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Abstract

INTRODUCTION: Unraveling how Alzheimer’s disease (AD) genetic risk is related to

neuropathological heterogeneity, and whether this occurs through specific biological

pathways, is a key step toward precisionmedicine.

METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-

demented individuals and investigatedhowADrisk variants predict cerebrospinal fluid

(CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter

integrity, and brain connectivity.

RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs.

Inflammatory pathways were associated with cerebrovascular disease, whereas quan-

titative measures of white matter lesion and microstructure integrity were predicted

by clearance andmigration pathways. Functional connectivity alterationswere related

to genetic variants involved in signal transduction and synaptic communication.

DISCUSSION: This study reveals distinct genetic risk profiles in association with spe-

cific pathophysiological aspects in predementia stages of AD, unraveling the biological

substrates of the heterogeneity of AD-associated endophenotypes and promoting a

step forward in disease understanding and development of personalized therapies.
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Highlights

∙ Polygenic risk for Alzheimer’s disease encompasses six biological pathways that can

be quantified with pathway-specific genetic risk scores, and differentially relate to

cerebrospinal fluid and imaging biomarkers.

∙ Inflammatory pathways aremostly related to cerebrovascular burden.

∙ White matter health is associated with pathways of clearance and membrane

integrity, whereas functional connectivity measures are related to signal transduc-

tion and synaptic communication pathways.

1 BACKGROUND

Recent genome-wide association studies (GWASs) of sporadic

Alzheimer’s disease (AD) and related dementias1 have identified

more than 70 genetic variants that modify the risk of developing AD,

beyond apolipoprotein E (APOE) ε2/ε4. These risk variants are involved
in several pathophysiological pathways, such as amyloid-beta 1-42

(Aβ1-42) production and clearance, lipid metabolism, endocytosis,

immune function, and inflammatory response.2 The multitude of

pathophysiological processes involved in ADpathogenesismay explain

heterogeneity in neuropathological features of AD that are already

present in the pre-dementia stage.3,4 For example, individuals along

the AD clinical spectrum can present with heterogeneous profiles of

brain functional, structural, and cerebrovascular alterations observed

through magnetic resonance imaging (MRI) techniques.5,6 Neu-

ropathological heterogeneity further exacerbates disease complexity

and may contribute to the partial efficacy of anti-amyloid compounds

investigated in clinical trials for AD.7 Individuals in the early stages of

theAD continuummight indeed present alterations in different biolog-

ical pathways, eventually leading to heterogeneous neuroimaging and

clinical manifestations.8 Characterizing how genotype influences het-

erogeneity in these imaging phenotypes is essential for understanding

individual differences in disease cause, presentation, trajectory, and

response to treatment,9 thus will be necessary for patients’ selection

and stratification in clinical trials.

One way to link genetic variants to biological pathways and neu-

ropathological features is through determining total and pathway-

specific genetic risk scores (GRSs). GRSs are weighted scores that

quantify the individual genetic predisposition to develop a disease,

such as AD, calculated by computing the sumof risk alleles that an indi-

vidual has, weighted by the risk allele effect sizes as estimated by a

GWASs.10 Furthermore, by linking variants to genes, andgenes to asso-

ciated biological pathways, one can compute pathway-specific GRSs

(pathway-GRSs), which retain information about how the burden of

genetic risk varies across biological processes.11

The APOE-ε4 genotype promotes amyloid deposition during the

stages preceding dementia onset,12 and has been associated, although

less consistently, with tau deposition,13 hippocampal atrophy,14, and

alterations of functional connectivity (FC).15 In contrast, there is scant

evidence linking early fluid and imaging AD-related traits to genetic

pathways beyond APOE. It has been demonstrated that the cere-

brospinal fluid (CSF) phosphorylated tau (p-tau) and total tau (t-tau)

levels are correlated with GRSs for AD that did not include the APOE

variants.16 Moreover, GRSs have been associated with higher rates of

tau-PET (positron emission tomography) and amyloid-PET uptake in

patients with AD, independently of APOE genotype.17 Pathway-GRSs

of endocytosis and immune response have been found to be associ-

ated with AD clinical progression, and to a lower extent with imaging

markers of whitematter damage.18 Although this suggests that certain

AD phenotypes may be preferentially associated with accumulated

genetic risk along particular biological pathways, current research has

mostly focused on specific aspects, failing to capture genetic bases and

pathways that regulate the broad spectrum of imaging and molecular

biomarkers changes in preclinical AD stages.

To assess the genetic vulnerability underlying early AD-associated

changes in brain pathology, structure, and function, we tested

whether GRSs and pathways-GRSs of Alzheimer’s disease and related

dementias1 relate to (1) CSF levels of Aβ1-42 and p-tau181, (2) radiolog-
ical features of cerebral small-vessel disease (cSVD), and (3) a broad set

of quantitative imaging phenotypes frommultimodalMRI.

