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Abstract. Spectral moment formulae of various shapes have proven very successful in studying the sta-
tistics of central L-values. In this article, we establish, in a completely explicit fashion, such formulae for
the family of GLp3q ˆ GLp2q Rankin–Selberg L-functions using the period integral method. Our argument
does not rely on either the Kuznetsov or Voronoi formulae. We also prove the essential analytic properties
and derive explicit formulae for the integral transform of our moment formulae. We hope that our method
will provide deeper insights into moments of L-functions for higher-rank groups.

1. Introduction

1.1. Background. The study of L-values at the central point s “ 1{2 has taken center stage in many
branches of number theory over the past decades due to their profound arithmetic significance. A variety of
perspectives have enriched our understanding of the nature of central L-values. In particular, a statistical
perspective can offer valuable insights. Fundamental questions in this direction include the determination
of (non-)vanishing and sizes of these L-values. An effective way to approach problems of this sort is via
Moments of L-functions. Techniques from analytic number theory have proven fruitful in estimating
the sizes of moments of all kinds. Moreover, spectacular results can be obtained when moment estimates
join forces with arithmetic geometry and automorphic representations.

This line of investigation is nicely exemplified by the landmark result of Conrey–Iwaniec [CI00]. Let
χ be a real primitive Dirichlet character pmod qq with q odd and square-free. The main object of [CI00]
is the cubic moment of GLp2q automorphic L-functions of the congruence subgroup Γ0pqq twisted by χ.
An upper bound of Lindelöf strength in the q-aspect was established therein. When combining this upper
bound with the celebrated Waldspurger formula [Wa81], the famous Burgess 3{16-bound for Dirichlet
L-functions was improved for the first time since the 1960’s. In fact, [CI00] proved the bound
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Understanding the effects of a sequence of intricate arithmetic and analytic transformations constitutes
a significant part of moment calculations as illustrated by [CI00]. Surprisingly, such a sequence of [CI00]
ends up in a single elegant identity showcasing a duality between the cubic average over a basis of
GLp2q automorphic forms (Maass or holomorphic) and the fourth moment of GLp1q L-functions. This
remarkable phenomenon was uncovered relatively recently by Petrow [Pe15]. His work consists of new
elaborate analysis (see also Young [Y17]) building upon the foundation of [CI00]. Further contributions
to this topic include Frolenkov [Fr20] and earlier works of Ivić [Iv01, Iv02], which studied other aspects
of the problem. In its basic form, the identity roughly takes the shape
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where the weight functions for the moments are suppressed and p˚ ˚ ˚q represents certain polar contribu-
tions.
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Besides its structural elegance, the identity (1.2) comes with immediate applications. It leads to sharp
moment estimates as a consequence of exact evaluation. As an extra benefit, it streamlines the analysis
in the traditional, approximate approaches. In [Pe15], this identity was referred to as a ‘Motohashi-type
identity’. Previously, Motohashi [Mo93, Mo97] discovered a similar identity, but with the test function
chosen on the fourth moment side, effectively reversing the direction of analysis performed by [CI00, Pe15,
Y17, Iv01, Iv02]. It greatly enhances our understanding of the fourth moment of the ζ-function. Recent
works by Young [Y11], Blomer et al. [BHKM20], Topacogullari [To21] and Kaneko [Ka21+] extending
Motohashi’s work to Dirichlet L-functions.

In [CI00, Introduction], Conrey–Iwaniec further envisioned the possibilities and challenges of extending
their method to a setting involving a GLp3q automorphic form. This is natural because the cubic moment
of GLp2q L-functions can be regarded as the first moment of GLp3q ˆ GLp2q Rankin–Selberg L-functions,
averaged over a basis of GLp2q automorphic forms, where the GLp3q automorphic form is a minimal-
parabolic Eisenstein series. It is anticipated that advances in harmonic analysis of GLp3q could provide
new perspectives towards the Conrey–Iwaniec method. Furthermore, the GLp3q set-up introduces an
important new example: the first moment for the GLp3q ˆ GLp2q family involving a GLp3q cusp form,
which necessitates the use of genuine GLp3q techniques.

In the decade following [CI00], two key breakthroughs made this extension possible for GLp3q. Firstly,
Miller–Schmid [MS06] (see also [GoLi06, IT13]) developed the GLp3q Voronoi formula, making it usable
for various analytic applications. Notably, the Hecke combinatorics of GLp3q associated to twisting and
ramifications are considerably more involved than the classical GLp2q counterpart. Secondly, Li [Li11]
successfully applied the GLp3q Voronoi formula together with new techniques of her own to obtain strong
upper bounds for the first moment of GLp3q ˆ GLp2q Rankin–Selberg L-functions in the GLp2q spectral
aspect. As a corollary, she obtained the first instance of subconvexity for GLp3q automorphic L-functions.

1.2. Main Results. The purpose of this article is to further the investigation of GLp3qˆGLp2q moments
of L-functions. However, we will depart from the standard approaches taken in the existing literature.
We are interested in understanding the intrinsic mechanisms and examining the essential ingredients that
lead directly to the complete structure of these moments, including both main terms and off-diagonals.
Addressing these aspects carefully is crucial for enabling generalizations to higher-rank groups. We find
that the formalism of period integrals for GLp3q is particularly effective in achieving these objectives.

We are ready to state the main result of this article, which is the moment identity of Motohashi type
behind the work of [Li11].

Theorem 1.1. Let

‚ Φ be a fixed, Hecke-normalized Maass cusp form of SL3pZq with the Langlands parameters
pα1, α2, α3q P piRq3, and rΦ be the dual form of Φ;

‚ pϕjq
8
j“1 be an orthogonal basis of even, Hecke-normalized Maass cusp forms of SL2pZq which

satisfy ∆ϕj “ p1{4 ´ µ2
j qϕj ;

‚ L ps, ϕj b Φq and L ps,Φq be the Rankin–Selberg L-function of the pair pϕj ,Φq and the standard
L-function of Φ respectively, where Λ denotes the corresponding complete L-functions;

‚ Cη (η ą 40) be the class of holomorphic functions H defined on the vertical strip |Reµ| ă 2η such
that Hpµq “ Hp´µq and has rapid decay:

Hpµq ! e´2π|µ| p|Reµ| ă 2ηq.

‚ For H P Cη, pFΦHq ps0, sq is the integral transform defined in equation (7.6) and it only depends
on the Langlands parameters of Φ.
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Then on the domain 1
4 ` 1

200 ă σ ă 3
4 , we have the following moment identity:

8
ÿ

j“1

H pµjq
Λps, ϕj b rΦq

xϕj , ϕjy
`
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Lp2s ´ 1,Φq pFΦHq p2s ´ 1, sq
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1

2

ż

p1{2q

ζ p2s ´ s0qL ps0,Φq pFΦHq ps0, sq
ds0
2πi

. (1.3)

The function s ÞÑ pFΦHq p2s ´ 1, sq can be computed explicitly, see Theorem 1.2 below.

The temperedness assumption pα1, α2, α3q P piRq3 for our fixed Maass cusp form Φ is very mild — it
merely serves as a simplification of our exposition (when applying Stirling’s formula in Section 8) and
can be removed with a little more effort. In fact, all Maass cusp forms of SL3pZq are conjectured to be
tempered and it was proved in [Mil01] that the non-tempered forms constitute a density zero set.

We have made no attempt to enlarge the class of test functions for Theorem 1.1 since this is not the focus
of this article (but is doable by more refined analysis). The regularity assumptions of Cη essentially follow
from those of the Kontorovich–Lebedev inversion (see Section 5.2). As in [GK13, GSW21, GSW23+,
Bu20], the class Cη already includes good test functions that are useful in a number of applications and
allows us to deduce a version of Theorem 1.1 for incomplete L-functions (see Remark 5.27).

Also, we have obtained the analytic properties and several explicit expressions for the integral transform
pFΦHq ps0, sq. They are written in terms of Mellin-Barnes integrals or hypergeometric functions as in
[Mo93, Mo97]. We do not record the full formulae here but refer the readers to Section 10 for the detailed
discussions. However, we record an interesting identity of special functions as follow:

Theorem 1.2 (Theorem 10.2). For 1{2 ` 1{100 ă σ ă 1, we have

pFΦHq p2s ´ 1, sq “ π
1
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´s
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ź
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˙

dµ

2πi
. (1.4)

There are actually two additional identities of Barnes type that account for the origins and the combi-
natorics of six (out of eight) of the off-diagonal main terms for the cubic moment of GLp2q L-functions.
The results align nicely with the predictions of the ‘Moment Conjecture’ (or ‘Recipe’) of [CFKRS05]. We
refer the interested readers to our papers [Kw23a+, Kw23b+].

1.3. Follow-up Works. The current work aims to illustrate the key ideas and address the main analytic
issues of our period integral approach. It is the simplest to illustrate all these using the cuspidal case
for Φ. However, this is by no means the end of the scope of our method. In our upcoming works
[Kw23a+, Kw23b+], we demonstrate the versatility of our method by:

(1) Providing a new proof of the cubic moment identity (1.2) (actually for the more general ‘shifted
moment’) with a number of technical advantages, as well as a new unified way of extracting
the full set of main terms. There are considerable recent interests in understanding the deep
works of [Mo93, Mo97] and [CI00] from different perspectives, e.g., Nelson [Ne19+], Wu [Wu21+],
Balkanova–Frolenkov–Wu [BFW21+].

(2) Establishing a Motohashi’s formula of GLp3q in the non-archimedean aspect which dualizes GLp2q

twists of Hecke eigenvalues into GLp1q twists by Dirichlet characters. This offers insights into
the celebrated works of Young [Y11] and Blomer et al. [BHKM20] on the fourth moment of
Dirichlet L-functions. In their works, this change of structures was the result of a long sequence of
spectral/harmonic transformations and it was surprising and useful to observe such a phenomenon.
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2. Outline

In Section 3, we discuss the technical features of the method used in this article and draw comparisons
with the current literature. In Section 4, we include a sketch of our arguments to demonstrate the essential
ideas of our method and sidestep the technical points. In Section 5, we collect the essential notions and
results for later parts of the article.

The proof of Theorem 1.1 is divided into four sections. In Section 6, we prove the key identity of this
article (see Corollary 6.2). In Section 7, we develop such an identity into moments of L-functions on the
region of absolute convergence. In particular, the intrinsic structure of the problem allows one to easily
see the shape of the dual moment (see Proposition 7.2). In Section 8, we obtain the region of holomorphy
and growth of the archimedean transform. In Section 9, a step-by-step analytic continuation argument is
performed based on the analytic information obtained in Section 8.

In Section 10, we prove Theorem 1.2. and provide several explicit formulae of the integral transforms.

3. Technical Features of Our Method

3.1. Period Reciprocity. Our work adds a new instance to the recent banner ‘Period Reciprocity’ which
seeks to uncover the underlying structures of moments of L-functions through the lenses of period integrals.
The general philosophy of this method is to evaluate a period integral in two distinct manners. Under
favorable circumstances, the intrinsic structures of period integrals would lead to interesting, non-trivial
moment identities, say connecting two different-looking families of L-functions.

In our case, the generalized Motohashi-type phenomenon of Theorem 1.1 at s “ 1{2 will be shown to
be an intrinsic property of a given Maass cusp form Φ of SL3pZq via the following trivial identity

ż 1

0

„
ż 8

0
Φ

ˆ

p
y0

y0 qp 1 u
1 q

1

˙

dˆy0

ȷ

ep´uq du “

ż 8

0

„
ż 1

0
Φ

ˆ

p 1 u
1 qp

y0
y0 q

1

˙

ep´uq du

ȷ

dˆy0. (3.1)

Roughly speaking, Theorem 1.1 follows from (1). spectrally-expanding the innermost integral on the left
in terms of a basis of GLp2q automorphic forms, and (2). computing the innermost integral on the right in
terms of the GLp3q Fourier-Whittaker period. A sketch of this will be provided in Section 4. In practice,
it turns out to be convenient to work with a more general set-up

ż

SL2pZqzGL2pRq

P pg;hqΦ

ˆ

g
1

˙

|det g|s´ 1
2 dg (3.2)

so as to bypass certain technical difficulties, where P p˚;hq is a Poincaré series of SL2pZq.
The current examples for Period Reciprocity occur rather sporadically, and there is currently no sys-

tematic method for constructing new examples. Also, techniques differ greatly in each known instance
(see [MV06, MV10, Ne19+], [Bl12a], [Nu20+], [JN21+], [Za21, Za20+]). This stands in stark contrast
to the more traditional ‘Kuznetsov–Voronoi’ framework (see Section 3.2). However, Period Reciprocity
seems to address some of the technical complications more softly than the Kuznetsov–Voronoi approach.
We shall elaborate more in the upcoming subsections.

Regarding the ‘classical’ Motohashi phenomenon (1.2), Michel and Venkatesh [MV06, MV10] proposed
a strategy that was very recently developed into a fully rigorous method by Nelson [Ne19+] through the
use of regularized period integrals, incorporating new insights from automorphic representations. This
article provides an alternative approach, which not only includes (1.2) but also generalizes several related
instances of this phenomenon. We address the structural and analytic aspects of the formulae rather
differently using unipotent integration for GLp3q and method of analytic continuation. (We begin by
considering (3.2) for Re s " 1.) For further discussions, see Section 4.

We would also like to mention the works of Wu [Wu21+] and Balkanova–Frolenkov–Wu [BFW21+]
in which an interesting framework in terms of tempered distributions and relative trace formula of
Godement–Jacquet type was developed to address the phenomenon (1.2).

3.2. Comparisons with the Conrey–Iwaniec–Li Method. The celebrated works of Conrey–Iwaniec
[CI00] and Li [Li09, Li11] are known for their successful analysis based on the Kuznetsov trace formulae
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and summation formulae of Poisson/Voronoi type. Their accomplishments include a delicate treatment
of the arithmetic of exponential sums as well as the stationary phase analysis.

The Kuznetsov trace formula (or more generally the relative trace formula) has been a cornerstone
in the analytic theory of L-functions over the past few decades. In the context of Theorem 1.1, which
involves summing over a basis of even Maass forms for SL2pZq over a basis of even Maass forms for
PGL2pZqzPGL2pRq), it is an equality of the shape

ÿ

j

Hpµjq
λjpnqλjpmq

Lp1,Ad2ϕjq
` pctsq “ δm“n

ż

R
Hpµq dspecµ `

ÿ

˘

ÿ

c

Sp˘m,n; cq

c
J ˘

ˆ

4π
?
mn

c

˙

(3.3)

between the spectral bilinear form of Hecke eigenvalues and the geometric expansion, which consists of
Kloosterman sums Spm,n; cq and oscillatory integrals J ` and J ´ involving the J-Bessel and K-Bessel
function in their kernels respectively. These two pieces have to be treated separately.

As noticed by [CI00, Li09, Li11, Bl12b] and a number of subsequent works, the J-Bessel piece is
particularly interesting due to its striking technical features. These features are crucial for achieving
significant cancel- lations in geometric sums and integrals, a property that appears to be distinctive
to higher-rank settings. (In view of this, readers may wish to compare with Liu–Ye’s analysis in the
GLp2q settings, see [LY02].) More concretely, Li [Li11] was able to apply the GLp3q Voronoi formula
twice, which were surprisingly non-involutary, because of a subtle cancellation taking place between the
arithmetic phase coming from Voronoi and the analytic phase coming from the J-Bessel transform.

