

1 **Title:** Deciphering Temporal Gene Expression Dynamics during Epilepsy Development using
2 a Rat Model of Focal Neocortical Epilepsy.

3 **Running title:** Temporal changes in Gene Regulation during the Development of Epilepsy.

4 **Authors and Affiliations**

5 Bao-Luen Chang^{1,2,3,4*}, Matthew C. Walker¹, Dimitri M. Kullmann¹, Stephanie Schorge^{1,5*}

6 ¹Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology,
7 University College London, London, WC1N 3BG, UK

8 ² Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center,
9 Taoyuan City, 333, Taiwan

10 ³ School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan

11 ⁴ Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan

12 ⁵ Department of Neuroscience, Physiology and Pharmacology, University College London,
13 London, WC1E 6BT, UK

14

15 *Corresponding author:

16 Bao-Luen Chang, M.D.,PhD and Stephanie Schorge PhD

17 Email: m7243@cgmh.org.tw (B.-L. C.); s.schorge@ucl.ac.uk (S.S.)

18 Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center,
19 No. 5, Fusing St., Gueishan Dist., Taoyuan City 333, Taiwan

20 Tel.: +(886)-3-328-1200 ext. 8433; Fax: +(886)-3-328-7226

21

22 **Keywords:** Gene expression, Temporal change, Epileptogenesis, Focal neocortical epilepsy,
23 Epilepsy, Stage-dependent.

24

25 Number of words in the abstract: 248 words
26 Number of words in the introduction: 679 words
27 Number of words in the body of the manuscript: 4000 words
28 Number of figures: 6
29 Number of supplemental figures: 3
30 Number of supplemental tables: 4

31

32 **Acknowledgements**

33 We thank G. Schiavo (Cancer Research UK) for the gift of tetanus toxin.

34 **Funding**

35 This work was supported by the Medical Research Council, the Royal Society, the Wellcome
36 Trust (WT093205MA), Epilepsy Research UK; the Chang Gung Memorial Hospital, Taiwan
37 (CMRPG3K1021, CMRPG3L0661-2, CMRPG3M1991-2, CMRPG3P0131), and National
38 Science and Technology Council, Taiwan (MOST 108-2314-B-182A-153, MOST 109-2314-
39 B-182A-086, MOST 109-2314-B-182-079, MOST 110-2314-B-182-055).

40

41 **Conflict of interest statement**

42 None of the authors has any conflict of interest to disclose. We confirm that we have read the
43 Journal's position on issues involved in ethical publication and affirm that this report is
44 consistent with those guidelines.

45

46 **Data Availability**

47 The data that support the findings of this study are made openly and available in this published
48 article and its supplementary information files.

49 **Ethics Approval**

50 All animal experiments were conducted in accordance with the United Kingdom Animal
51 (Scientific Procedures) Act of 1986, and approved by the University College London ethics
52 committee (Project Licence No: PPL70-7684).

53

54 **Abstract**

55 **Objectives:** Epilepsy involves significant changes in neural cells during epileptogenesis.
56 While the molecular mechanism of epileptogenesis remains obscure, changes in gene
57 regulation plays a crucial role in the evolution of epilepsy. This study aimed to compare
58 changes in a subset of specific genes during epilepsy development, focusing on the period after
59 the first spontaneous seizure, to identify critical time windows for targeting different regulators.

60 **Methods:** Using a rat model of acquired focal neocortical epilepsy induced by tetanus toxin,
61 we characterised gene expression at acute, subacute and chronic stages (48-72 hours, 2 weeks,
62 and 30 days after first spontaneous seizure, respectively), focusing on genes potentially
63 contribution to epilepsy progression.

64 **Results:** We observed dynamic changes in the expression of these gene throughout the period
65 after the first spontaneous seizure. Astrocytic reactions primarily occur early, before epilepsy
66 is well-established. Changes in mammalian target of rapamycin (*Mtor*) and repressor element
67 1 silencing transcription factor (*Rest*) signalling pathways are highly dynamic and correlated
68 with the progression of epilepsy development. Chemokine C-C-motif ligand (*Ccl2*) is
69 upregulated in the chronic stage indicating activation of the neuroinflammatory pathway.
70 Finally, GABAergic signalling (*Gabra5*) is down-regulated in the late stage after epilepsy is
71 established. Surprisingly, changes in the expression of specific genes are linked to the time
72 since the first seizure, rather than seizure frequency or duration.

73 **Significance:** These results suggest that the regulation of specific genes is essentially stage-
74 dependent during the development of epilepsy, highlighting the importance of targeting
75 specific genes at appropriate stages of epilepsy development.

76 **Key bullet points**

77 • Gene expression dynamically changes following the first spontaneous seizure, with distinct
78 regulatory patterns characterized by early astrocytic reactions.

79 • *mTOR* and *REST* pathways exhibit significant fluctuations as epilepsy progresses, showing
80 significant changes during subacute stages.

81 • *Ccl2* upregulation in the chronic stage indicates neuroinflammatory pathway activation,
82 while *Gabra5* down-regulation occurs in the late stage, suggesting reduced GABAergic
83 signaling.

84 • Specific gene expression changes are linked to the time since the first seizure, not seizure
85 frequency or duration.

86 • Epilepsy development and progression involve stage-specific gene regulation, which is
87 crucial for targeting gene regulation at specific stages for effective epilepsy intervention.

88

89 **Introduction**

90 Chronic epilepsies comprise more than acute seizures and different epileptogenic
91 mechanisms may be involved in different epileptic seizures and epilepsy syndromes.¹ On the
92 other hand, because different initiating events may lead to similar clinical manifestations (i.e.
93 seizures), it is possible that different epileptic syndromes with diverse epileptogenic
94 mechanisms may share some underlying mechanisms of epilepsy development and progression.

95 Epileptogenesis is defined as a progressive change from a normal neural network to a
96 hyperexcitable condition that enables the brain to generate spontaneous recurrent seizures.
97 Traditionally, epileptogenesis was considered the process leading to the brain becoming
98 “epileptic” immediately before the first spontaneous seizure.² However, it is now understood
99 as a continuously evolving process that extends long beyond the first spontaneous recurrent
100 seizure.^{3,4} The emerging concept of epileptogenesis is as a stage which encompasses both the
101 latent period before the first seizure and the period during which initial seizure frequency and
102 severity progressively increases over time.³⁻⁶ The mechanism of epileptogenesis, including
103 epilepsy development and progression, remains obscure but several pathways have been
104 proposed, including dysfunctional or defective ion channels and receptors, immunological and
105 inflammatory pathways, as well as alterations in gene expression.^{7,8} The long-term alterations
106 in structure and network excitability are primarily attributed to changes in gene expression that
107 lead to a series of downstream molecular and protein modifications.

108 Many genes, either by up- or down-regulation, have been proposed to modulate the
109 epileptogenic process in experimental and human studies. Moreover, different stages of the
110 epileptogenic process may involve different genes, as well as individual genes following
111 different expression changes across the time course of epilepsy. For example, *Fos*, *zif268*, *Jun*,
112 *Egr1*, *Egr4*, *Homer1*, *Nurr77* and *Arc* have all been implicated in the early changes of

113 epileptogenesis.^{9,10} *GAD-67*, *NR1*, *CaMKII*, and *GluR2* have been shown to be differentially
114 regulated over time and across different areas in tetanus toxin model of motor cortical
115 epilepsy.¹¹ However, in addition to the early changes, long-term alterations in expression of
116 neurotransmitter receptors may occur in the middle and late phases of epileptogenesis. For
117 instance, repressor element 1-silencing transcription factor (*REST*) and cAMP-responsive
118 element modulator (*CREM*) are transcriptional factors which govern intrinsic homeostasis of
119 neuronal circuits,^{12,13} and mammalian target of rapamycin (*mTOR*) is expressed in neurons and
120 astrocytes as a key regulator of translational factors to control protein synthesis related to many
121 functions.^{7,14} The overexpression of these genes has been reported in some animal models of
122 epilepsy or in human epileptic tissue.¹⁵ Moreover, dysregulation of ion channels including
123 hyperpolarization-activated cyclic nucleotide-gated channel (*HCN*), GABAergic receptors,
124 and aberrant functions of glial cells have also been identified as potential targets for therapies.¹⁶

125 Conflicting findings regarding molecular alterations in epilepsy have been reported in
126 experimental models of epilepsies and some clinical studies. These controversies are likely at
127 least partly because gene expression is dynamically regulated during the development of
128 epilepsy and changes throughout the course of disease. Also, it remains unclear whether
129 specific genes could be common key regulators during epilepsy development. Resolving these
130 questions requires tracking multiple genes through different timepoints correlated with the
131 clinical stages of epilepsy to identify which genes change, and when they might best be targeted.

132 A vast number of genes are differently regulated in the development of epilepsy. We
133 selected a subset of genes based on different arguments: (1) they have been linked to
134 epileptogenic process; (2) are mechanistically implicated in changes in neuronal function, or
135 (3) have repeatedly been shown to change in epilepsy. In total, we selected 13 candidate genes
136 (Table S1) representing different categories including important transcriptional factors
137 involved in neuronal gene regulation, translational regulators regulating neurodegeneration,

138 neuron survival, protein synthesis, regulators of synaptic transmission and synaptic plasticity,
139 key synaptic proteins contributing to synaptic vesicle fusion and ultimately impacting synaptic
140 neurotransmitter release, interaction with postsynaptic calmodulin activation, neuronal ion
141 channel genes which play a key role in control of neuronal excitability and rhythmicity, genes
142 supporting inhibitory neurotransmitter signalling, astrocyte function related gene and astrocytic
143 predominantly enzyme, and critical chemokine mediated neuroinflammatory and immune
144 pathways. Here we are interested in elucidating the temporally regulated patterns of the
145 molecular profiles during the development of epilepsy.

