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We discuss the motion of electrically and magnetically charged particles in the electromagnetic swirling
universe. We show that the equations of motion can be decoupled in the Hamilton-Jacobi formalism,
revealing the existence of a fourth constant of motion. The equations of motion can be analytically
integrated. The solutions are presented in terms of elementary and elliptic functions. In addition, we discuss
the possible orbits for both uncharged particles (in which case the motion is geodesic) and charged
particles, respectively. A typical orbit is bounded in the radial direction and escapes to infinity in the z
direction. However, the presence of the electromagnetic fields also leads to the existence of planar orbits.
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I. INTRODUCTION

The paradigm of general relativity is that gravity is
described by the space-time curvature. In 1968, Ernst
developed a new method to solve Einstein’s field equation
for stationary and axially symmetric space-times [1,2]. An
interesting feature of this new formulation is the simplicity
with which the invariance of the field equations can be
studied. Moreover, it allows one to generate new solutions
by applying appropriate transformations. The Harrison
transformation allows one to embed a seed solution into
a magnetized universe. If, for instance, the seed solution is
taken to be the Minkowski space-time, the resulting space-
time is the Melvin magnetic universe [3], a static, non-
singular, cylindrically symmetric space-time that describes
an extended self-gravitating system of an electromagnetic
field kept together by its own gravity. On the other hand,
the Ehlers transformation allows one to embed a seed
solution into a swirling universe, which is a nonsingular,
stationary space-time that is characterized by its swirling
parameter. This parameter is to be understood as character-
izing the background rotation [4]. Recently, it has been
shown that the Harrison and the Ehlers transformations
commute and that interesting new solutions can be gen-
erated by the composition of these two transformations
[5,6]. For the purpose of this paper, we are interested in a
novel solution that is equipped with both the background
rotation as well as electromagnetic fields, the so-called
electromagnetic swirling universe (EMS) [6].
A common way to explore space-time’s gravitational

effects is by studying the dynamics of test particles, which
is typically described by a system of coupled second-order
ordinary differential equations. The space-time symmetries

play a fundamental role in this study. In particular, there are
cases in which the equations of motion can be decoupled
and analytically integrated for either geodesic motion or
charged particle motion, as was shown for many different
space-times, including the Schwarzschild, Reissner-
Nordström and Kerr(-Newman) space-times, respectively
[7–13]. Furthermore, the geodesic motion in the Melvin
space-time can also be analytically integrated [14,15],
while charged particles have been considered in [16,17].
The complete description of the geodesic motion in the
swirling universe was also obtained recently [18].
In this paper, we study the motion of charged particles in

the EMS space-time. Although there is no indication that the
universe as awholemight bemodeled by a swirling universe,
there are huge structures in the universe that might have
properties similar to the solutions we study here: cosmic
filaments. These are made of diffuse gas, believed to be the
largest structures in the universe and having thread-like
structure [19]. Interestingly, observations over the past years
have indicated that these filaments possess spin [20,21], i.e.,
that they rotate around their axis—similar to the swirling
universe solution. Moreover, radio and x-ray emission
indicate that these filaments possess magnetic fields [22].
Hence, the electromagnetic swirling universe might poten-
tially be employed as a toy model for some of the environ-
ments of these kinds of structures. Charged particle motion is
then an obviously problem to study.
The general structure of the equations of motion in the

EMS space-time resembles those for geodesic motion in the
swirling universe [18] and accordingly, the equations of
motion can be decoupled using the Hamilton-Jacobi for-
malism, such that a fourth constant of motion can be found.
The decoupled equations of motion can be analytically
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integrated using elementary and elliptic functions. A typical
orbit is bounded in the radial direction and can be planar or
escape to infinity in the z direction.
This paper is organized as follows: in Sec. II, we introduce

the metric tensor and some properties of the space-time. In
Sec. III,wederive the equations ofmotion. The full analytical
solutions are presented in Sec. IV, where, in addition, we
discuss the possible orbits. We conclude in Sec. V.
Throughout this paper, we use the Einstein convention
and geometrized units, such that G ¼ c ¼ 1, with G
Newton’s constant and c the speed of light. The metric
signature used is ð−;þ;þ;þÞ.

