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Abstract—Despite advancements in robotic systems and sur-
gical data science, ensuring safe execution in robot-assisted
minimally invasive surgery (RMIS) remains challenging. Current
methods for surgical error detection typically involve two parts:
identifying gestures and then detecting errors within each gesture
clip. These methods often overlook the rich contextual and
semantic information inherent in surgical videos, with limited
performance due to reliance on accurate gesture identification.
Inspired by the chain-of-thought prompting in natural language
processing, this letter presents a novel and real-time end-to-end
error detection framework, Chain-of-Gesture (COG) prompting,
integrating contextual information from surgical videos step by
step. This encompasses two reasoning modules that simulate
expert surgeons’ decision-making: a Gestural-Visual Reasoning
module using transformer and attention architectures for gesture
prompting and a Multi-Scale Temporal Reasoning module em-
ploying a multi-stage temporal convolutional network with slow
and fast paths for temporal information extraction. We validate
our method on the JIGSAWS dataset and show improvements
over the state-of-the-art, achieving 4.6% higher F1 score, 4.6%
higher Accuracy, and 5.9% higher Jaccard index, with an average
frame processing time of 6.69 milliseconds. This demonstrates
our approach’s potential to enhance RMIS safety and surgical
education efficacy. The code will be available.
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I. INTRODUCTION

THE advent of robot-assisted minimally invasive surgery
(RMIS) has revolutionized operative procedures across

various medical specialties, from urology to general surgery.
RMIS extends human dexterity, offering unprecedented pre-
cise instrument navigation and enabling vivid observation of
surgical scene [1]–[3]. Despite clear advancements, RMIS
requires a high level of proficiency for surgeons to master
the manipulation of sophisticated robotic systems. The safety
of RMIS can be inevitably compromised due to technical
errors [4], [5], such as unintended instrument operation, alter-
ation of the surgeon’s intent, and unresponsive robotic systems.
Approximately 10-15% of surgical patients in the UK experi-
ence adverse events, of which 50% are preventable [6], while
10,624 adverse events in robotic procedures were reported in
the US from 2000 to 2013 [7]. Technical errors during surgery
have become a leading cause of postoperative complications,
resulting in reoperations and readmissions [8]. A lack of
standardized RMIS training is identified as one of the main
reasons for intraoperative risk to patients [9].

In this context, real-time surgical safety feedback is crucial
in mitigating the risks associated with RMIS [10], [11].
While [12] focuses on anomaly detection, we emphasize
the importance of error detection as a key component. By
providing immediate feedback to surgeons during live surg-
eries, real-time error detection mechanisms can alert sur-
geons about potential adverse events, and allow for immediate
remedy actions to avoid complications. In surgical training
and education, real-time error detection can assist trainees
in immediately recognizing and correcting their mistakes by
pinpointing areas for improvement, thereby accelerating the
learning curve and education efficacy [13]. Furthermore, error
detection contributes to more detailed surgical skill assess-
ment. According to [14], fluctuations in the Global Rating
Scale during surgery indicate suboptimal performance, with
significant deviations suggesting the occurrence of human
errors. Once identified, these can serve as valuable indicators
of surgical proficiency [15].

However, real-time error detection poses significant chal-
lenges due to the complicated nature of surgical procedures
and the human involvement in operating surgical robots. For
instance, although repeated attempts are regarded as errors,
certain actions may be repeated intentionally by the surgeon to
achieve the desired outcome. Hutchinson et al. [16] have con-
ceptualized the surgical operation as a hierarchical structure,
ranging from the overall procedure down to the specific gesture
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and motion. They have annotated the open-source JHU-ISI
Gesture and Skill Assessment Working Set (JIGSAWS) [17]
with error labels through human inspection of videos and
the available gesture labels and also introduced a framework
for assessing both executional and procedural mistakes by
analyzing kinematic data. The findings illustrate that error
types and frequencies significantly differ in various tasks and
gestures (e.g., pulling a suture, or passing needles).

Recent advances in surgical error detection have led to the
development of two separate parts: gesture recognition and
error detection within each gesture type [18]. Early works
utilized conventional deep learning techniques, e.g., convolu-
tional neural networks (CNNs) and long short-term memory
(LSTM), to predict potential unsafe events caused by uninten-
tional human errors in simulated surgical training tasks [18],
[19] and retinal microsurgery [20]. Li et al. [19] designed a
Siamese network to contrast the trajectories of normal and
erroneous gestures and improved the error detection for each
type of gesture to an online mode, reporting state-of-the-art
performance on JIGSAWS. However, most of these methods
rely heavily on the gesture label as prior knowledge to segment
the surgical video. The overall performance of error detection
in the two-part framework depends on human expertise to
annotate gesture labels for each gesture instance in advance, or
on the results from gesture recognition that initially segments
and categorizes a surgical video into gesture clips. This
motivates us to explore the end-to-end error detection method
to avoid gesture annotation.

