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ABSTRACT:
The soundscape approach provides a basis for considering the holistic perception of sound environments in context.

Whereas steady advancements have been made in methods for assessment and analysis, a gap exists for comparing

soundscapes and quantifying improvements in the multidimensional perception of a soundscape. To this end, there is

a need for the creation of single value indices to compare soundscape quality which incorporate context, aural

diversity, and specific design goals for a given application. Just as a variety of decibel-based indices have been

developed for various purposes (e.g., LAeq, LCeq, L90, Lden, etc.), the soundscape approach requires the ability to cre-

ate original indices for different uses, which share a common language and understanding. Therefore, a unified

framework for creating bespoke and reference single index measures of soundscape perception is proposed, allowing

for different metrics to be defined in the future. This framework is based on a four-step test-target paradigm wherein

a desired soundscape perception is defined as a target distribution within the soundscape circumplex, and the two-

dimensional Kolmogorov-Smirnov distance is used to test an assessed soundscape against this target. Applications

and implications of this framework are discussed, and a multi-objective optimisation method for empirically defining

perception indices is proposed. VC 2024 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

The European Union (EU) Green Paper on Future

Noise Policy indicates that 80� 106 EU citizens are suffer-

ing from potentially harmful environmental noise levels,

according to the World Health Organization (WHO) recom-

mendations (Berglund et al., 1999). The publication of the

EU Directive Relating to the Assessment and Management

of Environmental Noise (END) (European Union, 2002)

more than two decades ago has led to major actions across

Europe, where reducing noise levels are their main focus,

for which billions of Euros are being spent. However, it is

widely recognized that solely reducing sound level in peo-

ple’s living environments is not always feasible or cost-

effective and, more importantly, with only �30% of envi-

ronmental noise annoyance depending on physical aspects

of the signal, such as acoustic energy (Guski, 1997), sound

level reduction will not necessarily lead to improved quality

of life. For this reason, from a public health point of view, it

is necessary to explore alternative management and design

strategies for acoustic environments that rely on more posi-

tive soundscapes rather than merely environments not

affected by noise pollution (Aletta et al., 2018; Kang, 2023;

Kang et al., 2023).

Soundscape design, separate from (and complemen-

tary to) noise control engineering, is about the relation-

ships between human physiology, perception, the sound

environment, and its sociocultural context (Kang, 2006).

Soundscape research represents a paradigm shift in that it

combines physical, social, and psychological approaches

and considers environmental sounds as a “resource”

rather than “waste” (Kang and Schulte-Fortkamp, 2016),

relating to perceptual constructs rather than just physical

phenomena. However, the current research is still at the

stage of describing and identifying the problems and

tends to be fragmented and focussed on only special

cases, e.g., subjective evaluations of soundscapes for resi-

dential areas (Chen and Kang, 2023; Schulte-Fortkamp

and Kang, 2013). In the movement from noise control to

soundscape creation (Aletta and Kang, 2015), a vital step

is the standardization of methods to assess soundscape

quality.

A common aim for implementing soundscape assess-

ment in practice is to compare the quality of different sound-

scapes. Often (but not always) the goal is to identify a

“good” soundscape compared to a “bad” soundscape.

However, this presents several challenges:
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• What makes a soundscape good or bad is highly contex-

tual; that is, the same acoustic environment may result in

different appreciations and perceptual outcomes depend-

ing on where/when it is happening and what groups of

individuals are there to experience it.
• On what metric should the quality rating be based?

Previous attempts at defining objective metrics of

“soundscape quality” assessments have fallen short of

capturing the multidimensionality of people’s perception

of surrounding acoustic environments.
• How can we deal with different requirements and defini-

tions of how a soundscape should be perceived?

Soundscape constructs are normally seen as highly indi-

vidualised, whereas designing the soundscapes of public

spaces should look at accommodating the needs of a given

community of a space as a whole.

In many cases, the ultimate aim is to be able to rank

soundscapes based on their quality. There is pressure from

stakeholders and policymakers to move toward such simpli-

fied assessment protocols. However, any ranking metric

should be flexible and able to handle a variety of contexts

and definitions of what a good soundscape is for a given pur-

pose. To address this, we will propose the Soundscape

Perception Index (SPI) framework, a flexible method for

defining single value indices of soundscape quality based on

distributions within the soundscape circumplex model

(SCM; Axelsson et al., 2010, 2012; Mitchell et al., 2022).

As previously suggested, the primary motivation behind the

development of the SPI framework stems from the need to

address the existing gap in quantifying and comparing

soundscape quality across diverse contexts and applications.

By creating a unified framework for defining these indices,

the aim is to empower stakeholders, decision-makers, and

researchers with the ability to create tailored indices that

align with their specific objectives and design goals while

simultaneously enabling cross-comparisons and benchmark-

ing against empirically defined reference soundscapes. This

dual approach not only acknowledges the context-dependent

nature of soundscape perception but also fosters a common

language and understanding, facilitating knowledge sharing

and collaborative efforts within the field. This paper will

demonstrate the SPI framework and test whether it is capa-

ble of scoring soundscape quality and generating consistent

rankings of soundscapes across different contexts.

II. THEORETICAL BACKGROUND

In Aletta et al. (2016), the authors defined a framework

for categorising the components of a soundscape assess-

ment. They define three aspects: soundscape descriptors,

soundscape indicators, and soundscape indices. Soundscape

descriptors are defined as “measures of how people perceive

the acoustic environment,” and soundscape indicators are

defined as “measures used to predict the value of a sound-

scape descriptor.” The relationship between soundscape

indicator(s) and a soundscape descriptor effectively defines

what has been previously referred to as a “predictive

soundscape model” (Aletta et al., 2016; Mitchell, 2022).

There are primarily two rationales for modelling the rela-

tionship between the physical attributes and perceived (i.e.,

soundscape) qualities of the acoustic environment. First, a

predictive model can forecast how individuals would per-

ceive the acoustic environment, eliminating the need for

labour-intensive surveys (Mitchell et al., 2023). Second, a

precise predictive model may unveil the root causes of these

perceived qualities, thereby serving as a valuable tool for

design. Lionello et al. (2020) provided a review of such

models and concluded that contextual features play an

important role in increasing the quality of the model.