II. THE ELECTROMAGNETIC SWIRLING
UNIVERSE

The electromagnetic swirling (EMS) space-time is a
novel solution found in [6]. The solution is obtained by a

composition of Harrison and Ehlers transformations
using the Minkowski space-time as seed. It describes a
rotating background equipped with external electric and
magnetic fields. The line element describing this space-
time reads [6]

ds2 ¼ ρ2

ΛðρÞ ðdϕþ ωðzÞdtÞ2 þ ΛðρÞð−dt2 þ dρ2 þ dz2Þ;

ð1Þ

where ΛðρÞ ¼ VðρÞ2 þ j2ρ4, VðρÞ ¼ 1þ jNj2ρ2, ωðzÞ ¼
4jz and jNj2 ¼ ðE2 þ B2Þ=4. This space-time possesses
some interesting discrete symmetries: next to invariance
under ft;ϕg → f−t;−ϕg, the metric tensor is also invariant
under ft; zg → f−t;−zg and fϕ; zg → f−ϕ;−zg. Note
that the space-time is free of closed time-like curves [6].
The gauge field associated to this space-time reads

FIG. 1. Ergoregions of the electromagnetic swirling universe for different combinations of the metric parametersN and j. The plots are
shown in the ρ − z-plane (upper) and rotated around the symmetry axes (lower), respectively. The left figures show the ergoregions for a
fixed value of j ¼ 0.08 and three different values of N ∈ f0.01; 0.3; 1g. The right figures show the ergoregions for a fixed value of
N ¼ 0.3 and three different values of j∈ f0.01; 0.1; 1g.
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A ¼ Aμdxμ ¼
ρ2

2Λ

�
2z

�
EVðρÞ2

ρ2
þ jð2BVðρÞ − jEρ2Þ

�
dt

þ ðBVðρÞ − jEρ2Þdϕ
�
: ð2Þ

Note that the complex-valued metric parameter 2N ¼
Eþ {B encodes the information on the electric (E) and
magnetic (B) fields of the background seed solution, the
Melvin universe. In the following, we will use jNj2 ≡ N2 to
simplify the notation.
The EMS space-time is of Petrov type D and has no

coordinate singularity [6]. In the absence of the swirling
parameter, we recover the usual Melvin universe, and for
vanishing gauge fields, the space-time corresponds to the
swirling universe. Therefore, the space-time can be under-
stood as a Melvin universe immersed into a swirling
universe or vice-versa. The space-time is stationary and
possesses an ergoregion for j ≠ 0 and

j4jρzj > 1þ 2N2ρ2 þ ðN4 þ j2Þρ4: ð3Þ

The ergoregion resembles, qualitatively, the one of the
swirling universe: it is composed of two distinct patches,
above and below the equatorial plane, extending to infinity.
The addition of the external electromagnetic field slightly
affects the structure as demonstrated in Fig. 1, where we
show the effect by either fixing j and varying N (left) or
fixing N and varying j (right).

III. MOTION IN EMS SPACE-TIME

In this section, we will describe the motion of test
particles in the EMS space-time. For the sake of complete-
ness, we consider a dyonic test particle, i.e., a test particle
that is equipped with both electric and magnetic charges.
Since the space-time described by the metric tensor (1) and
the gauge field (2) is stationary and axially symmetric there
are two cyclic variables that lead to the existence of two
constants of motion,

pt ¼ gttṫþ gtϕϕ̇þ qAt − {gÃt ≔ −E;

pϕ ¼ gϕϕϕ̇þ gϕtṫþ qAϕ − {gÃϕ ≔ L;

where Ãμ is the dual gauge field,1 and E is the particle’s
total energy, related to the time translation invariance, while
L is the angular momentum related to rotational invariance
around the z-axis. The dot denotes the derivative with

respect to an appropriate affine parameter τ. Solving the
above system for ṫ and ϕ̇ we find

Λṫ ¼ E þ ð4jLþ ΔÞz; ð4Þ

Λϕ̇ ¼ ΛL̄
ρ2

− ωðE þ ð4jLþ ΔÞzÞ; ð5Þ

where we have defined the abbreviation L̄ ¼ L̄ðρÞ as
follows

L̄ ¼ ΛðL − qAϕ þ {gÃϕÞ ¼ Lþ
�
2N2Lþ Δ̃

2

�
ρ2

þ
�
ðN4 þ j2ÞLþ Δ̃N2 þ jΔ

2

�
ρ4; ð6Þ

with Δ ¼ qE − gB and Δ̃ ¼ −qB − gE. Note that, in the
absence of electric and magnetic fields, E ¼ B ¼ 0, one
has L̄ ¼ ΛL, and we recover the motion in the usual
swirling universe. The electric and magnetic fields appear,
in fact, only in Δ and Δ̃. Therefore, these quantities will be
used to characterize the motion of charged particles. Next
to E and L a third constant of motion is given by the
normalization condition

