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Abstract
Statistical and machine learning methods have proved useful in many areas of
immunology. In this paper, we address for the first time the problem of predict-
ing the occurrence of class switch recombination (CSR) in B-cells, a problem of
interest in understanding antibody response under immunological challenges.
We propose a framework to analyze antibody repertoire data, based on clonal
(CG) group representation in a way that allows us to predict CSR events using
CG level features as input. We assess and compare the performance of several
predicting models (logistic regression, LASSO logistic regression, random forest,
and support vector machine) in carrying out this task. The proposed approach
can obtain an unweighted average recall of 71% with models based on variable
region descriptors and measures of CG diversity during an immune challenge
and, most notably, before an immune challenge.
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1 INTRODUCTION

High-throughput measurements of cellular molecular profiles provide opportunities to investigate complex biological
phenomena, taking advantage of a vast quantity of large-scale data (Goodwin et al., 2016). High-throughput sequencing
methods are applied in a variety of fields, including immunology, to gain insights into immune function, dynamics, and
the analysis of the factors that affect them. These data carry information about past and present immune challenges,
enabling the prediction of immune health leading to the formulation of novel vaccines and therapeutics (Widrich et al.,
2020).
The resultant generation of large data sets requires the use of appropriate statistical techniques to analyze and explore

relevant physiological phenomena. Statistical and machine learning methods have been used in a variety of biological
fields, including disease diagnosis (Hajipour et al., 2020; Pino-Mejías et al., 2008), and specifically in detecting immune
responses (Horst et al., 2021; Wei et al., 2021). These models can be used to extract relationships in the data to generate a
greater understanding of the variable of interest.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2024 The Authors. Biometrical Journal published by Wiley-VCH GmbH.

Biometrical Journal. 2024;66:2300171. www.biometrical-journal.com 1 of 14
https://doi.org/10.1002/bimj.202300171

https://orcid.org/0009-0004-4573-1912
mailto:lutecia.servius@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://www.biometrical-journal.com
https://doi.org/10.1002/bimj.202300171
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbimj.202300171&domain=pdf&date_stamp=2024-05-24


2 of 14 SERVIUS et al.

For this comparison,we selected somewidely usedmethodswhich allowus to balance performance and interpretability.
For a classification problem where the number of features is smaller than the number of observations, logistic regression
(LR; Hastie et al., 2009, Chap. 3) is a natural choice for a linear classifier. We also consider a regularized LR, the LASSO
(Hastie et al., 2009, Chap. 3), where both coefficient shrinkage and variable selection occur in tandem. In contrast to the
LR, both the random forest (RF; Breiman et al., 2017), a tree-based classifier, and kernel support vector machine (SVM)
predictors (Hastie et al., 2009, Chap. 12) make no linearity assumption. There exist more complex models which prioritize
predictive performance, like deep learningmethods, however this comes at the cost of interpretability and requires, in our
case, a substantial amount of data which can be prohibitive, thus they will not be included in our comparison.
In this paper, the focus is on the mechanism of class switch recombination (CSR) in B-cells and the use of statistical

and machine learning methods to predict its occurrence solely using information from the variable region and donor
characteristics.We propose a novel framework to analyze the antibody repertoire data, by leveraging the clonal group (CG)
level characteristics—which can be repurposed for any cellular data—so that they can be fed as an input for predictive
models and showcase how CG level representation successfully appropriates the biology of the cells and is relevant for
our prediction problem. We then compare the performance of several statistical and machine learning techniques when
applied to these novel data objects to predict CSR events under different experimental conditions. We show that CSR
occurrence can be predicted on the basis of CG diversity in the variable region during an immune challenge, but most
notably, before an immune challenge.
In Section 2, we will introduce the biological background of the data used in this paper. The data sets used to train,

validate, and test the predictive methods will be presented in Section 3; Section 4 will propose a novel CG representation
for the antibody repertoire data, informed by the biological background, while Section 5 details the data processing. In
Section 6, we detail the methodology used to predict CSR using the five models of interest: LR, LASSO logistic regression
(LASSO LR), RF, random forest with variable node size (RF-NSx), and SVM. Section 7 reports the performance of the
predictive models when applied to the immunological data sets and discusses their interpretability. Finally, Section 8 is
an overall discussion on what we can learn from this case study about the application of statistical and machine learning
models to antibody repertoire and what are possible future directions in this regard.