146 **Materials and Methods**

147 **Experimental design and brain tissue preparation schedule**

148 The tetanus toxin (TeNT) model of focal neocortical epilepsy in rats was used to
149 investigate the gene expression during the established process of epilepsy. Vehicle control and
150 epileptic animals were divided into three timepoints based on time since first spontaneous
151 seizure in epileptic animals (n = 9 in each stage): acute stage (48-72 hours), subacute stage
152 (about 2 weeks), and chronic stage (30 days, Figure 1A). Time matched cortices from vehicle
153 control animals were collected to match timing from epileptic animals (n = 9 in each stage).

154

155 **Animals**

156 All animal experiments were conducted in accordance with the United Kingdom Animal
157 (Scientific Procedures) Act of 1986, and approved by the local ethics committee. Adult male
158 Sprague-Dawley rats (6 – 12 weeks old, 260-330 g; Charles River, UK) were housed on a 12-
159 h light/dark cycle (light, 7:00 – 19:00) at a constant temperature (23 ± 1°C) and a humidity of
160 50 – 60% with free access to food and water. Animals housed individually after surgery.

161

162 **Surgical procedures**

163 Rats were anaesthetised with isoflurane (2%) and placed in a stereotactic frame (Kopf,
164 USA). Tetanus toxin (15 – 15.6 ng, adjusted for body weight; gift from G. Schiavo, Cancer
165 Research UK) in a volume of 1.0 µl PBS was delivered with digital stereotactic surgery at a
166 rate of 200 nl min⁻¹ into layer V of right primary visual cortex (coordinates: 3 mm lateral, 7
167 mm posterior of bregma, at a depth of 1 mm from pia). After tetanus toxin injection, an
168 electrocorticographic (ECoG) transmitter (A3028E-AA, Open Source Instruments) was
169 implanted subcutaneously for wireless telemetry recordings. The subdural intracranial

170 recording electrode was positioned in the visual cortex over the tetanus toxin injection site and
171 the reference electrode was implanted in the contralateral frontoparietal cortex. For the rats in
172 the vehicle control group, all the surgical procedures were performed except 1 μ l of 0.9% saline
173 was injected instead of tetanus toxin. After surgery, animals were housed in Faraday cages and
174 continuous telemetric ECoG recordings were carried out for the duration of the experiment.

175

176 **Video-ECoG monitoring, ECoG data acquisition and spontaneous seizures detection**

177 An Internet Protocol (IP) camera time-locked to the wireless ECoG was used to
178 continuously record 24 h/7 days, as previously described.¹⁷ The digitized ECoG was acquired
179 with hardware and software from Open Source Instruments, and was recorded at a sampling
180 rate of 512 Hz, band-pass filtered between 0.3 and 160 Hz, and voltage dynamic range of 20
181 mV (-13 mV to +7 mV). The ECoG analysis and seizure detection with quantification were
182 visually inspected the entire ECoG dataset by researchers. An ictal episode was defined as an
183 evolution of frequency and amplitude over time with a sudden, repetitive, rhythmic, evolving
184 and stereotypic abnormal electrographic activity with high amplitude (>2 time that of baseline)
185 and a minimum duration of 10 seconds.^{18,19}

186

187 **Immunohistochemistry and cell counts**

188 Animals received tetanus toxin or 0.9% saline co-injected with fluorescent beads
189 (FluoSpheres, 10 μ m, yellow/green fluorescent (505/515), Invitrogen) in a final volume of 1
190 μ l into layer V of right visual cortex. One week after injection, brains were collected and sliced
191 at 70 μ m and 6 adjacent slices of the peri-injection site were selected as the region of interest
192 for immunochemistry. Staining was performed on free-floating brain sections with the
193 following antibodies: rabbit anti-NeuN (ab177487, Abcam), mouse GFAP (MAB3402, Merk

194 Millipore), Alexa Fluro 488 donkey anti-rabbit (A-21206, Thermo Fisher Scientific), and
195 Alexa Fluro 555 goat anti-mouse (A-21425, Thermo Fisher Scientific). Images were acquired
196 with Zen 2009 software (Zeiss) on an LSM 710 confocal laser scanning microscope (Zeiss).
197 Both imaging and the subsequent neuron counting were done while blinded to treatment.
198 Volocity 6.0 software was used for colocalization and manual cell counting. A three-
199 dimensional ROI with X: 1000 μ m, Y: 1000 μ m and Z: approximate 30 μ m (10 layers of Z
200 stack) was selected for cell counting (Figure S1). Only clearly visible NeuN and GFAP stained
201 cells confirmed with DAPI staining were assessed.

202

203 **RNA extraction**

204 A small piece of cortex (3 mm x 3 mm x approximate 1.2 mm thickness of cortex) was
205 microdissected from the area injected epileptic or matched vehicle control animals. RNA was
206 extracted with QIAzol reagent and miRNeasy Mini kit (Qiagen). RNA clean-up was carried
207 out using the RNeasy MinElute Cleanup kit (Qiagen) in a subset of RNA samples until they
208 passed the RNA purity and quality measurement (see supplemental data for detailed methods).

209

210 **Quantitative RT-PCR**

211 Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed
212 in accordance with MIQE guideline.²⁰ Two-step qRT-PCR was performed and the QuantiTect
213 reverse transcription kit (Qiagen), which includes a genomic DNA-removal step, with 1 μ g of
214 RNA from each sample was used according to manufacturer's instructions for reverse
215 transcription. Quantitative PCR was performed by using SYBR green fluorescent staining
216 method with QuantiTect SYBR Green PCR kit (Qiagen) on a Rotor Gene-6000 thermocycler
217 system (Corbett Research Ltd). Each gene was assayed in triplicate and triplicate of non-

218 template control (NTC) as negative control were run in parallel to the experimental samples in
219 each experiment. Primer design and validation, qRT-PCR data acquisition and analysis carried
220 out as described in detail in supplemental data.

221 Gene-specific primer sequences are listed in Table S2. Standard curve parameters and PCR
222 reaction efficiency are shown in Table S3.

223

224 **Statistical analysis**

225 All the data were analysed while researchers were blinded to treatment. The statistical
226 analyses were performed using Prism 6 (GraphPad) or IBM SPSS 24.0.0.0. The D'Agostino-
227 Pearson omnibus normality test was carried out for all data sets. Where appropriate, the
228 statistical significance was assessed using two-tailed unpaired or paired Student's t-test, or
229 two-way ANOVA followed by Tukey or Holm-Sidak post hoc correction for multiple
230 comparisons. The results are presented as mean \pm the standard error of the mean (SEM). P <
231 0.05 was considered significant.

232 **Results**

233 **Tetanus toxin injection into visual cortex produces a model of focal neocortical epilepsy**

234 We optimized a rat model of acquired occipital cortical epilepsy, as described
235 previously.¹⁷ Microinjection of a single dose tetanus toxin (TeNT) into the visual cortex in rats
236 produced a robust, chronic long-lasting epileptic focus which presented as clear discrete
237 spontaneous seizures (Figure 1B & 1C), characteristic of focal epilepsy in humans. Seizures
238 emerged 3 to 7 days after injection of TeNT without a preceding event of status epilepticus,
239 gradually increased in frequency during the epileptogenic process and reached a frequency
240 plateau approximately 2 weeks after onset. The frequency of seizures decreased thereafter but
241 persisted for at least 5 - 6 weeks. No epileptic discharges or seizures were observed in the
242 vehicle control rats.

243

244 **The tetanus toxin model of focal neocortical epilepsy does not cause extensive neuronal
245 death**

246 To evaluate whether the TeNT epilepsy model was triggered by toxin induced neuronal
247 death, and to ensure the molecular changes we observed were not caused by cell death or glial
248 proliferation subsequent to the injection of TeNT, immunochemistry was performed in animals
249 5 days after injection of either TeNT or 0.9% normal saline. NeuN and GFAP cell counting
250 surrounding the site of injection (Figure 2A & 2B) was carried out to calculate the density of
251 neurons and astrocytes. There was no significant difference in the density of neurons between
252 TeNT injected epileptic animals and vehicle control animals (unpaired Student's t test, $p =$
253 0.586) (Figure 2C, left). This result suggests that TeNT does not lead to significant neuronal
254 loss and confirms that the seizures produced by TeNT are not produced by changes consequent
255 to cell death, which is consistent with other studies.^{21,22} Furthermore, GFAP staining showed

256 no obvious difference in astrocyte activation and proliferation between vehicle control and
257 TeNT injected rats (unpaired Student's t test, $p = 0.064$) (Figure 2B & Figure 2C, right). Minor
258 mechanical tissue disruption caused by the injection needle is inevitable, but this damage was
259 similar in control and TeNT-treated groups. Hence, the mechanical impact of local injection
260 should not interfere with assessment of comparative gene expression between the control and
261 TeNT-treated groups. As a result, the molecular changes during the development of epilepsy
262 identified in this model are likely to mainly result from the epileptogenic process itself instead
263 of from toxin-related neurodegeneration.

264

265 **Genes are differentially regulated during epilepsy development**

266 To investigate the changing temporal regulation of gene expression throughout the period
267 after first spontaneous seizure, mRNA expression was compared in three different stages
268 during the establishment of epilepsy. As expected, most genes were differently regulated.

269 In the acute stage (48-72 hours after first seizure), *Gfap*, an astrocyte associated protein,
270 was the only significantly upregulated mRNA ($p = 0.046$, two-way ANOVA) (Figure 3A),
271 while *Bdnf* (brain-derived neurotrophic factor) was the only mRNA significantly down-
272 regulated ($p = 0.035$, two-way ANOVA) (Figure 3B). Several genes were non-significantly
273 increased: *Rest/Nrsf* (repressor element 1-silencing transcription factor/Neuron-restrictive
274 silencer factor), *Mtor* (mammalian target of rapamycin), *Ccl2* (chemokine C-C-motif ligand 2),
275 *Kcnal1* (potassium voltage-gated channel subfamily A number 1, Kv1.1), and *Nrgn*
276 (neurogranin) (Figure 3B-E). And the remaining mRNAs were non-significantly decreased:
277 *Adk* (adenosine kinase), *Snap-25* (synaptosomal-associated protein 25), *Crem/IcerII* (cAMP-
278 responsive element modulator), *Gabra5* (Y-aminobutyric acid A receptor, alpha 5), *Hcn1* and
279 *Hcn2* during the acute stage (Figure 3A-E).

