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Abstract

Improved surgical skill is generally associated with improved patient outcomes, although
assessment is subjective, labour intensive, and requires domain-specific expertise. Auto-
mated data-driven metrics can alleviate these difficulties, as demonstrated by existing
machine learning instrument tracking models. However, these models are tested on lim-
ited datasets of laparoscopic surgery, with a focus on isolated tasks and robotic surgery.
Here, a new public dataset is introduced: the nasal phase of simulated endoscopic pitu-
itary surgery. Simulated surgery allows for a realistic yet repeatable environment, meaning
the insights gained from automated assessment can be used by novice surgeons to hone
their skills on the simulator before moving to real surgery. Pituitary Real-time INstrument
Tracking Network (PRINTNet) has been created as a baseline model for this automated
assessment. Consisting of DeepLabV3 for classification and segmentation, StrongSORT
for tracking, and the NVIDIA Holoscan for real-time performance, PRINTNet achieved
71.9% multiple object tracking precision running at 22 frames per second. Using this
tracking output, a multilayer perceptron achieved 87% accuracy in predicting surgical skill
level (novice or expert), with the ‘ratio of total procedure time to instrument visible time’
correlated with higher surgical skill. The new publicly available dataset can be found at
https://doi.org/10.5522/04/26511049.

1 INTRODUCTION

Benign tumours of the pituitary gland, pituitary adenomas, are
common, associated with systemic morbidity and mortality,
and the majority are curable with surgery [1–3]. The endo-
scopic transsphenoidal approach (eTSA), is a minimally invasive
surgery where these tumours are removed by entering through a
nostril [4]. However, this surgery has a steep learning curve, with
superior surgical skill generally associated with superior patient
outcomes [3, 5, 6].
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Objective Structured Assessment of Technical Skills
(OSATS) measures surgical skill by assessing how well
aspects of a surgical task are performed on a scale of
1–5 [7]. For example, for the aspect of instrument han-
dling, a value of 1 indicates ‘Repeatedly makes tentative
or awkward moves with instruments’, and a value of 5
indicates ‘Fluid moves with instruments and no awkward-
ness’ [8]. However, it is not operation specific; liable to
interpreter variability; and is a time-consuming manual pro-
cess requiring surgical experts [9, 10]. Data-driven metrics
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FIGURE 1 Representative images of the four instrument classes used in the nasal phase of endoscopic pituitary surgery.

may be more specific, objective, reproducible, and easier to
automate.

Neural networks can automatically and accurately determine
surgical skill [11, 12]. More specifically, instrument tracking has
been shown to be associated with OSATS in minimally invasive
surgeries [11]. However, the models have been tested on limited
datasets with a focus on laparoscopic surgeries [11]. Pedrett et al.
[11] provides a comprehensive list of these datasets, which are
videos of: isolated tasks (e.g. peg transfers in JIGSAWS [13]),
real surgery (e.g. Cholec-80 with no publicly available surgical
skill assessment [14]), on robotic surgery (e.g. ROSMA [15]),
or include instrument tracking data from built in methods (e.g.
[16]) or wearable sensors (e.g. [17]).

Here, this previous work is extended to be tested on videos
of a high-fidelity bench-top phantom of the full nasal phase
of eTSA. These videos are therefore of a non-laparoscopic,
non-private, non-robotic, and non-task-isolated surgery with no
tracking data. This phantom is commonly used in neurosurgical
training to simulate real surgery, and so surgical skill is an impor-
tant measure to track a novice surgeon’s progress until they are
able to perform real surgery. Additionally, the insights gained
from the automated assessment can be used to isolate specific
areas of improvement for the novice surgeon. In real surgery,
surgeons are already of sufficient skill, and surgical skill assess-
ment has the alternative use of correlating certain practices with
patient outcomes.