2 METHODS

2.1 Participants

Data were drawn from the latest data release from the European Pre-

vention of Alzheimer’s Dementia (EPAD) multicenter study.19 EPAD

general inclusion criteria were age older than (or equal to) 50 years

and no diagnosis of dementia (Clinical Dementia Rating [CDR] scale
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RESEARCH INCONTEXT

1. Systematic review: Polygenic risk for Alzheimer’s dis-

ease (AD) comprises genetic variants that play a role in

various biological processes, extending beyond amyloid

production and clearance. This broader genetic influence

may account for the heterogeneity of neuropathological

observed from the early stages of the disease. Under-

standing these distinct pathophysiological pathways is

crucial for comprehending the disease and tailoring treat-

ments to individual patients.

2. Interpretation: Using data from a large multicenter

cohort study, we demonstrate that distinct genetic pro-

files determine specific imaging abnormalities and pro-

mote disease heterogeneity, through differential biolog-

ical pathways.

3. Future directions: Pathway-specific genetic profilingmay

offer novel perspectives for patient stratification and

precisionmedicine.

score <1). Exclusion criteria were the presence of conditions associ-

ated with neurodegeneration or affecting cognition, contraindication

to MRI or lumbar puncture, and cancer or history of cancer in the

preceding 5 years. A total of 1835 participants were included in the

EPAD study. Demographic, cognitive, neuroimaging, fluid biomarker,

and genetic outcome datawere collected.20 For thiswork, we excluded

participants with unavailable or low-quality (see below) genetic data,

resulting in a final sample of n= 1738.

2.2 Genetic data acquisition and processing

DNA samples were genotyped using Illumina Infinium Global

Screening Array-24 v3.0. Standard quality control procedures

were applied using PLINK (www.cog-genomics.org) and are avail-

able online (https://github.com/marioni-group/epad-gwas). Briefly,

quality control ensured high-quality genotypes in all individu-

als (individual call rate >99%, variant call rate >99%), excluding

single nucleotide polymorphisms (SNPs) with a significant depar-

ture from Hardy–Weinberg equilibrium (p < 1x10) and keeping

SNPs with minor allele frequency >0.5%. Before imputation, indi-

viduals of non-European ancestry (n = 19, based on clustering

with HapMap III reference data) and individuals with a family

relation (n = 46, identity-by-descent >0.1875) were excluded.

Genotypes were imputed using the Michigan Imputation Server

(https://imputationserver.sph.umich.edu)21 against European sample

data from the Haplotype Reference Consortium (HRC, v1.1, GRCh37).

Analyses were restricted to SNPs with imputation quality scores (RSq)

≥0.6 andminor allele frequencies (MAFs) ≥0.0005.

2.3 Genetic risk scores calculation

We constructed GRSs using 85 variants that were previously sig-

nificantly associated (genome-wide threshold) with AD and related

dementias,1 in a sample of individuals that had no overlap with the

EPAD cohort. The variant effect sizes (log of odds ratio) reported in

the original work (Table S1) were used as weights for the GRS. Given

a subject s, the GRS is defined as:

PRS =
K∑

k=1
dosageks × ln(ORk)

whereK represents the full set of genetic variants, dosageks denotes the

allele dosage from the (imputed) genotype of variant k in subject s, and

ln(ORk) is the logarithmically transformed odds ratio of variant k.

To investigate the effects of genetic variants beyond APOE, GRSs

were computed both with and without the two alleles (rs7412 and

rs429358) from the APOE gene (denoted as GRSAPOE and GRSnoAPOE,

respectively).

2.4 Pathway-GRS

In order to construct pathway-specific GRSs, SNPs were mapped to

pathways. We used a previously developed data-driven method,22

which has no a priori pathway definition and consists of two fun-

damental steps: first, single SNPs were linked to likely affected

genes (variant-gene mapping); then, identified genes were associated

with biological pathways (gene-pathway mapping). This method has

previously demonstrated its capability to identify canonical disease

pathways as identified in prior studies.22 The pathway analysis was

performed on the set of SNPs excluding theAPOE region, to specifically

evaluate APOE-independent pathways.

2.4.1 Variant-gene mapping

To perform the first step of this procedure we relied on the variant-

gene mapping reported in the reference GWAS study.1 Briefly, to

prioritize candidate genes in the new loci, the authors integrated vari-

ant annotation, quantitative-trait-loci (QTL) (such as expression-QTL,

protein-QTL, splicing-QTL, methylation-QTL, and histone acetylation-

QTL), and β-amyloid precursor protein (APP) metabolism. Detailed

information about the annotation procedure is reported in the original

work. Prioritized genes are reported in Table S1.

2.4.2 Gene-pathway mapping

Agene-set enrichment analysiswas then performedwith snpXplorer22

to find biological pathways enriched within the set of identified genes.