Another limitation of prior work is ignoring contextual and
semantic information in surgery, since they focus on analyzing
fragments of kinematic data instead of the whole surgical
video [21]–[23]. Although kinematic data is informative, it
captures only the dynamics of surgical tools. Surgical errors
are also expected to be influenced by factors like the surgical
tools employed and their interactions with anatomical struc-
tures within the surgical workspace [24], aspects that the endo-
scopic video can capture directly. Besides, the error duration
has high variation and errors occur in different time scales.
Error types like multiple attempts usually occur across actions
and therefore last a long time while the error out of view
occurs within the gesture, thus lasting short. This semantic
information is also contained in videos and not present in
kinematic data [25]. While video-based methods have been
extensively validated to achieve comparable or even superior
performance to kinematic-based methods in other tasks within
surgical data science, such as skill assessment [14], [26], [27],
gesture recognition [25] and instrument segmentation [28],
the effectiveness of video-based approaches that capture short
and long term temporal information in error detection remains
unexplored.

In this paper, we propose a novel Chain-of-Gesture (COG)
prompting framework for real-time surgical error detection
from robotic surgical videos. Inspired by chain-of-thought [29]
prompting used in natural language processing that divides a
problem into a sequence of intermediate reasoning steps, our
COG model consists of sequential reasoning steps to stream-
line the error detection process. Our approach involves two
reasoning modules that mimic the two parts of gesture recog-

Fig. 1. Illustration on previous methods and our proposed Chain-of-Gesture
prompting. (a) Previous methods detect errors with two separate parts: gesture
recognition and error detection for each type of gesture. (b) We propose an
end-to-end Chain-of-Gesture prompting framework to capture complex visual
reasoning processes with two reasoning modules: Gestural-Visual reasoning
and Multi-scale Temporal Reasoning.

nition and error detection within each gesture type, ultimately
forming an integrated end-to-end error detection framework,
as shown in Fig. 1. Concretely, we first propose Gestural-
Visual Reasoning (GVR), which uses language prompts with
attention, to locate gestures in videos. We use vision-language
models to generate language prompts based on a vocabulary
of gestures predefined by experts based on common practices
and standard definitions, and then augment the video with
additional informative gesture cues without extra annotation
cost through a transformer layer and an attention layer. Based
on the augmented features, we further develop the Multi-
Scale Temporal Reasoning (MSTR) to capture both slow
and fast temporal transitions. It is achieved by two temporal
feature extraction paths in different time scales and prediction
consistency loss across multi-scales. We extensively evaluate
our method on the JIGSAWS dataset. Our method outperforms
existing state-of-the-art approaches significantly. The main
contributions of the paper are as follows:

• We introduce a real-time, end-to-end surgical error de-
tection framework by chain-of-gesture prompting without
extra gesture labels.

• Our model incorporates gesture clues with videos through
GVR and analyzes surgical procedures at both fine and
coarse temporal scales through MSTR with 1.7% and
2.2% improvement in F1 score respectively, enhancing
the fine-grained and overall understanding of the surgical
context.

• Our model significantly outperforms state-of-the-art
methods in surgical error detection.

II. METHODS

An overview of our proposed COG is shown in Fig. 2.
We begin by formulating the surgical error detection problem,
then describe the GVR and MSTR modules of COG. Finally,
we use prediction consistency loss across multiple scales to
enhance accuracy and consistency in predictions.
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Fig. 2. Overview of our proposed Chain-of-Gesture. (a) Gestural-visual reasoning module with gesture prompts and visual embedding, a transformer layer, and
an attention layer for gestural prompting. (b) Multi-scale temporal reasoning module with a slow path and a fast path is optimized by prediction consistency.
(c) Temporal Convolutional Network (TCN) in detail. (d) Downsampling in detail.

A. Problem Formulation

During surgical procedures, both human surgeons and
robotic systems can make errors that impact outcomes. Sur-
gical errors are generally categorized into executional and
procedural errors [16]. Executional errors include repeated at-
tempts of an action or misplacement of instruments beyond the
endoscopic view, while procedural errors involve omissions or
incorrect sequencing of gestures that are correctly performed
in isolation. Procedural errors can be easily detected using
grammar graphs [16], so our focus is primarily on executional
error detection. Unlike prior studies [18], [19] that analyze
kinematic data within predefined temporal windows to detect
executional errors for every type of gesture, our study aims
to identify errors, in real-time by analyzing surgical videos
without relying on gesture labels.

