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Abstract

Imagine a world where images of you, data from your smartwatch, and your elec-

tronic health records could seamlessly integrate to paint a comprehensive picture of

your health. Now, envision this on a global scale, where vast amounts of diverse

biomedical data are harnessed to target drug trials, personalize treatment, and

improve the lives of millions. This is the promise of multiview learning in the era of

big data, but it comes with a significant challenge: How can we effectively integrate

and analyze these complex, heterogeneous data sources?

The need for novel methods to tackle this challenge is paramount. Traditional

approaches often struggle with the sheer scale and intricacy of modern biomedical

datasets, limiting our ability to uncover crucial insights and advance personalized

medicine. This thesis addresses this critical need by developing cutting-edge ma-

chine learning techniques that leverage the power of self-supervised and multiview

learning, focusing on improving Canonical Correlation Analysis (CCA) for enormous

datasets with rich structure and complex, possibly non-linear relationships.

The primary contributions of this thesis are fourfold. First, a framework for

regularised CCA using structured priors is developed, enhancing the interpretability

of the results. Second, simulated data generation methods for CCA are unified under

a latent variable model perspective, improving our understanding of the relationship

between loadings and weights in CCA. Third, a new gradient descent approach for

CCA and other generalised eigenvalue problems is formulated, tailored for large

datasets. Finally, this gradient descent approach is extended to Deep CCA and

Joint Embedding Self-Supervised Learning, enabling the integration of diverse data

sources using modern deep learning techniques. Finally, we make all of our code

and simulated data publicly available, ensuring that our research is reproducible and

accessible to the wider scientific community.
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Impact Statement

The research presented in this thesis has the potential to significantly advance the

field of representation learning, particularly in the context of integrating diverse,

large-scale biomedical data. By developing novel methods for canonical correlation

analysis (CCA) and its extensions, this work addresses the critical challenge of

uncovering meaningful patterns and relationships in complex, high-dimensional

datasets.

Within academia, the theoretical contributions of this thesis will enable re-

searchers to scale CCA methods to much larger datasets, a crucial development

as access to extensive biomedical data becomes increasingly common. This will

facilitate the discovery of new insights and knowledge across various domains, from

neuroscience to genomics, ultimately leading to a deeper understanding of human

health and disease.

Beyond the academic sphere, the impact of this research extends to numerous

real-world applications. The high-quality, open-source implementations of several

CCA methods developed as part of this thesis will promote reproducible research

and widespread adoption by the Python community, which has become the de facto

standard for data science and machine learning. By providing accessible tools and

frameworks, this work democratizes the use of advanced representation learning

techniques, allowing practitioners and researchers from diverse backgrounds to

harness the power of these methods in their own domains.

Through this mechanism, the work presented in this thesis has already demon-

strated impact in fields as varied as process monitoring, geothermal flow, and

medical imaging. As more researchers and practitioners adopt these tools and

techniques, we anticipate far-reaching implications for industries such as healthcare,

where improved integration and analysis of biomedical data could lead to earlier

disease detection, personalized treatment plans, and enhanced patient outcomes.

In summary, by pushing the boundaries of representation learning and providing
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practical, open-source tools for the research community, this thesis has the potential

to accelerate discovery and innovation across a wide range of domains, with partic-

ularly profound implications for advancing our understanding of human health and

well-being.
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Symbols List

W (i) The matrix of loadings for the i-th view. The jk-th element of this matrix is

given by w
(i)
jk ..

X(i) The ith view of the data, represented as a matrix of random variables. X(i) ∈
RDi where Di is the dimensionality of the ith view..

Z(i) The learned K-dimensional representation for the ith view of the data. Z(i) =

f (i)(X(i); θ(i)) where f (i) is a function parameterized by θ(i)..

CCAK(X(1), X(2)) The vector of the top K canonical correlations obtained from

Canonical Correlation Analysis (CCA) applied to views X(1) and X(2). It is

defined as CCAK(X(1), X(2)) := (ρk)
K
k=1, where ρk is the kth canonical

correlation..

MCCAK(X(1), . . . , X(I)) The vector of the top K generalized eigenvalues ob-

tained from Multiview Canonical Correlation Analysis (MCCA) applied to views

X(1), . . . , X(I). It is defined as MCCAK(X(1), . . . , X(I)) = (λ1, . . . , λK),

where λk is the kth generalized eigenvalue..

PLSK(X(1), X(2)) The vector of the top K singular values obtained from Partial

Least Squares (PLS) applied to views X(1) and X(2). It represents the

covariances between the learned latent variables..

Σii The population covariance matrix of the random variables associated with view

i. Σii = Cov(X(i))..

Σij The population cross-covariance matrix between the random variables associ-

ated with view i and view j. Σij = Cov(X(i), X(j))..

λ The generalized eigenvalues obtained when solving the generalized eigenvalue

problems that arise in PLS and CCA. In CCA, these are known as the canonical

correlations..
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ρk The kth canonical correlation obtained from CCA. ρk is the kth element of the

vector CCAK(X(1), X(2))..

θ(i) The parameters of the function f (i) used to learn the representation Z(i) from

the ith view X(i)..

u
(i)
j The weight of the j-th feature in the i-th view for a latent variable..

w
(i)
j The loading of the j-th feature in the i-th view on the k-th latent variable..
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Definitions

U (i) The matrix of weights for the i-th view. The jk-th element of this matrix is given

by u
(i)
jk ..

canonical correlations In the context of CCA, the generalized eigenvalues λ are

referred to as canonical correlations. They represent the strength of the linear

relationship between the learned representations of the two views. The goal

of CCA is to find the weights that maximize these canonical correlations.

covariance matrix A covariance matrix captures the relationships between vari-

ables in a dataset. The notation Σij represents the population covariance

matrix between the variables in view i and view j. Each element of this matrix,

Σij(a, b), measures how much the a-th variable in view i and the b-th variable

in view j change together. A positive covariance indicates that the variables

tend to increase or decrease together, while a negative covariance indicates

that they tend to move in opposite directions. Σii represents the covariance

matrix within view i, capturing the relationships between variables in the same

view. These matrices are essential for understanding the structure of the

data and are used in subspace learning algorithms like CCA and PLS to find

common patterns across views. , 35, 37, 38, 43–46

generalized eigenvalue problem A Generalized Eigenvalue Problem (GEP) is

defined by two symmetric matrices A,B ∈ RD×D and is characterized by

the set of solutions to the equation Au = λBu, where λ ∈ R and u ∈ RD

are called generalized eigenvalue and generalized eigenvector, respectively.

Many classical subspace learning algorithms, including CCA and PLS, can be

formulated as GEPs constructed from covariance matrices.

latent variables Latent variables, also referred to as representations, are the low-

dimensional variables Zk computed as linear transformations of the input
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variables using the weights, i.e., Zk = Xkuk. They aim to capture meaningful

structures in the data that are not directly observed. , 35

loadings The Pearson correlation between a feature and a latent variable, given by

Corr(X
(i)
j , Zk). It measures the strength of the linear relationship between a

feature and a latent variable, with higher absolute values indicating a stronger

relationship. Loadings are invariant to certain transformations of the data

matrix, such as scaling, duplication, and linear combinations of columns.. 13,

15, 35, 113, 114, 117–122, 124, 125, 212–215

norm A norm is a function that assigns a non-negative length or size to a vector in

a vector space. Common norms include the L1 norm (sum of absolute values)

and the L2 norm (Euclidean norm)..

representations The representations or latent variables Zk are computed as linear

transformations of the input variables using the weights, i.e., Zk = Xkuk.

They aim to capture meaningful low-dimensional structures in the data. In

the CCA literature, they are sometimes referred to as canonical variables. 12,

29–31, 34–37, 39, 77, 79, 90, 142, 144, 145

sample covariance matrix In practice, we often don’t have access to the true pop-

ulation covariance matrices, which would require knowing the data distribution.

Instead, we estimate these matrices from the available data samples. The

sample covariance matrix, denoted as Σ̂(ij), is calculated by averaging the

products of the centered data points (i.e., data points with the mean sub-

tracted) across all samples. These sample covariance matrices serve as

approximations of the true population covariance matrices and are used in

place of them when applying subspace learning algorithms like CCA and PLS

to real-world datasets. , 47

views Views refer to the different sets of variables or modalities that describe the

same underlying phenomena or objects. In the context of multiview learning,

methods like PLS and CCA aim to find common latent structures that explain

the relationships between these views. The term "view" is used to emphasize

the distinct nature of these variable sets, which can come from different data

sources or represent different aspects of the data. , 29–31, 33, 38, 39, 41, 44,

48, 53
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weights When the functions f are linear, the weights uk are used to compute the

representations or latent variables as Zk = Xkuk. The weights define the

linear transformation from the input variables to the latent space. 12, 15, 16,

35, 41, 44, 58, 59, 66, 75, 77–79, 88, 90, 125, 144, 145, 214, 215
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Chapter I

Introduction

It was June 2021, and I had self-referred to the Community Living Well service in

London, UK, seeking help for my mental health. Each week, I met with my therapist

and dutifully filled out the questionnaires, rating my mood and answering questions

about my well-being. Yet, I couldn’t shake the feeling that these snapshots were

inadequate in capturing the complexity of my mental state. As a keen sportsperson, I

relied on my Garmin watch to track my heart rate, sleep, and activity levels, providing

a continuous stream of biometric data that painted a more nuanced picture of my

physical health. Moreover, as a type 1 diabetic, my continuous glucose monitor

offered real-time insights into my blood sugar levels, helping me fine-tune my insulin

management. These diverse data streams, each offering unique perspectives on

my overall health, highlight the potential of learning meaningful representations

from disparate data sources to gain a more comprehensive understanding of an

individual’s well-being.

In biomedical research, there is a growing need to develop methods that can

effectively combine and analyze data from various sources, such as electronic health

records, imaging data, and patient-reported outcomes. By leveraging the power of

self-supervised learning, a machine learning approach that learns from unlabeled

data, we can potentially uncover hidden patterns and relationships in these complex

datasets. Self-supervised learning is particularly well-suited for this task, as it can

learn robust and generalizable representations from vast amounts of unlabeled data,

which is abundant in the biomedical domain.

This thesis focuses on developing and applying novel machine learning methods

to address the challenge of integrating diverse health metrics through representation

learning; that is, learning meaningful low-dimensional representations from com-
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plex, high-dimensional, and potentially multimodal data sources. A key approach

explored in this work is Canonical Correlation Analysis (CCA), a powerful multiview

learning technique that aims to find linear transformations of two or more datasets

such that the transformed variables are maximally correlated. By learning these

transformations, CCA can uncover latent structures and relationships between dis-

parate data sources, making it a valuable tool for representation learning in the

biomedical domain. Through improved methods for multiview and self-supervised

learning, particularly centered around CCA, we hope to improve the analysis and

comprehension of biomedical data, ultimately enhancing our ability to understand

and manage personal health. We will focus our attention in general on the two-view

case, as it is the most common scenario in practice, but the methods developed in

this thesis can be extended to multiple views.

The main contributions of this thesis are fourfold:

1. Developing a framework for regularized Canonical Correlation Analysis us-

ing structured priors to learn more interpretable and biologically meaningful

representations;

2. Unifying simulated data generation methods for CCA under a latent variable

model perspective to facilitate the evaluation and comparison of representation

learning algorithms;

3. Formulating a new gradient descent approach for CCA and other generalized

eigenvalue problems, tailored for learning representations from large datasets;

4. Extending the gradient descent approach to Deep CCA and Joint Embed-

ding Self-Supervised Learning to learn more complex representations from

complex, high-dimensional data;

5. Developing CCA-Zoo, an open-source Python package for Canonical Correla-

tion Analysis, which provides a unified interface for various CCA methods and

facilitates their application in representation learning.

These contributions have significant practical implications, from aiding in the diagno-

sis and treatment of mental health and neurological disorders to enabling efficient

analysis of extensive health databases like the UK Biobank (Biobank, 2014).

Thesis Structure

The thesis is structured as follows:
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• Chapter II reviews multiview and self-supervised learning techniques, focusing

on their application in learning meaningful representations from biomedical

data.

• Chapter III introduces a method to regularize CCA using structured priors,

demonstrated with Human Connectome Project and Alzheimer’s Disease

Neuroimaging Initiative data to showcase the potential of learning structured

representations.

• Chapter IV examines the relationship between loadings and weights in CCA,

using simulated data to show the advantages of loadings for interpreting

learned representations.

• Chapter V presents a new gradient descent algorithm for generalized eigen-

value problems, tailored for learning representations from large datasets,

demonstrated with Multiview CCA and PLS. We show how our algorithm can

be applied to large datasets, using the UK Biobank as an example.

• Chapter VI extends the algorithm from Chapter V to deep learning, showing

its application in scaling deep CCA to learn hierarchical representations from

complex, high-dimensional data. We demonstrate state-of-the-art results on

CIFAR-10 and CIFAR-100 benchmarks, illustrating the potential of Deep CCA

in Self-Supervised Learning.

• Chapter VII introduces CCA-Zoo, a Python package implementing the method-

ologies of this thesis, and discusses its role in the Python ecosystem and

biomedical research, particularly in facilitating representation learning.

• Chapter VIII discusses the implications, challenges, and future directions for

the research presented in this thesis.

Through this thesis, we aspire to bridge the gap between the potential of biomed-

ical data and the current capabilities of analytical methods. By developing novel,

scalable, and interpretable machine learning approaches for representation learning,

we aim to unlock the full potential of diverse health metrics, paving the way for

advancements in biomedical research and personalized healthcare.
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Chapter II

Background: Multiview

Machine Learning: Concepts,

Methods, and Limitations

Principal Component Analysis is a

dimensionally invalid method that

gives people a delusion that they are

doing something useful with their

data. If you change the units that one

of the variables is measured in, it will

change all the “principal

components”! It’s for that reason that

I made no mention of PCA in my

book.

Professor David MacKay
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1 Introduction

This chapter provides the foundational knowledge needed to understand the thesis

as a whole, while the individual chapters will provide more specific background

information as needed.

2 Machine Learning and Multiview Learning

Machine learning encompasses methods that enable models to learn patterns and

make decisions from data. Machine learning methods are typically categorized by a

training set of data, which is used to learn a model, and a test set of data, which is

used to evaluate the model.

Arguably the most common machine learning paradigm is supervised learning,

where the training data consists of pairs of inputs and outputs, and the model learns

to predict a function that maps the inputs to the outputs. This function is then used

to predict the outputs for new inputs. The goal of supervised learning is to learn

a function that generalizes well to new data, i.e., to make accurate predictions on
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unseen data. At the heart of many machine learning algorithms lies the concept of

representation learning - the process of automatically discovering and extracting

meaningful features or representations from raw data. Representation learning aims

to transform high-dimensional, complex data into a lower-dimensional space that

captures the most salient aspects of the original data. This process not only reduces

computational complexity but also uncovers hidden structures and relationships

within the data, which can then be leveraged for various tasks such as classification,

regression, or clustering.

Unsupervised and self-supervised learning are common machine learning

paradigms that often involve learning low-dimensional latent representations of

the input data. In these paradigms, the training data consists of inputs only, and the

model learns to find patterns or structure in the data without explicit output labels.

Downstream models can use these learned representations as their inputs rather

than the original data.

While the distinction between unsupervised and self-supervised learning is

sometimes blurred, unsupervised learning has typically been used to describe

dimensionality reduction, clustering, and generative modeling algorithms. Self-

supervised learning (SSL) describes a special case of unsupervised learning where

the system derives labels from the data itself (Balestriero, Ibrahim, et al., 2023). The

cornerstone of SSL is the concept of a pretext task, a learning task created from

the data that trains the model to capture useful features or representations. Most

famously, SSL is the backbone to the success of Large Language Models (Vaswani

et al., 2017) and in particular ChatGPT (OpenAI, 2021), a language model trained

on a pretext task of predicting masked words in a sentence. SSL methods have also

recently been shown to outperform supervised methods for certain computer vision

tasks for large datasets (Goyal et al., 2019).

2.1 Multiview Machine Learning

This thesis is focussed on multiview machine learning. Practically, our results will

mostly focus on the two-view case, but the methods we develop are generalizable

to more than two views. Here, data from different sources or modalities, referred

to as views, such as neuroimaging, genomics, and clinical records, are analyzed

collectively to unveil underlying patterns. Multiview machine learning encompasses

a variety of techniques aimed at learning from data that have multiple sources or

modalities, also known as views. These techniques broadly fall into categories of

supervised and self-supervised multiview learning, with some algorithms straddling
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Behaviour
y1

Brain
x1

Demographics
x2

Figure II.1: Supervised multiview learning in mental health: An example of how
different views (brain activity and demographics) can be fused to

predict a target variable (behavior) in a supervised learning setting.

the boundary between the two.

2.1.1 Supervised Multiview Learning

In supervised multiview learning, the goal is to fuse information from multiple distinct

views or feature sets to improve the predictive performance of a model. This

approach involves integrating the various views, often using one view as the target

variable and the others as predictors. The model learns to combine the information

from the different views to make more accurate predictions than would be possible

using any single view alone.

For instance, in the context of mental health, we can consider behavioral data as

a dependent variable influenced by multiple independent variables like brain activity

and demographics. Figure II.1 illustrates this concept, where behavioral patterns (y1)

are predicted based on features from brain activity (x1) and demographic information

(x2). The model learns to fuse the information from the brain and demographic views

to form a more comprehensive understanding of the factors influencing behavior.

Multiple Kernel Learning (MKL) (Gonen and Alpaydin, 2011) is a prominent

example of supervised multiview learning, where the algorithm learns to combine

kernel representations of the different views. By fusing the information from the
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various kernels, MKL enhances the model’s predictive capabilities compared to

using a single kernel.

With the advent of deep learning, the underlying concept of MKL has been

extended to deep learning architectures. These architectures enable the model to

learn and fuse representations from various views more effectively (Guo, J. Wang,

and S. Wang, 2019). The deep learning models can automatically learn the most

informative features from each view and combine them in non-linear ways to make

predictions.

I contributed to this line of research through the software package Fusili (Townsend,

Chapman, and Cole, 2023), which implements a number of deep-learning based

multi-modal data fusion methods for supervised learning. Fusili provides a flexible

framework for building models that can fuse information from various data modalities,

such as images, text, and structured data, to make more accurate predictions.

In summary, supervised multiview learning involves fusing information from multi-

ple views to improve predictive performance. By combining the unique perspectives

offered by each view, these methods can form a more comprehensive understanding

of the problem and make more accurate predictions than would be possible using

any single view alone.

2.1.2 Self-Supervised Multiview Learning

In contrast to supervised multiview learning, where explicit labels guide the learning

process, self-supervised multiview learning operates under the hypothesis that

different views are manifestations of a shared, yet hidden, latent variable (Zong, Mac

Aodha, and T. Hospedales, 2023). This approach, as evidenced in the latent variable

model of mental health illustrated in Figure II.2, suggests that both neuroimaging

and behavioural data are influenced by an underlying factor, such as the severity of

a mental health condition, which remains unobserved.

A key challenge in self-supervised learning is designing pretext tasks to estimate

this latent source from the available views. A common approach is to estimate a

common low-dimensional representation of the variance in the data from both views.

In most objectives of this form, this ammounts to identifying the mutual information

between the views. These representations may be informative for their own sake,

identifying common factors between the views, or they may be used as inputs to a

downstream task, such as classification or regression.
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Brain
x(1)

Behaviour
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Figure II.2: Latent Variable Model of Mental Health: From this perspective the
neuroimaging modality and behavioural data are both considered to

have been generated with distributions conditioned on the severity of a
mental health condition

2.2 Conditional Independence, Causality, and Multiview Learn-
ing

The graphical model in Figure II.1 represents the assumption that the brain and

demographics are independent variables, and that the behaviour is a conditional

variable, dependent on both the brain and demographics.

On the other hand, the graphical model in Figure II.2 represents the assumption

that the brain and behaviour are conditionally independent given the severity of an

unobserved latent mental health condition.

Reichenbach (1956) introduced the epoynmous Reichenbach’s principle, which

states that if two variables are correlated, then either one causes the other, or

both are caused by a third variable. While the relationship between conditional

independence and causality is nuanced (Pearl, 2009), it is clear that our assumptions

about the causal structure of the data can inform our choice of multiview learning

algorithm. In particular, we could envision a number of causal structures that could

give rise to the observed data in Figure II.2:

• direct causation (brain influencing behavior or vice versa or even both)

• both being influenced by a common, possibly unobserved, cause

• no direct causal link between them

In the first case, we might be more inclined to use a supervised multiview learning

algorithm to predict one view from the other. In the second case, we might be more
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inclined to use a self-supervised multiview learning algorithm to estimate the latent

variable.

2.2.1 Complementary and Redundant Information

The nature of the information provided by different views (such as neuroimaging

and behavioral data) is important for understanding multiview learning models. A

particularly useful distinction is between complementary and redundant information

(Nguyen and D. Wang, 2020; Lyu et al., 2021; M.-S. Chen et al., 2022). The com-

plementary information in views offers unique insights into different aspects of the

same subject. For instance, in mental health studies, neuroimaging might reveal

structural changes in the brain that are not (yet) present in presented behavioural

phenotypes, while behavioral data could be influenced by demographic factors that

do not present as structural differences in the brain. Both these views together

provide a more holistic understanding of a mental health condition. Conversely, re-

dundant information in different views refers to overlapping or similar data presented

from various angles. For instance, a specific mental health condition may manifest in

both observable behavioral changes and detectable neuroimaging markers. While

each view alone could suggest the presence of the condition, their combination,

due to redundancy, can enhance the reliability of the diagnosis. This redundancy

is not merely repetitive; it plays a crucial role in denoising and validating findings.

In essence, if both neuroimaging and behavioral data independently point to the

same diagnosis, the confidence in this diagnosis increases. The Wisdom of Crowds

phenomenon, where the collective average of multiple estimates tends to be more

accurate than individual estimates, exemplifies the strength of redundant information

(Galton, 1907), as illustrated in Figure II.3. This principle is akin to the redundancy

in multiview data, where multiple views converge to a more accurate or robust

conclusion than any single view alone.

In this thesis, we will explore Canonical Correlation Analysis, a multiview learning

method predicated on the assumption that different views provide complementary

information about latent variables. The following sections will establish a formal

framework for representation learning and motivate the use of Canonical Correlation

Analysis in harnessing complementary information from multiview data.
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Figure II.3: The Wisdom of Crowds: The average of multiple noisy estimates of
the weight of a cow is more accurate than any individual estimate

3 Learning Representations: Definitions and Nota-

tion

Suppose we have a sequence of vector-valued random variables X(i) ∈ RDi for

i ∈ {1, . . . , I}We want to learn meaningful K-dimensional representations

Z(i) = f (i)(X(i); θ(i)). (II.1)

For convenience, define D =
∑I

i=1 Di and θ =
(
θ(i)
)I
i=1

. Without loss of generality

take D1 ≥ D2 ≥ · · · ≥ DI . We will consistently use the superscript (i) to denote

the i-th view and not as an exponentiation operation. d ∈ [Di] for dimensions of

input variables; and l, k ∈ [K] for dimensions of representations - i.e. to subscript

dimensions of Z(i), f (i). Later on we will introduce total number of samples N .

We denote the inner product between two vectors a and b as ⟨a, b⟩, which is

defined as:

⟨a, b⟩ = a⊤b =

n∑
i=1

aibi (II.2)

where ai and bi are the i-th elements of vectors a and b, respectively, and n is the

dimension of the vectors.

The inner product is a measure of similarity between two vectors, with larger
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values indicating higher similarity. It is also related to the angle θ between the

vectors, as shown in the following equation:

⟨a, b⟩ = |a||b| cos(θ) (II.3)

where |a| and |b| are the Euclidean norms (lengths) of vectors a and b, respectively.

In this report, when the functions f are linear, we will typically refer to uk as

weights, Zk = Xkuk as representations or latent variables (noting that in the CCA

literature they are sometimes referred to as canonical variables (Borga, 1998) or

scores (Mihalik, Chapman, Adams, Winter, Ferreira, Shawe-Taylor, Mourao-Miranda,

et al., 2022)), depending on the context. We will sometimes consider a matrix

U = (u1, . . . , uK) ∈ RD×K of weights, and a matrix Z = (Z1, . . . , ZK) ∈ RN×K of

representations. We will refer to the Pearson correlation between features and their

respective latent variable Corr(X
(i)
j , Zk) as the loadings of X(i)

j on Zk (Rosipal and

Krämer, 2005; Alpert and R. A. Peterson, 1972; Borga, 1998), noting that the same

concept has also been referred to as structure correlations (Meredith, 1964).

We will use the notation Σij = Cov(X(i), X(j)) for the population covariance

matrix between the random variables associated with view i and j. This covariance

matrix captures the relationships between variables from different views. Each

element of this matrix, Σij(a, b), measures how much the a-th variable in view i and

the b-th variable in view j change together, even though they belong to different

views. A positive covariance indicates that the variables from different views tend

to increase or decrease together, while a negative covariance indicates that they

tend to move in opposite directions. These covariance matrices play a crucial role in

multiview learning algorithms as they capture the inter-view relationships that the

algorithms aim to leverage.

We will also use Σii = Cov(X(i)) for the population covariance matrix of the

random variables associated with view i with each other. This covariance matrix

captures the relationships between variables within the same view. Each element

of this matrix, Σii(a, b), measures how much the a-th and b-th variables in view i

change together. A positive covariance indicates that the variables within the same

view tend to increase or decrease together, while a negative covariance indicates

that they tend to move in opposite directions. These within-view covariance matrices

are essential for understanding the structure of the data in each view and are used in

conjunction with the inter-view covariance matrices in multiview learning algorithms.

Many classical subspace learning algorithms can be formulated as Generalized

Eigenvalue Problems GEPs constructed from covariance matrices. In the following
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subsection, we introduce the concept of GEPs and discuss their properties, which

will be useful for understanding the optimization problems and solutions of these

algorithms.

3.1 Generalized Eigenvalue Problems in linear algebra

A Generalized Eigenvalue Problem is defined by two symmetric matrices A,B ∈
RD×D (stewart_matrix_1990)1. They are usually characterized by the set of solu-

tions to the equation:

Au = λBu (II.4)

with λ ∈ R, u ∈ RD, called (generalized) eigenvalue and (generalized) eigenvector

respectively. When B is positive definite, then the GEP becomes equivalent to an

eigen-decomposition of the symmetric matrix B91/2AB91/2 (Ghojogh, Karray, and

Crowley, 2019). In addition, one can find a basis of eigenvectors spanning RD. We

define a top-K subspace to be one spanned by some set of eigenvectors u1, . . . , uK

with the top-K associated eigenvalues λ1 ≥ · · · ≥ λK . We say a matrix U ∈ RD×K

defines a top-K subspace if its columns span one.

Uniqueness In GEPs, the eigenvectors u are not in general unique, but the

generalized eigenvalues 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0 are unique (Mills-Curran, 1988).

4 Classical Subspace Learning Algorithms

4.1 Principal Components Analysis

Principal Components Analysis (Hotelling, 1933) (PCA) is a classical method in

unsupervised machine learning for representation learning. It is widely used for

dimensionality reduction and feature extraction. The primary goal of PCA is to

transform the original high-dimensional data into a new coordinate system defined

by orthogonal axes, capturing the most relevant aspects of the data.

In PCA, the representations are constrained to be linear transformations of the

form:

Zk = Xuk, (II.5)

1more generally, A,B can be Hermitian, but we are only interested in the real case
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where uk are orthonormal basis vectors such that:

u⊤
k uk = 1, u⊤

k ul = 0 for k ̸= l. (II.6)

The primary goal of PCA is to maximize the variance of the representations Zk,

finding the directions of maximal variance in the data.

4.1.1 Optimization and Solution

Mathematically, for the first principal component, this can be formulated as:

uopt = argmax
u

(
u⊤Σu

)
(II.7)

subject to:

u⊤u = 1

Where Σ = E[X⊤X] is the population covariance matrix of the single view data

X.

To solve this constrained optimization problem, we can use the method of

Lagrange multipliers. The key idea behind Lagrange multipliers is to transform a

constrained optimization problem into an unconstrained one by incorporating the

constraints into the objective function. The Lagrange multiplier, denoted by λ, can be

thought of as a penalty for violating the constraint. By setting the Lagrange multiplier

to a large enough value, we ensure that the optimal solution satisfies the constraint.

The Lagrangian function for the PCA optimization problem is constructed by

adding the constraint multiplied by the Lagrange multiplier to the original objective

function:

f(u, λ) = u⊤Σu+ λ(1− u⊤u), (II.8)

where λ is the Lagrange multiplier.

Intuitively, the first term in the Lagrangian represents the objective function

(maximizing the variance), while the second term penalizes solutions that violate

the constraint (unit norm). By finding the stationary points of the Lagrangian with

respect to both u and λ, we obtain the optimal solution that maximizes the variance

while satisfying the unit norm constraint.

Differentiating the Lagrangian with respect to u and setting it to zero yields the
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first-order conditions (which are necessary for optimality for the optimal u):

Σu = λu, (II.9)

u⊤u = 1. (II.10)

Eigenvalue Problem This transforms the problem into an eigenvalue equation

for the covariance matrix Σ, which can be efficiently solved using standard libraries

such as scikit-learn (Pedregosa et al., 2011).

The first principal component therefore corresponds to the eigenvector asso-

ciated with the largest eigenvalue λ. Subsequent components are the remaining

eigenvectors ordered by their corresponding eigenvalues.

4.1.2 Limitations

There are three major limitations of PCA that are relevant to this thesis.

1. Scale Invariance: as highlighted in the epigraph to this chapter, PCA is not

scale invariant, meaning that the importance of a principal component can be

disproportionately affected by the scale of the variables in the data. Variables

measured at larger scales can dominate over those measured at smaller

scales unless the data is normalized. This sensitivity to the scale of the data

can lead to misleading directions that do not necessarily capture the most

meaningful underlying structures.

2. Sparsity and Interpretability: Although PCA reduces dimensionality by

projecting the data onto new axes, the resulting principal components are

linear combinations of all the original features. This complex aggregation can

make it difficult to interpret the components, especially when each component

is influenced by many original variables. For this reason, sparse variants of

PCA have been developed (Zou, Hastie, and Tibshirani, 2006; Zou and Xue,

2018), which aim to find sparse linear combinations of the original features;

interpretable as a subset of the original features contributing to a significant

proportion of the variance in the data.

3. Multiview Data: PCA is primarily designed for analyzing a single dataset and

does not naturally accommodate multiview data, where multiple independent

sets of variables (views) describe the data. While it is possible to concatenate

these views into a single dataset prior to analysis, this approach does not take

advantage of the potential interactions and complementary information across
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the views, which can be critical for more insightful analysis in applications

such as image processing, bioinformatics, and social sciences.

Nevertheless, PCA remains a popular tool in practice (Greenacre et al., 2022)

and is a useful baseline for multiview learning methods, and we will use it as a point

of comparison in this thesis.

4.2 Partial Least Squares

Given the inherent limitations of PCA, especially in handling multiview datasets

where capturing interactive and complementary information between different data

sources is crucial, Partial Least Squares (PLS) emerges as a potent alternative.

PLS extends the principles of PCA to analyze two correlated views simultaneously,

optimizing for the shared covariance rather than variance within a single dataset.

This approach makes PLS particularly valuable in multiview settings where the goal

is to uncover the latent structures that explain the relationships between views.

Partial Least Squares (Wold, 1975) aims to maximize the shared covariance

between two paired sets of data, referred to as views. PLS can be seen as a

generalization of PCA, where PCA becomes a special case when the two views are

identical.

PLS optimizes for the dot product between the representations of two views, a

measure of similarity.

⟨X(1)u(1), X(2)u(2)⟩ = |X(1)u(1)||X(2)u(2)| cos(θ) = u(1)TΣ12u
(2) (II.11)

Where θ is the angle between the two representations. Much like for PCA, the

representations are constrained to be linear transformations of the form:

Z(i) = X(i)u(i) (II.12)

Where u(i) are orthonormal basis vectors such that:

u(i)Tu(i) = 1 (II.13)

u(i)Tu(j) = 0 for i ̸= j (II.14)
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4.2.1 Optimization and Solution

The constrained optimization problem for PLS can therefore be formulated as:

u
(1)
opt = argmax

u(1)

{u(1)TΣ12u
(2)} (II.15)

subject to:

u(1)Tu(1) = 1

u(2)Tu(2) = 1

The Lagrangian for this optimization problem once again integrates the con-

straints as penalties:

f(u(1), λ) = u(1)TΣ12u
(2) + λ1(1− u(1)Tu(1)) + λ2(1− u(2)Tu(2)) (II.16)

Upon deriving the first order conditions, we get:

Σ21u
(1) = λ2u

(2) (II.17)

Σ12u
(2) = λ1u

(1) (II.18)

u(1)Tu(1) = 1 (II.19)

u(2)Tu(2) = 1 (II.20)

By substituting the constraint conditions into these equations, we find that λ1 =

λ2 = λ by symmetry. Further simplification yields:

Σ21Σ12u
(2) = λ2u(2) (II.21)

Σ12Σ21u
(1) = λ2u(1) (II.22)

Eigenvalue Problem Once again, we see that solving these equations will yield

the u(1) and u(2) vectors as eigenvectors, this time of Σ12Σ21 and Σ21Σ12, respec-

tively (Höskuldsson, 1988).

Generalized Eigenvalue Problem We can also represent the system of equations

in matrix form as follows:
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(
0 Σ12

Σ21 0

)(
u(1)

u(2)

)
= λI

(
u(1)

u(2)

)
(II.23)

Which is of the form Av = λBv. PLS is therefore also defined by the solution to

a single generalized eigenvalue problem.

Given the notions of uniqueness in GEPs, the weights u are not in general unique

but we can write the vector of generalized eigenvalues (λ1, . . . , λK) representing

covariances as:

PLSK(X(1), X(2)) := (λk)
K
k=1 (II.24)

4.2.2 Limitations

Despite the advantages of PLS over PCA in handling multiview datasets, PLS has

its own limitations that can impact its effectiveness in certain applications:

1. Scale Invariance: Similar to PCA, PLS is not scale invariant. This means

that the model’s outcomes are affected by the scale of the features, potentially

leading to biased weights towards features with larger scale unless data is

normalized.

2. Sparsity and Interpretability: PLS does not inherently produce sparse

models. The components derived from PLS are linear combinations of all

input features, which can make the model difficult to interpret, particularly

in high-dimensional contexts such as genomics or text processing. Sparse

PLS has also been an active area of research (Chun and Keleş, 2010; Witten,

Tibshirani, and Hastie, 2009).

4.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a close relative of PLS, designed to maxi-

mize the correlation instead of covariance between representations. This focus on

correlation allows for a more nuanced understanding of the relationships between

views, making CCA particularly useful in scenarios where the goal is to explore how

views relate on a normalized scale.

CCA achieves this by optimizing the cosine of the angle between the representa-

tions, thus normalizing the effect of the scale of the data:
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cos(θ) =
⟨X(1)u(1), X(2)u(2)⟩
|X(1)u(1)||X(2)u(2)|

=
u(1)TΣ12u

(2)

|X(1)u(1)||X(2)u(2)|
(II.25)

By focusing on correlation, CCA normalizes the contributions of each variable,

ensuring that the analysis is not unduly influenced by the magnitude of the data.

This normalization is particularly valuable in multiview settings where the scales of

the data sources may differ significantly.