The Gost function from the R package gprofiler223 was used with

gene ontology24 as a reference gene source for functional profiling.
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F IGURE 1 Results of the pathway analysis. The upper part of the figure shows the results of the clustering performed on identified pathways
relating to the selected set of genes. Themost frequent words from the pathways description within each cluster of pathways are visualized using
word clouds. The lower part of the figure shows the contribution of each gene to each identified cluster, expressed as a log of odds ratios.

Briefly, snpXplorer calculates a semantic similarity matrix between

all enriched pathways, which is then used in a hierarchical clustering

framework to obtain clusters of similar pathways. Lin distance25 is

used as a semantic similarity metric, whereas the number of clusters

is estimated with a dynamic cut-tree algorithm. By counting the num-

ber of times each SNP was associated with each cluster of pathways,

and dividing by the total number of associations per SNP, we obtained

a weighted mapping factor of each SNP to each cluster of pathways,

varying between 0 and 1 and reflecting the contribution of that SNP

to that cluster of pathways (Figure 1). In case no mapping to any of the

pathways was found, we excluded the gene from further analyses.

2.4.3 Pathway-GRSs

For the pathway-GRSs, we extended the definition of the GRS by

adding as a multiplicative factor the variant-pathway-mapping weight

of each variant:

GRS =
∑K

k=1
dosageks × ln(ORk) ×Mp

k

where Mp
k is the variant-pathway mapping of variant k to pathway p,

thus obtainingN pathwayGRSs estimates per subject, withN being the

number of identified clusters.

2.5 CSF analysis and AT classification

CSF biomarkers were quantified using a harmonized pre-analytical

protocol. Analyses were performed with the fully automatized Roche

cobas Elecsys System at the Clinical Neurochemistry Laboratory, Möl-

ndal, Sweden.20 Concentrations of Aβ1-42 were determined using the

manufacturer’s guidelines. Following a previous study on the same

cohort,26 CSF Aβ1-42 levels <1000 pg/mL were used to define amyloid

positivity (A+), andCSFp-tau levels>27pg/mLwere used to define tau

positivity (T+). Four AT groups were derived to define A−T−, A+T−,
A+T+, and A−T+ participants.

2.6 MRI acquisition and processing

EPAD MRI acquisition and pre-processing details are given in27 and

in supplementary materials. Briefly, at all sites the MRI protocol

included acquisition of three-dimensional (3D) T1-weighted (3D T1w)
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and 3D fluid-attenuated inversion recovery (FLAIR), 2D T2w, and 2D

T2 star images. In a subset of sites, advanced MRI sequences were

also acquired including resting-state functional MRI (rs-fMRI) and

diffusion-weighted imaging (DWI). From T1w sequences, the learning

embeddings for atlas propagation (LEAP)28 framework was used to

compute gray matter (GM) volumes in the hippocampus, normalized

by the total intracranial volume (TIV). White matter hyperintensities

(WMHs) were computed using Bayesian model selection (BaMoS)29

on FLAIR sequences. Periventricular and deep WMH volumes were

obtained globally and for the frontal, parietal, temporal, and occipital

lobes,30 and corrected for TIV to account for interindividual differ-

ences in total brain size. For rs-fMRI sequences, a dual regression

approach31 was used to compute resting-state network FC within

three subsystems of the default mode network (DMN),32 including

a medial, dorsal, and ventral component, according to a previous

study.33 For DWI sequences, a tract-based spatial statistics (TBSS)

approach was used to obtain regional values of fractional anisotropy

(FA) and mean diffusivity (MD) in 10WM tracts that have been shown

previously to relate to Alzheimer’s pathology. Examined WM tracts

included commissural (genu, body, and splenium of corpus callosum),

limbic (cingulum and fornix), associative (superior and inferior longitu-

dinal fasciculus and superior fronto-occipital fasciculus), andprojection

(corona radiata and internal capsule) fibers.

2.7 Radiological assessment

MRI radiological reads were centrally performed for all EPAD par-

ticipants, following the STandards for ReportIng Vascular changes on

nEuroimaging (STRIVE) criteria34 to evaluate cSVD burden. Enlarged

perivascular spaces (PVSs) in the basal ganglia (PVS-BG) and centrum

semiovale (PVS-CS)were rated separately using a 0–4 interval scale on

the 2D T2w images.35 Visual rating of deep and periventricular WMH

(DWMH and PVH, respectively) was performed using the 0–3 Fazekas

scale on the FLAIR images.36 Cortical microbleeds (CMBs) were classi-

fied as ≥2 or <2. A more detailed description of the used scales can be

found in the supplementarymaterials.