Indices, on the other hand, the primary focus of this article,

are single numerical values that combine multiple indicators

or descriptors to provide a comprehensive representation of

the overall soundscape perception and allow for comparison

between soundscapes.

The earliest and most commonly used scientific index

measuring sound level is the decibel (dB). To represent the

overall level of sound with a single value on one scale, as

the dB index does, is often desirable. For this purpose, a

number of different values representing sounds at various

frequencies must be combined. Several frequency weighting

networks have been developed since the 1930s, considering

typical human responses to sound based on equal-loudness-

level contours (Fletcher and Munson, 1933) and, among

them, the A-weighting network, with resultant dB values

called dBA, has been commonly used in almost all of the

national/international regulations (Kryter, 1994). However,

there have been numerous criticisms on its effectiveness

(Parmanen, 2007) as the correlations between dBA and per-

ceived sound quality (e.g., noise annoyance) are often low

(Hellman and Zwicker, 1987).

Another set of indices is psychoacoustic magnitudes,

including loudness, fluctuation strength, or roughness,

sharpness, and pitch strength, developed through sound

quality studies of industrial products since the 1980s

(Zwicker and Fastl, 2007). These emerged when it was con-

ceived that acoustic emissions can be characterised beyond

just sound level (Blauert and Jekosch, 1997). However,

although psychoacoustic magnitudes have proven to be suc-

cessful for the assessment of product sound quality, in the

field of environmental acoustics, their applicability has been

limited (Fastl, 2006) because a significant feature of envi-

ronmental acoustics is that there are multiple/dynamic sound

sources. Additionally, whereas pyschoacoustic magnitudes

incorporate perceptual aspects, both dB-based and psycho-

acoustic indices are ultimately describing the acoustic signal

and not the soundscape perception and may, therefore, be

more accurately described as indicators rather than sound-

scape indices (Mitchell et al., 2023).

When applied to urban sound and, specifically, noise

pollution, the soundscape approach introduces three key

considerations beyond traditional noise control methods:

(1) Considering all aspects of the environment which may

influence perception and not just the sound level and
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spectral content (e.g., visual setting, odour environment,

spatial layout, etc.);

(2) an increased and integrated consideration of the varying

impacts which different sound sources and sonic charac-

teristics have on perception; and

(3) a consideration of the positive and negative dimensions

of soundscape perception.

This approach can enable better outcomes by identifying

positive soundscapes (in line with the END’s mandate to

“preserve environmental noise quality where it is good”;

European Union, 2002), better identifying specific sources of

noise which impact soundscape quality and pinpointing the

characteristics that may need to be decreased, and illuminating

alternative methods which could be introduced to improve a

soundscape in which a reduction of noise is impractical (Fiebig,

2018; Kang and Aletta, 2018). Factors such as the presence of

natural or human-made sounds, their temporal patterns, and the

overall contextual meaning ascribed to these sounds all contrib-

ute to the holistic perception of a soundscape.

A. Existing “soundscape indices”

Although the field of soundscape research has witnessed

substantial progress, the development of standardized indi-

ces for evaluating and comparing soundscapes across

diverse contexts has been relatively limited. Existing indices

can be broadly observed as arising from two domains:

soundscape ecology and soundscape perception.

1. Soundscape ecology and bioacoustics

Within the realm of soundscape ecology, indices such as

the acoustic diversity index (ADI) and frequency-dependent

acoustic diversity index (FADI; Xu et al., 2023) have been

developed to quantify the diversity and complexity of acoustic

signals within a given soundscape. Similar indices [e.g., ADI,

normalised difference soundscape index (NDSI), acoustic

complexity index (ACI)] have also been developed to analyse

the acoustic signal of complex acoustic environments and indi-

cate the richness and diversity of biophonic (natural) and

anthrophonic (human-made) sound sources. However, whereas

these indices contribute valuable insights into the ecological

aspects of soundscapes, they do not directly address the per-

ceptual dimensions that are central to the soundscape approach

(Schulte-Fortkamp et al., 2023). The multidimensional nature

of soundscape perception, encompassing factors such as pleas-

antness, eventfulness, and familiarity, necessitates a more

comprehensive and context-sensitive approach.

2. Soundscape perception

In the domain of soundscape perception, several indices

have emerged as attempts to quantify the perceived quality

of soundscapes, particularly, in urban environments.

The green soundscape index (GSI; Kogan et al., 2018)

incorporates factors such as the presence and levels of natu-

ral sounds and human-made sounds and their respective

contributions to the overall soundscape perception. The GSI

is defined as the ratio of the perceived extent of natural

sounds (PNS) to the perceived extent of traffic noise (PTN),

ranging between one-fifth and five. Subsequently, Cao and

colleagues (Cao et al., 2020; Yang et al., 2022) proposed

the red soundscape index (RSI), defined as the ratio of the

perceived extent of human sounds to the perceived extent of

either natural sounds (RSIn) or traffic sounds (RSIt), arguing

that the GSI alone was not suitable for all urban soundscape

design applications

Building on ecological diversity concepts, Liu et al.
(2014) introduced the soundscape diversity index (SDI),

which quantifies the probability of two randomly selected

sounds in a soundscape belonging to different categories,

providing a measure of soundscape complexity. Expanding

on this approach, Xiang et al. (2023) defined an expanded

set of soundscape diversity indices, including the SDI, the

soundscape richness index (SRI), the soundscape dominance

index (SDO), and the soundscape evenness index (SEI).

These indices, adapted from species diversity measures in

ecology, offer a more nuanced approach to quantifying

aspects of soundscape perception. Xiang et al. (2023) dem-

onstrated that these indices could be partially explained by

existing acoustic indicators and were more suitable for eval-

uating urban green spaces than traditional acoustic indices.

Guo et al. (2023) proposed the harmonious degree of

sound sources (SHD) index, which combines perceived

loudness, occurrence, and preference for sound sources. The

SHD assess how well the dominance of a sound aligns with

visitors’ preferences, aiming to reflect the harmonious status

of sounds in a soundscape.