280 During the subacute stage (13-16 days after first seizure), *Gfap*, *Snap-25*, *Rest/Nrsf*, and
281 *Mtor* were all significantly up-regulated (*Gfap*, $p = 0.005$; *Snap-25*, $p = 0.037$; *Rest*, $p = 0.001$;
282 *Mtor*, $p = 0.0003$; two-way ANOVA) (Figure 3A-C). No other genes were significantly
283 changed at this timepoint.

284 By the chronic state (30 days after first seizure), *Ccl2* was strongly up-regulated ($p = 0.035$,
285 two-way ANOVA) while *Gabra5* was significantly down-regulated ($p = 0.024$, two-way
286 ANOVA) (Figure 3D). No other genes were significantly changed at this timepoint.

287

288 **Shared and divergent patterns of gene regulation in the development of epilepsy**

289 Several genes exhibited similar patterns of mRNA expression changes across the three
290 different time points of epilepsy development following the first spontaneous seizure: *Rest/Nrsf*,
291 *Mtor*, *Gfap*, *Snap-25*, *Hcn1* and *Hcn2* all have a similar pattern of regulation during the
292 epileptogenic process, with all showing transient trends upwards during the subacute phase,
293 but dropping back towards control levels as epilepsy becomes established (Figure 4A, Table
294 S4). The changes in mRNA expression of *Mtor*, *Snap-25* and *Hcn1* showed significant
295 increases from acute to subacute stages followed by significantly decreased expression in the
296 chronic stage (Acute vs. Subacute: *Mtor*, $p = 0.0023$; *Snap-25*, $p = 0.0008$; *Hcn1*, $p = 0.0003$;
297 Subacute vs. Chronic: *Mtor*, $p < 0.0001$; *Snap-25*, $p < 0.0001$; *Hcn1*, $p = 0.0002$; two-way
298 ANOVA). While *Rest*, *Gfap* and *Hcn2* were all strongly down-regulated between subacute and
299 chronic periods (*Rest*, $p = 0.0006$; *Gfap*, $p = 0.0103$; *Hcn2*, $p = 0.0002$).

300 The remaining genes showed variable patterns of change. *Adk*, *Bdnf*, and *Crem* had subtle
301 increases in expression during epilepsy development (Acute vs. Subacute: *Adk*, $p = 0.0277$;
302 *Bdnf*, $p = 0.0087$) (Figure 4B, Table S4). While, *Kcnal1* and *Nrgn* levels tended to drop
303 (Subacute vs. Chronic: *Kcnal1*, $p = 0.0238$) (Figure 4C, Table S4).

304 Finally, *Gabra5* and *Ccl2* had mirror images of regulatory patterns (*Ccl2* Subacute vs. Chronic:
305 $p = 0.0028$) (Figure 4D, Table S4).

306

307 **No apparent correlation between seizure activity and magnitude of change in expression**

308 One potential hypothesis is that during the development of epilepsy seizures drive changes
309 in gene expression, and consequently animals which experience more seizures will have more
310 pronounced changes in mRNA levels. To explore whether the gene expression levels were
311 correlated to seizure activity, we analysed correlations for all selected genes at all stages
312 (Figure S3(A)-(C)). In the acute stage, *Bdnf* and *Gfap* have significant changes in mRNA
313 expression, but the magnitude of change was not obviously correlated with the number of
314 seizures (Figure 5A). We also tested the relationships between *Rest*, *Mtor*, *Snap-25*, *Gfap*
315 which had the most pronounced overexpression in subacute stage, with the number of seizures
316 in each animal experienced during the last week of the subacute phase prior to tissue collection.
317 Again, there were no correlations between the mRNA fold change and the seizure activity
318 during the last week of subacute stage (Figure 5B). For the chronic stage, *Gabra5* and *Ccl2*
319 have significant differences in mRNA expression but no correlations were seen between the
320 change in expression and seizure number during the week prior to tissue collection (Figure 5C).
321 The remaining candidate genes also had no correlations between expression and number of
322 seizures.

323 It is possible that total time spent in seizures is more important than number of seizures,
324 and so we investigated whether there were any correlations between seizure duration and
325 mRNA expression, however, again no significant associations were observed. These data
326 suggest the selected molecular changes are not driven by seizure frequency or severity, and
327 instead may reflect changes occurring that are not detectable at the EEG level.

328

329 ***Rest, Mtor and Gfap are regulated as a correlated unit, and Snap-25 and Bdnf are co-***
330 ***regulated***

331 The distinct patterns of gene regulation suggest that genes respond to different regulatory
332 cues during epilepsy development following the first spontaneous seizure. A cohort of genes,
333 including *Rest*, *Mtor*, *Snap-25*, *Gfap* and *Bdnf*, shared a similar pattern of regulation, with the
334 most pronounced changes occurring during the subacute stage. We validated this pattern using
335 a partial correlation test, controlling for stages of epilepsy progression post-first spontaneous
336 seizure. This confirmed significant correlation in expression of *Rest*, *Mtor* and *Gfap* (*Rest* vs.
337 *Mtor*: $p < 0.0001$; *Rest* vs. *Gfap*: $p = 0.006$; *Mtor* vs. *Gfap*: $p = 0.016$), and between the
338 expression changes of *Bdnf* and *Snap-25* ($p = 0.01$). In contrast, there were no positive or
339 negative interactions in the comparisons among the remaining genes (Figure 6).

340

341 **Discussion**

342 Two factors are important for comparing our results to other studies of gene expression
343 during the development of epilepsy. Many studies focus on time since insult, but human clinical
344 studies, seizure onset is potentially more relevant than time from insult, and we have used
345 seizure onset here. Secondly, compared to other commonly used animal models of epilepsy
346 (e.g. kainic acid (K.A.) or pilocarpine models),²³ the epileptogenesis in the TeNT model of
347 focal epilepsy is not triggered by status epilepticus (SE), and is not characterised by extensive
348 cell death. Therefore, changes in gene expression in the TeNT model are mainly attributed to
349 epileptogenic process itself and not to extensive neuronal loss.

350 Unexpectedly, our data show that the pathological molecular changes of the candidate
351 genes do not correlate to the seizure activity or time spent in seizures. This means that gene
352 regulation during epilepsy development following the first spontaneous seizure may be
353 predominantly disease stage-dependent (or disease phase-dependent) instead of seizure-
354 activity-dependent. This suggests that mechanisms not detected in EEG recordings can drive
355 changes in gene expression associated with epilepsy development and chronic epilepsy. The
356 time-dependent properties of gene regulation can account for, at least in part, the inconsistency
357 in reports assessing different timepoints or models.

358 For individual genes, our findings offer perspective on what is seen in other studies. For
359 example, increased *Bdnf* mRNA is seen in many *in vitro* experiments and animal models of
360 epilepsy, e.g. K.A., pilocarpine, pentylenetetrazole, kindling, and electroconvulsive shock.²⁴⁻²⁶
361 The up-regulation of *BDNF* is temporary after the onset of seizures and returns to control levels
362 in some published reports,²⁷⁻²⁹ but decreased expression of *BDNF* persists in the “undercut”
363 cortical injury model of epilepsy.^{30,31} Our data show *Bdnf* mRNA is temporarily down-
364 regulated in the acute phase (48-72 hrs after the onset of first seizure) then return to the control

365 levels, which is contrary to some studies. A possible explanation for this is that down-
366 regulation of *Bdnf* mRNA is transient, and in models which are associated with neuronal death,
367 the loss of neurons may lead to different regulation of *BDNF* which is implicated in cell death
368 and recovery. Our data suggest that in some forms of epilepsy targeting *BDNF* may not be
369 effective after epilepsy is established.

370 Similarly changes in *Snap-25* were only seen in the subacute period, and it is not clear
371 whether the transient changes in *Snap-25* are compensatory or pathological, like *BDNF SNAP-*
372 *25* is not likely to be an effective target after epilepsy is established.

373 *Rest* and *Mtor* are co-upregulated during the subacute phase following the first
374 spontaneous seizure but return to near the control levels in the late phase. As with *Snap-25* it
375 is unclear whether *Rest/Nrsf* upregulation is protective or pathological. *REST/NRSF* may have
376 a protective effect by reducing neuronal excitability,¹² and a potential antiepileptic effect of
377 *REST* via repressing *BDNF* expression has also been described.³² In contrast, the upregulation
378 of *REST/NRSF* may contribute to epileptogenesis by down-regulating *HCN1*.^{13,33} Our data
379 suggest interventions targeting *REST/NRSF* would only benefit during the subacute stage
380 following the first spontaneous seizure. The changes in *Rest/Nrsf* regulation are also strongly
381 correlated with those of *Mtor*. A recent study revealed that increased expression of *REST/NRSF*
382 lowers *TSC2* (tuberin) levels in the pheochromocytoma neuronal cell line³⁴ raising the
383 possibility that changes in *REST/NRSF* can affect expression of the *mTOR* signalling pathway
384 and potentially *mTOR* itself.