The treatment of the J-Bessel piece in the Kuznetsov–Voronoi approach is crucial for analyzing more
general moments of L-functions, including those involving non-selfdual L-functions or non-central L-
values, as demonstrated in Theorem 1.1.

In our period integral approach, the Kuznetsov formula, the Voronoi formula, and the approximate
functional equation, which belong to the standard toolbox in analytic number theory, are completely
avoided. This is motivated by several conceptual reasons, which we will now explain:

‚ Firstly, since the GLp3qˆGLp2q L-functions on the spectral side are interpreted as period integrals,
we never need to open up those L-functions into Dirichlet series. As a result, averaging over the
Hecke eigenvalues of our basis of GLp2q Maass forms using the Kuznetsov formula is unnecessary.

‚ Secondly, the standard L-function of GLp3q takes part in the arithmetic of the dual side of our
moment identity (1.3). The standard L-function is constructed solely from the GLp3q Hecke
eigenvalues, whereas the GLp3q Voronoi formula involves general GLp3q Fourier coefficients due
to arithmetic twisting. It is thus reasonable to expect a proof of (1.3) that does not rely on the
GLp3q Voronoi formula of [MS06] nor the full Fourier expansions of [JPSS]. The set-up (3.1)
already suggests that our method meets such an expectation, but see Proposition 6.1 for full
details.

‚ Thirdly, we do not encounter any intermediate exponential sums (e.g., Kloosterman/Ramanujan
sums), slow-decaying/very oscillatory special functions, nor shifted convolution sums, which are
necessary components in [Iv01, Iv02, Fr20] for (1.2). Also, we handle the archimedean component
of (1.3) in a unified manner, rather than handling the J- and K-Bessel pieces separately as done
in [CI00, Li09, Li11]. We directly work with the GLp3q Whittaker function associated with the
automorphic form Φ.

‚ Fourthly, we take advantage of the equivariance of the Whittaker functions under unipotent trans-
lations which helps to simplify many formulae.

Our period integral approach offers several technical advantages and is fundamentally distinct from the
Kuznetsov–Voronoi approach. Indeed, our method is local and the key result Proposition 6.1 can be easily
phrased in terms of adeles (see (4.7)), whereas the Kuznetsov–Voronoi approach is global and non-adelic.
In this article, we focus on the level 1 case and the spectral aspect as a proof of concept and thus we use
the classical language of real groups. In our upcoming work, we wish to extend our approach in various
non-archimedean aspects.
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3.3. Prospects for Higher-Rank. Once we reach GLp3q, the geometric expansion for the Kuznetsov
formula becomes significantly more intricate and presents a number of obstacles in generalizing the
Kuznetsov-based approaches to moments of L-functions of higher-rank:

Remark 3.1 (Oscillatory Integrals). In GLp2q, a couple of coincidences allow us to identify the
oscillatory integrals with some well-studied special functions, see [Mo97], [I02]. However, such such
phenomena do not occur in GLp3q, where unexpected analytic difficulties arise; see Buttcane [Bu13,
Bu16]. The complicated formulae for the oscillatory integrals make the Kuznetsov trace formula for
GLp3q challenging to apply, see Blomer–Buttcane [BlBu20].

Remark 3.2 (Kloosterman Sums). The GLp3q Kloosterman sums, e.g.,

Spm1,m2, n1, n2; D1, D2q :“
ÿ:

B1 pD1q, B2 pD2q

C1 pD1q, C2 pD2q

e

ˆ

m1B1 ` n1pY1D2 ´ Z1B2q

D1

˙

e

ˆ

m2B2 ` n2pY2D1 ´ Z2B1q

D2

˙

,

(3.4)
are clearly much harder to work with than the usual one, where the definitions of Yi, Zi’s along with a
couple of congruence and coprimality conditions are suppressed. There are two other Kloosterman sums
for GLp3q. See [Bu13] for details.

As discussed in Section 3.2, further transformations of the exponential sums from the Kuznetsov formu-
lae encode important arithmetic information of the moment of L-functions. Blomer–Buttcane [BlBu20]
has demonstrated this approach for (3.4) after applying a four-fold Poisson summation. However, beyond
this specific instance, the general applicability of such transformations to (3.4) remains unclear. On the
other hand, applications of Voronoi formulae for GLp3q (see [CI00, Li09, Li11, Bl12b, BK19a, BK19b])
and for GLp4q (see [BLM19, CL20]) are currently limited to the usual Kloosterman sums of GLp2q, with
complications arising quickly beyond this familiar context.

Conceptually speaking, the challenges associated with Remark 3.1–3.2 stem from the Bruhat decompo-
sition, which is fundamental to the framework of relative trace formulae in general. However, ideas from
Period Reciprocity offers a way to bypass the Bruhat decomposition and the related geometric sums and
integrals, which is a welcoming feature.

Regarding Remark 3.1, the advantages of our method are visible even in the context of Theorem 1.1.
Even though we work with the group GLp3q on the dual side, the oscillatory factor in our approach (see
(6.8)) is actually simpler than the ones encountered in the ‘Kuznetsov–Voronoi’ approaches (see [Li11]).
It is more structured in two key ways: (1). it arises naturally from the definition of the archimedean
Whittaker function, and (2). it serves as an important constituent of the exact Motohashi structure, the
exact structures of the main terms predicted by [CFKRS05], as well as for the analytic continuation past
Re s “ 1{2. Furthermore, our approach is devoid of integrals over non-compact subsets of the unipotent
subgroups (or the complements) which are known to result in intricate dual calculations and exponential
phases in case of GLp3q Voronoi formula (cf. [IT13, Section 4]) and Kuznetsov formulae (cf. [Gold,
Chapter 11]).

It is worth pointing out the crucial archimedean ingredient in our proof generalizes to GLpnq through
Stade’s formula (see [St01]), which allows us to rewrite the archimedean part completely in terms of
integrals Γ-functions. This representation is sufficient for our purposes and possesses remarkable recursive
structures beneficial for further analytic manipulations, as detailed in Section 10. Another notable recent
application of Stade’s formula can be found in [GSW21, GSW23+]. We anticipate that our method will
provide insights into the structures of archimedean transforms, pave the way for generalizing to moments of
higher-rank L-functions and overcome the technical challenges posed by the ‘Kuznetsov–Voronoi’ method.
We shall return to this subject in our upcoming works, together with treatment of the non-archimedean
places.

4. Informal Sketch and Discussion

To assist the readers, we first outline the main ideas of this article, before diving into any of the analytic
subtleties of our actual argument. In fact, this represents the most intrinsic picture of our method and
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facilitates comparisons with the strategy of Michel–Venkatesh [MV06]. The style of this section will be
largely informal — we shall suppress the constant multiples (say those 2’s and π’s), assume convergence,
and set aside the treatment of the main terms.

According to [MV06], the classical Motohashi formula can be understood as an intrinsic property of
the GLp2q Eisenstein series (denoted by E˚ below) via the ‘regularized’ geodesic period

ż 8

0
|E˚piyq|

2 dˆy,

which can be evaluated in two ways according to |E˚|2 and E˚ ¨ E˚ respectively:
(1) (GLp2q spectral expansion)

ÿ

ϕ: GLp2q

@

|E˚|2, ϕ
D

ż 8

0
ϕpiyq dˆy “

ÿ

ϕ: GLp2q

Λ p1{2, ϕq
2

¨ Λ p1{2, ϕq ` p¨ ¨ ¨ q (4.1)

(2) (GLp1q ˆ GLp1q expansion, or the Mellin–Plancherel formula)
ż

p1{2q

|ĂE˚psq|2
ds

2πi
“

ż

R

ˇ

ˇΛ p1{2 ` itq2
ˇ

ˇ

2 dt

2π
. (4.2)

This seemingly simple sketch turns out to require rather sophisticated regularizations but was skillfully
executed by Nelson [Ne19+] very recently.

We now turn to our sketch of the (generalized) Motohashi phenomenon as described in Theorem 1.1.
Let Φ be a Maass cusp form of SL3pZq. As mentioned in the introduction, our starting point is the trivial
identity

ż 1

0

„
ż 8

0
Φ

ˆ

y0p 1 u
1 q

1

˙

dˆy0

ȷ

ep´uq du “

ż 8

0

„
ż 1

0
Φ

ˆ

p 1 u
1 qy0

1

˙

ep´uq du

ȷ

dˆy0. (4.3)

For symmetry, observe that the right side of (4.3) can be written as
ż 8

0

»

–

ż 1

0

rΦ

»

–

¨

˝

1
1 u

1

˛

‚

¨

˝

y0
1

1

˛

‚

fi

fl ep´uq du

fi

fl dˆy0 (4.4)

with rΦpgq :“ Φptg´1q being the dual form of Φ.

Remark 4.1. Indeed, the center-invariance of Φ implies that

p4.3q “

ż 8

0

ż 1

0
Φ

»

–

¨

˝

1 u
1

1

˛

‚

¨

˝

1
1

y0

˛

‚

fi

fl ep´uq du dˆy0.

Let wℓ :“
´

´1
1

1

¯

. The observation
¨

˝

1
1

y0

˛

‚ “ w´1
ℓ

¨

˝

y0
1

1

˛

‚wℓ and

¨

˝

1
1

´u 1

˛

‚ “ wℓ

¨

˝

1 u
1

1

˛

‚w´1
ℓ

together with the left and right invariance of Φ by wℓ further rewrite (4.3) as
ż 8

0

ż 1

0
Φ

»

–

¨

˝

1
1

´u 1

˛

‚

¨

˝

y0
1

1

˛

‚

fi

flep´uq du dˆy0

“

ż 8

0

ż 1

0

rΦ

»

–

¨

˝

1
1 u

1

˛

‚

¨

˝

y0
1

1

˛

‚

fi

fl ep´uq du dˆy0.

As an overview of our strategy,
(1) Similar to Michel–Venkatesh’s strategy, the integral over p0,8q (or the center Z`

GL2
pRq) yields the

Rankin–Selberg L-functions on the spectral side and a t-integral on the dual side;
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(2) Different from Michel–Venkatesh’s strategy, our approach introduces an extra integral over r0, 1s

(or the quotient U2pZqzU2pRq of the unipotent subgroup U2 of GLp2q). This integral results in
Whittaker functions as weight functions on the spectral side, and leads to a product of two distinct
L-functions on the dual side;

(3) The Mellin-Plancherel of (4.2) is replaced by two Fourier expansions over ZzR below.
In fact, the unipotent nature of our period method is crucial in realizing the spectral duality for the fourth
moment of Dirichlet L-functions (see [Kw23b+]), as well as in ensuring the abundance of admissible test
functions on the spectral side, but these features will not be displayed in this section.

4.1. The GLp2q (spectral) side. This side is relatively straight-forward and gives the desired GLp3q ˆ

GLp2q moment. Regard Φ as a function of L2pΓ2zh2q via

pProj32Φqpgq :“

ż 8

0
Φ

ˆ

y0g
1

˙

dˆy0 pg P h2q,

which in turn can be expanded spectrally as

pProj32Φqpgq “
ÿ

j

xProj32Φ, ϕjy

||ϕj ||2
ϕjpgq `

xProj32Φ, 1y

||1||2
¨ 1 ` pcontq.

The spectral coefficients xProj32Φ, ϕjy are precisely the GLp3qˆGLp2q Rankin–Selberg L-functions. Hence,

LHS of p4.3q “

ż 1

0

`

Proj32Φ
˘

ˆ

1 u
1

˙

ep´uq du “
ÿ

j

Wµj p1q
Λ p1{2, ϕj b Φq

||ϕj ||2
` pcontq, (4.5)

where µ ÞÑ Wµp1q is a weight function.

4.2. The GLp1q (dual) side. In view of Point (3) above, we evaluate the innermost integral of (4.4) in
terms of the Fourier–Whittaker periods for rΦ, denoted by p

p

rΦqp¨,¨q (see Definition 5.12). From Proposition
6.1, (4.4) is given by

ż 8

0

ż 1

0

ż 1

0

rΦ

»

–

¨

˝

1 u1,3
1 u2,3

1

˛

‚

¨

˝

y0
1

1

˛

‚

fi

fl ep´u2,3q du1,3 du2,3 dˆy0

`
ÿ

a0PZ´t0u

ÿ

a1PZ´t0u

ż 8

0

ˆ

p

rΦ

˙

p1,a1q

»

–

¨

˝

1
a0 1

1

˛

‚

¨

˝

y0
1

1

˛

‚

fi

fl dˆy0. (4.6)

The first line of (4.6) corresponds to the diagonal term and is precisely the integral representation of
the standard L-function of rΦ. It is equal to Lp1, rΦqZ8p1, rΦq, where Z8p ¨, rΦq is the GLp3q local zeta
integral at 8. The second line of (4.6) is the off-diagonal contribution, denoted by ODΦ below, and is
expressed in terms of the Fourier coefficients of rΦ:

ODΦ “
ÿ

a0PZ´t0u

ÿ

a1PZ´t0u

B
rΦ

p1, a1q

|a1|

ż 8

0

ˆ

p

rΦ

˙

p1,1q

»

–

¨

˝

a1{a0
1 1

1

˛

‚

¨

˝

y0
1

1

˛

‚

fi

fl dˆy0. (4.7)

It can be further explicated as

ODΦ “
ÿ

a0PZ´t0u

ÿ

a1PZ´t0u

B
rΦ

p1, a1q

|a1|

ż 8

0
WαpΦq

ˆˇ

ˇ

ˇ

ˇ

a1
a0

ˇ

ˇ

ˇ

ˇ

y0
1 ` y20

, 1

˙

e

ˆ

a1
a0

y20
1 ` y20

˙

dˆy0 (4.8)

using the GLp3q Whittaker function WαpΦq, where the oscillatory factor ep¨ ¨ ¨ q originates from the unipo-
tent translation of Whittaker functions.

Roughly speaking, (4.8) suggests some forms of (multiplicative) convolutions between the GLp3q and
GLp1q data at both the archimedean and the non-archimedean places:
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(1) (Archimedean) We apply the Mellin inversion formula for WαpΦq, a standard result in GLp3q

theory, together with the local functional equation for GLp1q in the form:

epxq ` ep´xq “

ż i8

´i8

ΓRpuq

ΓR p1 ´ uq
|x|´u du

2πi
px ‰ 0q; (4.9)

(2) (Non-archimedean) Observe the following identity of the double Dirichlet series:
ÿ

a0‰0

ÿ

a1‰0

BΦpa1, 1q

|a1|

ˇ

ˇ

ˇ

ˇ

a1
a0

ˇ

ˇ

ˇ

ˇ

1´s0´u

“ Lps0 ` u, rΦqζp1 ´ s0 ´ uq. (4.10)

We thus arrive at

ODΦ “

ż

p1{2q

ζ p1 ´ s0qLps0, rΦq ¨ p¨ ¨ ¨ q
ds0
2πi

, (4.11)

where ‘p¨ ¨ ¨ q’ stands for a certain integral transform that can be described purely in terms of Γ-functions.

Remark 4.2.
(1) In (3.2), the test function h of the Poincaré series P p˚;hq will be transformed into the Kontorovich-

Lebedev transform h# on the GLp2q side (see (5.25)) and into the Mellin transform rh on the GLp1q

side (see (7.6)). This is consistent with the sketch above.
(2) Readers may wish to compare the integral transforms obtained in the sketch with the one described

in [BFW21+, Section 1.3].