4.3.1 Optimization and Solution

If we constrain the norms of the representations to be equal to 1, i.e., |X(1)u(1)| =
|X(2)u(2)| = 1, then maximizing the cosine similarity is equivalent to maximizing

the numerator u(1)TΣ12u
(2). This leads to the following constrained optimization

problem:

uopt = argmax
u
{u(1)TX(1)TX(2)u(2)} (II.26)

subject to:

u(1)TΣ11u
(1) = 1

u(2)TΣ22u
(2) = 1

By focusing on correlation and imposing unit norm constraints on the repre-

sentations, CCA normalizes the contributions of each variable, ensuring that the

analysis is not unduly influenced by the magnitude of the data. This normalization is

particularly valuable in multiview settings where the scales of the data sources may

differ significantly.

Although non-convex, numerous methods exist for solving the CCA problem,

including eigendecomposition and generalized eigendecomposition solvers (Uurtio

et al., 2017) and block coordinate descent via alternating least squares regressions

(Golub and Zha, 1995; Sun, Ji, and Ye, 2008).

The first-order conditions derived in the same manner as the PLS case are:
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Σ21u
(1) = λ(2)Σ22u

(2) (II.27)

Σ12u
(2) = λ(1)Σ11u

(1) (II.28)

u(1)TΣ11u
(1) = 1 (II.29)

u(2)TΣ22u
(2) = 1 (II.30)

Eigenvalue Problems Substituting the second two conditions into the first two,

we get λ(1) = λ(2) = λ. Finally, substituting the first two conditions into each other,

we find the eigenvalue problems:

Σ−1
11 Σ12Σ

−1
22 Σ21u

(1) = λ2u(1) (II.31)

Σ−1
22 Σ21Σ

−1
11 Σ12u

(2) = λ2u(2) (II.32)

An alternative form of the CCA problem can be developed by reparameterizing

u(i∗) = Σ
− 1

2
ii u(i). The optimization problem then becomes:

uopt = argmax
u
{u(1)TΣ

− 1
2

11 Σ12Σ
− 1

2
22 u(2)} (II.33)

subject to:

u(1)Tu(1) = 1

u(2)Tu(2) = 1

This reparameterized form will later underpin Deep Canonical Correlation Analy-

sis (DCCA) through the matrix T = Σ
− 1

2
11 Σ12Σ

− 1
2

22 . This form also shows that PLS

and CCA can be made equivalent by whitening the data matrices before construct-

ing the covariance matrices. When the number of features exceeds the number of

samples (p > n), CCA becomes degenerate because the within-view covariance

matrices cannot be inverted—contrasting with PLS, which is always computable.

Generalized Eigenvalue Problem We can also represent the system of equations

in equation II.27 as a matrix equation:
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(
0 Σ12

Σ21 0

)(
u(1)

u(2)

)
= λ

(
Σ11 0

0 Σ22

)(
u(1)

u(2)

)
(II.34)

Which is once again of the form Au = λBu. CCA, like PLS, is therefore also

defined by the solution to a single generalized eigenvalue problem.

Canonical Correlations In the case of CCA, the generalized eigenvalues λ are

generally called canonical correlations (Hotelling, 1935; Hotelling, 1992). Given the

notions of uniqueness in GEPs, the weights u are not in general unique but we can

write the vector of generalized eigenvalues or canonical correlations as:

CCAK(X(1), X(2)) := (ρk)
K
k=1 (II.35)

4.3.2 Limitations

A major limitation of CCA is revealed by the forms in equations II.31 and equa-

tion II.33; CCA in general requires the inversion of covariance matrices, which is

computationally expensive, potentially numerically unstable, and impossible when

the number of features exceeds the number of samples such that the covariance

matrices are not full rank.

4.4 Multiview CCA

Multiview CCA (MCCA) is an extension of CCA that handles more than two views

simultaneously. Given I views X(1), . . . , X(i), the goal of MCCA is to find a set of

directions u(1), . . . , u(i) that maximize the sum of pairwise correlations between the

projections of the views onto these directions.

4.4.1 Optimization and Solution

The optimization problem for MCCA can be formulated as follows:

uopt = argmax
u

I∑
i=1

I∑
j=1,j ̸=i

u(i)TΣiju
(j) (II.36)

subject to:
I∑

i=1

u(i)TΣiiu
(i) = 1
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Generalized Eigenvalue Problem The MCCA optimization problem can be solved

by formulating it as a generalized eigenvalue problem. The GEP for MCCA can be

written in matrix form as follows:


0 Σ12 · · · Σ1I

Σ21 0 · · · Σ2I

...
...

. . .
...

ΣI1 ΣI2 · · · 0


︸ ︷︷ ︸

A


u(1)

u(2)

...

u(I)

 = λ


Σ11 0 · · · 0

0 Σ22 · · · 0
...

...
. . .

...

0 0 · · · ΣII


︸ ︷︷ ︸

B


u(1)

u(2)

...

u(I)

 . (II.37)

The matrix A contains the cross-covariance matrices between the views, while

the matrix B is a block diagonal matrix containing the within-view covariance ma-

trices. The solution to the GEP gives the optimal directions u(1), . . . , u(I) and the

corresponding generalized eigenvalues λ.

Unified Framework The GEP formulation of MCCA can be further generalized to

include ridge regularization, which helps stabilize the solution when the covariance

matrices are ill-conditioned. This leads to a unified framework that encompasses

both CCA and its ridge-regularized extensions.

Let A,Bα ∈ RD×D be block matrices defined as follows:

Aij = Cov(X(i), X(j)) for i ̸= j, (II.38)

Bα,ii = αiID(i) + (1− αi)Var(X
(i)), (II.39)

where α ∈ [0, 1]I is a vector of ridge penalty parameters. Setting αi = 0 ∀i recovers

the standard CCA, while αi = 1 ∀i yields the PLS solution.

In the case of standard CCA (i.e., α = 0), we can define the MCCA correlation

vector as:

MCCAK(X(1), . . . , X(I)) = (λ1, . . . , λK), (II.40)

where λ1, . . . , λK are the top-K generalized eigenvalues. These eigenvalues repre-

sent the average of the top-K correlations between each pair of views.
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4.5 Linear Discriminant Analysis LDA

Linear Discriminant Analysis (LDA) can be viewed as a special case of Canoni-

cal Correlation Analysis where X(2) is a one-hot encoded matrix representing the

class labels. This allows us to draw a connection between the unsupervised learn-

ing framework of CCA and the supervised framework of LDA(Balakrishnama and

Ganapathiraju, 1998; Riffenburgh, 1957), thus expanding the understanding of both

algorithms.

Intuition: In LDA, the aim is to find a lower-dimensional subspace where the

classes are maximally separated. This objective can be viewed through the lens of

CCA, where the optimal directions u(1) and u(2) in the original and one-hot encoded

spaces aim to maximize correlation. In the LDA context, u(1) would maximize the

separation between classes.

4.5.1 Optimization and Solution

Mathematically, LDA is reduced to solving a generalized eigenvalue problem in-

volving the between-class scatter matrix SB and the within-class scatter matrix

SW :

ŜB =

c∑
i=1

ni(µi − µ)(µi − µ)⊤

ŜW =

c∑
i=1

∑
x∈Xi

(x− µi)(x− µi)⊤

Connection to CCA: When X(2) is the one-hot encoded matrix of class labels,

the CCA problem effectively tries to maximize the correlation between the feature

vectors and their corresponding labels. This turns out to be equivalent to maximizing

the between-class variance in LDA while minimizing the within-class variance. Thus,

LDA can be thought of as a constrained form of CCA, tailored to classification tasks.

This perspective unifies the two algorithms and shows that the core objec-

tive—finding meaningful relationships or directions in the data—is shared between

both CCA and LDA.

4.6 Sample Covariance and Population Covariance

In the previous sections, the methods were described in terms of population

covariance matrices such as Σ11 = E[X(1)TX(1)], Σ22 = E[X(2)TX(2)], and
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Σ12 = E[X(1)TX(2)]. These population covariances assume an underlying proba-

bility distribution from which the data are drawn.

Sample Covariance: In practical settings, we often do not have access to the

entire population but only to a sample. Hence, we can use the Sample Average

Approximation to estimate these covariances:

Σ̂(12) =
1

b− 1
X̄(1)X̄(2)⊤

Here, b denotes the size of the minibatch, and X(1) ∈ RD1×b and X(2) ∈ RD2×b

are the data matrices for the samples from X(1) and X(2), respectively. The bar

over X(1) and X(2) signifies that these are centered versions of the matrices, i.e.,

the mean has been subtracted from each column. For the ease of both reader and

writer, we will drop the bars for the remainder of the thesis and assume that all data

matrices are centered without loss of generality.

Practical Implications: Using sample covariance matrices introduces some

estimation error but allows us to apply the methods in real-world scenarios where

population-level data are unattainable. Additionally, the use of minibatches (chunks

of data) in later chapters provides a computationally efficient way to estimate these

covariances in large-scale problems, at the cost of some additional statistical noise.

Connection to Previous Methods: The use of sample covariance matrices

is directly applicable to algorithms like CCA and LDA. When replacing the popu-

lation covariances Σ(ij) with sample estimates, the optimization problems remain

structurally similar but are solved using the sample data.

This dual perspective—considering both population and sample covariance

matrices—enables a more robust and flexible approach to the methods discussed,

bridging the gap between theoretical analysis and practical application. It will be

particularly useful in the context of chapter IV where we will use population variables

as ground truth while estimating the models using sample data.

5 Practical Frameworks for Evaluating Multiview Learn-

ing Methods

At this point, we have introduced the theoretical foundations of multiview learning,

and a number of classical representation learning algorithms including CCA and

its variants. However, it is not yet clear how we should evaluate these methods

in practice. In this section, we compare the machine learning and the statistical

47



James Chapman December 2023

Figure II.4: Schematic of the permutation testing procedure. The original data are
randomly shuffled, and the model is retrained on the shuffled data. This
process is repeated multiple times, and the model’s performance on the

original data is compared to the distribution of performances on the
shuffled data.

approach of permutation testing. These two approaches are not mutually exclu-

sive, and statistical learning theory has emerged as a unifying framework for both

perspectives (Vapnik, 1999; Hastie et al., 2009).

5.1 Permutation Testing

Permutation testing offers a robust way to evaluate the significance of the results

obtained by multiview learning methods and, for a single component, is a relatively

simple process (Winkler et al., 2020). As illustrated in Figure II.4, the views are

randomly and separately shuffled, and the model is then trained and tested on this

permuted data. This process is repeated multiple times, generating a distribution

of performance metrics under the null hypothesis, where there is no relationship

between the views. The actual performance of the model on the unshuffled data is

then compared to this distribution. If the actual performance is significantly better

than the permuted performance, it suggests that the model is capturing meaningful

relationships in the data.

5.2 Machine Learning

The machine learning approach to evaluating multiview learning methods is to

use a holdout or test set to estimate the out-of-sample performance of the model.
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Figure II.5: Schematic of the cross-validation procedure. The original data are
partitioned into training and test sets. In cross-validation, the training

set is further partitioned into training and validation sets. The model is
trained on the training set and evaluated on the validation set for
different parameter values. The parameter value with the best
performance on the validation set is selected, and the model is

retrained on the entire training set. The final model is evaluated on the
single test or holdout set.
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Within the training set, where necessary, cross-validation is used to select the best

model hyperparameters. Cross-validation involves partitioning the training set into

training and validation sets, training the model on the training set, and evaluating

the model on the validation set. When this is performed for multiple subsets of the

training set, it is referred to as k-fold cross-validation as illustrated in figure II.5. The

model hyperparameters are then selected based on the performance across the

validation sets. The model is then retrained on the entire training set using the best

hyperparameters, and evaluated on the test set.

In this thesis, we will use the machine learning approach throughout. This is

because in scaling up to large datasets, permutation testing becomes computation-

ally intractable. This is because permutation testing requires retraining the model

multiple times on the permuted data. This comes at the cost of only being able to

evaluate models with a point estimate of performance, rather than a distribution.

5.3 Components and Subspaces in CCA

5.3.1 Eigenvalue Problems in CCA

While our focus so far has primarily been on the top-1 eigenvector-eigenvalue pair,

it’s important to note that the methodology also extends to the top-k subspace

problem. This broader approach involves identifying the top-k eigenvectors and their

corresponding eigenvalues.

5.3.2 Addressing the Top-k Problem

Transitioning from a focus on the top-1 component to exploring the top-k subspace

introduces additional complexities. One common method to solve the top-k problem

is to identify the top-1 component and then apply a deflation process to find subse-

quent orthogonal components. Deflation involves removing the top-1 component

from the data and then repeating the process to find the next top-1 component.

This process is repeated until the desired number of components is found. For

instance, Hotelling’s Deflation (Hotelling, 1933) involves removing the top-1 compo-

nent from the data, while Projection Deflation (Mackey, 2008) involves projecting the

data onto the orthogonal complement of the top-1 component. Different deflation

methods enforce different forms of orthogonality, which can impact the resulting

components and their interpretation, particularly when the first component is not a

true eigenvector.
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5.3.3 Non-Uniqueness of Components

Furthermore, non-uniqueness is a significant challenge in representation learning,

particularly when eigenvectors have repeated eigenvalues. Imagine a scenario

where the top-1 eigenvalue is repeated k times. In this case, there are k possible

eigenvectors that can be associated with the top-1 eigenvalue. While this is unlikely

to occur in practice, the eigenvalues can in practice be very close to each other,

leading to numerical instability and non-uniqueness in the components. Particularly

true in cross-validation settings, this non-uniqueness can lead to instability in the

components, complicating their interpretation and comparison. For example, the top-

1 component in one analysis might be the second component in another analysis,

making it difficult to compare the results.

This non-uniqueness also has a grounding in the probabilistic perspectives on

PCA and CCA (introduced in chapter IV), where the latent variables are considered

unique only up to a rotation. This perspective further reinforces the subspace

approach, emphasizing the identification of a subspace rather than specific directions

within it.

Thesis Approach: Concentrating on the Top-1 Component In this thesis, we

focus on the top-1 component in CCA to align with and facilitate comparison with

typical componentwise studies in brain-behavior research. This choice is driven by

the complexity associated with the top-k problem and the variety of methods available

to address it. Under the assumption of a significant eigengap2, the first component

can be considered equivalent to the top-1 subspace. This equivalence allows for a

clear and interpretable analysis, making the top-1 subspace a straightforward and

reliable choice for studying multivariate data. It is important to note that while we

focus on the top-1 component, the later sections of the thesis introduce a method

for simultaneously solving the complete subspace, addressing broader subspace

analyses.

6 Multiview Learning in Neuroimaging

Finally, we review important applications of multiview learning from the literature in

neuroimaging, which will be our reference in chapters III and IV.

2An ‘eigengap’ refers to the difference in magnitude between consecutive eigenvalues in an eigenvalue
problem. A significant eigengap between the first and second eigenvalues suggests that the first
eigenvalue (and its corresponding eigenvector) is distinctly more significant than the next, lending
credence to its uniqueness and importance.
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6.1 Multiview Data in Neuroscience and Genetics

In neuroscience and genetics, two specific types of multiview studies are particularly

relevant to this thesis: brain-behavior studies and imaging-genetics. Both involve

the integration of data from multiple sources, offering rich insights into complex

phenomena.

Brain-behavior studies typically involve pairing neuroimaging data, such as that

obtained from Structural MRI (sMRI) or Functional MRI (fMRI), with non-imaging

data like responses from questionnaires, cognitive test results, and other behavioral

assessments. sMRI provides detailed anatomical brain images, essential for under-

standing brain structure and neurological disorders (Kanai and Rees, 2011), while

fMRI focuses on brain function by mapping activity during cognitive tasks (Miranda

et al., 2021).

In addition to task-based fMRI, resting-state fMRI (rs-fMRI) is frequently used to

extract functional connectivity, reflecting the brain’s functional organization during

rest. This approach has been widely applied in Canonical Correlation Analysis and

Partial Least Squares studies. For instance, S. M. Smith, Nichols, et al. (2015)

applied CCA to rs-fMRI data alongside non-imaging features, demonstrating the

utility of rs-fMRI in understanding intrinsic brain connectivity.

The integration of these imaging techniques with behavioral data offers a com-

prehensive view of how brain structures and functions correlate with behavioral and

cognitive patterns (Rypma and D’Esposito, 2001; Genon, Eickhoff, and Kharabian,

2022).

Imaging-Genetics, another critical multiview approach, combines neuroimaging

data with genetics and omics information (Lê Cao et al., 2008). This interdisciplinary

field seeks to understand the genetic influences on brain structure and function,

thereby illuminating the genetic basis of neuropsychiatric disorders and cognitive

traits (R. Bogdan et al., 2017). Studies in this area can explore how specific genetic

variations correlate with differences in brain morphology or activity patterns observed

in neuroimaging (J. Liu and Calhoun, 2014).

Together, these multiview approaches are fundamental in advancing our un-

derstanding of the brain’s structure, function, and its interactions with genetic and

behavioral factors. They represent key applications of SSL in neuroscience and

genetics, providing comprehensive insights that underpin developments in these

fields.
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6.2 Applications of Multiview Learning in Neuroimaging

There have been a number of applications of CCA and related methods to multiview

problems in neuroimaging. Using resting state fMRI data, modes of correlation have

been found that relate to differences in sex and age relating to drug and alcohol

abuse, depression and self harm (Mihalik, Ferreira, Rosa, et al., 2019). A similar

mode relating to ‘positive-negative’ wellbeing has been found across studies (S. M.

Smith, Nichols, et al., 2015) suggesting that mental wellbeing has a relationship

(though not necessarily causally) with functional connectivity between networks in

the brain. Later in this dissertation we will replicate and build on the findings from

this paper by using regularised and non-linear CCA methods. Owing to the high

dimensionality of neuroimaging data, regularisation has been a particular focus of

multiview learning in neuroimaging. Mihalik, Chapman, Adams, Winter, Ferreira,

Shawe-Taylor, Mourao-Miranda, et al. (2022) reviews the application of CCA to

neuroimaging data and highlights the importance of regularisation in this context.

Bilenko and Gallant (2016) CCA has also been used as a preprocessing step in

order to identify groups of subjects in the latent variable space.

In particular, CCA and clustering have been used to identify depression using

fMRI data (Dinga et al., 2019; Drysdale et al., 2017). CCA has also been used in the

manner we described to denoise two views of a dataset such as separate measures

of neuroimaging data (Zhuang, Yang, and Cordes, 2020) to remove artefacts. Deep

CCA has recently been used to extract features for the diagnosis of schizophrenia(Qi

and Tejedor, 2016).

7 Conclusion

In this chapter, we have provided a comprehensive overview of multiview learning,

with a particular focus on its applications in neuroimaging and genetics. We have

discussed the fundamental concepts and methods in multiview learning, such as

Canonical Correlation Analysis, Partial Least Squares, and their variants, highlighting

their strengths and limitations.

The review has emphasized the importance of regularization techniques in high-

dimensional settings, as well as the challenges associated with interpreting the

resulting components. We have also touched upon the need for efficient algorithms

that can handle large-scale datasets, and the potential of non-linear extensions of

CCA and joint embedding self-supervised learning approaches.

Furthermore, we have discussed the practical frameworks for evaluating multi-
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view learning methods, comparing the traditional statistical approach of permutation

testing with the machine learning approach of cross-validation and holdout test-

ing. We have also considered the complexities of identifying and interpreting top-k

subspaces in CCA, and the reasons for focusing on the top-1 component in this

thesis.

The applications of multiview learning in neuroimaging and genetics have been

highlighted, with a particular emphasis on brain-behavior studies and imaging-

genetics. These studies have demonstrated the potential of multiview learning in

uncovering the complex relationships between brain structure, function, genetics,

and behavior, thereby advancing our understanding of neurological disorders and

cognitive traits.

Despite the significant progress made in multiview learning, several challenges

remain. These include the need for more interpretable and regularized methods,

particularly in high-dimensional settings, the development of efficient algorithms for

handling large-scale datasets, and the extension of CCA to non-linear and deep

learning-based approaches.

In the following chapters, this thesis aims to address these challenges by propos-

ing novel methods and techniques for multiview learning. We will explore regu-

larized and interpretable extensions of CCA, develop efficient algorithms for high-

dimensional data, and investigate the potential of deep learning-based approaches

for multiview learning. By tackling these challenges, we hope to contribute to the

advancement of multiview learning and its applications in neuroimaging, genetics,

and beyond.
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Preface

In this chapter, I build upon work presented at the OHBM conference (James

Chapman, 2023) and the insights gained from a tutorial paper I co-authored, which

included a series of simulations (Mihalik, Chapman, Adams, Winter, Ferreira, Shawe-

Taylor, Mourao-Miranda, et al., 2022).

1 Introduction

This chapter introduces a novel approach for analyzing large-scale neuroimaging

datasets, such as the Human Connectome Project (HCP (Van Essen et al., 2013))

and Alzheimer’s Disease Neuroimaging Initiative (ADNI), to understand the relation-

ship between brain structure, function, and behavior (S. M. Smith and Nichols, 2018;

Bzdok and Yeo, 2017; H.-T. Wang et al., 2020). These datasets are characterized by

a disproportion between the number of subjects and the volume of features, posing

a challenge for Canonical Correlation Analysis (CCA) models due to the risk of

overfitting and spurious correlations (H.-T. Wang et al., 2018). For example, the

HCP dataset used in this chapter contains 1003 subjects and 300 features derived

from resting-state functional MRI (rs-fMRI), while the ADNI dataset contains 592

subjects and 168,130 features in the structural MRI (sMRI) view alone.

In response to the reproducibility crisis in neuroscience (Button et al., 2013),

this chapter focuses on enhancing the generalizability of CCA models through

regularization, a technique that introduces a bias towards more interpretable and

generalizable models (Engl, Hanke, and Neubauer, 1996; Bzdok, Nichols, and S. M.

Smith, 2019). Existing regularization methods in CCA, such as ‘sparse CCA’ with

Partial Least Squares (PLS) objectives (Lê Cao et al., 2008; Witten, Tibshirani, and

Hastie, 2009; Lindenbaum et al., 2021), are limited by their inherent bias towards

the largest principal components (Mihalik, Chapman, Adams, Winter, Ferreira,

Shawe-Taylor, and Mourão-Miranda, 2022).

Sparse CCA methods, particularly the one proposed by Witten, Tibshirani, and

Hastie (2009), often referred to as sCCA, are commonly applied in neuroimaging

studies. However, these methods face significant challenges when applied to very

high-dimensional data, such as structural MRI (sMRI) data. The primary constraint

of sCCA is the assumption of identity covariance, which may not hold in practice
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and limits its applicability to complex neuroimaging data.

To overcome these limitations, we propose the Flexible Regularised Alternating

Least Squares (FRALS) framework for CCA based on the Alternating Least Squares

form of CCA (Golub and Zha, 1995). FRALS allows for the integration of various

regularized least squares solvers, particularly emphasizing the elastic net penalty,

which combines L2 and L1 penalties. This method controls bias and promotes spar-

sity in model weights, advancing beyond previous sparse Brain-Behavior analysis

methods.

Our application of the FRALS framework with Elastic Net regularization to the

HCP and ADNI datasets showcases its effectiveness in enhancing out-of-sample

canonical correlation compared to traditional CCA models. Additionally, FRALS

uncovers new modes of variation in brain-behavior relationships.

In essence, this chapter presents FRALS as a robust, innovative solution for

the analysis of high-dimensional neuroimaging datasets, significantly improving the

reliability and interpretability of Brain-Behavior correlations.

2 Background: Regularisation for High-Dimensional

and Structured Data

In this section, we review a number of regularisation techniques that have been

applied to CCA and related methods.

2.1 The Bias-Variance Tradeoff

A key principle in machine learning is the bias-variance tradeoff (Curth, Jeffares,

and Schaar, 2023; Hastie et al., 2009). This concept posits that a tradeoff exists

between the bias and variance of a model: high-bias models typically exhibit low

variance, and vice versa. High-bias models are generally simpler and more stable,

but they might oversimplify the problem, leading to underfitting. Conversely, low-bias,

complex models are sensitive to data changes and prone to overfitting. As the

number of features increases, there are more parameters to estimate, and models

tend to become more complex, leading to higher variance and lower bias. This rela-

tionship highlights the importance of balancing model complexity to avoid overfitting,

particularly in high-dimensional scenarios with a low signal-to-noise ratio (McIntosh,

2021)1. Regularisation can be understood as a method for reducing the variance of

1It’s worth noting that the number of model parameters, often used as a proxy for complexity, does not
always directly correlate with model behavior, as illustrated by the ‘double descent’ phenomenon.
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a model by introducing a bias towards simpler models. This means regularisation

can improve the generalizability of models in high-dimensional settings.

2.1.1 Implicit and Explicit Regularisation

We can implement regularisation in two different ways. Explicit regularisation is

achieved by adding a penalty term to the objective function. This weights the

objective function against a term that penalises complexity.

Implicit regularisation is achieved by changing the optimisation algorithm and

can include dimensionality reduction, as well as certain optimisation procedures like

using stochastic gradient descent in place of gradient descent (Ali, Dobriban, and

Tibshirani, 2020), and early stopping of optimization routines (Yao, Rosasco, and

Caponnetto, 2007)

2.2 Shrinkage Regularisation

Shrinkage regularisation is a form of regularisation that penalises the magnitude

of the model parameters. This technique is particularly effective in enhancing the

performance of linear models in situations characterised by high dimensionality,

multicollinearity, or low signal-to-noise ratios.

In high-dimensional situations where the number of features exceeds the number

of observations in either view, like Linear Regression, Canonical Correlation Analysis

is non-identifiable, meaning there is no unique solution. This is because we can

find perfectly correlated latent variables using a linear combination of the features,

but there are many different linear combinations that will achieve this. While in

principle cross-validation could be used to search among these solutions, the infinite

space of perfectly correlated combinations makes this impractical without additional

constraints on the solution space2.

Even in low-dimensional situations, if features exhibit multicollinearity, they can

also be non-identifiable or, at best, estimates of the parameters are unstable. Math-

ematically, this is because in both cases the covariance matrix of the features is not

full rank and therefore is not invertible (non-identifiable) or ill-conditioned (matrix

inversion is unstable). To capture this intuition, if two features are perfectly correlated,

the model is not identifiable (has no unique solution) because we can arbitrarily swap

the weights between the two features without changing the latent variables (CCA)

or the predictions (regression). In practice, features are rarely perfectly correlated,

2Regularisation provides such constraints, effectively making the problem identifiable by restricting
the space of possible solutions.
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but even when features are highly correlated, the model can be unstable (Mihalik,

Ferreira, Moutoussis, et al., 2020), and small changes in the data can lead to large

changes in the model parameters. Once again, some of these linear combinations

will generalize better than others, but we might expect a model to generalize better if

it spreads the weights across the correlated features rather than concentrating them

on a single feature.

Finally, even in low-dimensional settings with little multicollinearity, the model

parameters can be sensitive to noise in the data, and once again small changes

in the data can lead to large changes in the model parameters. For example,

parameters associated with noisy features might ‘cancel out’ in the training set, but

not in the test set, leading to poor generalisation.

The premise of shrinkage regularisation in all these cases is that the latent

variables or predictions are too sensitive to small changes in the data because the

model parameters are too large. Shrinkage regularisation works by shrinking the

model parameters towards zero, so that small changes in the data do not lead to

large changes in the model estimates.

2.2.1 PLS as Shrinkage Regularisation

PLS can be interpreted as a form of shrinkage regularisation applied to CCA. We

can explain this by considering an analogy between CCA and Linear Regression3.

In Linear Regression, the ridge regression solution is given by:

β̂ridge = ((1− c)ΣX,X + cI)−1ΣX,y (III.1)

Where c is the regularisation parameter between 0 and 14. The ridge penalty acts in

three important ways:

• It shrinks the weights towards zero.

• It shrinks the weights of correlated features towards each other.

• It biases the solution to high covariance directions rather than high correlation

directions.

As c becomes large, limc→1(ΣX,X + cI)−1 = (cI)−1 , so that β̂ridge =
ΣX,y

c ,

which is precisely the covariance of the features of X with Y scaled by c (and

3indeed Linear Regression is a special case of CCA where X(2) has one feature
4It is more common to see (ΣX,X + cI)−1ΣX,y but these are equivalent up to a scalar factor and

this form helps us later on
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shrunk towards zero for c ≥ 1). Notice that the ridge regression solution is no

longer sensitive to the correlation of features in X. Additionally, notice that for

sufficiently large c, (ΣX,X + cI) is invertible even if ΣX,X is not invertible, so that

ridge regression is always identifiable even when the number of features exceeds

the number of observations.

Now consider the CCA problem. Firstly, recall that PLS and CCA are equivalent

up to a scaling when the covariance matrices are identity matrices, a similar rela-

tionship to the relationship between Linear and Ridge Regression. Consider the

well-known form of CCA given in equation III.2(Mihalik, Chapman, Adams, Winter,

Ferreira, Shawe-Taylor, Mourao-Miranda, et al., 2022) (formed by reparameterizing

u(i) = (Σii)
− 1

2u(i)):

uopt = argmax
u
{u(1)T (Σ11 + cI)−

1
2Σ12(Σ22 + cI)−

1
2u(2)} (III.2)

subject to:

u(1)Tu(1) = 1, u(2)Tu(2) = 1

As we increase c, limc→∞(Σii + cI)−
1
2 = (cI)−1 so that the objective ap-

proaches:

uopt = argmax
u
{u(1)T (cI)−1Σ12(cI)

−1u(2)} (III.3)

subject to:

u(1)Tu(1) = 1, u(2)Tu(1) = 1

Which is precisely the PLS objective and constraints with an arbitrary scaling of

the covariance matrix Σ12 by 1
c2 . For this reason, we can consider PLS as an explicit

shrinkage method for CCA, equivalent to adding a maximal ridge regularisation

term. The downside of using PLS as a regularised CCA is precisely its very

high bias. By strongly guiding the model towards high covariance solutions, it

strongly biases the solution towards only the largest principal components. But

what if the correlation between the views is not concentrated in the largest principal

components? Although one would rarely resort to maximally regularised ridge

regression except in extremely low sample sizes or high-dimensional data, it has

become almost standard practice to use PLS in neuroimaging and genetics (Cruciani

et al., 2022; Krishnan et al., 2011). One of the core contributions of this chapter will
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be to demonstrate that PLS is usually a poor choice for regularisation even in these

very high-dimensional settings and that more nuanced regularisation methods can

offer significant improvements in performance and interpretability. PLS is evidently

not a nuanced tool for regularisation because it offers no control over the degree of

regularisation applied.

2.2.2 Ridge Regularisation

For this reason, Vinod (1976) proposed the Canonical Ridge or Ridge CCA, which

combined the PLS and CCA constraints in a single constrained optimisation:

u
(1)
opt = argmax

u(1)

{u(1)T Σ̂12u
(2)} (III.4)

subject to:

(1− c1)u
(1)T Σ̂11u

(1) + c1u
(1)Tu(1) = 1

(1− c2)u
(2)T Σ̂22u

(2) + c2u
(2)Tu(2) = 1

Where c1 and c2 are the ridge regularisation parameters for the first and second

views respectively. By tuning these parameters, we can control the degree of

regularisation applied to each view independently. If we set c1 and c2 to zero, we

recover the standard CCA objective while if we set c1 and c2 to one, we recover the

PLS objective. This allows us to interpolate between the two extremes, allowing

us to control the level of shrinkage and therefore the level of bias towards the

largest principal components. Ridge CCA has been shown to be effective for

neuroimaging data for both CCA (A. Tenenhaus and M. Tenenhaus, 2011; Tuzhilina,

Tozzi, and Hastie, 2023; Hardoon, Szedmak, and Shawe-Taylor, 2004) and Kernel

CCA (Hardoon, Mourao-Miranda, et al., 2007).

2.2.3 Principal Component Regularisation for CCA

Principal Component Analysis (PCA) can be used as an implicit regularisation

method for CCA. Most obviously, by using only the first k principal components of

each view as the input to CCA, we can reduce the dimensionality of the data and

therefore reduce the number of parameters in the model. Moreover, by working

with the principal components, we remove the correlation between the features,

which can improve the conditioning of the problem. While PCA and Independent

Component Analysis (ICA) are often used as preprocessing steps for CCA, they
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can also be used as regularisation methods in their own right. Of particular note in

neuroimaging are studies with a data-driven approach to the PCA step, where the

number of principal components is chosen based on the data (Z. Liu et al., 2022;

Mihalik, Chapman, Adams, Winter, Ferreira, Shawe-Taylor, and Mourão-Miranda,

2022).

2.2.4 The Impact of Eigenvalue Spectra on Linear Model Solutions

The solutions of linear models, such as linear regression and Canonical Correlation

Analysis, are sensitive to the eigenvalue spectrum of the input data’s covariance

matrix. This sensitivity arises from the matrix inversion step in the solution process,

where the inverted covariance matrix directly influences the model’s weights.

In the context of linear models, the eigenvalues of the covariance matrix rep-

resent the variances of the input features in the directions of the corresponding

eigenvectors. Large eigenvalues indicate high variances and suggest the presence

of strong patterns or associations, while small eigenvalues indicate low variances

and suggest the presence of noise or weak patterns.

When the covariance matrix is inverted, the reciprocals of the eigenvalues are

used. This inversion process amplifies the influence of small eigenvalues and

attenuates the influence of large eigenvalues on the model’s solution. Consequently,

the model’s weights become highly sensitive to noise and weak patterns associated

with small eigenvalues, potentially leading to overfitting and unstable solutions.

Regularization techniques, such as Ridge regularization and Principal Compo-

nent regularization (PCR), aim to mitigate this sensitivity by altering the eigenvalue

spectrum of the covariance matrix. Figure III.1 illustrates these effects by plot-

ting the eigenvalues of covariance matrices as perceived by models with different

regularization techniques5.

Ridge regularization compresses the spectrum, reducing the influence of the

largest eigenvalues and increasing the influence of the smallest eigenvalues. PCA

truncates the spectrum, preserving the influence of the largest eigenvalues while

eliminating the influence of the smallest eigenvalues.

By modifying the eigenvalue spectrum, regularization techniques control the

sensitivity of linear model solutions to different patterns in the data. However,

while these techniques can improve model performance and stability, they do not

inherently enhance the interpretability of the results, as the weights are shrunk

5For Ridge, we plot the eigenvalues of (1− ci)Σ̂ii + ciI, while for PCA, we plot the eigenvalues of
Σ̂ii truncated to include only the largest k principal components.
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Figure III.1: Comparison of the effect of Ridge and Principal Components
regularization on the eigenvalues of the covariance matrix.

towards zero but not eliminated, and the models still utilize all features.

• Unregularized: Utilizes the unaltered spectrum, retaining potential subtle

patterns but susceptible to noise.

• Ridge: Warps the spectrum, attenuating the influence of the largest eigen-

values and amplifying the influence of the smallest eigenvalues, potentially

emphasizing stronger associations at the expense of subtle patterns.

• PCA: Truncates the spectrum, focusing solely on the largest eigenvalues

and discarding the smallest eigenvalues, potentially emphasizing stronger

associations at the expense of subtle patterns.

While these regularization techniques can improve CCA performance, they do

not inherently enhance the interpretability of the results. Weights are shrunk towards

zero but not eliminated, meaning the model still utilizes all features, and the results

remain dense.

2.3 Sparse Regularisation

Sparse regularisation is a powerful tool for improving the performance and inter-

pretability of linear models. Sparse regularisation encourages the model to use only
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a subset of the features, which can both help to avoid overfitting and improve the

interpretability of the model. Sparse regularisation works on the premise that only a

subset of the features are relevant to the model. Sparsity is typically achieved by

adding either an L1 penalty or constraint6. The L1 penalty is defined as:

∥u∥1 =
∑
i

|ui| (III.5)

Intuitively, this is the sum of the absolute values of the elements of the vector.