2 ANTIBODY REPERTOIRE AND CSR

B-cells are the main players in the humoral response and produce antibodies, a class of proteins specific to antigens found
in invading pathogens and malignant cells (Feldkamp & Carey, 1996). Antigen binding occurs in the variable region; this
is the element of the antibody which has direct contact with antigens and thus requires antigen specificity, acquired by
accumulating mutations (Feldkamp & Carey, 1996) to fine-tune its capability to recognize millions of possible antigens
that one may encounter in life. The huge diversity in antigen specificity, and thus in the variable region, is achieved
through the recombination of three gene segments: Variable (V), Diversity (D), and Joining (J) (Lescale & Deriano, 2022).
Comparatively, the constant region bears much less variability and determines the class (also known as “isotype”) and
function of the antibody (Janeway et al., 2001). There are five major classes of antibodies in humans: IgM, IgD, IgG,
IgA, and IgE. Both IgG and IgA can be subdivided into IgG1-4 and IgA1-2 subclasses. These antibody classes determine
the downstream response a B-cell would initiate upon antigen binding; for example, IgE is the major type of antibody
involved in allergic response (Janeway et al., 2001); IgG is typically the most abundant isotype in blood, and is involved in
neutralizing bacterial and viral infections (Janeway et al., 2001).
In any antibody-mediated immune response, the first antibodies produced are IgM, yet multiple classes exist in the

human body. The class of the antibody changes via the mechanism of CSR, thereby altering the function of the antibody
and improving its ability to remove antigens that have induced the response (Stavnezer & Schrader, 2014). CSR helps to
diversify B-cell responses and match antibody function to the immune challenge.
CSR is part of a complex process that generates effective antibodies against antigens. Upon confrontation with an anti-

gen, an antibody response aims to perform two tasks simultaneously: (i) improve the antibody’s ability to recognize and
target antigens (the specificity) by introducing mutations in the variable region; and (ii) undergo CSR to change the con-
stant region such that the appropriate antibody classes are available to modulate downstream responses. This requires a
balancing act between diversification, allowing highly-specific antibodies to arise; and focus, the selection of these spe-
cific antibodies and the expansion of their relative quantities in the “repertoire” of antibodies. CSR contributes to this
balancing act via targeted changes of the constant regions. Since separate processes govern changes in the variable and
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constant regions, they have traditionally been considered as separate entities—in fact, engineering of therapeutic anti-
bodies typically involves “grafting” a variable region of interest (which binds to a desired antigen) onto a constant region
with the desired biological functions (Chan & Carter, 2010). Albeit there are individual reports of interdependence of the
constant and variable regions (Su et al., 2018; Tudor et al., 2012; Zhao et al., 2019), it is not clear whether this dependence
is a general phenomenon or if instead there are features and/or rules indicating that certain variable regions are more
susceptible to CSR than others.
Considering CSR is in essence a state transition, it is not straightforward to directly detect using data collected from

snapshots of this process. One possiblemethod is bymonitoring single cells; while emerging single-cellmolecular profiling
methods might hold the promise of tracing the occurrence and dynamics of CSR events, they typically involve setting up
costly experimental methods to generate these data (Horton et al., 2022). Assessing the antibody response is most easily
done by estimating the distribution of antibody classes and variable region using blood samples and/or samples from
various immune organs (lymph nodes, spleen, etc.) (Becker et al., 2021); these “snapshots” of the response at multiple
time points do not give direct indications as to how CSR occurs. However, analyzes of these snapshots obtained along a
time course allow us to estimate the timing at which CSR occurs, as well as the start and end points of CSR (Ng et al.,
2023; Stewart et al., 2022).
Since CSR operates at the level of individual B-cells, it is important to consider the heterogeneity of CSR status across

the pool of B-cells. Upon interaction with an antigen, B-cells which are capable of recognizing this antigen will start
to divide and produce a clone of identical progeny with receptors that bind to the same antigen, maintaining antigen
specificity (Janeway et al., 2001). It is within these “clones” of B-cells where mutations and CSR operate to optimize
antigen recognition. Methods to obtain sequences of the antibody repertoire provide means to define B-cell clones which
allow us to define the occurrence of CSR and its diversity across different clones in the overall antibody response: given
the variable region nucleotide sequence is the same, one can assemble them into CG—where a CG is a set of antibodies
with variable regions which harbor an identical antigen-binding site, most commonly taken as the third complementarity
determining region (CDR3) on the antibody heavy chain. CSR is said to have occurred if a CG contains more than one
class. For any observation within this cross-class CG, they can be labeled as being amenable to CSR. Accordingly, it is
necessary to monitor the progression of these CGs over time as repeated sampling over the course of an immune response
(e.g., in a vaccination trial) would allow for observing increasing numbers of cross-class CGs.

3 DATA SETS

To investigate the relationship between CSR and the variable region, it is necessary to use data sets with defined CGs
and where each sequence has resolved isotype information to allow us to identify CSR as defined in Section 1. The hos-
pitalized COVID-19 donors (COVID) and respiratory syncytial virus (RSV) data sets published in Stewart et al. (2022) suit
this purpose.
Both these immunological data sets are B-cell repertoireswith donormetadata as illustrated in Figure 1a. The repertoires

contain sequenced heavy chain observations from donors with the variable and constant region descriptors mentioned
in Section 4 which are both continuous and categorical in nature, for example, the V gene, J family, D gene, and Kidera
factors. The observations are collected over a time course. A summary of the CGs in the two data sets at the first time point
can be seen in Table S1.
It is important to note a limitation of this approach to define the presence or absence of CSRwithin a B-cell CG, namely,