2.8 Statistical analyses

Data distributions were normalized before statistical analysis to meet

linear model assumptions. Normalization steps are described in the

supplementary materials. All the statistical models described below

were corrected for age, sex, and population substructure (using the

first five principal components computed on the genomic data). Mod-

els with the GRSnoAPOE and the pathway-GRSs as predictors were

further corrected for APOE ε4 allele carriership to study indepen-

dent effects. Participants in the A−T+ group were only included

in the analysis of GRS differences across AT stages and other-

wise excluded as considered suspected non-Alzheimer’s pathology

(SNAP).

2.8.1 Association of GRSs with core AD features

First, we looked at the relationship between GRS and CSF biomarkers

of AD. We used separate linear models to evaluate the association of

global and pathway-GRSs with CSF Aβ1-42 and p-tau181 levels. Multi-

nomial regression was used to study the association of global and

pathway-GRSs with AT groups. In addition to the aforementioned cor-

rections, models predicting CSF p-tau181 were further corrected for

Aβ1-42. p-Values were corrected for multiple comparisons (Benjamini–

Hochberg false discovery rate [FDR]).

2.8.2 Association of GRSs with radiological
imaging markers

The association of global and pathway-GRSs with radiological imaging

markers, including radiological evaluation of the Fazekas score (PVH

and DWMH; n = 1595), enlarged PVSs (BG and CS; n = 1595), and

microbleeds (n= 1595) was investigated usingmultinomial and logistic

(formicrobleeds) regressionmodels. Themodelswere further adjusted

for AT status.

2.8.3 Association of GRSs with quantitative
imaging markers

Quantitative imaging markers included hippocampal GM volumes

(TIV normalized; n = 1568), global and lobar WMH volumes (10

regions; n = 1334), WM integrity (FA and MD) measures in the 10

selected tracts (n = 790), and FC within the three DMN subsystems

(n = 776). Separate linear regression models were used to study the

effect of global and pathway-GRSs on these variables. Besides the

aforementioned corrections, models were adjusted for AT status and

MRI scanner type. p-Values were corrected for multiple comparisons

(Benjamini–Hochberg false discovery rate).

2.8.4 Sensitivity analyses

Sensitivity analyses were performed to investigate the association

between pathway-GRSs, the relationship of global and pathway-GRSs

with age and sex, and the association of genetic scores with CSF

biomarkers stratified by AT status.

3 RESULTS

3.1 Participants

Baselinedemographics and clinical characteristics are shown inTable1.

In total, 1738 participants were included in the study. Based on CSF

Aβ1-42 and p-tau181 levels, 58.5% (n = 1016) were defined as A−T−,
25.1% (n = 436) as A+T−, 9.2% (n = 160) as A+T+, and 7.2% (n = 126)

as A−T+.26 The 126 participants with SNAP, that is, A−T+, were used



LORENZINI ET AL. 6151

TABLE 1 Cohort characteristics.

Overall A−T− A−T+ A+T− A+T+

1738 1016 126 436 160

Age, years

, mean± SD

65.72± 7.31 64.58± 7.05 69.54± 6.56 65.75± 7.41 70.31± 6.45

Sex, male,

N (%)

767 (44.1) 425 (41.8) 55 (43.7) 208 (47.7) 79 (49.4)

MMSE,

mean± SD

28.41± 1.87 28.74± 1.47 28.27± 1.71 28.38± 1.85 26.54± 2.94

CDR= 0.5,

N (%)

474 (27.4) 185 (18.3) 49 (38.9) 131 (30.0) 109 (68.1)

Education, years,

mean± SD

14.37± 3.71 14.49± 3.57 13.95± 3.81 14.55± 3.80 13.44± 4.09

GRSAPOE, mean± SD 0.22± 0.72 0.04± 0.63 0.30± 0.74 0.38± 0.75 0.79± 0.75

GRSnoAPOE, mean± SD −0.14± 0.36 −0.16± 0.35 −0.06± 0.37 −0.14± 0.37 −0.03± 0.36

Aβ1-42, mean± SD 1378.99± 729.30 1672.06± 496.43 2181.13± 1320.89 724.48± 186.27 669.82± 177.00

p-tau181, mean± SD 19.76± 10.61 16.44± 4.02 35.09± 10.10 15.49± 5.72 40.44± 14.82

t-tau, mean± SD 226.85± 99.33 198.27± 45.87 392.01± 101.13 181.01± 58.60 399.96± 117.78

Abbreviations: Aβ, amyloid beta; CDR, Clinical Dementia Rating (scale); MMSE, Mini-Mental State Examination; N, number; GRS, Genetic risk score;

p-tau, phosphorylated tau; SD, standard deviation.9

only in the analysis comparing AT groups, and excluded from sub-

sequent analyses that focused on AD-related processes, resulting in

a final sample of 1612 individuals. Imaging-derived phenotype dis-

tributions and data availability are reported in Table S2 and Figures

S1 and S2.