Now, with a foundational understanding of sparse regularisation, we review a number

of approaches to adding sparsity to the CCA problem.

2.3.1 Sparse PLS: Penalised Matrix Decomposition

Penalised Matrix Decomposition (PMD) (Witten, Tibshirani, and Hastie, 2009) pro-

vides an approximate solution to the sparse CCA problem by altering the con-

straints of the classical CCA formulation. Specifically, PMD replaces the constraints

u(i)T Σ̂iiu
(i) = 1 with the PLS constraints u(i)Tu(i) = 1 and additionally imposes

∥u(i)T ∥1 ≤ τ . The optimisation problem for PMD is then given by:

uopt = argmax
u
{u(1)T Σ̂12u

(2)} (III.6)

subject to:

u(1)Tu(1) = 1, u(2)Tu(2) = 1

∥u(1)∥1 ≤ τ1, ∥u(2)∥1 ≤ τ2

Computational Efficiency and Limitations PMD has become highly influential

largely due to its computational efficiency - it can be solved using a simple variant of

the power method that alternates between multiplying u(1) by Σ̂12 and applying soft-

thresholding. However, this efficiency comes at a significant theoretical cost. The

method is only equivalent to sparse CCA when the covariance matrices are identity

matrices, an assumption that rarely holds in practice, particularly for neuroimaging

data where features are often highly correlated. Under non-identity covariance, PMD

effectively becomes a Sparse PLS method rather than a true sparse CCA.

6The L0 norm of the weight vector is the number of non-zero elements in the vector and is arguably a
closer match to the goal, but the L0 norm is (a) not a proper norm in the mathematical sense and (b) not
convex and so is difficult to optimize.
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This limitation is not unique to PMD - several other methods employ similar

PLS approximations (Parkhomenko, Tritchler, and Beyene, 2009; Waaijenborg, Witt

Hamer, and Zwinderman, 2008; Lindenbaum et al., 2021). While computationally

convenient, this approximation has important consequences:

• Bias Towards Principal Components: These methods inherit PLS’s ten-

dency to emphasize high-variance directions, potentially missing important

correlations in lower-variance subspaces.

• Mishandling of Correlation Structure: By ignoring within-view correlations,

the methods may identify spurious sparse patterns that don’t reflect true

relationships in the data.

Importantly, these issues stem from the PLS approximation rather than from L1

regularization itself. As we will show empirically in Section 5, methods that maintain

proper CCA constraints while incorporating sparsity can avoid these limitations,

albeit at increased computational cost.

To address these problems and truly tackle the sparse CCA optimisation, another

class of approaches have adopted a penalised least squares approach.

2.3.2 Sparse CCA: Least Squares Approaches

It is well known that the CCA problem can be formulated as a constrained least

squares problem with the intuition that for X(1)u(1) = 1 and X(2)u(2) = 1, corre-

lation is maximised when the squared distance between X(1)u(1) and X(2)u(2) is

minimised. (Golub and Zha, 1995) proved the convergence of a simple algorithm

which alternates between solving the least squares problem for u(1) and u(2) while

keeping the other fixed.

With this intuition, Wilms and Croux, 2015 and Mai and Zhang, 2019 separately

proposed iterative penalised least squares methods for sparse CCA.

uopt = argmin
u

{
∥X(1)u(1) −X(2)u(2)∥22 + P (u)

}
(III.7)

subject to:

u(1)T Σ̂11u
(1) = 1

u(2)T Σ̂22u
(2) = 1
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Where P (u) is a penalty function. The penalty term can be any function that

penalises the norm of the vector u. (Mai and Zhang, 2019) proved that solving

the subproblems where one of u(i) is fixed is easy for one-homogenous P where

P ((µ+ 1)θ) = (µ+ 1)P (θ) which notably includes the lasso penalty. This means

a sparse CCA based on alternating lasso regressions can be solved relatively

efficiently using existing solvers. However, the one homogenous penalty in practice

limits the flexibility of the method. For example, the elastic net penalty is not one-

homogenous and therefore cannot be used with this method. Chi et al. (2013)

and Mullins et al., 2021 added ridge penalties to the subproblems to improve the

conditioning of the problem in a way that could be considered a form of elastic net

regularisation but the subproblems no longer correctly optimize the global objective7.

2.3.3 Sparse CCA: Proximal Gradient Descent and ADMM

Kanatsoulis et al. (2018) proposed solving equation III.7 for more general classes of

P using the alternating direction method of multipliers (ADMM) (Boyd et al., 2011).

Fu et al., 2017 propose a regularised CCA based on an alternative classical CCA

formulation, sometimes called the MAXVAR formulation, which views the problem

as a constrained least squares with an auxiliary representation T (Carroll, 1968;

Kettenring, 1971).

argmin
U,T

{∑
i

∥X(i)U (i) − T∥2F

}
(III.8)

subject to: T⊤T = I (III.9)

(III.10)

In this formulation, U (i) represents the weights for the ith view, and T denotes the

latent variable matrix. The premise is that when T closely mirrors X(i)U (i) across

all i, the scores correlate. Notably, this method is adaptable to multiple views. The

authors employed proximal gradient descent for regularisation, specifically suited

for penalties like the lasso. While these methods are flexible, they don’t have the

plug-and-play nature of the penalised least squares methods. Not just a matter of

convenience, this means that these methods are not compatible with existing solvers

for regularised least squares problems like for example total variation regularisa-

tion solvers in nilearn, which are often highly optimised for specific problems and

7when rescaling the penalised solutions back to unit variance
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modalities.

2.3.4 Structured Regularisation

As highly structured data, linear models using both structural MRI and fMRI data

have been shown to benefit from structured regularisation methods but notably

these methods have not been applied to CCA. Total variation regularisation, which

biases spatially neighboring weights to be similar, has been shown to improve the

performance of PCA (De Pierrefeu et al., 2017) and regression (Michel et al., 2011;

Dohmatob et al., 2014; Baldassarre, Mourao-Miranda, and Pontil, 2012). Similarly,

Laplacian (or GraphNet) regularisation, which induces a similar spatial bias with

additional smoothness, has been shown to improve the performance of CCA on

functional MRI data (Grosenick et al., 2013; Cuingnet et al., 2012).

Having discussed the benefits of both shrinkage (e.g., PCA-CCA, Ridge CCA,

PLS), sparsity (SPLS, Sparse CCA), and structure (Total Variation, Laplacian)

in handling high-dimensional, noisy, and structured data, a natural progression

is to integrate these advantages. Specifically, the challenge lies in creating a

framework that allows for users to match the regularisation method to their data

and research question, enhancing the interpretability and performance of Brain-

Behaviour association models. This led us to propose the Flexible Regularised

Alternating Least Squares (FRALS).

3 Methods: Flexible Regularised Alternating Least

Squares (FRALS)

The primary goal of our Flexible Regularised Alternating Least Squares framework

is to provide a versatile and user-friendly interface for Canonical Correlation Analysis

that excels at detecting shared patterns between views, even when those patterns

don’t dominate the variance within each view. Unlike PLS-based methods which

are biased toward high-variance components, FRALS maintains CCA’s focus on

correlation rather than covariance, making it particularly effective at identifying subtle

but meaningful relationships between views.

FRALS achieves this enhanced sensitivity through two key mechanisms. First,

by solving the CCA objective directly through alternating least squares rather than

using PLS approximations, FRALS preserves CCA’s scale-invariance property. This

means it can detect correlated patterns regardless of their absolute scale in either

view. Second, the framework allows independent tuning of regularization for each
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view, enabling it to effectively handle cases where important shared patterns may

be masked by stronger but unrelated variations within individual views.

This approach marks a significant departure from traditional methodologies

in CCA, which often focused on developing specific solvers tailored for particular

types of data or computational constraints. By contrast, FRALS democratises

access to advanced CCA techniques by maintaining compatibility with any scikit-

learn compatible regularised least squares solver. Such flexibility is particularly

advantageous in interdisciplinary fields like neuroimaging, where diverse datasets

and varying levels of technical expertise are common.

In the FRALS framework, we consider the formulation for a single latent variable

t with regularisation λiPi on the weights u(i):

argmin
u

{∑
i

∥X(i)u(i) − t∥22 + λiPi(u
(i))

}
(III.11)

subject to: t⊤t = 1

This problem decomposes into subproblems. The first subproblem for the

auxiliary variable t:

argmin
t

{∑
i

∥X(i)u(i) − t∥22

}
(III.12)

subject to: t⊤t = 1

is solved in closed form by averaging and normalizing: t =
∑

i X
(i)u(i)

∥
∑

i X
(i)u(i)∥2

. This

makes t an estimate of the latent variables of a generative CCA model, capturing

shared patterns regardless of their scale in the original views.

The subproblems for the weights u(i):

argmin
u(i)

{
∥X(i)u(i) − t∥22 + Pi(u

(i))
}

(III.13)

are regularised least squares problems solvable using any suitable regularised

least squares solver8.

8We could also in principle replace X(i)u(i) with f(X(i)) for any function f including kernels, neural
networks, or random forests
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In this chapter, we demonstrate the framework’s power using the Elastic Net

solver from scikit-learn (Pedregosa et al., 2011), where Pi = αi×l1_ratio∥u(i)∥1+
αi×(1−l1_ratio)∥u(i)∥22. This combination of L1 and L2 penalties enables FRALS to

identify sparse patterns while maintaining stability, with independent tuning for each

view. The framework’s solver flexibility extends beyond Elastic Net to include spe-

cialized solvers for structured data, such as spatial regularization for neuroimaging

applications, though these are not explored in this chapter.

4 Experiment Design

This section outlines the methodologies used in our study to explore the Flexible

Regularized Alternating Least Squares (FRALS) and associated techniques in

Canonical Correlation Analysis. We focus on fitting a single latent dimension for the

analyses.

4.1 Datasets

For this chapter, we chose the HCP and the ADNI datasets to facilitate comparison

with two influential brain-behaviour studies (S. M. Smith, Nichols, et al., 2015;

Monteiro et al., 2016) as well as the tutorial paper that this chapter is loosely related

to (Mihalik, Chapman, Adams, Winter, Ferreira, Shawe-Taylor, Mourao-Miranda,

et al., 2022). We are particularly interested in the performance of an Elastic Net

FRALS on these datasets as Ridge CCA has been shown to outperform PLS

(Mihalik, Chapman, Adams, Winter, Ferreira, Shawe-Taylor, Mourao-Miranda, et al.,

2022), implying that shrinkage regularisation is beneficial, and Sparse PLS has

been shown to outperform PLS (Monteiro et al., 2016), implying that sparsity is

beneficial. We therefore expect that Elastic Net FRALS will outperform PLS, Ridge

CCA, and Sparse PLS on these datasets.

4.2 The Predictive Framework for CCA

Our evaluation of CCA models used a standard predictive framework, dividing the

data into an 80:20 ratio for training and testing. This method ensures fitting the

model on the training set without incorporating information from the test set.
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4.2.1 Model Comparisons

The experiment aims to demonstrate the effectiveness of tunable shrinkage and

sparsity in CCA models, enabled by the FRALS framework. We compare the

performance of Elastic Net FRALS with other CCA variants such as PLS, Ridge

CCA, and SPLS particularly in the context of high-dimensional datasets like HCP

and ADNI. Our choice of comparisons reflects our focus on sparsity and elastic-net

style regularization: Ridge CCA (L2 regularization only) and Sparse PLS (fixed L2,

flexible L1 regularization) represent key points in this regularization spectrum.

We include PCA as our baseline, where separate Principal Component Analy-

sis is applied independently to each view, and the first principal component from

each view is compared. Despite PCA’s known limitations in high-dimensional set-

tings—particularly its bias towards directions of high variance rather than high

correlation—it serves as an important baseline for three key reasons. First, as

discussed earlier, PCA represents the simplest form of dimensionality reduction

and implicit regularization. Second, comparing against PCA allows us to verify

that multiview methods like CCA are actually discovering meaningful cross-view

associations rather than simply identifying the dominant modes of variation within

each view independently. Third, and crucially, comparing PLS and SPLS against

PCA allows us to empirically test our theoretical prediction that these methods are

biased towards the principal components. If PLS and SPLS perform similarly to PCA,

this would provide strong evidence for our earlier theoretical argument that these

methods may be too strongly biased towards high-variance directions, potentially

missing important correlations in other directions.

We note that PCA-CCA, where PCA is used as a preprocessing step before

CCA, was not included in our comparisons. While this is another common approach

in the literature, we hypothesize it would show similar behavior to Ridge CCA since

both methods bias solutions toward the dominant principal components in the data,

as demonstrated in our earlier discussion of shrinkage regularization.

Table 4.1: Employed CCA Variants

Model Abbreviation Hyperparameters Hyperparameter Range
Principal Component Analysis PCA - -
Regularised CCA RCCA c1, c2 0-1 (log scaled)
FRALS - Elastic Elastic α1, α2, l11, l12 (1e-5,1e-1), (0-1)
Partial Least Squares PLS - -
Sparse PLS SPLS τ1, τ2 0-1 (log scaled)
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4.2.2 Model Selection

For models requiring hyperparameter tuning, we implemented a two-stage process.

First, we performed hyperparameter optimization using grid search with 5-fold cross-

validation on the training data only. This involved splitting the training data into

five parts, where for each hyperparameter combination, we trained on four folds

and validated on the fifth, rotating through all folds. The optimization goal was to

maximize the average out-of-sample correlation across these validation folds.

After identifying the optimal hyperparameters using this cross-validation proce-

dure, we trained the final model using these optimized parameters on the complete

training dataset. The model’s performance was then evaluated on the entirely

held-out test data, which was not used during the hyperparameter optimization pro-

cess. This approach ensures an unbiased assessment of the model’s generalization

capability.

4.2.3 The Human Connectome Project (HCP)

The HCP offers publicly available resting-state functional MRI (rs-fMRI) and non-

imaging measures like demographics, psychometrics, and other behavioral mea-

sures. Specifically, we sourced data from 1003 subjects out of the 1200-subject

data release of the HCP. The rs-fMRI data provided brain connectivity matrices.

These were derived from pairwise partial correlations between subject components

obtained through group independent component analysis (ICA), using 25 compo-

nents. This resulted in 300 brain variables, corresponding to the lower triangle of

the connectivity matrix. In our analysis, 145 non-imaging subject measures were

incorporated, similar to prior studies, with the exception of 13 measures that were

unavailable in the 1200-subject data release. Furthermore, nine confounding vari-

ables, including the acquisition reconstruction software version, a summary statistic

of head motion during rs-fMRI acquisition, weight, height, systolic and diastolic

blood pressure, hemoglobin A1C level, and cube-root of total brain and intracranial

volumes as estimated by FreeSurfer, were regressed out from both data types.

More details can be found in S. M. Smith, Nichols, et al. (2015) and Mihalik, Chap-

man, Adams, Winter, Ferreira, Shawe-Taylor, Mourao-Miranda, et al. (2022). We

summarize the characteristics of the HCP data in table 4.2.
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Table 4.2: HCP Data Characteristics

Characteristic Value
Number of samples (n) 1003
Number of features in View 1 (p) 300
Number of features in View 2 (q) 145

4.2.4 The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Accessible at adni.loni.usc.edu, the ADNI database was initiated in 2003. Its

primary aim is the examination of how well serial MRI, PET (Positron Emission

Tomography), biological markers, along with clinical and neuropsychological as-

sessments, track the progression of Mild Cognitive Impairment (MCI) and the early

stages of Alzheimer’s disease. In our study, we used data from a subset of 592

unique individuals, selected based on having both a T1-weighted MRI scan and

complete Mini-Mental State Examination data available at baseline. This subset

comprised 309 males (average age 74.68 ± 7.36 SEM) and 283 females (average

age 72.18 ± 7.50 SEM), including 147 healthy controls, 335 individuals with Mild

Cognitive Impairment (MCI), and 110 diagnosed with dementia.

T1 weighted structural MRI (sMRI) scans were the source of whole-brain voxel-

based grey matter volumes. The sMRI data underwent preprocessing with SPM12

(Ashburner et al., 2014), which involved segmentation, normalisation using DARTEL,

reslicing to a resolution of 2× 2× 2mm3, and spatial smoothing using a Gaussian

kernel with 2 mm full width at half maximum (FWHM). During the segmentation

step, SPM12’s unified segmentation algorithm assigns gray matter probabilities to

each voxel through an iterative process that combines tissue intensity distributions

with deformable tissue probability maps. The algorithm models each tissue class

(gray matter, white matter, CSF) as a mixture of Gaussians and uses spatial priors

from the MNI template, updating both the tissue classifications and the deformation

parameters until convergence. A grey matter voxel selection mask was then created

by including voxels that had a probability of being grey matter greater than or equal

to 10% across all participants. This mask, with a threshold of ≥10%, was then

applied to all participants’ scans, resulting in 168,130 brain variables.

The Mini-Mental State Examination (MMSE) is a widely recognised neurocog-

nitive test comprising 30 questions across five cognitive domains (M. F. Folstein,

S. E. Folstein, and McHugh, 1975): orientation (questions 1-10), registration (ques-

tions 11-13), attention and calculation (questions 14-18), recall (questions 19-21),

and language (questions 22-30). An additional item was included in our study to
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Table 4.3: ADNI Data Characteristics

Characteristic Value
Number of samples (n) 592
Number of features in View 1 (p) 168130
Number of features in View 2 (q) 31

account for the number of attempts a subject needed to correctly respond to the

registration domain questions, leading to a total of 31 variables. We retained all

variables without removing potential confounds to facilitate direct comparison with

previous analyses, particularly Monteiro et al. (2016), rather than based on specific

hypotheses about variable relationships. We summarize the characteristics of the

ADNI data in table 4.3.

5 Experiment Results

5.1 HCP Results

Next, we consider the results of applying the various CCA variants to the HCP data.

5.1.1 Out of Sample Correlation

Both Ridge CCA and Elastic Net outperformed PLS and SPLS in terms of holdout

correlation captured (Figure III.2). This suggests that tunable L2 regularisation

is important, even for very high-dimensional data, and that resorting to PLS is

suboptimal. On the other hand, while the additional sparsity improved SPLS over

PLS (consistent with previous work (Monteiro et al., 2016)), it did not improve

the performance of the Elastic Net model over Ridge CCA. This suggests that

the associations in the HCP data are non-sparse, and the sparse regularization

provided by the Elastic Net did not offer any advantage over the Ridge CCA’s L2

regularization.

Nonetheless, the Elastic Net model demonstrated a more sparse representa-

tion than the Ridge CCA model. Using scikit-learn’s default tolerance of 1e-4 for

identifying non-zero coefficients, we found the Elastic Net model retained 241 and

96 weights above this threshold for the brain and behavior views, respectively (Ta-

ble 5.1). In contrast, the Ridge CCA model used all 300 and 145 weights in the

respective views, with none falling below this threshold. The SPLS model achieved

an even sparser solution with only 118 and 56 weights above the threshold for the
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Figure III.2: HCP: Comparative out-of-sample canonical correlations among PCA,
RCCA, ElasticNet, PLS, and SPLS models. The bars represent the
correlation coefficients, indicating that Ridge CCA and Elastic Net

models have superior performance over PLS and SPLS in capturing
holdout correlation.

brain and behavior views. The choice between a sparse or dense representation

depends on the specific aims of the analysis. If the goal is to uncover all potential

associations, a dense representation involving all variables might be preferable.

However, if the aim is to identify variables that may be driving the associations, a

sparse representation like the one provided by the Elastic Net or SPLS models

could be helpful by reducing the number of variables to consider. That said, with

hundreds of non-zero weights still retained in the Elastic Net model, the practical

interpretability advantage over Ridge CCA may be limited. Furthermore, given the

comparable performance of the Elastic Net and Ridge CCA models, the sparsity

achieved might be more a reflection of the regularization process than a meaningful

identification of truly important variables.

Table 5.1: HCP: Sparsity of models reflected by the count of weights above
scikit-learn’s default tolerance threshold (1e-4). Elastic Net and SPLS

demonstrate increased sparsity in the model weights for both brain and
behaviour views, compared to PCA, RCCA, and PLS.

Model Brain Weights (out of 300) Behaviour Weights (out of 145)
PCA 300 145

RCCA 300 145
Elastic Net 241 96

PLS 300 145
SPLS 118 56
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5.1.2 Behaviour Weights

Figure III.3 presents the top eight positive and negative non-imaging weights for

each model to visualize the behavioural data variations observed in the previous

section. The PCA model emphasizes a mode of variation with positive correlations

to psychiatric and life function tests, contrasting with negative correlations to certain

emotion and personality tests. In comparison, the RCCA and Elastic Net models

highlight a variation mode negatively correlated with the Line Orientation test and to

a lesser extent, smoking, while showing positive correlations with other cognitive

assessments. The PLS model’s variation mode echoes the positive-negative pat-

tern identified by S. M. Smith, Nichols, et al., 2015, showing positive correlations

with agreeableness, vocabulary tests, and life satisfaction, juxtaposed with strong

negative correlations with smoking and antisocial behaviors. SPLS selects a similar

mode but prioritizes vocabulary tests and smoking over rule-breaking and antisocial

personality traits.

5.1.3 Brain Connectivity Weights

In this section, we use two different methods to visualize the brain connectivity

weights. The first method is to use chord diagrams to visualize the top 8 positive

and negative brain weights for each model. This approach is inspired by the chord

diagrams used in S. M. Smith, Nichols, et al., 2015. The second method is to use

surface maps to visualize the brain connectivity weights. This approach has been

used by both Ferreira et al., 2022 and S. M. Smith, Nichols, et al., 2015.

Chord Diagrams We grouped the nodes of the connectivity matrix of our data into

7 parcels according to the Yeo 7 network parcellation Yeo et al., 2011. This was

achieved by assigning each node to the network with the highest voxelwise overlap.

These are then arranged around the circumference of the chord diagram using the

Nichord package (P. C. Bogdan et al., 2023). The plots then show the 8 strongest

positive and negative weights for each model as ‘chords’. The chord diagrams in

Figure III.4 show the top 8 positive and negative brain weights for each model. The

text color for each network matches the color of the corresponding region on the

outside of the chord diagram, providing a helpful visual guide.

• The RCCA model displays a diverse set of connections across all networks,

with especially prominent weights in the somatomotor and default mode

networks.
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• The ElasticNet model presents similar connections between the somatomotor

and default mode networks.

• The PLS model exhibits strong connections between the frontoparietal and

visual networks.

• The SPLS model exhibits similar connections between the frontoparietal and

visual networks.

The patterns we observe align with our theoretical understanding of these

methods’ behaviors. As predicted in Section 2.2, PLS and SPLS identify similar

connectivity patterns, focusing on networks (frontoparietal and visual) that likely

represent high-variance components in the data. This is consistent with our earlier

discussion of PLS’s bias towards principal components, suggesting these patterns

might reflect the dominant modes of variation rather than necessarily the most

meaningful brain-behavior relationships.

In contrast, RCCA and ElasticNet identify a broader set of connections involving

the default mode and somatomotor networks. While one might speculate about

relationships between these networks and the behavioral measures (for instance,

the somatomotor network’s potential role in the Line Orientation test), we should be

cautious about such interpretations. The fact that these methods identify different

patterns from PLS/SPLS could simply reflect their different biases rather than

necessarily indicating more meaningful associations.

These visualization results underscore a key challenge in brain connectivity

analysis: different methods can reveal quite different patterns of connectivity, and

the "ground truth" of brain-behavior relationships remains unknown. While we

can demonstrate superior out-of-sample prediction for some methods, this doesn’t

necessarily validate their biological interpretations. Indeed, connecting back to

the theory we developed in the previous background chapter, it is important to

recognize that these methods are fundamentally representation learning algorithms

- their primary value lies in their ability to learn useful representations of the data

for downstream tasks, rather than in their ability to reveal "true" underlying brain-

behavior relationships. This perspective helps explain why RCCA and ElasticNet

can achieve better predictive performance despite identifying different connectivity

patterns from PLS/SPLS: they may be learning more useful representations of the

data, even if these representations don’t align with our intuitive interpretations of

brain networks. Future work combining these analyses with other forms of validation,

such as task-based fMRI or lesion studies, would be valuable for assessing which
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of these connectivity patterns truly reflect meaningful brain-behavior relationships,

but their primary validation comes from their performance on downstream prediction

tasks.

5.1.4 Model Similarity

In this section, we compare the models in terms of their similarity. We can measure

the pairwise similarity between two models by comparing their weights and their

representations9. We can compare the weights by computing the correlation be-

tween the weights of the two models, and we can compare the representations by

computing the correlation between the representations of the two models.

In Figure III.5, we plot the correlation between the brain and behaviour repre-

sentations for each model. We can see clearly that both PCA, PLS, and SPLS are

all highly correlated in terms of their brain representations, revealing the bias of

PLS towards the largest principal components. On the other hand, in the behaviour

space, the models are less correlated, with the exception of PLS and SPLS which

are highly correlated with one another. There is however still substantial correlation

between the PCA and PLS models. The very low correlation between the Ridge

CCA and Elastic Net models with the PCA model is evidence that there are stronger

correlations outside of the first principal components.

In Figure III.6, we similarly plot the correlation between the brain and behaviour

weights for each model. The story is similar, albeit with marginally lower correlations

between the PLS and PCA-based models. Finally, in the weights space, the Ridge

CCA and ElasticNet models are even less correlated with the PCA model.

5.2 ADNI Results

5.2.1 Out of Sample Correlation

In this experiment, the Elastic Net model outperformed all other models in terms of

out-of-sample correlation (Figure III.7). The RCCA model also outperformed the

PLS and SPLS models while SPLS outperformed PLS. Suprisingly, PCA performed

almost as well as PLS. This suggests that there is value in both tunable shrinkage

and sparsity in this dataset. It also reveals that the correlated signal between the

brain structure and behavioural data is relatively much stronger than in the HCP

data.
9Recall that in CCA models, what we call representations are sometimes referred to as scores or

latent variables.
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Table 5.2: ADNI: Number of non-zero weights for each model.

Model Brain Weights (out of 168130) Behaviour Weights (out of 31)
PCA 168130 31

RCCA 168130 31
Elastic Net 59617 17

PLS 168130 31
SPLS 74995 10

5.2.2 Sparsity of Weights

Table 5.2 once again shows the number of non-zero weights for each model. We

can see that tuned SPLS and Elastic Net once again identify sparse weights. In

this case, the difference in performance is more convincing and suggests that this

sparsity is less spuriously induced than for the HCP data. This is supported by the

fact that Elastic Net and SPLS models find a similar level of sparsity in the brain

weights. On the other hand SPLS finds a much sparser set of behavioural weights.

5.2.3 Behaviour Weights

As for the HCP data, Figure III.8 plots the top 8 positive and negative non-imaging

weights for each model. A striking feature of these results is that certain behavioral

variables, particularly the orientation tests, receive high weights across all models,

including PCA. Since PCA identifies directions of maximum variance independently

in each view, the fact that it identifies similar behavioral variables to the multiview

methods (CCA variants) suggests these variables are both high-variance within the

behavioral data and strongly related to brain structure. This alignment between

single-view (PCA) and multiview methods is notable because it differs from our HCP

results, where PCA identified quite different patterns from the CCA variants.

SPLS and Elastic Net both emphasize the orientation and recall tests in the

weight space. The RCCA and Elastic Net models show some interesting differences

in the weight space, with RCCA assigning high weights to attention and calculation

tests in addition to the orientation and recall tests that appear consistently across all

models.

5.2.4 Brain Structure Weights

We plot the weights as a mosaic plot with 3 slices in each direction in Figure A.2.

Previous work using SPLS with the ADNI dataset identified a striking pattern of

weights with the model selecting the hippocampal regions (Monteiro et al., 2016).
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The Elastic Net produces a distinct and interpretable pattern of weights, showing

sparse but well-defined selection of regions including a structured pattern near the

brain boundaries. Similarly, RCCA identifies specific regions of interest. Interestingly,

while PCA, PLS and SPLS assign weights in the same direction, RCCA and Elastic

Net differentiate regions with opposing signs, potentially capturing more nuanced

relationships in the brain structure.

5.2.5 Model Similarity

In this section, we once again compare the models in terms of their similarity. In

Figure III.10, we can see that all of the models are highly correlated in terms of

their behaviour representations. The brain representations are less correlated, but

once again PCA, PLS, and SPLS are highly correlated with one another and less

correlated with the Ridge CCA and Elastic Net models.

Suprisingly, in Figure III.11, we can see that the weights in both views are less

correlated. This is particularly true for the brain weights where PCA exhibits a very

low correlation with Ridge CCA and Elastic Net.

6 Discussion and Limitations

The Flexible Regularised Alternating Least Squares (FRALS) framework for CCA,

introduced in this chapter, exhibits promising performance in terms of out-of-sample

correlation. Our findings indicate that while Elastic Net CCA generally outperforms

other CCA variants, much of the benefit is derived from using properly tuned Ridge

regularization.

To assess the stability and uniqueness of the identified associations, we exam-

ined the singular value spectrum of the PLS solution (Figure III.12). The substantial

eigengap observed between the first and subsequent components in both datasets

suggests that the primary brain-behavior mode is well-separated and likely repre-

sents a stable, identifiable pattern rather than an arbitrary rotation of a degenerate

subspace. This provides evidence that the differences between methods are pri-

marily related to their regularization approaches rather than different rotations of

components with similar singular values.

The relative importance of Ridge regularization and sparsity, however, appears to

be dataset-dependent. In the HCP dataset, our results suggest that the associations

between brain and behavioral measures are not sparse, as sparsity did not improve

the out-of-sample correlation. This questions the interpretability of the sparse model
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and casts doubt on whether the additional computational cost of Elastic Net CCA is

justified for this particular dataset.

In contrast, for the ADNI dataset, the Elastic Net CCA model benefited from the

sparsity regularization, indicating that the associations between brain and cognitive

measures in this context are likely sparse. From a neuroscientific perspective, these

results highlight that the effectiveness of Ridge regularization and sparsity can vary

depending on the specific phenomenon under study.

Our experiments demonstrate that Ridge CCA typically achieves higher out-of-

sample correlations compared to PLS across both datasets. While PLS optimizes

for covariance, we focus on correlation-based metrics due to CCA’s advantageous

scale invariance properties. This scale invariance makes CCA particularly suitable

for identifying meaningful associations between brain and behavioral measures, as

it captures relationships that are independent of the arbitrary scaling of individual

measurements.

While our analysis focuses primarily on the first component due to methodologi-

cal constraints in comparing secondary components across different regularization

approaches, the clear eigengap in the PLS solution provides confidence in the

stability of our primary findings. Future work could explore methods for consistent

deflation across different regularization approaches to enable robust comparison of

secondary components.

In summary, while both Ridge regularization and sparsity can be helpful in

CCA models, their relative trade-off and the associated computational cost should

be evaluated in the context of the specific research question and the expected

sparsity of the underlying associations. The stability analysis through singular

value decomposition provides additional confidence that the identified brain-behavior

relationships represent genuine, well-separated modes rather than arbitrary rotations

of degenerate solutions.

6.1 FRALS Limitations

The Flexible Regularised Alternating Least Squares (FRALS) framework, while

effective in certain aspects, is notably limited by its computational inefficiency. This

inefficiency arises from two main factors: the dynamic nature of regression targets

and the intensive computation required for each iteration.
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6.1.1 Changing Regression Targets

In FRALS, regression targets are not static but dynamically evolve during the al-

gorithm’s execution. These targets are essentially projections of the other view,

and as they change, they alter the optimization landscape. Consequently, the al-

gorithm must frequently recompute the least squares solution for each view. This

process results in significant computational overhead and often leads to redundant

calculations, thereby contributing to the inefficiency of the FRALS framework.

6.1.2 Computational Time

The primary computational challenge in FRALS is the repeated calculation of the

least squares solution for each view in every iteration. Figure III.13 shows the time

taken (in seconds) to fit each model across complete training datasets over ten

runs. While FRALS with Elastic Net regularization operates approximately 10 times

slower than Ridge CCA, the absolute computation times remain manageable for the

datasets examined here – typically on the order of minutes rather than hours.

The computational cost primarily scales with the dimensionality of the data, as

FRALS using scikit-learn’s elastic net regressors requires iterative solutions for each

feature. While SPLS, PLS, and RCCA maintain relatively fast processing times

due to their optimized C implementations and PCA preprocessing, the additional

computational overhead of FRALS may be justified given the demonstrated benefits

of proper Elastic Net regularization for certain datasets. However, this scalability lim-

itation could become significant when applying the method to very high-dimensional

data, such as voxel-level neuroimaging analyses in large-scale studies.

6.2 Beyond Single Components: Deflation and Subspace Exten-
sions

A significant limitation of current sparse CCA methods, including SPLS, is their

reliance on deflation procedures to find multiple components. Deflation approaches,

while computationally convenient, can be problematic for several reasons:

• Error Propagation: When working with sparse or regularized solutions, the

first component may not be a true eigenvector. Deflation based on such com-

ponents can propagate and amplify errors through subsequent components

(Mackey, 2008).

• Loss of Structure: Particularly for sparse methods, deflation can destroy the
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sparsity structure of the data, making interpretation of subsequent components

challenging (Sameni, Jutten, and Shamsollahi, 2009).

• Artificial Orthogonality: Different deflation methods enforce different forms of

orthogonality between components, which may not reflect the natural structure

of the relationships in the data.

While the current implementation of FRALS focuses on single components,

its formulation through alternating least squares suggests a natural extension to

simultaneous multi-component optimization. Instead of sequential deflation, we

could modify FRALS to optimize for a subspace directly by:

• Extending the auxiliary variable t to a matrix T = [t1, ..., tk] containing multiple

components

• Applying Gram-Schmidt orthogonalization to maintain orthogonality constraints

on T

• Leveraging scikit-learn’s multi-output regression capabilities for the weight

updates

The proposed extension of FRALS to simultaneous multi-component optimization

offers several compelling advantages. By eliminating the need for explicit deflation,

this approach would address many of the fundamental issues that plague current

sequential methods. The framework maintains complete flexibility in regularization

choices, allowing researchers to select appropriate constraints for their specific

applications. Importantly, this method preserves the natural underlying structure

of the data, avoiding the artificial transformations that often result from deflation

procedures. Perhaps most significantly, this approach could reveal important in-

teractions between components that might otherwise be obscured or lost entirely

when components are extracted sequentially. These advantages make the proposed

extension particularly promising for advancing the field beyond the limitations of

current deflation-based methods.

The mathematical formulation would become:

argmin
U,T

{∑
i

∥X(i)U (i) − T∥2F + λiPi(U
(i))

}
(III.14)

subject to: T⊤T = Ik
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where U (i) are now matrices of weights and ∥ · ∥F denotes the Frobenius norm.

This extension aligns better with the theoretical understanding of CCA as a

subspace method, discussed in Chapter IV, where components are unique only up

to rotation within their span. Future work could explore this direction, potentially

leading to more robust and interpretable multi-component analyses.

The challenge of finding multiple components highlights a broader tension in

the field between computational tractability and theoretical rigor. While deflation-

based approaches like SPLS offer practical solutions, they may compromise the

underlying mathematical structure of the problem. The proposed extension of

FRALS suggests a path forward that maintains mathematical consistency while

remaining computationally feasible through modern optimization tools.