Kang et al. (2019) proposed the development of a set of

soundscape indices which might take the form SSID ¼
f ðphysical factorsÞ þf ðcontextual factorsÞ þ � � �, where the

functions and weights of each aspect influencing soundscape

perception (i.e., physical/acoustic parameters, contextual and

visual factors, personal factors, etc.) could be derived statisti-

cally from a large dataset of soundscape surveys. The work

presented here represents a development of this thinking which

has grown out of the SSID project, where the analysis and

indexing of perception data and connection between sound-

scape indicators and perception have been separated (Mitchell

et al., 2023). This modularisation of perception prediction

based on objective factors and soundscape index creation

should enable more sophisticated and thoughtful index crea-

tion and more advanced and updateable prediction models.

Although these indices offer valuable insight into spe-

cific aspects of soundscape perception, they are limited in

their ability to capture the full multidimensionality of sound-

scape experience across diverse contexts. The SPI frame-

work presented in this paper builds on these efforts by

providing a flexible, context-sensitive approach to sound-

scape assessment. Unlike many previous indices, the SPI is

not an analysis of an acoustic signal but rather is an index of

perception based on soundscape descriptors. Furthermore, it

does not represent a single target in a particular context but

is a generalisable, extensible, and adaptable framework for

scoring soundscapes against any goal defined by the user.
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The remainder of the paper will introduce and demon-

strate this framework, providing a case study of defining an

appropriate target.

III. ESTABLISHING THE SPI FRAMEWORK

The index framework, SPI, introduced in this paper is

defined here as the agreement between an observed or mod-

elled soundscape perception distribution and a target sound-

scape perception distribution. Its goal is to determine

whether a soundscape—be it a real-world location, a pro-

posed design, or a hypothetical scenario—aligns with the

desired (or reference) perception of that soundscape. This is

achieved by first defining the target distribution, which

could represent what is considered to be the “ideal” sound-

scape perception for a given context or application. The test

distribution is then compared to the target distribution using

a distance metric, which quantifies the deviation between

the two distributions. The resulting distance value serves as

the basis for calculating the SPI, where smaller distances

indicate a closer alignment between the perceived sound-

scape and target soundscape perception.

We refer to this as an index framework rather than a sin-

gle index as the SPI can be tailored to specific contexts and

applications by defining a range of target distributions. A sin-

gle index is, thus, created for each target distribution. A SPI

value, therefore, does not represent a good or bad soundscape

but rather a measure of how closely the perceived soundscape

aligns with the desired target soundscape perception. This

approach allows for the development of bespoke indices tai-

lored to specific design goals and objectives while also

enabling cross-comparisons and benchmarking against empir-

ically defined reference soundscape targets.

A. Core method

SPI is grounded in the SCM (Axelsson et al., 2010,

2012), a robust theoretical foundation for understanding and

representing the multidimensional nature of soundscape per-

ception. The reason for grounding the SPI in the soundscape

circumplex is that we have observed this model to become

the most prevalent assessment model in soundscape

literature (Aletta and Torresin, 2023). The SCM is built on a

series of descriptors referred to as the perceived affective

quality (PAQ), proposed by Axelsson et al. (2010). These

PAQs are based on the pleasantness-eventfulness paradigm

(and its original version, the valence-arousal paradigm),

which has been adopted in research on emotions and envi-

ronmental psychology, in particular, Russell’s circumplex

model of affect (Russell, 1980). As summarised by

Axelsson et al. (2010), “Russell’s model identifies two

dimensions related to the perceived pleasantness of environ-

ments and how activating or arousing the environment is.”

One benefit of the circumplex model is that, as a whole,

it encapsulates several of the other proposed soundscape

descriptors—in particular, annoyance, pleasantness, tranquil-

ity, and possibly restorativeness (Aletta et al., 2016).

According to Axelsson (2015), the two-dimensional circum-

plex model of PAQ provides the most comprehensive infor-

mation for soundscape assessment. It is also possible that the

overall soundscape quality could itself be derived from the

pleasant-eventful scores derived for a soundscape. The cir-

cumplex also lends itself well to questionnaire-based methods

of data collection, as proposed in ISO/TS 12913-2 (2018). In

contrast to methods such as soundwalks, interviews, and labo-

ratory experiments, in situ questionnaires are able to provide

the quality and amount of data which is necessary for statisti-

cal modelling. Combined, these factors make the circumplex

most appropriate for a single index as it provides a compre-

hensive summary of soundscape perception.

There are four steps involved in calculating the SPI, as

shown in Fig. 1:

(1) Define and parameterise the target circumplex

distribution;

(2) sample the target distribution and prepare the test

distribution;

(3) compare test and target distributions using the distance

metric [two-dimensional Kolmogorov-Smirnov (KS)

distance, DBKS]; and

(4) calculate SPI ¼ 100ð1� DBKSÞ:

These steps and their required background are discussed

in detail in Secs. III B–III E. Section IV B 1 will, then,

FIG. 1. (Color online) Steps for calculating the SPI.

J. Acoust. Soc. Am. 156 (6), December 2024 Mitchell et al. 3697

https://doi.org/10.1121/10.0034417

https://doi.org/10.1121/10.0034417


present strategies for defining targets and their applications.

Throughout this paper, we use the data contained in the

International Soundscape Database (ISD; Mitchell et al.,
2024), which includes 1300þ individual responses on the

PAQ scales, collected across 13 locations in London and

Venice, according to the SSID Protocol (Mitchell et al., 2020).

B. Define and parameterise a soundscape circumplex
distribution

To move the eight-item PAQ responses into the two-

dimensional circumplex space, we use the projection

method that was first presented in ISO/TS 12913-3 (ISO/TS

12913-3, 2019). This projection method and its associated

formulas were recently updated further in Aletta et al.
(2024) to include a correction for the language in which the

survey was conducted. Aletta et al. (2024) also provides

adjusted angles for translations of the circumplex attributes

to be used in calculating the PISO and EISO coordinates.

Once the individual perceptual responses are projected into

the circumplex space, the resulting data for each location

are treated as a circumplex distribution. There are several

advancements in considering circumplex distributions com-

pared to the discussions originally given in Mitchell et al.
(2022), which are necessary for SPI. Before exploring the

SPI method and target setting more specifically, we will first

address these developments.