Moreover, instrument tracking in eTSA provides a unique
computer vision challenge due to: (I) A non-fixed endoscope
leading to large camera movements; (II) The frequent with-
drawal of instruments leading to instruments having a range
of sizes; (III) The use of niche instruments leading to heavy
class imbalance; (IV) The smaller working space requiring the
use of a wide lens, distorting images (see Figure 1). To over-
come these challenges, Pituitary Real-time INstrument Tracking
Network (PRINTNet) has been created, and the output is used
to demonstrate correlations between instrument tracking and
surgical skill. Therefore, this paper’s contributions are:

1 The first public dataset containing both instrument and sur-
gical skill assessment annotations in a high-fidelity bench-top
phantom of eTSA.

2 A baseline network capable of automated classification, seg-
mentation, and tracking of the instruments in the nasal phase
of eTSA, integrated on a NVIDIA Clara AGX for real-time
assistance in surgical training sessions.

3 Statistical analysis between instrument tracking and surgical
skill assessment in eTSA.

2 RELATED WORK

Instrument classification in eTSA has been attempted in the
PitVis-EndoVis MICCAI-2023 sub-challenge [18], where 25
videos and 8 videos of real eTSA (complete videos) were used
for training and testing, respectively.

Instrument segmentation and tracking is yet to be explored
for eTSA, though it has been attempted in minimally invasive
surgeries since 2016 [19, 20]. Modern models use encoder–
decoder architectures, utilising U-Net [21] and its variants for
segmentation [19], and early forms of SORT [22] for tracking
[20].

The most similar study to this paper linking instrument track-
ing to surgical skill assessment is the one conducted on robotic
thyroid surgery [23]. Twenty-three videos (simulation and real)
were used for training the four-instrument-class tracking model,
and 40 simulation videos were used for training the surgical
assessment model, with 12 simulation videos used for testing
[23]. Mask R-CNN and DeepSORT were used for segmenta-
tion and tracking, respectively, achieving 70.0% area under curve
(AUC) for tracking a tool tip within 1 mm [23]. A random for-
est (RF) model was shown to be the best predictor of surgical
skill, achieving 83% accuracy in distinguishing between novice,
intermediate, and expert surgeons [23]. It was found that ‘econ-
omy of motion’ was the most important predictive factor where
camera motion is minimal [23].

Other studies that use tool tracking for surgical skill
assessment include one on real non-robotic laparoscopic chole-
cystectomy [24]. Here, instruments in 80 videos (15 tests) of the
Calot triangle dissection phase were tracked [24]. The model
consisted of YoloV5 for detection, followed by a Kalman fil-
ter and the Hungarian algorithm for tracking, achieving 83%
multiple object tracking accuracy (MOTA) and 83% accuracy
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DAS ET AL. 3

FIGURE 2 Distribution of instruments: (a) Total number of images before data balancing; (b) Number of images per fold after data balancing.

in binary skill assessment via RF [24]. Alternative models, such
as those utilising aggregation of local features, have also been
used [25]. This model consisted of stacked convolution neu-
ral networks (CNNs) followed by bidirectional long short-term
memorys (LSTMs) and temporal pooling [25]. On 24 videos
(four fold) of the Calot triangle and gallbladder dissection
phases of real non-robotic laparoscopic cholecystectomy, the
model achieved 46% Spearman’s rank correlation on a 1–5 scale
[25]. An identical model trained on 30 videos (four fold) of the
three isolated robotic tasks found in the JIGSAWS dataset [13]
achieved 83% Spearman’s rank correlation on a 1–6 scale [25].
This paper extends these methods to a new and unique dataset,
in order to test their capability.