Given a surgical video dataset (X ,Y), where X represents
video frames and Y contains error labels categorizing each
frame as erroneous or normal, our model processes a contin-
uous video stream Xt = {xi}ti=1 to identify errors yt in the
current frame xt in real-time. Here, xi refers to the i-th video
frame in the sequence Xt.

B. Gestural-Visual Reasoning (GVR)

Surgical procedures can be viewed as hierarchical structures
composed of a sequence of tasks, each involving discrete steps
known as gestures [16]. These gestures represent fundamental
surgical actions and error frequency and types vary signifi-
cantly across different gestures. For instance, pushing needle
through tissue often leads to multiple attempt errors due to
incorrect angle or depth, while pulling sutures may cause out-
of-view errors. Therefore, modeling gesture dynamics within

endoscopic videos is essential for understanding the semantic
aspects of surgical scenes.

To achieve this goal, we propose a GVR module by struc-
turing the visual features of video frames around a predefined
set of gesture prompt features, as shown in Fig. 2 (a). Firstly,
we employ a gesture prompt template t(·): “A surgeon is
[Gesture]”, where [Gesture] is one of J predefined
gestures. Subsequently, we generate gesture prompt feature
set {gj}Jj=1 ∈ RJ×dtext utilizing the CLIP text encoder [30],
where dtext is the dimension of textual embedding. Thanks
to CLIP’s strong generalization capabilities, fine-tuning is not
required.

gj = CLIP (t(Gesturej)), j ∈ [1, J ] (1)
For the analysis of spatial information, the current

video frame xt is forwarded to a standard CNN model
(ResNet50 [31] in our work due to its validated effectiveness
in surgical field [14], [32]) to extract discriminative spatial
embeddings lt ∈ R2048. Subsequently, we enhance the ges-
ture prompt features with spatial awareness by introducing a
Transformer layer coupled with an Attention layer [33]. The
transformer layer identifies which parts of frames are most
similar to the current gesture prompt by scanning through the
last n frames and measuring the similarity between gesture
prompts and spatial embeddings derived from video frames.
Then, the attention layer complements the transformer by
focusing specifically on identifying all n recent video frames
to the most relevant gesture prompt to obtain spatial-aware
gesture prompt features.

Specifically, the transformer layer employs a multi-head
attention mechanism, where the gesture prompt feature set
{gj}Jj=1 act as the query, and the sequence of visual features
lt−n+1:t with length n serves as both key and value, which is

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3495452

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2024

sequentially followed by a layer normalization, a feed-forward
layer, and another layer normalization [33], outputting the
refined gesture prompt features QE ∈ RJ×d, integrating both
gestural and visual cues from the recent video frames:

QE = Trans
(
{gj}Jj=1, lt−n+1:t, lt−n+1:t

)
(2)

The attention layer utilizes the scaled dot-product attention
mechanism:

Atten(Q,K, V ) = softmax(
QKT

√
d

)V (3)

where Q,K, V,
√
d denote query, key, value, and scaling factor

respectively. The attention layer takes QE as the query and the
original gesture prompt feature set {gj}Jj=1 as both the key
and value to produce spatial-aware gesture prompt features
g′j ∈ Rd. This mechanism allows for precisely adjusting the
attention weights, ensuring that the model focuses on the most
relevant spatial-aware features for each gesture prompt.

g′j = Atten
(
QE , {gj}Jj=1, {gj}Jj=1

)
, j ∈ [1, J ] (4)

For comprehensive spatial-aware gesture representation, we
concatenate all J spatial-aware gesture prompt features, gen-
erating a cohesive feature ct ∈ RJd for the current frame xt.
This aggregation enhances the model’s ability to interpret and
reason about the spatial dynamics of each gesture within the
surgical video.

C. Multi-Scale Temporal Reasoning (MSTR)

Out of view error typically occurs within fine temporal
scales, whereas multiple attempts happen over broader tempo-
ral scales. Drawing inspiration from the SlowFast architecture
for video recognition [34], we introduce an MSTR module
to address the complexities of temporal dynamics in surgical
video analysis, as shown in Fig.2 (b). MSTR is bifurcated into
two distinct pathways: a Slow Path and a Fast Path to model
temporal information at the granular level of individual frames
and identify transitions between gestures at the segment level
separately. Unlike the SlowFast model [34], which reduces the
entire video to just two frames, our Fast Path down-samples
frame-level cohesive features c1:t by average pooling across
every 16 frames to identify transitions between gestures at
the segment level, and our Slow Path, which processes the
frame-level cohesive features c1:t and coarsens as the stages
go deeper.