385 Accumulating evidence suggests that *mTOR* dysregulation is not only seen in patients
386 with mTORopathies (e.g. tuberous sclerosis complex and cortical malformations), but it also
387 is associated with many acquired epilepsies including infantile spasms, post-traumatic epilepsy,
388 mTLE, and hypoxia-induced seizures etc.^{35,36} Biphasic activation of the *mTOR* pathway

389 immediately after SE (peak at 3-6 hrs) and a second distinct rise during 5-10 days after SE has
390 been shown in the K.A. model of temporal lobe epilepsy (TLE).³⁷ We found a striking
391 overexpression of *Mtor* in the subacute stage following the first spontaneous seizure in our
392 non-SE initiated and non-lesional neocortical model of epilepsy, expanding the role of *mTOR*
393 in different epilepsies. Interventions with Rapamycin, an *mTORC1* inhibitor, have been
394 reported to be protective in some models.³⁷⁻³⁹ However, while administration of rapamycin
395 does not abolish epileptogenesis, it may still inconsistently suppress seizure activity across
396 different animal models.⁴⁰⁻⁴² Furthermore, clinical trials in patients with TSC and experimental
397 preclinical studies also showed paradoxical exacerbation of epilepsy with *mTOR* inhibition
398 treatment.⁴³⁻⁴⁵ These inconsistent findings may reflect pro- and anti-epileptic effects at different
399 time points of epilepsy. Our data suggest that the subacute phase rather than late phase of
400 epilepsy development may be a critical time point for treatments targeting *mTOR* expression.

401 Finally, we find *Gfap* is also co-upregulated in the subacute phase following the first
402 spontaneous seizure. Transient increases of *Gfap* mRNA and protein in the early phase of
403 electrically-induced and PTZ-induced seizures have been reported in literature.⁴⁶ We have
404 shown that there is no difference in the minor mechanical tissue disruption between normal
405 saline and TeNT-injected animals, as well as no toxin-induced astrogliosis in the TeNT model
406 of occipital lobe epilepsy. Thus, the changes we see in *Gfap* expression can be considered as
407 astrocytosis in response to the epileptogenic process following the first spontaneous seizure. In
408 this model there was marked reactive overexpression of *Gfap* mRNA predominantly in the
409 acute and subacute stages of epilepsy development with a trend towards returning to control
410 levels later on. This evidence suggests that astrocytes may play a role during the epileptogenic
411 process, but may have relatively less influence after epilepsy has become established. Our data
412 show a strong co-regulatory behaviour among *Rest*, *Mtor* and *Gfap* during the development of

413 epilepsy, consistent with a shared co-regulatory network involving *Rest*, *Mtor* and *Gfap* that
414 may play a central role during epilepsy development.

415 The late phase is most likely of clinical relevance for new treatments and we find two
416 genes with persistent changes in the chronic phase: *Ccl2* and *Gabra5*.

417 Clinical evidence suggests that *CCL2* (also known as chemokine monocyte chemotactic
418 protein-1, *MCPI*) is overexpressed in epilepsy patients with focal cortical dysplasia,⁴⁷ tuberous
419 sclerosis, and TLE.⁴⁸⁻⁵¹ Moreover, *CCL2* is upregulated in experimental models, such as
420 pilocarpine^{52,53}, K.A.⁵⁴, and angular bundle stimulation models.⁵¹ We found a significant
421 elevation of *Ccl2* in the chronic stage, only after epilepsy is established. In addition, microglial
422 activation has been shown in the hippocampal tetanus toxin model.⁵⁵ This indicates this
423 neuroinflammatory pathway may present an opportunity for treating established epilepsy.

424 Similarly, the expression of *Gabra5* remained near control levels until the chronic stage
425 and underwent a dramatic decline in the late phase. As the GABA_A α 5 subunit or δ subunit is
426 responsible for tonic inhibition,⁵⁶ our findings imply that tonic inhibition may be reduced after
427 epilepsy has been established, and represent a therapeutic possibility in established epilepsy.

428 The neuropathological alterations of neuronal loss and gliosis are absence in the cortex of
429 the TeNT model of focal neocortical epilepsy.⁵⁷ However, hippocampal sclerosis can be
430 detected in some patients with chronic extratemporal epilepsy, and hippocampal atrophy has
431 also been observed in focal neocortical epilepsy induced by TeNT injection in the primary
432 motor cortex.⁵⁸ It remains unclear whether the remote effect of hippocampal atrophy might
433 influence gene expression changes in the neocortex tissue obtained from neocortical epilepsy.
434 While neuronal loss in hippocampus is considered a potential mechanism in mesial temporal
435 lobe epilepsy, it is less commonly observed in the cortex of neocortical epilepsy. Previous
436 studies from human tissue have further revealed the absence of neuropathological alterations

437 in the epileptogenic cortex, indicating that chronic seizure activity does not induce cortical
438 tissue damage in focal neocortical dysplasia and cryptogenic neocortical epilepsies.⁵⁹

439 This study has several limitations. First, the use of Q-PCR to detect a focused set of
440 candidate genes rather than employing broader approaches such as genome-wide sequencing.
441 While Q-PCR allowed us to study specific genes linked to or implicated in the epileptogenic
442 process in detail, it may not capture the full spectrum of gene expression changes occurring
443 during epilepsy development. Sequencing methods, which offer a more comprehensive
444 analysis, could potentially reveal novel therapeutic targets and enable comparisons with large
445 datasets from existing studies. Future research should consider incorporating genome-wide
446 sequencing to provide a broader and more comprehensive understanding of the genetic changes
447 involved in epilepsy. Additionally, the use of only male animals may necessitate replication in
448 female rats to determine whether the changes in gene expression during epilepsy development
449 and progression are consistent across genders. Nevertheless, our findings still highlight a
450 potential new avenue in targeting specific regulators at different clinically relevant time
451 windows.

452

453 **Conclusions**

454 In summary, our work highlights the importance of targeting different genes at specific
455 time points to modify the progression and treatment of epilepsy. Notably, we find that changes
456 in gene regulation following the first spontaneous seizure do not correlate with seizure activity,
457 suggesting an underlying mechanism that is not detected by EEG is driving these alterations.

458 **Statements & Declarations**

459 **Acknowledgements**

460 We thank G. Schiavo (Cancer Research UK) for the gift of tetanus toxin.

461 This work was supported by the Medical Research Council, the Royal Society, the Wellcome
462 Trust (WT093205MA), Epilepsy Research UK; the Chang Gung Memorial Hospital, Taiwan
463 (CMRPG3K1021, CMRPG3L0661-2, CMRPG3M1991-2, CMRPG3P0131), and National
464 Science and Technology Council, Taiwan (MOST 108-2314-B-182A-153, MOST 109-2314-
465 B-182A-086, MOST 109-2314-B-182-079, MOST 110-2314-B-182-055).

466

467 **Competing interests**

468 None of the authors has any conflict of interest to disclose. We confirm that we have read the
469 Journal's position on issues involved in ethical publication and affirm that this report is
470 consistent with those guidelines.

471

472 **Author Contributions**

473 **Bao-Luen Chang:** Conceptualization, Methodology, Experimentation, Data collection,
474 analysis and interpretation, Writing-Original Draft, Writing-Review & Editing, Visualization,
475 Funding acquisition.

476 **Stephanie Schorge:** Conceptualization, Resources, Data interpretation, Writing-Review &
477 Editing, Visualization, Supervision, Project administration, Funding acquisition.

478 **Matthew C. Walker:** Conceptualization, Writing-Review & Editing, Supervision.

479 **Dimitri M. Kullmann:** Conceptualization, Writing-Review & Editing, Supervision.

480

481 **ORCID of the authors:**

482 Bao-Luen Chang: ORCID 0000-0002-4547-6155
483 Stephanie Schorge: ORCID 0000-0003-1541-5148
484 Matthew C. Walker: ORCID 0000-0002-0812-0352
485 Dimitri M. Kullmann: ORCID 0000-0001-6696-3545
486

487 **Data Availability**
488 The data that support the findings of this study are made openly and available in this published
489 article and its supplementary information files.

490

491 **Ethics Approval**
492 All animal experiments were conducted in accordance with the United Kingdom Animal
493 (Scientific Procedures) Act of 1986, and approved by the University College London ethics
494 committee (Project Licence No: PPL70-7684).

495

496 **References**

497 1. Vreugdenhil M, Hack SP, Draguhn A, et al. Tetanus toxin induces long-term changes in
498 excitation and inhibition in the rat hippocampal CA1 area. *Neuroscience* 2002;114:983-
499 994.

500 2. Sloviter RS, Bumanglag AV. Defining "epileptogenesis" and identifying "antiepileptogenic
501 targets" in animal models of acquired temporal lobe epilepsy is not as simple as it might
502 seem. *Neuropharmacology* 2013;69:3-15.

503 3. Pitkanen A, Engel J, Jr. Past and present definitions of epileptogenesis and its biomarkers.
504 *Neurotherapeutics* 2014;11:231-241.

505 4. Sloviter RS. Epileptogenesis meets Occam's Razor. *Curr Opin Pharmacol* 2017;35:105-110.

506 5. Williams PA, White AM, Clark S, et al. Development of spontaneous recurrent seizures after
507 kainate-induced status epilepticus. *J Neurosci* 2009;29:2103-2112.

508 6. Kadam SD, White AM, Staley KJ, et al. Continuous electroencephalographic monitoring
509 with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-
510 stroke epilepsy. *J Neurosci* 2010;30:404-415.

511 7. Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit
512 dysfunction. *Nat Rev Neurosci* 2013;14:337-349.

513 8. Loscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery
514 and development. *Nat Rev Drug Discov* 2013;12:757-776.

515 9. Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging mechanisms. *Nat
516 Rev Neurol* 2009;5:380-391.

517 10. Liang F, Jones EG. Zif268 and Fos-like immunoreactivity in tetanus toxin-induced epilepsy:
518 reciprocal changes in the epileptic focus and the surround. *Brain Res* 1997;778:281-292.

519 11. Liang F, Jones EG. Differential and time-dependent changes in gene expression for type II
520 calcium/calmodulin-dependent protein kinase, 67 kDa glutamic acid decarboxylase, and
521 glutamate receptor subunits in tetanus toxin-induced focal epilepsy. *J Neurosci*
522 1997;17:2168-2180.