that it is dependent on the sampling depth in sequencing the repertoire. Specifically, the larger theCG, the higher the likeli-
hood of observing sequences of different isotypes. Therefore, the binary variable of interest IsCrossClass is confounded
by the sample size of the cells selected for the experiment. Without clarification on the sampling distribution and the
dependence of the clonal size on the prevalence of switching, one can only conclude that IsCrossClass= 1 (TRUE) refers
to a successful observation of switching and IsCrossClass = 0 (FALSE) is an unsuccessful observation of switching. This
issue is partly mitigated by including the CG size at day 0 as a considered variable in the models. Furthermore, an inter-
mediary test was conducted to investigate this effect by clustering the observations by clonal size and creating bins for the
CG observed sizes to train separate predictive models. The results fell in line with those shown in Section 7.
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F IGURE 1 A schematic illustrating the data used including (a) the sampling regime for the COVID and respiratory syncytial virus (RSV)
data sets outlined in Section 3 from Stewart et al. (2022); parts (b)–(c) show the workflow for the creation of the antibody sequence data sets
and the effect of the data processing in Section 5 which includes the CG collapse. The 𝜇̂(𝑝𝐶𝐺𝑗 ) refers to the estimated mean of the variable 𝑝
for CG 𝑗 and 𝜎̂()̇ is the estimated standard deviation.

3.1 Hospitalized COVID-19 patients

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) became known in late 2019 and is a pathogenic coronavirus
that has resulted in a pandemic of acute respiratory disease named COVID-19 (Hu et al., 2021). The COVID data set was
collected from SARS-Cov-2 positive patients who were hospitalized in Frimley and Wexham Park hospitals during the
first wave of SARS-Cov-2 infections in the United Kingdom, 2020. The start of the symptoms for each donor varies as does
the infection time. The data set contains observations from 16 donors taken across five time points: days 0 (admitted to
hospital), 2, 9, 22, and follow-up 2–3 weeks later, although time-courses sampling were incomplete for some donors as can
be seen in Figure 1a. Since the first time point (Day 0) is the only sampling point where all donors are represented, we
used only the features summarized from data collected at the first time point for predicting the response variable defined
across all available time points for each donor, using the models described in Section 6. The data metadata consist of the
age and the sex of the donors.

3.2 RSV live challenge

RSV is a major cause of lower respiratory tract disease in both the elderly and young children and has been shown to
be an ever-present pathogen that infects nearly all children by the age of 2 (Battles & McLellan, 2019). Samples were
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TABLE 1 A nonexhaustive selection of the CG features used to describe the data introduced in Section 3 and used as the input for the
models in Section 6.

Feature Data type Description
IsCrossClass Binary Response variable where 1 denotes a cross-class CG.
Vgene, Jfamily, etc. Categorical Gene segments that are recombined to produce the variable region.
Age Categorical/

Continuous
Old/young label for RSV donors with the cutoff at 55 years; continuous variable of donor
age for COVID.

V.REGION.id,
J.REGION.id

Continuous Measure of the mutation of a gene segment, it takes values between 0 and 100 where 100
refers to a complete match to the reference, thus no mutation. Can be taken as a proxy
for B-cell maturation.

TotalN, TotalP, etc. Continuous Number of nucleotide additions/deletions in the CDR3 region during the recombination
of V, D, and J gene segments.

Num_AAs Continuous Number of amino acids in the CDR3 sequence—measure of length.
Tiny, Small, etc. Continuous Physicochemical properties describing frequencies of specific amino acids in the CDR3

sequence.
Boman,
pI_EMBOSS, etc.

Continuous Physicochemical properties describing particular attributes of the CDR3 such as the
potential protein interaction (Boman) and the isoelectric point according to EMBOSS
(pI_EMBOSS).

kidera1-10 Continuous Set of 10 factors that aid in the description of the protein structure by describing
orthogonal physicochemical protein properties (Nakai et al., 1988).

nobs_d0 Continuous Number of sequence observations for a CG at day 0.

Abbreviations: CDR3, third complementarity determining region; RSV, respiratory syncytial virus.

taken from participants in an RSV challenge study where they were inoculated with the live virus and monitored for
infections. The data set contains observations from 12 donors taken across two time points: days 0 (before inoculation)
and 10. The data contain the immune receptor repertoire, the donor age group (i.e., young and old). For consistency with
the COVID data set, we also collated features based on the first time point (Day 0) for predicting the response variable
defined using the entire time course. Since for the antibody repertoire in the RSV data set the first sampled time point is
before inoculation we can also investigate whether it is possible to predict CSR based on the variable region characteristics
before an immune challenge.