3 DATASET DESCRIPTION

3.1 Videos

During a surgical training course at the National Hospital for
Neurology and Neurosurgery, London, UK, 15 simulated surg-
eries videos (11426 images) were recorded, one per participating
surgeon, using a commercially available high-fidelity bench-top
phantom of the nasal phase of eTSA1 [8]. The participants were
recruited from multiple neurosurgical centres within the United
Kingdom, with self-reported skill levels (10 novice, 5 expert),
receiving tutorials and teaching beforehand. A high-definition
endoscope (Olympus S200 visera elite endoscope) was used to
record the surgeries at 25 frames per second (FPS) with 720 ×
1080 pixels2 resolution, and stored as .mp4 files in a surgical
video management and analytics platform (Medtronic, Touch
Surgery Ecosystem2). Ethical approval was granted by the Insti-
tutional Review Board (IRB) at University College London
(UCL) (17819/011) with informed participation consent.

3.2 Instrument annotations

Each video was sampled at 1-FPS with 720 × 1080 pixels2

resolution, and stored as .png files. Third party annotators
(Anolytics3) manually annotated each image for instrument
boundary and class, which was then verified by two neuro-

surgical trainees and one consultant neurosurgeon. No image
contained multiple instruments, and only visible parts of the
instrument were annotated if obscured. Figure 2a displays the
distribution of the instruments.

3.3 Surgical skill assessments

Modified OSATS (mOSATS), OSATS curated for pituitary
videos, was created, leading to 10 aspects each measured
between 1 and 5 [8]. Each video was assessed by two neuro-
surgical trainees and verified by one consultant neurosurgeon.
Inter-rater reliability was calculated using Cohen’s Kappa,
resulting in 0.949 (confidence interval [CI] 0.983–0.853) for the
six general surgical aspects and 0.945 (CI 0.981–0.842) for the
four eTSA specific aspects, as defined in the first and second
column, respectively, under ‘mOSATS Assessment’ in Figure 3.
Figure 4 displays the mOSATS distribution.

4 METHODS

4.1 Instrument segmentation and tracking

4.1.1 PRINTNet

The simplified diagram of the created architecture is displayed
in the dashed green box of Figure 3. The encoder is ResNet50
[26], with no pre-training: a well understood, strong performing,
and lightweight CNN commonly used for medical imaging tasks
[20], particularly for eTSA recognition [27, 28]. The decoder
is DeepLabV3 [29], commonly used in eTSA segmentation
[30], which utilises Atrous (also called dilation) convolutions, as
opposed to skip connections found in other decoders. These
convolutions skip a certain number of pixels (the dilation rate),
which increases the receptive field without sacrificing spatial
resolution or increasing the number of weights (and so com-
putationally efficient), allowing object features to be captured
on multiple spatial scales [29]. This is particularly important for
instrument segmentation in eTSA, given the frequency in which
instruments are entering and exiting the endoscopic view, and
so the same instrument will be found in a variety of sizes.
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4 DAS ET AL.

FIGURE 3 Complete workflow diagram of this study.

FIGURE 4 Distribution of mOSATS (10 aspects, max 50) across the 15
videos.

Simple Online and Realtime Tracking (SORT) begins with
object detection using a CNN as a feature extractor, followed
by object estimation via velocity predictions, and finally ensur-
ing the new objects detected and predicted trajectories of the old
objects match [22]. DeepSORT extends SORT through the use
of a feature bank (storing features from previous frames), and
matching these with the previous predictions [31]. StrongSORT
extends DeepSORT through the use of an improved feature
extractor, feature bank (now updater), velocity prediction algo-
rithm, and matching algorithm [32]. Moreover, StrongSORT
compensates for camera motion by estimating global rotation
and translation between frames [32], which is of importance for
instrument tracking in eTSA. PRINTNet utilises StrongSORT,
replacing the object detection model with DeepLabV3.

4.1.2 Real-time implementation

The implementation is done via the NVIDIA Holoscan SDK4

and runs on a NVIDIA Clara AGX5 [33]. The Holoscan SDK
builds a TensorRT6 engine, which optimises models through
reductions in floating point precision, smaller model size, and
dynamic memory allocation [33].