6.3 Conclusion

In this chapter, we introduced the Flexible Regularised Alternating Least Squares

(FRALS) framework for CCA. We used the FRALS framework to implement Elastic

Net CCA. We then compared the performance of Elastic Net CCA with other CCA

variants on two datasets: the HCP and ADNI. We found that Elastic Net CCA

outperformed other CCA variants on both datasets but that the performance of

Elastic Net CCA was similar to Ridge CCA on the HCP dataset. However, we found

that Elastic Net CCA was much slower than other CCA variants.
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Figure III.3: HCP: Behavioural weights highlighting the top-8 positive and negative
non-imaging weights. Each subfigure represents a distinct model’s

weight distribution across various behavioural domains such as
cognition, emotion, personality, substance use, alertness, and

psychiatric and life function. The variations in the weight profiles
across models reflect differing patterns of association with the

behavioural traits considered in the study.
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Figure III.4: HCP: Brain connectivity weights visualized through chord diagrams for
multiple models. Each diagram portrays the 8 strongest positive (red to
blue gradient) and negative (blue to red gradient) weights, grouped by

the Yeo 7 network parcellation.
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Figure III.5: HCP: Pairwise correlation matrix of brain representations across
different models. The high correlation coefficients between PCA, PLS,
and SPLS indicate a significant overlap in the brain representations

they produce, suggesting a bias of PLS toward principal components.
Contrarily, the Ridge CCA and Elastic Net models show notably lower

correlations with PCA, indicating that these models capture brain
representations beyond the first principal components.
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Figure III.6: HCP: Pairwise correlation matrix of the brain and behaviour weights
used by each model. Similar to the brain representations, PCA, PLS,
and SPLS show a high correlation in their weights, indicating similarity

in the factors they consider significant. The lower correlations
observed for Ridge CCA and Elastic Net with PCA suggest that these

models give importance to different aspects of the data, potentially
capturing more nuanced relationships.

PCA RCCA ElasticNet PLS SPLS
Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
or

re
la

tio
n

Holdout Correlation

Figure III.7: ADNI: Comparative out-of-sample canonical correlations among PCA,
RCCA, ElasticNet, PLS, and SPLS models. The bars represent the
correlation coefficients, indicating that the Elastic Net models has

superior performance over Ridge CCA, PLS, and SPLS in capturing
holdout correlation.
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Figure III.8: ADNI: Bar plots of the behaviour weights for each model.
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Figure III.9: ADNI: Statistical maps of brain structure weights for each model.
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Figure III.10: ADNI: Correlation between the brain and behaviour representations
for each model.
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Figure III.11: ADNI: Correlation between the brain and behaviour weights for each
model.
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Figure III.12: Singular value spectrum from PLS analysis showing a clear eigengap
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Preface

This chapter, deriving insights from various projects, lays out both my arguments

for the use of loadings in the interpretation of CCA models and a number of com-

putational tricks that we used to generate simulated data with significantly higher

dimensions than have been previously considered in the literature. The simulated

data generation methods were used to generate simulated data in Mihalik, Chapman,

Adams, Winter, Ferreira, Shawe-Taylor, Mourao-Miranda, et al. (2022). The argu-

ments for the use of loadings influenced our choice of loadings for the interpretation

of the results in Adams et al. (2024).
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1 Introduction

Despite its popularity, there is an ongoing debate in the CCA literature regarding the

interpretation of model weights versus loadings (Gu and Wu, 2018). This chapter

aims to contribute to this debate by providing mathematical insights from generative

models of CCA and empirical results from simulated data with higher dimensionality

than previously considered in the literature.

We begin by categorizing methods for generating CCA simulated data into

explicit and implicit latent variable models. This categorization allows us to compare

and contrast the generative models in CCA literature with the generative model

for linear regression. We highlight that in linear regression, regularization can be

interpreted as a prior on the weights, whereas in CCA, it is perhaps more natural to

interpret regularization as a prior on the loadings. By leveraging computational tricks,

we demonstrate how to generate simulated data with significantly higher dimensions

than previously considered in the literature (Helmer et al., 2020; Matkovič et al.,

2023).

Furthermore, we rigorously prove that loadings are invariant to columnwise

transformations in data matrices, unlike weights. This property makes CCA unique

compared to Principal Component Analysis (PCA) or Partial Least Squares (PLS)

and is particularly relevant in fields like brain-behavior studies, where data prepro-

cessing often involves columnwise manipulation.

Our experimental design focuses on two main aspects. First, we evaluate the

ability of CCA models to accurately recover the true model weights and loadings.

Second, we examine the out-of-sample performance, which is often observed to be

poor in practical datasets despite statistical significance, particularly for PLS-based

models. This observation led us to question whether the issue lies in poor model fit

or a lack of signal in the data with weak or biologically spurious correlations.

One of our most striking findings, consistent with the previous chapter, is the

efficacy of Ridge Regularized CCA models compared to PLS models in identifying

high correlations under anisotropic noise conditions; where the noise covariance

matrices (Ψ) are not scalar multiples of the identity matrix, leading to non-spherical

noise distributions. This complements earlier work (Helmer et al., 2020) that found

that the number of samples needed to find high correlations increases with dimen-

sionality; our results suggest that the important variable is the dimensionality of the

smaller view.

Through this chapter, we aim to provide a comprehensive understanding of the re-
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lationship between weights and loadings in CCA models, the impact of regularization

on model interpretation, and the performance of CCA models in high-dimensional

settings. By unifying generative perspectives, proving mathematical properties, and

conducting extensive simulations, we contribute to the ongoing debate in the CCA

literature and provide valuable insights for researchers and practitioners applying

CCA in various domains.

2 Background: Weights and Loadings in Canonical

Correlation Analysis

CCA can be interpreted in two ways: either as a method that finds linear com-

binations of variables in two datasets that exhibit the highest correlation, or as a

technique that estimates latent variables that are maximally correlated.

The concept of latent variables is particularly important in biomedical applica-

tions, as it can help uncover underlying factors influencing observable data. For

example, in brain-behavior studies, latent variables may represent hidden neuro-

logical or cognitive processes that drive the relationship between brain structure or

function and behavioral outcomes. Similarly, in imaging-genetics, latent variables

can capture the genetic factors that influence brain morphology or activity patterns.

By introducing latent variables, CCA enables researchers to gain a deeper under-

standing of complex phenomena like gene expression, pathologies, and normative

variations in health-related data (Lawry Aguila, Chapman, and Altmann, 2023).

2.1 Generative and Discriminative Approaches in CCA

CCA’s practical application revolves around two main approaches: the discriminative

approach and the generative approach. The generative approach, known as the

‘forward model’, emphasizes the data generation process and employs loadings to

describe the relationship between latent variables and observed data. It models the

joint distribution of the observed data conditioned on the latent variables, expressed

as P (X(1), X(2)|Z). In this approach, the latent variables are assumed to be the

underlying cause1 of the observed data, and the goal is to learn the parameters of

the generative model that best explains the data.

In contrast, the discriminative approach, represented as the ‘backward model’ in

Figure IV.1, uses weights to estimate highly correlated latent variables from observed

1Used here very loosely to give intuition
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Figure IV.1: Forward and Backward Multiview Models: The generative/forward
and discriminative/backward approaches in CCA.

data. It focuses on modeling the conditional distribution of the latent variables given

the observed data, denoted as P (Z|X(1), X(2)). The discriminative approach aims

to find the optimal linear combinations of the observed variables that maximize

the correlation between the latent variables, without explicitly modeling the data

generation process.

2.2 Analogy Between CCA and PCA

The distinction between the generative and discriminative approaches in CCA is

analogous to the different interpretations of Principal Component Analysis (PCA)

(Park, Ceulemans, and Van Deun, 2023). PCA can also be viewed from a generative

perspective, where the observed data are assumed to be generated from latent

variables (Tipping and Bishop, 1999), or from a discriminative perspective, where

the principal components are linear combinations of the observed variables that

maximize the variance (Hotelling, 1933).

In both CCA and PCA, the generative approach focuses on modeling the joint

distribution of the observed data and the latent variables, while the discriminative

approach emphasizes finding the optimal linear combinations of the observed

variables to estimate the latent variables or principal components.

2.3 The Debate Regarding Weights and Loadings in CCA

In CCA research, there is an ongoing debate regarding the interpretation of models

in terms of weights or loadings (Gu and Wu, 2018). Weights are often preferred

for prediction tasks, as they directly relate the observed variables to the latent

variables. On the other hand, loadings are favored for interpretation, as they provide
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insights into the structure and relationships within the data (Z. Liu et al., 2022).

This discussion is particularly relevant to our work in chapter III and various studies

involving sparse CCA and sparse Partial Least Squares (PLS), where understanding

the meaning and implications of sparse loadings and weights is crucial.

Given the importance of this topic, especially in the context of our work in

chapter III and other studies employing variants of sparse CCA and sparse PLS, it

is essential to delve deeper into the interpretation of sparse loadings and weights.

In the following sections, we will explore the mathematical properties and practical

implications of weights and loadings in CCA, with a focus on sparse and regularized

models. By addressing this key aspect of CCA, we aim to contribute to the ongoing

debate and provide insights that can guide the application and interpretation of CCA

in various domains, including neuroimaging, genetics, and health-related research.

3 Methods: Unifying Generative Perspectives in CCA:

Explicit and Implicit Latent Variable Models of Mul-

tiview Data

This section categorizes the generative models in CCA literature into explicit and

implicit latent variable types, each offering distinct insights into the data generation

process and the relationship between weights and loadings.

3.1 Additional Notational Conventions

We will use some additional notational convention to describe probabilistic models.

We will use lowercase letters to represent samples from a distribution, and uppercase

letters to represent random variables. For example, x represents a sample from the

distribution P (X), and X represents the random variable X . We will use∼ to denote

the sampling process, and | to denote conditioning. For example, x|z ∼ N (µ,Ψ)

represents a sample x from a Gaussian distribution with mean Wz and covariance

Ψ conditioned on the latent variable z. We also introduce the notation w
(i)
j to refer

to the loading of the j-th feature in the i-th view on a latent variable, as well as W (i)

to refer to the matrix of loadings for the i-th view on all latent variables.
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3.2 Explicit Latent Variable Models: Probabilistic CCA and Group
Factor Analysis

Explicit latent variable models assume that the observed data in each view is

generated from a shared latent space, with view-specific linear transformations and

added noise. These models provide a probabilistic framework for understanding the

relationship between multiple views of data and the underlying latent factors that

give rise to them.

3.2.1 Probabilistic CCA

Probabilistic CCA (PCCA) is an explicit latent variable model that extends classical

CCA to a probabilistic setting. In PCCA, the generative process for two views can

be described as follows:

z ∼ N (0, I) (IV.1)

x(i) ∼ N (W (i)z + µ(i),Ψ(i)) (IV.2)

where z is a shared latent variable drawn from a standard normal distribution, x(i)

represents a sample from the i-th view, W (i) are the view-specific loadings that map

the latent space to the observed space, µ(i) is the mean of the i-th view, and Ψ(i) is

the view-specific noise covariance matrix.

The key idea behind PCCA is that the shared latent variable z captures the com-

mon structure across views, while the view-specific loadings W (i) allow for flexibility

in how this structure is expressed in each view. The noise covariance matrices Ψ(i)

account for view-specific variation not explained by the shared structure. Bach and

Jordan (2005) showed that the maximum likelihood estimates of the loadings W (i)

in PCCA are related to the classical CCA weights U (i) by the within-view covariance

matrices Σii:

W (i) = ΣiiU
(i)R (IV.3)

U (i)R = Σ−1
ii W (i) (IV.4)

where R is an arbitrary rotation matrix. While this provides a mathematical link

between the probabilistic and non-probabilistic formulations of CCA, the correlation

structure within each view (Σii) means that the weights and loadings can be quite

different in practice. The weights U (i) and loadings W (i) capture different aspects

of the relationship between the views, with the loadings directly modeling how the
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latent variables manifest in each view’s observations.

3.2.2 Group Factor Analysis

Group Factor Analysis (GFA) (Klami et al., 2014) is another explicit latent variable

model that extends PCCA by assuming isotropic (i.e., spherical) noise in each view:

z ∼ N (0, I) x(i) ∼ N (W (i)z + µ(i), σ2
i I) (IV.5)

where σ2
i is the noise variance in the i-th view. This assumption simplifies the

model and can lead to computational benefits, as well as supporting extensions

like sparsity on the loadings. The joint distribution of multiple views under the GFA

model is a multivariate Gaussian distribution with a structured covariance matrix:

[
X(1)

... X(m)

]
∼ N

[µ(1)
... µ(m)

]
,


W (1)W (1)T + σ2

1I · · · W (1)W (m)T

...
. . .

...

W (m)W (1)T · · · W (m)W (m)T + σ2
mI




(IV.6)

This highlights the fact that the covariance structure in each view is determined

by the view-specific loadings and noise variances. When the loadings W (i) have

large singular values compared to the noise variances σ2
i , the resulting covariance

matrices Σii = W (i)W (i)T + σ2
i I are often referred to as "spiked covariance

matrices" (Johnstone, 2001).

3.2.3 Connecting GFA and Probabilistic PCA

Probabilistic PCA (PPCA) (Tipping and Bishop, 1999) is a special case of GFA

applied to a single view:

z ∼ N (0, I) (IV.7)

x ∼ N (Wz + µ, σ2I) (IV.8)

Like GFA, PPCA assumes isotropic noise and seeks to identify a lower-dimensional

latent space that captures the structure in the observed data. The key difference is

that PPCA does not model multiple views or the relationships between them. How-

ever, the connection between GFA and PPCA provides an important insight: when

the noise in each view is low and isotropic, the shared latent structure dominates

the view-specific noise. In this scenario, applying PPCA to a single view should
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recover latent variables that are very similar to those obtained by applying GFA to

multiple views. This suggests that, in low-noise settings, it may be possible to un-

cover meaningful latent structure using just a single view of the data. Consequently,

PPCA can serve as a useful baseline for evaluating the performance of multi-view

models like GFA. Likewise in the discriminative setting, if a multi-view model does

not significantly outperform PCA applied to a single view, it may indicate that the

additional complexity of the multi-view approach is not justified for that particular

dataset. For this reason, it is always my recommendation to compare the perfor-

mance of multi-view models to that of PCA applied to each individual view2. This

can help assess whether the multi-view approach is truly leveraging complementary

information across views, or if the observed performance gains are due to other

factors, such as noise reduction or increased model capacity. By understanding the

relationships between these explicit latent variable models, researchers can make

more informed decisions about when and how to apply them to real-world datasets,

and can better interpret the results obtained from multi-view analyses.

3.3 Implicit Latent Variable Models: The Joint Covariance Matrix
Perspective

The joint covariance matrix perspective, prevalent in sparse CCA literature (Suo et al.,

2017; M. Chen et al., 2013), emphasizes covariance matrices over direct modeling

of latent variables. This approach allows us to directly control the sparsity of the

weights and the strength of the canonical correlations by constructing the covariance

matrices accordingly. By focusing on the covariance structure, we can generate

data with desired properties without explicitly modeling the latent variables. This is

achieved by constructing the joint covariance matrix of the distribution P (X(1), X(2)):

[
X(1)

X(2)

]
∼ N

([
0

0

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(IV.9)

Where Σ11 and Σ22 are the within-view covariance matrices and Σ12 and Σ21

are the between-view covariance matrices.

For clarity and simplicity in our discussion, we refer to a single canonical correla-

tion coefficient, ρ, without loss of generality. This allows us to focus on the structure

of the covariance matrices without the complexity of multiple canonical correlations.

2In the growing Deep Multiview Learning literature this is analagous to comparing to separate
autoencoders applied to each view
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In constructing the between-view covariance matrices Σ12 and Σ21, we control

the true signal by setting active variables and correlations. Specifically, the between-

view covariance matrix is constructed as follows:

Σ12 = ρΣ11u
(1)
1 u

(2)T
1 Σ22 (IV.10)

Here, ρ is the canonical correlation, and u
(i)
1 is the first column of the matrix of

weights U (i) for the i-th view.

This perspective simplifies the structure of covariance matrices, focusing on the

relationship between views as controlled by the canonical correlation coefficient, ρ,

and the weights u(i).

3.4 Noise Structures and Their Impact on Covariance Modeling

The noise covariance matrices Ψ(i) in the explicit latent variable models play a

crucial role in determining the nature of the noise in each view. When the noise

covariance matrix is a scalar multiple of the identity matrix, i.e., Ψ(i) = σ2
i I, the

noise is considered isotropic or spherical, with equal variance in all dimensions

and no correlations. On the other hand, when the noise covariance matrix is not

a scalar multiple of the identity matrix, the noise is considered anisotropic or non-

spherical, with potentially different variances across dimensions and correlations

between noise components. In real-world datasets, such as those involving brain

and behavioral data, the assumption of isotropic noise may not always hold. The

correlation between brain regions or behavioral measures refers to the structured

relationships in the data, captured by the loadings W (i) in the explicit latent variable

models. The noise, on the other hand, represents the unstructured variation or

measurement error not explained by the latent factors. While brain regions and

behavioral measures may be correlated due to shared underlying processes, this

does not necessarily imply that the noise itself is correlated. When analyzing brain

and behavioral data using explicit latent variable models or related methods, it

is important to consider the potential for both correlated and uncorrelated noise

structures. Ignoring the possibility of correlated noise and assuming an identity

covariance matrix may oversimplify the noise characteristics, potentially leading to

suboptimal results or misinterpretations. Conversely, assuming correlated noise

when it is not present can lead to overparameterization and reduced interpretability.

In addition to the noise covariance, the observed covariance structures are also
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important to consider. Discriminative methods, such as classical CCA, often make

assumptions about the observed covariance matrices Σii, taking them as given or

estimating them from the data. In contrast, generative methods, such as Probabilistic

CCA and GFA, model the observed covariance as a function of the loadings and the

noise covariance, as shown in Table 3.1. Researchers should carefully examine the

properties of the data and use prior knowledge about the measurement process to

guide their assumptions about both the noise and observed covariance structures.

Comparing models with different assumptions (e.g., isotropic vs. anisotropic noise,

identity vs. non-identity observed covariance) and using model selection techniques

can help determine the most appropriate choice when the covariance structures are

uncertain. By considering the potential for different noise and observed covariance

structures, researchers can make more informed decisions about the modeling

assumptions and improve the accuracy and interpretability of their results.

3.5 Summary of Data Generation Methods

To summarize the key differences between the data generation methods discussed

above, we present two tables. Table 3.1 compares the covariance structures of

each method, highlighting how the within-view and between-view covariances are

modeled. Table 3.2 illustrates the relationship between weights and loadings in

both population and sample cases, emphasizing the implications for sparsity and

identifiability.

Table 3.1: Covariance Structures in Data Generation Methods

Method Within-view Covariance Σii Between-view Covariance Σ12

E
xp

lic
it Probabilistic CCA W (i)W (i)T +Ψ(i) W (1)W (2)T

GFA W (i)W (i)T + σ(i)2I W (1)W (2)T

Im
pl

ic
it Joint Covariance Σii ρΣ11u

(1)
1 u

(2)T
1 Σ22

Joint Covariance (Identity) I ρu
(1)
1 u

(2)T
1

As shown in Table 3.1, the explicit latent variable models (Probabilistic CCA and

GFA) incorporate the noise covariance matrices Ψ(i) or σ2
i I into the within-view

covariance expressions. This allows for more flexible modeling of the noise structure,

as the noise covariance can be either isotropic (in the case of GFA) or anisotropic
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(in the case of Probabilistic CCA). In contrast, the implicit latent variable models

(Joint Covariance) assume a simpler noise structure, often taking the within-view

covariance matrices Σii as given or assuming an identity covariance for tractability.

Table 3.2 summarizes the relationship between the weights and loadings in each

data generation method, distinguishing between population and sample cases. This

distinction is crucial, especially in scenarios where the population covariance matrix

Σ is identity, but the sample covariance matrix Σ̂ is only an approximation. An

important observation is that for the implicit latent variable models, we can generate

data with sparse weights but not, in general, sparse loadings. For the explicit latent

variable models, we can generate data with sparse loadings but not, in general,

sparse weights.

Table 3.2: Relationship Between Weights and Loadings in Population and Sample
Cases

Method Case Weights Loadings

E
xp

lic
it

Probabilistic CCA Population (W (i)W (i)T +Ψ(i))−1W (i) W (i)

Sample Σ̂ii
−1

W (i) W (i)

GFA Population (W (i)W (i)T + σ(i)2I)−1W (i) W (i)

Sample Σ̂ii
−1

W (i) W (i)

Im
pl

ic
it

Joint Covariance (Non-Identity) Population U (i) ΣiiU
(i)

Sample U (i) Σ̂ii
ˆU (i)

Joint Covariance (Identity) Population U (i) U (i)

Sample U (i) Σ̂ii
ˆU (i)

3.6 Regularization and Generative Models

Regularization is crucial in CCA to prevent overfitting and promote interpretability.

However, the way regularization is interpreted in CCA differs from linear regression

due to the latent variable nature of CCA models. In linear regression, regularization

can be directly interpreted as a prior on the weights. In contrast, for CCA, regulariza-
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tion can be interpreted as a prior on either the loadings or the weights, depending

on the generative perspective. This distinction has important implications for model

interpretation and the identifiability of weights in CCA.

3.6.1 Regularization and the Generative Model for Linear Regression

Linear regression assumes data generation from a linear model with added noise:

y = xU + ϵ, ϵ ∼ N (0, σ2I) (IV.11)

Here, y are samples of the target variable, x samples from the data matrix, U

the regression coefficients, and ϵ represents independent and identically distributed

(i.i.d.) Gaussian noise.

Lasso Regression The Lasso imposes a Laplace prior on the regression coeffi-

cients, leading to a double-exponential prior on weights:

U ∼ L(0, λ) (IV.12)

Ridge Regression Ridge regression, in contrast, employs a Gaussian prior on

the regression coefficients, equivalent to a Gaussian prior on weights:

U ∼ N (0, λ) (IV.13)

3.6.2 Regularization and Generative Models for CCA

CCA models differ in their approach to regularization compared to linear regression

because they are latent variable models.

Explicit Latent Variable Model Regularization in the context of the explicit latent

variable naturally relates to priors on the loadings W (i). For example, sparsity in the

loadings can be achieved by imposing a Laplace prior on the loadings:

W (i) ∼ L(0, λ) (IV.14)
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This expresses the prior belief that latent factors only explain the data through

a small number of features. For example, in the context of latent factors in brain-

behavior studies, this prior belief is equivalent to the assumption that a latent mode

of variance (perhaps a subtype) is only expressed through a small number of brain

regions.

Implicit Latent Variable Model In the implicit latent variable model of CCA,

the joint likelihood is modeled as a block covariance matrix Σ(Suo et al., 2017),

constructed from the weights U (i).

Σ =


Σ1 Σ1U

(1)ρU (2)TΣ2

Σ2U
(2)ρU (1)TΣ1 Σ2

 (IV.15)

Where the off-diagonal blocks Σ1U
(1)ρU (2)TΣ2 and its transpose represent the

between-view covariance matrices. These matrices are functions of the weights U (i)

and within-view covariance matrices Σi, modulated by ρ, the canonical correlation

coefficients.

Here the regularization naturally relates to priors on the weights U (i). For

example, sparsity in the weights can be achieved by imposing a Laplace prior on

the weights:

U (i) ∼ L(0, λ) (IV.16)

This expresses the more nuanced prior belief that the latent factors are expressed

through a subset of features and then distorted by arbitrary rotations as well as

the within-view covariance matrices. Manipulating equation IV.3, the conditional

distribution of the implicit latent variable model we have:

x(i)|z ∼ N (ΣiU
(i)Rz = W (i)z,Σi −W (i)W (i)T = Ψ(i)) (IV.17)

z ∼ N (0, I) (IV.18)

The arbitrary rotation matrix R means that for multidimensional U (i), even if

Σi = I , and even if the true loadings are sparse, the weights may still not be sparse!
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x(i)|z ∼ N (U (i)Rz = W (i)
sparsez,Σi −W (i)

sparseW
(i)T
sparse = Ψ(i)) (IV.19)

z ∼ N (0, I) (IV.20)

Alternatively, even if we know the true weights (i.e. R = I), the CCA model may

not be able to recover them. This is to say they are not, in general, identifiable (Park,

Ceulemans, and Van Deun, 2023). In other words there are multiple values of W (i)

that can produce the same covariance structure.

We can illustrate this with a trivial example:

Σ1 =



1 1 0

1 1 0

0 0 1





1

0

1


=



1 1 0

1 1 0

0 0 1





0.5

0.5

1


=



1

1

1


(IV.21)

(IV.22)

In this example, we show that the same covariance matrix Σ1 can be obtained

using different weight matrices. The first weight matrix has entries [1, 0, 1], while the

second weight matrix has entries [0.5, 0.5, 1]. This example clearly demonstrates

the non-identifiability issue in the implicit latent variable model, where multiple weight

matrices can produce the same covariance structure. This means that even if we

know the true covariance structure, we may not be able to uniquely recover the true

weights.

One practical implication of this observation is that it raises serious questions

about using stability selection, a common practice in the sparse CCA literature

(Mihalik, Ferreira, Moutoussis, et al., 2020; Deng et al., 2021), to select the optimal

regularization parameter.For instance, suppose we run stability selection multiple

times on the same dataset to select the optimal regularization parameter. Due

to the non-identifiability of weights, each run may result in different rotations of

the weights, even though the underlying representations and correlations remain

the same. This can lead to inconsistent selection of the regularization parameter
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across runs, potentially resulting in suboptimal hyperparameter choices or incorrect

conclusions about the sparsity structure of the data.

In summary, understanding the generative perspectives in CCA is crucial for

interpreting regularization, sparsity, and identifiability in these models. The explicit

latent variable model allows for intuitive priors on the loadings, while the implicit

latent variable model enables priors on the weights, albeit with less straightforward

interpretations. The non-identifiability issue in the implicit model highlights the

challenges in recovering unique weights and raises questions about the reliability

of stability selection. By considering these generative perspectives, researchers

can make more informed choices when applying regularization and interpreting the

results of CCA models.

4 Invariance of Loadings in CCA: An Intuitive Mathe-

matical Argument

In this section, we present an intuitive mathematical argument for favoring loadings

over weights in the interpretation of CCA models. We will demonstrate that loadings

are invariant to certain common transformations of the data matrix, including scaling,

duplication, and summation of columns. This property is not shared by weights.

This invariance has significant practical implications, especially when working with

heterogeneous or transformed data.

4.1 Solving CCA in Principal Component Space

Consider the singular value decomposition (SVD) of the data matrices:

X(i) = U (i)S(i)V (i)T (IV.23)

Here, U (i) contains the left singular vectors (principal components) of X(i), S(i)

is a diagonal matrix of singular values, and V (i) contains the right singular vectors.

The columns of U (i) span the column space of X(i), which is the space of all

possible linear combinations of the columns of X(i). Intuitively, the column space

captures all the directions in which the data varies.

The CCA objective is to find weights u(1), u(2) that maximize the correlation

between the canonical variables X(1)u(1) and X(2)u(2):
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max
u(1),u(2)

Corr(X(1)u(1), X(2)u(2)) = max
u(1),u(2)

Corr(U (1)S(1)V (1)Tu(1), U (2)S(2)V (2)Tu(2))

(IV.24)

By reparameterizing the weights as v(i) = S(i)V (i)Tu(i), we obtain:

max
v(1),v(2)

Corr(U (1)v(1), U (2)v(2)) (IV.25)

This shows that CCA can be solved entirely in the principal component space

spanned by the matrices U (i). The loadings w
(i)
j , defined as the correlations

between the original features X
(i)
j and the canonical variables U (i)v(i), capture the

relationships in this space.

4.2 Invariance of Loadings to Data Transformations

We now show that the loadings are invariant to certain transformations of the data

matrix X(i), while the weights are not. The key insight is that these transformations

change the right singular vectors V (i) and singular values S(i), but not the left

singular vectors U (i). Since the loadings depend only on U (i), they remain invariant.

Moreover, these transformations preserve the column space of X(i), which is why

the principal components U (i) are unaffected.

4.2.1 Scaling Transformation

Consider a diagonal scaling matrix B that scales the columns of X(i):

X̃(i) = X(i)B = (U (i)S(i)V (i)T )B = U (i)(S(i)B)(V (i)T ) (IV.26)

The weights ũ(i) in the transformed space are related to the original weights

by ũ(i) = B−1u(i), and thus change with the scaling. However, the principal

components U (i) remain unchanged, so the loadings w̃
(i)
j = Corr(X̃

(i)
j , U (i)v(i)) =

w
(i)
j are invariant.
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4.2.2 Duplication Transformation

Consider duplicating columns of X(i) using a transformation matrix B that contains

an identity matrix In and a duplication matrix D:

B =


In D

 , X̃(i) = X(i)B = U (i)(S(i)B)(V (i)T ) (IV.27)

The weights ũ(i) become underdetermined in the transformed space due to

the added linear dependencies. However, since the column space of X̃(i) is the

same as that of X(i), the principal components U (i) and thus the loadings remain

unchanged.

4.2.3 Linear Combination Transformation

Consider adding or removing linear combinations of columns using a transformation

matrix B that contains an identity matrix In and a coefficient matrix C:

B =


In C

 , X̃(i) = X(i)B = U (i)(S(i)B)(V (i)T ) (IV.28)

As before, the weights ũ(i) change in the transformed space, but since the

column space is preserved, the principal components U (i) and loadings remain

invariant.

4.3 Practical Implications

The invariance of loadings to data transformations has significant practical impli-

cations, especially in fields like biomedical research, psychometrics, and social

sciences where questionnaire and survey data are common:

• Interpretability: Loadings provide a consistent interpretation of the relation-

ships between the original features and the canonical variables, even if the

data is rescaled or transformed. This is particularly valuable in interdisciplinary

research, where different data normalization practices may be employed.

• Feature Selection: Decisions about including, excluding, or combining fea-

tures can be made based on the loadings without worrying about their impact
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on the CCA solution. This is especially relevant when dealing with summary

measures that effectively sum other variables, a common scenario in question-

naire and biomedical data. The invariance of loadings to such alterations in the

data structure makes them a more robust choice for interpreting relationships

between variables in these contexts.

• Robustness: CCA models can be trained on transformed data (e.g., nor-

malized or standardized) while still allowing for meaningful interpretation in

the original feature space. While the identifiability of weights can be partially

solved by the standardization of data, and while this is a common practice, it

is not always necessary or desirable and always introduces assumptions.

In conclusion, this section provides a strong mathematical foundation for the

preference of loadings over weights in the interpretation of CCA models. The in-

variance of loadings to columnwise transformations, including scaling and linear

combinations, ensures a more robust and consistent interpretation of variable rela-

tionships. This property is especially valuable in fields dealing with heterogeneous

or transformed data, where data preprocessing choices may vary. By focusing on

loadings, researchers can obtain more reliable insights into the underlying structure

of their data, facilitating cross-disciplinary collaborations and the advancement of

knowledge.

5 Methods: Efficient Sampling of Simulated CCA

Data

Efficient sampling is crucial for CCA because it allows researchers to work with

larger datasets and explore more complex or more nuanced relationships between

variables, ultimately expanding the scope of research and analysis. Traditional meth-

ods can be computationally intensive and storage-demanding, especially for large

datasets. This has in practice limited the dimensionality of simulated data, restricting

the scope of research and analysis. For example Matkovic et al. (2023) simulate

data with 8,000 observations and 100 features while Helmer et al. (2020) used at

most 10,000 observations and 64 features. We were interested in the behavior of

CCA in high-dimensional settings like voxel-wise MRI and brain connectivities, which

can have hundreds of thousands of features (Jack Jr et al., 2008) and up to tens

of thousands of observations (Sudlow et al., 2015). By leveraging the assumptions

that biomedical data often exhibit low-rank and/or sparse covariance structures, we
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develop efficient sampling methods that overcome the computational and storage

limitations associated with high-dimensional data.

5.1 Challenges with High-Dimensional Data

Direct sampling from a multivariate normal distribution is impractically slow for

high-dimensional data, which has been a core research challenge for Monte Carlo

methods (Mackay, 1998). The implicit latent variable model, in particular, requires

storage of the full covariance matrix, which is prohibitive for high-dimensional data.

For example, a covariance matrix with 100,000 dimensions would require 80GB of

memory, far exceeding the capacity of most personal computers.

5.2 Efficient Sampling for Explicit Latent Variable Models

The explicit latent variable model offers more efficient approaches for sampling

high-dimensional data by employing sparse and low-rank covariance matrices.

5.2.1 Sampling from Multivariate Normal Distributions

An efficient approach to sampling from a multivariate normal distribution is to use the

Singular Value Decomposition (SVD) or Cholesky decomposition of the covariance

matrix. This involves decomposing the covariance matrix and using the resulting

components to transform samples from a standard multivariate normal distribution:

Z ∼ N (0, I) (IV.29)

X = Σ1/2Z (IV.30)

Where Σ1/2 is a square root of the covariance matrix, obtained through SVD or

Cholesky decomposition. This is the same as the generative model for the explicit

latent variable model, where Σ1/2 is the matrix of loadings. Low-rank noise can be

added by sampling from an independent multivariate normal distribution and adding

it to the transformed samples. This approach requires sampling from a univariate

normal distribution and performing a matrix multiplication of complexity O(np2).

5.2.2 Using Sparse and Low-Rank Covariance Matrices

Sparse covariance matrices, with many zero entries, reduce both computational

complexity and storage requirements. For example, a sparse covariance matrix with
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100,000 dimensions and 10% density would only require 8GB of memory to store.

Low-rank covariance matrices further reduce complexity by storing only the fac-

torized rank-k components, reducing storage requirements to O(kp). For example,

a low-rank covariance matrix with 100,000 dimensions, 10% density, and rank 1000

would only require 80MB of memory to store. This approach also requires draw-

ing O(kp) samples from a univariate normal distribution and performing a matrix

multiplication with complexity O(nkp), rather than O(np2) for the full-rank case.

5.3 Calculating True Canonical Correlations and Weights

The population canonical correlations can be controlled by varying the signal-to-

noise ratio (SNR), i.e., the ratio of the signal variance to the noise variance.

For the explicit latent variable model, the loadings are obtained directly as the

low-rank square root of the covariance matrix. The weights can be calculated from

the loadings and the covariance matrix using the relationship:

Ŵ (i) = ΣiiÛ
(i)R (IV.31)

Where R is an arbitrary rotation matrix and Û (i) is the matrix of CCA weights for

the ith view. For invertible covariance matrices, the ‘true’ CCA weights associated

with the top-k subspace can be accessed by multiplying the loadings by the inverse

of the covariance matrix:

Û (i)R = Σ−1
ii Ŵ (i) (IV.32)

Although inverting the O(p2) covariance matrix is computationally expensive,

the Sherman-Morrison-Woodbury formula can be used to calculate the inverse in

O(kp2) time for a rank-k covariance matrix. This allows for the calculation of weights

in O(kp2) time, which is faster than the O(p3) time required to calculate the weights

directly from the covariance matrix.

In the next section, we will present experiments demonstrating the relationship

between weights and loadings in simulated data using these efficient sampling

techniques.
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6 Experiment Design

Our goal in this section is to empirically demonstrate the relationship between

weights and loadings in CCA models as well as to better understand the behavior of

CCA models in the high-dimensional settings that section 5 enables, and which are

of interest in the neuroimaging community.

The first set of experiments illustrates the relationship between weights and

loadings in simulated data using explicit latent variable models with identity and

non-identity covariance matrices. The second set of experiments illustrates the

ammount of information that can be recovered from simulated data using CCA and

PLS models with varying signal-to-noise ratios and sample sizes.

6.1 Exploring the Relationship Between Weights and Loadings
in CCA Using Simulated Data

Our first experiment is designed to illustrate the challenges of recovering the true

weights and loadings respectively in CCA models for explicit and implicit latent

variable models with identity and non-identity covariance matrices.