523 12. Pozzi D, Lignani G, Ferrea E, et al. REST/NRSF-mediated intrinsic homeostasis protects
524 neuronal networks from hyperexcitability. *EMBO J* 2013;32:2994-3007.

525 13. McClelland S, Brennan GP, Dube C, et al. The transcription factor NRSF contributes to
526 epileptogenesis by selective repression of a subset of target genes. *Elife* 2014;3:e01267.

527 14. Vezzani A. Before epilepsy unfolds: finding the epileptogenesis switch. *Nat Med*
528 2012;18:1626-1627.

529 15. Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related
530 malformations of cortical development with abnormal glioneuronal proliferation.
531 *Epilepsia* 2008;49:8-21.

532 16. Gorter JA, van Vliet EA, Aronica E, et al. Potential new antiepileptogenic targets indicated
533 by microarray analysis in a rat model for temporal lobe epilepsy. *J Neurosci*
534 2006;26:11083-11110.

535 17. Chang BL, Leite M, Snowball A, et al. Semiology, clustering, periodicity and natural
536 history of seizures in an experimental occipital cortical epilepsy model. *Dis Model Mech*
537 2018.

538 18. Fisher RS, Scharfman HE, Decurtis M. How Can We Identify Ictal and Interictal Abnormal
539 Activity? *Issues in Clinical Epileptology: A View from the Bench* 2014;813:3-23.

540 19. Pitkanen A, Kharatishvili I, Narkilahti S, et al. Administration of diazepam during status
541 epilepticus reduces development and severity of epilepsy in rat. *Epilepsy Res* 2005;63:27-
542 42.

543 20. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for
544 publication of quantitative real-time PCR experiments. *Clin Chem* 2009;55:611-622.

545 21. Jefferys JG, Evans BJ, Hughes SA, et al. Neuropathology of the chronic epileptic syndrome
546 induced by intrahippocampal tetanus toxin in rat: preservation of pyramidal cells and
547 incidence of dark cells. *Neuropathol Appl Neurobiol* 1992;18:53-70.

548 22. Jiruska P, Finnerty GT, Powell AD, et al. Epileptic high-frequency network activity in a
549 model of non-lesional temporal lobe epilepsy. *Brain* 2010;133:1380-1390.

550 23. Reddy DS, Kuruba R. Experimental models of status epilepticus and neuronal injury for
551 evaluation of therapeutic interventions. *Int J Mol Sci* 2013;14:18284-18318.

552 24. Binder DK. Role of BDNF in Animal Models of Epilepsy. *Encyclopedia of Basic Epilepsy*
553 Research, Vols 1-3 2009:936-941.

554 25. Binder DK, Croll SD, Gall CM, et al. BDNF and epilepsy: too much of a good thing?
555 *Trends Neurosci* 2001;24:47-53.

556 26. Liang F, Le LD, Jones EG. Reciprocal up- and down-regulation of BDNF mRNA in tetanus
557 toxin-induced epileptic focus and inhibitory surround in cerebral cortex. *Cereb Cortex*
558 1998;8:481-491.

559 27. Chavko M, Nadi NS, Keyser DO. Activation of BDNF mRNA and protein after seizures in
560 hyperbaric oxygen: implications for sensitization to seizures in re-exposures. *Neurochem
561 Res* 2002;27:1649-1653.

562 28. Gall CM. Seizure-induced changes in neurotrophin expression: implications for epilepsy.
563 *Exp Neurol* 1993;124:150-166.

564 29. Nawa H, Carnahan J, Gall C. BDNF protein measured by a novel enzyme immunoassay in
565 normal brain and after seizure: partial disagreement with mRNA levels. *Eur J Neurosci*
566 1995;7:1527-1535.

567 30. Prince DA, Parada I, Scalise K, et al. Epilepsy following cortical injury: cellular and
568 molecular mechanisms as targets for potential prophylaxis. *Epilepsia* 2009;50 Suppl 2:30-
569 40.

570 31. Li H, McDonald W, Parada I, et al. Targets for preventing epilepsy following cortical injury.
571 *Neurosci Lett* 2011;497:172-176.

572 32. Garriga-Canut M, Schoenike B, Qazi R, et al. 2-Deoxy-D-glucose reduces epilepsy
573 progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. *Nat
574 Neurosci* 2006;9:1382-1387.

575 33. McClelland S, Flynn C, Dube C, et al. Neuron-restrictive silencer factor-mediated
576 hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental
577 temporal lobe epilepsy. *Ann Neurol* 2011;70:454-464.

578 34. Tomasoni R, Negrini S, Fiordaliso S, et al. A signaling loop of REST, TSC2 and beta-
579 catenin governs proliferation and function of PC12 neural cells. *J Cell Sci* 2011;124:3174-
580 3186.

581 35. Meng XF, Yu JT, Song JH, et al. Role of the mTOR signaling pathway in epilepsy. *J Neurol
582 Sci* 2013;332:4-15.

583 36. Ryther RC, Wong M. Mammalian target of rapamycin (mTOR) inhibition: potential for
584 antiseizure, antiepileptogenic, and epileptostatic therapy. *Curr Neurol Neurosci Rep*
585 2012;12:410-418.

586 37. Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway
587 mediates epileptogenesis in a model of temporal lobe epilepsy. *J Neurosci* 2009;29:6964-
588 6972.

589 38. Talos DM, Sun H, Zhou X, et al. The interaction between early life epilepsy and autistic-
590 like behavioral consequences: a role for the mammalian target of rapamycin (mTOR)
591 pathway. *PLoS One* 2012;7:e35885.

592 39. Huang X, Zhang H, Yang J, et al. Pharmacological inhibition of the mammalian target of
593 rapamycin pathway suppresses acquired epilepsy. *Neurobiol Dis* 2010;40:193-199.

594 40. Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure
595 frequency in a mouse model of temporal lobe epilepsy. *J Neurosci* 2011;31:2337-2347.

596 41. Sliwa A, Plucinska G, Bednarczyk J, et al. Post-treatment with rapamycin does not prevent
597 epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. *Neurosci
598 Lett* 2012;509:105-109.

599 42. Drion CM, Borm LE, Kooijman L, et al. Effects of rapamycin and curcumin treatment on
600 the development of epilepsy after electrically induced status epilepticus in rats. *Epilepsia*
601 2016;57:688-697.

602 43. French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-
603 resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3,
604 randomised, double-blind, placebo-controlled study. *Lancet* 2016;388:2153-2163.

605 44. Muncy J, Butler IJ, Koenig MK. Rapamycin reduces seizure frequency in tuberous sclerosis
606 complex. *J Child Neurol* 2009;24:477.

607 45. Zeng LH, McDaniel S, Rensing NR, et al. Regulation of cell death and epileptogenesis by
608 the mammalian target of rapamycin (mTOR): a double-edged sword? *Cell Cycle*
609 2010;9:2281-2285.

610 46. Torre ER, Lothman E, Steward O. Glial response to neuronal activity: GFAP-mRNA and
611 protein levels are transiently increased in the hippocampus after seizures. *Brain Res*
612 1993;631:256-264.

613 47. Iyer A, Zurolo E, Spliet WG, et al. Evaluation of the innate and adaptive immunity in type
614 I and type II focal cortical dysplasias. *Epilepsia* 2010;51:1763-1773.

615 48. Wu Y, Wang X, Mo X, et al. Expression of monocyte chemoattractant protein-1 in brain
616 tissue of patients with intractable epilepsy. *Clin Neuropathol* 2008;27:55-63.

617 49. Andjelkovic AV, Pachter JS. Characterization of binding sites for chemokines MCP-1 and
618 MIP-1alpha on human brain microvessels. *J Neurochem* 2000;75:1898-1906.

619 50. Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. *Nat Rev Neurol*
620 2011;7:31-40.

621 51. Broekaart DWM, Anink JJ, Baayen JC, et al. Activation of the innate immune system is
622 evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction
623 and seizure progression. *Epilepsia* 2018;59:1931-1944.

624 52. Foresti ML, Arisi GM, Katki K, et al. Chemokine CCL2 and its receptor CCR2 are
625 increased in the hippocampus following pilocarpine-induced status epilepticus. *J
626 Neuroinflammation* 2009;6:40.

627 53. Xu JH, Long L, Tang YC, et al. CCR3, CCR2A and macrophage inflammatory protein
628 (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during
629 and after pilocarpine-induced status epilepticus (PISE). *Neuropathol Appl Neurobiol*
630 2009;35:496-514.

631 54. Bozzi Y, Caleo M. Epilepsy, Seizures, and Inflammation: Role of the C-C Motif Ligand 2
632 Chemokine. *DNA Cell Biol* 2016;35:257-260.

633 55. Shaw JA, Perry VH, Mellanby J. Tetanus toxin-induced seizures cause microglial
634 activation in rat hippocampus. *Neurosci Lett* 1990;120:66-69.

635 56. Bonin RP, Zurek AA, Yu J, et al. Hyperpolarization-activated current (In) is reduced in
636 hippocampal neurons from Gabra5-/- mice. *PLoS One* 2013;8:e58679.

637 57. Mainardi M, Pietrasanta M, Vannini E, et al. Tetanus neurotoxin-induced epilepsy in mouse
638 visual cortex. *Epilepsia* 2012;53:e132-136.

639 58. Otte WM, Bielefeld P, Dijkhuizen RM, et al. Focal neocortical epilepsy affects
640 hippocampal volume, shape, and structural integrity: a longitudinal MRI and
641 immunohistochemistry study in a rat model. *Epilepsia* 2012;53:1264-1273.

642 59. Rossini L, Garbelli R, Gnatkovsky V, et al. Seizure activity per se does not induce tissue
643 damage markers in human neocortical focal epilepsy. *Ann Neurol* 2017;82:331-341.