The circumplex is defined by two axes, PISO and EISO,

which are limited to the range ½�1;þ1�. Typically, data in the

soundscape circumplex is treated as a combination of two

independent normal distributions, one for each axis (Mitchell

et al., 2022; Ooi et al., 2022). In some applications, this

approach is sufficient for capturing the distribution of sound-

scape perception, however, defining a target distribution for

SPI requires a more precise approach. The independent normal

distribution approach relies on three key assumptions:

(1) The two axes are normally distributed;

(2) the two axes are symmetrically distributed; and

(3) the two axes are independent of each other.

Whereas the first assumption is generally valid, the sec-

ond and third assumptions are not always met in practice. In

particular, the distribution of soundscape perception

responses in the circumplex is often characterised by a high

degree of skewness, which can lead to inaccuracies in the

calculation of the SPI. Soundscape circumplex distributions

are most appropriately described as a bivariate skew-normal

distribution (Azzalini, 2005), which accurately reflects the

relationship between the two dimensions of the circumplex

and the fact that real-world perceptual distributions have

been consistently observed to not be strictly symmetric.

The skew-normal distribution is defined by three

parameters: location (l), scale (r), and shape (a). The loca-

tion parameter defines the centre of the distribution, the

scale parameter defines the spread of the distribution, and

the shape parameter defines the skew of the distribution.

The one-dimensional skew-normal distribution is defined as

(Azzalini and Valle, 1996)

/ðz; aÞ ¼ 2/ðzÞUðazÞ for z 2 R; (1)

where / and U are the standard normal probability density

function and distribution function, respectively, and a is a

shape variable which regulates the skewness. The distribu-

tion reduces to a standard normal density when a ¼ 0. The

bivariate skew-normal distribution extends this concept to

two dimensions, allowing for the modelling of asymmetric

and skewed distributions in a two-dimensional space such as

the soundscape circumplex. The multivariate skew-normal

(MSN) distribution, including scale and location parameters,

is given by combining the normal density and distribution

functions (Azzalini and Capitanio, 1999) such that

Y ¼ 2/kðy� n; XÞUfaTx�1ðy� nÞg; (2)

where /k is the k-dimensional normal density with location

n, shape a, and covariance matrix X. Uf_g is the normal dis-

tribution function, and a is a k-dimensional shape vector.

When a ¼ 0, Y reduces to the standard multivariate normal

Nkðn;XÞ density. A circumplex distribution can, therefore,

be parameterised1 with a 2� 2 covariance matrix X, a 2� 1

location vector n, and a 2� 1 shape vector a, written as

Y � MSNðn;X; aÞ: (3)

By fitting a MSN distribution to empirical soundscape

perception responses, it becomes possible to accurately cap-

ture the asymmetry and skewness of the distribution. A

bivariate skew-normal distribution can be summarised as a

set of these three parameters. Once parameterised, the distri-

bution can then be sampled from to generate a synthetic dis-

tribution of soundscape perception responses.

Soundscape targets can, thus, be set by defining the

desired MSN distribution. To demonstrate this, we will con-

struct three arbitrary targets, which will be used later to

score three SPIs. The parameters chosen for the example tar-

gets are given in Table I.

C. Sample a target distribution

Once the parameters for a MSN are defined (i.e., the tar-

get), the MSN is then sampled using the sn package

TABLE I. The MSN direct parameterisations for three arbitrary example

target distributions. tgt1 is located in the pleasant half with a wide variance

and a positive skew along the pleasantness axis. tgt2 is located in the calm

quadrant with a typical variance and a negative skew along the pleasantness

axis and a positive skew along the eventful axis. tgt3 is located in the

vibrant quadrant with a moderate variance and a negative skew along the

eventfulness axis.

Target Location, n Covariance matrix, X Shape, a

tgt1 ½0:5; 0:0� 0:2 0:0
0:0 0:2

� � ½1; 0�

tgt2 ½1:0;�0:4� 0:18 �0:04

�0:04 0:09

� � ½�8; 1�

tgt3 ½0:5; 0:7� 0:1 0:05

0:05 0:1

� �
½0;�5�
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(Azzalini, 2021) in R (R Core Team, 2018). This is to pre-

pare the target distribution to be compared with the empiri-

cal test distribution. Several restrictions to the possible

parameter values apply, most importantly the covariance

matrix X must be a positive-definite matrix. In depth discus-

sions of how these parameterisations should be defined and

their restrictions can be found in Azzalini (2016). Figure 2

shows the result of sampling (n¼ 1000) the three example

distributions given in Table I and plotting them as sound-

scape distributions.

D. Compare the target and test soundscape
assessment distributions

Central to the SPI framework is the concept of a dis-

tance metric, which quantifies the deviation of a given

soundscape from a desired target soundscape. This distance

metric serves as the basis for calculating the SPI value,

where smaller distances indicate a closer alignment between

the perceived soundscape and target soundscape perception.

The distance between the test and target soundscape distri-

butions is calculated using a two-dimensional KS distance

(DBKS; Fasano and Franceschini, 1987). The KS distance is

a nonparametric metric of the equality of continuous distri-

butions, which is sensitive to the locations and shapes of the

distributions (Chakravati et al., 1967).

Essentially, we approach this as a problem of (dis)simi-

larity between soundscapes. The DBKS distance metric is

then proposed to assess how similar any two given sound-

scapes distributions are within the circumplex. Taken to the

extreme, two perfectly matching distributions in the sound-

scape circumplex would return a 100% SPI value, whereas

two completely dissimilar distributions would return a 0%

SPI value. In practical terms, for the former, this will never

be achieved in real-world scenarios; for the latter, it is also

difficult to estimate how low the SPI value could actually

go, and it should be considered that the distance may happen

in different directions within the circumplex space. For

instance, if a distribution for a vibrant soundscape was taken

as a reference, a compared soundscape distribution may

exhibit low SPI values for being located in the calm, or
monotonous, or chaotic regions of the model.

Using the data from one location in the ISD (Piazza San

Marco) as the test distribution, the DBKS statistic is calcu-

lated for each of the target distributions defined above,

which is depicted in Table II.

E. Calculate the SPI score

The final step is to convert DBKS into a more interpret-

able form to use as a comparison across soundscapes.