We compare the true weights derived from the data generation model with

the estimated weights of CCA, Ridge CCA, Elastic Net CCA (implemented with

FRALS-EN), PLS, and PCA models. We expect that when the covariance matrix is

identity, the weights and loadings will be identical. When the covariance matrix is

non-identity, we expect that the weights and loadings will be different. Moreover, we

expect that the estimated loadings will be more stable than the estimated weights

for CCA models because the weights are not always identifiable. Under the explicit

latent variable model, we expect that the weights will only be (close to) sparse when

the covariance matrix is close to identity. This means we do not expect the Elastic

Net CCA model to improve on the Ridge CCA model since the Lasso regularizes

the weights but not the loadings. Finally, we expect that when using the explicit

latent variable model, for high signal-to-noise ratios, the PLS and even PCA models

will recover the true weights and loadings because the majority of the variance is

explained by the latent variables.

6.1.1 Detailed Parameters of Simulated Data for Weights and Loadings Anal-

ysis in CCA

We generate data with 100 samples and 10 features in each view. We then generate

data under two implicit latent variable models and two explicit latent variable models.
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Table 6.1: Simulated Data Parameters for Weight and Loadings Recovery
Experiments

Parameter Value

Number of samples (n) 100 train, 500 test

Number of features in View 1 (p) 10

Number of features in View 2 (q) 10

True Latent dimensions 1

Fraction of active features View 1 0.5

Fraction of active features View 2 0.5

The ridge penalty is coarsely tuned between 0.1 and 0.9 in order to illustrate the

effect of regularization as we already show the corner cases of no regularization

(CCA) and full regularization (PLS). For the Elastic Net CCA model, we tune the l1

ratio between 0.1 and 0.9. This ensures that the Elastic Net CCA has some sparsity

as compared to the Ridge model, effectively avoiding the corner case of no sparsity

where the Elastic Net CCA is equivalent to the Ridge model. We summarize the

parameters of these experiments in table 6.1.

6.2 Assessing Information Recovery in CCA and PLS Models
Under Varying Signal-to-Noise Ratios

Our next experiment was motivated by the observation that PLS models (includ-

ing sparse PLS) often exhibit low but non-zero out of sample correlations in real

high-dimensional data. We want to understand how much of this is due to the fact

that PLS models optimize covariance rather than correlation, and how much is due

to the fact that the signal-to-noise ratio is too low. For brain-behavior relationships

specifically, we can estimate likely SNR ranges based on domain knowledge. Mea-

surement noise comes from scanner artifacts, physiological noise, and behavioral

measurement error, while signal strength can be bounded using prior studies; for
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Table 6.2: Simulated Data Parameters for Brain-Behaviour Simulations

Parameter Value

Number of features in View 1 (p) 100-10000

Number of features in View 2 (q) 100-10000

True Latent dimensions 1

Fraction of active features View 1 1.0

Fraction of active features View 2 1.0

Signal-to-noise ratio 0.001-1

instance, heritability studies suggest upper bounds on brain-behavior relationships,

as shared variance cannot exceed heritability estimates. These considerations sug-

gest operating in the lower SNR regime of our simulations. Since we are interested

in studying these effects in high-dimensional data, we aimed to simulate data with

similar numbers of features to real brain-behavior datasets. This means that we

are only able to use our memory-efficient sampling methods for the explicit latent

variable model.

6.2.1 Detailed Parameters of Simulated Data for Signal-to-Noise Simulations

We simulated data with 1000 samples and between 100 and 10,000 features in one

view and 100 features in the other. These are of the same order of magnitude as

typical brain-behaviour datasets. We summarise these data properties in table 6.2.

6.3 Methodology for Constructing Correlated Covariance Matri-
ces in CCA Simulations

In both experiments, we construct correlated covariance matrices by generating

a random matrix A with entries drawn from a uniform distribution between -1 and

1. We then construct the covariance matrix as Σ = AA⊤. This ensures that
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Figure IV.2: Example instances of correlated covariance matrices.

the covariance matrix is positive semi-definite and also tends to produce strong

correlations.

We plot an example of the covariance matrices for correlated covariance matrices

in both views in figure IV.2.

Recalling table 3.1, note that in the implicit latent variable models, these covari-

ance matrices are precisely the population within-view covariance matrices. In the

explicit latent variable models, these covariance matrices are just the covariance

matrices of the noise to which we add the signal covariance matrices. Nonetheless,

for strong enough noise, this process ensures that there are large correlations

between features.

7 Experiment Results

7.1 Exploring the Relationship Between Weights and Loadings
in CCA Using Simulated Data

We first present the results of the experiments demonstrating the relationship be-

tween weights and loadings in simulated data from explicit and implicit latent variable

models with identity and non-identity covariance matrices.

For both cases, we plot the true weights and loadings along with the estimated

weights and loadings for each model. We estimate model loadings by multiplying

the model weights by the sample within-view covariance matrix following equation

IV.3. This means that the estimated model loadings may not be sparse even when

the estimated model weights are sparse and the population covariance matrix is

identity.
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We can also quantify the similarity between the true and estimated weights and

loadings using the cosine similarity; a measure of the similarity between two vectors

that is invariant to the scale of the vectors. The cosine similarity between two vectors

is defined as the cosine of the angle between them (Luo et al., 2018). Since we are

indifferent to the direction of the vectors, we take the absolute value of the cosine

similarity. The absolute cosine similarity between two vectors is 1 if they are identical

(up to a sign) and 0 if they are orthogonal.

7.1.1 Implicit Latent Variables (Sparse Weights)

Figure IV.3 shows the true and estimated weights and loadings for data generated

from the implicit latent variable models with sparse weights. The Elastic net model

exhibits no false negatives (i.e. where the true weight is non-zero but the estimated

weight is zero) in both cases. This shows that the Elastic Net CCA model is able

to recover the true weights and that the Lasso penalty is indeed inducing sparsity

in the weights. The CCA model appears recover spectrum of the true weights

much better for the identity covariance matrices than for the correlated covariance

matrices. This is likely because the multicollinearity introduced makes the learnt

weights substantially less stable with respect to a change in the data.

We plot the cosine similarity between the true and estimated weights and load-

ings for data generated from the implicit latent variable models with sparse weights

in figure IV.4.

Interestingly, we see that for the identity covariance matrices, weight differences

are smaller than loading differences. On the other hand for the correlated covariance

matrices, the loading differences are smaller than the weight differences. This is

evidence of the fact that the weights are not identifiable in the implicit latent variable

model as suggested by our theory. Only when the covariance matrices are identity,

and when there is only one latent variable, are the weights identifiable.

7.1.2 Explicit Latent Variables

Figure IV.5 shows the true and estimated weights and loadings for data generated

from the explicit latent variable models with sparse loadings. The left column shows

the results for the identity covariance matrices, while the right column shows the

results for the correlated covariance matrices. Once again, the Elastic Net CCA

model exhibits no false negatives (i.e. where the true weight is non-zero but the

estimated weight is zero) when the noise covariance matrix is identity such that both

the weights and loadings are sparse.
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Figure IV.3: Bar plots of the true and estimated weights and loadings for the X
data generated from the implicit latent variable models with sparse

weights. The left column shows the results for the identity covariance
matrices, while the right column shows the results for the correlated

covariance matrices.119
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data generated from the explicit latent variable models with sparse
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Once again, we can quantify the similarity between the true and estimated

weights and loadings using the cosine similarity (Figure IV.6).

Notably, when the noise covariance matrix is correlated, the difference in recov-

ery of the weights is much larger than the difference in recovery of the loadings.

Suprisingly, when the noise covariance matrix is identity, the PLS and PCA models

appear to better recover the weights than the loadings in this case.
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Figure IV.7: Varying signal to noise ratio with identity covariance matrices. We plot
the performance of different levels of Regularized CCA from 0 (CCA)

to 1 (PLS) for different sample sizes.

7.2 Assessing Information Recovery in CCA and PLS Models
Under Varying Signal-to-Noise Ratios

In Figures IV.7 and IV.8 we plot the test correlation (score) varying the signal-to-noise

ratio and the number of features under the identity and correlated noise covariance

matrices respectively.

In figure IV.7, we can see that the PLS model outperforms all of the Ridge CCA

models for all values of the signal-to-noise ratio and dimensionality, though only by

a small margin. The unregularized CCA model is much worse than even the Ridge

CCA model with the smallest regularization. In this experiment the performance of

PLS is directly related to the signal-to-noise ratio.

In figure IV.8, we see a totally different picture. The PLS model is now outper-

formed by the Ridge CCA model with the smallest regularization. While CCA is

still the worst performing model, PLS is now much worse across signal-to-noise

ratios and dimensions than any of the Ridge CCA models. This suggests that the

PLS model is not able to recover anything like the true signal when the covariance

matrices are correlated.

In this experiment it is also clear that the signal-to-noise ratio must be higher

to obtain the same performance with higher dimensional data. It is interesting that

performance of the Ridge CCA improves across the board with lower regularization.
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Figure IV.8: Varying signal to noise ratio with correlated covariance matrices. We
plot the performance of different levels of Regularized CCA from 0

(CCA) to 1 (PLS) for different sample sizes.

8 Discussion and Limitations

8.1 Revisiting the results from chapter III

In appendix A, we revisit the results from chapter III in the context of the theoretical

results from this chapter. While they are not the focus of this chapter, they provide a

useful comparison and point of reference for the results in this chapter.

8.2 Future Work

Given our theoretical observations in this chapter, a natural question to ask is

whether we can construct a regularization functional that imposes sparsity on the

loadings (instead of the weights). The answer is yes, but it is not straightforward and

in the small sample setting, it is not clear that it is a good idea. The principle would

be much the same as the Lasso, but we would need to use the sample covariance

matrix to define the norm:

P (W ) = ∥W∥1 (IV.33)

P (L) = ∥Σ̂U∥1 (IV.34)
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Which imposes an L1 penalty on the loadings via an L1 penalty on the weights

multiplied by the sample covariance matrix. We could in principle apply the soft-

thresholding operator to the estimated loadings. However we would need to be

careful to ensure that the sample covariance matrix is invertible in order to get back

to the weights. This is of course not guaranteed in the small sample setting.

8.3 Conclusion

In this chapter, we explored the relationship between weights and loadings in CCA

models from both theoretical and empirical perspectives. We unified methods for

generating simulated multiview data using implicit and explicit latent variable models,

providing a framework for understanding the properties of CCA and PLS models.

Through a rigorous mathematical argument, we demonstrated that loadings are

invariant to columnwise transformations of the data matrix, while weights are not.

This invariance property makes loadings a more reliable choice for interpreting CCA

models, as the weights can be arbitrarily set by scaling the data matrix or adding

linear combinations of columns.

Our experiments using simulated data provided empirical evidence supporting

the theoretical findings. We showed that the recovery of true weights and loadings

depends on the underlying covariance structure and the choice of regularization.

The results highlighted the importance of considering the signal-to-noise ratio and

dimensionality when applying CCA and PLS models to real-world datasets. In

neuroimaging-behavior applications, for example, we expect relatively weak signals

against substantial measurement noise, suggesting an SNR regime where Ridge

CCA may be more appropriate than PLS, particularly if brain regions are known to

have correlated noise structure.

Overall, this chapter contributes to a better understanding of the behavior and

interpretation of CCA models, providing valuable insights for researchers and prac-

titioners working with multiview data. The findings emphasize the importance of

considering the invariance properties of loadings and the impact of covariance

structure and regularization on model performance. Future research could explore

the extension of these insights to more complex data scenarios and the development

of efficient algorithms for imposing sparsity on loadings in CCA models.
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Scaling CCA: Stochastic

Methods for High-Dimensional

Subspace Learning

It seems easier to train a

bi-directional LSTM with attention

than to compute the SVD of a large

matrix

Chris Ré

(I. Gemp, McWilliams, et al., 2021)
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Preface

The content of this chapter is based on a series of papers (Chapman, Aguila, and

Wells, 2022; Chapman, Wells, and Aguila, 2024) as well as a NeurIPS workshop

paper (Chapman and Wells, 2023). I am grateful to my co-authors Lennie Wells and

Ana Lawry Aguila for their contributions to this work. I conceived the original idea of

developing new stochastic algorithms based on the GEP formulation CCA using the

GEP formulation, and developed a number of methods that appeared to perform well

empirically including writing all of the code and preliminary proofs. Lennie formalised

the Eckart-Young-Mirsky theorem-based objective and developed the theoretical

results, while Ana provided the processed data from the UK Biobank and ran the

UK Biobank experiments. In the interests of communicating my contribution, in this

chapter I include the results from the papers but refer the reader to the original

papers for Lennie’s detailed derivations and proofs.

1 Introduction

Generalized Eigenvalue Problems (GEPs) are fundamental to a wide range of ma-

chine learning algorithms, including Canonical Correlation Analysis (CCA), Partial
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Least Squares (PLS), Principal Component Analysis (PCA), Independent Compo-

nent Analysis (ICA), and Linear Discriminant Analysis (LDA). Solving high-dimensional

GEPs is a critical challenge in many applications, as classical algorithms often strug-

gle with the computational complexity and numerical instability that arise when

dealing with large-scale datasets. This has motivated the development of stochastic

algorithms that aim to approximate the solutions of GEPs in a more efficient and scal-

able manner. Stochastic algorithms for simple Eigenvalue Problems (EPs), where

the matrix B in the GEP is the identity matrix, have been extensively studied and

have shown promising results (Arora, Cotter, et al., 2012; Arora, Mianjy, and Marinov,

2016). These algorithms not only offer computational advantages but also introduce

a form of implicit regularization through the noise in the stochastic updates, which

can be particularly beneficial in high-dimensional settings. The regularizing effect

of stochastic algorithms has been shown to improve generalization performance

and robustness to noise, making them an attractive alternative to batch learning

algorithms. However, when it comes to solving more complex GEPs, such as those

arising in CCA and PLS, the existing stochastic algorithms have some limitations

that hinder their practical applicability. For instance, the γ-EigenGame algorithm

(I. M. Gemp et al., 2020; I. Gemp, McWilliams, et al., 2021) requires the tuning of

a hyperparameter γ that controls the trade-off between computational efficiency

and the accuracy of the stochastic updates. Finding the optimal value of this hy-

perparameter can be challenging and may vary depending on the problem and the

data, making the algorithm less convenient to use in practice. Another limitation is

that some stochastic algorithms, like the Stochastic Generalized Hebbian Algorithm

(SGHA) (Z. Chen et al., 2019), rely on heuristic primal-dual update rules rather than

a principled optimization framework. This makes it difficult to integrate these algo-

rithms with more sophisticated optimizers like Adam (Kingma and Ba, 2014), which

have been shown to improve convergence speed and stability in many machine

learning applications. To address these limitations and provide a more principled

and robust approach to solving GEPs in the stochastic setting, we propose a novel

formulation of the CCA problem based on the Eckhart–Young–Mirsky inequality

(stewart_matrix_1990; mirsky1960symmetric ; Eckart and Young, 1936). Our

formulation leads to a new objective function that characterizes the top-K subspace

of GEPs, including CCA as a special case. Importantly, this objective function is

unconstrained and can be optimized using standard stochastic gradient descent

or batch gradient descent methods, making it compatible with modern optimization

techniques. The key advantages of our proposed approach are:
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• It provides a unified framework for solving a wide range of GEPs using a single

unconstrained objective function, making it applicable to CCA, PLS, PCA, ICA,

LDA, and other problems that can be formulated as GEPs.

• The objective function can be efficiently optimized using stochastic gradient

descent or batch gradient descent, allowing for seamless integration with

state-of-the-art optimizers like Adam.

• The stochastic nature of the optimization introduces implicit regularization,

which can improve the generalization performance and robustness of the

learned subspaces.

• The approach is more principled and theoretically grounded compared to

heuristic primal-dual update rules used in some existing stochastic algorithms.

The rest of this chapter is organized as follows: Section 2 provides background

on GEPs and existing methods for solving them. Section 3 introduces our novel

Eckhart-Young inspired objective and the GEP-EY algorithm. Section 4 presents

experimental results on various datasets. Finally, Section 5 discusses limitations,

future work, and concludes the chapter.

2 Background: Efficient Solutions to GEPs

2.1 Solving High-Dimensional Generalized Eigenvalue Problems

As introduced in Section 3.1, Generalized Eigenvalue Problems play a crucial role

in many machine learning algorithms. While the formal definition and properties of

GEPs were established earlier, it’s important to highlight the challenges that arise

when solving these problems in high-dimensional spaces.

Solving GEPs becomes particularly challenging when dealing with high-dimensional

data, where the matrices A and B can be very large. The computational complexity

of classical algorithms for solving GEPs, such as the power method, scales cubi-

cally with the size of the matrices, making them infeasible for large-scale problems.

Moreover, when the matrices are ill-conditioned or nearly singular, these algorithms

can suffer from numerical instability, leading to inaccurate or unreliable solutions.

2.2 Unified GEP formulation for CCA, Ridge CCA, PLS, and PCA

As discussed in Section 4, CCA, ridge-regularized CCA, PLS, and even PCA can

be formulated as GEPs with specific structures. This unified formulation involves
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block matrices A and Bα defined as:

A(ij) = Cov(X(i), X(j)) for i ̸= j, (V.1)

B(ii)
α = αiID(i) + (1− αi)Var(X

(i)), (V.2)

where α ∈ [0, 1]I is a vector of ridge penalty parameters, X(i) represents the i-th

view of the data, and D(i) is the dimensionality of the i-th view.

By adjusting the values of α, we can recover various subspace learning methods:

• Pure CCA: Setting αi = 0 : ∀i recovers the classic CCA problem.

• Ridge Extensions: Smoothly transitioning to ridge-regularized CCA or PLS by

selectively adjusting values within α.

• PCA Subsumption: PCA emerges as a single-view form of ridge-regularized

PLS.

This unified formulation allows us to focus on solving the core CCA problem, with

the understanding that the insights and solutions developed will naturally generalize

to the entire family of methods and GEPs more generally. The challenge, then, is

to develop efficient methods for solving these high-dimensional GEPs, which is the

focus of our proposed approach.

2.3 Classical Methods for Solving CCA

2.3.1 Reminder of notations

Before discussing classical methods for solving CCA, let’s recall some key notation

and concepts from our unified GEP formulation. As established in Section 3, we

use d to denote the dimensionality of a view. For CCA and related problems like

PLS, we typically work with two views, so we have d1 and d2. This means that the

matrices A and B in the GEP have dimensions (d1 + d2) × (d1 + d2). The goal

is to find the top K generalized eigenvectors of (A,B), where K is the number of

components we want to extract.

2.3.2 Eigendecomposition-based Solution

One common technique to solve the GEP for CCA is to transform it into a standard

eigenvalue problem:

B− 1
2AB− 1

2 y = λy (V.3)
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followed by eigendecomposition. This approach is based on the observation that

if (u, λ) is a generalized eigenpair of (A,B), then (B− 1
2u, λ) is an eigenpair of

B− 1
2AB− 1

2 . An alternative approach is to solve the eigenvalue problem:

B−1Av = λv (V.4)

However, this approach requires computing the inverse of B, which can be numeri-

cally unstable and computationally expensive, especially when B is ill-conditioned

or nearly singular. While the B− 1
2AB− 1

2 formulation still requires computing the

inverse of the square root of B, this operation can be somewhat more stable when

combined with techniques like the Cholesky decomposition, though numerical issues

may still arise. Nonetheless, both approaches have a computational complexity

of O((d1 + d2)
3) (Golub and Van Loan, 2013), which can be prohibitive for high-

dimensional data, and may suffer from numerical instability, especially when B is

ill-conditioned or nearly singular.

2.3.3 Classical Iterative Algorithms

Classical iterative algorithms, such as the power method, Sanger’s rule (which gives

the Generalized Hebbian Algorithm) (Sanger, 1989), and Oja’s rule (Oja, 1982),

can be used to solve the GEP for CCA. These algorithms are based on the idea

of iteratively updating the eigenvector estimates using matrix-vector multiplications.

The power method is a simple iterative algorithm for finding the dominant eigenvector

of a matrix A. The update rule for the power method is:

u← Au

|Au|
(V.5)

where u is the current estimate of the dominant eigenvector. The power method

converges to the dominant eigenvector of A under mild conditions. The Generalized

Hebbian Algorithm (GHA), is an iterative learning rule for finding the principal

components of a data set. It can be written as:

U ← U + η
(
AU − U tril(UTAU)

)
(V.6)

where tril(·) denotes the lower triangular part of a matrix. Oja’s rule, a simplified

version of Sanger’s rule, can be written as:

U ← U + η
(
AU − U(UTAU)

)
(V.7)
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To maintain orthogonality of the eigenvectors during the iterative updates, Oja’s rule

can be combined with a QR decomposition step:

U ← U + η
(
AU − U(UTAU)

)
(V.8)

U ← qr(U) (V.9)

where qr(·) denotes the QR decomposition, which factorizes a matrix into an orthog-

onal matrix Q and an upper triangular matrix R. By using only the orthogonal matrix

Q, we ensure that the eigenvectors remain orthogonal throughout the iterative pro-

cess. Alternatively, other orthogonalization techniques such as the Gram-Schmidt

process can be employed. These iterative algorithms can be extended to solve the

generalized eigenvalue problem AU = BUΛ, where B is a positive definite matrix.

The update rule for this problem is:

U ← U + η
(
AU −BU tril(UTAU)

)
(V.10)

which subsumes the original GHA as a special case when B = I. While these

classical iterative algorithms can be computationally efficient, especially for sparse

or structured matrices, they may suffer from slow convergence and sensitivity to

initialization.

2.3.4 PCA-CCA

To reduce the computational complexity of solving the GEP for CCA, the PCA-CCA

method first applies PCA to each view of the data separately and then solves the

GEP in the reduced spaceMihalik, Chapman, Adams, Winter, Ferreira, Shawe-Taylor,

Mourao-Miranda, et al., 2022. This approach has two main steps:

• Apply PCA to each view: Compute the top K1 and K2 principal components

for each view, with complexity O(d31 + d32).

• Solve the GEP in the reduced space: Solve the GEP in the reduced space of

size (K1 +K2)× (K1 +K2), with complexity O((K1 +K2)
3).

The overall complexity of PCA-CCA is thus O(d31 + d32 + (K1 +K2)
3), which

can be significantly lower than the direct solution when K1 ≪ d1 and K2 ≪ d2.

However, it’s important to note that even the PCA step can be computationally

expensive for high-dimensional data. In the case where the number of samples n

is smaller than the dimensionalities d1 and d2, the maximum number of principal
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components is K1 = K2 = n. The complexity of PCA in this case is O(n3 + n3),

and the overall complexity of PCA-CCA becomesO(2n3+(2n)3) = O(10n3). While

this is lower than the direct solution, it can still be prohibitive for large sample sizes.

2.3.5 Kernel CCA

Kernel CCA (KCCA) is another approach that offers computational advantages for

high-dimensional data. KCCA maps the original data to a high-dimensional feature

space using a kernel function and then performs CCA in that space. The main

advantage of KCCA is that its complexity scales with the number of samples n rather

than the dimensionalities d1 and d2. The optimization problem for KCCA can be

written as:

αopt = argmax
α

α(1)K(1)TK(2)α(2) (V.11)

subject to:

α(1)K(1)TK(1)α(1) = 1

α(2)K(2)TK(2)α(2) = 1

where α(i) are dual variables, K(i) are kernel matrices defined as K(i) = ϕ(X(i))ϕ(X(i))T ,

and ϕ(·) is a nonlinear mapping function. The complexity of KCCA is O(n3), which

can be much lower than the direct solution when di > n. However, KCCA has some

significant drawbacks:

• The need to store and manipulate the kernel matrices, which have size n× n.

This can be memory-intensive for large sample sizes.

• The requirement to access all training data at test time, which raises concerns

about efficiency and scalability.

• The difficulty in interpreting the results in the original feature space, as the

learned projections are in the high-dimensional kernel space.

In summary, classical methods for solving CCA offer various trade-offs between

computational complexity, numerical stability, and interpretability. However, these

methods may still be prohibitively expensive for high-dimensional data, motivating

the development of stochastic algorithms that can efficiently approximate the solution

of the CCA problem.
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2.4 Stochastic Algorithms for CCA

The principle of empirical risk minimization (ERM) forms the basis for many learning

algorithms. ERM involves evaluating and optimizing the performance of an algorithm

over a known, fixed dataset. This approach is grounded in the law of large numbers:

while we cannot know the true risk associated with the underlying data distribution,

we can estimate and optimize the algorithm’s performance on a known set of training

data, referred to as the empirical risk (Vapnik, 1999).

Traditionally, ERM algorithms process the entire dataset in a batch, updating the

model parameters based on the full dataset. Stochastic algorithms extend the ERM

framework to handle large-scale datasets by processing the data in small batches

or even one sample at a time.

Stochastic methods offer several advantages. They allow us to handle large-

scale datasets that may not fit in memory, provide implicit regularization through

the noise in the stochastic updates, and often lead to better generalization by

approximating the population objective rather than overfitting to the empirical risk.

While stochastic optimization has proven highly effective for solving uncon-

strained objectives in machine learning, its application to Generalized Eigenvalue

Problems and Canonical Correlation Analysis presents unique challenges. The

primary difficulty lies in handling the data-dependent constraint U⊤BU = I, which

is essential for ensuring the orthogonality of the learned subspaces. This constraint

is particularly challenging to address in the stochastic setting, as B is not directly

accessible and must be estimated from random samples, introducing additional

uncertainty into the optimization process.

2.4.1 Stochastic Power Method for PLS

Arora, Mianjy, and Marinov (2016) demonstrate that PLS can be approximated by

applying a stochastic power method. The stochastic power method is a simple

iterative algorithm that updates the estimates of the left and right singular vectors

U (1) and U (2) using the following rules:

U
(1)
t = Porth

(
U

(1)
t−1 + ηtX

(1)
t (X

(2)
t )⊤U

(2)
t−1

)
,

U
(2)
t = Porth

(
U

(2)
t−1 + ηtX

(2)
t (X

(1)
t )⊤U

(1)
t−1

)
,

where Porth(·) represents an orthogonal projection operator that projects a vector or

matrix onto the space orthogonal to the current subspace, X(1)
t and X

(2)
t are the
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new data points at time t, and ηt is the learning rate. Intuitively, the update rule for

U
(1)
t can be understood as follows:

The term X
(1)
t (X

(2)
t )⊤U

(2)
t−1 computes the correlation between the new data

point X(1)
t and the current estimate of the right singular vector U (2)

t−1, weighted by the

corresponding X
(2)
t . This correlation term is then added to the current estimate of

the left singular vector U (1)
t−1, effectively updating it in the direction that maximizes the

covariance between the views. The orthogonal projection operator Porth(·) ensures

that the updated estimate remains orthogonal to the previous estimates, preventing

the algorithm from converging to a suboptimal solution.

The update rule for U (2)
t follows a similar logic, with the roles of X(1)

t and X
(2)
t

reversed.

The stochastic power method has a low computational complexity of O(k(d1 +
d2)) per iteration, where k is the number of components being estimated. However,

it has some limitations:

Convergence is not guaranteed, as the algorithm may oscillate or diverge in

some cases. The orthogonal projection step does not extend naturally to the CCA

problem, where the constraints involve the matrix B (i.e., U⊤BU = I) rather than

the identity matrix (i.e., U⊤U = I).

Despite these limitations, the stochastic power method provides valuable insights

into the design of stochastic algorithms for CCA and serves as a foundation for more

advanced methods.

2.4.2 Stochastic Generalized Hebbian Algorithm (SGHA)

The Stochastic Generalized Hebbian Algorithm (SGHA), proposed by Z. Chen et

al. (2019), is an extension of the Generalized Hebbian Algorithm (GHA) to the

stochastic setting. SGHA aims to find the top-k generalized eigenvectors of a matrix

pair (A,B), where A is symmetric and B is symmetric positive definite. SGHA

formulates the constrained optimization problem for the top-k subspace as:

min
U
−Tr

(
UTAU

)
subject to UTBU = I (V.12)

Using Lagrange multipliers, this constrained problem can be transformed into an

unconstrained one:

min
U
−Tr

(
UTAU

)
+ λ

(
UTBU − I

)
(V.13)
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Differentiating with respect to U and λ and setting the derivatives to zero yields the

stationary points:

2AU − 2BUλ = 0 and UTBU − I = 0 (V.14)

=⇒ λ = UTAU (V.15)

Based on these stationary points, SGHA proposes a primal-dual update rule:

U ← U − η (AU −BUλ) (V.16)

λ←
(
UTAU

)
(V.17)

where η is a learning rate. These updates can be combined into a single update

rule:

U ← U − η
(
AU −BU

(
UTAU

))
(V.18)

Intuitively, the SGHA update rule can be understood as follows:

The term AU computes the correlation between the current estimate of the

generalized eigenvectors U and the data matrix A. The term BU
(
UTAU

)
serves

as a correction term that ensures the orthogonality of the eigenvectors with respect

to the matrix B. The matrix
(
UTAU

)
can be interpreted as an estimate of the

generalized eigenvalues. The difference between these two terms is then used to

update the current estimate of the eigenvectors U in the direction that maximizes

the objective function.

SGHA has a computational complexity of O(k2(d1 + d2)) per iteration, which

is higher than that of the stochastic power method but still potentially much faster

than batch methods. While SGHA is simple to implement, it relies on a heuristic

primal-dual update rule rather than a principled optimization framework. This makes

it difficult to integrate with more sophisticated optimizers like Adam (Kingma and Ba,

2014), which have been shown to improve convergence speed and stability in many

machine learning applications.

2.4.3 γ-EigenGame for CCA

The γ-EigenGame, proposed by I. M. Gemp et al. (2020) and I. Gemp, McWilliams, et

al. (2021), is a stochastic algorithm for CCA inspired by the EigenGame algorithm for

PCA. The key idea behind the γ-EigenGame is to view the generalized eigenvectors

as competing players in a game, where each player tries to maximize its own
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utility function. In this game-theoretic formulation, the utility function of each player

(eigenvector) ui consists of a reward term and a penalty term:

max
ui

reward︷ ︸︸ ︷
uT
i Aui

uT
i Bui

−

penalty︷ ︸︸ ︷∑
j<i

(uT
j Auj)(u

T
i Buj)

2

(uT
j Buj)2(uT

i Bui)
(V.19)

The reward term uT
i Aui

uT
i Bui

encourages the eigenvector ui to align with the direction of

maximum correlation between the views, while the penalty term
∑

j<i

(uT
j Auj)(u

T
i Buj)

2

(uT
j Buj)2(uT

i Bui)

discourages ui from aligning with the directions already captured by the previous

eigenvectors uj for j < i. The γ-EigenGame proposes an update rule for each

eigenvector ui based on this utility function. In the stochastic setting, the algorithm

introduces an additional hyperparameter γ that controls the trade-off between com-

putational efficiency and the accuracy of the stochastic updates. The update rule

is modified to use a rolling average of the matrix B, which helps to reduce the

computational complexity and memory requirements of the algorithm. While the

γ-EigenGame has shown promising results in practice, it still requires the tuning of

both the hyperparameter γ and a learning rate, which can be challenging and may

depend on the specific problem and data at hand. Moreover, the use of a rolling

average of the matrix B introduces additional approximation error and may not fully

capture the uncertainty in the stochastic orthogonality constraint U⊤BU = I.

2.4.4 Limitations of Existing Stochastic Algorithms

In this section, we have highlighted some of the key challenges and limitations of

existing stochastic algorithms for CCA: the need to tune hyperparameters like γ and

learning rates, the reliance on heuristic primal-dual update rules, and the difficulty of

integrating with more sophisticated optimizers like Adam.

In the next section, we will introduce a novel stochastic algorithm for CCA based

on the Eckart-Young-Mirsky theorem, which aims to address some of the limitations

of existing methods and provide a more principled and robust approach to solving

high-dimensional CCA problems in the presence of stochastic constraints.
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3 Methods: GEP-EY, An Efficient Algorithm for Gen-

eralized Eigenvalue Problems

This section introduces GEP-EY, a novel algorithm for solving Generalized Eigen-

value Problems, with a particular focus on Canonical Correlation Analysis and Partial

Least Squares. The algorithm stems from a new perspective on GEPs: optimizing

an Eckart-Young inspired objective that characterizes the GEP solution.

3.1 A New Perspective: Eckhart-Young Inspired Objective for
GEPs

3.1.1 Formulation and Intuition

At the core of our approach is the reformulation of GEPs as an unconstrained

optimization problem. This reformulation is inspired by the Eckhart-Young-Mirsky

theorem, which is fundamental in matrix approximation theory.

The Eckhart-Young-Mirsky theorem states that the best rank-K approximation of

a matrix M in the Frobenius norm is given by its truncated singular value decompo-

sition (SVD). Specifically, if M = UΣV ⊤ is the SVD of M , then the optimal rank-K

approximation is MK = UKΣKV ⊤
K , where UK , ΣK , and VK are the matrices

containing the top K singular vectors and singular values.

We apply a similar approach to the generalized eigenvalue problem (GEP) de-

fined by matrices A and B. By considering the eigen-decomposition of B− 1
2AB− 1

2 ,

we can derive a new objective function for characterizing the top-K subspace of the

GEP.

Proposition 3.1 (Eckhart-Young inspired objective for GEPs). The top-K subspace

of the GEP (A,B) can be characterized by minimizing:

LEY-GEP(U) := trace
(
−2U⊤AU +

(
U⊤BU

) (
U⊤BU

))
(V.20)

over U ∈ RD×K , with a minimum value of −
∑K

k=1 λ
2
k, where (λk) are the general-

ized eigenvalues.

This objective intuitively balances maximizing between-view correlations and

minimizing within-view variances.

Sketch of the Proof: To provide some intuition, we sketch the key steps in the

proof, with full details available in our supplementary material.
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1. Matrix Approximation and SVD: Begin with the Eckhart-Young-Mirsky the-

orem, which gives the best rank-K approximation in the Frobenius norm for

any matrix using its SVD. The theorem states that for a matrix M ∈ Rd×d, the

best rank-K approximation MK is obtained by truncating the SVD of M .

2. Transformation of GEP: For the GEP defined by matrices A and B, consider

the transformation M = B− 1
2AB− 1

2 . The eigenvalues and eigenvectors of M

are related to the generalized eigenvalues and eigenvectors of (A,B). This

transformation simplifies the problem, as M is symmetric.

3. Objective Reformulation: By focusing on the top-K eigenvalues and eigen-

vectors, we can reformulate the problem as an unconstrained optimization

problem. Specifically, consider the objective function:

∥M − W̃W̃T ∥2F .

Since M is symmetric, the optimal W̃ is of the form W = WKΛ
1
2

KOK , where

WK contains the top-K eigenvectors, ΛK contains the corresponding eigen-

values on the diagonal, and OK is an orthogonal matrix.

4. Transformation under reparameterisation: Consider how this expression

transforms under the reparameterisation W̃ = B
1
2 Ũ . We get:

∥M − Z̃Z̃T ∥2F = ∥B− 1
2AB− 1

2 −B
1
2 Ũ ŨTB

1
2 ∥2F .

5. Simplifying the Objective: Simplifying the expression, we use the properties

of the Frobenius norm and the cyclic property of the trace:

∥B− 1
2AB− 1

2 −B
1
2 Ũ ŨTB

1
2 ∥2F = ∥B− 1

2AB− 1
2 ∥2F − 2 trace(B− 1

2AB− 1
2B

1
2 Ũ ŨTB

1
2 )

+ trace((B
1
2 Ũ ŨTB

1
2 )2)

= ∥B− 1
2AB− 1

2 ∥2F − 2 trace(ŨTAŨ) + trace((ŨTBŨ)2).