644

645 **Figure Legends**

646 **Figure 1. Experimental design and representative spontaneous focal neocortical seizures**

647 (A) A schematic representation of the overall procedure, showing how brain tissue was
648 obtained from three different stages according to the onset of the first spontaneous seizure in
649 epileptic rats, and their corresponding vehicle control animals. (B) A representative ECoG trace
650 showing an ictal event from a tetanus toxin injected rat, showing a long-lasting seizure and the
651 evolution of epileptic activity with different frequency, amplitude, and waveforms. Panels 1-
652 4 expand different regions of the event showing the evolving activity. (C) Raster plots of all
653 seizures from the occurrence of the first spontaneous seizure over the entire recording period
654 for individual animals of acute, subacute, and chronic groups (n = 9 animals in each group).

655

656 **Figure 2. Immunohistochemistry and volumetric cell count around the region of visual
657 cortex injection**

658 (A) A representative immunofluorescence image of a brain slice showing the injection
659 targeting layer V of primary visual cortex and the area (white square) selected for cell counting.
660 (B) Neuronal and astrocytic cell counting around the site of injection and the morphology of
661 astrocytes. There is no obvious tissue disruption or other apparent difference surrounding the
662 injection tract between the 0.9% saline injected vehicle control rats and the TeNT injected
663 epileptic rats. NeuN, a neuronal marker (green), and GFAP, an astrocyte marker (red). (Scale
664 bar: 150 μ m). (C) Average density of neurons and astrocytes surrounding the zone of 0.9%
665 saline or TeNT injection. There is no significant difference in the density of both neurons and
666 astrocytes between control and TeNT-treated epileptic animals. Cell counting was carried
667 while blinded to treatment. (n = 9 sections from 3 animals in each group). Data are presented
668 as mean \pm SEM.

669

670 **Figure 3. mRNA quanitification of genes of interest in different stages of epilepsy**
671 **development**

672 (A) – (E) These selected candidate genes have been linked to the development of epilepsy in
673 different crucial neuronal functional pathways or have been repeatedly shown to change in
674 epilepsy. (A) *Gfap* is significantly up-regulated during both acute and subacute periods,
675 whereas there is no clear mRNA fold difference compared with control in *Adk*, an astrocyte-
676 specific enzyme across the whole period of epilepsy. Acute: *Gfap*, p = 0.046; *Adk*, p = 0.240.
677 Sub-Acute: *Gfap*, p = 0.005; *Adk*, p = 0.769. Chronic: *Gfap*, p = 0.934; *Adk*, p = 0.99.

678 (B) The SNARE gene, *Snap-25* has strong overexpression in subacute stage only. *Bdnf* is a
679 neurotrophin gene showing significant down-regulation in acute phase followed by a tendency
680 of up-regulation. Acute: *Snap-25*, p = 0.562; *Bdnf*, p = 0.035; *Nrgn*, p = 0.991. Sub-Acute:
681 *Snap-25*, p = 0.037; *Bdnf*, p = 0.974; *Nrgn*, p = 0.819. Chronic: *Snap-25*, p = 0.130; *Bdnf*, p =
682 0.780; *Nrgn*, p = 0.420.

683 (C) The mRNA level of *Crem/IcerII* is mildly down-regulated, whilst *Rest/Nrsf* is up-regulated
684 over the entire period of epileptogenic process and revealing a significant increase of *Rest/Nrsf*
685 in subacute period. *Mtor* which not only contributes to gene transcription but also protein
686 translation, displays remarkable overexpression in subacute stage. Acute: *Crem/IcerII*, p =
687 0.050; *Rest*, p = 0.187; *Mtor*, p = 0.628. Sub-Acute: *Crem/IcerII*, p = 0.092; *Rest*, p = 0.001;
688 *Mtor*, p = 0.0003. Chronic: *Crem/IcerII*, p = 0.310; *Rest/Nrsf*, p = 0.99; *Mtor*, p = 0.279.

689 (D) *Ccl2*, a chemokine gene, exhibits a rise over all stages and is significantly up-regulated in
690 chronic stage only. In contrast, *Gabra5* has obvious hypo-expression in chronic phase. Acute:
691 *Gabra5*, p = 0.121; *Ccl2*, p = 0.949. Sub-Acute: *Gabra5*, p = 0.658; *Ccl2*, p = 0.825. Chronic:
692 *Gabra5*, p = 0.024; *Ccl2*, p = 0.035.

693 (E) The neuronal ion channel genes, *Kcnal1* and *Hcn1* and *Hcn2*, all have a tendency of
694 increased expression in subacute stage, but the changes are mild and variable during the
695 development of epilepsy. Acute: *Kcnal1*, p = 0.464; *Hcn1*, p = 0.114; *Hcn2*, p = 0.969. Sub-
696 Acute: *Kcnal1*, p = 0.094; *Hcn1*, p = 0.138; *Hcn2*, p = 0.192. Chronic: *Kcnal1*, p = 0.959; *Hcn1*,
697 p = 0.085; *Hcn2*, p = 0.055.

698 In each comparison n = 9 animals in each group; matched measures two-way ANOVA
699 followed by Sidak correction for multiple comparisons, *p < 0.05, **p < 0.01, ***p < 0.001.
700 Data are shown as mean \pm SEM.

701

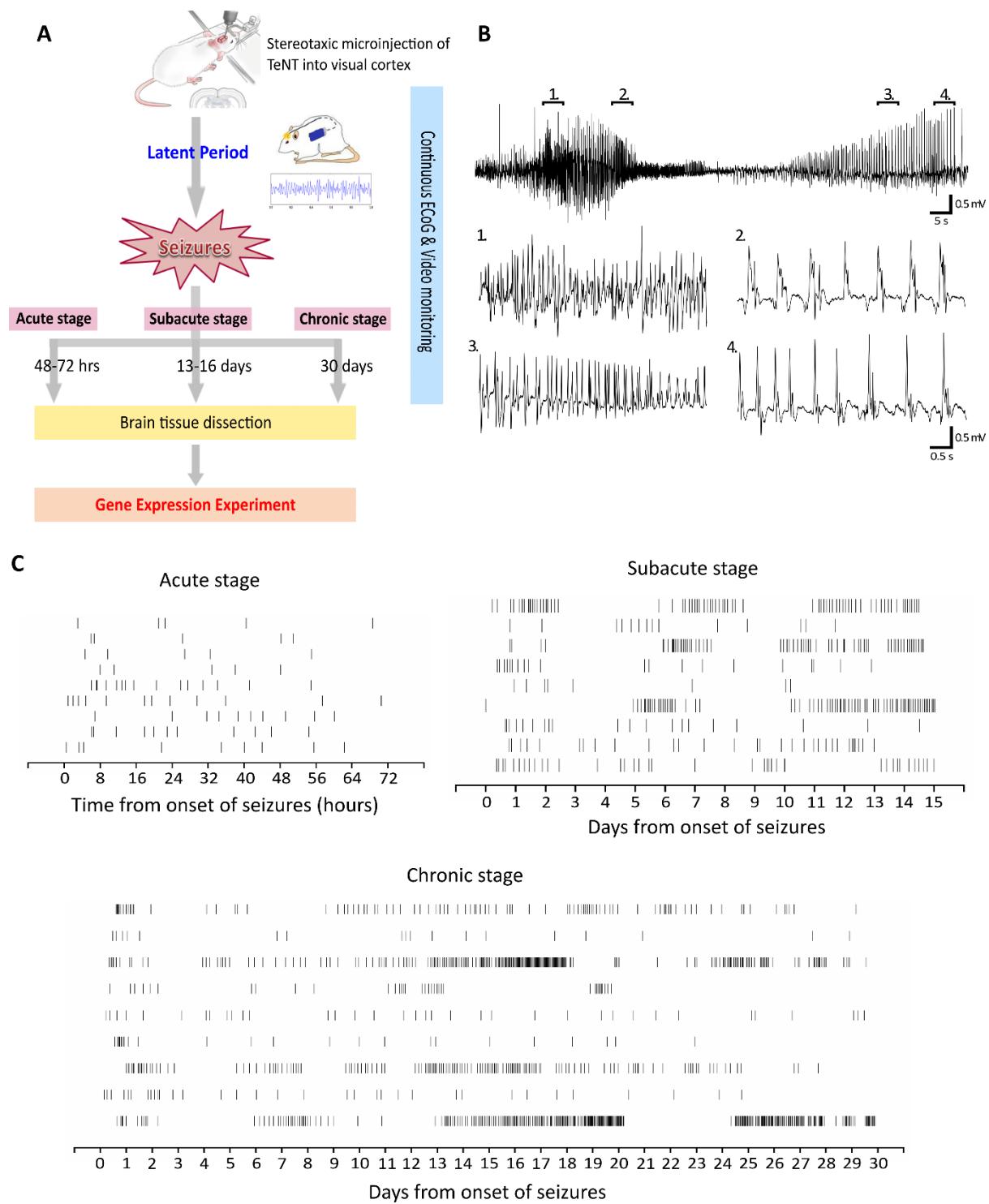
702 **Figure 4. Patterns of gene regulation during epilepsy development in the TeNT model of**
703 **epilepsy**

704 (A) – (D) Trends comparing the patterns of gene regulation over time in different stages of the
705 development of epilepsy. The mRNA expression changes are presented as fold difference (FC)
706 and the mRNA value in control group is “1”. (A) *Rest*, *Mtor*, *Gfap*, *Snap-25*, *Hcn1* and *Hcn2*
707 increased expression levels from acute to subacute stages followed by decreased expression
708 from subacute to chronic stages. (B) *Adk*, *Bdnf* and *Crem* have a mild rising tendency from
709 acute to subacute stages then reach a plateau. (C) *Kcnal1* and *Nrgn* have a decline trend from
710 acute to chronic stages. (D) *Gabra5* was slightly down-regulated, whilst *Ccl2* was up-regulated
711 during the all stages and both have an inflection point at subacute stage. Data are shown as
712 mean of mRNA fold change (FC).