Our model encodes temporal cues for both the Slow and
Fast Paths by employing a Temporal Convolutional Network
(TCN) [34]. Specifically, the Fast Path incorporates a Multi-
Stage TCN (MS-TCN) comprising an initial stage of 11
stacked residual dilated causal 1D convolution layers to gen-
erate prediction p0

fast from the initial stage, followed by N
refinement stages, each with 10 causal dilated 1D convolution
layers, to obtain refined predictions {pi

fast}Ni=1. The configu-
ration of TCN is illustrated in Fig. 2 (c) as an example of
a 2-layer TCN. For each layer in TCN, the operation can be
formulated by

Zl = ReLU(W1,l ∗ Fl−1 + b1,l)

Fl = Fl−1 +W2,l ∗ Zl + b2,l
(5)

where Fl is the output of the layer l, ∗ denotes the convolution
operator, W1,l is the causal dilated 1D convolution kernel [35],

W2,l is the weight of a 1D convolution and b1,l, b2,l are bias
vectors.

The Slow Path utilizes a similar MS-TCN architecture but
differs by applying MS-TCN to features directly, rather than
predictions. Firstly, we employ a TCN to generate the initial
feature f0 as the first stage. As the network delves into deeper
stages, this path systematically down-samples the temporal
resolution by using average pooling with both kernel size and
stride set to k (shown in Fig. 2 (d)) at each stage, aiming
to compress temporal information effectively. Subsequently,
a Feature Pyramid Network (FPN) [36] aggregates features
of varying scales {f i}Mi=0 to synthesize multiple predictions
{pi

slow}Mi=0. We take p0
slow as the final frame-level prediction.
f0 = TCN(c1:t) (6)

f i = AvgPool
(
TCN(f i−1)

)
(7)

{pi
slow}Mi=0 = FPN({f i}Mi=0) (8)

where TCN(·) means a single-stage TCN.

D. Prediction Consistency across Multi Scales

For a video comprising a total of T frames, the prediction
length produced by Fast Path becomes ⌊T/16⌋ after down-
sampling. In Slow Path, the temporal length of predictions
at each stage is determined by T i+1 = ⌊T i/k⌋, where T i

represents the temporal length of the i-th stage. Therefore,
predictions from different stages are in various time scales.
SlowFast [34] and SF-TMN [37] combine the predictions
from slow and fast paths to generate final predictions to
merge coarse and fine temporal information. However, the
effectiveness is hindered by constraints in prediction accuracy.
To avoid temporal misalignment, inspired by SAHC [38], we
ensure prediction consistency by adapting the ground truth
yt to align with the temporal resolution of each stage in
both the Slow Path and Fast Path through down-sampling.
Subsequently, the losses across all stages in two paths are
aggregated to compute the total loss. Within each stage,
the loss is composed of two parts: a Cross-Entropy (CE)
loss calculated at each time point to assess the accuracy of
predictions, and a Mean Squared Error (MSE) calculated over
the detection probabilities between every two adjacent time
points to ensure smoothness in the prediction sequence.

LCE = LCE−slow + LCE−fast

= − 1

M + 1

1

T i

M∑
i=0

T i∑
t=1

yit log(p
i
slow,t)

− 1

N + 1

1

⌊T/16⌋

N∑
j=0

⌊T/16⌋∑
t=1

yjt log(p
j
fast,t)

(9)

LMSE = LMSE−slow + LMSE−fast

=
1

M + 1

1

T i

M∑
i=0

T i∑
t=1

|pislow,t − pislow,t−1|2+

1

N + 1

1

⌊T/16⌋

N∑
j=0

⌊T/16⌋∑
t=1

|pjfast,t − pjfast,t−1|
2

(10)
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where yit and yjt are the corresponding ground truth at i-th
stage in Slow Path and j-th stage in Fast Path, respectively.