Because the KS distance is a measure of dissimilarity, we

first subtract it from one to give a measure of similarity

between the test distribution and target distribution. This is

then scaled to produce a score which ranges from 0 to 100,

giving the final SPI formula

SPI ¼ 100ð1� DBKSfMSNtest;MSNtgtgÞ: (4)

To show the usefulness of the test-target paradigm, we

calculated the SPIs for each of the three target distributions

for all of the locations included in the ISD, as shown in

Table III. As each location is now assigned a SPI, this makes

it possible to effectively produce three separate rankings of

soundscape quality for these locations, depending on which

target is considered the goal.

IV. EXPANDING THE SPI FRAMEWORK

Section III has defined and demonstrated the founda-

tional methodology for calculating a SPI score. This

FIG. 2. (Color online) Example of defining and sampling from three arbitrary bespoke targets.

TABLE II. Two-dimensional K-S distance comparing the empirical test

distribution (Piazza San Marco) against three soundscape target

distributions.

Target DBKS

tgt1 0.64

tgt2 0.82

tgt3 0.28
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included how to define and sample a target distribution, pre-

pare the test and target distributions for comparison using

the KS distance metric, and convert this into a SPI score. To

expand this methodology into an applicable framework, we

define two distinct types of targets: bespoke targets and ref-

erence targets, each serving a unique purpose in the index

development process.

A. Bespoke targets

Bespoke targets are essentially a direct application of

the foundational method described above. Bespoke targets

are tailor-made for specific projects, reflecting the desired

soundscape perception for a particular application. These

targets can be defined by stakeholders, designers, policy-

makers, or decision-makers based on their unique require-

ments, objectives, and constraints. This flexibility allows the

SPI for a specific project to be tailored to the desire of the

stakeholders for how that specific soundscape should func-

tion. It can also provide a consistent and quantifiable base-

line for scenarios like a soundscape design contest wherein

a target is specified and provided to all participants in the

contest, and the winning proposal is the design with the

highest SPI score when assessed against that target.

Stakeholders could use various methods to decide on a tar-

get, subject to the requirements of their project or use case.

For example, it could be co-created with other stakeholders

or space users, based on trying to match the soundscape of a

previous project, or entirely arbitrary.

B. Reference targets

In contrast to bespoke targets, reference targets repre-

sent generalised, widely recognized soundscape archetypes

which transcend specific applications or projects. These

archetypes serve as reference points and enable comparisons

across different domains and use cases. Essentially, a

reference target is a target that has been empirically defined
to encapsulate the ideal of a particular type of soundscape

(e.g., for a park, an urban square, a particular group of users,

etc.).

1. Deriving a target based on a priori rankings

Absent from the above methodology has been an explo-

ration of how to actually arrive at a target based on empiri-

cal evidence; i.e., not a target specified ad hoc but rather an

“absolute” target, based on prior obtained evidence.

Although arbitrary targets make the SPI framework incredi-

bly flexible and able to score against an effectively infinite

set of design goals, often targets should have some sort of

systematic foundation, especially when defining a reference

target.

The core challenge in developing a reference SPI target

is determining what constitutes an ideal soundscape percep-

tion distribution for a given context. Whereas we can

directly specify MSN parameters to create bespoke targets

based on theoretical expectations or design goals, develop-

ing empirically grounded reference targets requires a more

systematic approach.

Therefore, to enable this approach, we present one

method of systematically deriving a target distribution based

on a given ranking of soundscape quality. The a priori rank-

ing serves as a bridge between existing knowledge about

soundscape quality and the mathematical framework of the

SPI. By starting with a ranking of soundscapes whose rela-

tive quality has been assessed through some external mea-

sure, we can use optimisation techniques to derive MSN

parameters that

(1) when used as a SPI target, produce scores that result in

the same ranking order;

(2) generate high SPI scores for the highly ranked sound-

scapes; and

TABLE III. SPI scores and rankings for the soundscapes of locations included in the ISD.

Ranking SPI1 (pleasant) SPI2 (calm) SPI3 (vibrant)

1 72 CarloV 64 CampoPrincipe 72 SanMarco

2 70 RegentsParkFields 54 CarloV 62 TateModern

3 64 CampoPrincipe 51 RegentsParkFields 60 StPaulsCross

4 64 RegentsParkJapan 50 PlazaBibRambla 59 Noorderplantsoen

5 63 PlazaBibRambla 46 MarchmontGarden 54 PancrasLock

6 62 RussellSq 44 MonumentoGaribaldi 54 TorringtonSq

7 62 MarchmontGarden 41 RussellSq 47 StPaulsRow

8 61 PancrasLock 40 PancrasLock 47 RussellSq

9 61 MonumentoGaribaldi 39 RegentsParkJapan 46 MiradorSanNicolas

10 55 StPaulsCross 32 StPaulsCross 42 CamdenTown

11 50 TateModern 32 MiradorSanNicolas 40 CarloV

12 50 StPaulsRow 31 TateModern 36 MonumentoGaribaldi

13 46 MiradorSanNicolas 30 TorringtonSq 34 MarchmontGarden

14 41 Noorderplantsoen 29 StPaulsRow 33 PlazaBibRambla

15 39 TorringtonSq 17 SanMarco 32 CampoPrincipe

16 35 SanMarco 16 Noorderplantsoen 31 EustonTap

17 22 CamdenTown 14 EustonTap 27 RegentsParkFields

18 17 EustonTap 14 CamdenTown 27 RegentsParkJapan
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(3) define a distribution in the circumplex space that cap-

tures the perceptual characteristics common to high-

quality soundscapes in this context.

This approach allows us to work backward from known

good (and poor) examples to define what the target distribu-

tion should look like. For instance, if we know that location

A has a better soundscape than location B for our purposes,

the optimal target distribution should result in location A
receiving a higher SPI score than location B.

In this case study, we will examine a possible ranking

from the ISD park locations produced by the authors (dis-

played in Table IV).

Effectively, this is an optimisation task to determine

the MSN parameters which best achieve the above goals.

Parameter optimisation refers to the process of adjusting

the parameters of a system, model, or algorithm to achieve

the best possible performance according to one or more

objectives. To set up the optimisation task, we first need

to express the parameter space and any constraints.