4 CLONAL GROUPS AS DATA OBJECTS

CSR is said to have occurred if a CG contains more than one class. Hence, the response variable of interest (i.e., the
switching event) is observed at the level of the CG. As a consequence, the CG is the natural statistical unit to be considered
when exploring and modeling CSR.
However, a CG is comprised of a set of sequences, so to develop a statistical or machine learning model to predict CSR

(or lack thereof), we will need to summarize the distribution of the sequences in the CG into a vector of features that
can become the input variables for the model. Each sequence in the CG is associated to both numeric and categorical
variables—a selection can be seen in Table 1. The CGs are defined using the CDR3 which contains part of the V and J
gene segment and all of the D gene segments (Lescale & Deriano, 2022). For the data sets used the CGs were already
defined for the data in Stewart et al. (2022), by deriving pairwise comparisons of CDR3 nucleotide sequences using the
Levenshtein distance. The resulting distance matrix was clustered using hierarchical clustering and cut at tree height of
0.05 to define CGs. It was further required that all observations within a CG have the same assigned germline V, D, and
J genes, to minimize misattribution of sequences into CGs owing to mere CDR3 similarities. Thus within CGs sequence
observations are highly similar. The categorical variables in Table 1 are identical across the clonal group.
For the numerical variables, one reasonable approach is to summarize their distribution within the CG with summary

statistics of the distribution. It is expected that they too will be highly identical and display little dispersion across the
CG. This was not the case. During the initial exploratory data analysis, we found a dispersion in the values within the CG
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which was not expected given CGs are expected to have the same variable region as discussed in Section 2; skewness was
close to zero and was not considered.
Given the variable region is much the same throughout the CG, the physicochemical properties of the sequence and

the variable region mutation are not expected to display much, if any, variation. However, the data sets presented in
Section 3 do contain some variation in the values across the CG. This is small andmay either be attributed tomeasurement
error by the CG classification procedure or this range could signify an inherent property of the CGs related to genuine
diversification of sequence properties. We therefore decided to include the standard deviations of the variables in our
features vector, to explore the possibility that the variable dispersion within the CG is predictive of CSR observation. The
mean and the standard deviation were selected to represent location and dispersion of each numerical variable.
The categorical variables included in the feature vector are the variable region gene labels which define the CG, that

is, V gene, J family, and D gene. The donor metadata have also been included in the feature vector. Care is then taken to
remove the variables containing constant region information such as the proportion of class or subclass in each CG. As
the CSR occurrence is defined in this instance by the presence of more than one class, these proportions would highlight
a cross-class clonal group.
Typically, repertoire studies of immune response would sample antibody sequences at different time points with the

expectation that CSR occurs postimmune challenge. As such it is of interest to use the features of the CG before the
immune challenge to predict the outcome and investigate whether there are challenge-agnostic features that contribute
to the probability of CSR.

5 DATA PROCESSING

In this section, we describe the data processing steps that were carried out to get from the publicly available data described
in Section 3 to the clonal-group level data sets used to train, validate, and test predictive methods in Section 7.
The data sets, as in Figure 1b, were processed on a per donor basis. They were filtered to only include heavy chain

productive sequences (i.e., those encoding a full-length antibody). The data sets were then split by unique sequences; for
antibody sequence data we expect to see many replicates of each unique sequence depending on the antibody expression
level of the cell, these replicates were removed. Finally, singleton CGs (that is, those with only one sequence within the
CG) were removed, since by definition singletons would not contain sequences of different isotypes. For singletons, it is
not possible to define whether these clones are genuine negative samples in terms of CSR, or a false negative incidence
owing to undersampling of sequences during data collection.
As explained in Section 4, the statistical unit of interest is the CG rather than individual sequences. Once the CGs have

been defined for each donor, summary statistics from all the sequences in the CG were calculated for the continuous
variables. The mean and the standard deviation were used as predictors. The categorical variables remain unchanged as
they are either CG level descriptors, that is, variable region genes, or they are donor metadata. The resultant data tables in
Figure 1c have as many rows as CG and as many columns as the predictors that describe each CG, as detailed in Section 4
and with the features in Table 1. The predictor matrices for the data sets in Section 3 have dimensions 28, 798 × 65 and
55, 232 × 65 for RSV and COVID, respectively.

6 PREDICTIVEMETHODOLOGY FOR CSR EVENTS

In this section,we detail the application of five existing statistical andmachine learningmethods to the processed data sets,
for the prediction of CSR events and the procedures we are going to use to compare their performance. The response vari-
able is binary and indicateswhether or not a CG containsmore than one antibody class and can be used as an indicator that
a CSR event has occurred. This binary variable will be denoted as IsCrossClass as in Table 1. The statistical andmachine
learning models belowwill take variable region descriptors as predictors to model the binary outcome IsCrossClass. All
the models were fitted using R statistical software version 4.1.1 (R Core Team, 2021), relying on doParallel (Microsoft
Corporation & Weston, 2022a), and foreach (Microsoft Corporation & Weston, 2022b) to parallelize the computations.
The individual packages used for each model will be detailed below.
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TABLE 2 The five models considered with the associated hyperparameters that need to be selected, the search scope for the
hyperparameters and the model selection method used. Note that the g-mean here refers to the geometric mean.

Model Hyperparameters Search space Selection method
LR Number of features Scope set to include all variables in

Table 1.
AIC minimizing step function.