4.1.3 Metrics

Mean Interval over Union (mIoU) was the evaluation metric
for segmentation models. Multiple Object Tracking Precision
(MOTP) was the evaluation metric for tracking models, and
MOTA is given as a secondary metric. MOTA is calculated on
every frame, and for frames where the ground-truth classifica-
tion is unknown, it is assumed the ground-truth classification
is unchanged since last known. MOTP is calculated only on
frames where ground-truth segmentations, and hence bounding
boxes, are known. For these segmentation and tracking metrics
a 100% score indicates perfect overlap between the predicted
and ground-truth annotation, with 0% indicating no overlap or
a missclassification.

FPS was the metric used to compare the speeds of the mod-
els. A 25-FPS model would match the native video frame rate
and allow for real-time tracking, whereas a lower frame rate
model would mean some frames in the video will be skipped.

4.1.4 Dataset split

Four-fold cross-validation was implemented, as 15 videos are
not sufficiently large for a reliable training to testing split. The
folds were chosen such that each fold contained approximately
the same number of images of a given instrument, but images
from one video were only present in one fold. Five instru-
ment classes (Blakesly, Irrigation Syringe, Retractable Knife,
Dual Scissors, and Surgical Drill) were removed from the anal-
ysis as they appeared in less than four videos, and so could not
be present in each fold. This left four instrument classes (Blunt
Dissector, Cup Forceps, Kerrisons, and Pituitary Ronguers) as
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DAS ET AL. 5

displayed in Figure 1. Figure 2a displays the stark data imbalance
between the instrument classes. To mitigate the effect of over-
training on dominant classes, images of the Blunt Dissector and
Kerrisons were downsampled by 600 and 1200, respectively, and
images of the Cup Forceps and Pituitary Ronguers were upsam-
pled by 400. This was done per fold, and sampled images were
chosen at random. Figure 2b displays the resampled dataset (per
fold).

4.1.5 Implementation details

To improve segmentation model training and generalisation, the
following augmentation techniques were applied in sequence at
random: horizontal flips, vertical flips, rotation, and colour jit-
ters. As a compromise between having a sufficiently large batch
size for finding optimal weights during gradient descent and a
sufficiently high image resolution for meaningful feature extrac-
tion, models were training with a batch size of 16 with training
images resized to 288 × 512 pixels2, which was able to run on a
single NVIDIA Tesla V100 Tensor Core 32-GB GPU.

Cross-entropy was the loss function and Adam with learn-
ing rate 0.00006 was the optimiser, as these choices resulted in
improved convergence over focal loss; and Dice loss; and other
optimiser variations. Each model was run for 50 epochs where
the loss function was shown to be sufficiently small (< 0.04)
across all folds with minimal changes in subsequent epochs
(< 0.005 change after 100 epochs), and so restricting training
to 50 epochs limits overfitting and reduces computational time.
The model weights of the final (50th) epoch was evaluated on
the testing dataset with no early stopping procedure as to be
a consistent choice which would not bias the model on any
given fold.

The code is written in Python 3.8 using PyTorch 1.8.1 using
CUDA 11.2, and is available at https://github.com/dreets/
printnet. All videos and annotations are available at https://doi.
org/10.5522/04/26511049.

4.2 Surgical skill assessment

In total, 34 metrics were extracted from the tracking data (see
Figure 6). In summary, it consisted of time (e.g. instrument vis-
ible time), motion (e.g. acceleration), and usage metrics (e.g.
number of instrument switches).

For each metric, a Pearson correlation coefficient (PCC) was
calculated against each mOSATS aspect and summed mOSATS.
A PCC of 1.0 or -1.0 indicates direct positive or negative
correlation, respectively, with 0.0 indicating no correlation.