Because our goal is to identify an optimised soundscape

target distribution, the parameters that we will search over

are

• n ¼ ðnx; nyÞ, �1 � n � 1;

• X ¼ varðxÞ covðx; yÞ
covðy; xÞ varðyÞ

� �
;

– 0 � varð Þ � 1;
– �1 � covð Þ � 1;
– X must be symmetric and positive definite; and

• a ¼ ðax; ayÞ, �50 � a � 50.

Then, we define the objective functions based on the

two goals given above. For each step in the algorithm with a

given trial set of parameters, a target distribution will be

produced, the SPI for each test location assessed according

to the protocol described in Sec. III, and the resulting set of

SPI scores and ranking will be scored using the objective

functions. Goal (1) is assessed by calculating the Spearman

rank correlation between the a priori ranking and SPI rank-

ing such that

f1 ¼ rsðRðpriorÞ;RðtargetÞÞ: (5)

Goal (2) is scored by calculating a weighted sum of the

produced SPIs. To prioritize a target which provides high

SPI scores for highly ranked soundscapes, we weight

according to the ranking position,

f2 ¼
Xm

i¼1

1

ranki
SPIi; (6)

where m is the number of included locations, SPIi is the cal-

culated SPI score for the i th location assessed against a trial

target, and ranki is the calculated rank value of the i th

location.

Through our testing, optimising only on the rank corre-

lation regularly produced targets, which, although they did

result in the desired ranking, were in no way representative

of the soundscapes in question. We, therefore, aim to opti-

mise for a consistent soundscape ranking and high SPI score

for the top-ranked soundscapes. Optimising these parame-

ters with respect to multiple objectives ensures a more holis-

tic approach to system improvement, acknowledging the

trade-offs and interactions between different goals.

We apply the nondominated sorting genetic algorithm

(NSGA-II; Deb et al., 2002) to optimise our target distribu-

tion parameters. NSGA-II is a popular and efficient multi-

objective evolutionary algorithm that is well-suited for prob-

lems with multiple, potentially conflicting objectives.

The algorithm works as follows:2

(1) Initialize a population of candidate solutions, each rep-

resenting a set of target distribution parameters

ðn;X; aÞ;
(2) evaluate each candidate solution using the two objective

functions defined above;

(3) perform nondominated sorting to rank the solutions

based on Pareto dominance;

(4) calculate crowding distance for each solution to main-

tain diversity in the population;

(5) select parent solutions using tournament selection based

on nondomination rank and crowding distance;

(6) create offspring solutions using crossover and mutation

operators, ensuring that the constraints on the parame-

ters are maintained;

(7) combine parent and offspring populations and select the

best solutions to form the next generation; and

(8) repeat steps 2–7 for a specified number of generations or

until a termination criterion is met.

The NSGA-II algorithm is implemented using the

Python library pymoo v0.6.1.3 (Blank and Deb, 2020).

The population size is set to 150, and the algorithm runs for

100 generations. In pymoo, each objective function is sup-

posed to be minimised such that when implementing the

algorithm and in the results, �f1 and �f2 are used. After run-

ning the NSGA-II algorithm, we obtain a set of non-

dominated solutions representing the Pareto front, displayed

in Fig. 3(a). Each solution on the Pareto front represents a

trade-off between the two objectives: maximising the rank

correlation (f1) and maximising the weighted sum of SPI

TABLE IV. A predefined ranking of soundscape quality of the park loca-

tions included in the ISD. A SPI target will be derived which aims to repro-

duce this same ranking when applied to circumplex data from these

locations.

Rank Location

1 RegentsParkJapan

2 RegentsParkFields

3 CampoPrincipe

4 MonumentoGaribaldi

5 RussellSq

6 MiradorSanNicolas

7 StPaulsCross

8 Noorderplantsoen
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scores (f2). The Pareto front allows us to visualize and ana-

lyse the range of possible solutions from those that prioritize

ranking consistency to those that emphasise high-SPI scores

for top-ranked soundscapes.

The Pareto solution which minimises the Euclidean dis-

tance from the ideal point (min �f1, min �f2) is extracted.

This approach provides a balance between ranking consis-

tency and high SPI scores for top-ranked soundscapes. Once

the optimal solution is selected, we can sample from the

MSN distribution and plot the derived target distribution,

which is shown in Fig. 3(b):

tgtpark �

n ¼ 0:694; 0:406½ �;

X ¼
0:157 0:040

0:040 0:255

" #
;

a ¼ 5:054;�37:671½ �:

8>>>><
>>>>:

(7)

The resulting tgtpark, with the MSN parameters given

above, exhibits some expected characteristics: it is almost

entirely pleasant with a long uneventful tail into the calm

quadrant, but, somewhat unexpectedly, the mode is slightly

vibrant. What should be made clear about this demonstration

is that we are not presenting this as a reference target to be

used in the future—this section is meant as a demonstration of

a method which can be used to derive a target from an a priori
ranking. In this case, the a priori ranking was created by the

authors from their experience of the locations in the ISD. To

truly be called an empirical reference target, the ranking

would need to be arrived at empirically via some other metric

(e.g., health or productivity ratings of the areas) or through an

experiment such as paired-choice comparisons.

It is these reference targets with an empirical backing

which would ideally form agreed on standards and bench-

marks in the field against which new soundscapes would be

compared. The best methods for empirically determining

the ideal soundscape distribution for a given context will no

doubt remain a topic of debate and development in the com-

ing years.

V. DISCUSSION

The development of bespoke and reference context-

dependent SPIs represents a significant step toward enabling

more comprehensive and effective applications of the

soundscape approach. By providing a unified framework for

defining these indices, the potential for quantifying and

comparing soundscape quality across diverse contexts and

applications is unlocked while still ensuring that the multidi-

mensional and context-driven aspects of soundscape quality

are considered.

A. Applications of the SPI framework

The proposed framework offers several key advantages.

First, it acknowledges the inherent context-dependent nature

of soundscape perception, allowing for the creation of indi-

ces tailored to specific use cases or design goals through the

use of bespoke targets. This flexibility ensures that the

resulting SPIs accurately capture the desired soundscape

perception for the given application, enabling targeted inter-

ventions and optimisations.

