility to fresh food and can function as an
indicator of spatialised food injustice. Studies
conducted with focus on association of food deserts
and deprivation-related data present mixed results
(Janatabadi et al, 2024). Some findings indicate that
demographic  inequalities affect the food
accessibility while others argue that UK presents
reasonable food accessibility in its population
centres (Lake et al, 2010). In addition, given that
social segregation, equally related to deprivation, is
a complex spatial phenomenon with morphological
characteristics (Vaughan et al 2006, Vaughan and
Arbaci, 2011), it can be assumed that food desert
indexes might spatially co-exist with high
deprivation and segregation values.

Expanding on the phenomenon, the e-food
desert index on the LSOA level for the UK (Newing
and Videira, 2020) includes the proximity and
density of retail facilities, the transportation system,
the local socioeconomic and demographic
characteristics as well as the e-commerce
availability. The inclusion of the latter in the
framework created a wider “score” distribution
between urban and rural areas (Newing and Videira,
2020). During the recent pandemic, the e-food



Figure 1

Graph comparing
all datasets,
highlighting the
complexity of the
input data

desert score was essential for better understanding
the emerging patterns, even though, it can be
argued that additional actors, such as allotments,
farms and small retailers should be included.

Recent studies have focused on the exploration
of new types of urban agriculture as a future
morphology for resilient cities. Investigations of the
possibilities of zero-acreage farming (Zfarming)
where cultivation is combined with the available
building envelope, building integrated agriculture
(BIA) which includes building transformation
processes, as well as vertical farming consist some of
these types (Specht et al, 2014). On an urban scale,
Krupitzer et al (2022) developed a digital twin model
that tracks the current production and traces the
food flows throughout the supply chain. This type of
“biophysical” model allows a real-time connection
and assists with predictions and adaptation
strategies.

In general, food stores are not equally
distributed across the urban space and their
geographical location can be associated with health
issues such as obesity (Su et al, 2017). Su et al (2017)
explored the healthy food accessibility in Shenzhen
by calculating various transportation methods for
food access and concluded on the necessity for
expansion of the definition of “food retailer” in
existing indexes. Understanding further the
inequalities in the urban context and predicting the
possible outcomes of design choices in the health of
the inhabitants can be investigated in-depth with
the use of Machine Learning methods in urban
studies (Newton, 2022).

ML-assisted methodologies are increasing in
popularity, providing the possibility for in-depth
analysis and correlations of data and urban
morphology. Methodologies such as the calculation
of ideal urban green space using ML (Zertuche and
Neira, 2022) support the argument that artificial
intelligence can be the key to understand the
algorithms of space (Tsigkari et al, 2021). Combining
ML methods with conventional spatial analytics can
reveal human interactions with their spatial context,

transforming such methodologies into powerful
tools for the design process.

bad health
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CONFIGURATIONS

OF ADAPTIVE FOODSCAPES

This research investigates a methodological
framework for the evaluation, interpretation and
prediction of food networks aimed towards
sustainable and equal neighbourhood
development. The methodology consists of a three
stage process, created in a virtual environment
which allows the tool’s integration in simulations.
The output presents locations of interest for new
food-related activities taking into consideration the
urban morphology, socio-economic data and
advanced spatial analytics (see figure 1). Currently,
the proposed tool has been tested in the city centre
of London, but it is built in such a way that allows
easy integration and adaptation in other locations or
smart city models.

The “Growth Network Framework”, as an
ensemble of methodologies combined in one
design tool, functions on three distinct processes,
namely identification, evaluation and proposal. They
operate in two different scales and include a
different subset of parameters related to the metho-
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dological stage and scale (see figure 2). The workflow
acts on the structured, quadrilateral decomposition
of the surrounding urban space and the projection
of the main parameters of each stage. More
precisely, and without loss of generality, in the
following case study, a grid of square cells of size
50x50m is introduced (quadrilaterals of aspect ratio
1) that covers the whole area of the site to be
analysed (see figure 3). The cell size is selected based
on the granularity of the data and the compatibility
with current limitations of computational resources.
A set of weights is prepared for each cell based on
the geographical zones of study (LSOA/
Borough/Ward). Assuming a cell is fully
encompassed in a zone the weight corresponds to
the ratio of the cell surface area over the full zone
surface area. If a cell crosses more than one zone, a
similar weight for each zone is stored. This grid
consists the base of analysis and it will be used as a
location indicator.