LASSO LR 𝜆 Set of values generated using

glmnet package.{
20..26

}
, {250, 500..1000}{

100..105
}
,
{
20..26

}
, {250, 500..1000}[

2−15, 23
]
,
[
2−4, 210

]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

The g-mean on the validation set
prediction was used to select the
optimal hyperparameter combination.

RF mtry, ntree
RF-NSx nodesize, mtry,

ntree

SVM 𝛾, 𝑐

Abbreviations: AIC, Akaike information criterion; LASSO LR, LASSO logistic regression; LR, logistic regression; RF, random forest; RF-NSx, random forest with
variable node size; SVM, support vector machine.

6.1 Performance test detail

For models to be fitted and evaluated, we split the data sets into distinct train and test sets, respectively. After the training
set is split from the test set, two different strategies, namely, all donor (AD) and leave-one-donor-out (L1DO), were used
on the training set for the cross-validation (CV) hyperparameter tuning for the models (Table 2). For the AD strategy, the
data for all donors are sampled across the folds used for CV. Conversely, the L1DO strategy results in a 𝑑-fold CV—where
𝑑 is the number of donors in the training set—as one donor is separated out to be sampled solely for the validation set for
each fold. The L1DO strategy was employed to explore the generalizability of the models across donors while combating
the weakness of predictive models (Efron, 2020; Shmueli, 2010).
In the pursuit of reducing the effect of the data imbalance of the model training, the cross-class observations were

randomly oversampled with replacement in the training sets to achieve a 50:50 data balance. The model performance has
been judged using the unweighted average recall (UAR).

6.2 Model selection and hyperparameter tuning

As introduced in Section 3, the models use the antibody repertoire features and the donor metadata, where available, to
predict the IsCrossClass response variable. In this work, all models were trained using day 0 data. When necessary,
hyperparameters were selected using grid search and 10-fold CV or 𝑑-fold CV on the training set for the AD and the L1DO
methods, respectively, by maximizing the geometric mean g-mean =

√
sensitivity × specificity (Kubat et al., 1998). The

sensitivity refers to the correct identification of cross-class clones and the specificity indicates the correct identification of
non-cross-class clones. The g-mean allows us to give equal weight to the classification of both classes as opposed to the
precision or F1 score; we wish to understand the variables contributing to both a cross-class and non-cross-clonal group.
The variables for the LR model were selected by minimizing the Akaike information criterion (AIC, Akaike, 1974) on

the training set and the categorical variables were one-hot encoded. We carried out “both” direction selection using the
step() function in R to minimize AIC, starting with an intercept-only model𝑀0 with no predictors. Variable selection
was repeated for each iteration.
Generalized linear mixed effects model was considered to improve the performance of LR by accounting for donors

heterogeneity. The same model selection described for the LR was used to select the fixed effect variables with random
effect on the intercept dependent on the donor. Given the number of variables considered and the dearth of existingmodel
selection methods for generalized linear mixed effect models, it was not feasible to consider further random effects. The
results for this model are included in Tables S2 and S3 as well as the time taken to run the strategies in Table S6. The
random effect on the intercept improves the AD strategy performance. However, it should be noted that this is not a
totally fair comparison, since due to the donor-dependent random effect the model is given access to information not
available to other methods, that is, to which donor each CG belongs. Indeed, the performance of the method plummeted
when tested with the L1DO strategy, and it becomes comparable with LR. Also, the computational cost of fitting themodel
was prohibitive. For all these reasons, we decided to focus the analysis on the LR and LASSO LR.
The LASSO LR was used for the variable selection and parameter estimation of an LR model. The model was fitted

using the glmnet R package (Friedman et al., 2010). For the choice of the penalty 𝜆, we use the lambda.1se in order to

 15214036, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202300171 by T
est, W

iley O
nline L

ibrary on [02/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 14 SERVIUS et al.

achieve the most parsimonious model whose average CV g-mean is within 1 standard error from the average CV g-mean
of the best model found in the grid search as discussed in Breiman et al. (2017).
The randomForest R package (Liaw &Wiener, 2002) was used to build the RF models in Section 7. In randomForest,

the mtry is the number of randomly drawn candidate variables out of which each split is selected when growing a tree;
nodesize is the minimum number of observations in a terminal node; and ntree is the number of trees that are grown.
To optimize the performance of an RF, it is necessary to fine-tune the learning process of the model. Some hyperparam-

eters control this learning process. Existing literature (Scornet, 2017) suggests practitioners to allow trees to grow to their
maximum depth, as this is shown to result in a better performance. Also, the default values for the hyperparameters are
believed to yield good predictive performance (Scornet, 2017) even in the absence of theoretical justification.
In this work, we optimize the mtry and ntree hyperparameters using grid search and 10-fold CV (AD) or 𝑑-fold