6. Final Reformulation: This leads to the final form of the objective function:

LEY-GEP(U) := trace
(
−2U⊤AU +

(
U⊤BU

) (
U⊤BU

))
,

For the full proof and additional technical details, we refer the reader to the

supplementary material in Chapman, Wells, and Aguila (2024).
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This new perspective provides a more intuitive and computationally efficient way

to approach GEPs, leveraging the well-established principles of the Eckhart-Young-

Mirsky theorem.

3.2 GEP-EY: A Stochastic Algorithm for Generalized Eigenvalue
Problems

We now introduce GEP-EY, a stochastic algorithm designed to solve Generalized

Eigenvalue Problems efficiently. While applicable to a wide range of GEPs, we

focus particularly on its application to Canonical Correlation Analysis, Partial Least

Squares, and related methods.

3.2.1 Batch GEP-EY Algorithm

We first present the batch version of the GEP-EY algorithm in Algorithm 1. This

algorithm optimizes the Eckart-Young inspired objective for GEPs using full-batch

gradient descent. While it provides an unbiased estimate of the gradient, it may be

computationally expensive for large datasets.

Algorithm 1: GEP-EY: Batch algorithm for General GEPs
Input: Data X, learning rate (ηt)t, iterations T
Initialize: U ∈ RD×K randomly
for t = 1 to T do

Construct A,B from X
Compute loss L(U) = trace(−2U⊤AU + (U⊤BU)(U⊤BU))
Update U ← U − ηt∇UL(U)

end for

Listing 1 provides PyTorch-style pseudocode for implementing the batch GEP-

EY algorithm. The compute_batch_loss function directly implements the loss

computation from Algorithm 1, while the batch_gep_ey function implements the

main optimization loop.

3.2.2 Challenges in Stochastic Estimation

A naive approach to stochastic optimization of the GEP-EY objective would be to

simply replace A and B with mini-batch estimates Â and B̂. However, this leads to

biased gradient estimates due to the quadratic term (U⊤BU)(U⊤BU).
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def compute_batch_loss(U, A, B):
UAU = torch.matmul(torch.matmul(U.T, A), U)
UBU = torch.matmul(torch.matmul(U.T, B), U)
loss = -2 * torch.trace(UAU) + torch.trace(torch.matmul(UBU, UBU))
return loss

def batch_gep_ey(X, lr, T):
U = torch.randn(X.shape[1], K)
A, B = compute_A_B(X) # Compute A and B matrices from data
optimizer = torch.optim.SGD([U], lr=lr)

for t in range(T):
optimizer.zero_grad()
loss = compute_batch_loss(U, A, B)
loss.backward()
optimizer.step()

return U

Listing 1: PyTorch-style pseudocode for the batch GEP-EY algorithm

The key issue lies in the fact that the expectation of the product of random

variables is not equal to the product of their expectations unless the variables are

independent. In our case:

E[(U⊤B̂U)(U⊤B̂U)] ̸= E[U⊤B̂U ]E[U⊤B̂U ] (V.21)

This inequality arises because both instances of B̂ in the quadratic term are

estimated from the same mini-batch, introducing correlation between the factors.

To obtain unbiased gradients, we require independent samples for each instance

of U⊤BU in the quadratic term. Specifically, we need:

E[(U⊤B̂1U)(U⊤B̂2U)] = E[U⊤B̂1U ]E[U⊤B̂2U ] = (U⊤BU)2 (V.22)

where B̂1 and B̂2 are independent estimates of B from different mini-batches.
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3.2.3 Dimensionality Reduction for CCA and PLS

For CCA-type problems, owing to the structure of the covariance matrices, we can

significantly reduce the computational complexity by exploiting the structure of A and

B. Instead of working with the full D ×D matrices, we introduce smaller matrices

C(θ) and Vα(θ):

C(θ) =
∑
i̸=j

Cov(Z(i), Z(j)) = U⊤AU, (V.23)

Vα(θ) =
∑
i

αiU
(i)⊤U (i) + (1− αi)Var(Z

(i)) = U⊤BU, (V.24)

where Z(i) = f (i)(X(i); θ(i)) are learned representationss of dimension K ≪ Di,

and αi are ridge penalty parameters that allow us to interpolate between different

methods in the CCA family. This leads to our reduced Eckart-Young inspired

objective:

LEY(θ) = −2 traceC(θ) + |Vα(θ)|2F . (V.25)

To illustrate how C(θ) and Vα(θ) relate to U⊤AU and U⊤BU respectively for various

methods in the CCA family, we present Table 3.1. The key advantage here is that

Table 3.1: Covariance matrices A, B and their low-rank equivalents C(θ), Vα(θ) for
different methods in the CCA family. The αi values determine the ridge

penalty for each method.

Method A B C(θ) Vα(θ) αi

CCA


0 Σ12

Σ21 0



Σ11 0

0 Σ22

 ∑
i ̸=j Cov(Z

(i), Z(j))
∑

i Var(Z
(i)) 0

MCCA



0 Σ12 · · ·

Σ21 0 · · ·

...
...

. . .





Σ11 0 · · ·

0 Σ22 · · ·

...
...

. . .


∑

i ̸=j Cov(Z
(i), Z(j))

∑
i Var(Z

(i)) 0

PLS


0 Σ12

Σ21 0

 I
∑

i ̸=j Cov(Z
(i), Z(j))

∑
i U

(i)⊤U (i) 1

Ridge CCA


0 Σ12

Σ21 0



Σ11 + α1I 0

0 Σ22 + α2I

 ∑
i ̸=j Cov(Z

(i), Z(j))
∑

i αiU
(i)⊤U (i) + (1− αi)Var(Z

(i)) 0 < αi < 1

PCA Σ I Cov(Z,Z) U⊤U 1
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we only need to operate on and store K ×K matrices, which is much more efficient

when K ≪ Di for all i. This dimensionality reduction is crucial for the efficiency of

our algorithm, as demonstrated in Algorithm 2 and the corresponding PyTorch-style

pseudocode in Listing 2. By working with C(θ) and Vα(θ) instead of the full A and B

matrices, we significantly reduce the computational complexity while still capturing

the essential structure of the problem. The ridge penalty parameter αi allows us to

smoothly interpolate between different methods in the CCA family:

For CCA and MCCA, αi = 0 for all i, focusing entirely on the variance of

the learned representations. For PLS and PCA, αi = 1 for all i, focusing on the

magnitude of the projection vectors. For Ridge CCA, 0 < αi < 1, balancing between

the variance of the representations and the magnitude of the projection vectors.

This unified formulation allows our GEP-EY algorithm to efficiently handle a wide

range of multi-view learning problems within a single framework.

3.2.4 Unbiased Stochastic Estimation for CCA

By combining our efficient low-dimensional approach with independent minibatch

sampling, we can develop a highly efficient and unbiased method for optimizing

stochastic CCA and related problems.

Recall that we introduced the low-rank matrices C(θ) and Vα(θ) to reduce

computational complexity:

C(θ) =
∑
i̸=j

Cov(Z(i), Z(j)) = U⊤AU, (V.26)

Vα(θ) =
∑
i

αiU
(i)⊤U (i) + (1− αi)Var(Z

(i)) = U⊤BU, (V.27)

In practice, we work with sample estimates rather than true population covari-

ances. We construct unbiased estimates of C(θ) and Vα(θ) from mini-batches:

Ĉ(θ)[Z] =
∑
i̸=j

Ĉov(Z(i),Z(j)), V̂α(θ)[Z] =
∑
i

αiU
(i)⊤U (i) + (1− αi)V̂ar(Z

(i)).

(V.28)

To address the bias issue in the quadratic term, we use two independent mini-

batches Z and Z′. This allows us to define the following unbiased loss estimate:
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L̂EY[Z,Z
′] := −2 trace Ĉ[Z] + ⟨V̂α[Z], V̂α[Z

′]⟩F , (V.29)

where ⟨·, ·⟩F denotes the Frobenius inner product.

This formulation combines the benefits of our low-rank approach (computational

efficiency) with independent minibatch sampling (unbiased estimation). It allows us

to optimize the population problem using only sample data, making it particularly

well-suited for large-scale CCA and related problems. By using this approach, we

can perform stochastic optimization of CCA that is both computationally efficient and

statistically unbiased, bridging the gap between theoretical analysis and practical

application in high-dimensional settings.

3.2.5 The GEP-EY Algorithm for CCA and PLS

Incorporating these dimensionality reduction and unbiased estimation techniques,

we present the specialized GEP-EY algorithm for CCA, PLS, and related methods

in Algorithm 2.

Algorithm 2: GEP-EY: Stochastic algorithm for CCA and PLS
Input: Data stream (X(b))∞b=1, learning rate (ηt)t, iterations T , function class
f(·; θ)
Initialize: θ̂ randomly
for t = 1 to T do

Sample mini-batches X(b),X(b′) independently
Compute Z(b) = f(X(b); θ),Z(b′) = f(X(b′); θ)
Estimate loss L̂EY(θ) using Eq. equation V.29
Update θ using gradient descent

end for

This algorithm efficiently solves GEPs for CCA, PLS, and related methods by

leveraging the low-rank structure of the problem and unbiased stochastic estimation.

The weightss U are implicitly learned through the optimization of θ, and the resulting

representationss Z can be used for downstream tasks or analysis.

The algorithm can be implemented efficiently using automatic differentiation

frameworks like PyTorch. Listing 2 provides PyTorch-style pseudocode for the un-

biased stochastic GEP-EY algorithm. The compute_unbiased_stochastic_loss

function implements the loss computation from Equation equation V.29, while the

unbiased_stochastic_gep_ey function implements the main loop of Algorithm 2.
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This implementation ensures unbiased estimation even with small batch sizes,

making it suitable for large-scale problems. By using two independent mini-batches

for each iteration (as seen in the unbiased_stochastic_gep_ey function), we

avoid the bias issues discussed earlier while maintaining computational efficiency.

This formulation ensures unbiased estimation even with small batch sizes, mak-

ing it suitable for large-scale problems. The algorithm can be implemented efficiently

using automatic differentiation frameworks like PyTorch:

This algorithm efficiently solves GEPs for CCA, PLS, and related methods by

leveraging the low-rank structure of the problem and unbiased stochastic estimation.

The weightss U are implicitly learned through the optimization of θ, and the resulting

representationss Z can be used for downstream tasks or analysis.

In summary, GEP-EY provides a novel, efficient, and theoretically grounded

approach to solving GEPs, particularly for CCA and PLS problems, by leveraging a

new Eckhart-Young inspired objective and stochastic optimization techniques.

4 Experiments and Results

4.1 Comparison with Standard Batch Solvers

In this experiment, we compare our CCA-EY method in the full batch setting to the

traditional approach of solving the CCA Generalized Eigenvalue Problem (GEP)

using the scipy.linalg.eigh function (Virtanen et al., 2020). This comparison

aims to demonstrate the scalability advantages of our method, particularly for high-

dimensional data.

4.1.1 Data Generation and Experimental Design

Our experimental framework employs carefully constructed synthetic datasets, de-

signed to challenge both methods across a spectrum of dimensionalities while

maintaining consistent statistical properties. The key characteristics of our data

generation process are as follows:

We generate multivariate Gaussian datasets with a prescribed covariance struc-

ture, ensuring the existence of a true CCA solution. The dimensionality of these

datasets ranges from low to high, specifically from 10 to 5,000 features, allowing us

to assess performance across a broad spectrum of problem sizes. To isolate the

effect of dimensionality, we maintain a constant sample size of 10,000 instances

across all datasets.
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To ensure robust results and account for statistical variations, we repeat the data

generation and evaluation process five times for each feature size. This repetition

allows us to compute average performance metrics and their associated variances,

providing a more reliable basis for comparison.

In our analysis, we focus on the top-5 components of the CCA subspace. This

choice reflects a common practical scenario where the primary interest lies in the

most significant correlations between the two views of the data.

4.1.2 Evaluation Methodology

Our evaluation methodology is designed to provide a fair and informative comparison

between the traditional GEP solver and our CCA-EY method. For each generated

dataset:

• We first apply the scipy.linalg.eigh function to solve the GEP, recording

the computation time required to obtain the CCA solution.

• We then train our CCA-EY method on the same dataset. To ensure a fair

comparison with scipy.linalg.eigh, we allow CCA-EY to iterate until con-

vergence, defined as the point where the Frobenius norm of the weight change

between iterations falls below a threshold of 10−5. This criterion ensures that

CCA-EY achieves a solution quality comparable to the batch method.

• We record the computation time for both methods, providing a direct compari-

son of their efficiency across different data dimensionalities.

4.1.3 Results and Observations

Figure V.1 shows the results of this experiment. For feature sizes up to 1,000,

our CCA-EY method is slower than scipy.linalg.eigh. However, beyond this

point, CCA-EY significantly outperforms the baseline in terms of computation time.

As the number of features increases, the time taken to solve the GEP using

scipy.linalg.eigh scales quadratically, while our CCA-EY method exhibits a

linear scaling. This is because CCA-EY scales linearly with both the number of

samples and the number of features, whereas scipy.linalg.eigh has a quadratic

dependence on the feature size.1.

1When the number of features is greater than the number of samples as in ridge CCA and PLS, we
can use the PCA or Kernel trikcs to scale CCA quadratically with the minimum of the number of features
and samples, though this still requires a somewhat expensive PCA

146



James Chapman December 2023

0 1000 2000 3000 4000 5000
Number of Features

10
2

10
1

10
0

10
1

10
2

Av
er

ag
e 

Ti
m

e 
pe

r F
it 

(s
ec

on
ds

)

CCA Performance Comparison with Uncertainty

Model
CCA
CCA-EY

Figure V.1: Comparison of the time taken to solve CCA using eigh and our
CCA-EY method.

4.2 Stochastic CCA on Real-World Datasets

This experiment evaluates our CCA-EY method against two established baselines,

γ-EigenGame (I. Gemp, C. Chen, and McWilliams, 2022) and SGHA (Z. Chen

et al., 2019), on real-world datasets. We aim to assess the algorithms’ ability to

handle high-dimensional data efficiently and accurately without prior dimensionality

reduction.

4.2.1 Datasets

We evaluate our CCA-EY method on two diverse datasets: MediaMill and Split-

CIFAR.

The MediaMill dataset (Snoek et al., 2005) offers a multimodal challenge in the

domain of video analysis. It comprises 25,800 test instances, each represented

by two views: 120-dimensional visual features extracted from video frames and

101-dimensional textual features derived from accompanying commentary. This

dataset tests the model’s ability to learn correlated representations across different

modalities, bridging the gap between visual and textual information in video content.

The Split-CIFAR dataset (Z. Meng, Chakraborty, and Singh, 2021) presents a

novel approach to evaluating CCA methods using image data. Derived from the

CIFAR-10 dataset, it splits each image into two halves, creating two distinct views.

The dataset consists of 50,000 training instances and 10,000 test instances. Each
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view (half-image) is represented by features of dimension 32x16x3. This splitting

mechanism challenges the model to learn correlated representations from partial

image information, effectively reconstructing the original image content. The high

dimensionality and inherent correlations between image halves make Split-CIFAR

an excellent testbed for assessing the efficiency and accuracy of CCA methods in

processing visual data.

4.2.2 Experimental Setup

Our experimental framework is designed to rigorously evaluate the performance of

our proposed method, CCA-EY, against two established baselines: γ-EigenGame

and SGHA. We have carefully crafted this setup to align closely with the method-

ologies employed by Z. Meng, Chakraborty, and Singh (2021) and I. Gemp, C.

Chen, and McWilliams (2022), ensuring comparability with existing literature while

introducing key innovations.

At the core of our experiment is a direct comparison between CCA-EY and

the aforementioned baselines, allowing us to assess the relative strengths and

potential advantages of our approach in the context of stochastic CCA. Notably, our

methodology diverges from that of I. Gemp, C. Chen, and McWilliams (2022) in one

crucial aspect: we eschew the simplification of performing Principal Component

Analysis (PCA) on the data before applying the CCA methods. This decision to work

with raw, high-dimensional data presents a more challenging and realistic scenario,

which may account for any observed decrease in the performance of γ-EigenGame

compared to their reported results.

To evaluate the efficiency and rapid learning capabilities of each method, we

constrain the training process to a single epoch. This design choice challenges the

algorithms to extract meaningful canonical correlations from limited exposure to the

data. Within this single-epoch framework, we explore the impact of stochasticity by

implementing a range of mini-batch sizes, specifically from 5 to 100. This spectrum

allows us to observe how each method performs under varying degrees of sample

randomness, from highly stochastic scenarios with small batches to more stable

conditions with larger batches.

Table 4.1 details the hyperparameter ranges explored for each method, replicat-

ing those in prior work for consistency and comparability.

4.2.3 Evaluation Metric: Proportion of Correlation Captured (PCC)

We employ the Proportion of Correlation Captured (PCC) metric for evaluation:
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Table 4.1: Hyperparameter ranges for CCA methods

Parameter Values

Minibatch size 5, 20, 50, 100

Components 5

Epochs 1

Seeds 1, 2, 3, 4, 5

Learning rate 0.01, 0.001, 0.0001

γ2 0.01, 0.1, 1, 10

PCC =

∑K
k=1 ρk∑K
k=1 ρ

∗
k

where ρk are the empirical correlations between the estimated representations

Z(i) = X(i)Û (i) on the test set, and ρ∗k are the canonical correlations computed from

full batch covariance matrices. K denotes the number of canonical components

considered.

The PCC metric offers several advantages for evaluating CCA methods. By

comparing the correlations of the estimated representations to the true canonical

correlations, PCC provides a normalized measure of how well a method captures the

underlying correlations in the data. This normalization allows for fair comparisons

across different datasets and experimental settings.

Interpreting PCC is intuitive: a value closer to 1 indicates that the method

captures a higher proportion of the true correlations, with 1 representing perfect

correlation capture. This directness enables easy comparison between different

algorithms and across various experimental conditions.

Moreover, PCC efficiently tracks algorithm performance over time while mini-

mizing computational overhead. This makes it particularly suitable for evaluating

online or iterative CCA methods, where performance may evolve during the learning

process.
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Figure V.2: Stochastic CCA on MediaMill using PCC: Performance across varying
mini-batch sizes. Shaded regions represent ± one standard deviation

around the mean of 5 runs.

Figure V.3: Stochastic CCA on MediaMill: Training progress over a single epoch for
mini-batch sizes 5 and 100.

The widespread use of PCC in the literature (Z. Meng, Chakraborty, and Singh,

2021; I. Gemp, C. Chen, and McWilliams, 2022; Ma, Lu, and Foster, 2015; Ge

et al., 2016) also facilitates comparisons with existing work, providing a standard-

ized benchmark for assessing the performance of our CCA-EY method against

established baselines.

4.2.4 Results and Observations

Figure V.2 compares the learning curves of the algorithms on the MediaMill dataset

for various mini-batch sizes. CCA-EY consistently outperforms the baselines across

all batch sizes. Figure V.3 provides a more detailed view of the learning curves for

batch sizes 5 and 100, highlighting the superior performance of CCA-EY over time.

For the Split-CIFAR dataset, Figure V.4 shows the performance comparison across

batch sizes, while Figure V.5 presents the learning curves. The results reveal that γ-
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Figure V.4: Stochastic CCA on Split-CIFAR using PCC: Performance across
varying mini-batch sizes. Shaded regions represent ± one standard

deviation around the mean of 5 runs.

Figure V.5: Stochastic CCA on Split-CIFAR: Training progress over a single epoch
for mini-batch sizes 5 and 100.

EigenGame underperforms compared to CCA-EY and SGHA, particularly for smaller

batch sizes. These experiments demonstrate that our proposed CCA-EY method

can achieve faster convergence with less hyperparameter tuning compared to the

established baselines, making it a promising approach for practical applications

involving high-dimensional data.

4.3 Stochastic PLS on UK Biobank Data

In this experiment, we showcase the scalability and efficiency of our Stochastic

PLS method, PLS-EY, on an extremely high-dimensional imaging genetics dataset

from the UK Biobank (Sudlow et al., 2015). The primary aim of this experiment

is to demonstrate computational feasibility rather than to establish generalizable

biological findings.

151



James Chapman December 2023

4.3.1 Dataset

The UK Biobank is a large-scale biomedical database containing genetic and phe-

notypic data from over 500,000 participants. For this experiment, we use a subset

of the data consisting of brain imaging features (82 regional volumes) and genetic

variants (582,565 SNPs) for 33,333 subjects.

The brain imaging data was preprocessed using FreeSurfer (Fischl, 2012) to

extract gray-matter volumes for 66 cortical regions (based on the Desikan-Killiany at-

las) and 16 subcortical regions. To isolate disease-relevant signals in brain structure,

we regressed out several key confounding variables from the brain features:

• Age and age squared: to account for both linear and nonlinear effects of aging

on brain volume, as brain structure naturally changes across the lifespan (Fjell

et al., 2009)

• Intracranial volume: to control for differences in overall head size, which can

mask or confound regional volume variations (Voevodskaya et al., 2014)

• Sex: to account for systematic differences in brain structure between males

and females (Ruigrok et al., 2014)

• The first 20 genetic principal components: to control for population stratification

effects, which could create spurious correlations between genetic variants and

brain structure due to shared ancestry rather than true biological relationships

(Price et al., 2006)

After regressing out these confounders, each brain region of interest (ROI) was

normalized by removing the mean and dividing by the standard deviation to ensure

comparability across regions.

The genetic data was processed using PLINK (Purcell et al., 2007), retaining

genetic variants with a minor allele frequency of at least 1% and a maximum

missingness rate of 2%. Mean imputation was used to fill in missing values, and

each variant was centered.

To generate measures of genetic disease risk, we calculated polygenic risk

scores using PRSice (Euesden, Lewis, and O’Reilly, 2014). Scores were computed

with a p-value threshold of 0.05 using GWAS summary statistics for the following

diseases: Alzheimer’s (Lambert et al., 2013), Schizophrenia (Trubetskoy et al., 2022),

Bipolar disorder (Mullins et al., 2021), ADHD (Demontis et al., 2023), ALS (Rheenen

et al., 2021), Parkinson’s disease (Nalls et al., 2019), and Epilepsy (International

League Against Epilepsy Consortium on Complex Epilepsies, 2018).
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4.3.2 Experimental Setup

We apply our PLS-EY method to the UK Biobank dataset, using a mini-batch size of

500 and training for 100 epochs with a learning rate of 0.0001. A key computational

challenge in this experiment is maintaining orthogonality between the weight vectors

uk in the PLS model, which is crucial for the method’s effectiveness. This approach

allows us to handle the high-dimensional nature of the data while preserving the

interpretability of the learned representations. To the best of our knowledge, this

experiment represents the largest-scale PLS analysis of biomedical data to date,

demonstrating the potential of our method to facilitate discoveries in extremely large

datasets.

4.3.3 Results and Observations

Figure V.6 shows the Pearson correlations among the PLS latent variables Zk

derived from the UK Biobank data. We observe strong correlations between cor-

responding pairs of representations Z
(1)
k and Z

(2)
k , and weak cross-correlations

between Z
(1)
k and Z

(2)
i for i ̸= k. This indicates that our PLS-EY model learns a

coherent and orthogonal subspace. While these results are shown on the training

data and not cross-validated, two technical points are noteworthy: first, previous

theoretical results in this thesis suggest that PLS tends to be biased towards the

largest principal components, which are typically stable in datasets with power-law

eigenvalue distributions common in biomedical applications. Second, while our

method optimizes for covariance, we observe strong correlations in the learned

representations - suggesting we may be detecting genuine structure rather than

merely overfitting to spurious covariance patterns.

Furthermore, we investigate the associations between the PLS brain representa-

tions Z and the polygenic risk scores for various disorders, as shown in Figure V.7.

The results reveal correlations between the learned representations and genetic

risk measures for several disorders. While these associations would need to be

validated in independent samples for biological inference, they demonstrate our

method’s ability to capture potential structure in high-dimensional data.

We note that while the imaging weights learned by the model could provide

insights into the neuroanatomical patterns associated with genetic variation, a

detailed analysis of these components is beyond the scope of this computational

feasibility study. Future work could examine the biological interpretability of these

patterns through rigorous cross-validation and replication in independent cohorts.

These results primarily demonstrate the scalability of our PLS-EY method to
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Figure V.6: Pearson correlations among PLS latent variables Zk derived from UK
Biobank data.

Figure V.7: Correlation between PLS brain representations Z and genetic risk
scores for various disorders. AD=Alzheimer’s disease,

SCZ=Schizophrenia, BP=Bipolar disorder, ADHD=Attention deficit
hyperactivity disorder, ALS=Amyotrophic lateral sclerosis,

PD=Parkinson’s disease, EPI=Epilepsy. ns : 0.05 < p ≤ 1, ∗ : 0.01 <
p ≤ 0.05, ∗∗ : 0.001 < p ≤ 0.01, ∗ ∗ ∗ : 0.0001 < p ≤ 0.001.
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extremely high-dimensional data and its ability to extract coherent patterns. The suc-

cessful application of our method to the UK Biobank dataset highlights its potential

as a computational tool for large-scale biomedical studies, though careful validation

would be needed for any biological conclusions.

5 Discussion and Limitations

5.1 Limitations

This chapter presents a comprehensive exploration and development of novel

algorithms for Canonical Correlation Analysis and Partial Least Squares, focusing

on scalability and efficiency in high-dimensional and large-scale datasets. Our

approach introduces the Eckhart-Young (EY) inspired objectives for Generalized

Eigenvalue Problems and their application in stochastic or data-streaming settings,

paving the way for more efficient and scalable solutions to classical subspace

learning problems.

Our proposed CCA-EY and PLS-EY methods demonstrate significant advance-

ments over traditional approaches in handling the computational complexity and

scalability issues inherent in high-dimensional data. By reformulating the CCA and

PLS objectives, we provide a path to efficiently analyze large datasets, which was

previously infeasible due to computational limitations. The empirical evaluation on

diverse datasets, including MediaMill, Split-CIFAR-10, and the UK Biobank, not only

validates the effectiveness of our methods but also highlights their superiority in

convergence speed and robustness to hyperparameter tuning.

The results from the MediaMill and Split-CIFAR-10 datasets underscore the

potential of CCA-EY in achieving faster convergence with minimal hyperparameter

tuning, a crucial factor for practical applications. This advantage is particularly

pronounced when comparing our method to established baselines like γ-EigenGame

and SGHA. Additionally, the application of our methods to the UK Biobank dataset

represents a breakthrough in the analysis of imaging genetics data, showcasing

the capability of PLS-EY to manage extraordinarily high-dimensional data while

extracting meaningful and interpretable representations.

Furthermore, our methods’ ability to capture relevant information for genetic

disease risk, as evidenced in the UK Biobank study, opens new avenues for biomed-

ical research. The significant associations between the PLS representations and

genetic risk measures for various disorders provide valuable insights into the genetic

mechanisms underlying diseases and brain morphometry.
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6 Future Work: Proximal Gradient Descent for Regu-

larized GEPs

While our current work focuses on unregularized GEPs, future research will extend

our approach to incorporate complex regularization terms efficiently. We propose

using proximal gradient descent, a method well-suited for optimizing loss functions

comprising a smooth, differentiable component and a non-smooth regularization

term.

6.1 Regularized Objective for GEP-EY

We aim to extend the GEP-EY framework by integrating specific regularization terms

directly into the loss function. The revised loss function, denoted as LReg-GEP-EY(θ),

will incorporate regularization terms Ri(θ
(i)) for each view i:

LReg-GEP-EY(θ) = LEY(θ) +

I∑
i=1

λiRi(θ
(i)), (V.30)

where LEY(θ) is our original GEP-EY loss function, λi are regularization param-

eters, and Ri(θ
(i)) are view-specific regularization terms. This formulation allows

for the inclusion of non-smooth penalties such as L1-norm or Total Variation (TV),

which can enforce sparsity or structural constraints on the learned representations.

6.2 Proximal Gradient Descent Algorithm

The proximal gradient descent algorithm for optimizing the regularized GEP-EY

objective alternates between a gradient step on the smooth part of the loss and a

proximal step for the non-smooth regularization terms:

θ
(i)
t+1 = proxαλiRi

(
θ
(i)
t − α∇θ(i)LEY(θt)

)
, (V.31)

where proxαλiRi
(·) denotes the proximal operator for the regularization term Ri

with parameter λi, and α is the learning rate. The proximal operator is defined as:

proxαλiRi
(v) = argmin

u

(
Ri(u) +

1

2α
∥u− v∥22

)
. (V.32)
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This approach effectively balances the influence of the smooth loss function

gradient and the geometry imposed by the regularization, making it robust to the

inclusion of complex constraints in GEP optimization.

6.3 Potential Applications and Benefits

The incorporation of proximal gradient descent into our GEP-EY framework opens

up several exciting possibilities:

1. Sparse CCA: By using L1 regularization, we can encourage sparsity in the

learned representations, leading to more interpretable results.

2. Structured CCA: Total Variation regularization can enforce spatial or temporal

smoothness in the representations, which is particularly useful for neuroimag-

ing or time-series data.

3. Multi-view learning with heterogeneous regularization: Different regu-

larization terms can be applied to different views, allowing for more flexible

modeling of complex multi-view data.

4. Improved generalization: Appropriate regularization can help prevent overfit-

ting, especially in high-dimensional, low-sample size scenarios.

Future work will focus on implementing this proximal gradient descent approach,

developing efficient algorithms for specific regularization terms, and evaluating its

performance on various real-world datasets.

6.4 Conclusion

In summary, this chapter contributes to the fields of machine learning and multiview

data analysis by introducing scalable and efficient solutions for CCA and PLS,

applicable in a variety of domains, including but not limited to neuroimaging and

genetics. Our work not only addresses significant computational challenges but

also lays the groundwork for future research and practical applications in analyzing

large-scale, high-dimensional datasets.

157



James Chapman December 2023

def compute_unbiased_stochastic_loss(Z, Z_prime, alpha=None):
# Compute C
C = sum(torch.cov(Z[i], Z[j]) for i in range(len(Z)) for j in range(i+1, len(Z)))

# Compute V and V_prime
V = sum(alpha[i] * torch.matmul(Z[i].T, Z[i]) +

(1 - alpha[i]) * torch.var(Z[i], dim=0)
for i in range(len(Z)))

V_prime = sum(alpha[i] * torch.matmul(Z_prime[i].T, Z_prime[i]) +
(1 - alpha[i]) * torch.var(Z_prime[i], dim=0)
for i in range(len(Z_prime)))

# Compute loss
loss = -2 * torch.trace(C) + torch.sum(V * V_prime)
return loss

def unbiased_stochastic_gep_ey(data_stream, lr, T, f):
theta = initialize_parameters(f)
optimizer = torch.optim.SGD([theta], lr=lr)

for t in range(T):
X_b, X_b_prime = next(data_stream), next(data_stream)
Z_b, Z_b_prime = f(X_b, theta), f(X_b_prime, theta)

optimizer.zero_grad()
loss = compute_unbiased_stochastic_loss(Z_b, Z_b_prime)
loss.backward()
optimizer.step()

return theta

Listing 2: PyTorch-style pseudocode for the unbiased stochastic GEP-EY
algorithm

158



Chapter VI

Deep Stochastic CCA:

Bridging Multiview and

Self-Supervised Learning

Contents

1 Introduction......................................................................... 160

2 Background: Deep Representation Learning ........................... 161

2.1 Deep Learning and Neural Networks .......................... 161

2.2 Autoencoders and Representation Learning ................ 161

2.3 Variational Autoencoders .......................................... 162

2.4 From Autoencoders to Deep CCA .............................. 163

2.5 Self-Supervised Learning and Joint Embedding........... 167

3 Methods: DCCA-EY and SSL-EY, extending GEP-EY to Deep

Learning ............................................................................. 169

3.1 Deep Multiview Canonical Correlation Analysis (DCCA-

EY) ........................................................................ 169

3.2 Application to Self-Supervised Learning (SSL-EY) ....... 170

3.3 PyTorch Implementation ........................................... 171

4 Experiments and Results ...................................................... 171

4.1 Deep CCA .............................................................. 171

159



James Chapman December 2023

4.2 Deep Multiview CCA: Robustness Across Different Batch

Sizes...................................................................... 176

4.3 Self-Supervised Learning with SSL-EY....................... 180

5 Discussion and Limitations.................................................... 186

5.1 Discussion .............................................................. 186

5.2 Limitations .............................................................. 187

Preface

This chapter is based on work presented in Chapman and Wells (2023) and Chap-

man, Wells, and Aguila (2024).

1 Introduction

Deep CCA (Andrew et al., 2013) secured a runner-up position for the test-of-time

award at ICML 2023 (ICML, 2023). However, its direct application has been limited

in large datasets due to biased gradients in the stochastic minibatch setting. There

have since been proposals to scale-up Deep CCA in the stochastic case with

adaptive whitening (W. Wang, Arora, Livescu, and Srebro, 2015) and regularization

(Chang, Xiang, and T. M. Hospedales, 2018), but these techniques are highly

sensitive to hyperparameter tuning.

Self-Supervised Learning (SSL) methods have reached state-of-the-art in tasks

such as image classification (Balestriero, Ibrahim, et al., 2023), learning representa-

tions without labels that capture salient features so that they can be used for general

downstream tasks. A family of SSL methods that are closely aligned with Canonical

Correlation Analysis has garnered particular interest. This family notably includes

Barlow Twins (Zbontar et al., 2021), VICReg (Bardes, Ponce, and LeCun, 2021),

and W-MSE (Ermolov et al., 2021) and they aim to transform a pair of data views into

similar representations, similar to the objective of CCA. Similarly, some generative

approaches to SSL(Sansone and Manhaeve, 2022) bear a striking resemblance to

Probabilistic CCA(Bach and Jordan, 2005). These connections have started to be

explored in Balestriero and LeCun (2022).

In this chapter, we propose a novel formulation of Deep CCA that is unbiased in

the stochastic setting and scales to large datasets. We also propose a novel SSL

method, SSL-EY, that is competitive with existing methods on CIFAR-10 and CIFAR-

100. We highlight the connections between our work and existing SSL methods,
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and show that our method is more robust to hyperparameter tuning.

2 Background: Deep Representation Learning

This section explores the evolution of deep representation learning techniques, from

traditional autoencoders to more sophisticated approaches like Deep Canonical

Correlation Analysis (Deep CCA) and Self-Supervised Learning (SSL).

2.1 Deep Learning and Neural Networks

Deep learning, a subfield of machine learning, utilizes neural networks to learn com-

plex representations from data. Neural networks are composed of interconnected

layers of artificial neurons, typically including an input layer, one or more hidden

layers, and an output layer. Each neuron computes a weighted sum of its inputs,

followed by a nonlinear activation function. A key component of modern neural

networks is the rectified linear unit (ReLU) activation function, defined as:

ReLU(x) = max(0, x) (VI.1)

ReLU and its variants have become popular due to their simplicity and effective-

ness in mitigating the vanishing gradient problem during training. The power of

neural networks lies in their ability to approximate complex functions. The Universal

Approximation Theorem (Cybenko, 1989) states that a feedforward network with

a single hidden layer containing a finite number of neurons can approximate any

continuous function on compact subsets of Rn, given certain mild assumptions

about the activation function. Neural networks are typically trained using backpropa-

gation and stochastic gradient descent (SGD) or its variants. The backpropagation

algorithm efficiently computes gradients of the loss function with respect to the

network parameters, while SGD allows for training on large datasets by updating

parameters using small batches of data.

2.2 Autoencoders and Representation Learning

Autoencoders represent an early approach to unsupervised representation learning.