Remark 4.3. The choices of unipotent subgroups have been important in the constructions of various
L-series for the group GLp3q:

‚

!´

1 ˚
1 ˚
1

¯)

or
!´

1 ˚ ˚
1
1

¯)

for the standard L-function;

‚

!´

1 ˚
1
1

¯)

for Bump’s double Dirichlet series ([Bump84]);

‚

!´

1
1 ˚
1

¯)

or
!´

1 ˚
1
1

¯)

for the Motohashi phenomenon of this article.

5. Preliminary

The analytic theory of automorphic forms for the group GLp3q has undergone considerable development
in the past decade. Readers should beware that the recent articles in the field (e.g., [Bu13, Bu16, Bu20,
GSW21]) have adopted a different set of conventions and normalizations from those in the standard text
[Gold]. Nevertheless, [Gold] remains a useful reference as it thoroughly documents many standard results
and their proofs.

In this article, we follow the more recent conventions (closest to [Bu20]), which is better aligned with
the theory of automorphic representation. We will summarize the essential notions and results below with
extra attention on the archimedean calculations involving Whittaker functions, as they play a key role in
our analysis.

5.1. Notations and Conventions. Throughout this article, we use the following notations: ΓRpsq :“

π´s{2Γps{2q ps P Cq; epxq :“ e2πix px P Rq; Γn :“ SLnpZq pn ě 2q. Without otherwise specified, our test
function H lies in the class Cη and H “ h#. We will often use the same symbol to denote a function (in
s) and its analytic continuation.

We will frequently encounter contour integrals of the shape
ż i8

´i8
¨ ¨ ¨

ż i8

´i8
p¨ ¨ ¨ q

ds1
2πi

¨ ¨ ¨
dsk
2πi

where the contours involved should follow Barnes’ convention: they pass to the right of all of the poles of
the gamma functions in the form Γpsi ` aq and to the left of all of the poles of the gamma functions in
the form Γpa ´ siq.

We also adopt the following set of conventions:



10 C.-H. KWAN

(1) All Maass cusp forms will be simultaneous eigenfunctions of the Hecke operators and will be either
even or odd. Also, their first Fourier coefficients are equal to 1. In this case, the forms are said
to be Hecke-normalized. Note that there are no odd form for SL3pZq, see [Gold, Proposition
9.2.5].

(2) Our fixed Maass cusp form Φ of SL3pZq is assumed to be tempered at 8, i.e., its Langlands
parameters are purely imaginary.

(3) Denote by θ the best progress towards the Ramanujan conjecture for the Maass cusp forms of
SL3pZq. We have θ ď 1

2 ´ 1
10 , see [Gold, Theorem 12.5.1].

5.2. (Spherical) Whittaker Functions & Transforms. In the rest of this article, all Whittaker func-
tions will refer to the spherical ones. The Whittaker function of GL2pRq is more familiar and is given
by

Wµpyq :“ 2
?
yKµp2πyq (5.1)

for µ P C and y ą 0. Under this normalization, the following holds:

Proposition 5.1. For Repw ` 1
2 ˘ µq ą 0, we have

ż 8

0
Wµpyqyw dˆy “

π´w´ 1
2

2
Γ

˜

w ` 1
2 ` µ

2

¸

Γ

˜

w ` 1
2 ´ µ

2

¸

. (5.2)

Proof. Standard, see [Mo97, Equation (2.5.2)] for instance. □
For the group GL3pRq, we first introduce the function

Iαpy0, y1q “ Iα

¨

˝

y0y1
y0

1

˛

‚ :“ y1´α3
0 y1`α1

1

for y0, y1 ą 0 and α P a
p3q

C :“
␣

pα1, α2, α3q P C3 : α1 ` α2 ` α3 “ 0
(

. Then the Whittaker function for
GL3pRq, denoted by Wαpy0, y1q “ Wα

´ y0y1
y0

1

¯

, is defined in terms of Jacquet’s integral:
ź

1ďjăkď3

ΓRp1 ` αj ´ αkq

ż

R

ż

R

ż

R
Iα

„

´

1
´1

1

¯

ˆ

1 u1,2 u1,3

1 u2,3

1

˙

´ y0y1
y0

1

¯

ȷ

ep´u1,2 ´ u2,3q du1,2 du1,3 du2,3

(5.3)

for y0, y1 ą 0 and α P a
p3q

C . See [Gold, Chapter 5.5] for details.

Remark 5.2. Notice the difference in the normalization of Iα here compared to that in [Gold, Equation
5.1.1]. Also, the Whittaker functions discussed here are the complete Whittaker functions as defined in
[Gold].

Moreover, the Whittaker function of GL3pRq admits the following useful Mellin-Barnes representation
commonly known as the Vinogradov-Takhtadzhyan formula:

Proposition 5.3. Assume α P a
p3q

C is tempered, i.e., Reαi “ 0 (i “ 1, 2, 3). Then for any σ0, σ1 ą 0,

W´αpy0, y1q “
1

4

ż

pσ0q

ż

pσ1q

Gαps0, s1qy1´s0
0 y1´s1

1

ds0
2πi

ds1
2πi

, y0, y1 ą 0, (5.4)

where

Gαps0, s1q :“

3
ś

i“1
ΓR ps0 ` αiqΓR ps1 ´ αiq

ΓRps0 ` s1q
. (5.5)

Proof. This can be verified (up to the constant 1{4) by a brute force yet elementary calculation, i.e.,
checking the right side of (5.4) satisfies the differential equations of GLp3q (see [Bump84, pp. 38-39]). For
a cleaner proof starting from (5.3), see [Bump84, Chapter X]. □
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Remark 5.4. Notice the sign convention of the αi’s in formula (5.4) — it is consistent with [Bu20] but
is opposite to that of [Gold, Equation (6.1.4)–(6.1.5)].

Corollary 5.5. For any ´8 ă A0, A1 ă 1, we have
|W´αpy0, y1q| ! yA0

0 yA1
1 , y0, y1 ą 0, (5.6)

where the implicit constant depends only on α,A0, A1.

Proof. Follows directly from Proposition 5.3 by contour shifting. □
We will need the explicit evaluation of the GL3pRq ˆ GL2pRq Rankin–Selberg integral. It is a conse-

quence of the Second Barnes Lemma stated as follows.

Lemma 5.6. For a, b, c, d, e, f P C with f “ a ` b ` c ` d ` e, we have
ż i8

´i8

Γpw ` aqΓpw ` bqΓpw ` cqΓpd ´ wqΓpe ´ wq

Γpw ` fq

dw

2πi

“
Γpd ` aqΓpd ` bqΓpd ` cqΓpe ` aqΓpe ` bqΓpe ` cq

Γpf ´ aqΓpf ´ bqΓpf ´ cq
. (5.7)

The contours of integration must adhere to Barnes’ convention; see Section 5.1.

Proof. See Bailey [Ba64]. □
Proposition 5.7. Let Wµ and W´α be the Whittaker functions of GL2pRq and GL3pRq respectively. For
Re s " 0, we have

Z8 ps; Wµ, W´αq :“

ż 8

0

ż 8

0
Wµpy1qW´αpy0, y1qpy20y1qs´ 1

2
dy0dy1
y0y21

“
1

4

ź

˘

3
ź

k“1

ΓR ps ˘ µ ´ αkq . (5.8)

Proof. See [Bump88]. □
The following pair of integral transforms plays an important role in the archimedean aspect of this

article.

Definition 5.8. Let h : p0,8q Ñ C and H : iR Ñ C be measurable functions with Hpµq “ Hp´µq. Let
Wµpyq :“ 2

?
yKµp2πyq. Then the Kontorovich-Lebedev transform of h is defined by

h#pµq :“

ż 8

0
hpyqWµpyq

dy

y2
, (5.9)

whereas its inverse transform is defined by

H5pyq “
1

4πi

ż

p0q

HpµqWµpyq
dµ

|Γpµq|
2 , (5.10)

provided the integrals converge absolutely. Note: the normalization constant 1{4πi in (5.10) is consistent
with that in [Mo97] and [I02].

Definition 5.9. Let Cη be the class of holomorphic functions H on the vertical strip |Reµ| ă 2η such
that

(1) Hpµq “ Hp´µq,
(2) H has rapid decay in the sense that

Hpµq ! e´2π|µ| p|Reµ| ă 2ηq. (5.11)
In this article, we take η ą 40 without otherwise specifying.

By contour-shifting and Stirling’s formula, we have

Proposition 5.10. For any H P Cη, the integral (5.10) defining H5 converges absolutely. Moreover, we
have

H5pyq ! minty, y´1uη py ą 0q. (5.12)
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Proof. See [Mo97, Lemma 2.10]. □

Proposition 5.11. Under the same assumptions of Proposition 5.10, we have

ph#q5pgq “ hpgq and pH5q#pµq “ Hpµq. (5.13)

Proof. See [Mo97, Lemma 2.10]. It is a consequence of the Rankin–Selberg calculation for GL2pRq ˆ

GL2pRq. □

5.3. Automorphic Forms of GLp2q and GLp3q. Let

h2 :“

"ˆ

1 u
1

˙ˆ

y
1

˙

: u P R, y ą 0

*

with its invariant measure given by y´2dudy. Let ∆ :“ ´y2
`

B2
x ` B2

y

˘

. An automorphic form ϕ : h2 Ñ C
of Γ2 “ SL2pZq satisfies ∆ϕ “

`

1
4 ´ µ2

˘

ϕ for some µ “ µpϕq P C. It is often handy to identify µ with the
pair pµ,´µq P a

p2q

C .
For a P Z ´ t0u, the a-th Fourier coefficient of ϕ, denoted by Bϕpaq, is defined by

ppϕqapyq :“

ż 1

0
ϕ

„ˆ

1 u
1

˙ˆ

y
1

˙ȷ

ep´auq du “
Bϕpaq
a

|a|
¨ Wµpϕqp|a|yq. (5.14)

In the case of the Eisenstein series of Γ2, i.e.,

ϕ “ Epz;µq :“
1

2

ÿ

γPU2pZqzΓ2

IµpIm γzq pz P h2q, (5.15)

where Iµpyq :“ yµ` 1
2 , it is well-known that ∆Ep˚;µq “

`

1{4 ´ µ2
˘

Ep˚;µq and the Fourier coefficients
Bpa;µq of Ep˚;µq is given by

Bpa;µq “
|a|µσ´2µp|a|q

Λp1 ` 2µq
, (5.16)

where

Λpsq :“ π´s{2Γps{2qζpsq and σ´2µp|a|q :“
ÿ

d|a

d´2µ.

The series (5.15) converges absolutely for Reµ ą 1{2 and it admits a meromorphic continuation to C.
Next, let

h3 :“

$

&

%

¨

˝

1 u1,2 u1,3
1 u2,3

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚: ui,j P R, yk ą 0

,

.

-

.

Let Φ : h3 Ñ C be a Maass cusp form of Γ3 as defined in [Gold, Definition 5.1.3]. In particular, there
exists α “ αpΦq P a

p3q

C such that for any D P ZpUgl3pCqq (the center of the universal enveloping algebra
of the Lie algebra gl3pCq), we have

DΦ “ λDΦ and DIα “ λDIα

for some λD P C. The triple αpΦq is said to be the Langlands parameters of Φ.

Definition 5.12. Let m “ pm1,m2q P pZ ´ t0uq2 and Φ : h3 Ñ C be a Maass cusp form of SL3pZq. For
any y0, y1 ą 0, the integral defined by

ppΦqpm1,m2q

´ y0y1
y0

1

¯

:“

ż 1

0

ż 1

0

ż 1

0
Φ

„ˆ

1 u1,2 u1,3

1 u2,3

1

˙

´ y0y1
y0

1

¯

ȷ

e p´m1u2,3 ´ m2u1,2q du1,2 du1,3 du2,3.

(5.17)
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is said to be the pm1,m2q-th Fourier-Whittaker period of Φ. Moreover, the pm1,m2q-th Fourier
coefficient of Φ is the complex number BΦpm1,m2q for which

ppΦqpm1,m2q

¨

˝

y0y1
y0

1

˛

‚ “
BΦpm1,m2q

|m1m2|
W

sgnpm2q

αpΦq

¨

˝

p|m1|y0qp|m2|y1q

|m1|y0
1

˛

‚ (5.18)

holds for any y0, y1 ą 0.

Remark 5.13.
(1) The multiplicity-one theorem of Shalika (see [Gold, Theorem 6.1.6]) guarantees the well-definedness

of the Fourier coefficients for Φ.
(2) If Φ is Hecke-normalized (cf. Section 5.1.(1)), then BΦp1, nq can be shown to be a Hecke eigenvalue

of Φ (see [Gold, Section 6.4]).

5.4. Automorphic L-functions. The Maass cusp forms Φ and ϕ below are Hecke-normalized and their
Langlands parameters are denoted by α P a

p3q

C and µ P a
p2q

C respectively. Let rΦpgq :“ Φ
`

tg´1
˘

be the dual
form of Φ. It is not hard to show that the Langlands parameters of rΦ are given by ´α.

Definition 5.14. Suppose Φ and ϕ are Maass cusp forms of Γ3 and Γ2 respectively. For Re s " 1, the
Rankin–Selberg L-function of Φ and ϕ is defined by

L ps, ϕ b Φq :“
8
ÿ

m1“1

8
ÿ

m2“1

Bϕpm2qBΦpm1,m2q
`

m2
1m2

˘s . (5.19)

Although we do not make use of the Dirichlet series for Lps, ϕ b Φq in this article, it is frequently used
in the literature, especially in the ‘Kuznetsov–Voronoi’ method. We take this opportunity to indicate
our normalization in terms of Dirichlet series so as to faciliate conversion and comparison, and to correct
some minor inaccuracies in Section 12.2 of [Gold].

Proposition 5.15. Suppose Φ and ϕ are Maass cusp forms of Γ3 and Γ2 respectively. In addition, assume
that ϕ is even. Then for any Re s " 1, we have

ż

Γ2zGL2pRq

ϕpgqrΦ

ˆ

g
1

˙

|det g|s´ 1
2 dg “

1

2
Λps, ϕ b rΦq, (5.20)

where
Λps, ϕ b rΦq :“ L8ps, ϕ b rΦqLps, ϕ b rΦq (5.21)

and

L8ps, ϕ b rΦq :“
3
ź

k“1

ΓR ps ˘ µ ´ αkq . (5.22)

Proof. The assumption on the parity of ϕ is missing in [Gold]. Also, the pairing should be taken over the
quotient Γ2zGL2pRq instead of Γ2zh2 in [Gold].

As a brief sketch, we replace rΦp
g
1 q by its Fourier-Whittaker expansion (see [Gold, Theorem 5.3.2]) on

the left side of (5.20) and unfold. Then one may extract the Dirichlet series in (5.19) by using (5.14) and
(5.17). The integral of Whittaker functions can be computed by Proposition 5.7. □

In the rest of this article, we will often make use of the shorthands pP3
2Φqpgq :“ Φp

g
1 q and the pairing

`

ϕ, pP3
2Φq ¨ |det ˚|s´ 1

2

˘

Γ2zGL2pRq

for the integral on the left side of (5.20). By the rapid decay of Φ at 8, this integral converges absolutely
for any s P C and uniformly on any compact subset of C. Thus, the L-function Lps, ϕ b rΦq admits an
entire continuation.