3.2 Pathways in Alzheimer’s disease genetic risk

Global GRSs for AD was built using 85 SNPs that were identified

previously.1 We assigned two global GRSs to each participant, one

including the weighted effect of all the 85 SNPs (GRSAPOE), and a

second one excluding the effect of the two APOE SNPs (rs7412 and

rs429358; GRSnoAPOE). The variant-pathway mapping yielded six sig-

nificant clusters (Figure 1), referred to as (1) immune activation (no. of

SNPs = 27), (2) signal transduction (no. of SNPs = 48), (3) inflamma-

tion (no. of SNPs = 52), (4) migration (cholesterol and lipid related, no.

of SNPs = 47), (5) amyloid (no. of SNPs = 50), and (6) clearance (no. of

SNPs = 70; Figure 1). Individual pathway-GRSs were derived for each

of the identified clusters. The correlation between scores in differ-

ent pathway-GRSs is illustrated in Figure S3. Mapped Gene Ontology

terms and relative assigned clusters are reported in Table S3. The per-

centages of contribution of each SNP to each pathway are reported in

Table S4.

3.3 Genetic risk and pathways determine AD CSF
biomarkers

First, we assessed the influence of the GRSs on the CSF measures

and the AT group classification using linear models. All models’ coef-

ficients are illustrated in Figure 2 and reported in Table S5. Association

of pathway-GRSs with age and sex is illustrated in Figure S4 and S5.

Higher GRSAPOE was significantly related to decreased CSF Aβ1-42
(β = −0.48; FDR adjusted p < 0.001) and increased CSF p-tau181

(β = 0.36; FDR adjusted p < 0.001). GRSnoAPOE showed a reduced, but

still significant, association with decreased Aβ1-42 levels (β = −0.07;
FDR adjusted p < 0.001), and with higher levels of p-tau181 (β = 0.11;

FDR adjusted p < 0.001). All pathway-GRSs were associated with CSF

Aβ1-42 (all FDR adjusted p < 0.05), except for the migration pathway

that showed a trend-level association only (FDR adjusted p = 0.08).

All pathway-GRSswere also significantly associatedwithCSFp-tau181,

evenwhen correcting forCSFAβ1-42 (all FDRadjusted p<0.05), except

for the inflammation pathway that showed a trend-level association

(FDR adjusted p = 0.08). When stratifying this analysis per AT group

(Figure S6), we observed a stage-independent association of GRSAPOE

with CSF Aβ1-42, while most pathways were more strongly associated

with CSF p-tau181 in A+T− participants.

We then compared the global and pathway-GRSs between the AT

groups using multinomial logistic regressions. Compared to the ref-

erence group (A−T−), all AT groups showed higher GRSAPOE values

(all p < 0.001). Moreover, higher GRSnoAPOE values were observed in

the A−T+ (odds ratio [OR] = 1.28; confidence interval [CI] = 1.04–

1.58; p = 0.016) and in the A+T+ group (OR = 1.45; CI = 1.20–1.77;

p < 0.001). Regarding the pathway-GRSs, the A−T+ group had signifi-

cantly higher scores in the immune activation (OR = 1.29; CI = 1.05–

1.58; p = 0.015), signal transduction (OR = 1.42; CI = 1.17–1.74;

p = 0.001), and inflammatory (OR = 1.32; CI = 1.09–1.61; p = 0.014)

pathway-GRSs compared to A−T−. Furthermore, the A+T− group had

significantly higher clearance pathway scores (OR = 1.12; CI = 0.99–

1.26; p = 0.041), whereas the A+T+ group showed significantly higher

pathway-GRSs for themigration (OR=1.26;CI=1.04–1.53;p=0.007),

amyloid (OR = 1.45; CI = 1.19–1.76; p < 0.001), clearance (OR = 1.35;

CI = 1.11–1.63; p < 0.001), and signal transduction scores (OR = 1.38;

CI= 1.13–1.67; p= 0.004) compared to A−T−.
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F IGURE 2 Association of global and pathway-specific genetic risk scores (pathway-GRSs) with cerebrospinal fluid (CSF) biomarkers. Forest
plot reporting illustrating the association (standardized β coefficients, confidence intervals and p-values) of GRS (with andwithout apolipoprotein
E [APOE]) and the six pathway-GRSswith CSF amyloid beta 1-42 (Aβ1-42) phosphorylated tau (p-tau181). *= p< 0.05; **= p< 0.005; ***= p< 0.001.

3.4 Pathways of inflammation determine cSVD
radiological indices

We then investigated whether global and pathway-GRSs were related

to radiological indices of cSVD, independently of AT stage. The cSVD

indices included Fazekas deep (DWMH) and periventricular (PVH)

enlarged perivascular spaces in basal ganglia (PVS-BG) and centrum

semiovale (PVS-CS), and CMBs (supplementary materials). All model

coefficients are reported inTables S6 andS7, and illustrated in Figure 3.