During the first stage of the aforementioned
study in London, the datasets included in the
identification process are related to consumption
and socio-economic status, such as deprivation
score, annual income, unemployment percentage,
e-food desert score, diversity score, supermarket
transactions, health data, demographics as well as
location of main retailers. Based on the contradictory
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results of the aforementioned literature (Janatabadi
et al, 2024), along with observations of the
geographical projection of the data, this study
proposes to include socio-economic data. The input
variables consist of open source data available from
the Office for National Statistics Census for the UK
(2011), Geolytix and Google Maps, and correspond
to LSOA geographical level of analysis or Points of
Interest (POI). The selection of data was based on the
criteria of availability, logical relation to the food
topic according to the literature (Newing and
Videira, 2020; Janatabadi et al, 2024), as well as a trial
and error process testing the correlation between
datasets.

Having chosen the data layers, their values are
projected onto each of the grid cells multiplied by
the corresponding weights. It should be noted that
cells that correspond to multiple geographical
divisions receive a value equal to the sum. In the case
of POI data, a buffer zone is implemented around
each location. The buffer zone is defined based on
the function assigned to the POI, e.g. food supply
corresponds to a diameter of 250m and 100m for
restaurants. POI values describe the existence of a
food-related object. As such, they are binary,
meaning that if a zone is projected to the grid, the
cells within the radius gain the value 1. Otherwise
they get 0 (similarly, if one cell collides with two

Figure 2
Generalised
diagram of the
Growth Network
Framework (top)
and its adaptation
to the case study
(bottom)



Figure 3
Visualisation of
some of the
datasets projected
on the 50x50 cell
grid. Higher values
are indicated with
brighter colors.
Colors are defined
by data category.

Figure 4

K-means clusters
visualized on top of
the map. For this
study we consider
k=4.

buffer zones, gets the value 2). All data are projected
with the use of geospatial analysis software (QGIS) to
the corresponding cells. This step allows for higher
accuracy at the local level and comparability
between datasets.

The projected data are visualised on top of their
urban context for deeper understanding of their
spatial distribution and the characteristics of the
analysed area. However, the cost of using

conventional  analytics methods for the
interpretation of the results, as per the so-called
“curse of dimensionality”, increases quadratically
based on the size of the study area and linearly, at
best, exponentially, at worst, based on the amount
of the parallelly-examined datasets and parameters.
This issue is addressed with unsupervised machine
learning algorithms that manipulate the data and
transform them into a more manageable form. Two

different techniques were implemented: K-means
clustering and the Principal Component Analysis
(PCA).

Machine Learning algorithms are susceptible to

the range and distribution of the input values. Since
the nature and subsequently the values of the
datasets may vary significantly, the selected data are
cleaned and normalized (either by the L? norm, or
the absolute maximum value) to ensure higher
accuracy and avoid skewed or biased results. The K-
means method aims to identify similarities between
grid cells and by extension urban areas. It achieves
this by finding the centroids and partitioning the
data in subsets such that it minimizes the variance
within each subset (cluster). The K-means algorithm
results in clusters of unequal sizes and densities, a
fact that is not necessarily considered an issue, due
to inequalities in size and significance between
different urban neighbourhoods. Through the elbow
method, the number of clusters, k, is defined as four
(see figure 4).
Additionally, the Principal Component Analysis
(PCA) aims to aid, visually at first, the in-depth
understanding of the qualitative characteristics of
the datasets and reduce their complexity. Starting
from the data ensemble, the PCA method calculates
the optimal coordinate system, i.e. the basis that
minimizes the square of the error between the data
and their projection on any other possible
orthonormal mapping. The new coordinate system
represents dominant patterns, which in this case, can
be combined linearly to re-express the data. In
extension these patterns highlight spaces with
unique characteristics. The combination of the
described methodologies and the identification of
highly correlated datasets, such that clustering can
be applied on a reduced, or more readily available
dataset helps identify the grid cells presenting
specific correlations. Locales highlighted by the
clustering result, especially ones that form an area of
multiple clusters can be classified as areas with
potentially fragmented and uneven food networks
in need of further analysis.
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The depicted grid cells consisting of the
outcome of the first process (identification) are
further evaluated as the input area for the next, high-
fidelity, stage. The analysis at this stage focuses on a
smaller scale with the refined grid cells adapting to
10x10m size. Therefore, the datasets from the
previous stage are considered inadequate due to
their granularity level. Instead during this step’s
evaluation process, the input data are categorized
into four groups: census data with a high granularity
from the National Statistics Census for the UK (2011)
such as e-food desert score and diversity score,
detailed geo-location of food-related facilities,
purchase habits data per area (Tesco dataset), spatial
analytics simulation results using graph-based space
syntax methodologies (integration and visibility
scores) and real-time input collected through
simulations (sunlight analysis) and online platforms
(area popularity).