These neural networks are designed to learn compact data representations by

reconstructing input data through a bottleneck layer. The basic structure of an

autoencoder consists of:
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An encoder function fθ : X → Z that maps input data to a latent representation.

A decoder function gϕ : Z → X that attempts to reconstruct the input from the latent

representation.

The autoencoder is trained to minimize a reconstruction loss:

L(θ, ϕ) = Ex∼pdata [∥x− gϕ(fθ(x))∥2] (VI.2)

Autoencoders can be viewed as a nonlinear generalization of Principal Compo-

nent Analysis (PCA). In fact, a linear autoencoder with a single hidden layer and

mean squared error loss is equivalent to PCA when the hidden layer dimension is

less than the input dimension. While autoencoders have been successful in various

applications, they face limitations. The focus on reconstruction may lead to learning

fine-grained details that are not necessarily useful for downstream tasks, and there’s

no explicit encouragement for the learned representations to capture meaningful

features or disentangled factors of variation.

These limitations have motivated the development of more sophisticated autoen-

coder variants and alternative representation learning approaches.

2.3 Variational Autoencoders

Variational Autoencoders (VAEs) (Kingma and Welling, 2013) extend the autoen-

coder framework to learn probabilistic generative models. VAEs model the latent

space as a probability distribution, typically a multivariate Gaussian, and are trained

to maximize the evidence lower bound (ELBO):

LELBO(θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (VI.3)

where qϕ(z|x) is the encoder (or inference) network, pθ(x|z) is the decoder (or

generative) network, and p(z) is a prior distribution over the latent space. VAEs pro-

vide a principled way to generate new samples and perform probabilistic inference,

making them useful for both representation learning and generative modeling.

Research has extended Autoencoders to multiview settings, such as Multiview

Autoencoders (Ngiam et al., 2011) which regularise autoencoders for each view to

be somewhat similar to each other. Contributions of my own to this area include

applications to neuroscience data (Lawry Aguila, Chapman, and Altmann, 2023)

and the development of a software package for multiview autoencoders (Townsend,

Chapman, and Cole, 2023).

However given the deep connection between Autoencoders and PCA, it is natural
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Figure VI.1: Schematic of the Deep CCA approach highlighting the nonlinear
transformation of data into correlated views.

to consider the extension of CCA to the deep learning setting. This leads to the

development of Deep CCA, which aims to learn nonlinear representations that are

maximally correlated across different views.

2.4 From Autoencoders to Deep CCA

A natural objective of Deep CCA is to maximize the correlation between learned

representations of different views:

∥MCCAK

(
Z(1), . . . , Z(I)

)
∥2 (VI.4)

where Z(i) = f (i)(X(i); θ(i)) are the learned representations for each view. Figure

VI.1 illustrates how Deep CCA transforms data from different views through neural

networks to achieve correlated representations. This approach allows for capturing

complex, nonlinear relationships between views that linear methods might miss.

2.4.1 Full-batch Deep CCA

The full-batch approach of Deep CCA, formulated by Andrew et al. (2013) has been

the foundation for subsequent work in this area and won the ICML 2023 test-of-time

award. This method maximizes the correlation between learned representations
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using the following loss function:

T =
(

cov(Z(1))
)− 1

2

Z(1)⊤Z(2)
(

cov(Z(2))
)− 1

2

(VI.5)

LRayleigh = −Tr(T ) (VI.6)

We refer to this as the Rayleigh loss because it effectively maximizes the Gener-

alized Rayleigh Quotient associated with the canonical correlation problem. While

theoretically sound, this approach faces substantial scalability issues with large

datasets.

The Rayleigh loss is only valid for full batch gradient descent, which becomes

computationally infeasible for large datasets. This limitation has led to numerous

issues reported on the GitHub implementation, with users experiencing problems

with ill-conditioned matrices and exploding gradients. These problems arise because

the covariance matrices can become singular or nearly singular when working with

small batches or high-dimensional data, leading to instability in the matrix inversions

required by the loss function.

2.4.2 DCCA-STOL

DCCA-STOL, proposed by W. Wang, Arora, Livescu, and Bilmes (2015), attempts to

use the full-batch objective with large mini-batches but suffers from biased gradients

due to the matrix inversions in Equation equation VI.5. This bias is fundamentally a

consequence of Jensen’s inequality applied to the inverse of a random variable.

For a positive random variable X, Jensen’s inequality states that:

1

E[X]
≤ E[

1

X
] (VI.7)

This inequality arises because f(x) = 1
x is a convex function for x > 0.

To illustrate this, consider a simple example: Let X be a random variable that is

1 with probability 0.5 and 0.1 with probability 0.5. Then:

E[X] = 0.5 · 1 + 0.5 · 0.1 = 0.55 (VI.8)

1

E[X]
=

1

0.55
≈ 1.82 (VI.9)

E[
1

X
] = 0.5 · 1

1
+ 0.5 · 1

0.1
= 0.5 + 5 = 5.5 (VI.10)
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As we can see, 1
E[X] < E[ 1X ], confirming the inequality.

In the context of DCCA-STOL, this inequality leads to biased estimates when

inverting covariance matrices estimated from mini-batches. The expectation of the

inverse of the sample covariance matrix is not equal to the inverse of the expected

covariance matrix. This bias necessitates batch sizes larger than the representation

size, limiting the method’s practical application.

The problem becomes even more severe when the batch size is smaller than the

representation dimension. In this case, the sample covariance matrix is guaranteed

to be singular. To understand why, consider that a batch of size n in a d-dimensional

space (where n < d) can only span an n-dimensional subspace. Consequently,

the sample covariance matrix will have at most rank n, making it singular in the

d-dimensional space.

For singular matrices, the inverse is undefined, which is equivalent to division

by zero in the scalar case. This causes Jensen’s inequality to blow up to infinity,

making the optimization problem ill-posed and impossible to solve.

Even when the batch size is slightly larger than the representation dimension,

the covariance matrix can be nearly singular, leading to numerical instability and

unreliable results.

A practical example illustrates the severity of this issue: Consider training deep

neural networks on 3D MRI scans. Due to memory constraints of GPUs, it’s often

impossible to use large batch sizes for such high-dimensional data. If we attempt to

use small batch sizes with the Rayleigh or STOL objective, we encounter singular

(when batch size < representation dimension) or near-singular (when batch size ≈
representation dimension) matrices. The singularity effectively causes division by

zero in Jensen’s inequality, blowing up the expectation to infinity.

This problem has caused confusion for many GitHub users (including myself!)

who attempted to implement these methods. The nuanced nature of this issue is not

immediately apparent, leading to unexpected behavior and optimization failures. It’s

crucial to understand that to even get the optimization to run, we require batch sizes

substantially larger than the representation dimension, before even considering

problems of bias. This requirement severely limits the applicability of the method to

high-dimensional data or large models, as it demands enormous batch sizes that

often exceed available computational resources.
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2.4.3 Deep MCCA and Deep GCCA

Extensions such as Deep MCCA (Somandepalli et al., 2019) and Deep GCCA

(Benton et al., 2017) are multiview extensions of Deep CCA. Recalling the notation

from 3.2.3, where Ĉ(θ) and V̂ (θ) are the mini-batch estimates of the between-view

and within-view covariance matrices, respectively, the loss function for Deep MCCA

is given by:

T =
(
V̂ (θ)−

1
2 Ĉ(θ)V̂ (θ)−

1
2

)
(VI.11)

LDMCCA = −Tr(T ) (VI.12)

However, these methods still require large batch sizes due to biased gradients

from small mini-batch covariance matrices. This issue stems from the same problem

as DCCA-STOL: the matrix inversions in the loss function lead to biased estimates

when using small mini-batches, again due to Jensen’s inequality.

2.4.4 Adaptive Whitening Methods

Adaptive whitening methods (W. Wang, Arora, Livescu, and Srebro, 2015; Chang,

Xiang, and T. M. Hospedales, 2018) offer another solution to the scalability problem.

These methods aim to approximate the matrix inversion in the loss function without

actually inverting the matrix, functioning similarly to a preconditioner in optimization.

By doing so, they attempt to mitigate the bias introduced by direct matrix inversion

on small mini-batches.

One such method is DCCA-NOI (W. Wang, Arora, Livescu, and Bilmes, 2015),

which uses Nonlinear Orthogonal Iteration to approximate the whitening transforma-

tion. The loss function of DCCA-NOI is:

LNOI = |Σ̃
− 1

2
11 Z(1) − Σ̃

− 1
2

22 Z(2)|2F (VI.13)

where Σ̃11 and Σ̃22 are estimates of the covariance matrices of Z(1) and Z(2).

The adaptive whitening approach aims to iteratively refine these estimates over time,

potentially allowing for smaller batch sizes. However, these methods introduce a

time constant that complicates analysis and requires extensive tuning. This time

constant represents the rate at which the whitening estimates are updated, and

finding the right balance between stability and adaptivity can be challenging.
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Figure VI.2: Joint Embedding Data Generation Process in SSL
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Figure VI.3: Encoder-Projector Model in SSL

2.5 Self-Supervised Learning and Joint Embedding

Self-Supervised Learning (SSL) has emerged as a powerful approach for learning

representations from unlabeled data. A key strategy in SSL involves creating joint

embeddings of augmented data, typically images.

SSL methods often employ an encoder-projector model:

2.5.1 CCA-based SSL Methods: Barlow Twins and VICReg

Two prominent self-supervised learning (SSL) methods, Barlow Twins and VICReg

(Variance-Invariance-Covariance Regularization), utilize objectives that share sim-

ilarities with Canonical Correlation Analysis principles. These methods aim to

learn representations that are invariant to data augmentations while maintaining

informative and decorrelated features.

Barlow Twins Introduced by Zbontar et al. (2021), Barlow Twins is inspired by the

redundancy reduction principle in neuroscience (Barlow et al., 1961). The method
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aims to create embeddings that are invariant to distortions of the input sample while

avoiding the collapse of the learned representations.

Barlow Twins Loss:

LBT = γE∥Z(1) − Z(2)∥2︸ ︷︷ ︸
Invariance

+β

K∑
k,l=1
k ̸=l

Cov(Ẑ
(i)
k , Ẑ

(i)
l )2

︸ ︷︷ ︸
Redundancy Reduction

(VI.14)

The loss function consists of two terms:

• Invariance term: Encourages the embeddings of distorted versions of a

sample to be similar.

• Redundancy reduction term: Minimizes the redundancy between the dimen-

sions of the embedding vectors.

VICReg VICReg, proposed by Bardes, Ponce, and LeCun (2021), builds upon

the ideas of Barlow Twins but introduces an additional variance term to explicitly

encourage the embeddings to be diverse and avoid dimensional collapse.

VICReg Loss:

LVR = γE∥Z(1) − Z(2)∥2︸ ︷︷ ︸
Invariance

+

∑
i∈{1,2}

α

K∑
k=1

(
1−

√
Var(Z

(i)
k )

)
+︸ ︷︷ ︸

Variance

+β

K∑
k,l=1
k ̸=l

Cov(Z
(i)
k , Z

(i)
l )2

︸ ︷︷ ︸
Covariance

(VI.15)

The VICReg loss function comprises three terms:

• Invariance term: Similar to Barlow Twins, it encourages the embeddings of

augmented versions of a sample to be close.

• Variance term: Ensures that the variance of each embedding dimension is

above a certain threshold, preventing dimensional collapse.

• Covariance term: Minimizes the covariance between different dimensions of

the embeddings, promoting decorrelation.
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Relation to CCA Both Barlow Twins and VICReg share similarities with CCA in

their objectives:

• The invariance terms in both methods are analogous to maximizing correlation

in CCA, as they encourage similar representations for related inputs.

• The redundancy reduction term in Barlow Twins and the covariance term

in VICReg are similar to the orthogonality constraints in CCA, promoting

decorrelated features.

• VICReg’s variance term can be seen as a way to ensure that the learned

representations capture meaningful variations in the data, which is implicitly

achieved in CCA through its formulation.

These methods demonstrate the effectiveness of CCA-inspired principles in

self-supervised learning, providing a promising direction for learning robust and

informative representations without relying on labeled data.

3 Methods: DCCA-EY and SSL-EY, extending GEP-

EY to Deep Learning

Building upon the Eckart-Young inspired objective introduced in the previous chapter,

we now extend our approach to non-linear transformations of the data. The key idea

is to replace linear representations with non-linear ones, effectively optimizing the

representation of the original data to maximize canonical correlations.

Recall the objective function from the previous chapter:

LEY(θ) = −2TrC(θ) + ∥Vα(θ)∥2F (VI.16)

In this chapter, we consider non-linear transformations of the data, defined as:

Z(i) = f (i)(X(i); θ(i)) (VI.17)

where f (i) are non-linear functions (typically neural networks) parameterized by θ(i).

3.1 Deep Multiview Canonical Correlation Analysis (DCCA-EY)

We first show that our objective recovers Deep Multi-view CCA at any local optimum,

assuming a final linear layer in each neural network.
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Lemma 3.1. [Objective recovers Deep Multi-view CCA] Assume that there is a

final linear layer in each neural network f (i). Then at any local optimum, θ̂, of the

population problem, we have

LEY(θ̂) = −∥MCCAK(Ẑ)∥22

where Ẑ = fθ̂(X). Therefore, θ̂ is also a local optimum of objectives from Andrew

et al. (2013) and Somandepalli et al. (2019) as defined in Equation (VI.4).

Proof sketch: Consider treating the penultimate-layer representations as fixed, and

optimising over the weights in the final layer. This is precisely equivalent to optimising

the Eckhart-Young loss for linear CCA where the input variables are the penultimate-

layer representations. So by Proposition 3.1 the optimal value is the negative sum

of squared generalised eigenvalues.

This result shows that our objective, which we call DCCA-EY, is a valid general-

ization of Deep CCA and can be used to learn correlated non-linear representations.

3.2 Application to Self-Supervised Learning (SSL-EY)

We can directly apply the DCCA-EY approach to the self-supervised learning (SSL)

setting, which we call SSL-EY. The key differences between DCCA-EY and SSL-EY

are:

1. Data source: In SSL-EY, the two views are augmented versions of a single

sample, whereas in DCCA-EY, they are separate views of the data.

2. Encoder architecture: SSL-EY uses the same encoder for both views as a

regularization strategy, while DCCA-EY uses separate encoders for each view.

The use of a shared encoder in SSL-EY is motivated by the fact that the paired

data are generated from applying independent, identically distributed (i.i.d.) aug-

mentations to the same original input. This approach acts as a regularizer and is

intuitively sensible given that the distributions of both views are identical.

Our loss function for both DCCA-EY and SSL-EY bears some resemblance to

those of Barlow Twins and VICReg:

LEY(θ) = −2 traceC(θ) + ∥Vα(θ)∥2F
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where C(θ) is the cross-covariance matrix between the representations of the

views, and Vα(θ) is a matrix involving the individual covariance matrices of each

view.

This objective has two terms:

1. −2 traceC(θ): encourages correlated representations across views, similar

to the invariance term in Barlow Twins and VICReg.

2. ∥Vα(θ)∥2F : involves individual covariance matrices, analogous to the variance

and covariance terms in VICReg.

The main difference is that our method is based on canonical correlation prin-

ciples, which may offer additional benefits in terms of representation quality and

interpretability.

3.3 PyTorch Implementation

We provide a unified PyTorch implementation for both DCCA-EY and SSL-EY in

Listing 3. This implementation defines a single class that can be used for both

methods, with the key difference being in how the encoders are initialized and used.

This unified implementation can be used for both DCCA-EY and SSL-EY by

setting the ssl_mode parameter appropriately. When ssl_mode=True, it uses a

single shared encoder for both views (SSL-EY), and when ssl_mode=False, it uses

separate encoders for each view (DCCA-EY).

In the next section, we will present experiments demonstrating the effectiveness

of our DCCA-EY and SSL-EY methods in their respective settings.

4 Experiments and Results

4.1 Deep CCA

This experiment aims to demonstrate the effectiveness of our DCCA-EY method

compared to existing Deep Canonical Correlation Analysis approaches including

DCCA-STOL and DCCA-NOI. We focus on three key aspects: correlation capture,

convergence speed, and ease of hyperparameter tuning. Our experimental setup

closely follows that of W. Wang, Arora, Livescu, and Srebro (2015), enabling a direct

and fair comparison.
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4.1.1 Datasets

We evaluate our method on two diverse datasets: Split MNIST and the X-Ray

Microbeam Speech Production Database (XRMB).

The Split MNIST dataset is a modified version of the original MNIST dataset,

designed to challenge models with partial information. Each 28x28 pixel grayscale

image is split into left and right halves, creating two distinct views. The dataset

consists of 50,000 training images and 10,000 test images. This splitting mechanism

tests the model’s ability to learn correlated representations from incomplete digit

information.

The XRMB dataset provides a more complex, real-world challenge in the domain

of speech production. It comprises approximately 40,000 spoken utterances from

47 American English speakers, offering a rich multiview perspective on articulatory

speech data. The dataset presents two views: acoustic features and articulatory

measurements. The acoustic features are represented by 273-dimensional vectors

capturing spectral characteristics, while the articulatory measurements are 112-

dimensional vectors describing the position and movement of speech articulators.

The high dimensionality and complexity of XRMB make it an excellent testbed for

assessing the scalability and robustness of DCCA methods.

4.1.2 Experimental Setup

Our experimental design is crafted to rigorously evaluate DCCA-EY against existing

methods across a range of operational conditions. We employ a network architecture

consisting of multilayer perceptrons with two hidden layers, each containing 800 units,

followed by an output layer of 50 units. ReLU activations are used throughout the

network, closely aligning with the architecture used by W. Wang, Arora, Livescu, and

Srebro (2015). This architectural choice ensures a fair comparison with previous

work while providing sufficient model capacity to capture complex correlations

between views.

To thoroughly assess both the initial convergence behavior and long-term perfor-

mance stability of each method, we train each model for 50 epochs. This extended

training period allows us to observe how different approaches perform over time,

particularly in terms of their ability to maintain and refine learned correlations.

The dimensionality of the learned representations (K) is set to 50, matching the

output layer size. This choice facilitates direct comparison with previous work and

ensures that we are evaluating each method’s ability to capture a consistent number

of canonical components.
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To evaluate performance across different levels of stochasticity, we experiment

with batch sizes of 20, 50, and 100. This range allows us to assess each method’s

robustness to varying degrees of sample randomness, with a particular focus on

how well they perform with smaller batch sizes that introduce more stochasticity into

the training process.

Our hyperparameter tuning process includes a grid search over learning rates

(1e-3, 1e-4, 1e-5) for all methods, with additional tuning of ρ values (0.6, 0.8, 0.9)

for DCCA-NOI. By exploring more hyperparameters for the benchmark DCCA-NOI

method compared to our approach, we ensure a fair comparison that, if anything,

favors the baseline method.

Through this carefully designed experimental setup, we aim to systematically

evaluate DCCA-EY against existing methods, with a particular focus on its perfor-

mance across different batch sizes. By closely following the methodology of W.

Wang, Arora, Livescu, and Srebro (2015) while introducing our own innovations, we

strive to provide a fair and comprehensive comparison that highlights the strengths

of our approach, especially in terms of correlation capture, convergence speed, and

ease of hyperparameter tuning.

4.1.3 Evaluation Metric: Total Correlation Captured (TCC)

We introduce the Total Correlation Captured (TCC) metric for evaluation:

TCC =

K∑
k=1

ρk

where ρk are the empirical correlations between the neural network-based

representations Z(i) = f (i)(X(i)) on a validation set. The TCC metric differs from

previously used measures such as the Proportion of Correlation Captured (PCC)

in that it does not require ground truth correlations for its computation, making it

applicable to datasets where such ground truth is unavailable. By evaluating on

a validation set, TCC measures how well the learned correlations generalize to

unseen data.

TCC provides a sum of the estimated correlations across views: a higher TCC

value indicates stronger correlations between the learned representations in the

validation set. This allows for quantitative comparison between different methods

and across various experimental conditions.
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Figure VI.4: Deep CCA on SplitMNIST: Comparison of methods across varying
batch sizes.

4.1.4 Objectives

This experiment compares DCCA-EY with existing DCCA methods across three

dimensions: correlation capture (measured by TCC scores), convergence speed,

and behavior across varying batch sizes. We examine how each method performs

under different computational constraints, focusing particularly on scalability and

stability during training. Through these comparisons, we aim to understand the

practical trade-offs between DCCA-EY and current approaches when applied to

different dataset sizes and computational settings.

4.1.5 Observations on SplitMNIST

For the SplitMNIST dataset, Figure VI.4 shows the comparison of methods across

different batch sizes. We observe that DCCA-STOL captures substantially less

correlation than the other methods and breaks down when the mini-batch size is

smaller than the dimension K = 50. Figure VI.5 illustrates the learning progress over

50 epochs, where DCCA-NOI, despite performing similarly to DCCA-EY, requires

more careful hyperparameter tuning and demonstrates a slower convergence speed.

4.1.6 Observations on XRMB

On the XRMB dataset, as seen in Figure VI.6, similar trends are evident. DCCA-

STOL struggles with smaller mini-batch sizes, while DCCA-NOI, though comparable

to DCCA-EY in performance, lags in convergence speed, as shown in Figure VI.7.
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Figure VI.5: Deep CCA on SplitMNIST: Learning progress over 50 epochs.
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Figure VI.6: Deep CCA on XRMB: Comparison of methods across varying batch
sizes.

0 10 20 30 40 50
epoch

0

20

Va
lid

at
io

n 
TC

C

Top 50 CCA on XRMB
model
DCCA-EY
DCCA-NOI
DCCA-STOL
batch size
50
100
Linear CCA

Figure VI.7: Deep CCA on XRMB: Learning progress over 50 epochs.
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4.2 Deep Multiview CCA: Robustness Across Different Batch
Sizes

In this experiment, we evaluate the performance and adaptability of our DCCA-EY

method in a multiview context, comparing it against established multiview DCCA

methods including Deep MCCA and Deep GCCA. Our primary goal is to assess

how these methods perform across various batch sizes, with a particular focus on

their ability to capture correlations between multiple views.

4.2.1 Dataset: mfeat

For this experiment, we utilize the mfeat dataset (Duin, n.d.), which provides an ideal

testbed for multiview learning methods. This dataset consists of 2,000 handwritten

numeral patterns, each represented by six distinct feature sets. These feature sets

include Fourier coefficients, profile correlations, Karhunen-Love coefficients, pixel

averages in 2x3 windows, Zernike moments, and morphological features.

The mfeat dataset is particularly valuable for our study due to its diverse feature

types, which challenge the algorithms’ ability to find correlations across heteroge-

neous data representations. This diversity allows us to assess the robustness and

flexibility of our DCCA-EY method in dealing with varied data characteristics, a

crucial aspect in real-world multiview learning scenarios.

4.2.2 Experimental Setup

Our experimental design aims to comprehensively evaluate the performance of

various multiview Deep CCA methods across a range of batch sizes, with a particular

focus on small batch scenarios. We hypothesize that our method will demonstrate

superior performance across all batch sizes, but with a marked advantage in smaller

batch conditions where existing methods are expected to struggle.

The core of our experiment involves training each Deep CCA variant to learn

a shared representation space of 50 dimensions (K = 50). To ensure a thorough

assessment of each method’s convergence properties and final performance, we

extend the training process over 100 epochs. This duration allows us to observe

both the initial learning dynamics and the long-term stability of the learned represen-

tations.

A key aspect of our experimental design is the variation in batch sizes. We

explore a wide spectrum, ranging from very small batches of 5 samples to larger

batches of 200 samples. Specifically, we test batch sizes of 5, 10, 20, 50, 100, and

176



James Chapman December 2023

200. This range enables us to closely examine how each method’s performance

scales with increasing batch size, with particular attention to the challenging small-

batch regime.

To ensure a fair comparison and to optimize each method’s performance, we

conduct a comprehensive hyperparameter search. The key hyperparameters and

their ranges are summarized in Table 4.1.

Table 4.1: Hyperparameter ranges for Deep CCA methods

Parameter Values

Representation Dimensionality 50

Training Epochs 100

Batch Sizes 5, 10, 20, 50, 100, 200

Learning Rates 0.01, 0.001, 0.0001, 0.00001

By systematically varying these parameters, particularly the batch size, we aim

to provide a nuanced understanding of each method’s strengths and limitations. Our

analysis will focus on how performance metrics evolve across different batch sizes,

with special attention to the small-batch scenarios where we anticipate our method

to show significant advantages.

This experimental setup allows us to rigorously test our hypothesis that our pro-

posed Deep CCA variant offers superior performance across a range of operational

conditions, with a particular emphasis on its robustness in challenging small-batch

scenarios. Through this comprehensive evaluation, we seek to demonstrate the

practical advantages of our approach in real-world applications where small batch

processing is often necessary due to computational or data streaming constraints.

4.2.3 Evaluation Metric

To effectively compare the performance of different methods in this multiview setting,

we introduce a novel metric: the Total Multiview Correlation Captured (TMCC). This

metric extends the concept of Total Correlation Captured to accommodate multiple

views. The TMCC is defined as:
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TMCC =

K∑
k=1

1

I(I − 1)

∑
i,j≤I
i ̸=j

corr(Z(i)
k , Z

(j)
k ),

where Z
(i)
k represents the k-th dimension of the i-th view’s representation, and

I is the total number of views. This metric quantifies the average correlation across

all pairs of views for each dimension of the learned representations. A higher

TMCC indicates better capture of inter-view correlations, reflecting the method’s

effectiveness in learning a shared multiview representation.

4.2.4 Objectives

Our experiment is designed with several key objectives. First, we aim to evaluate

DCCA-EY’s performance in capturing multiview correlations, comparing it directly

with Deep MCCA and Deep GCCA. Second, we seek to assess the robustness of

these methods across a wide range of batch sizes, from very small (5) to relatively

large (200).

4.2.5 Observations

Figure VI.8 illustrates the comparison of DCCA-EY with Deep GCCA and Deep

MCCA across different mini-batch sizes, using the validation TMCC metric. DCCA-

EY consistently outperforms both Deep GCCA and Deep MCCA, showcasing its

superior ability to capture validation TMCC. Notably, Deep MCCA encounters is-

sues when the batch size is smaller than K = 50, likely due to singular empirical

covariances. Deep GCCA, while not breaking down, underperforms with smaller

batch sizes, highlighting limitations in scalability and efficiency for large-scale data

applications.

In Figure VI.9, we observe the learning curves for batch sizes 50 and 100. Both

Deep MCCA and Deep GCCA demonstrate rapid initial learning of correlations

but reach a plateau relatively quickly. In contrast, DCCA-EY exhibits a consistent

improvement over time and notably outperforms the other methods by the end of

the training period. This behavior underscores the enhanced learning capability and

efficiency of DCCA-EY, especially in the context of large-scale, high-dimensional

data.
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Figure VI.8: Deep Multi-view CCA on mfeat: Comparison across various
mini-batch sizes using the Validation TMCC metric.
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Figure VI.9: Deep Multi-view CCA on mfeat: Learning progress over 100 epochs
for batch sizes 50 and 100.
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4.3 Self-Supervised Learning with SSL-EY

To evaluate the effectiveness of our proposed SSL-EY method in self-supervised

learning tasks, we conduct a comprehensive benchmark comparison against two

established baselines: Barlow Twins and VICReg. This experiment aims to assess

SSL-EY’s performance in learning meaningful representations from unlabeled data.

4.3.1 Datasets

We evaluate our method on two widely-used benchmark datasets: CIFAR-10 and

CIFAR-100. Both datasets consist of 60,000 32x32 color images, divided into 50,000

training images and 10,000 test images.

CIFAR-10 contains images from 10 classes, with 6,000 images per class. This

dataset provides a balanced representation of basic object categories, offering a

good starting point for evaluating self-supervised learning methods.

CIFAR-100, on the other hand, presents a more challenging scenario with 100

classes and only 600 images per class. This increased number of classes and

reduced per-class sample size tests the methods’ ability to learn discriminative

features in a more fine-grained classification setting.

These datasets provide a diverse range of image complexities and class struc-

tures, allowing for a comprehensive evaluation of SSL-EY’s performance across

different scenarios. The contrast between CIFAR-10 and CIFAR-100 enables us to

assess how well each method scales with increasing task complexity.

4.3.2 Experimental Setup

We follow a standardized experimental design as outlined in Tong et al. (2023),

utilizing the sololearn library (Da Costa et al., 2022). This library provides optimized

setups specifically tailored for VICReg and Barlow Twins, ensuring a fair comparison.

Key aspects of the setup include:

• Encoder: ResNet-18 architecture

• Projector: Bi-layer network

• Training Duration: 1,000 epochs

• Batch Size: 256 images

• SSL-EY Hyperparameters: Adopted from Barlow Twins optimization
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For SSL-EY, we intentionally use the hyperparameters that were optimized

for Barlow Twins. This choice aims to demonstrate SSL-EY’s robustness and

adaptability rather than seeking to outperform existing methods through extensive

tuning.

4.3.3 Evaluation Methodology

To assess the quality of the learned representations, we employ a linear probe

approach:

1. Train the self-supervised models on the unlabeled training data.

2. Fix the encoder weights and train a linear classifier on top of the learned

representations using the labeled training data.

3. Evaluate the classifier’s performance on the validation set using two metrics:

• Top-1 Accuracy: Percentage of samples where the highest probability

prediction matches the true label.

• Top-5 Accuracy: Percentage of samples where the true label is among

the top 5 highest probability predictions.

This approach allows us to gauge how well the self-supervised methods capture

meaningful and discriminative features from the unlabeled data. It is important to

note that in our figures, we actually present log accuracy rather than raw accuracy.

Log accuracy provides a more revealing representation of performance differences,

especially when comparing models with high accuracy scores. This is because

small improvements in raw accuracy at higher levels can represent substantial

performance gains, which are more clearly visible on a logarithmic scale.

By comparing SSL-EY against Barlow Twins and VICReg under these controlled

conditions, we aim to provide insights into its effectiveness as a self-supervised learn-

ing algorithm, particularly its ability to learn robust and transferable representations

across different datasets and task complexities.

4.3.4 Observations

As Table 4.2 demonstrates, SSL-EY rivals Barlow Twins and VICReg, despite

employing general hyperparameters as opposed to the latter’s specifically optimized

ones.
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Table 4.2: Comparison of SSL method performance on CIFAR-10 and CIFAR-100
datasets.

Method CIFAR-10 Top-1 CIFAR-10 Top-5 CIFAR-100 Top-1 CIFAR-100 Top-5

Barlow Twins 92.1 99.73 71.38 92.32

VICReg 91.68 99.66 68.56 90.76

SSL-EY 91.43 99.75 67.52 90.17

4.3.5 Model Convergence

Figure VI.10 illustrates the learning curve analysis for both CIFAR-10 and CIFAR-100

datasets.
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Figure VI.10: Learning curves for SSL-EY, Barlow Twins, and VICReg, depicting
1,000-epoch performance.

The learning curves in Figure VI.10 reveal a crucial insight: all compared SSL

methods converge at remarkably slow rates, with hundreds of epochs required

for substantial performance improvements. Even after 1,000 epochs, the models

continue to learn. This observation highlights an important advantage of SSL-EY: its

ability to achieve competitive performance without extensive hyperparameter tuning.

The performance variations at 1,000 epochs, as shown in Table 4.2, primarily

stem from optimization noise, with convergence speeds being comparable among

methods. This slow convergence underscores the importance of SSL-EY’s robust-

ness to hyperparameter choices, as it can achieve competitive results without the

need for time-consuming fine-tuning.
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4.3.6 Projector Size Variation and No-Projector Performance

We hypothesized that SSL-EY’s architecture might exhibit robustness to projector

size, potentially allowing for efficient performance even with smaller projectors

or without one entirely. To investigate this, we conducted experiments varying

the projector dimensions across SSL-EY, Barlow Twins, and VICReg, including a

scenario with no projector. Figure VI.11 presents our findings on both CIFAR-100

and CIFAR-10 datasets.
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Figure VI.11: Impact of projector size on SSL-EY, Barlow Twins, and VICReg
performance for CIFAR-100 and CIFAR-10 datasets. The y-axis

shows log error (inversely related to log accuracy), while the x-axis
represents projector dimensions.

Figure VI.11 reveals that SSL-EY demonstrates remarkable stability across

various projector sizes, maintaining high performance even as dimensions are

reduced. In contrast, Barlow Twins and VICReg show more substantial performance

degradation with smaller projector sizes, particularly on the more complex CIFAR-

100 dataset.

To further investigate the impact of removing the projector entirely, we conducted

additional experiments applying the linear probe directly to the encoder outputs.

Table 4.3 presents these results alongside the projector-based performance for all

three methods.
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Table 4.3: Comparison of SSL method performance with and without projector on
CIFAR-10 and CIFAR-100 datasets.

Method Projector CIFAR-10 Top-1 CIFAR-10 Top-5 CIFAR-100 Top-1 CIFAR-100 Top-5

Barlow Twins Yes 92.1 99.73 71.38 92.32

Barlow Twins No 89.99 99.21 63.51 86.99

VICReg Yes 91.68 99.66 68.56 90.76

VICReg No 90.99 99.46 63.82 86.39

SSL-EY Yes 91.43 99.75 67.52 90.17

SSL-EY No 90.98 99.69 65.21 88.09

The results in Table 4.3 provide several key insights:

• Both Barlow Twins and VICReg show a notable drop in performance when the

projector is removed, particularly on the more complex CIFAR-100 dataset.

• SSL-EY demonstrates remarkable resilience, maintaining competitive perfor-

mance even without a projector. This is especially evident on CIFAR-100,

where SSL-EY’s no-projector performance surpasses that of Barlow Twins

and VICReg.

• On CIFAR-10, all methods show less dramatic changes when the projector is

removed, likely due to the dataset’s lower complexity.

These findings strongly support our initial hypothesis, highlighting SSL-EY’s

unique capacity to learn robust and efficient representations with minimal architec-

tural overhead. The method’s consistent performance across datasets of varying

complexity and its resilience to projector removal underscore its versatility and

potential for broad applicability in self-supervised learning tasks.

Despite the similarities in the underlying motivations across all three meth-

ods, our results suggest that a projector may not be a mandatory component for

correlation-based models, at least in the context of our proposed method. By achiev-

ing competitive results with reduced architectural requirements, SSL-EY not only

offers computational advantages but also suggests a more fundamental efficiency in

its approach to representation learning.
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4.3.7 LEY as an Informative Metric

An important challenge in self-supervised learning (SSL) is tuning models to ensure

their learned representations are robust and generalizable across various potential

downstream tasks. Traditionally, SSL methods are often tuned using classification

accuracy as a proxy metric. However, this approach risks overfitting the model

to the specific classification task, potentially compromising its versatility for other

applications. This practice contradicts the fundamental goal of SSL: to create

representations that are adaptable to a wide range of unforeseen challenges.

To address this issue, we propose that our EY loss (LEY) could serve as a more

appropriate surrogate metric for tuning and monitoring SSL models. By using LEY

instead of classification accuracy, we aim to maintain the model’s generality while

still providing a meaningful measure of representational quality. This approach aligns

more closely with the core principles of SSL, potentially leading to more versatile

and robust learned representations.

To explore this possibility, we investigated the relationship between EY loss and

classification accuracy. Our findings, presented in Figure VI.12, offer compelling

evidence for the potential of LEY as an informative metric in SSL training.
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Figure VI.12: Correlation between EY loss and classification accuracy for
CIFAR-100 and CIFAR-10 datasets.

The correlation between EY loss and classification accuracy, shown in Figure

VI.12, offers two key insights:

1. The strong relationship between EY loss and classification accuracy highlights

the potential of maximizing canonical correlation as a pretext task in SSL.