gμνẋμẋν ¼ χ; ð7Þ

where χ ¼ 0 for massless particles and χ ¼ −1 for massive
particles. Note that, using this convention, the velocity
field, ẋμ, and the charges, q and g, are given in terms of the
particle’s rest mass. A fourth constant of motion can be
found by considering the Hamilton-Jacobi equation,

2
∂S
∂τ

¼ gμνð∂μS − qAμ þ {gÃμÞð∂μS − qAν þ {gÃνÞ; ð8Þ

where S is the Hamilton principal function. If the ρ and z
motion can be separated, S may be expressed as follows

S ¼ 1

2
χτ − Etþ Lϕþ Sρ þ Sz: ð9Þ

In fact, by inserting the above ansatz into the Hamilton-
Jacobi equation (8) one can verify the separability, which
leads to the relations

ρ2ð∂ρSρÞ2 ¼ ðkþ ΛχÞρ2 − L̄2 ≔ RðρÞ; ð10Þ

ð∂zSzÞ2 ¼ −kþ ½E þ ð4jLþ ΔÞz�2 ≔ ΞðzÞ; ð11Þ

where k is the separation constant, itself a constant of
motion, akin to the Carter constant in the Kerr(-Newman)
space-time [10].
The equations of motion can then be found by the usual

method of setting the derivatives of the function S with
respect to the four constants of motion E, L, χ, and k to

1We note that applying the transformation Ãμ ¼ {AμfðE;BÞ →ð−B; EÞg to the gauge field and then calculating the field strength
tensor F̃μν ¼ ∂μÃν − ∂νÃμ yields the same expression as calcu-
lating F̃μν ¼ 1

2
ϵμνλσFλσ , with ϵμνλσ ¼ ffiffiffiffiffiffi−gp

εμνλσ and εμνλσ being
the Levi Civita symbol.
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zero. Instead of using this approach, we consider the
relations ∂ρS ¼ pρ ¼ Λρ̇ and ∂zS ¼ pz ¼ Λż and rewrite
the four equations of motion for a test particle in the form

dρ
dλ

¼ ξρ

ffiffiffiffiffiffiffiffiffiffi
RðρÞp
ρ

; ð12Þ

dz
dλ

¼ ξz
ffiffiffiffiffiffiffiffiffi
ΞðzÞ

p
; ð13Þ

dt
dλ

¼ E þ ð4jLþ ΔÞz; ð14Þ

dϕ
dλ

¼ ΛL̄
ρ2

− 4jz½E þ ð4jLþ ΔÞz�; ð15Þ

where we have introduced the Mino time dλ ¼ Λ−1dτ.
Here, the quantities ξρ and ξz can assume two different
values, namely �1. Note that these values can be chosen
independently for a given orbit but must then be kept fixed
during a calculation.

IV. FULL SET OF SOLUTIONS

The equations of motion of a charged particle (12)–(15)
are structurally similar to the geodesic equations in the
swirling universe [18] and can therefore be solved by a
similar procedure. The solutions are given in terms of the
four constants of motion: the particle’s energy, E, its
angular momentum, L, the normalization condition, χ,
and the Carter constant, k. Physical orbits are only possible
for RðρÞ ≥ 0 and ΞðzÞ ≥ 0. The equations of motion can be
analytically integrated using elementary functions as well
as the Weierstrass ℘−, ζ−, and σ− functions. Here, the
solutions are presented in terms of the Mino time λ, while
the full solution of λ in terms of the affine parameter τ is
presented in Appendix A.