Hence, the overall objective of our COG is
Ltotal = LCE + λLMSE (11)

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

JIGSAWS [17] is a public dataset derived from the da
Vinci surgical system, capturing data from eight surgeons
performing three dry lab surgical tasks: suturing, knot ty-
ing, and needle passing. The dataset includes synchronized
kinematic and 640×480 resolution video data, recorded at
30Hz. Hutchinson et al [16] extends JIGSAWS by annotating
executional errors at the frame level for suturing and needle-
passing tasks. In our research, we utilize the video data and
all corresponding error labels, with each video frame being
categorized as either normal (0) or erroneous (1). Note that
we only use the description of potential gestures from the
gesture vocabulary provided by [17], rather than the detailed
gesture ground truth of each frame. Following previous work
on surgical error detection [19], we employ the Leave-One-
Supertrial-Out (LOSO) cross-validation [17] to evaluate our
method. All surgeons repeated each surgical task five times.
In LOSO, the i-th trial of each surgeon is excluded from the
dataset to serve as the test set, thereby assessing the model’s
ability to generalize across different trials conducted by the
same surgeon.

This work aims to detect errors in surgical video in real-
time. Therefore, we evaluate the performance of our combined
data from the Suturing and Needle Passing tasks using metrics
such as the binary F1 score, accuracy, and Jaccard index
at the frame level. Furthermore, to ensure an explicit and
fair comparison with the state-of-the-art work on surgical
error detection [19], we follow its evaluation protocol to
generate window-level metrics. Specifically, we apply a 2-
second sliding window with a 1.2-second stride to the frame-
level predictive labels. Within each window, we average the
predictions and binarize them using a threshold of 0.5 to
generate the window-level predictive labels. The ground truth
in the test set for each trial out under the LOSO settings is
detailed in Table I.

TABLE I
THE NUMBER OF FRAMES AND WINDOWS FOR EACH TRIAL IN LOSO.

#frames #windows
LOSO settings Total Erroneous Total Erroneous

Trial 1 out 8332 5453 (65%) 1076 764 (71%)
Trial 2 out 6056 3486 (58%) 775 466 (60%)
Trial 3 out 7066 3739 (53%) 886 500 (56%)
Trial 4 out 6979 3277 (47%) 868 448 (52%)
Trial 5 out 5433 2353 (43%) 640 308 (48%)

B. Implementation Details

All experiments are implemented in PyTorch on a single
NVIDIA RTX 3060 GPU. For the extraction of spatial em-
beddings lt, we employed the ResNet-50 model, initially pre-
trained on the ImageNet dataset and further fine-tuned on
the JIGSAWS dataset with error labels frame-by-frame using
Adam optimizer with the learning rate of 1 × 10−4 and a

batch size of 64. Video frames are resized into 240 × 240
and center-cropped to 224 × 224. To reduce redundancy and
computational demands, video data are downsampled to 5 Hz.
For gesture prompt feature gj , we used the pre-trained CLIP
ViT-B32 [30] model with fixed parameters as our text encoder.
The description of gestures is drawn from a common gestu-
ral vocabulary [17] comprised of 15 distinct gestures, thus
J = 15. The spatial and gestural embeddings extracted from
ResNet-50 and CLIP are used as inputs to our COG model,
without further tuning during the COG model’s training phase.
Our COG is trained end-to-end using the Adam optimizer for
50 epochs with the initial learning rate set to 5×10−4. We set
M = N = 3 empirically and standardize the dimension of all
casual dilated 1D convolution layers in the MSTR module to
64. The coefficient of MSE loss λ is empirically set to 0.15.
The length of sequence n is set to 40, and the kernel size and
stride of average pooling k in down-sampling is set to 4. It
takes approximately 3 hours for every 50 epochs, where fine-
tuning ResNet-50 requires about 2.5 hours and training COG
takes approximately 40 minutes for each trial out.

C. Comparison with State-of-the-Art

The existing studies that use CNN or LSTM based on
kinematic data for surgical error detection [18], [19], report
state-of-the-art F1 scores on JIGSAWS. To ensure a fair com-
parison, we re-implemented this kinematic-based Siamese-
LSTM approach and a range of state-of-the-art video-based
methods for surgical video analysis as baselines. These meth-
ods include ResNet-50 [31]; TeCNO [39], which employs MS-
TCN to capture long-range dependencies in video sequences;
Trans-SVNet [32], which introduces a transformer layer to
integrate spatial and temporal features effectively; SAHC [38],
which explores the use of hierarchical clustering to refine the
feature extraction process; and SF-TMN [37], which combines
features from slow and fast processing paths to enhance motion
analysis. All these methods are classification models that
can be directly extended to error detection. We implemented
them using their publicly released codes and trained and
evaluated them on JIGSAWS dataset under LOSO settings.
The comparative results are presented at both the frame-level
and window-level in Table II.