During this stage, all partial predicates
mentioned above are calculated concurrently and
independently and projected (numerical
integration) on the same quadrilateral cell grid
according to the process described above. Spatial
patterns, perceived as configuration, have a
numerical representation that allows them equal
status in a dataset (Vaughan, 2007) and thus are
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included as parameters. Space syntax integration is
calculated as angular segment analysis defined by
Turner (2007) and visual integration through the
visibility graph analysis algorithm (VGA), also
defined by Turner (2001). The road and building data
used were downloaded from Open Street Map
(OSM) and simplified with the use of the Space
Syntax Toolkit (Gil et al, 2012). DepthmapX
(Varoudis, 2015) was implemented for the
calculations. The Normalised Angular Integration
(NAIN) is given as NAIN = log(Integration(r) + 2)
where Integration(r) is the Space Syntax integration
for the radius r (Van Nes and Yamu, 2021). The Visual
Integration [HH] values derive directly from
depthmapX software and are «calculated as
Visuallntegration[HH] = 1/RRAD where RRAD is
Real Relative Asymmetry (Koutsolampros et al,
2019).

Sunlight values are calculated from solar analysis
simulations applied on the same grid projected in a
Rhinoceros3D environment with the use of Ladybug
Tools. The area popularity score, is defined as a
combination of geolocated Twitter data and GPS
data entries in a given day. It is aspired that as a next
step of the study, this metric could include additional
user data that will assist in the accuracy of the

Figure 5

Example output of
the Growth
Network
Framework,
activation of target
cells



Figure 6

Diagram visualising
the spatial
configurations and
distribution of
food-related
functions

prediction. Currently, the additional data inputs are
updated on a discrete period basis.

GROWTH NETWORK ALGORITHM

Following the analytical processes above, the
developed outcome functions as input to an
algorithm adapted to include the existing built
infrastructure in its workflow (evaluation phase). This
step is developed in Unity and C#, aiming to provide
increased comprehensibility. The operation of the
developed design tool in a virtual environment
allows for direct interaction with the ‘data and
educates on how the input will affect the end result
by experiencing the “hyperreality”.

The algorithm will decide which cells should be
“activated” for food-related activities. Starting from
an initial cell, or point-of-interest, the method can
employ two different solvers for the identification of
neighbouring cells, optimal for the construction of a
food-network. The initial cell can be either
preselected or manually appointed through the
virtual space. The solvers include a deterministic and
a stochastic method.

The deterministic algorithm calculates the total
weight of each neighbour and “activates” the one
with the highest value (Type A). The weight of each
grid cell is calculated as the sum of the normalized
values of the input data, each multiplied by a
corresponding coefficient factor, based on their
perceived significance. These coefficients range
from -10 to 10, and while they are unchanging for
census data, they can present seasonal variations for
data related to climate or user habits. Area

popularity as well as cultivation-related points of
interest present higher values during the spring and
summer months, acting as poles of attraction. Since
the value of these coefficients coincides with the
perceived importance of each variable for the study
area, local experts can assist with the precise
definition to better represent the local context.

The progress of the “activated” cells evolves by
approximately one step per week, while an
additional “growth” function applies for the summer
period, based on the assumption of increased
demand for urban agriculture spaces. This function
considers a stochastic method, in the form of an
evolutionary algorithm (EA) where a set of possible
network activations is chosen randomly and
evaluated based on their total weight values. The
best oneis selected as a base and a new set is created
from permutations of the base or untested cells and
the process repeats. This iterative method continues
until a prescribed set of steps is completed (see
figure 5).

The stochastic method produces a new cell
typology (Type B) that expands at a higher rate but
is removed when the function has run its full cycle
(when the summer period is through). This
expansion operates based on weight values
associated only with real-time data, such as sunlight
and footfall while the cells’ geo-location is confined
in existing open areas due to their ephemeral nature.
In general, the deterministic method will always
choose the best neighbour, but tends to expand
towards locally optimal areas and stop there, while
the stochastic method works better when
considering faster expansions, since given a wide
enough search range can avoid stagnation at local
optima.