A. ρ motion

The motion in ρ direction is described by Eq. (12) and
reads

ρ2
�
dρ
dλ

�
2

¼−L̄2þðkþΛχÞρ2 ≔RðρÞ ¼
X4
n¼0

anρ2n; ð16Þ

where the coefficients are given by

a0 ¼ −L2; a1 ¼ kþ χ − 4L2N2 − LΔ̃;

a2 ¼ 2N2χ − 2L2ðj2 þ 3N4Þ − Lð3N2Δ̃þ jΔÞ − Δ̃2

4
;

a3 ¼ −
1

2
ð4LN2 þ Δ̃Þð2LðN4 þ j2Þ þ N2Δ̃þ jΔÞ

þ ðj2 þ N4Þχ;

a4 ¼ −
1

4
ð2LðN4 þ j2Þ þ N2Δ̃þ jΔÞ2:

The above Eq. (16) is bi-quadratic in ρ and can hence be put
into the following form

�
dy
dλ

�
2

¼
X4
n¼0

ãnyn ¼ PðyÞ; ð17Þ

where y ¼ ρ2 and ãn ¼ 4an.
The mathematical structure of Eq. (17) is the same as that

of other equations of motion describing radial motion in
space-times such as the Reissner-Nordström space-time,
the Kerr(-Newman) space-time [8,10–13] and the swirling
universe [18]. To solve Eq. (17) consider the transformation
y − y0 ¼ u−1, where y0 is a root of PðyÞ. This reduces the
order of the polynomial P from four to three and we get

�
du
dλ

�
¼ P3ðuÞ ¼

X3
j¼0

bjuj; ð18Þ

which is cast into Weierstrass form by considering the usual
transformation

u ¼ 1

b3

�
4v −

b2
3

�
: ð19Þ

Hence Eq. (16) reduces to

�
dv
dλ

�
2

¼ PWðvÞ ¼ 4v − g2v − g3; ð20Þ

where the constants g2 and g3 are

g2 ¼−
1

4

�
b1b3−

b22
3

�
; g3¼−

1

16

�
b0b23þ

2b32
27

−
b1b2b3

3

�
:

ð21Þ

Equation (20) allows a solution in terms of the Weierstrass
elliptic function ℘ in the form

vðλÞ ¼ ℘ðλ − λðρÞin ; g2; g3Þ; ð22Þ

where λðρÞin depends only on the initial conditions,

λðρÞin ¼ λ0 þ ξρ

Z
∞

v0

dv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðv0Þ

p ; v0 ¼
1

4

�
b3

ρ20 − y0
þ b2

3

�
;

ð23Þ

and ρ0 ¼ ρðλ0Þ is the initial value of the radial coordinate.
Thus, the solution of Eq. (16) is given as follows

ρðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b3

4℘ðλ − λðρÞin ; g2; g3Þ − b2
3

þ y0

s
: ð24Þ
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B. z motion

The motion in the z direction is governed by�
dz
dλ

�
2

¼ −kþ ðE þ ð4jLþ ΔÞzÞ2: ð25Þ

Here we distinguish two cases. For 4jLþ Δ ¼ 0, the above
equation can be trivially integrated, thus

zðλÞ ¼ z0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − k

p
ðλ − λ0Þ; ð26Þ

where zðλ0Þ ¼ z0 is the initial value of the z coordinate.
Since z must be real, physical orbits also require E2 ≥ k.
For 4jLþ Δ ≠ 0 and k > 0 the motion is restricted to

z < z− ≔ −
Eð4jLþ ΔÞ þ ffiffiffi

k
p j4jLþ Δj

ð4jLþ ΔÞ2 ;

z > zþ ≔
−Eð4jLþ ΔÞ þ ffiffiffi

k
p j4jLþ Δj

ð4jLþ ΔÞ2 : ð27Þ

In that case Eq. (25) can also be directly integrated,Z
λ

λ0

dλ0 ¼
Z

z̃

z̃0

dz0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z0

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0

p ¼ 1

4jLþ Δ
cosh−1ðz0Þjz̃z̃0 ;

ð28Þ

where z̃ ¼ Eþð4jLþΔÞzffiffi
k

p , and hence

zðλÞ ¼ 1

4jLþ Δ

�
−E þ

ffiffiffi
k

p
cosh

h�
4jLþ ΔÞðλ − λðzÞin

�i�
;

ð29Þ

where λðzÞin depends only on the initial conditions

λðzÞin ¼ λ0 −
ξz

4jLþ Δ
cosh−1

�
E þ ð4jLþ ΔÞz0ffiffiffi

k
p

�
: ð30Þ

C. t motion

The motion in the t direction is described by Eq. (14)

dt
dλ

¼ E þ ð4jLþ ΔÞzðλÞ; ð31Þ

which can be integrated by distinguishing again the cases
discussed in the above subsection,

tðλÞ ¼
(
t0 þ Eðλ − λ0Þ; if 4jLþ Δ ¼ 0;ffiffi

k
p

4jLþΔ sinh ½ð4jLþ ΔÞðλ − λðzÞin Þ� þ tin; if 4jLþ Δ ≠ 0;
ð32Þ

with tin ¼ t0 −
ffiffi
k

p
4jLþΔ sinh ½ð4jLþ ΔÞðλ0 − λðzÞin Þ�, and t0 ¼

tðλ0Þ is the initial value of the time coordinate.