Comparing different inputs to the model, video data consis-
tently outperforms kinematic data in error detection. Notably,
even the spatial information extracted through a fine-tuned
ResNet-50 enhances performance significantly, with improve-
ments observed in the window-level metrics: approximately
2.8% in F1 score, 2.6% in accuracy, and 3.5% in Jaccard,
further showcasing the importance of spatial information in
the accurate detection of errors.

Among the methods that emphasize temporal information
extraction (i.e. TeCNO, Trans-SVNet, SAHC, and SF-TMN),
Trans-SVNet emerges as a strong contender. It effectively
combines spatial and temporal data using a Transformer-based
fusion head, making it the second-best method with an im-
pressive 74.2% F1 score and 59.3% Jaccard. This achievement
indicates that contextual information fusion is effective for the
surgical error detection task. Nevertheless, it is crucial to note
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TABLE II
QUANTITATIVE RESULTS ON FRAME LEVEL AND WINDOW LEVEL OF COMPARISONS BETWEEN SOTA METHODS AND OUR PROPOSED

CHAIN-OF-GESTURE MODEL ON JIGSAWS DATASET. ∆ GVR: NO GESTURAL-VISUAL REASONING; ∆ MSTR: NO MULTI-SCALE TEMPORAL
REASONING; ∆ SLOW PATH: NO SLOW PATH MODULE; ∆ FAST PATH: NO FAST PATH MODULE. K: KINEMATIC DATA, V: VIDEO DATA. * DENOTES

METHODS FOCUSING ON TEMPORAL INFORMATION EXTRACTION.

Input Method Frame level Window level Inference rate
F1 Accuracy Jaccard F1 Accuracy Jaccard P Values (ms per frame)

K Siamese-LSTM G*T* [19] – – – 70.0 ± 1.8 65.2 ± 1.2 53.9 ± 2.2 2e-12 –

V

ResNet 70.8 ± 4.0 66.9 ± 3.3 54.9 ± 4.9 72.8 ± 4.1 67.8 ± 3.1 57.4 ± 5.3 5e-09 6.05
TeCNO* [39] 69.6 ± 2.6 66.4 ± 2.4 53.4 ± 3.1 71.4 ± 2.3 66.7 ± 2.4 55.5 ± 2.8 6e-12 6.09
Trans-SVNet* [32] 71.0 ± 5.5 59.3 ± 9.0 55.3 ± 6.9 74.2 ± 5.3 62.6 ± 8.7 59.3 ± 6.9 4e-02 6.39
SAHC* [38] 70.7 ± 3.5 67.8 ± 2.2 54.8 ± 4.3 72.6 ± 3.1 68.0 ± 2.2 57.0 ± 4.0 1e-20 6.43
SF-TMN* [37] 69.8 ± 3.4 66.9 ± 2.5 53.7 ± 4.1 71.4 ± 3.4 67.1 ± 2.7 55.7 ± 4.3 3e-11 6.86
Ours (∆ GVR) 70.8 ± 4.2 67.0 ± 3.1 54.9 ± 5.2 72.9 ± 4.4 67.9 ± 3.6 57.5 ± 5.7 3e-24 –
Ours (∆ MSTR) 70.0 ± 4.6 64.8 ± 4.3 54.1 ± 5.7 72.4 ± 4.9 66.3 ± 4.7 57.0 ± 6.3 3e-11 –
Ours (∆ Slow Path) 71.3 ± 4.8 64.0 ± 4.3 55.6 ± 6.0 74.0 ± 4.9 66.2 ± 5.0 59.0 ± 6.5 1e-02 –
Ours (∆ Fast Path) 71.2 ± 3.9 66.4 ± 4.2 55.4 ± 4.9 73.6 ± 4.3 67.9 ± 4.5 58.4 ± 5.6 7e-03 –
Ours 72.3 ± 4.6 68.3 ± 3.5 56.8 ± 6.0 74.6 ± 5.1 69.8 ± 4.5 59.8 ± 6.8 – 6.69

that the accuracy of Trans-SVNet is considerably lower. This
suggests a tendency towards generating false positives which
could be attributed to the imbalanced dataset. Other methods,
despite their sophistication in temporal information extraction,
fall short when compared to the more straightforward ResNet-
50 approach, possibly due to a misalignment in the temporal
scale they employ. While these methods are adept at phase
recognition within surgical videos—where the temporal scope
is broader and encompasses entire surgical procedures—they
appear less suited for the more granular task of error detection.
Error detection requires a finer temporal resolution to capture
subtle deviations or incorrect actions. Hence, the temporal
granularity and feature selection become critical factors in the
performance of these models.