CV. The default settings in the randomForest package (Liaw & Wiener, 2002) allow the trees to grow to maximum
depth and it is often stated that for RF classifiers the effect of overfitting is rarely seen (Hastie et al., 2009). However,
this was not our experience with antibody repertoire data, so nodesize was additionally tuned to investigate this—
we will denote the resulting predictor as RF-NSx. In Section 7, we will present the results of the RF model with the
default nodesize = 1 value as well as RF-NSx. The grid was expanded to include default values of the hyperparame-
ters, thus mtry =

{
20..26

}
, nodesize =

{
100..105

}
, ntree = {250, 500..1000} where the defaults are

√
𝑃 ≈ 8, 1, and 500,

respectively—𝑃 is the number of predictors.
The SVM models were fitted using the e1071 R package (Meyer et al., 2023). There are two main hyperparameters

that require tuning to optimize the performance of the SVM, the cost 𝑐, and 𝛾. For the models in Section 7, both 𝑐 and
𝛾 were optimized. As discussed in Hsu et al. (2008), exponentially growing sequences of 𝑐 and 𝛾 were used to identify
optimal hyperparameters and given the inherent independence of the grid searchmethod it was possible to parallelize the
computation. The grid search was conducted with 𝑐 ∈

[
2−4, 210

]
, 𝛾 ∈

[
2−15, 23

]
.

7 EMPIRICAL ANALYSIS AND RESULTS

Two experiments were conducted on the data to assess the performance of LASSO LR, LR, RF, RF-NSx, and SVM, namely,
the AD and the L1DO experiments. For the AD experiment, the data set was randomly split into 𝑘 = 5 folds, four folds
(80%) were used as the training set and one fold (20%) was left as the test set; the fold selection was repeated until each
fold was used as a test set. The AD strategy was then employed on the 𝑘 training sets for tuning and fitting the model.
The L1DO experiment separated out data from a donor for the test set and then proceeds with the implementation of the
L1DO strategy on the training set comprised by the other donors. This is iterated over all donors until each is used for
the test set. The UAR, sometimes referred to as the balanced accuracy (Brodersen et al., 2010), is used to assess the model
performance. It is the average of the sensitivity and the specificity and it was chosen because it does not directly depend
on the prevalence of either class.
The purpose of the analysis is twofold. On the one hand, we wish to investigate if there are features in the variable

region that contain information useful to predict the observation of a CSR event in the CG. On the other hand, we wish
to compare the performance of the considered statistical and machine learning models in terms of predictive accuracy,
generalizability to new individuals, and interpretability.
We evaluated he performance of the five models of interest on each of the data sets. For both the AD and L1DO test, the

distribution of the UAR is presented in Figure 2 across both data sets and all iterations. The mean UAR of the LASSO LR,
LR, RF, RF-NSx, and SVM performance in the AD test shown in Figure 2 across data sets is 67%, 67%, 60%, 70%, and 67%,
respectively. For the L1DO test, it is 64%, 65%, 58%, 67%, and 64%, respectively.
For both data sets, the RF-NSx outperforms the RF in the AD experiment. The difference in performance is also visible

in the L1DO experiment, but ismore accentuated for the COVID data set. Looking at the value selected for nodesize in the
RF-NSx model, 103 was the most common selection across experiments and data sets, chosen in 97% of cases. Moreover,
Tables S4 and S5 (found in the Supporting Information) elucidate the overfitting occurring in the RF models compared to
the RF-NSx. The difference between model fit to training data between the RF and RF-NSx is largest for COVID, where
we expect to see more patient specificity as the data are taken during an immune response to a severe infection. The
L1DO strategy allows for a model that is more robust against overfitting and is more generalizable which is vital for more
complex data.
The highest mean UAR across the two data sets in the AD experiment is achieved by the RF-NSx model but there is

negligible difference between LASSO LR, LR, SVM, and RF-NSx, as can be seen in Figure 2. However, the RF performance
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F IGURE 2 Boxplot of the unweighted average recall (UAR) performance of the LASSO logistic regression (LASSO LR), logistic
regression (LR), random forest (RF), random forest with variable node size (RF-NSx), and support vector machine (SVM) in the all donor (AD)
(red) and leave-one-donor-out (L1DO) (blue) tests across iterations for both the (a) COVID and (b) respiratory syncytial virus (RSV) data sets.

TABLE 3 The performance of the LASSO logistic regression (LASSO LR) and random forest with variable node size (RF-NSx) based on a
singular iteration of those shown in Figure 2.