Briefly, participants with a Fazekas DWMH score of 2 had higher

scores in GRSnoAPOE (OR = 1.24; CI = 1.03–1.47; p = 0.02) and in

pathway-GRSs of signal transduction (OR = 1.26; CI = 1.05–1.50;

p = 0.01), inflammation (OR = 1.29; CI = 1.08–1.53; p < 0.01), and

amyloid (OR = 1.24; CI = 1.04–1.49; p < 0.01), compared to Fazekas

DWMH= 0. A score of 1 and 2 of PVS-BG (compared to 0) was related

to higher pathway-GRSs of immune activation (PVS-BG1: OR = 1.36;

CI = 1.04–1.79; p = 0.02; PVS-BG2: OR = 1.40; CI = 1.02–1.92;

p = 0.04); and a score of 3 of PVS-CS (compared to 0) was related to

higher GRSAPOE (OR = 1.58; CI = 1.09–2.31; p = 0.02). Finally, CMBs

(>2) were significantly higher in GRSnoAPOE (OR = 1.54; CI = 1.02–

2.32; p = 0.04) and in pathway-GRSs of immune activation (OR = 1.32;

CI=1.03–1.70;p=0.02) and signal transduction (OR=1.31;CI=1.02–

1.68; p = 0.04). GRSAPOE (OR = 1.94; CI = 1.38–2.72; p = 0.07) and

pathway-GRSs inflammation (OR = 1.28; CI = 1.01–2.62; p = 0.07)

showed a statistical trend in these groups.

3.5 Distinct genetic pathways regulate
quantitative imaging biomarkers

Next, we assessed whether global and pathway-GRSs determine alter-

ations in quantitative MRI-derived phenotypes, independently of AT

stage. Model coefficients of T1w and FLAIR MRI-derived phenotypes

are illustrated in Figure 4 and Table S7. Lower hippocampal volumes

showed a mild association with higher pathway-GRSs of migration and

clearance,whichdid not survivemultiple testing corrections. ForWMH

volumes, higher clearance pathway-GRSs were associated with higher

WMH volumes in most regions. The effect was most pronounced in

global, frontal, and temporal periventricular and parietal deep white

matter. The association of higher GRSnoAPOE with higher burden of

WMHs in temporal (periventricular and deep) and parietal (deep)

WMHs did not survive FDR correction.

Model coefficients of rs-fMRI and DWI-derived phenotypes are

illustrated in Figures 5 and 6, respectively. Lower FCwithin the ventral

DMNwas associated with higher scores in the pathway-GRSs of signal

transduction. The association of ventral DMN FC with the inflamma-

tory pathway-GRSs did not survivemultiple testing corrections.

Higher GRSnoAPOE was associated with higher FA in the genu and

lower MD in the splenium of the corpus callosum. Moreover, FA and

MDwere distinctively related to themigration pathway-GRSs. Specifi-

cally, increases in FA in all commissural regions of interest (ROIs; genu,

body, and splenium of corpus callosum) and in the corona radiata, and

decreases of MD in the cingulum, genu, and splenium of corpus cal-

losum associated significantly with higher migration pathway-GRSs.

Lower MD in the splenium of the corpus callosum also exhibited a sig-

nificant association with higher scores in the immune activation and

inflammation pathway-GRSs.

4 DISCUSSION

We identified and quantified global and pathway-GRSs from genetic

data in a large cohort of non-demented individuals and assessed their

association with AD biomarkers. Our findings confirm the involve-

ment of several biological pathways beyond APOE within the genetic

risk of AD and demonstrate their influence on fluid and imaging

biomarkers. APOE-dependent genetic risk of AD is mostly related to

core AD CSF biomarkers. Beyond APOE, pathways of inflammation



LORENZINI ET AL. 6153

F IGURE 3 Association of global and pathway-specific genetic risk scores (pathway-GRSs) with radiological visual scores of cerebral small
vessel disease (cSVD). Boxplots represent the association of GRS (with andwithout apolipoprotein E) and the six pathway-GRSs with Fazekas deep
whitematter hyperintensities (DWMHs; upper-row), microbleeds (middle-row), perivascular spaces (PVSs) in the basal ganglia (lower-row). APOE,
apolipoprotein E.
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F IGURE 4 Association (n= 1334) of global and pathway-GRSs with FLAIR and T1wMRI-derived phenotypes. Upper-left: shows
FLAIR-derived phenotypes as computed using BaMoS.29 From left to right, firstWMH segmentation was performed, followed by groupingWMH
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regions of interest. Lower-left: T1w-derived phenotypes are obtained from the LEAP pipeline.28 Right: β coefficients (colors) and p-values (circles)
of linear models with global (GRSnoAPOE) and pathway-GRSs predictingMRI-derived phenotypes. APOE, apolipoprotein E; FLAIR, fluid-attenuated
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and immune activation are specifically related to vascular imaging

markers, whereas WM integrity and functional connectivity measures

are mostly determined by membrane-related and signal transduction

pathways, respectively.