Then, two classification tasks were then performed: multi-
class mOSATS (mean averaged and rounded) and binary-class
skill level (novice/expert). For each task, a Linear, Support
Vector Machine (SVM); RF; and multilayer perceptron (MLP)
model were trained, and boosted via Analysis of Variance
(ANOVA) feature selection. A naïve classifier that only predicts
the dominant class would achieve 33.3% accuracy in multi-
class by predicting ‘3’ and 66.7% accuracy in binary-class by
predicting ‘novice’.

5 RESULTS AND DISCUSSION

5.1 Instrument tracking and segmentation

5.1.1 Instrument segmentation

It is found that Blunt Dissector and Kerrisons are segmented
well, with much worse performances for Cup Forceps and Pitu-
itary Ronguers (see Table 1). This is due to the heavy data
imbalance (mIoU = 0 for misclassifications), which is difficult
to account for given the small number of images used for test-
ing, even if balance sampling was implemented during training
(see Figure 2).

This difficulty in classification is likely because instrument
handles are very similar, and take up a large portion of an image
due to the image distortion, and so instruments must be distin-
guished by their relatively small tips. This can be more clearly
seen in Figure 5b where PRINTNet struggles to identify the
boundary of the Pituitary Rongeur, but is able to identify the
boundary of Kerrisons (Figure 5a), a dominant class. This again
implies poor classification rather than poor segmentation, which
is verified by ablation studies showing 82.2 ± 0.2% mIoU in
binary segmentation.

When compared to other segmentation models, DeepLabV3
has the highest overall mIoU, although closely followed by
SegFormer, which also has a significantly higher Cup Forceps
mIoU. Given more data, it is likely SegFormer will outper-
form DeepLabV3, as the transformer encoder performs better
with larger datasets [34], extracting both local and global spatial
features [35]. U-Net performs worse, as the skip connections
between the CNN encoder and upsampling decoder prevents
derogation of local and not global spatial information [21].

5.1.2 Instrument tracking

StrongSORT has the highest MOTP as it accounts for camera
motion, although at a lower FPS when compared to SORT due
to this extra computation (see Table 2). All models have an iden-
tical and high MOTA as classification is determined by the same
DeepLabV3 backbone.

Moreover, occasionally, PRINTNet incorrectly predicts an
instrument’s classification, segmentation, and tracking, such
as in Figure 5c, caused by overpredicting the Blunt Dis-
sector tracking paths from previous frames. These incorrect
predictions increase the difficulty of surgical skill analysis as
some metrics, such as time of instrument usage, may not be
reliable.

5.1.3 Real-time implementation

The accelerated PRINTNet runs at 22 FPS with a 100-ms delay
at FP16 precision on the NVIDIA Clara AGX. This is suf-
ficient for real-time use, so PRINTNet can be used during
surgical training courses. (See Supplementary Material for a live
demonstration of this setup.)
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6 DAS ET AL.

TABLE 1 Segmentation models’ mIoU for each of the four instrument classes across the four folds. The highest mIoU for a given instrument is displayed in
bold.

Model Blunt Dissector Cup Forceps Kerrisons Pituitary Ronguers All Instruments No instrument

U-Net 63.8 ± 09.2 22.1 ± 18.3 62.1 ± 23.6 18.6 ± 14.7 41.6 ± 9.1 98.4 ± 0.9

SegFormer 63.4 ± 12.7 24.4 ± 17.9 60.2 ± 21.5 31.9 ± 24.7 45.0 ± 11.5 98.2 ± 0.6

DeepLabV3 66.9 ± 15.3 11.8 ± 10.6 73.4 ± 28.0 31.9 ± 22.9 46.0 ± 09.1 98.7 ± 0.5

FIGURE 5 Qualitative results of PRINTNet: (a) a strong example where the classification, segmentation, and tracking are accurate; (b) a common example
where the classification and tracking are accurate, but the segmentation could be improved at the instrument tip; (c) an uncommon example where classification,
segmentation, and tracking are all inaccurate. (See the Supplementary Material for the full video.)