2. The sustained increase in correlation over 1,000 epochs suggests that even

with reduced projector dimensionality, SSL-EY does not reach full capacity,
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indicating untapped potential in its representation capacity.

The evolution of the correlation, measured by LEY, suggests a new avenue for

monitoring model training, potentially eliminating the need for a separate validation

task. These results collectively demonstrate SSL-EY’s robustness, efficiency, and

potential for simplifying the self-supervised learning process across different dataset

complexities.

This analysis not only supports the use of LEY as a valuable monitoring tool for

SSL training but also highlights its potential to streamline the development process.

By providing a metric that correlates strongly with downstream performance without

being tied to a specific task, LEY could offer a more principled approach to model

tuning in self-supervised learning contexts.

5 Discussion and Limitations

5.1 Discussion

This chapter introduces DCCA-EY and SSL-EY, novel approaches that address key

limitations in Deep CCA and Self-Supervised Learning methods. These innova-

tions offer substantial advantages in terms of scalability, convergence speed, and

robustness to hyperparameter tuning, making them valuable tools for practitioners

in representation learning.

One of the most notable strengths of DCCA-EY is its superior performance

across various mini-batch sizes, as evidenced by our experiments on the Split

MNIST and XRMB datasets. This scalability is crucial for handling large-scale

datasets and diverse computational environments, a common challenge in modern

machine learning applications. Moreover, both DCCA-EY and SSL-EY demonstrate

faster convergence compared to existing methods, a particularly valuable trait in

SSL tasks where training often requires a large number of epochs.

The reduced sensitivity to hyperparameter choices shown by our methods is

another advantage. In practical applications, where extensive tuning can be pro-

hibitively time-consuming or computationally expensive, this robustness can greatly

streamline the deployment process. SSL-EY’s ability to maintain performance

with reduced or absent projectors suggests more efficient representation learning,

potentially leading to simpler architectures and reduced computational requirements.

Furthermore, the observed correlation between EY loss and classification accu-

racy in SSL-EY provides a novel way to monitor training progress without relying
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on labeled validation data. This insight opens up new possibilities for unsupervised

learning scenarios and could lead to more efficient training protocols.

5.2 Limitations

However, despite these advancements, our work is not without limitations. While

our experiments were comprehensive, they were limited to specific datasets (Split

MNIST, XRMB, CIFAR-10, CIFAR-100). Future research should explore performance

on a broader range of datasets, including those from different domains such as

natural language processing and time series data. This would provide a more

complete picture of the methods’ generalizability and robustness across diverse

data types.

Additionally, while we have demonstrated improved scalability, further research is

needed to assess performance on very large models and extremely high-dimensional

datasets, which are increasingly common in cutting-edge machine learning applica-

tions. A more in-depth theoretical analysis of why DCCA-EY and SSL-EY perform

well, particularly in stochastic settings, could provide valuable insights and guide

future improvements.

Although our methods show improved convergence, a detailed study of their

computational requirements compared to existing methods would be beneficial,

especially for resource-constrained environments. Exploring how DCCA-EY and

SSL-EY can be combined with other advanced techniques in deep learning, such

as attention mechanisms or adaptive learning rates, could potentially lead to even

better performance.

While our methods improve performance, further work on enhancing the in-

terpretability of the learned representations could increase their utility in domains

where model explainability is crucial. Our experiments, while extensive, were limited

to 1,000 epochs. Investigating the long-term stability and performance of our meth-

ods over even longer training periods could provide insights into their asymptotic

behavior.

Conclusion

In conclusion, DCCA-EY and SSL-EY represent advancements in Deep CCA and

Self-Supervised Learning, offering improved scalability, faster convergence, and

robustness to hyperparameter choices. These qualities make them valuable tools

for researchers and practitioners working with complex, high-dimensional data. The
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strong performance of our methods, even without extensive tuning, suggests that

they capture fundamental aspects of correlation and representation learning. This

not only enhances their practical utility but also opens up new avenues for theoretical

exploration in the fields of multiview learning and self-supervised learning.
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import torch
import torch.nn as nn

class UnifiedEY(nn.Module):
def __init__(self, encoders, ssl_mode=False):

super(UnifiedEY, self).__init__()
self.ssl_mode = ssl_mode
if ssl_mode:

assert len(encoders) == 1, "SSL mode requires a single encoder"
self.encoder = encoders[0]

else:
self.encoders = nn.ModuleList(encoders)

def forward(self, Xs):
if self.ssl_mode:

Zs = [self.encoder(X) for X in Xs]
else:

Zs = [encoder(X) for encoder, X in zip(self.encoders, Xs)]
return Zs

def loss(self, Zs, alphas=[0, 0]):
# Compute total between-view covariance matrix
C = torch.zeros(Zs[0].shape[1], Zs[0].shape[1])
for i in range(len(Zs)):

for j in range(i + 1, len(Zs)):
C += torch.matmul(Zs[i].T, Zs[j]) / Zs[i].shape[0]

# Compute total within-view variance matrix
V = torch.zeros(Zs[0].shape[1], Zs[0].shape[1])
for i, alpha in enumerate(alphas):

Vi = torch.matmul(Zs[i].T, Zs[i]) / Zs[i].shape[0]
V += alpha * torch.eye(Vi.shape[0]) + (1 - alpha) * Vi

# Compute loss
loss = -2 * torch.trace(C) + torch.norm(V, p='fro') ** 2

return loss

Listing 3: Unified PyTorch implementation for DCCA-EY and SSL-EY.
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Preface

This work was published in the Journal of Open Source Software (Chapman and

H.-T. Wang, 2021). I have been the lead developer of the CCA-Zoo package since

its inception in 2020. All of the methods we have described in this thesis are

implemented in CCA-Zoo and are immediately available for use by the research

community.

1 Introduction

This chapter presents CCA-Zoo, a comprehensive Python library for multiview learn-

ing that was developed as a key contribution of this thesis. CCA-Zoo brings together a

wide range of methods for canonical correlation analysis (CCA), partial least squares

(PLS), and related techniques, providing efficient and user-friendly implementations

that integrate seamlessly with the Python data science ecosystem.

The development of CCA-Zoo was motivated by the recognition that the lack

of well-developed and widely available software has been a major barrier to the

adoption and advancement of multiview learning methods, particularly in the Python

community. While popular libraries like scikit-learn (Pedregosa et al., 2011) offer

basic implementations of classical techniques like CCA and PLS, they lack support

for many of the important extensions and variants that have been proposed in the

literature to handle challenges such as high-dimensional data, non-linearity, sparsity,

and deep learning.

CCA-Zoo aims to fill this gap by providing a unified framework for multiview

learning that is both comprehensive and accessible. The library includes implemen-

tations of both classical and state-of-the-art methods, ranging from regularized and

kernel-based extensions of CCA and PLS to modern deep learning and probabilistic
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approaches. These implementations are designed to be efficient, scalable, and easy

to use, with a consistent API that follows the conventions of scikit-learn.

In addition to its core algorithms, CCA-Zoo provides a range of tools and utilities

to support the entire multiview learning workflow, from data preprocessing and

feature selection to model evaluation and visualization. The library also includes a

collection of example datasets and pre-trained models, making it easy for users to

get started and explore different techniques on real-world problems.

Throughout the development of this thesis, CCA-Zoo has played a central role as

both a research tool and a means of disseminating our methodological contributions

to the wider community. The experiments and case studies presented in the previ-

ous chapters have all relied on CCA-Zoo implementations, ensuring reproducibility

and comparability of our results. At the same time, by releasing CCA-Zoo as an

open-source library on GitHub and PyPi, we have enabled other researchers and

practitioners to easily build upon and extend our work.

We also discuss the impact that CCA-Zoo has had so far, both within the context

of this thesis and in the broader research community, and outline directions for future

development and improvement. Our hope is that CCA-Zoo will serve as a valuable

resource and catalyst for advancing the state-of-the-art in multiview learning, and

for bridging the gap between methodological research and practical application.

2 Background: Software for Multiview Learning

The field of multiview learning has recently witnessed a surge of interest from the

research community. This growth can be attributed to the increasing availability

of multi-modal data across various domains, from bioinformatics to social media

analysis, and the recognition that integrating multiple views can often lead to better

insights and predictions than relying on a single perspective.

Traditionally, the development of multiview learning methods has been dominated

by researchers in the statistical learning community, who have primarily relied on

programming languages like R and MATLAB. These platforms have served as fertile

ground for the creation and dissemination of many state-of-the-art algorithms.

However, this has created a challenge for researchers and practitioners who

prefer to work in the Python programming language, which has become increasingly

popular for machine learning tasks due to its simplicity, flexibility, and rich ecosystem

of libraries. Python users have been faced with two suboptimal options: either port

existing R or MATLAB implementations into Python, which can be a time-consuming
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and error-prone process requiring significant domain expertise, or make do with the

limited set of multiview methods available in general-purpose Python libraries like

scikit-learn (Pedregosa et al., 2011).

This fragmentation of the multiview learning landscape across different program-

ming languages has created significant barriers to entry for Python users, potentially

hindering the widespread adoption and application of these powerful techniques.

Moreover, it has made it difficult for researchers to compare and benchmark different

methods on a level playing field, as implementations may vary widely in terms of

performance, scalability, and ease of use.

The CCA-Zoo package aims to address these challenges by providing a com-

prehensive and unified platform for multiview learning in Python. By offering a

wide range of algorithms spanning both classical and state-of-the-art approaches,

CCA-Zoo enables researchers and practitioners to easily explore and apply these

techniques to their own data and problems, without the need for extensive domain

expertise or cumbersome porting of code.

Through its scikit-learn compatible API, modular design, and efficient implemen-

tations, CCA-Zoo seamlessly integrates with the existing Python machine learning

ecosystem, lowering the barriers to entry and accelerating the pace of research

and application in multiview learning. By bringing together methods from different

research communities and programming languages under a common framework,

CCA-Zoo also facilitates fair and reproducible comparisons of different approaches,

helping to advance our understanding of their strengths and limitations.

In the following sections, we will consider the design principles, key features, and

implementation details of CCA-Zoo, showcasing how it can be used to streamline

and enhance multiview learning workflows in Python.

3 Methods: Design and Implementation of CCA-Zoo

CCA-Zoo is designed to be a comprehensive and user-friendly library for multiview

learning in Python. In this section, we describe the key design decisions and

implementation details that underpin its functionality, flexibility, and performance.

Figure VII.1 provides an overview of the library’s structure and its integration with

the wider Python machine learning ecosystem.
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3.1 API Design and Scikit-Learn Compatibility

A central goal in the development of CCA-Zoo was to ensure maximum compatibility

and interoperability with the existing Python machine learning ecosystem. To this

end, we adopted the API design principles and conventions of the widely-used

scikit-learn library (Pedregosa et al., 2011). Scikit-learn has become the de

facto standard for machine learning in Python, thanks to its consistent, user-friendly

API and its extensive collection of tools for data preprocessing, model selection,

evaluation, and visualization.

By adhering to the scikit-learn API, CCA-Zoo inherits these benefits and

ensures that users can seamlessly integrate multiview learning methods into their ex-

isting workflows. All estimators in CCA-Zoo follow the fit-transform pattern, where the

fit() method learns model parameters from training data, and the transform()

method applies the learned transformation to new data. Hyperparameters are

specified as constructor arguments, allowing easy model creation and configuration.

This design choice not only makes CCA-Zoo intuitive and easy to use for anyone

familiar with scikit-learn, but also enables the use of scikit-learn’s powerful

model selection and evaluation tools, such as cross-validation and grid search,

directly with CCA-Zoo estimators. Users can construct complex pipelines that include

data preprocessing, feature selection, and multiview learning steps, all with a

consistent, declarative syntax.

Figure VII.1 illustrates this integration, highlighting CCA-Zoo’s compatibility with

key components of the Python machine learning stack.

3.2 Modular Architecture and Extensibility

Another key design principle of CCA-Zoo is modularity. The library is organized into

distinct submodules, each focusing on a specific aspect of the multiview learning

workflow:

• datasets: Classes for generating synthetic data and loading real-world

datasets.

• preprocessing: Tools for data normalization, scaling, and dimensionality

reduction.

• model_selection: Wrappers for scikit-learn’s cross-validation and hy-

perparameter tuning utilities, adapted for multiview settings.

• linear: Estimators for linear CCA, PLS, and their variants.
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Figure VII.1: The CCA-Zoo compatibility map showcases integration with various
machine learning packages. The deep learning module is built upon
PyTorch and Lightning, reflecting their status as industry standards

for neural network implementations. The probabilistic module
employs NumPyro for its Bayesian inference capabilities, enhancing

the application of probabilistic approaches in CCA.

• deep: Deep learning-based approaches, built on top of PyTorch (Paszke

et al., 2019) and PyTorch Lightning (Falcon, 2019).

• probabilistic: Bayesian multiview learning methods, implemented with

NumPyro (Phan, Pradhan, and Jankowiak, 2019), a probabilistic programming

library built on top of JAX (DeepMind, 2020).

• visualization: Functions for visualizing model parameters, latent spaces,

and performance metrics.

This modular structure makes the codebase more maintainable and easier to

navigate. It also facilitates extensibility: new methods and features can be added to

each submodule without affecting the rest of the library, as long as they adhere to

the common API conventions.

Furthermore, the use of well-established libraries like PyTorch, PyTorch Lightning,

and NumPyro for the deep learning and probabilistic modules ensures that CCA-Zoo

can benefit from the latest advancements in these rapidly evolving fields. Devel-

opers can easily experiment with new architectures, loss functions, and inference

techniques, while still leveraging the data handling and model evaluation capabilities

of the core CCA-Zoo framework.
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3.3 New methods included from this thesis

CCA-Zoo includes all of the methods we have described in this thesis, including

the Elastic Net regularized CCA, methods for simulating data, as well as gradient

descent based CCA and DCCA-EY. We also include all of the relevant baselines.

3.4 Flexibility and Ease of Use

CCA-Zoo is designed to be flexible and easy to use for a wide range of multiview

learning tasks. The library provides a unified interface for working with both linear

and nonlinear methods, unsupervised and semi-supervised settings, and two-view

and multi-view scenarios.

The choice of default hyperparameters and architectural choices for deep learn-

ing models has been carefully considered to ensure good performance on a variety

of datasets without the need for extensive tuning. At the same time, users have full

control over these settings and can easily customize them for specific tasks.

CCA-Zoo also includes a range of utility functions and classes that simplify com-

mon tasks and help users avoid boilerplate code. For example, the datasets

module provides a consistent interface for accessing and sampling from both syn-

thetic and real-world datasets, handling data loading, splitting, and formatting behind

the scenes.

Similarly, the model_selection module extends scikit-learn’s cross-validation

and grid search tools to handle the multi-view setting seamlessly. Users can perform

model selection and hyperparameter tuning with just a few lines of code, without

having to worry about the intricacies of indexing and reshaping views.

Listing 4 demonstrates this simplicity and flexibility, showing a complete workflow

for training and evaluating a regularized CCA model with cross-validated hyperpa-

rameter selection:

This example showcases several key features of CCA-Zoo:

• The LatentVariableData class allows easy generation of synthetic multi-

view data with a specified number of features and latent dimensions.

• The rCCA class provides a regularized CCA estimator with a scikit-learn-

compatible API, supporting both fit-transform and inverse transform opera-

tions.

• The GridSearchCV class wraps scikit-learn’s grid search functionality,

automatically handling the multi-view parameter grid and cross-validation
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from cca_zoo.datasets import LatentVariableData
from cca_zoo.linear import rCCA
from cca_zoo.model_selection import GridSearchCV
from cca_zoo.visualisation import SeparateRepresentationScatterDisplay

#Generate synthetic multi-view data
data = LatentVariableData(view_features=[10, 10], latent_dims=2)
X, Y = data.sample(n_samples=200, seed=42)

#Define hyperparameter grid
param_grid = {
'c': ([0.1, 0.3, 0.7, 0.9], [0.1, 0.3, 0.7, 0.9]),
}

#Perform cross-validated grid search
model = GridSearchCV(rCCA(latent_dimensions=2),
param_grid=param_grid,
cv=5).fit(X, Y)

#Visualize latent space
SeparateRepresentationScatterDisplay.from_estimator(model.best_estimator_)

Listing 4: A complete example of training and evaluating a regularized CCA model
with CCA-Zoo.

splitting.

• The SeparateRepresentationScatterDisplay class provides a high-level

interface for visualizing the learned latent space, with separate plots for each

view.

By providing such high-level abstractions and adhering to familiar API conven-

tions, CCA-Zoo aims to make multiview learning methods accessible to a wide

audience, from seasoned machine learning practitioners to domain experts in fields

like bioinformatics, computer vision, and natural language processing.

3.5 Performance and Scalability

In addition to ease of use and flexibility, CCA-Zoo is designed with performance and

scalability in mind. The library is implemented in pure Python, with computationally

intensive operations delegated to optimized libraries like NumPy (Harris et al., 2020),

SciPy (Virtanen et al., 2020), and PyTorch.
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For linear methods like CCA and PLS, CCA-Zoo leverages the randomized SVD

and other matrix approximation techniques to efficiently handle high-dimensional

data. These techniques allow the library to scale to datasets with millions of features

and samples, without sacrificing accuracy or numerical stability.

In the deep learning module, CCA-Zoo takes advantage of PyTorch’s GPU accel-

eration and automatic differentiation capabilities to enable fast training of complex

models on large-scale datasets. The use of PyTorch Lightning further stream-

lines the training process, providing a high-level interface for distributed training,

checkpointing, and logging.

For probabilistic methods, CCA-Zoo leverages the power of NumPyro and JAX

to perform efficient variational inference and MCMC sampling on both CPUs and

GPUs. The use of modern probabilistic programming techniques allows users to

easily specify and train complex Bayesian models, while still benefiting from the

performance and scalability of the underlying libraries.

CCA-Zoo’s performance and scalability claims are backed by extensive bench-

marking and testing on a variety of synthetic and real-world datasets. In Section 4,

we present a selection of these experiments, comparing CCA-Zoo’s performance

to other popular multiview learning libraries and demonstrating its ability to handle

large-scale, high-dimensional data.

3.6 Development and Maintenance

CCA-Zoo is developed as an open-source project, with its source code and docu-

mentation hosted on GitHub at https://github.com/jameschapman19/cca_zoo.

The library follows modern software development best practices, including version

control, continuous integration, and automated testing.

The development team is committed to maintaining and improving CCA-Zoo over

the long term. This includes fixing bugs, adding new features and methods, and

keeping dependencies up to date. The team also welcomes contributions from the

community in the form of bug reports, feature requests, and pull requests.

To ensure the library’s quality and reliability, CCA-Zoo includes a comprehensive

test suite that covers all major functionality. These tests are automatically run on

each commit and pull request, using continuous integration services like Travis CI

and GitHub Actions. This helps catch regressions and ensures that new features

are properly integrated and documented.

CCA-Zoo’s documentation is another key aspect of its maintenance and develop-

ment. The library includes extensive API documentation, generated automatically
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from docstrings using tools like Sphinx and Read the Docs. The documentation also

includes user guides, tutorials, and examples to help users get started and make

the most of the library’s features.

In addition to the API documentation, CCA-Zoo’s GitHub repository includes a

wiki and issue tracker where users can find additional information, ask questions,

and report bugs. The development team is responsive to user feedback and strives

to address issues in a timely manner.

By adhering to these development and maintenance practices, CCA-Zoo aims to

provide a stable, reliable, and well-documented library that can serve as a foundation

for multiview learning research and applications for years to come.

In summary, the key design decisions and implementation details of CCA-Zoo

are:

• Adherence to the scikit-learn API for maximum compatibility and ease of

use.

• Modular architecture for maintainability and extensibility.

• Flexibility and unified interface for both linear and deep learning methods.

• Use of optimized libraries and techniques for performance and scalability.

• Open-source development with modern software engineering practices.

• Comprehensive documentation and user support.

These choices reflect CCA-Zoo’s goal of providing a powerful yet accessible

toolkit for multiview learning in Python, suitable for both research and practical

applications.

4 Experiments and Results

Throughout this thesis, the CCA-Zoo package has been used extensively for con-

ducting experiments and evaluating the proposed multiview learning methods. The

library’s comprehensive set of tools and its seamless integration with the Python

data science ecosystem have greatly facilitated the implementation and assessment

of these methods on a wide range of datasets and tasks.

In this section, we showcase the performance and versatility of CCA-Zoo through

a series of benchmarking experiments. These experiments not only demonstrate

the efficiency of the library’s implementations but also highlight its ability to handle
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high-dimensional data, a crucial requirement in many real-world applications such

as bioinformatics and natural language processing.

4.1 Benchmarking Setup

To assess the computational efficiency of CCA-Zoo, we compared its performance

against the widely-used scikit-learn library. We focused on two fundamental

multiview learning methods: Canonical Correlation Analysis (CCA) and Partial Least

Squares (PLS). The experiments were conducted on synthetic datasets of varying

dimensionality to evaluate the scalability of the implementations.

The datasets were generated as random matrices with a fixed number of samples

(100) and a varying number of features (50, 100, 200, 400, and 800) for each view.

The number of latent dimensions was set to 10 for both CCA and PLS. To obtain

reliable performance metrics, each experiment was repeated 10 times, and the

average execution time was reported.

The benchmarking experiments were performed using the following software

versions:

• CCA-Zoo (version: 2.4.0)

• Scikit-learn (version: 1.3.0)

All experiments were run on a machine with an Intel Core i7-9700K CPU

(3.60GHz) and 32GB of RAM, running Ubuntu 20.04.

4.2 Canonical Correlation Analysis

Figure VII.2 presents the comparison of execution times between CCA-Zoo and

scikit-learn for CCA. Across all tested dimensionalities, CCA-Zoo demonstrates

competitive performance, with execution times comparable to or better than those of

scikit-learn.

The efficiency of CCA-Zoo’s CCA implementation can be attributed to its use

of the principal component space for computing the canonical correlations. By

first projecting the data onto a lower-dimensional space defined by the leading

principal components, CCA-Zoo reduces the computational burden associated with

high-dimensional covariance matrices, resulting in faster execution times without

sacrificing accuracy.

This performance advantage is particularly relevant in real-world applications,

where the number of features often greatly exceeds the number of samples. In such
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Figure VII.2: Performance comparison for CCA methods

scenarios, CCA-Zoo’s ability to efficiently handle high-dimensional data can lead to

significant time savings and enable the analysis of larger datasets.

4.3 Partial Least Squares

Figure VII.3 shows the execution time comparison for PLS. Similar to the CCA

results, CCA-Zoo exhibits a robust performance profile, with execution times that are

competitive with those of scikit-learn across all tested dimensionalities.

The competitive performance of CCA-Zoo’s PLS implementation can be attributed

to its use of efficient algorithms and data structures, such as the NIPALS algorithm

and the deflation scheme for computing the latent components. These optimizations

allow CCA-Zoo to scale well with increasing data dimensionality, making it a suitable

choice for a wide range of applications.

4.4 Real-World Applications

In addition to the synthetic benchmarking experiments, CCA-Zoo has been used

throughout this thesis to evaluate the proposed multiview learning methods on

various real-world datasets. These datasets span multiple domains, including

neuroscience, bioinformatics and computer vision and pose diverse challenges in

terms of dimensionality, sparsity, and noise.
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Figure VII.3: Performance comparison for PLS methods

5 Discussion and Limitations

5.1 Contributions and Impact

The development of CCA-Zoo represents a significant contribution to the field of

multiview learning, particularly within the Python ecosystem. By providing a compre-

hensive and user-friendly library that integrates seamlessly with existing tools like

scikit-learn and PyTorch, CCA-Zoo has the potential to greatly accelerate research

and application of multiview methods.

By being fully compatible with sklearn pipelines, we believe that CCA-Zoo also

ensures that deconfounding parameters can be estimated as part of the model fitting

process rather than separate steps which introduce a subtle form of leakage. While

we did not include this in the package itself to avoid feature creep, we recommend

using sklearn pipelines for deconfounding such as Raamana (2020) which I was able

to contribute to in a small way. This allows users to automatically identify and remove

confounding factors from their data, improving the interpretability and generalization

of multiview models. This is particularly important in applications like genomics and

neuroimaging, where confounding variables can significantly impact the results.

Throughout this thesis, CCA-Zoo has played a central role in enabling the em-

pirical studies and method development presented in the previous chapters. The

library’s efficient implementations of both classical and state-of-the-art multiview
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algorithms allowed us to conduct extensive experiments on real-world datasets,

comparing the performance of different methods and gaining new insights into their

behavior. Moreover, the modular design of CCA-Zoo facilitated rapid prototyping and

testing of novel extensions and refinements to existing techniques.

Beyond its use in this thesis, CCA-Zoo has already begun to have an impact in

the wider research community. The library has been well-received on GitHub, with

over 150 stars and 30 forks to date, and has been downloaded nearly 500 times

per month from the Python Package Index. Several published papers and ongoing

projects in fields ranging from genomics to neuroscience have used CCA-Zoo,

demonstrating its potential to enable new discoveries and applications.

5.2 Limitations and Future Work

While CCA-Zoo provides a solid foundation for multiview learning in Python, there are

certainly areas where it could be improved and extended. One current limitation is

the lack of GPU acceleration for some of the more computationally intensive methods,

which could hamper their scalability to massive datasets. In future versions, we plan

to leverage libraries like cupy to enable seamless GPU support.

Another direction for future work is to expand the library’s functionality to encom-

pass an even wider range of multiview learning paradigms, such as multi-modal

deep learning, multi-view clustering, and multi-view matrix factorization. By providing

a unified interface to these diverse approaches, CCA-Zoo could serve as a powerful

toolkit for exploring and combining different perspectives on data.

Finally, we are committed to the ongoing maintenance and development of

CCA-Zoo as an open-source project. We welcome contributions from the community

in the form of bug reports, feature requests, documentation improvements, and code

contributions. By engaging with users and incorporating their feedback, we hope to

continuously refine and enhance the library to better serve the needs of multiview

learning researchers and practitioners.

5.3 Conclusion

In conclusion, CCA-Zoo fills an important gap in the Python ecosystem by providing a

comprehensive, efficient, and user-friendly library for multiview learning. Through its

extensive catalog of classical and modern multiview methods, seamless integration

with popular machine learning tools, and flexible API, CCA-Zoo enables researchers

and practitioners to easily explore and apply these powerful techniques to their own

data and problems.
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The development of CCA-Zoo has been a central contribution of this thesis,

underpinning many of the empirical studies and methodological advances presented

in earlier chapters. By making the library open-source and freely available to the

community, we hope to accelerate progress in multiview learning and promote

reproducible, extensible research.

Looking ahead, we see ample opportunities to expand and refine CCA-Zoo, in

collaboration with its growing base of users and contributors. Through sustained

development and community engagement, we believe CCA-Zoo has the potential

to become an indispensable tool in the multiview learning toolkit, enabling new

discoveries and applications across a wide range of domains.
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Conclusion

This chapter provides a summary of the findings of this thesis, discusses their

implications, and outlines potential directions for future work.

1 Summary of Contributions

1.1 Regularisation of CCA Models: A Flexible Framework based
on Alternating Least Squares

This chapter presented the FRALS framework for CCA, addressing challenges in

analyzing large-scale neuroimaging datasets from projects such as the Human Con-

nectome Project and the Alzheimer’s Disease Neuroimaging Initiative. Incorporating

structured priors through regularization, particularly the elastic net penalty, FRALS

enhanced the interpretability and generalizability of CCA models. This method,

documented in the work presented at the OHBM (James Chapman, 2023), has been

effective in uncovering significant brain-behavior associations, showing superior

out-of-sample performance compared to traditional methods.

1.2 Insights From Generating Simulated Data for CCA

This chapter contributed to the debate on the interpretation of model weights versus

loadings in CCA. By generating high-dimensional simulated data and categorizing

methods into explicit and implicit latent variable models, the chapter highlights the

robustness of loadings to columnwise transformations in data matrices, a feature

not shared with weights. The simulated data strategies formed part of the analysis
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in Mihalik, Chapman, Adams, Winter, Ferreira, Shawe-Taylor, Mourao-Miranda, et al.

(2022) and influenced the analysis in Adams et al. (2024).

1.3 Efficient Algorithms for the CCA Family: Unconstrained
Losses with Unbiased Gradients

Focusing on scaling challenges for CCA and PLS in the context of large-scale

biomedical datasets like the UK Biobank, this chapter introduces a new gradient

descent algorithm tailored for generalized eigenvalue problems. The methods devel-

oped, informed by publications (Chapman, Aguila, and Wells, 2022; Chapman, Wells,

and Aguila, 2024; Chapman and Wells, 2023), enable the application of multiview

CCA and PLS to datasets with extensive dimensions and complex structures.

1.4 Deep CCA and Self-Supervised Learning

This chapter introduces a novel formulation of Deep CCA optimized for the stochastic

minibatch setting and proposes SSL-EY, a new competitive SSL method. Grounded

in findings from (Chapman and Wells, 2023) and (Chapman, Wells, and Aguila,

2024), the chapter demonstrates the robustness of these methods against hyperpa-

rameter sensitivity and elucidates connections between CCA-based SSL methods

and other contemporary SSL approaches.

1.5 CCA-Zoo: A collection of Regularized, Deep Learning-based,
Kernel, and Probabilistic methods in a scikit-learn style
framework

Presenting CCA-Zoo, a Python library that consolidates and enhances the acces-

sibility of multiview learning methods, this chapter details the development and

capabilities of the library, which implements a variety of CCA, PLS, and related

techniques. As detailed in (Chapman and H.-T. Wang, 2021), CCA-Zoo addresses

gaps in existing software offerings and facilitates broader adoption and innovation

within the research community.

In summary, we have demonstrated novel ways to introduce structured priors

into CCA models, developed efficient algorithms for large-scale CCA, extended CCA

to deep learning, and provide a unified interface for various CCA methods. Finally,

we have made software implementations of these methods available to the research

community through the CCA-Zoo package which have already been well-received by

the community.
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2 Limitations and Challenges

It is important to note that while this thesis presents significant methodological

advancements and software contributions, the new applied results are somewhat

limited. This limitation was largely due to unforeseen circumstances, including

significant bureaucratic challenges in accessing the UK Biobank dataset and the

global impact of the COVID-19 pandemic. These factors restricted our ability to

conduct extensive applied research as initially planned. However, this limitation has

been partially offset by the broad adoption and application of our software tools by

other researchers in various fields, extending the impact of our work beyond our

own direct applications.

3 Future Work

3.1 Applications

3.1.1 Large-Scale Neuroimaging Datasets

While the applications presented in this thesis, particularly the UK Biobank analysis

in Chapter VI, have demonstrated the potential of our methods, there is still vast

untapped potential in applying these techniques to even larger and more diverse

datasets. The ABCD dataset, for instance, offers a rich source of multimodal data

that could benefit from the regularized and scalable CCA methods developed in

this thesis. Preliminary results on this dataset have shown promise, and we believe

that further exploration will yield valuable insights into brain development and its

associated factors.

3.1.2 Wearable Devices

The rise of wearable devices and the proliferation of biometric data present new

opportunities for applying multiview learning techniques to personal health monitor-

ing. By integrating data streams from devices such as smartwatches, continuous

glucose monitors, and sleep trackers, we can gain insights into an individual’s physi-

cal and mental well-being that were previously inaccessible. I strongly believe that

the development of interpretable and scalable methods for analyzing these diverse

data sources will be crucial for unlocking the full potential of wearable technology in

personalized healthcare.
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3.2 Methods

3.2.1 Proximal Gradient Descent for Regularized CCA

Preliminary experiments suggest that the proximal gradient descent approach dis-

cussed in chapter V is much faster than existing methods, making it a promising

direction for future research. We anticipate that this methodology will significantly

enhance the scalability and applicability of CCA, PCA, and PLS in the era of big

data and complex regularization schemes.

4 Closing Remarks

My PhD journey has been a fascinating exploration of the world of multiview learning,

with Canonical Correlation Analysis at its core. What began as an endeavor to apply

deep learning to uncover brain-behavior associations evolved into a multifaceted

exploration, leading to the development of scalable algorithms for linear CCA and

the investigation of connections between CCA and self-supervised learning.

Confronting the scalability bottleneck head-on led me to develop these efficient

algorithms, pushing the boundaries of CCA and PLS methods. This exploration also

unveiled intriguing connections between CCA and self-supervised learning, bringing

the journey full circle.

Witnessing the rapid growth and evolution of multiview learning during my PhD

has been incredibly stimulating. From the emergence of powerful multimodal lan-

guage models to the increasing adoption of self-supervised learning techniques,

being part of this dynamic field has been a privilege. This journey has transformed

me as a researcher, honing my skills in algorithm development, software engineering,

and bridging theoretical concepts with practical applications.

One of the most rewarding aspects of this work has been its impact, particularly

through the CCA-Zoo package. Seeing researchers across various fields use

these tools to tackle diverse problems has been immensely gratifying, underscoring

the importance of accessible method implementations. Moreover, the potential

applications of these methods in areas like large-scale neuroimaging studies and

wearable device data analysis hint at broader impacts on our understanding of

human health and behavior.

Looking ahead, I believe the future of multiview learning holds immense promise.

The integration of deep learning with CCA and the application of these methods to

ever-larger and more diverse datasets open exciting avenues for research. Particu-
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larly promising are the applications to large-scale neuroimaging datasets and the

analysis of multimodal data from wearable devices for personalized healthcare.
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Appendix A

HCP and ADNI Loadings

This appendix builds upon the results presented in Chapter III, where we introduced

a method to regularize CCA using structured priors on model weights, demonstrated

with Human Connectome Project (HCP) and Alzheimer’s Disease Neuroimaging

Initiative (ADNI) data. In light of the insights gained from Chapter IV, which examined

the relationship between loadings and weights in CCA using simulated data, we

revisit the HCP and ADNI results to further explore the interpretability of the models.

1 Human Connectome Project (HCP) Data

This section presents the loadings for the HCP data, which were obtained using the

models described in Chapter III. The loadings are visualized using chord diagrams

for each model. The chord diagrams show the top 8 positive and negative brain

loadings for each model. The loadings are ordered by their absolute value, with

the largest loadings at the top of the diagram. The chord diagrams provide a visual

representation of the relationship between the brain regions and the latent variables

in each model. The loadings are color-coded to indicate the strength and direction of

the relationship between the brain regions and the latent variables. Positive loadings

are shown in blue, and negative loadings are shown in red. The width of the chords

indicates the strength of the relationship between the brain regions and the latent

variables. The chord diagrams provide a concise and intuitive way to compare

the loadings across the different models and identify patterns in the relationships

between the brain regions and the latent variables.
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1.1 Brain Connectivity Weights and Loadings

Figure A.1 shows chord diagrams of the top 8 positive and negative brain loadings

for each model.
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Figure A.1: Chord diagrams of the top 8 positive and negative brain loadings for
each model.
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2 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Data

This section presents the loadings for the ADNI data, which were obtained using the

models described in Chapter III. The loadings are visualized using statistical maps

for each model. The statistical maps show the brain structure loadings for each

model. The loadings are color-coded to indicate the strength and direction of the

relationship between the brain structures and the latent variables. Positive loadings

are shown in blue, and negative loadings are shown in red. The statistical maps

provide a visual representation of the relationship between the brain structures and

the latent variables in each model. The maps allow us to compare the loadings

across the different models and identify patterns in the relationships between the

brain structures and the latent variables.

2.1 Brain Structure Weights and Loadings

Figure A.2 shows statistical maps of brain structure loadings and weights for each

model.
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