Our COG model enhances data with gesture prompts for
each frame and extracts multi-scale features at fine and coarse
temporal resolutions, resulting in superior performance across
all metrics and achieving an F1 score of 72.3% at the frame
level (79.3% for Suturing and 60.8% for Needle Passing).
Compared to Trans-SVNet, our method achieves similar F1
scores (74.6%) while significantly improving accuracy with
lower false positive and false negative rates. Reducing false
positives minimizes unnecessary alerts, allowing surgeons to
focus on critical tasks, while lowering false negatives enhances
patient safety by ensuring timely error detection. This not
only highlights higher performance metrics but also repre-
sents a methodological advancement in managing gestural and
contextual information, emphasizing the potential for further
improvements in surgical error detection.

In our statistical analysis, we conducted a paired T-test
between COG and other methods to calculate P values for
the F1 score at the window level. COG shows a significant
improvement in F1, with P values well below 0.05 in all com-
parisons, confirming its robustness and reliability in detecting
errors in surgical videos. We have also evaluated under LOUO
settings and the results are presented in the supplementary
video Table R1. Our model achieves the highest F1 score,
Jaccard index and comparable accuracy with SOTA method.

D. Ablation Studies
1) Effectiveness of Key Components: We first analyze the

contributions of two distinct reasoning modules (i.e., GVR and

MSTR) in our proposed COG model and evaluate the discrete
effects of the “Slow Path” and “Fast Path” in the MSTR, as
presented in Table II. For this analysis, we directly use the
extracted visual features l1:T as input to the MSTR to obtain
∆GVR, and we pass the cohesive feature ct through a simple
linear head to obtain ∆MSTR setting. The omission of either
GVR or MSTR led to performance degradation, as evidenced
by all metrics. Through statistical analysis, we determined the
P values, which quantified the significance of the performance
drop. Notably, the absence of GVR had a more profound
impact than the exclusion of MSTR, with a smaller P value.
This result confirms our hypothesis that the integration of
gesture cues via GVR is not merely beneficial but vital to the
model’s success, as it provides critical contextual information
for reasoning about surgical actions. As for the temporal
dynamics of MSTR, our findings indicate that the Fast Path
plays a more crucial role than the Slow Path in our context of
error detection to reflect the gesture transition.

2) Length of Sequence in GVR: We then focus on the
critical parameter of sequence length, denoted as n, which
determines the number of video frames considered for identi-
fying its gesture. Figure 3 shows the model performance with
different values of n used in Eq. 2. The empirical findings
reveal that a sequence length of 40 frames yields the most
promising results. This length corresponds to approximately
1.5 times the average gesture duration in our dataset, which is
27 frames. By extending beyond the average single gesture
length, the GVR module is afforded a more holistic view,
encompassing not just the gesture itself but also the critical
transition phase to the subsequent gesture. This broader tem-
poral window includes the tail end of one gesture and the onset
of the next, thus we can discern and identify the gesture and
its executional errors.

3) Number of Stages in MSTR: The number of stages in
MSTR determines the temporal dimensions of the predictions
from the final stage. Table III presents the model performance
across different values of M and N . We observe that three
stages yield the best results; both fewer and greater numbers
of stages negatively impact performance. Specifically, when
M = N = 2, the temporal predictions from the slow path
are calculated as ⌊T/k2⌋. In our experiments, we set k = 4.
Consequently, the temporal predictions from the final stage of
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both the slow and fast paths are the same, failing to capture
longer ranges of information. As for M=N=4, considering the
average video length of 538, a four-fold down-sampling with
k = 4 reduces the average length of the prediction from the
final stage in the slow path to only 2, insufficient to encompass
the full range of gestures in the videos, thus limiting the
effectiveness.

Fig. 3. Analysis of length of sequence n used in GVR. We show the results
of the F1 score, Accuracy, and Jaccard of models with different n.

TABLE III
COMPARISON WITH DIFFERENT STAGES M AND N IN MSTR.