Second, the inclusion of reference targets facilitates cross-

comparisons and benchmarking, enabling a common language

and understanding of soundscape quality across different

domains. By calculating the distance between a given sound-

scape and these widely recognized references, stakeholders

can identify areas for improvement and prioritize interventions

accordingly, aligning their efforts with collectively recognized

standards of desirable or undesirable soundscapes.

We expect that this would then expand into collections

of SPI targets. As an example, imagine trying to define a

SPI that could be applied across an entire city. A single

index is insufficient because each type of place within the

city (e.g., parks, plazas, and residential areas) has different

requirements for its soundscape. Therefore, each place type

would need its own soundscape target.

In this example, these sets of targets would correspond

to different types of places within the city (e.g., a single

FIG. 3. (Color online) NSGA-II optimisation to learn the MSN parameters which produce the Park ranking, which include (a) multi-objective optimisation

Pareto front, where the selected solution is indicated in red, and (b) SCM distribution of the derived target distribution.
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target for parks, a target for plazas, etc.). When applying

this “urban typology” set of targets, the soundscape of each

location being assessed would be scored against its relevant

target (i.e., how well does a specific park perform in com-

parison to a reference park target). This results in a single

score for each location that can be compared against all

other locations, regardless of whether or not they are the

same type of place, allowing for different soundscapes to be

compared on a common scale. This system ensures that con-

text (in this case, the typology of a space) is brought into the

assessment, permitting soundscapes to be scored against the

most appropriate target. Enabling these context-dependent

assessments to be expressed on a common scale can facili-

tate additional use cases such as soundscape mapping, which

requires a single scale to be applied across an entire city.

This set of targets, made up of different space typolo-

gies, is just one example of an application of reference SPIs.

Other examples could include a demographics SPI, where

different targets are set for respondents from different demo-

graphic groups or a “use case” SPI with different targets set

for different intended purposes of spaces (e.g., recreation,

restoration, and socialising). We encourage users of the SPI

to define their own single reference targets that can be added

to these suites of targets for use by others and their own new

sets of references.

Kogan et al. (2018, Fig. 6), in fact, displays a startlingly

similar concept, showing the locations of the three catego-

ries of traffic noise dominance (“traffic noise,” “balanced,”

and “natural”) plotted in the circumplex perceptual model. It

can be clearly observed in this plot that the GSI categories

create their own clusters within the circumplex.

Although it is expected that the target distribution

would usually represent the ideal or goal soundscape per-

ception, it is also possible to define target distributions that

represent undesirable or suboptimal soundscape perceptions.

For instance, in a soundscape mapping context, it may be

beneficial to map and identify chaotic soundscapes across a

city to better target areas for soundscape interventions. In

this case, the target distribution would be set in the chaotic

quadrant, and a higher SPI would indicate a closer align-

ment with the target distribution. This flexibility allows the

SPI to be applied to a wide range of contexts and applica-

tions, enabling the quantification and comparison of sound-

scape quality across diverse scenarios.

B. Connecting with soundscape indicators and
acoustic data

Unlike previous soundscape indices (see Sec. II A), SPI

does not include any direct connection to soundscape indica-

tors such as the sound level, spectral content, etc. Its basis in

perceptual descriptor data effectively allows the analysis

and quantification of soundscape information to be modular-

ised, separating the task of calculating a single index from

the complex task of predicting soundscape perception from

objective data. The modularisation of soundscape data anal-

ysis allows the entire pipeline from environmental data col-

lection through to soundscape index scoring to remain

flexible. Following the soundscape engineering paradigm

exhibited in Mitchell et al. (2023), the connection between

soundscape indicators through descriptors to indices can be

made by predictive soundscape models. These models are

trained on increasingly large scale datasets and generally

designed to predict soundscape descriptors, including the

SCM attributes (Hou et al., 2024; Ooi et al., 2022). With the

complex and multidimensional nature of soundscape percep-

tion and rapid progression in machine learning techniques

and applications, an index framework should be able to inte-

grate new and improved models. By separating the predic-

tion of perceptual descriptors based on objective metrics

from the calculation of the single value index itself, the SPI

framework allows for these predictive models and the crea-

tion of new indices to advance independently.

C. Comparison with existing soundscape indices

The SPI framework represents a unique approach to

soundscape assessment, building on and differentiating itself

from previous indices in several key ways. First, the SPI

framework is fundamentally perception focussed. By referring

to the soundscape perception index, we aim to highlight the

unique and perception-focussed nature of this index frame-

work. The SPI core method operates entirely within the per-

ception data space with no direct reference to acoustic or

other indicators. Perceptual data (or predicted perceptual

data) are the only operant factors of the SPI method. The aim

of SPI is to combine multidimensional perception data and

context (including design goals) into a single metric.

The SPI framework shares this important characteristic

with indices like the SDI (Liu et al., 2014) and SHD (Guo

et al., 2023) in that they all prioritize perception as the primary

input for assessment. SDI and SHD, however, focus on the

perception of sound sources that can be observed in an acous-

tic environment and their relationships. Although these indices

offer valuable insights into specific aspects of soundscape per-

ception, they are somewhat limited in their scope and adapt-

ability. The SPI framework builds on these efforts by

incorporating the full dimensionality of the SCM and allowing

for context-sensitive assessments through bespoke and refer-

ence targets. This approach enables the SPI to address a wider

range of soundscape evaluation needs while maintaining the

crucial focus on perceptual data that distinguishes these meth-

ods from purely acoustic measurements.

Furthermore, the SPI framework is designed to be gen-

eralisable, extensible, and adaptable. Unlike previous indi-

ces that often represent a single target in a particular

context, the SPI framework allows for scoring soundscapes

against any goal defined by the user. This flexibility makes

it applicable across a wide range of contexts and design

objectives, from urban planning and acoustic design to

research and policy development.