Remark 5.16.
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(1) When ϕ is even, the involution g ÞÑ tg´1 gives the functional equation

Λps, ϕ b rΦq “ Λ p1 ´ s, ϕ b Φq .

(2) When ϕ is odd, the right side of (5.20) is identical to 0 and hence does not provide an integral
representation for Λps, ϕb rΦq. One must alter Proposition 5.15 accordingly in this case, say using
the raising/lowering operators, or proceed adelically with an appropriate choice of test vector at
8. However, we shall not go into these as our spectral average is taken over even Maass forms of
Γ2 only.

(3) As discussed in Section 3.2, the roles of parities and root numbers are rather intricate in the study
of moments of L-functions, especially regarding the archimedean integral transforms.

Definition 5.17. Let Φ : h3 Ñ C be a Maass cusp form of Γ3. For Re s " 1, the standard L-function of
Φ is defined by

L ps,Φq :“
8
ÿ

n“1

BΦp1, nq

ns
. (5.23)

In the rest of this article, we will not make use of the integral representation of Lps,Φq, i.e., the first
line of (4.6) with rΦ replaced by Φ. It suffices to note that Lps,Φq admits an entire continuation and
satisfies the following functional equation:

Proposition 5.18. Let Φ : h3 Ñ C be a Maass cusp form of Γ3. For any s P C, we have

Λ ps,Φq “ Λp1 ´ s, rΦq, (5.24)

where

Λ ps,Φq :“ L8 ps,ΦqL ps,Φq (5.25)

and

L8 ps,Φq :“
3
ź

k“1

ΓR ps ` αkq . (5.26)

Proof. See [Gold, Chapter 6.5] or [JPSS]. □

Furthermore, since ϕ and Φ are assumed to be Hecke-normalized, the standard L-functions Lps, ϕq and
Lps,Φq admit Euler products of the form:

Lps, ϕq “
ź

p

2
ź

j“1

`

1 ´ βϕ,jppqp´s
˘´1

, Lps,Φq “
ź

p

3
ź

k“1

`

1 ´ αΦ,kppqp´s
˘´1 (5.27)

for Re s " 1. Then one can show that

Lps, ϕ b Φq “
ź

p

2
ź

j“1

3
ź

k“1

`

1 ´ βϕ,jppqαΦ,kppqp´s
˘´1 (5.28)

by Cauchy’s identity, see the argument of [Gold, Proposition 7.4.12].

Proposition 5.19. For Reps ˘ µq " 1, we have

`

Ep˚;µq,
`

P3
2Φ

˘

¨ |det ˚|s̄´ 1
2

˘

Γ2zGL2pRq
“

1

2

Λps ` µ, rΦqΛps ´ µ, rΦq

Λp1 ` 2µq
. (5.29)

Proof. Parallel to Proposition 5.15. Meanwhile, we make use of (5.16). □

Remark 5.20. By analytic continuation, (5.20) and (5.29) hold for s P C and away from the poles of
Ep˚;µq. In fact, the rapid decay of Φ at 8 guarantees the pairings converge absolutely.
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5.5. Calculation on the Spectral Side. As noted before, our approach diverges from the “Kuznetsov-
Voronoi” method from the outset. We express the moment of GLp3q ˆ GLp2q L-functions via the period
integral in Proposition 5.15 using a Poincaré series.

Definition 5.21. Let a ě 1 be an integer and h P C8p0,8q. The Poincaré series of Γ2 is defined as

P apz;hq :“
ÿ

γPU2pZqzΓ2

hpa Im γzqe paRe γzq pz P h2q (5.30)

provided the series converges absolutely.

It is not hard to see that if the bounds
hpyq ! y1`ϵ (as y Ñ 0) and hpyq ! y

1
2

´ϵ (as y Ñ 8) (5.31)

are satisfied, then the Poincaré series P apz;hq converges absolutely and represents an L2-function. In this
article, we take h :“ H5 with H P Cη and η ą 40. By Proposition 5.10, the conditions in (5.31) are clearly
met. We will often use the shorthand P a :“ P ap˚;hq. Also, we denote the Petersson inner product on
Γ2zh2 by x ¨ , ¨ y, defined as

xϕ1, ϕ2y :“

ż

Γ2zh2
ϕ1pgqϕ2pgq dg

with dg being the invariant measure on h2.

Lemma 5.22. Let ϕ be a Maass cusp form of Γ2, ∆ϕ “
`

1{4 ´ µ2
˘

ϕ, and Bϕpaq be the a-th Fourier
coefficient of ϕ. Then

@

P a, ϕ
D

“ a1{2 ¨ Bϕpaq ¨ h# pµq .

Proof. Replace P a in
@

P a, ϕ
D

by its definition and unfold, we easily find that
@

P a, ϕ
D

“

ż 8

0
hpayq xpϕqapyq

dy

y2
.

The result follows at once upon plugging-in (5.14) and making the change of variable y Ñ a´1y. □
Similarly, the following holds away from the poles of Ep˚;µq:

Lemma 5.23.
@

P a, Ep˚;µq
D

“ a1{2 ¨
aµσ´2µpaq

Λp1 ` 2µq
¨ h# pµq . (5.32)

Proposition 5.24 (Spectral Expansion). Suppose f P L2pΓ2zh2q and xf, 1y “ 0. Then

fpzq “

8
ÿ

j“1

@

f, ϕj

D

@

ϕj , ϕj

D ¨ ϕjpzq `

ż

p0q

@

f, Ep˚;µq
D

¨ Epz;µq
dµ

4πi
pz P h2q (5.33)

where pϕjqjě1 is any orthogonal basis of Maass cusp forms for Γ2.

Proof. See [Gold, Theorem 3.16.1]. □
Proposition 5.25. Let Φ be a Maass cusp form of Γ3 and P a be a Poincaré series of Γ2. Then

2a´1{2
`

P a, pP3
2Φq ¨ |det ˚|s´ 1

2

˘

Γ2zGL2pRq
“

8
ÿ1

j“1

h# pµjq
BjpaqΛps, ϕj b rΦq

xϕj , ϕjy

`

ż

p0q

h# pµq
σ´2µpaqa´µΛps ` µ, rΦqΛp1 ´ s ` µ,Φq

|Λp1 ` 2µq|
2

dµ

4πi
(5.34)

for any s P C, where the sum is restricted to an orthogonal basis pϕjq of even Hecke-normalized Maass
cusp forms for Γ2 with ∆ϕj “ p1{4 ´ µ2

j qϕj and Bjpaq :“ Bϕj
paq.
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Proof. Substitute the spectral expansion of P a as in (5.33) into the pairing pP a, pP3
2Φq¨|det ˚|s´ 1

2 qΓ2zGL2pRq.
The inner products involved have been computed in Lemmas 5.22´5.23 and Definitions 5.15´5.19. □

Remark 5.26. Good control over spectral aspects and integral transforms, along with flexibility in
choosing test functions on the spectral side, are crucial in applications. Also, this helps eliminate
extraneous polar contributions (e.g., those not predicted by [CFKRS05]) for Eisenstein cases. These
explain the preference of Kuznetsov-based methods over period-based methods (see the discussions in
[Bl12a, Nu20+, Za21, Za20+]).

While our method is period-based, it accommodates a broad class of test functions similar to the
Kuznetsov approaches, thanks to the transforms in Definition 5.8. These transforms, generalized to GLpnq

as in [GK12], have significantly contributed to the development of higher-rank Kuznetsov formulae (see
[GK13, GSW21, GSW23+, Bu20]).

Our method effectively combines the strengths of both Kuznetsov and period approaches, balancing
precision in the archimedean aspect with structural insights into the non-archimedean aspect.

Remark 5.27. Within our class Cη of test functions, a good choice of test function is given by

Hpµq :“
`

eppµ`iMq{Rq2 ` eppµ´iMq{Rq2
˘ Γp2η ` µqΓp2η ´ µq
ś3

i“1 Γ
`1{2`µ´αi

2

˘

Γ
`1{2´µ´αi

2

˘

, (5.35)

where η ą 40, M " 1, and R “ Mγ (0 ă γ ď 1). In (5.35),
‚ the factor eppµ`iMq{Rq2 ` eppµ´iMq{Rq2 serves as a smooth cut-off for |µj | P rM ´ R,M ` Rs and

gives the needed decay in Proposition 5.10;
‚ the factors

ś3
i“1 Γ

´

1{2`µ´αi

2

¯

Γ
´

1{2´µ´αi

2

¯

cancel out the archimedean factors of Λ
`

1{2, ϕj b rΦ
˘

on the spectral expansion (5.34) and in the diagonal contribution (6.9);
‚ the factors Γ p2η ` µqΓp2η ´ µq balance off the exponential growth from dµ{|Γpµq|2, ||ϕj ||

´2 and
|Λp1` 2iµq|´2. Also, a large enough region of holomorphy of (5.35) is maintained so that hpyq :“

H5pyq has sufficient decay at 0 and 8.

Remark 5.28. One might consider using an automorphic kernel instead of a Poincaré series for Theorem
1.1. While this offers more structural flexibility, the analysis of the spherical transforms becomes quite
complicated (see [Z79], [Bu13]). The Poincaré series approach appears better suited to the analytic
number theory of higher-rank groups.

6. Basic Identity for Dual Moment

6.1. Unipotent Integration. We are ready to work on the dual side of our moment formula. To simplify
our argument, we will consider P “ P ap˚;hq with a “ 1 in the following. Suppose Re s ą 1 ` θ{2, where
θ was defined in Section 5.1. We start by substituting the definition of P into the pairing in (5.34). We
find upon unfolding that

`

P, P3
2Φ ¨ |det ˚|s´ 1

2

˘

Γ2zGL2pRq

“

ż 8

0

ż 8

0
hpy1q ¨ py20y1qs´ 1

2 ¨

ż 1

0

rΦ

»

–

¨

˝

1 u1,2
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl epu1,2q du1,2
dy0dy1
y0y21

.

(6.1)

The main task of this section is to compute the inner, ‘incomplete’ unipotent integral in (6.1) in terms
of the Fourier–Whittaker periods of Φ (see Definition 5.12), which are relevant in constructing various
L-functions associated with Φ, as discussed in Section 5.4.

While this can be achieved using the full Fourier expansion of [JPSS] (see [Gold, Theorem 5.3.2]) and
simplifying, we opt for a self-contained and conceptual treatment, which follows from two one-dimensional
Fourier expansions and the automorphy of Φ. Essentially, this is where ‘summation formulae’ come into
play in our method, presented in an elementary, clean, and global manner.
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Proposition 6.1. For any automorphic function Φ of Γ3, we have, for any y0, y1 ą 0,
ż 1

0
Φ

»

–

¨

˝

1 u1,2
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

flep´u1,2q du1,2

“

8
ÿ

a0,a1“´8

ppΦqpa1,1q

»

–

¨

˝

1
1

´a0 1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl . (6.2)

Proof. Firstly, we Fourier-expand along the abelian subgroup
!´

1 ˚
1
1

¯)

:

ż 1

0
Φ

»

–

¨

˝

1 u1,2
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

flep´u1,2q du1,2

“

8
ÿ

a0“´8

ż

Z2zR2

Φ

»

–

¨

˝

1 u1,2 u1,3
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl ep´u1,2 ´ a0 ¨ u1,3q du1,2 du1,3.

(6.3)

Secondly, for each a0 P Z, consider a unimodular change of variables of the form pu1,2, u1,3q “

pu1
1,2, u

1
1,3q ¨

`

1
´a0 1

˘

. One can readily observe that
¨

˝

1 u1,2 u1,3
1

1

˛

‚ “

¨

˝

1
1
a0 1

˛

‚

¨

˝

1 u1
1,2 u1

1,3

1
1

˛

‚

¨

˝

1
1

´a0 1

˛

‚.

Together with the automorphy of Φ with respect to Γ3, we have
ż 1

0
Φ

»

–

¨

˝

1 u1,2
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl ep´a2 ¨ u1,2q du1,2

“

8
ÿ

a0“´8

ż

Z2zR2

Φ

»

–

¨

˝

1 u1
1,2 u1

1,3

1
1

˛

‚

¨

˝

1
1

´a0 1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl ep´u1
1,2q du1

1,2 du1
1,3.

(6.4)

The result follows from a third and final Fourier expansion along the abelian subgroup
!´

1
1 ˚
1

¯)

:

ż 1

0
Φ

»

–

¨

˝

1 u1,2
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl ep´u1,2q du1,2

“

8
ÿ

a0,a1“´8

ż 1

0

ż 1

0

ż 1

0
Φ

»

–

¨

˝

1 u1,2 u1,3
1 u2,3

1

˛

‚

¨

˝

1
1

´a0 1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

fl

ep´u1,2 ´ a1 ¨ u2,3q du1,2 du1,3 du2,3.

□

We then explicate Proposition 6.1 when Φ is a Maass cusp form of Γ3. This constitutes the basic
identity of the present article. Theorem 1.1 is a natural consequence of this identity and the diagonal/
off-diagonal structures on the dual side become apparent (see Proposition 7.2).
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Corollary 6.2. Suppose Φ is a Maass cusp form of Γ3. Then
ż 1

0
Φ

»

–

¨

˝

1 u1,2
1

1

˛

‚

¨

˝

y0y1
y0

1

˛

‚

fi

flep´u1,2q du1,2

“
ÿ

a1‰0

BΦpa1, 1q

|a1|
¨ WαpΦq p|a1|y0, y1q

`
ÿ

a0‰0

ÿ

a1‰0

BΦpa1, 1q

|a1|
¨ WαpΦq

ˆ

|a1|y0
1 ` pa0y0q2

, y1
a

1 ` pa0y0q2

˙

¨ e

ˆ

´
a0a1y

2
0

1 ` pa0y0q2

˙

. (6.5)

Proof. By cuspidality, ppΦqp0,1q ” 0. The result follows from a straight-forward linear algebra calculation:
¨

˝

1
1

´a0 1

˛

‚

¨

˝

y0y1
y0

1

˛

‚ ”

¨

˚

˝

1

1 ´
a0y20

1`pa0y0q2

1

˛

‹

‚

¨

˚

˝

y0
1`pa0y0q2

¨ y1
a

1 ` pa0y0q2

y0
1`pa0y0q2

1

˛

‹

‚

(6.6)

under the right quotient by O3pRq ¨ Rˆ. This can be verified by the formula stated in [Bu18, Section
2.4] or the mathematica command IwasawaForm[] in the GL(n)pack (gln.m). The user manual and the
package can be downloaded from Kevin A. Broughan’s website: https://www.math.waikato.ac.nz/
~kab/glnpack.html. □

6.2. Initial Simplification and Absolute Convergence. We temporarily restrict ourselves to the
vertical strip 1 ` θ

2 ă σ :“ Re s ă 4. As we will see, this guarantees absolute convergence of sums and
integrals.

Suppose H P Cη with η ą 40 (see Proposition 5.10). Then the bound (5.12) for h :“ H5 implies its
Mellin transform rhpwq :“

ş8

0 hpyqyw dˆy is holomorphic on the strip |Rew| ă η. Substituting (6.5) into
(6.1), applying the changes of variables y0 Ñ |a1|´1y0 and y0 Ñ |a0|´1y0 to the first and second piece of
the resultant, we have
´

P, P3
2Φ ¨ |det ˚|s´ 1

2

¯

Γ2zGL2pRq
“ 2 ¨ Lp2s,Φq ¨

ż 8

0

ż 8

0
hpy1q ¨ py20y1qs´ 1

2 ¨ W´αpΦqpy0, y1q
dy0dy1
y0y21

(6.7)

` ODΦpsq,

where

Definition 6.3.