Data Model Sensitivity (%) Specificity (%) Precision (%) F1-score (%) UAR (%) G-mean (%) AUC of ROC (%)
COVID LASSO LR 73 85 23 35 79 79 84

RF-NSx 91 70 16 27 81 80 87
RSV LASSO LR 87 38 8 15 62 58 76

RF-NSx 80 59 11 20 70 69 78

Abbreviations: AUC, area under the ROC curve; ROC, receiver operating characteristic; RSV, respiratory syncytial virus.

is notably worse than the othermodels. For the L1DO test, the RF-NSx performs best oncemore, yet there is strong overlap
in the interquartile range with the LASSO LR, LR, RF-NSx, and SVM. The RF once more underperforms as compared to
the other models and it, together with the SVM, are the only models with an experiment whose UAR is below 50%which
is the baseline given themodel solely predicts themajority class in an unbalanced data set. In addition, Table S6 elucidates
the chasm in time spent for a single iteration of the model hyperparameter search and fitting for the SVM in comparison
to the other models with as much as a magnitude difference compared to the closest model.
Overall, it is clear that regardless of the experiment type or model used, the features in the antibody repertoire contain

information useful to distinguish between class homogeneous and heterogeneous CGs. We do also see that for all models
the performance dips for the L1DO experiment with respect to the AD experiment.

7.1 Model interpretation

Since we have some evidence that the models are able to find predictive signal in the CG features, it would be useful to
better understand where exactly this information comes from. To answer this question, we first investigate which features
are selected for LASSO LR or deemed to be important for RF-NSx. Then, we wish to see if these features have a positive
or negative association to observing a CSR event. We have selected both LASSO LR and RF-NSx as they display the best
performance in Figure 2 and Table S3 as well as for their interpretability.
In order to compare these two models, we have used a single iteration of the L1DO strategy displayed in Figure 2. This

means a single-fold combination was randomly selected for the train-test split to train, validate, and test. For both data
sets, both LASSO LR and RF-NSx are trained and tested on the same data combination to generate the results in Table 3
and Figures 3–4.
In Figure 3, the estimates of the 20 features with the highest absolute value out of 34 nonzero coefficients for COVID and

57 for RSV are shown. We see that the variables associated with the variation of features within a CG are most impactful.
This ismore evident in theCOVIDdata set. This implies that greater feature variation in theV regionwithin aCG increases
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F IGURE 3 The LASSO logistic regression (LASSO LR) estimates of the 20 variables with the highest absolute values for (a) COVID (out
of 34 nonzero coefficients) and (b) respiratory syncytial virus (RSV) (out of 57 nonzero coefficients). Themu refers to the mean of the feature
for a CG, that is, kidera6.mu is the mean of the Kidera factor 6 for a CG. The sd refers to the standard deviation of a feature for a CG, that is,
kidera1.sd is the standard deviation of the Kidera factor 1 for a CG. Features characterizing the CG itself (light blue), CG internal variation
(red), CG average values (green), and the donor metadata (dark blue) have been highlighted.

F IGURE 4 Gini index based random forest with variable node size (RF-NSx) variable importance rankings using importance() function
in the randomForest R package (Liaw &Wiener, 2002). The set of variables shown is the top 20 variables with the highest mean decrease in
node purity out of a total of 65 variables for (a) COVID and (b) respiratory syncytial virus (RSV). Features associated with characterization of
the CG itself (light blue), CG internal variation (red), CG average values (green), and the donor metadata (dark blue) have been highlighted.

the odds of observing CSR. Particularly, for the RSV data set, we see that existing variation in physicochemical properties
of the V region before a challenge distinguishes a resultant cross-class from a non-cross-class CG. As detailed in Table 1,
the Kidera factors summarize different features of the protein structure, for our data set this specifically relates to the
CDR3 loop, a vital component of the antibody for binding to antigens.
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We do see a marked differences in the genes selected between the RSV and COVID data sets which may point to a
certain level of challenge specificity in the antibody repertoire. Furthermore, in Figure S1A we can see that there are no
genes that are consistently selected in both AD and L1DO strategy for the COVID data set which may be attributed to
patient specificity during this immune challenge. In contrast, Figure S1B we see both IGHV1-69 and IGHV2-5 consistently
selected for RSV in both AD and L1DO strategies and the direction of the impact is consistent. Together with Figure S1, we
can see that some of the top features consistently selected are specific genes which may reflect gene preference relevant
to the immune challenge, however the effect size is much smaller than the dispersion within a clonal group.
In Figures 3–4, both data sets show that the standard deviation of Kidera factor 3 is an indicator of an increase in

the odds of a cross-class CG. This is also illustrated in Figures S1 and S2 where we see that kidera3.sd is shown to have
a consistent positive association with CSR observation across iterations, data sets, and strategies. Kidera 3 refers to the
extended structural preference, that is, a lower propensity to form compact, helical conformations. From Figure 3b, we
see that the more extended (thus less helical) the average structure of the CDR3 is (kidera3.mu), the less likely it will be
predicted as a cross-class CG. Interestingly, a more helical CDR3 loop is an indication of antigen specificity (Lowe et al.,
2011). Thus, implying that the less antigen-specific a CG appears to be before a challenge, the lesser the odds of CSR
postchallenge as the Kidera factor is calculated based on the constituents of the CG before the challenge in the RSV data
set. This association holds for RSV across iterations and strategies.
Comparatively, the variable importance metric used in Figure 4 for the RF-NSx models is the mean decrease in the