The outcome of this stage consists of a network
of “activated” grid cells evaluated as optimal
locations for future food-related activities. As the last
stage of the methodological approach (proposal),
the developed network is included in a more
accurate definition of locations for each of the
defined potential functions: cultivation, retail,
consumption and social. The location evaluation is
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performed via a function that has been
implemented in the developed algorithm and aims
to distribute functions equally in an area by
minimising the average distance of any point from
any given function type.

This process operates on the assumption that
each resident should have access to food within a
maximum of 250m radius and a restaurant within
100m (see figure 6). In order to avoid clustering of
similar facilities in close proximity, a 50m radius
buffer zone is added in between each considered
location. The additional element of “social” is
included, expressing the sociability of food, based on
the correlations between deprivation, diversity and
social segregation observed in the first stage of the
analysis. More specifically, the algorithm iterates
through the activated cell list while controlling the
proximity of functions in space, concluding to a
proposal that applies to the aforementioned
principles.

The final outcome from the developed
methodological approach consists of a series of
iterations that depict optimal locations and potential
functions to construct a new food network
distribution. The hierarchical structure of multiple
stages and scales involved in the process provides a
better understanding of the outcome of each stage
and higher accuracy. As an early-stage design tool,
the “Growth Network Framework” was developed in
a virtual reality environment (Unity) which facilitates
its use further than solely a visualisation tool, by
including it in simulations and evaluation of the
consequences of the interventions.

The virtual environment is actively involved in
the process by allowing the designer/user to
interfere with the network expansion in 3D space,
experiencing the temporal data update that
contributes to the re-evaluation of the process, every
time the iterative method starts over. By doing so,
the tool maintains an active relation to its physical
counterpart and contributes to a continuous
information flow (see figure 7). This attribute
facilitates the potential of integration in a digital
twin (DT) model that can further monitor
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performance, evaluate different scenarios and
predict possible issues. Subsequently, the
functionality of such type of dynamically-updated
virtual environment can be extended to that of an
evaluation tool for the suggested output, or a virtual
metric for success.

DISCUSSION

The proposed design tool consists of a prototype for
optimising the placement of food-related functions
in the urban fabric and it is developed with the
combination of data analytics, graph-based space
syntax and unsupervised machine learning

methodologies. Its purpose is to assist planners and
local authorities in early-stage decision-making
processes while simplifying the communication
between stakeholders and visualising hidden spatial
patterns.

Currently, a variety of 3D modelling and
visualisation tools are available to designers for
simulations, design exploration and construction
management. Though, there is an evident lack of
advanced computational tools that could assist
designers and planners in the early design stages of
large-scale development projects. Such tools can
explore space-specific results and support with high
accuracy decision, strategy and policy development.
Specifically, in existing urban areas, it can provide a
better understanding of the current situation to
strengthen equal food accessibility, while for new
development areas, it can further assist in evaluating

Figure 7

Snapshot from the
VR environment,
showcasing
function
distribution related
to context as
demonstrated live
to academics and
practitionersin
London



the food networks’ location with mobility and place-
making.

Nevertheless, the described methodology
presents limitations that lie in the necessity of
properly sourced datasets. It might be the case, that
extensive work is required to prepare the datasets.
Thatincludes, but is not limited to changes in format,
low granularity, or more decidedly lack of useful data
altogether. Moreover, one must consider the
possibility of skewed census data for reasons
unrelated to the study at hand and allow flexibility in
the method to adapt based on a feedback loop. It is
however axiomatic that lower accuracy inputs lead
to higher errors in the predictions.

This research can be perceived as a starting point
for further investigation on the integration of
advanced computational methods in the early
design and decision-making stages. By adding more
relevant datasets, it can also be augmented to
address other issues, such an example being social
segregation. It can also be expanded as a
participative design tool where the popularity input
is collected from the users of the area. It is only
through interdisciplinary workflows that we can aim
to create better public spaces and the further we
optimise the processes and integrate new
methodologies in the field of urban design, the
closer it brings us to the realisation of such goal.

While the complexity of urban environments
increases, it is essential to develop such tools that
will investigate further than the conventional
methods and will allow the designers to include the
digital notion of “hyperreality” along with the
physical in the decision-making processes. A deeper
understanding of the complex urban ontology will
contribute to more sustainable and resilient cities
focusing on residents’ well-being.
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