713

714 **Figure 5. Correlation between expression of selected genes and seizure activity**

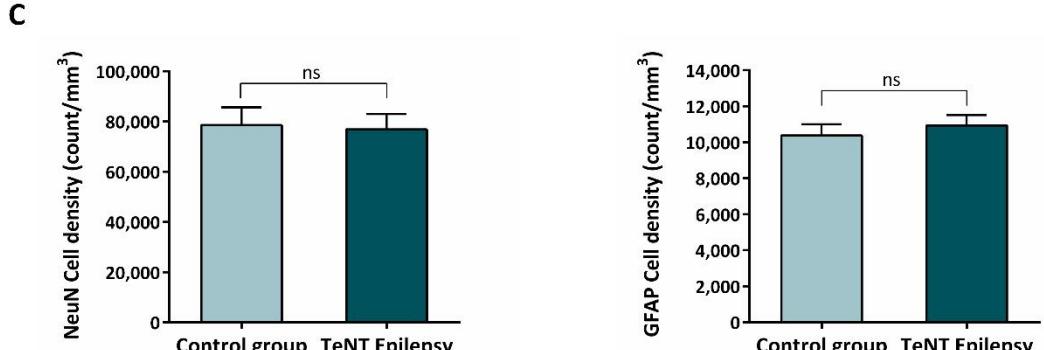
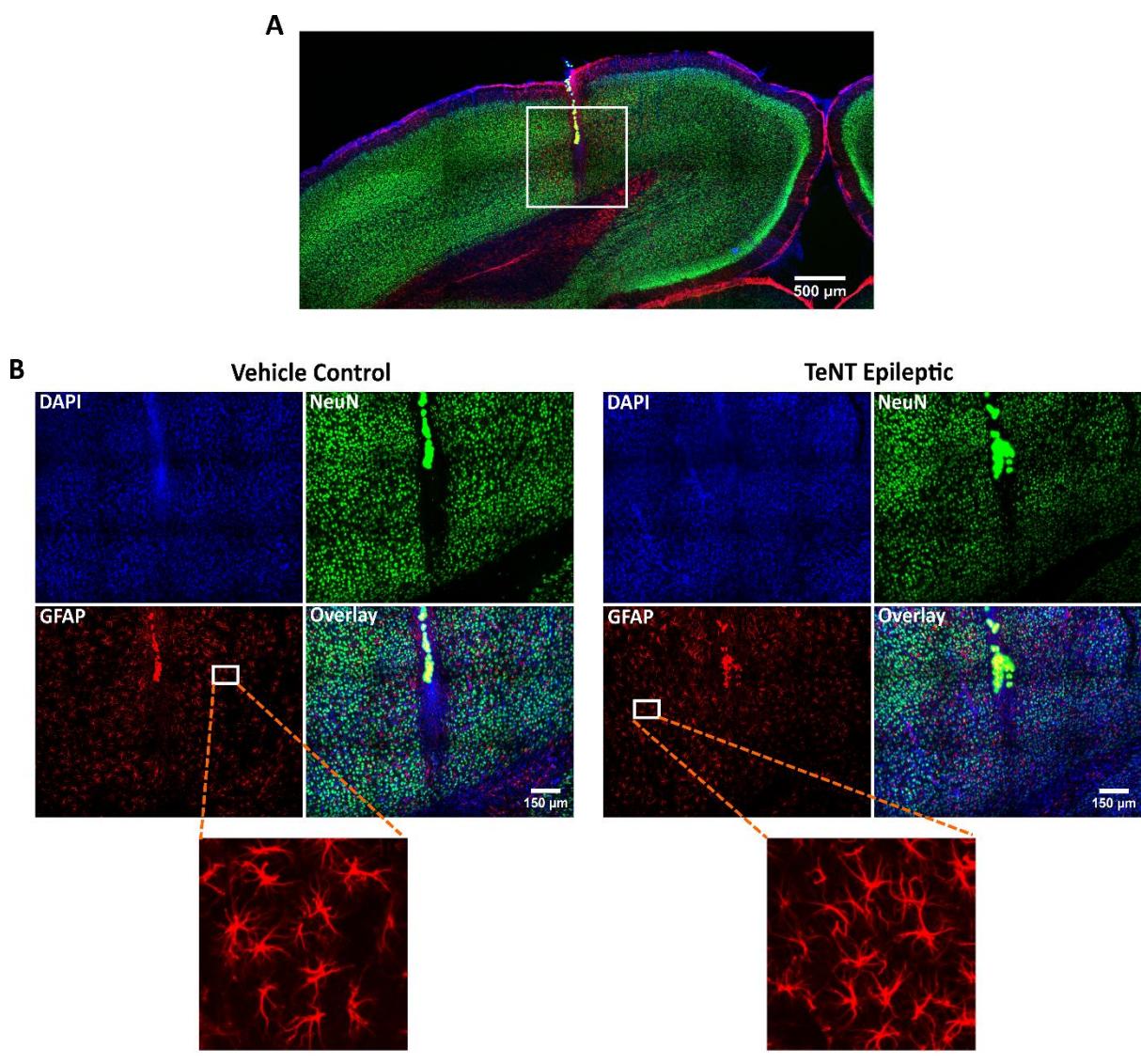
715 (A) The correlation coefficient analysis between mRNA fold changes and the log (number of
716 total seizures (sz) + 1) for *Bdnf* and *Gfap* in acute stage. (B) The relationships of mRNA
717 expression for *Rest*, *Mtor*, *Snap-25*, *Gfap* and the log (number of sz during the last week of
718 subacute stage + 1). (C) Plot of *Gabra5* and *Ccl2* gene expression and the log (number of sz in
719 the last week of chronic period +1). (n = 9 animals in each group; Pearson correlation
720 coefficients).


721

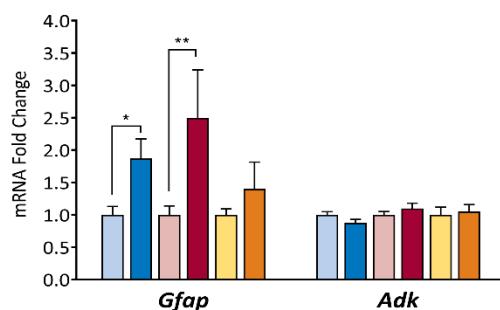
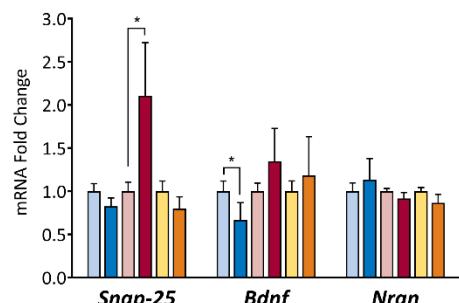
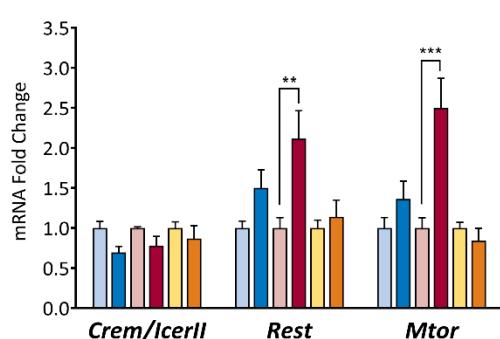
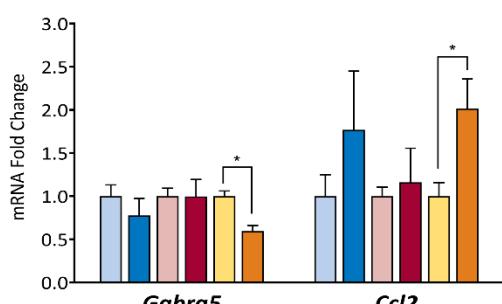
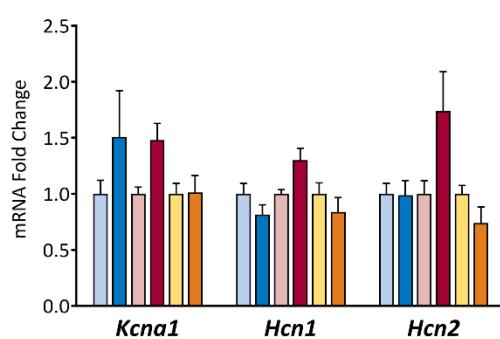
722 **Figure 6. The relationships between expression of different genes**

723 The gene-gene correlations showing that there was a significant positive correlation in mRNA
724 expression of *Rest* vs. *Mtor* ($p < 0.0001$), *Rest* vs. *Gfap* ($p = 0.006$), *Mtor* vs. *Gfap* ($p = 0.016$),
725 and *Snap-25* vs. *Bdnf* ($p = 0.01$). (n = 27 animals; Partial correlations and stages of epilepsy
726 development as a control variable followed by False Discovery Rate correction with Benjamini,
727 Krieger and Yekutieli method for multiple comparisons).