The pathway analysis used in this work for the quantification of

pathway-GRSs identified six biological pathways that are known to

occur in the pathogenesis of AD from other previous studies.1,37–39

These pathways could be grouped into two high-level clusters

(Figure 1). The first cluster, comprising immune activation, signal trans-

duction, and inflammation pathways, mostly represents processes

linked to neuroinflammatory and chronic immune activation states.40

This confirms previous studies that reported the contribution of

inflammation-related genetic variants to the development of AD,41

with a particular interest in the genes regulating microglial function,

such as TREM2 and PLCG2,42 suggesting that these pathways may

constitute major non–Aβ-dependent polygenetic vulnerability to AD.

The second cluster, comprising the migration (related to membrane

integrity and lipids), amyloid, and clearance pathways, could be rep-

resentative of more AD-specific processes. Genes mostly expressed

in these pathways, such as APP, BIN1, and SORL1, regulate processes

linked to Aβ production, metabolism, and endocytosis. The results

of our pathway enrichment analysis provide genetic evidence of the

two major pathological components in AD, namely, inflammatory and

amyloid-related processes. These results are particularly interesting in

light of recent clinical trials effort, whichmostly comprise Aβ-targeting
drugs but also see an increase of anti-inflammatory agents.43

We found that global GRSs, irrespective of APOE genstatus, and

most pathway-GRSs were related to CSF Aβ1-42 burden. Whereas the

early influence of the APOE ε4 allele and AD GRSs on amyloid burden

is known,44–48 little evidence on the APOE-independent genetic influ-

ence exists.49 Pathways of clearance and cholesterol have previously

been shown to relate to CSF Aβ1-42 in individuals genetically enriched
for AD.11 Endocytosis and immune response pathways have in turn

often been associated with clinical and cognitive status,18 and with

resilience to AD.39 We showed that all GRSs and pathway-GRSs were

significantly associatedwith CSF p-tau181 levels, independently of CSF

Aβ1-42. Furthermore, pathway-GRSs of inflammation were specifically

higher in the SNAP group, that is, the A−T+ participants, having only

high CSF p-tau181 levels and not CSF Aβ1-42. Recent studies have

demonstrated thatADGRSsexcludingAPOEareassociatedwithhigher

CSF p-tau181.
16,50–52 A combined tau and amyloid PET study showed

that the spread of tau pathology was regulated by “axon-related”

genes, whereas the spread of amyloid was linked to “dendrite-related”

genes.53 Furthermore, “lipid metabolism-related” genes were driving

the spread of both pathologies.53 Human and animal studies have

reported evidence of inflammation being present in both primary and

secondary tauopathies.54,55 A state of chronic neuroinflammation and

immune activation might not only be a reaction to neural death and
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misfolded proteins, but also a driver in neurodegenerative diseases.

In light of these previous studies, our findings suggest that amyloid

and tau deposition might be driven by alterations in several biological

processes, through correlated but independent pathways, and further

demonstrate thatADrisk genes regulating these processesmight act in

parallel andupstreamofbothamyloid and tau.Results of our sensitivity

analysis (Figure S6), further suggest that genetic pathways might have

a stage-dependent influenceonADCSFbiomarkers,withAPOEdriving

initial amyloid deposition and non-APOE pathways regulating down-

stream processes such as tau deposition.56 Future longitudinal studies

should better investigate temporal dynamics of genetic vulnerability.

Concomitant cSVD pathology is observed in 60%–80% of patients

with AD.57 We showed the involvement of AD-related inflammatory

pathways, namely, immune activation, signal transduction, and inflam-

mation, in promoting brain vascular damage, providing evidence of

a genetic overlap between cSVD and AD, and suggesting an intrin-

sic relationship between the two. Animal studies have demonstrated

that genes coding for pro-inflammatory cytokine production led to

endothelium dysfunction and damage to the brain vasculature.58 The

vulnerability of the blood–brain barrier (BBB) to the effects of chronic

immuneactivationand inflammation40 results in alterationsof theneu-

rovascular unit with advancing age. This observation suggests that

innate inflammatory processes might foster AD pathology by promot-

ing vascular damage and BBB disruption, from the early stages of the

disease. Of note, these associations were stronger for intermediate

radiological scores. This could be due to the limited number of par-

ticipants with significant cerebrovascular burden. However, specific

inflammation-related pathways may play a role in the initial onset of

cSVD, whereas a combination of various altered biological processes

could be at play in later stages.