ODΦpsq :“
ÿ

a0‰0

ÿ

a1‰0

BΦp1, a1q

|a0|2s´1|a1|
¨

ż 8

0

ż 8

0
hpy1q ¨ py20y1qs´ 1

2 ¨ e

ˆ

a1
a0

¨
y20

1 ` y20

˙

¨ W´αpΦq

ˆˇ

ˇ

ˇ

ˇ

a1
a0

ˇ

ˇ

ˇ

ˇ

¨
y0

1 ` y20
, y1

b

1 ` y20

˙

dy0dy1
y0y21

. (6.8)

Proposition 6.4. When H P Cη and 4 ą σ ą 1`θ
2 , we have

ż 8

0

ż 8

0
hpy1q ¨ py20y1qs´ 1

2 ¨ W´αpΦqpy0, y1q
dy0dy1
y0y21

“
π´3s

8
¨

ż

p0q

Hpµq

|Γpµq|2
¨

3
ź

i“1

Γ

ˆ

s ` µ ´ αi

2

˙

Γ

ˆ

s ´ µ ´ αi

2

˙

dµ

2πi
. (6.9)

https://www.math.waikato.ac.nz/~kab/glnpack.html
https://www.math.waikato.ac.nz/~kab/glnpack.html
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Proof. From Proposition 5.11, we have
ż 8

0

ż 8

0
hpy1q ¨ py20y1qs´ 1

2 ¨ W´αpΦqpy0, y1q
dy0dy1
y0y21

“
1

2
¨

ż

p0q

Hpµq

|Γpµq|2
¨

ż 8

0

ż 8

0
Wµpy1qW´αpΦqpy0, y1qpy20y1qs´ 1

2
dy0dy1
y0y21

dµ

2πi
.

The y0, y1-integrals can be evaluated by Proposition 5.7 and (6.9) follows. Moreover, the right side of
(6.9) is holomorphic on σ ą 0. □

Proposition 6.5. The off-diagonal ODΦpsq converges absolutely when 4 ą σ ą 1 ` θ
2 and H P Cη

(η ą 40).

Proof. Upon inserting absolute values, breaking up the y0-integral into
ş1
0 `

ş8

1 , and applying the bounds
(5.6) and |BΦp1, a1q| ! |a1|θ, observe that

ODΦpsq !

8
ÿ

a0“1

8
ÿ

a1“1

1

a2σ´1
0 a1´θ

1

ˆ
ż 8

y0“1
`

ż 1

y0“0

˙
ż 8

y1“0
|hpy1q|py20y1qσ´ 1

2

`a1a
´1
0 y0

1 ` y20

˘A0
`

y1

b

1 ` y20
˘A1 dy0dy1

y0y21
,

where the implicit constant depends only on Φ, A0, A1 with ´8 ă A0, A1 ă 1. We are allowed to choose
different A0, A1 in different ranges of the y0, y1-integrals.

The convergence of both of the series is guaranteed if
A0 ă ´θ and σ ą 1 ´ A0{2. (6.10)

We now show that if (6.10) and
A1 ă A0 ´ 2σ ` 1 (6.11)

both hold, then the y0-integrals converge. Indeed, observe that 2σ ` A0 ´ 2 ą ´1 (by (6.10)), and
ż 1

y0“0
y2σ`A0´2
0

`

1 ` y20
˘

A1
2

´A0 dy0 —A0,A1

ż 1

y0“0
y2σ`A0´2
0 dy0.

So, the last integral converges. Also, (6.10) and (6.11) imply A1 ă mint1, 2A0u and thus,
ż 8

y0“1
y2σ`A0´2
0

`

1 ` y20
˘

A1
2

´A0 dy0 ď

ż 8

y0“1
y2σ`A1´A0´2
0 dy0.

The last integral converges because of (6.11).
For the y1-intgeral, the integrals

ż 8

y1“1
|hpy1q|y

σ`A1´ 5
2

1 dy1 and
ż 1

y1“0
|hpy1q|y

σ`A1´ 5
2

1 dy1

converge whenever H P Cη (we then have (5.12)) and
η ą

ˇ

ˇσ ` A1 ´ 3{2
ˇ

ˇ. (6.12)

Let δ :“ σ ´ 1 ´ pθ{2q pą 0q. In view of (6.10) and (6.11), we may take A0 :“ ´θ ´ δ and A1 :“
´2θ ´ 1 ´ 4δ. Also, (6.12) trivially holds as η ą 40 and σ ă 4. The result follows. □

Remark 6.6. Readers may notice the similarity between (3.2) and the inner product construction of
the Kuznetsov formula. Indeed, P3

2Φ is an infinite sum of Poincaré series for SL2pZq due to its Fourier
expansion, though we never adopt this perspective in this article. This serves as a GLp3qˆGLp2q analog to
the Kuznetsov formula. However, there are key differences. Our moment identity equates two unfoldings,
rather than comparing spectral and geometric expansions.

The second difference is technical. In the Kuznetsov formula, the oscillatory factors can be eliminated
to obtain a ‘primitive’ trace formula, see [GK13], [Zh14], [GSW21]. However, this does not work here —
we have yet to analytically continue into the critical strip in Proposition 6.5. Here, the oscillatory factor
in ODΦpsq is crucial, arising naturally from the abstract characterization of Whittaker functions.



20 C.-H. KWAN

7. Structure of the Off-diagonal

Fix ϵ :“ 1{100 (say), 0 ă ϕ ă π{2, and consider the domain 1 ` θ{2 ` ϵ ă σ ă 4 in this section
to maintain absolute convergence. We will stick with this choice of ϵ for the rest of this article and
the number ϕ here should not pose any confusion with the basis of cusp forms pϕjq of Γ2. We define a
perturbed version of ODΦpsq as follows:

ODΦps;ϕq :“
ÿ

a0‰0

ÿ

a1‰0

BΦp1, a1q

|a0|2s´1|a1|

ż 8

0

ż 8

0
hpy1qpy20y1qs´ 1

2W´αpΦq

ˆˇ

ˇ

ˇ

ˇ

a1
a0

ˇ

ˇ

ˇ

ˇ

y0
1 ` y20

, y1

b

1 ` y20

˙

¨ e

ˆ

a1
a0

y20
1 ` y20

;ϕ

˙

dy0dy1
y0y21

, (7.1)

where

e px;ϕq :“

ż

pϵq
|2πx|´ueiuϕ sgnpxqΓpuq

du

2πi
px P R ´ t0uq. (7.2)

In Proposition 7.3, we show that
lim

ϕÑπ{2
ODΦps;ϕq “ ODΦpsq (7.3)

on a smaller region of absolute convergence.
Remark 7.1. The goals of this section is to obtain an expression of ODΦps;ϕq that

‚ reveals the structure of the dual moment;
‚ can be analytically continued into the critical strip;
‚ and will allow us to pass to the limit ϕ Ñ π{2 (in the critical strip).

Given these considerations, it is natural to work on the dual side of the Mellin transforms, which also
allows for the separation of variables. The main result of this section is as follows:
Proposition 7.2 (Dual Moment). Let H P Cη (η ą 40) and ϕ P p0, π{2q. On the vertical strip

1 `
θ

2
` ϵ ă σ ă 4, (7.4)

we have

ODΦps;ϕq “
1

4

ż

p1`θ`2ϵq
ζ p2s ´ s0qL ps0,Φq ¨

ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

, (7.5)

where the transform of H is given by

pF pδq

Φ Hq ps0, s;ϕq :“

ż

p15q

ż

pϵq

rh ps ´ s1 ´ 1{2qGpδq

Φ ps1, u; s0, s; ϕq
du

2πi

ds1
2πi

, (7.6)

with h :“ H5, GΦ :“ GαpΦq as defined in (5.5), and

Gpδq

Φ ps1, u; s0, s; ϕq :“ GΦ ps0 ´ u, s1q p2πq´ueiδϕuΓpuq
Γ
`

u`1´2s`s1´s0
2

˘

Γ
`

2s´s0´u
2

˘

Γ
`

1`s1
2 ´ s0

˘ . (7.7)

Proof. Plug-in the expression for W´αpΦq from Proposition 5.3 into ODΦps;ϕq with
σ1 :“ 15 and 1 ` θ ă σ0 ă 2σ ´ 1 ´ ϵ. (7.8)

Insert absolute values to the resulting expression, the sums and integrals are bounded by
ÿ

δ:“sgnpa0a1q“˘

ˆ

ÿ

a0‰0

1

|a0|2σ´σ0´ϵ

˙ˆ

ÿ

a1‰0

|BΦp1, a1q|

|a1|
σ0`ϵ

˙ˆ
ż

pσ0q

ż

pσ1q

|GΦps0, s1q| |ds0||ds1|

˙

¨

ˆ
ż

pϵq
|eiδϕuΓpuq| |du|

˙ˆ
ż 8

0
y´σ0´2ϵ`2σ
0 p1 ` y20qσ0`ϵ´

1`σ1
2 dˆy0

˙ˆ
ż 8

0
|hpy1q|y

σ´σ1´ 1
2

1 dˆy1

˙

.

(7.9)
Observe that:
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‚ by Stirling’s formula, the s0, s1, u-integrals converge as long as
σ0, σ1, ϵ ą 0, ϕ P p0, π{2q; (7.10)

‚ the y0-integral converges as long as
σ0 ` 2ϵ ă 2σ ă σ1 ´ σ0 ` 1; (7.11)

‚ by the bound |BΦp1, a1q| ! |a1|θ, the a0-sum and the a1-sum converge as long as
2σ ´ 1 ą σ0 ` ϵ ą 1 ` θ. (7.12)

Under (7.8), items (7.10), (7.11), (7.12) hold. Moreover, the y1-integral converges by (5.12) and H P Cη
(η ą 40). Now, upon rearranging sums and integrals, and noticing that BΦp1, a1q “ BΦp1,´a1q, we have

ODΦps;ϕq “ 2
ÿ

δ“˘

ż

pσ0q

ż

pσ1q

ż

pϵq

GΦps0, s1q

4
p2πq´ueiδϕuΓpuq

ˆ
ż 8

0
hpy1qy

s´s1´ 1
2

1 dˆy1

˙

¨

ˆ
ż 8

0
y´s0´2u`2s
0 p1 ` y20qs0`u´

1`s1
2 dˆy0

˙ˆ 8
ÿ

a0“1

8
ÿ

a1“1

BΦp1, a1q

a2s´1
0 a1

ˆ

a1
a0

˙1´s0´u˙ds0
2πi

ds1
2πi

du

2πi
.

(7.13)
Recall the integral identity

ż 8

0
yv0p1 ` y20qA dˆy0 “

1

2

Γ
`

´A ´ v
2

˘

Γ
`

v
2

˘

Γp´Aq
(7.14)

for 0 ă Re v ă ´2ReA. It follows that

ODΦps;ϕq “ 2
ÿ

δ“˘

ż

pσ0q

ż

pσ1q

ż

pϵq
ζ p2s ´ s0 ´ uqL ps0 ` u; Φq ¨ rh ps ´ s1 ´ 1{2q

¨
GΦps0, s1q

4
p2πq´ueiδϕuΓpuq ¨

1

2

Γ
`

s ´ s0
2 ´ u

˘

Γ
`

1`s1´s0
2 ´ s

˘

Γ
`

1`s1
2 ´ s0 ´ u

˘

ds0
2πi

ds1
2πi

du

2πi
.

(7.15)
We pick the contour pσ0q :“ p1 ` θ ` ϵq, thus imposing (7.4). To isolate the non-archimedean part

of ODΦps;ϕq, we change variables to s1
0 “ s0 ` u. Substituting the expression for GΦ ps1

0 ´ u, s1q (see
(5.5)), we obtain (7.5)–(7.7). The absolute convergence proven earlier also ensures the holomorphy of the
integral transform pF pδq

Φ hq ps1
0, s; ϕq on the domain:

σ ă 4 and 1 ` θ ` ϵ ă σ1
0 ă 2σ ´ 1. (7.16)

This completes the proof. □
Proposition 7.3. For 4 ą σ ą p3 ` θq{2 and H P Cη, we have

lim
ϕÑπ{2

ODΦps;ϕq “ ODΦpsq. (7.17)

Proof. Let ϵ :“ 1{100, σ1 :“ 15, and pick any σ0 satisfying
3

2
` θ ` ϵ ă σ0 ă 2σ ´ 1 ´ ϵ. (7.18)

Denote by Cϵ the indented path consisting of the line segments:

´
1

2
´ ϵ ´ i8 Ñ ´

1

2
´ ϵ ´ i Ñ ϵ ´ i Ñ ϵ ` i Ñ ´

1

2
´ ϵ ` i Ñ ´

1

2
´ ϵ ` i8.

Replace epx;ϕq in (7.13) by the expression:

epx;ϕq “

ż

Cϵ
|2πx|´ueiuϕ sgnpxqΓpuq

du

2πi
. (7.19)

Note that
ˇ

ˇeiuϕ sgnpxqΓpuq
ˇ

ˇ !ϵ p1 ` | Imu|q
´1´ϵ for u P Cϵ and ϕ P p0, π{2s . Insert absolute values in (7.13).

The resulting sums and integrals converge absolutely when ϕ P p0, π{2s and (7.18) holds, which can be
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seen by the same argument following (7.9). Apply dominated convergence and shift the contour of the
u-integral to ´8, the residual series obtained is exactly e

´

a1
a0

y20
1`y20

¯

. This completes the proof. □

Now, ODΦps;ϕq is expressed as Mellin–Barnes integrals. The Γ-factors from Proposition 5.3 and (7.2)
alone are not sufficient for our goals (see Remark 7.1 and (7.10)–(7.12)). The three extra Γ-factors brought
by the y0-integral, which mix all variables of integrations, will play an important role in Section 8-9.

8. Analytic Properties of the Archimedean Transform

In (7.5), the factors ζ p2s ´ s0q and L ps0,Φq are known to admit holomorphic continuation and have
polynomial growth in vertical strips, except on the line 2s ´ s0 “ 1. We also examine the archimedean
part of (7.5), i.e., the integral transform

pF pδq

Φ Hq ps0, s;ϕq :“

ż

p15q

ż

pϵq

rhps ´ s1 ´ 1{2qGpδq

Φ ps1, u; s0, s;ϕq
du

2πi

ds1
2πi

, (8.1)

where h :“ H5 and Gpδq

Φ p¨ ¨ ¨ q as defined in (7.7). In Section 7, we have shown that when ϕ P p0, π{2q, the
function ps0, sq ÞÑ pF pδq

Φ Hq ps0, s;ϕq is holomorphic on the domain (7.16), i.e.,
σ ă 4 and 1 ` θ ` ϵ ă σ0 ă 2σ ´ 1.