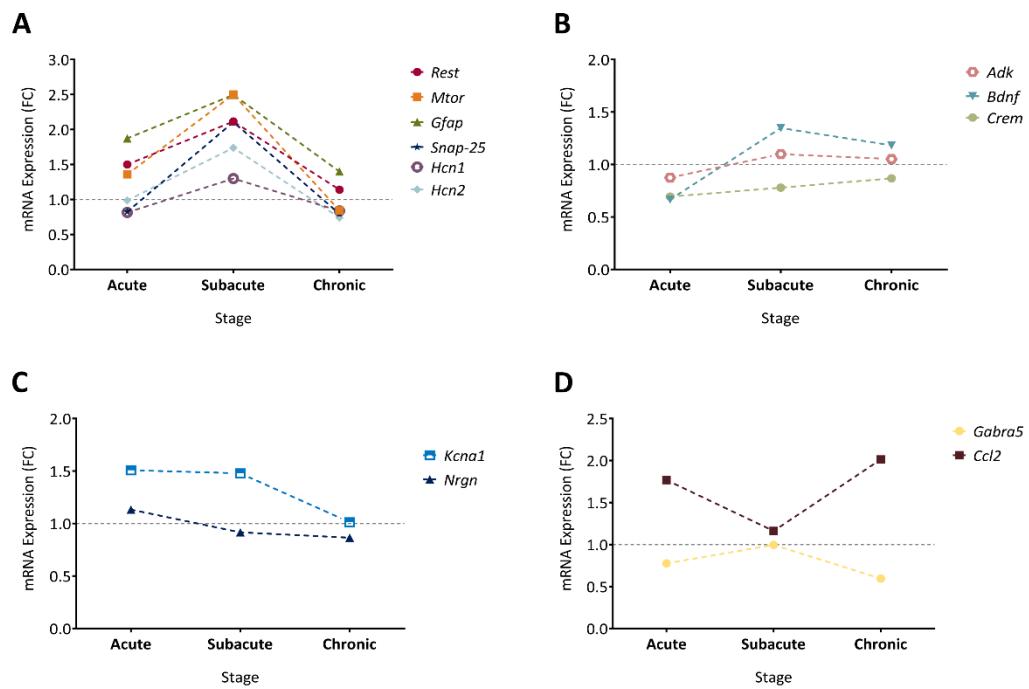
728



729 Fig 1

730






731

732 Fig 2

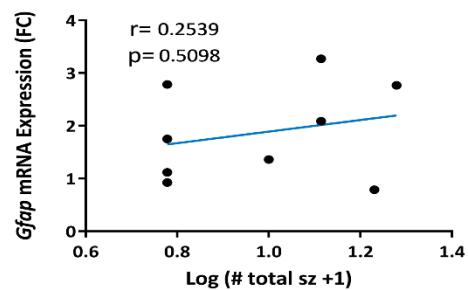
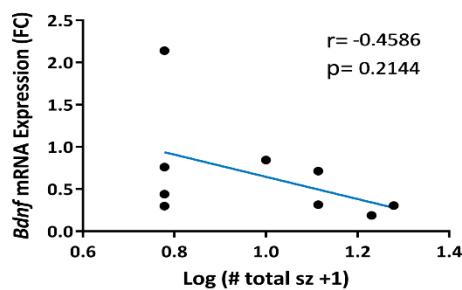

733

734

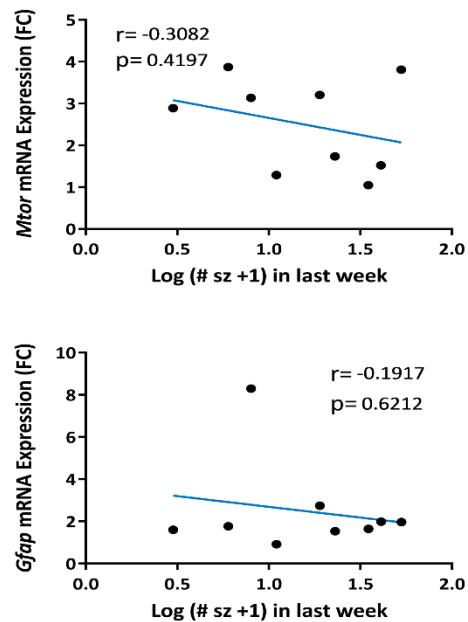
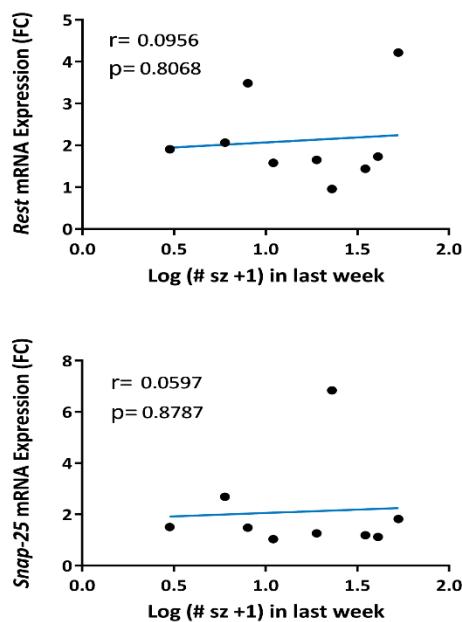
A**Astrocyte reaction hyperplasia(*Gfap*) & Astrocyte-based enzyme(*Adk*)****B****Synapse Function(*Snap-25*) & Transmission(*Bdnf*) & CaM Activation(*Nrgn*)****C****Transcription Factors: *Crem*, *Rest* & *Mtor*****D****Inhibitory Neurotransmitter (*Gabra5*) & Neuroinflammation (*Ccl2*)****E****Neuronal Ion Channels: *Kcna1* & *Hcn***

- Acute Stage_CTL group
- Acute Stage_Epi group
- Subacute Stage_CTL group
- Subacute Stage_Epi group
- Chronic Stage_CTL group
- Chronic Stage_Epi group

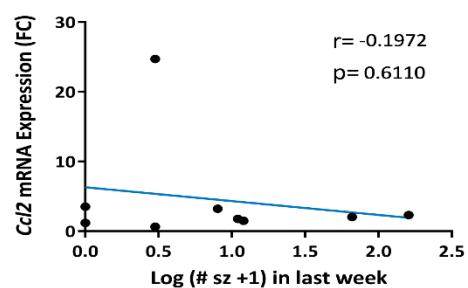
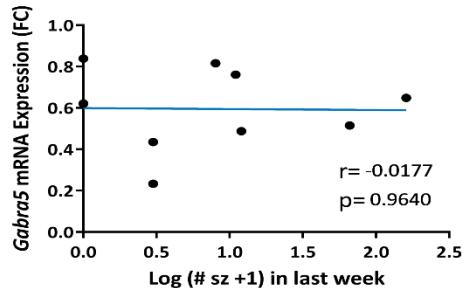
738 Fig 4

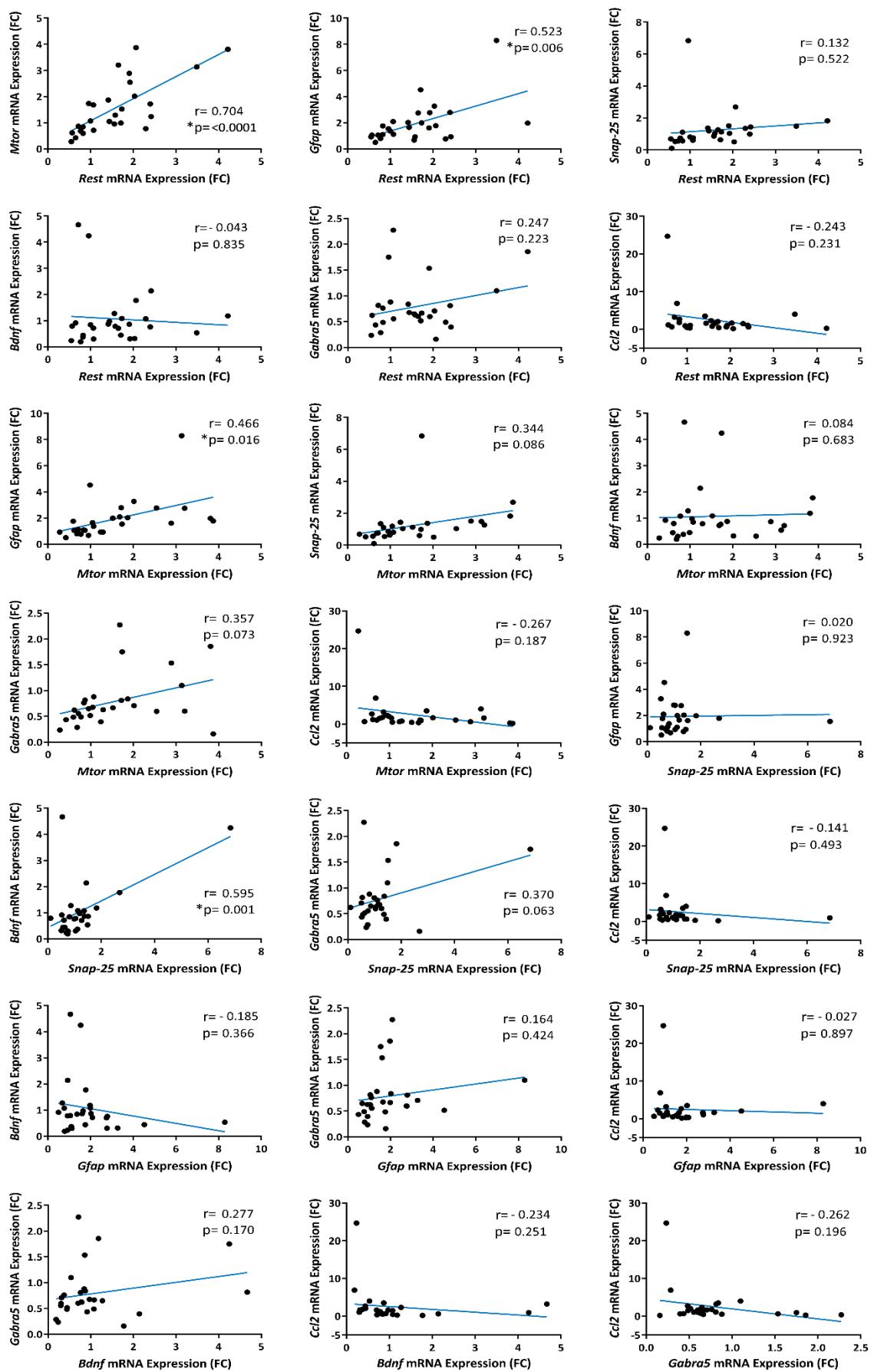
739



740

741 Fig 5



A

B


C

742

743

744 Fig 6