M=N Frame level Window level
F1 Accuracy Jaccard F1 Accuracy Jaccard

2 70.9±4.3 67.3±3.3 55.1±5.3 72.6±4.7 67.9±4.1 57.3±6.1
3 72.3±4.6 68.3±3.5 56.8±6.0 74.6±5.1 69.8±4.5 59.8±6.8
4 71.4±4.1 65.5±3.7 55.6±5.1 73.5±3.9 66.7±4.1 58.3±5.1

TABLE IV
COMPARISON OF TEXTUAL GESTURE PROMPT TEMPLATE.

t(·) Frame level Window level
F1 Accuracy Jaccard F1 Accuracy Jaccard

t1 71.6±3.2 66.7±3.2 55.9±4.1 73.9±3.5 68.2±3.8 58.8±4.6
t2 71.8±2.9 67.6±2.7 56.1±3.6 74.3±2.7 68.9±2.9 59.2±3.5
t3 71.9±4.8 64.9±6.2 56.3±6.2 74.3±6.5 67.4±6.8 59.5±7.2
t4 72.3±4.6 68.3±3.5 56.8±6.0 74.6±5.1 69.8±4.5 59.8±6.8
t5 71.2±3.8 67.1±2.5 55.4±4.7 73.7±4.0 68.6±3.2 58.5±5.1

4) Different Template t(·) in GVR: We explored how
different textual gesture prompts impact model perfor-
mance using five templates: (1) t1(·): direct gesture defi-
nition “[Gesture]”; (2) t2(·): gesture definition with a
learnable token “[Gesture][learnable token]”; (3)
t3(·): CLIP text template “A photo of [Gesture]”;
(4) t4(·): our context-specific template “A surgeon is
[Gesture]”; and (5) t5(·): more complex sentences for
each gesture generated by ChatGPT-4o mini (see Table R2
in the supplementary video for detailed prompts). Results
are summarized in Table IV. The direct definition provided
moderate metrics but lacked context while adding a learnable

token improved results slightly. The CLIP-based template
showed better F1 and Jaccard scores, but the lowest accuracy,
likely due to its generic nature. In contrast, our context-
specific template t4(·) outperformed all others across met-
rics, highlighting the importance of domain-relevant context
for enhancing model performance. Interestingly, augmenting
gestures into complete sentences with ChatGPT resulted in a
performance drop. This decline likely stems from the intro-
duction of irrelevant information, which diluted the precision
needed for surgical gestures and errors.

E. Visual Results

In Fig. 4, we visually represent the error detection out-
comes of a suturing video clip. Our model’s incorporation of
both contextual and temporal information is evident in the
consistency and robustness of its predictions. By capturing a
wider range of cues over time, the proposed COG model has
an enhanced ability to recognize and flag errors that other
methods could miss. Furthermore, we visualize typical errors
and results to facilitate an intuitive understanding of the COG
model’s advantages, such as multiple attempts to push the
needle through the tissue and the tool manipulator moving out
of the camera’s view. Additional example results are provided
in the supplementary video.

Fig. 4. Color-coded ribbon illustration for a suturing video clip.

IV. DISCUSSION AND CONCLUSION

Our study presents a novel COG prompting approach for
error detection in RMIS. Different from traditional spatial-
temporal feature extraction from kinematic data, this leverages
readily available video data and innovates the error detection
paradigm through two reasoning modules that simulate expert
human decision-making. By incorporating gestural informa-
tion, our method effectively discerns executional errors and
achieves a notable 4-6% improvement in window-level metrics
compared to existing methods on the JIGSAWS dataset, with-
out the need for gesture labels during training–a significant
advancement over previous approaches.

The gestural information inherent in surgical videos encom-
passes a spectrum of behaviors, such as gesture segmentation,
recognition, and transition, making it hard to design a one-size-
fits-all method for extracting the critical cues. Current methods
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typically identify gestures and then detect executional errors
within the gesture clip sequentially, reliant on the performance
of two distinct parts for gesture recognition and error detection
within each type of gesture. In contrast, our COG integrates
two reasoning modules as an end-to-end framework. The
first module focuses on gesture localization and segmenta-
tion, while the second dives into details within gestures and
transitions, aiming for a comprehensive understanding of the
surgical context. The validity of our approach is supported by
ablation studies and visual analysis, reinforcing the logic and
efficacy of our chain-of-gesture philosophy to think step by
step.

Our COG can be applied in clinical practice, thanks to its
computational efficiency (6.69 milliseconds/frame). This effi-
ciency is due to our GVR design, which used the transformer
architecture known for its parallel processing capabilities and
the down-sampling technique in MSTR significantly reduces
video length. We have extended our COG method to real
surgical videos using the SAR-RARP50 dataset [40]. Com-
pared to Trans-SVNet [32] and SAHC [38], our COG achieves
promising performance of 69.98% accuracy, with 1.92% and
4.26% improvement in accuracy, respectively. Our research
shows the potential of integrating contextual and temporal
data analysis to develop an accurate error detection framework
with considerable implications for surgical training. Further
work will focus on detecting error types semantically and
finding remedial measures, which could significantly enhance
the learning curve for novice surgeons.
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