Using quantitative MRI markers, we found that specific imaging

biomarkers might be influenced by distinct genetic pathways. Recent

research has linked several pathway-GRSs with cortical thinning and

in several brain regions, including the hippocampus.59 We found that

lower volumes in the hippocampus were mildly associated with higher

scores in pathway-GRSs of migration and clearance. In addition, WM

lesion volumes—reflecting demyelination and axonal loss,60 commonly

considered a result of heterogeneous causes, primarily cSVD60—were

specifically determined by the clearance pathway-GRSs. The glym-

phatic system plays a central role in maintaining WM integrity by

preserving the flow of interstitial fluid and exchanging metabolic

waste.61 In previous works, the CLU gene, associated with the clear-

ance of cellular debris and apoptosis, and the PICALM gene, involved in

clathrin-mediated endocytosis, were associated with WMHs.18 Poly-
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F IGURE 6 Association (n= 790) of global and pathway-GRSs with DWI-derived phenotypes. Left panel: DWI-derived phenotypes are
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(GRSnoAPOE) and pathway-GRSs predicting DWI-derived phenotypes. CC, corpus callosum; Sup-Long(SL), superior longitudinal;
Front-Occ(SFO), fronto-occipital; Inf-Long(IL), inferior longitudinal; Fasc, fasciculus; Uncorr, uncorrected; FDR, false discovery rate; DWI, diffusion-weighted
imaging; TBSS, tract-based spatial statistics; FA, fractional anisotropy; MD, mean diffusivity; GRS, genetic risk score.

genic variants regulating the glymphatic system might promote AD

pathology through WM damage, and WMHs could be both the con-

sequence and the cause of glymphatic dysfunction.61 DWI-derived

imaging—reflectingWMmicrostructural integrity—weremostly deter-

mined by the migration GRSs, linked to cholesterol and lipid dysfunc-

tion. Previous work has shown that levels of local cholesterol and lipid

metabolism can regulate WM integrity, as measured on DWI, by reg-

ulating WM myelination.62 Cholesterol dysmetabolism is thought to

interact with WM demyelination to promote and worsen initial amy-

loid pathology.63 Our results provide genetic evidence for the role

of early cholesterol and lipid dysmetabolism and WM injury in the

pre-dementia stages of AD.

The signal transduction pathway-GRS, involving synaptic function

and intracellular communication, was related to rs-fMRI as reduced FC

in the dorsal portion of the DMN. Among the genes mostly contribut-

ing to this pathway, SORL1,BIN1, andCD2APare functionally expressed

in pre- and post-synaptic compartments and promote synaptic for-

mation, transmission, and plasticity. Alterations of synaptic function

(and functional connectivity on fMRI) are observable early in the AD

continuum,64,65 and have been proposed to be a driving event in the

disease course.33 In this framework, large-scale reconfiguration of

functional networks in aging brains would influence biological pro-

cesses linked to amyloid production.66 We, therefore, showed that a

specific cluster of variants could promote AD pathology by acting on

functional brain alterations and neuronal activity.

Some limitations should be noted. First, the computation of GRSs is

based on a referenceGWAS that used “Alzheimer’s disease and related

dementias” as a phenotype, However, this method was shown to be

sensitive and effective in increasing the number of included partici-

pants in the GWAS, thereby increasing the sensitivity (more loci) and

precision of the obtained estimates. Second, the method used to iden-

tify pathways-GRSs did not constrain genes’ contribution to only one

cluster (onegene could contribute tomultiple pathways). As such, some

pathway-GRSs weremore related to each other (supplementarymate-

rials). Other methods exist for computation of pathway-GRSs, often

assigning genes to a priori selected sets of pathways.59,67 However,

single genes can contribute to multiple biological processes. More-

over, the observation that GRSs had different profiles of associations

with outcome biomarkers advocates for distinct underlying processes.

Future studies should assess the independent contributionof pathway-

GRSs to imaging phenotypes. Moreover, future works should also

investigate the cell-type expression profiles of at-risk genes.68,69

Finally,weonly consideredonegeneperSNP, as reported in theoriginal

GWAS. Although snpXplorer is robust in pathway identification over a

series of annotation strategies,22 more studies are needed to evaluate

different gene identification approaches and compare the results.

Taken together, our results demonstrate that the genetic risk for AD

is associated with a broad range of neuropathological features in non-

demented individuals that can be tracked in vivo through neuroimag-

ing techniques, and that distinct AD biomarkers are preferentially
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associated with specific genetic profiles. Our findings are a step for-

ward in the understanding of the biological alterations that determine

brain functional and structural dysregulation in the early stages of

the AD continuum. Moreover, these results provide genetic evidence

of the biological pathways promoting disease heterogeneity and offer

novel insights into the use of individual risk profiles for patient selec-

tion in clinical trials and personalized interventions, encompassing a

combination of strategies targeting modifiable risk factors, alongside

non–amyloid-targeting drugs.
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