Gini index (Breiman et al., 2017) which relates to the node purity. This was calculated using the importance() function
in the randomForest R package (Liaw & Wiener, 2002). A smaller value means a node contains more observations from
a single class compared to a node with a larger value, hence the mean decrease looks to quantify the reduction in node
impurity the variable’s inclusion incurs. Unlike the estimated coefficients in LASSO LR, the mean decrease in Gini does
not illuminate whether the feature has a positive or negative association with observing a cross-class clonal group.
We see in both Figures 3b and 4b that the age of the donor has an impact on the prediction of a cross-class CG. From

the LASSO LR, we can see that being young increases the odds of predicting a cross-class CG. In addition, the V (VRI) and
J region identity (JRI) can be used to probe the B-cell maturation effect within our models. We can see that the standard
deviation of the VRI is positively associated with the odds of a cross-class CG for both the COVID and RSV data set in
Figures 3–4. This may reflect that being amenable to CSR is associated with variable region diversification.

8 DISCUSSION AND CONCLUSIONS

It appears clear from the results in Section 7 that there is indeed evidence that the CG features contain useful information
to predict CSR events. Moreover, it can be seen that the performance of the five models differs between the AD and
the L1DO experiments, confirming the expectation that generalizing to unseen individuals is a more challenging task,
especially given the relatively small numbers of donors in the data sets.
TheCOVIDdata set overall resulted inmodelswith a greater range of performance, particularly in theL1DOexperiment.

Unlike RSVwhere the data were collected as result of a controlled immune challenge experiment, COVID day 0 data have
internal variation associated to the time of the individual immune response. The dissimilarity in the immune challenge
progression is likely to have compounded the inherent donor specific variations and resulted in the higher variability
in performance in the L1DO experiment as compared to the RSV data set. Nevertheless, the relative performance of the
models is consistent across the data set, with the median performance dipping from AD to L1DO experiment and the RF
scoring lowest among the methods.
It is also notable that the models trained on RSV resulted in greater overlap in the use of predictors between AD and

L1DO, suggesting that the consistency in day 0 across donorsmay lead tomodelswhich aremore suitable to generalization.
Withal, both models highlight the importance of the number of sequences observed in the CG at day 0 and the V genes
of the CG for the prediction performance. The number of sequences observed in the CG at day 0 is consistently shown
to be associated with CSR but it has a greater effect for the COVID data set; as discussed in Section 2, CSR necessitates
clonal expansion hence a larger clone in the midst of an immune response, as is the case for the donors in COVID, would
be expected to have a higher likelihood of CSR.
Strikingly, the RF-NSx model agrees with LASSO LR about the importance of the standard deviation of the mutation

level as well as the physicochemical properties suggesting an association between cross-class CGs and variation within a
CG before a challenge.We are also able to identify the importance of Kidera factor 3 in themodels trained on the RSV data
set. However, solely the bidirectionality of the LASSO LR coefficients allows us to unearth the relationship between a less
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helical CDR3 and the diminished odds of CSR. The prediction of CSR relies on the diversity found in the CG at day 0. This
holds for both the models trained on data before the challenge (RSV) and within the challenge (COVID). We also see this
in the tendency for the models to favor the standard deviations of the Kidera factors as opposed to their mean values.
Regarding the RF and RF-NSx, the literature tends to suggest to allow trees to grow to maximum depth, which does not

seem to be optimal for this prediction problem. Indeed, the RF-NSx model outperform RF for both tests and all iterations
with a nodesize 103 greater than the RF. For data as complex and prone to patient specificity, it seems the shallower trees
allow the RF-NSx model to better respond to unseen data and consequently be more generalizable. Furthermore, it seems
clear that including nodesize in the hyperparameter search should be best practice given the impact this value has on
the performance. For the SVM, we see similar performance to the LRmodel, but the additional computational cost makes
it rather prohibitive for these complex data sets.
In conclusion, we have introduced a framework to predict CSR events from the antibody repertoire using CG collapse.

The peculiarity of this problem is that CSR events can be observed only at the CG level so the set of antibody sequences in
theCGneeds to be summarized in a vector of features that can be used as input for statistical andmachine learningmodels.
We expect this kind of approach to be of interest to other tasks in Repertoire data analysis in immunology, including
tackling the classification of single-cell RNA (scRNA) sequences that require CG level features for analysis. This method
can be trained on bulk sequencing data, as done in this paper, and applied to the scRNA data as an imputation method to
identify the likelihood that it belongs to a cross-class clonal group.
We have compared the performance of some popular predictive methods to address their strengths and weaknesses for

this specific task and highlighted the importance of comprehensive hyperparameter tuning for RFmodels.We have identi-
fied a signal across models for the observation of CSR simply using the variable region as features suggesting an important
association between the variable region and the constant region. From this point, it would be of great interest to see if we
can extend this work to predicting the class proportions that would be seen post-CSR and which features contribute. We
also discussed the differences between the observation of CSR and CSR, which we believe can be addressed through the
construction of controlled experiments where CSR is induced using agents that are known to result in switching, thus we
would have access to the entire CG rather than a sample.
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