In this section, we establish a larger region of holomorphy for ps0, sq ÞÑ pF pδq

Φ Hq ps0, s;ϕq that holds for
ϕ P p0, π{2s. We write

s “ σ ` it, s0 “ σ0 ` it0, s1 “ σ1 ` it1, and u “ ϵ ` iv,

with ϵ :“ 1{100. It is sufficient to consider s inside the rectangular box ϵ ă σ ă 4 and |t| ď T , for any
given T ě 1000. Moreover, αk :“ iγk P iR pk “ 1, 2, 3q by our assumptions on Φ. The main result of this
section can be stated as follows:

Proposition 8.1. Suppose H P Cη.
(1) For any ϕ P p0, π{2s, the transform pF pδq

Φ Hqps0, s;ϕq is holomorphic on the domain
σ0 ą ϵ, σ ă 4, and 2σ ´ σ0 ´ ϵ ą 0. (8.2)

(2) Whenever pσ0, σq P p8.2q, |t| ă T , and ϕ P p0, π{2q, the transform pF pδq

Φ Hq ps0, s;ϕq has exponential
decay as |t0| Ñ 8. Note: The explicit estimate is stated in the proof below and the implicit
constant depends only on T and Φ.

Remark 8.2. The domain (8.2) is chosen in a way that the function ps0, sq ÞÑ Gpδq

Φ ps1, u; s0, s; ϕq is
holomorphic on (8.2) when Re s1 “ σ1 ě 15 and Reu “ ϵ. Moreover, if we have 15 ď σ1 ď η ´ 1{2 and
(8.2), then s ´ s1 ´ 1{2 lies inside the region of holomorphy of rh.

Remark 8.3. As we shall see in Proposition 9.2, the region of holomorphy (8.2) is essentially optimal in
terms of σ0.

Proof. The proof is based on a careful application of the Stirling estimate

|Γ pa ` ibq| —a p1 ` |b|qa´ 1
2 e´π

2
|b| pa ‰ 0, ´1, ´2, . . . , b P Rq (8.3)

to the kernel function Gpδq

Φ ps1, u; s0, s; ϕq. The following set of conditions will be repeated throughout
the proof:

$

’

&

’

%

0 ă ϕ ď π{2,

σ0 ą ϵ, σ ă 4, 2σ ´ σ0 ´ ϵ ą 0,

Re s1 “ σ1 ě 15, Reu “ ϵ.

(8.4)
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Assuming (8.4), we apply (8.3) to the kernel function (7.7). It follows that

|Gpδq

Φ ps1, u; s0, s;ϕq | — p1 ` |v|q
ϵ´ 1

2 e´pπ
2

´ϕq|v| ¨

3
ź

k“1

p1 ` |t1 ´ γk|q
σ1´1

2 e´π
4

|t1´γk|

¨

3
ź

k“1

p1 ` |t0 ´ v ` γk|q
σ0´ϵ´1

2 e´π
4

|t0´v`γk| ¨ p1 ` |2t ´ t0 ´ v|q
2σ´1´σ0´ϵ

2 e´π
4

|2t´t0´v|

¨ p1 ` |v ´ 2t ` t1 ´ t0|q
ϵ´2σ`σ1´σ0

2 e´π
4

|v´2t`t1´t0|

¨ p1 ` |t1 ´ 2t0|q
´p

σ1
2

´σ0q e
π
4

|t1´2t0| ¨ p1 ` |t0 ` t1 ´ v|q
´

σ0`σ1´ϵ´1
2 e

π
4

|t0`t1´v|,
(8.5)

where the implicit constant depends at most on σ1. Note that the domain (8.2) for pσ, σ0q is bounded and
thus the estimate is uniform in σ, σ0, ϵ. This will be assumed for all estimates in the rest of this section.

Let PΦ
s pt0, t1, vq be the ‘polynomial part’ of (8.5) and the ‘exponential phase’ of (8.5) be

EΦ
s pt0, t1, vq :“

3
ÿ

k“1

t|t1 ´ γk| ` |t0 ´ v ` γk|u ` |2t ´ t0 ´ v| ` |v ´ 2t ` t1 ´ t0| ´ |t1 ´ 2t0| ´ |t0 ` t1 ´ v|.

We first examine EΦ
s pt0, t1, vq of (8.5), which determines the effective support of

`

F pδq

Φ H
˘

ps0, s;ϕq. By
the triangle inequality and the fact γ1 ` γ2 ` γ3 “ 0, we have

|Gpδq

Φ ps1, u; s0, s; ϕq | !σ1 eπT ¨ PΦ
s pt0, t1, vq ¨ exp

´

´
π

4
Ept0, t1, vq

¯

¨ e´pπ
2

´ϕq|v| (8.6)

with

Ept0, t1, vq :“ 3|t1| ` 3|t0 ´ v| ´ |t1 ´ 2t0| ` |v ` t1 ´ t0| ` |t0 ` v| ´ |t0 ` t1 ´ v|, (8.7)

whenever we have (8.4) and |t| ď T ,

Claim 8.4. For any t0, t1, v P R, we have Ept0, t1, vq ě 0. Equality holds if and only if

t1 “ 0 and t0 ´ v “ 0. (8.8)

Proof. Adding up the inequalities |t1| ` |t0 ´ v| ě |t0 ` t1 ´ v| and |v ` t1 ´ t0| ` |t0 ` v| ě |t1 ´ 2t0|, we
have

Ept0, t1, vq ě 2 p|t1| ` |t0 ´ v|q ě 0. (8.9)

The equality case is apparent. □

Claim 8.5. When (8.4) and |t| ď T hold, the integral
ĳ

pRe s1,Reuq“pσ1,ϵq,
pt1,vq:(8.11) holds

rhps ´ s1 ´ 1{2qGpδq

Φ ps1, u; s0, s; ϕq
du

2πi

ds1
2πi

(8.10)

has exponential decay as |t0| Ñ 8, where

|t1| ą log2p3 ` |t0|q or |v ´ t0| ą log2p3 ` |t0|q. (8.11)

Proof. In the case of (8.11), we have

Ept0, t1, vq ą log2p3 ` |t0|q ` |t1| ` |t0 ´ v| (8.12)

from (8.9). The polynomial part PΦ
s pt0, t1, vq can be crudely bounded by

PΦ
s pt0, t1, vq !Φ,σ1,T rp1 ` |t1|q p1 ` |v ´ t0|q p1 ` |t0|qsApσ1q, (8.13)

where Apσ1q ą 0 is some constant.



24 C.-H. KWAN

Putting (8.12), (8.13), and the bound e´pπ
2

´ϕq|v| ď 1 (ϕ P p0, π{2s) into (8.6), we obtain

|Gpδq

Φ ps1, u; s0, s;ϕq | !Φ,σ1,T p1 ` |t0|q
Apσ1q e´π

4
log2p3`|t0|q ¨ rp1 ` |t1|q p1 ` |v ´ t0|qsApσ1qe´π

4
r|t1|`|t0´v|s

(8.14)

whenever (8.11), (8.4), and |t| ď T hold. The boundedness of rh on vertical strips implies that (8.10) is

!σ1,Φ,T p1 ` |t0|qApσ1qe´π
4
log2p3`|t0|q. (8.15)

This proves Claim 8.5. □

Now, let ϕ P p0, π{2s and consider pF pδq

Φ Hq ps0, s;ϕq as a function on the bounded domain

pσ0, σq P p8.2q, |t|, |t0| ď T. (8.16)

When |t1| ą log2p3 ` T q or |v| ą T ` log2p3 ` T q, observe that (8.11) is satisfied and from (8.14),

|Gpδq

Φ ps1, u; s0, s;ϕq | !Φ,T rp1 ` |t1|q p1 ` |v|qsAp15q ¨ e´π
4

r|t1|`|v|s. (8.17)

The last function is clearly jointly integrable with respect to t1, v, and by Remark 8.2,
`

F pδq

Φ H
˘

ps0, s; ϕq

is a holomorphic function on (8.16). Since the choice of T is arbitrary, we arrive at the first conclusion of
Proposition 8.1.

In the remaining part of this section, we prove the second assertion of Proposition 8.1. We estimate
the contribution from

|t1| ď log2p3 ` |t0|q and |v ´ t0| ď log2p3 ` |t0|q, (8.18)

where the complementary part has been treated in Claim 8.5.
It suffices to restrict to the effective support (8.8). The polynomial part can be essentially computed

by substituting t1 :“ 0 and v :“ t0. More precisely, when (8.18) and |t0| "T 1 hold, there are only two
possible scenarios for the factors 1 ` |p¨ ¨ ¨ q| in (8.5): either 1 ` |p¨ ¨ ¨ q| — |t0|, or log´Cp3 ` |t0|q !

1 ` |p¨ ¨ ¨ q| ! logCp3 ` |t0|q for some absolute constant C ą 0.
In the case of (8.18), we apply the bounds e´π

4
Ept0,t1,vq ď 1 and e´pπ

2
´ϕq|v| ď e´ 1

2pπ
2

´ϕq|t0| for |t0| " 1
to (8.6). As a result, if we also have (8.4), |t| ă T , and |t0| ą 8T , then

|Gpδq

Φ ps1, u; s0, s;ϕq | !σ1,Φ,T |t0|7´
σ1
2 e´ 1

2pπ
2

´ϕq|t0| logBpσ1q |t0| (8.19)

and
ĳ

pRe s1,Reuq“pσ1,ϵq,
pt1,vq: (8.18) holds

rh ps ´ s1 ´ 1{2qGpδq

Φ ps1, u; s0, s; ϕq
du

2πi

ds1
2πi

!σ1,Φ,T |t0|7´
σ1
2 e´ 1

2pπ
2

´ϕq|t0| log4`Bpσ1q |t0|, (8.20)

where Bpσ1q ą 0 is some constant. If ϕ ă π{2, then there is exponential decay in (8.20) as |t0| Ñ 8.
Therefore, the second conclusion of the proposition follows from (8.20) and (8.15) (putting σ1 “ 15). □

9. Analytic Continuation of the Off-diagonal (Proof of Theorem 1.1)

Recall that

ODΦps;ϕq “
1

4

ż

p1`θ`2ϵq
ζ p2s ´ s0qL ps0,Φq ¨

ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

(9.1)

for 1 ` θ
2 ` ϵ ă σ ă 4 and ϕ P p0, π{2q, see Proposition 7.2.
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9.1. Step 1: We first obtain a holomorphic continuation of ODΦps;ϕq up to Re s ą 1
2 ` ϵ by shifting the

s0-integral to the left.
Fix any ϕ P p0, π{2q and T ě 1000. We first restrict ourselves to

1 `
θ

2
` 2ϵ ă σ ă 4, |t| ă T. (9.2)

Clearly, the pole s0 “ 2s ´ 1 of ζp2s ´ s0q is on the right of the contour Re s0 “ 1 ` θ ` 2ϵ of the integral
(7.5).

Let T0 " 1. The rectangle with vertices 2ϵ ˘ iT0 and p1 ` θ ` 2ϵq ˘ iT0 in the s0-plane lies inside
the region of holomorphy (8.2) of pF pδq

Φ Hqps0, s;ϕq. The contribution from the horizontal segments r2ϵ ˘

iT0, p1`θ`2ϵq˘iT0s tends to 0 as T0 Ñ 8 by the exponential decay of pF pδq

Φ Hqps0, s; ϕq (see Proposition
8.1), which surely counteracts the polynomial growth from Lps0,Φq and ζp2s ´ s0q. As a result, we may
shift the line of integration to Re s0 “ 2ϵ and no pole is crossed. Hence,

ODΦps;ϕq “
1

4

ż

p2ϵq
ζ p2s ´ s0qL ps0,Φq ¨

ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

(9.3)

on (9.2). The right side of (9.3) is holomorphic on
1

2
` ϵ ă σ ă 4, |t| ă T (9.4)

and serves as an analytic continuation of ODΦps;ϕq to (9.4) by using Proposition 8.1. Note that σ ą 1
2 `ϵ

implies the holomorphy of ζp2s ´ s0q.

9.2. Step 2: Crossing the Polar Line (Shifting the s0-integral again). Consider a subdomain of
(9.4):

1

2
` ϵ ă σ ă

3

4
, |t| ă T. (9.5)

Different from Step 1, the pole s0 “ 2s ´ 1 is now inside the rectangle with vertices 2ϵ ˘ iT0 and 1
2 ˘ iT0

provided T0 ą 4T . Such a rectangle lies in the region of holomorphy (8.2) of pF pδq

Φ Hqps0, s;ϕq. When
ϕ ă π{2, the exponential decay of pF pδq

Φ Hqps0, s;ϕq once again allows us to shift the line of integration
from Re s0 “ 2ϵ to Re s0 “ 1{2, crossing the pole of ζp2s ´ s0q which has residue ´1. In other words,

ODΦps;ϕq “
1

4
Lp2s ´ 1,Φq

ÿ

δ“˘

pF pδq

Φ Hq p2s ´ 1, s;ϕq

`
1

4

ż

p1{2q

ζ p2s ´ s0qL ps0,Φq ¨
ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

. (9.6)

On the line Re s0 “ 1{2, observe that s ÞÑ pF pδq

Φ Hq ps0, s;ϕq is holomorphic on σ ą 1
4 ` ϵ

2 by (8.2);
whereas s ÞÑ ζp2s ´ s0q is holomorphic on σ ă 3{4 as 2σ ´ σ0 ă 1. As a result, the function s ÞÑ
ş

p1{2q
p¨ ¨ ¨ q ds0

2πi in (9.6) is holomorphic on the vertical strip
1

4
`

ϵ

2
ă σ ă

3

4
, (9.7)

which is sufficient for our purpose.
Proposition 8.1 asserts that the function s ÞÑ

`

F pδq

Φ H
˘

p2s ´ 1, s;ϕq is holomorphic on 1{2` ϵ ă σ ă 4.
However, it actually admits a continuation to the domain ϵ ă σ ă 4 as we will see in Proposition 9.2.

9.3. Step 3: Putting Back ϕ Ñ π{2 — Shifting the s1-integral and Refining Step 1-2. By using
estimate (8.14) and dominated convergence, we have

lim
ϕÑπ{2

pF pδq

Φ Hq p2s ´ 1, s;ϕq “ pF pδq

Φ Hq p2s ´ 1, s;π{2q (9.8)

for 1{2 ` ϵ ă σ ă 4 and |t| ă T . However, for the continuous part of (9.6), we need a follow-up of
Proposition 8.1 in order to pass to the limit ϕ Ñ π{2. Essentially, thanks to the structure of the Γ’s
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in Proposition 5.3 and the analytic properties of rh, it is possible to shift the line of integration of the
s1-integral to gain sufficient polynomial decay.

Proposition 9.1. Let H P Cη. There exists a constant B “ Bη such that whenever pσ0, σq P p8.2q,
|t| ă T , and |t0| "T 1, we have the estimate

|pF pδq

Φ Hq ps0, s;π{2q | ! |t0|8´
η
2 logB |t0|, (9.9)

where the implicit constant depends only on η, T , Φ.