D. ϕ motion

The ϕ motion is described by the equation

dϕ
dλ

¼ ΛL̄
ρ2

− 4jzðE þ ð4jLþ ΔÞzÞ: ð33Þ

This equation can be integrated using the solutions for ρðλÞ
and zðλÞ obtained above. Considering the respective parts
separately,

Z
ϕ

ϕ0

dϕ0 ¼ ϕðλÞ − ϕ0 ¼ Iρ − Iz; ð34Þ

where ϕðλ0Þ ¼ ϕ0 is the initial condition of ϕ, the two
contributions are

Iρ ¼
Z

λ

λ0

ΛL̄
ρ2

dλ; Iz ¼ 4j
Z

λ

λ0

zðE þ ð4jLþ ΔÞzÞdλ:

ð35Þ
In the following, these two parts will be considered

successively. First, by inserting the same set of trans-
formations discussed in Sec. IVA and performing a partial
fraction decomposition, the integral Iρ can be rewritten in
the form

Iρ ¼
Z

v

v0

fðv0Þ dvffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðvÞ

p ; ð36Þ

with

fðvÞ ¼ K0 þ
K1

v − α
þ K2

ðv − αÞ2 þ
K3

ðv − αÞ3 þ
C1

v − β
; ð37Þ

where α ¼ b2
12

and β ¼ b2
12
− b3

4y0
are the roots of DðvÞ ¼

ðb2 − 12vÞ3ð−3b3 þ ðb2 − 12vÞy0Þ, and the coefficients
are given by
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K0 ¼
Λð ffiffiffiffiffi

y0
p Þð2Λð ffiffiffiffiffi

y0
p ÞLþ y0ðΔ̃Vð ffiffiffiffiffi

y0
p Þ − jy0ΔÞÞ

2y0
;

K1 ¼ −
b3
8
½2Lðj4y20 þ N4ð6þ N2y0ð8þ 3N2y0ÞÞÞ þ 3Δ̃N2ð1þ N2y0Þ þ jΔð1þ N2y0Þð1þ 3N2y0Þ

þ j2ð4Lð1þ N2y0Þð1þ 3N2y0Þ þ Δ̃y0ð2þ 3N2y0Þ þ 3jy20ΔÞ�;

K2 ¼
b23
32

½2LN6ð4þ 3N2y0Þ þ 3N4Δ̃Vð ffiffiffiffiffi
y0

p Þ þ jN2Δð2þ 3N2y0Þ þ j2ðΔ̃þ N2ð8Lþ 3y0ð4LN2 þ Δ̃ÞÞÞ
þ 3j3y0Δþ 6j4Ly0�;

K3 ¼
b33ðN4 þ j2Þ

128
ð2LðN4 þ j2Þ þ N2Δ̃þ jΔÞ; C1 ¼ −

b3L
4y20

: ð38Þ

Now, inserting the solution found in Sec. IVA, vðλÞ ¼ ℘ðλ − λðρÞin Þ, into Eq. (37), we conclude that Iρ is an elliptic
integral of the third kind and hence can be integrated directly (see Appendix B for details) to give

Iρ ¼ γ0ðλ − λ0Þ þ γ1ð℘ðλ − λðρÞin þ yαÞ − ℘ðλ − λðρÞin − yαÞ − ℘ðλ0 − λðρÞin þ yαÞ þ ℘ðλ0 − λðρÞin − yαÞÞ
þ γ2½ζðλ − λðρÞin − yαÞ þ ζðλ − λðρÞin þ yαÞ − ζðλ0 − λðρÞin − yαÞ − ζðλ0 − λðρÞin þ yαÞ�

þ γ3

�
ln

�
σðλ − λðρÞin − yβÞ
σðλ − λðρÞin þ yβÞ

�
− ln

�
σðλ0 − λðρÞin − yβÞ
σðλ0 − λðρÞin þ yβÞ

��
þ γ4

�
ln

�
σðλ − λðρÞin − yαÞ
σðλ − λðρÞin þ yαÞ

�
− ln

�
σðλ0 − λðρÞin − yαÞ
σðλ0 − λðρÞin þ yαÞ

��
; ð39Þ

where the values of the constants are given by

γ0¼
�
K0þ

2ζðyαÞK1

℘0ðyαÞ
þ2ζðyβÞC1

℘0ðyβÞ
−

K3

℘0ðyαÞ2
�
1þ12℘ðyαÞζðyαÞ

℘0ðyαÞ
�
þ 1

℘0ðyαÞ2
�
℘ðyαÞþ

℘00ðyαÞζðyαÞ
℘0ðyαÞ

��
3K3℘00ðyαÞ
℘0ðyαÞ2

−2K2

��
;

γ1¼
K3

2℘0ðyαÞ3
;

γ2¼
1

℘0ðyαÞ2
�
−K2þ

3K3℘00ðyαÞ
2℘0ðyαÞ

�
;

γ3¼
C1

℘0ðyβÞ
;

γ4¼
K1

℘0ðyαÞ
þK2℘00ðyαÞ

℘0ðyαÞ3
−

3K3

℘0ðyαÞ3
�
2℘ðyαÞ−

℘00ðyαÞ2
2℘0ðyαÞ2

�
;

and yα and yβ are values of the inverse Weierstrass
℘-function, i.e., ℘ðyαÞ ¼ α and ℘ðyβÞ ¼ β: ζðyÞ and σðyÞ
are, respectively, the Weierstrass ζ and σ function. We point
out, however, that special attention is required when
evaluating the logarithm in Eq. (39). In this paper, we
have implemented the solutions using Wolfram MATHE-
MATICA. In order to guarantee a proper choice of the
complex branch and therefore a continuous evaluation of
ϕðλÞ, we have used the same strategy as introduced in [11].
When considering the second integral I z, we again need

to distinguish two cases. For 4jLþ Δ ¼ 0, we see that the
integration can be trivially done by inserting the solution
Eq. (26). We then find

I z ¼ 4jE
h
z0ðλ − λ0Þ þ ξz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − k

p
ðλ − λ0Þ2

i
: ð40Þ

For 4jLþ Δ ≠ 0 we follow the same procedure but
consider the form Eq. (29), thus

Iz ¼
j

ffiffiffi
k

p

ð4jLþ ΔÞ2
h
2

ffiffiffi
k

p
ð4jLþ ΔÞðλ − λ0Þ

− 4E
�
sinh

h
ð4jLþ ΔÞ

�
λ − λðzÞin

�i
− sinh

h
ð4jLþ ΔÞ

�
λ0 − λðzÞin

�i�
þ

ffiffiffi
k

p �
sinh

h
2ð4jLþ ΔÞ

�
λ − λðzÞin

�i
− sinh

h
2ð4jLþ ΔÞ

�
λ0 − λðzÞin

�i�i
: ð41Þ

Finally, Eq. (34), together with Eq. (39) and either Eq. (40)
or Eq. (41), depending on the case of interest, concludes the
integration of the ϕ equation.
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E. Classification of orbits

Based on the solutions of the equations of motion
presented above we now study the resulting orbits in the
EMS space-time. The characterization of the orbits can be
done in terms of the four constants of motion, namely E, L,
χ, and k. In the following, we will consider both, the
charged particle motion and the geodesic motion.
The first insight concerning the possible motion can be

obtained directly from Eq. (16). In order to exist, physical
orbits must satisfy RðρÞ ≥ 0. This leads to the inequality

k ≥
L̄2

ρ2
− Λχ: ð42Þ

Note that −Λχ ≥ 0 everywhere and hence there is a lower
bound on k. On the other hand, from Eq. (25) we have

k ≤ ½E þ ð4jLþ ΔÞz�2; ð43Þ

which then puts an upper bound on k. Interestingly, for the
geodesic motion of massless particles with no angular
momentum, there are no turning points in the radial
direction, and therefore the particles can escape to radial
infinity. In addition, if E2 ¼ k the orbit will lie in a plane
with z constant. Such an orbit is shown in Fig. 2(a). On the
other hand, for the geodesic motion of massive particles
with no angular momentum, the combined bounds become