D. Considerations and future work

Several considerations should be noted when defining a

SPI target. First, the target distribution should be

J. Acoust. Soc. Am. 156 (6), December 2024 Mitchell et al. 3703

https://doi.org/10.1121/10.0034417

https://doi.org/10.1121/10.0034417


representative of the desired soundscape perception for the

given application. This requires a clear understanding of the

context, objectives, and constraints of the project, as well as

the preferences and expectations of stakeholders and end

users. Second, the temporal and spatial scales of the target

distribution should align with the soundscape assessment

being conducted. What constitutes the actual spatial bounds

of “a soundscape” or, indeed, “a place” is a complex ques-

tion which will depend on the context of the assessment. For

example, a park soundscape may be defined by the bound-

aries of the park itself, or it may extend to include the sur-

rounding urban environment or be restricted to a certain

distance from a feature of interest in the park.3 The temporal

scale of the assessment is also important as soundscape

quality can vary throughout the day and across different sea-

sons. Increasing the spatial bounds of what is considered to

be the soundscape under examination (e.g., a single position

vs a 25 m2 area vs an entire park) or extending the temporal

scale will almost certainly result in a distribution with a

larger variance. What scales are appropriate for a given

assessment will depend on the context and objectives of the

project, but they should be considered when defining the tar-

get distribution. Applying a target distribution that is too

broad or too narrow for the context of the assessment may

result in inaccurate or misleading SPI scores. As the circum-

plex distribution first described in Mitchell et al. (2022) and

further formalised here develops, we are hopeful that a bet-

ter understanding of the relationship between temporal and

spatial scales and the parameters of the distribution will

emerge and contribute to an increased understanding of

what constitutes “the soundscape of a place” and how this

should be reflected in its ideal perception distribution.

Various other distance metrics were considered when

developing the SPI method. The simplest method is to

define a single point target rather than a target distribution

and calculate a normalised mean Euclidean distance

between points in the test distribution and target point.

Although this is conceptually simple and requires defining

only a single coordinate point as a target rather than the

MSN parameters described in Sec. III B, the shape and

spread of a soundscape distribution is itself an important

factor in describing the collective perception of a sound-

scape and would not be captured by this method.

An additional method that was considered was to regard

a target as an ellipse (or, indeed, any other shape) drawn in

the circumplex space (similar to the simplified median dec-

ile curves proposed in Mitchell et al., 2022). A SPI score

would then be calculated based on the percentage of

responses which fall within the space defined by the ellipse.

Again, this is conceptually quite simple, and defining the

ellipse targets is straightforward. However, this method has

an important flaw—it is easy to artificially inflate or deflate

the scores merely by changing the area of the ellipse. The

larger the ellipse, the higher all SPI scores will be regardless

of whether the sample distribution is wide or narrow. This

would also limit cross-comparability between targets. As

can be noticed in Table III, defining a target distribution

with a larger spread (i.e., tgt1) does not automatically result

in higher SPI scores across the board as it would with the

ellipse target method. By defining the SPI as a true target-

test distribution comparison, we ensure that the SPI always

accurately reflects the similarity between the perception of a

soundscape and its target, in terms of its location in the cir-

cumplex and the shape of the data.

As noted in Sec. IV B 1, although a methodology for

deriving targets is presented, the a priori ranking that we

use for the demonstration was not itself arrived at empiri-

cally. Hence, the park target cannot be considered to be a

true reference target. A key piece of future work is to use

experimental methods, such as paired-choice comparisons,

to arrive at a well-defined ranking, which can then produce

a true reference target.

VI. CONCLUSION

The European Research Council (ERC)-funded

Soundscape Indices (SSID) Project was started mostly with

the ambition to derive soundscape indices that could serve

as numerical/quantifiable tools (Kang et al., 2019) to better

inform urban sound planning and design decisions. Any

soundscape researcher having ever made an attempt at defin-

ing “the” soundscape quality index will know what a chal-

lenging, even impossible task this is. Some may even argue

that trying to reduce soundscape quality to a single value

quantity, and deriving any soundscape index, could be what

philosophers would call a contradictio in adjecto as the

soundscape approach intrinsically advocates for a multidi-

mensional characterisation of the acoustic environments that

we experience in our lives. For these reasons, we felt that it

was necessary to take a step back and create, instead, a

framework tailored for the field specifically that could easily

be adapted to different contexts and capture the multifaceted

aspects of the soundscape of a place.

The proposed framework addresses the existing gap in

quantifying multidimensional soundscape perception, facili-

tating a broader application of the soundscape approach in

areas such as urban planning, environmental management,

acoustic design, and policy development. Through the crea-

tion of bespoke indices tailored to specific design goals and

use of reference targets for benchmarking, this framework

empowers stakeholders and decision-makers to make

informed choices and prioritize soundscape improvements

aligned with their unique objectives and constraints.

Furthermore, the grounding of the SPI framework in the

SCM ensures a robust theoretical foundation, capturing the

multidimensional nature of soundscape perception. The use

of a distance metric enables quantitative assessments and

comparisons, fostering a common language and understand-

ing of soundscape quality across different domains. This

shared understanding facilitates knowledge exchange, col-

laborative efforts, and the development of best practices

within the field. As the SPI framework continues to be

explored and refined, future research should focus on vali-

dating and expanding the range of reference targets as well
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as investigating the potential for incorporating additional

dimensions and factors that influence soundscape perception.

The integration of emerging technologies (such as virtual,

mixed, and augmented reality) may also provide new avenues

for immersive soundscape evaluation and index development.

Additionally, the application of the framework in diverse real-

world scenarios, ranging from urban planning and environ-

mental management to acoustic design and policy develop-

ment, will provide valuable insight and contribute to the

ongoing refinement and adaptation of the SPI framework.

In many ways, the proposed SPI framework is not so con-

ceptually different from the whole idea of dB-based set of indi-

cators that the SSIDs project itself is trying to “overcome.”

There is no such thing as a single noise indicator (L) to univo-

cally describe sound levels in all circumstances; rather, differ-

ent noise indicators are defined for different scenarios and

temporal or spectral requirements (e.g., Lden, LAeq;T , etc.),

based on testing needs. The dB is the unit for all of them, but

A-weighted equivalent sound levels for a 1-h interval cannot

be directly compared with whole-day indicators with penalties.

We are trying to achieve the same with the SPI to provide a

way of defining different indices for different contexts while

maintaining a consistent framework.

Ultimately, for the SPI approach to succeed, collabora-

tion with stakeholders, end users, and experts from various

domains will be crucial in ensuring the framework’s rele-

vance and applicability across a wide range of contexts.

SUPPLEMENTARY MATERIAL

See the supplementary material for further technical

details of the multi-objective optimisation procedure and its

associated code.
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