Proof. On domain (8.2), observe that the vertical strip Re s1 P r15, η´ 1
2 s contains no pole of the function

s1 ÞÑ Gpδq

Φ ps1, u; s0, s; ϕq, and it lies within the region of holomorphy of rh (see Remark 8.2). The estimate
(8.14) allows us to shift the line of integration from Re s1 “ 15 to Re s1 “ η ´ 1

2 in (7.6). Notice that the
estimates done in Proposition 8.1 works for ϕ “ π{2 too. In particular, from (8.20) and (8.15), the bound
(9.9) follows by taking σ1 :“ η ´ 1

2 therein (after the contour shift). This completes the proof. □

Suppose p3 ` θq{2 ă σ ă 4. By Proposition 7.3, equation (7.5) and equation (9.3), we have

ODΦpsq “ lim
ϕÑπ{2

ODΦps;ϕq

“ lim
ϕÑπ{2

1

4

ż

p1`θ`2ϵq
ζ p2s ´ s0qL ps0,Φq ¨

ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

“ lim
ϕÑπ{2

1

4

ż

p2ϵq
ζ p2s ´ s0qL ps0,Φq ¨

ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

. (9.10)

Proposition 9.1 ensures enough polynomial decay and hence the absolute convergence of (9.11) at ϕ “ π{2:

ODΦpsq “
1

4

ż

p2ϵq
ζ p2s ´ s0qL ps0,Φq ¨

ÿ

δ“˘

pF pδq

Φ Hq ps0, s;ϕq
ds0
2πi

. (9.11)

Now, (9.11) serves as an analytic continuation of ODΦpsq to the domain 1{2 ` ϵ ă σ ă 4.
On the smaller domain 1{2 ` ϵ ă σ ă 3{4, the expressions (9.10) and (9.6) are equal. Then

ODΦpsq “ p9.10q “
1

4
Lp2s ´ 1,Φq

ÿ

δ“˘

pF pδq

Φ Hq p2s ´ 1, s;π{2q

`
1

4

ż

p1{2q

ζ p2s ´ s0qL ps0,Φq ¨
ÿ

δ“˘

pF pδq

Φ Hq ps0, s;π{2q
ds0
2πi

(9.12)

by dominated convergence and Proposition 8.1. The last integral is holomorphic on 1{4 ` ϵ{2 ă σ ă 3{4.
In the following, we write pFΦHq ps0, sq :“

`

F`
ΦH

˘

ps0, s; π{2q `
`

F´
ΦH

˘

ps0, s; π{2q. Duplication and
reflection formulae of Γ-functions in the form:

2´uΓpuq “
1

2
?
π

¨ Γ
`u

2

˘

Γ
`u ` 1

2

˘

and Γ
`1 ` u

2

˘

Γ
`1 ´ u

2

˘

“ π sec
πu

2
,

lead to

pFΦHq ps0, sq “
?
π

ż

pη´1{2q

rhps ´ s1 ´ 1{2qπ´s1

ś3
i“1 Γ

`

s1´αi
2

˘

Γ
`

1`s1
2 ´ s0

˘

¨

ż

pϵq

Γ
`

u
2

˘

Γ
`

s1´s0`u
2 ` 1

2 ´ s
˘
ś3

i“1 Γ
`

s0´u`αi
2

˘

Γ
`

s ´ s0`u
2

˘

Γ
`

1´u
2

˘

Γ
`

s0´u`s1
2

˘

du

2πi

ds1
2πi

.

(9.13)

In Section 10, we will work with this expression further.
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9.4. Step 4: Continuation of the Residual Term — Shifting the u-integral.

Proposition 9.2. Let H P Cη. The function s ÞÑ pFΦHq p2s ´ 1, sq can be holomorphically continued
to the vertical strip ϵ ă σ ă 4 except at the three simple poles: s “ p1 ´ αiq{2 (i “ 1, 2, 3), where
pα1, α2, α3q are the Langlands parameters of the Maass cusp form Φ.

Proof. We will prove a stronger result in Proposition 10.2. However, a simpler argument suffices for the
time being. Suppose 1{2 ` ϵ ă σ ă 4 and s0 “ 2s ´ 1. In (9.13), we shift the line of integration from
Reu “ ϵ to Reu “ ´1.9:

pFΦHq p2s ´ 1, sq “ 2
?
π

3
ź

i“1

Γ
`

s ´
1

2
`

αi

2

˘

ż

pη´ 1
2

q

rh ps ´ s1 ´ 1{2q
π´s1

ś3
i“1 Γ

`

s1´αi
2

˘

Γ
`

s1
2 ` 1 ´ 2s

˘

Γ
`

1`s1
2 ` 1 ´ 2s

˘

Γ
`

s ´ 1
2 ` s1

2

˘

ds1
2πi

`
?
π

ż

pη´ 1
2

q

ż

p´1.9q

(Same as the integrand of (9.13)) du

2πi

ds1
2πi

.

By Stirling’s formula and the same argument following (8.17), the integrals above represent holomorphic
functions on ϵ ă σ ă 4. □
9.5. Step 5: Conclusion. Apply Proposition 9.2 to (9.12) and observe that the poles of s ÞÑ pFΦHqp2s´

1, sq are exactly the trivial zeros of the the arithmetic factor Lp2s ´ 1,Φq in (9.6). We conclude that the
product of functions s ÞÑ Lp2s ´ 1,ΦqpFΦHq p2s ´ 1, sq is holomorphic on ϵ ă σ ă 4 and thus (9.12)
provides a holomorphic continuation of ODΦpsq to the vertical strip 1{4 ` ϵ{2 ă σ ă 3{4. By the rapid
decay of Φ at 8, the pairing s ÞÑ pP, P3

2Φ ¨ |det ˚|s´ 1
2 qΓ2zGL2pRq represents an entire function. Putting

(5.25), (6.9) and (9.12) together, we arrive at Theorem 1.1.

Remark 9.3. Readers might have noticed that the analytic continuation procedure in our case (for a
moment of automorphic L-functions of degree 6) is much more involved than the ones for degree 4 (cf. the
second moment formula of GLp2q of Iwaniec-Sarnak/Motohashi). To some extent, this is hinted by the
presence of off-diagonal main terms in our case when Φ is specialized to be an Eisenstein series, whereas
this does not happen in the degree 4 cases. See [CFKRS05, pp. 35] for further discussions.

However, the subtle arithmetic differences of the off-diagonals are the deeper causes. More specifically,
the arithmetic in Iwaniec-Sarnak/Motohashi is given by a shifted Dirichlet series of two divisor functions
and the holomorphy of the dual side in the critical strip simply rests on the absolute convergence of such a
Dirichlet series. However, the absolute convergence provided by Proposition 7.2 is very much insufficient
in our case—we must move the contour judiciously so that the L-functions present in the off-diagonal
take value on Re s0 “ 1{2 (when s “ 1{2).

10. Explication of the off-diagonal — Main Terms and Integral Transform

The power of spectral summation formulae (including Theorem 1.1) is encoded in the archimedean
transformations. It is important to obtain very explicit expressions for the transformations, usually
in terms of special functions. While the special functions for GLp2q exhibit numerous symmetries and
identities, this is less true for higher-rank groups, leaving much to explore.

Nevertheless, there has been some success in higher-rank cases. For example, Stade [St01, St02] com-
puted the Mellin transforms and certain Rankin–Selberg integrals of Whittaker functions for GLnpRq;
Goldfeld et al. [GK13, GSW21, GSW23+] obtained (harmonic-weighted) spherical Weyl laws of GL3pRq,
GL4pRq and GLnpRq with strong power-saving error terms; and Buttcane developed the Kuznetsov formu-
lae for GL3pRq. These works heavily rely on Mellin–Barnes integrals, suggesting this approach effectively
handles the archimedean aspects of higher-rank problems.

In this final section, we continue such investigation and record several formulae for the archimedean
transform pFΦHq ps0, sq.

Lemma 10.1. Suppose H P Cη and h :“ H5. On the vertical strip ´1
2 ă Rew ă η, we have

rhpwq :“

ż 8

0
hpyqyw dˆy “

π´w´ 1
2

4

ż

p0q

Hpµq
Γ
`w` 1

2
`µ

2

˘

Γ
`w` 1

2
´µ

2

˘

|Γpµq|2
dµ

2πi
, (10.1)
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Proof. Since H P Cη, both sides of (10.1) converge absolutely on the strip ´1{2 ă Rew ă η by Stirling’s
formula and Proposition 5.11. Substituting the definition of h as in (5.10) into rhpwq, the result follows
from equation (5.2).

□

10.1. The Off-diagonal Main Term in Theorem 1.1. In this subsection, we will show that the off-
diagonal main term of Theorem 1.1 (i.e., Lp2s´1,Φq pFΦHq p2s ´ 1, sq {2) matches up with the prediction
of [CFKRS05]. This follows immediately from proving a Mellin–Barnes integral identity, after which the
matching follows from the functional equation (5.24).

The proof is more involved than that of Proposition 5.7, as the u-integral (see Section 7) adds intrica-
cies. However, the introduction of new Γ-factors reveals symmetries in the u-integral, leading to several
cancellations and reductions.

Theorem 10.2. Suppose 1
2 ` ϵ ă σ ă 1. Then

pFΦHq p2s ´ 1, sq “ π
1
2

´s ¨

3
ź

i“1

Γ
`

s ´ 1
2 ` αi

2

˘

Γ
`

1 ´ s ´ αi
2

˘

ż

p0q

Hpµq

|Γpµq|2

3
ź

i“1

ź

˘

Γ

ˆ

1 ´ s ` αi ˘ µ

2

˙

dµ

2πi
. (10.2)

Proof. Suppose 1
2 ` ϵ ă σ ă 4. When s0 “ 2s ´ 1, observe that the factor Γp1´u

2 q in the denominator of
(9.13) cancels with the factor Γps ´ s0`u

2 q in the numerator of (9.13). This gives

pFΦHq p2s ´ 1, sq “
?
π

ż

pη´1{2q

rhps ´ s1 ´ 1{2q
π´s1

ś3
i“1 Γ

`

s1´αi
2

˘

Γp1`s1
2 ` 1 ´ 2sq

¨

ż

pϵq

Γpu2 qΓpu`s1
2 ` 1 ´ 2sq

ś3
i“1 Γps ´ 1

2 ` αi´u
2 q

Γps ´ 1
2 ` s1´u

2 q

du

2πi

ds1
2πi

. (10.3)

We make the change of variable u Ñ ´2u and take
pa, b, c; d, eq “ ps ´ 1{2 ` α1{2, s ´ 1{2 ` α2{2, s ´ 1{2 ` α3{2; 0, s1{2 ` 1 ´ 2sq

in (5.7). Notice that
pa ` b ` cq ` d ` e “ 3 ps ´ 1{2q ` s1{2 ` 1 ´ 2s “ s ´ 1{2 ` s1{2 p:“ fq

because of α1 ` α2 ` α3 “ 0. We find the u-integral is equal to

2 ¨

3
ź

i“1

Γps ´ 1
2 ` αi

2 qΓp12 ´ s ` s1`αi
2 q

Γp s1´αi
2 q

. (10.4)

Notice that the three Γ-factors in denominator of the last expression cancel with the three in the
numerator of the first line of (10.3). Hence, we have

pFΦHq p2s ´ 1, sq “ 2
?
π ¨

3
ź

i“1

Γ

ˆ

s ´
1

2
`

αi

2

˙
ż

pη´1{2q

rhps ´ s1 ´ 1{2q
π´s1

ś3
i“1 Γp12 ´ s ` s1`αi

2 q

Γp1`s1
2 ` 1 ´ 2sq

ds1
2πi

.

(10.5)
We must now further restrict to 1{2 ` ϵ ă σ ă 1. We shift the line of integration to the left from

Re s1 “ η ´ 1{2 to Re s1 “ σ1 satisfying 2σ ´ 1 ă σ1 ă σ, It is easy to see no pole is crossed and we may
now apply Lemma 10.1:

pFΦHq p2s ´ 1, sq “
π

1
2

´s

2
¨

3
ź

i“1

Γ

ˆ

s ´
1

2
`

αi

2

˙

¨

ż

p0q

Hpµq

|Γpµq|2

ż

pσ1q

ś3
i“1 Γp12 ´ s ` s1`αi

2 q ¨ Γp
s´s1`µ

2 qΓp
s´s1´µ

2 q

Γ
`

1`s1
2 ` 1 ´ 2s

˘

ds1
2πi

dµ

2πi
. (10.6)

For the s1-integral, apply the change of variable s1 Ñ 2s1 and (5.7) the second time but with
pa, b, c; d, eq “

`

1{2 ´ s ` α1{2, 1{2 ´ s ` α2{2, 1{2 ´ s ` α3{2; ps ` µq{2, ps ´ µq{2
˘

. (10.7)
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Oberserve that
pa ` b ` cq ` pd ` eq “ 3 p1{2 ´ sq ` s “ 3{2 ´ 2s p:“ fq.

The s1-integral is thus equal to
3
ź

i“1

ś

˘ Γp
1´s`αi˘µ

2 q

Γp1 ´ s ´ αi
2 q

and the result follows.
□

10.2. Integral Transform. Based on the experience of Stade [St01, St02], we do not expect the Mellin-
Barnes integrals of pFΦHqps0, sq (see (10.12) below) to be completely reducible as in Proposition 10.2 if
ps0, sq is in a general position. However, reductions can occur if the integrals take certain special forms,
most clearly seen when expressed as hypergeometric functions.

We define

4
pF3

ˆ

A1 A2 A3 A4

B1 B2 B3

ˇ

ˇ

ˇ

ˇ

z

˙

:“
ΓpA1qΓpA2qΓpA3qΓpA4q

ΓpB1qΓpB2qΓpB3q
¨ 4F3

ˆ

A1 A2 A3 A4

B1 B2 B3

ˇ

ˇ

ˇ

ˇ

z

˙

:“
8
ÿ

n“0

ΓpA1 ` nqΓpA2 ` nqΓpA3 ` nqΓpA4 ` nq

ΓpB1 ` nqΓpB2 ` nqΓpB3 ` nq

zn

n!
. (10.8)

The series converges absolutely when |z| ă 1 and A1, A2, A3, A4 R Zď0; and on |z| “ 1 if
Re pB1 ` B2 ` B3 ´ A1 ´ A2 ´ A3 ´ A4q ą 0.

In fact, our hypergeometric functions are of Saalschütz type, i.e., B1 `B2 `B3 ´A1 ´A2 ´A3 ´A4 “ 1.
Only such special type of hypergeometric functions at z “ 1 possess many functional relations and integral
representations, see [M12].

Proposition 10.3. Suppose H P Cη and h :“ H5. On the region σ0 ą ϵ, σ ă 4, and 2σ ´ σ0 ´ ϵ ą 0,
we have pFΦHq ps0, sq equal to 2π3{2 times
ż

pη´1{2q

rhps ´ s1 ´ 1{2q

ś3
i“1 Γp s1´αi

2 q

Γp1`s1
2 ´ s0q

π´s1 sec
π

2
p2s ` s0 ´ s1q

¨ 4
pF3

ˆ

s ´ s0
2

s0`α1
2

s0`α2
2

s0`α3
2

1{2 s0`s1
2 s ` 1

2 ` s0´s1
2

ˇ

ˇ

ˇ

ˇ

1

˙

ds1
2πi

´

ż

pη´1{2q

rhps ´ s1 ´ 1{2q

ś3
i“1 Γp s1´αi

2 q

Γp1`s1
2 ´ s0q

π´s1 sec
π

2
p2s ` s0 ´ s1q

¨ 4
pF3

ˆ

1
2

´s0`
s1
2

1
2

´s`
s1`α1

2
1
2

´s`
s1`α2

2
1
2

´s`
s1`α3

2
1
2

´s`s1 1´s´
s0´s1

2
3
2

´s´
s0´s1

2

ˇ

ˇ

ˇ

ˇ

1

˙

ds1
2πi

.