TABLE 2 Tracking models’ performance across the four folds. The
highest value for a given evaluation metric is displayed in bold. Note that the
detection frequency was set to 5.

Model MOTP (%) MOTA (%) FPS (mean)

SORT 59.1 ± 03.1 77.9 ± 07.1 24.7 ± 00.8

DeepSORT 62.9 ± 05.0 77.9 ± 07.1 12.8 ± 00.7

StrongSORT 71.9 ± 05.5 77.9 ± 07.1 10.6 ± 02.9

TABLE 3 Accuracy in surgical skill classification across the four folds.
The highest value for a given metric is displayed in bold.

Model

Multi-class mean

mOSATS (%)

Binary-class

skill level (%)

Linear 39.9 ± 24.9 80.0 ± 16.3

Support Vector Machine 46.7 ± 26.7 80.0 ± 26.7

Random Forest 40.0 ± 38.9 73.3 ± 24.9

MultiLayer Perceptron 26.7 ± 24.9 86.7 ± 16.3

5.2 Surgical skill assessment

Distinguishing between expert and novice skill level achieved
a high 87% accuracy (see Table 3), in line with similar studies
[23–25]. However, there was poor accuracy in multi-class mean
mOSATS classification, although comparable to similar studies

[25]. This highlights the complexity of the problem, with the
implication that more data is required.

Across the 10 aspects, time-based metrics were stronger pre-
dictors than motion-based metrics. This is seen in Figure 6
where PCC for summed mOSATS is shown. Specifically, ‘ratio
of total procedure time to instrument visible time’ is found to be
positively correlated with mOSATS, indicating instrument effi-
ciency (i.e. a reduced idle time) is correlated with higher surgical
skill. Interestingly, it is found that the use of a Blunt Dissector
or Cup Forceps is negatively correlated with mOSATS whereas
Kerrisons and Pituitary Rongeurs are positively correlated.

The limited correlation between motion-based metrics and
mOSATS is an opposing result to that found in robotic thy-
roid surgery, where instrument motion in the absence of camera
motion was a strong predictor [23]. Removing this camera
motion is tricky, as large endoscope movements are required
to navigate through the nasal phase of eTSA in order to get
through the nostril (for both novice and expert surgeons), which
outweighs the more subtle movements of the instruments.
Although StrongSORT does compensate for this motion, more
sophisticated models are needed.

6 CONCLUSION

Rating surgical skill via instrument tracking during minimally
invasive surgery in an objective and reproducible manor remains
a difficult task. Existing models have focused on real and
robotic laparoscopic surgery, and these models have now been
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DAS ET AL. 7

FIGURE 6 Pearson Correlation Coefficient of the 34 metrics for summed mOSATS.

extended to simulated endoscopic surgery. Fifteen videos of
the nasal phase of eTSA were performed on a high-fidelity
bench-top phantom during a training course and were recorded.
They were later assessed for surgical skill by expert surgeons,
and instruments were manually segmented. The created model,
PRINTNet, designed to classify, segment, and track the instru-
ments during the nasal phase of eTSA achieved 67% and 73%
mIoU for the dominant Blunt Dissector and Kerrisons classes,
with 72% MOTP. Eighty-seven percent accuracy was achieved
with a MLP when using the PRINTNet tracking output to
predict whether a surgeon was a novice or expert. Moreover,
real-time speeds were achieved when run on a NVIDIA Clara
AGX, allowing for real-time feedback for surgeons during train-
ing courses. This continuous monitoring of surgical skill allows
novice surgeons to consistently improve their skill on simu-
lated surgery before they are sufficiently skilled to perform
real surgery. Future work will involve: modifying the model,
such as with the use of temporal [24] or anchor free methods
[36], collecting a larger dataset, and extending this work to real
eTSA – linking instrument tracking to both surgical skill and
real patient outcomes. For now, this paper provides a new and
unique publicly available dataset and baseline network, which
can be improved on by the community.
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