(10.9)

Proof. By Stirling’s formula, we can shift the line of integration of the u-integral in (9.13) to ´8. The
residual series obtained can then be identified in terms of hypergeometric series as asserted in the present
proposition. This can also be verified by InverseMellinTransform[] command in mathematica. More
systematically, one rewrites the u-integral in the form of a Meijer’s G-function. The conversion between
Meijer’s G-functions and generalized hypergeometric functions is known as Slater’s theorem, see [PBM90,
Chapter 8]. □

Recently, the articles [BBFR20, BFW21+] have brought in powerful asymptotic analysis of hyper-
geometric functions to study moments, yielding sharp spectral estimates. Our class of admissible test
functions in Theorem 1.1 is broad enough for such prospects, see Remark 5.27.

Next, we establish the existence of a kernel function for the integral transform pFΦHq ps0, sq when
integrating against a chosen test function Hpµq on the spectral side. This formula serves as a step toward
a more practical result for pFΦHq ps0, sq. While the proof requires care, it is relatively manageable for
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our case. However, this is not always true; for example, in the spectral Kuznetsov formulae for GLp2q

and GLp3q, kernel existence can be more challenging, as noted by [Bu16, Mo97].

Proposition 10.4. Suppose H P Cη. On the domain
σ0 ą ϵ :“ 1{100, σ ă 4, 2σ ´ σ0 ´ ϵ ą 0, σ0 ` 2σ ´ 1 ´ ϵ ą 0, 1 ` ϵ ´ σ0 ´ σ ą 0,

(10.10)
we have

pFΦHq ps0, sq “
π

1
2

´s

4

ż

p0q

Hpµq

|Γpµq|2
¨ Kps0, s;α, µq

dµ

2πi
, (10.11)

where the kernel function Kps0, s;α, µq is given explicitly by the double Barnes integrals

Kps0, s;α, µq :“

ż i8

´i8

ż i8

´i8

Γ
`

s´s1`µ
2

˘

Γ
`

s´s1´µ
2

˘
ś3

i“1 Γ
`

s1´αi
2

˘

Γ
`

1`s1
2 ´ s0

˘

¨
Γ
`

u
2

˘

Γ
`

s1´s0`u
2 ` 1

2 ´ s
˘
ś3

i“1 Γ
`

s0´u`αi
2

˘

Γ
`

s ´ s0`u
2

˘

Γ
`

1´u
2

˘

Γ
`

s0´u`s1
2

˘

du

2πi

ds1
2πi

, (10.12)

and the contours follow the Barnes convention.

Remark 10.5.
(1) The domain (10.10) is certainly non-empty as it includes our point of interest pσ0, σq “ p1{2, 1{2q.
(2) The contours of (10.12) may be taken explicitly as the vertical lines Reu “ ϵ and Re s1 “ σ1 with

σ0 ` 2σ ´ 1 ´ ϵ ă σ1 ă σ. (10.13)

Proof. Suppose
σ0 ą ϵ, σ ă 4, and 2σ ´ σ0 ´ ϵ ą 0 (10.14)

as in Proposition 8.1. Recall the expression (9.13) for pFΦHq ps0, sq. This time, we shift the line of
integration of the s1-integral to Re s1 “ σ1 satisfying

σ1 ă σ (10.15)
and no pole is crossed during this shift as long as

σ1 ą 0 and σ1 ą σ0 ` 2σ ´ 1 ´ ϵ. (10.16)
Now, assume (10.10). The restrictions (10.14), (10.15), (10.16) hold and such a line of integration for

the s1-integral exists. Upon shifting the line of integration to such a position, substituting (10.1) into
(9.13) and the result follows. □

The second step is to apply a very useful rearrangement of the Γ-factors in the pn ´ 1q-fold Mellin
transform of the GLpnq spherical Whittaker function as discovered in Ishii-Stade [IS07]. We shall only
need the case of n “ 3 which we describe as follows. Recall

Gαps1, s2q :“ π´s1´s2 ¨

ś3
i“1 Γ

`

s1`αi
2

˘

Γ
`

s2´αi
2

˘

Γ
`

s1`s2
2

˘ (10.17)

from Proposition 5.3. The First Barnes Lemma, i.e.,
ż i8

´i8
Γ pw ` αqΓ pw ` µqΓ pγ ´ wqΓ pδ ´ wq

dw

2πi
“

Γ pα ` γqΓ pα ` δqΓ pµ ` γqΓ pγ ` δq

Γ pα ` µ ` γ ` δq
, (10.18)

can be applied in reverse such that (10.17) can be rewritten as

Gαps1, s2q “ π´s1´s2 ¨ Γ

ˆ

s1 ` α1

2

˙

Γ

ˆ

s2 ´ α1

2

˙

¨

ż i8

´i8
Γ
´

z `
s1
2

´
α1

4

¯

Γ
´

z `
s2
2

`
α1

4

¯

Γ
´α2

2
`

α1

4
´ z

¯

Γ
´α3

2
`

α1

4
´ z

¯ dz

2πi
,

(10.19)
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see [IS07, Section 2]. Although (10.19) is less symmetric than (10.17), it more clearly displays the recursive
structure of the GLp3q Whittaker function in terms of the K-Bessel function.

Theorem 10.6. Suppose Re s0 “ Re s “ 1{2 and Reαi “ Reµ “ 0. Then Kps0, s;α, µq is equal to

4 ¨ γ

ˆ

´
s0 ` α1

2

˙

ź

˘

Γ

ˆ

s ˘ µ ´ α1

2

˙

¨

ż i8

´i8

ż i8

´i8
Γ ps ` tqΓ

ˆ

1 ´ α1

2
` t

˙

Γ
´α2

2
`

α1

4
´ z

¯

Γ
´α3

2
`

α1

4
´ z

¯

ź

˘

Γ

ˆ

´s ˘ µ

2
`

α1

4
` z ´ t

˙

¨
γ
`

t ` s0
2

˘

γ
`

α1
4 ´ z ´ s0

2

˘

γ
`

α1
4 ` t ´ z

˘

dz

2πi

dt

2πi
, (10.20)

where the contours may be explicitly taken as the vertical lines Re t “ a and Re z “ b satisfying

´1{2 ă a ă ´1{4, ´1{4 ă b ă 0, and b ´ a ą 1{4 (10.21)

and

γpxq :“
Γp´xq

Γ
`

1
2 ` x

˘ . (10.22)

Remark 10.7.

(1) The assumptions in Theorem 10.6 cover the most interesting cases of Theorem 1.1, particularly
on the critical line and for tempered forms, though they are not strictly necessary. These were
chosen for a clean description of the contours (10.21).

(2) Furthermore, if either of the following holds:
(a) the cusp form Φ is fixed, allowing implicit constants to depend on αpΦq;
(b) or Φ “ E

p3q

minp˚;αq, where the ‘shifts’ αi’s are small as in [CFKRS05] (i.e., ! 1{ logR, per
Remark 5.27),

then by continuity, it suffices to assume α1 “ α2 “ α3 “ 0. With s “ 1{2, this leads to a simpler
formula for (10.20):

4 ¨ γ
´

´
s0
2

¯

ź

˘

Γ

ˆ

1{2 ˘ µ

2

˙
ż i8

´i8

ż i8

´i8
Γ

ˆ

1

2
` t

˙2

Γp´zq2
ź

˘

Γ

ˆ

´1{2 ˘ µ

2
` z ´ t

˙

¨
γ
`

t ` s0
2

˘

γ
`

´z ´ s0
2

˘

γ pt ´ zq

dz

2πi

dt

2πi
.

(3) For analytic applications involving Whittaker functions for GLpnq, the formula from [IS07] has
proven more effective than the ones obtained previously. For example:
(a) Buttcane [Bu20] used the formula (10.19) to significantly simplify the archimedean Rankin-

Selberg calculation for GLp3q, earlier done by Stade [St93].
(b) In [GSW23+], it was crucial for deriving strong bounds for Whittaker functions and their

inverse transforms, and the Weyl law.
(This was pointed out to the author by Prof. Eric Stade and Prof. Dorian Goldfeld. The author
would like to thank their comments here.)

(4) Finally, Stirling’s formula shows that the integrand in the Mellin-Barnes representation (10.20)
decays exponentially as | Im z|, | Im t| Ñ 8, independent of | Im s0|. This advantage is not shared
by the integrand in (8.1).
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Proof of Theorem 10.6. Substitute (10.19) into (10.12) rearrange the integrals, we find that

Kps0, s;α, µq :“

ż i8

´i8

Γ
`

s´s1`µ
2

˘

Γ
`

s´s1´µ
2

˘

Γ
`

s1´α1
2

˘

Γ
`

1`s1
2 ´ s0

˘

¨

ż i8

´i8
Γ
´α2

2
`

α1

4
´ z

¯

Γ
´α3

2
`

α1

4
´ z

¯

Γ
´

z `
s1
2

`
α1

4

¯

¨

ż i8

´i8

Γpu2 qΓp s1´s0`u
2 ` 1

2 ´ sqΓps ´ s0`u
2 qΓp s0´u`α1

2 qΓpz ` s0´u
2 ´ α1

4 q

Γp1´u
2 q

du

2πi

dz

2πi

ds1
2πi

. (10.23)

The innermost u-integral, originally of 4F3p1q-type (Saalschütz), reduces to a 3F2p1q-type (non-Saalschütz),
allowing further transformations. We apply the following Barnes integral identity for 3F2p1q-type (see
Bailey [Ba64]):

ż i8

´i8

Γpa ` uqΓpb ` uqΓpc ` uqΓpf ´ uqΓp´uq

Γpe ` uq

du

2πi

“
ΓpbqΓpcqΓpf ` aq

Γpf ` a ` b ` c ´ eqΓpe ´ bqΓpe ´ cq

¨

ż i8

´i8

Γpa ` tqΓpe ´ c ` tqΓpe ´ b ` tqΓpf ` b ` c ´ e ´ tqΓp´tq

Γpe ` tq

dt

2πi
. (10.24)

Make a change of variable u Ñ ´2u and take

a “ s ´
s0
2
, b “

s0 ` α1

2
, c “ z `

s0
2

´
α1

4
,

f “
s1 ´ s0

2
`

1

2
´ s, e “ 1{2 (10.25)

in (10.24), the u-integral of (10.23) can be written as

2 ¨
Γ
`

s0`α1
2

˘

Γ
`

z ` s0
2 ´ α1

4

˘

Γ
`

1`s1
2 ´ s0

˘

Γ
`

s1
2 ` z ` α1

4

˘

Γ
`

1´s0´α1
2

˘

Γ
`

1
2 ´ z ´ s0

2 ` α1
4

˘

¨

ż i8

´i8

Γ
`

t ` s ´ s0
2

˘

Γ
`

t ` 1
2 ´ z ´ s0

2 ` α1
4

˘

Γ
`

t ` 1
2 ´ s0`α1

2

˘

Γ
`

s0`s1
2 ` z ´ s ` α1

4 ´ t
˘

Γp´tq

Γ
`

1
2 ` t

˘

dt

2πi
.

(10.26)

Putting this back into (10.23). Observe that two pairs of Γ-factors involving s1 will be cancelled and
we can then execute the s1-integral. More precisely,

1

2
¨ Kps0, s;α, µq “

Γ
`

s0`α1
2

˘

Γ
`

1´s0´α1
2

˘ ¨

ż i8

´i8

dt

2πi

Γ
`

t ` s ´ s0
2

˘

Γ
`

t ` 1
2 ´ s0`α1

2

˘

Γp´tq

Γ
`

1
2 ` t

˘

¨

ż i8

´i8

dz

2πi

Γ
`

α2
2 ` α1

4 ´ z
˘

Γ
`

α3
2 ` α1

4 ´ z
˘

Γ
`

z ` s0
2 ´ α1

4

˘

Γ
`

1
2 ´ z ´ s0

2 ` α1
4

˘ Γ

ˆ

t `
1

2
´ z ´

s0
2

`
α1

4

˙

¨

ż i8

´i8

ds1
2πi

Γ

ˆ

s0 ` s1
2

` z ´ s `
α1

4
´ t

˙

Γ

ˆ

s ´ s1 ` µ

2

˙

Γ

ˆ

s ´ s1 ´ µ

2

˙

Γ

ˆ

s1 ´ α1

2

˙

.

(10.27)
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Applying (10.18) once again, we obtain
1

4
¨ Kps0, s;α, µq “

Γ
`

s0`α1
2

˘

Γ
`

1´s0´α1
2

˘ Γ

ˆ

s ` µ ´ α1

2

˙

Γ

ˆ

s ´ µ ´ α1

2

˙

¨

ż i8

´i8

dt

2πi
Γ
´

s ` t ´
s0
2

¯

Γ

ˆ

1 ´ α1

2
` t ´

s0
2

˙

Γp´tq

Γ
`

1
2 ` t

˘

¨

ż i8

´i8

dz

2πi
Γ
´α2

2
`

α1

4
´ z

¯

Γ
´α3

2
`

α1

4
´ z

¯ Γ
`

z ` s0
2 ´ α1

4

˘

Γ
`

1
2 ´ z ´ s0

2 ` α1
4

˘

¨ Γ

ˆ

´s ` µ

2
`

α1

4
`

s0
2

` z ´ t

˙

Γ

ˆ

´s ´ µ

2
`

α1

4
`

s0
2

` z ´ t

˙

¨
Γ
`

1
2 ` α1

4 ´ s0
2 ´ z ` t

˘

Γ
`

´α1
4 ` s0

2 ` z ´ t
˘ . (10.28)

A final cleaning can be performed via the change of variables t Ñ t ` s0
2 . This leads to (10.20) and

completes the proof.
□

11. Notes

Remark 11.1 (Note added in Dec. 2021). The first version of our preprint appeared on Arxiv in
December 2021. Peter Humphries has kindly informed the author that the moment of Theorem 1.1 arises
naturally from the context of the L4-norm problem of GLp2q Maass forms and can also be investigated
under another set of ‘Kuznetsov-Voronoi’ method (see [BK19a, BK19b, BLM19]) that is distinct from
[Li09, Li11]. This is his on-going work with Rizwanur Khan.
Remark 11.2 (Note added in Oct. 2022/Apr. 2023). The preprint of Humphries-Khan has now ap-
peared, see [HK22+]. The spectral moments considered in [HK22+] and the present paper are distinct in
a number of ways. In one case, our spectral moments coincide when both Φ “ rΦ and s “ 1{2 hold true,
but otherwise extra twistings by root numbers are present in the one considered by [HK22+]. This would
then lead to different conclusions in view of the Moment Conjecture of [CFKRS05] (see the discussions
in Section 3.2). In the other case, our spectral moments differ by a full holomorphic spectrum and thus
give rise to distinct conclusions in applications toward non-vanishing (say). All these result in different
ways of making choices of test functions, as well as different shapes of the dual sides. The self-duality
assumption was used in [HK22+] to annihilate two of the terms in their proof, but no such treatment is
necessary for our method.

There is also the recent preprint of Biró [Bi22+] which studies another instance of reciprocity closely
related to ours, but with the decomposition ‘4 “ 2ˆ 2’ on the dual side instead. His integral construction
consists of a product of an automorphic kernel with a copy of θ-function and Maass cusp form of SL2pZq

attached to each variable. The integration is taken over both variables and over the quotient Γ0p4qzh2.
See equation (3.15) therein.
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