1þ 2N2ρ2 þ ðj2 þ N4Þρ4 ≤ k ≤ E2; ð44Þ

which thus puts no restrictions on the z direction but gives
turning points in the ρ direction. Therefore the possible

FIG. 2. Examples of planar orbits in the EMS space-time. For orbits to be planar, i.e., for motion in a plane of constant z, the conditions
4jLþ Δ ¼ 0 and E2 − k ¼ 0 must hold. All orbits shown are for j ¼ 0.25 and N2 ¼ 0.25. In Fig. (a) we show a radial escape
orbit. Such an orbit is only possible for uncharged massless particles with no angular momentum. In Fig. (b) we show an orbit
similar to that in (a) for massive particles. This orbit is bounded in the ρ direction [see text]. In Fig. (c) we show the orbit of a charged
massless particle with L ¼ Δ ¼ 0 and in Fig. (d) the one of a charged massive particle with L ≠ 0. (a) χ ¼ 0;Δ ¼ 0; Δ̃ ¼ 0,
(b) χ ¼ −1;Δ ¼ 0; Δ̃ ¼ 0. (c) χ ¼ 0;Δ ¼ −0.08; Δ̃ ¼ 0. 56, (d) χ ¼ −1;Δ ¼ 0.26; Δ̃ ¼ −0.32.
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orbits will be bounded in the ρ direction. The motion in the
z direction can then be planar for E2 ¼ k—as shown in
Fig. 2(b)—or escape to infinity for E2 > k. For uncharged
particles with angular momentum, L ≠ 0, or charged
particles, the term L̄2=ρ2 in Eq. (42) imposes an inner
turning point in the ρ direction, and therefore the allowed
motion is even more restricted. The physical orbits will
then oscillate between these two turning points. Note that,
for neutral particles with L ≠ 0, the motion is necessarily
nonplanar. However, for charged particles, it is possible to
counter-balance this dragging effect. Therefore, in the z
direction, the particle can either (i) move in a plane or
(ii) escape to infinity. In case (i) 4jLþ Δ ¼ 0 and E2 ¼ k.
Examples of such planar orbits are shown in Fig. 2(c) for
massless particles and in (d) for massive particles. In case
(ii) the particles can either escape directly to infinity or
reach a turning point in the z direction, and then escape to

infinity, depending on the initial conditions. Examples of
such orbits are shown in Fig. 3 for massless and massive
particles and for both geodesic motion and charged particle
motion, respectively.

V. SUMMARY AND CONCLUSIONS

The electromagnetic swirling universe is a novel solution
constructed recently in [6] by applying a composition of the
Harrison and Ehlers transformations to a Minkowski seed
solution. It describes a space-time possessing electric and
magnetic fields together with the swirling behavior. It can
be considered an immersion of the Melvin universe into a
swirling universe (or vice versa). These two cases can be
recovered as limiting cases, i.e., when either the swirling
parameter vanishes or the electromagnetic field vanishes,
respectively.

FIG. 3. Examples of nonplanar orbits in the EMS space-time. Nonplanar orbits will always escape to infinity in the z direction.
The test particles can either escape directly to infinity or reach a turning point in the z direction and then escape to infinity. For all
orbits here, we have set j ¼ 0.5 and N2 ¼ 0.5. In Fig. (a) we show a geodesic orbit for a massless particle that escapes in the ρ as
well as z direction, with parameters chosen as those in Fig. 2(a) apart from the value of the energy. In Fig. (b) we show a geodesic
orbit for a massive particle with L ≠ 0. In Figs. (c) and (d) we show two orbits for charged particles, massless and
massive, respectively. (a) χ¼0;Δ¼0; Δ̃¼0; L¼0; k¼2; E¼2.1, (b) χ ¼ −1;Δ ¼ 0; Δ̃ ¼ 0; L ¼ 0.6; k ¼ 6; E ¼ ffiffiffi

6
p

, (c) χ ¼ 0;
Δ ¼ 0.2; Δ̃ ¼ −0.4; L ¼ 0.5; k ¼ 2; E ¼ 2, (d) χ ¼ −1;Δ ¼ −0.7; Δ̃ ¼ 0.3; L ¼ 0.5; k ¼ 4; E ¼ 2.1.
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In this paper, we have focused on the motion of test
particles in the EMS space-time. Since this space-time is
equipped with a U(1) gauge field, we considered the
motion of charged particles, with both electric and mag-
netic charge, the latter for the sake of completeness. The
equations of motion can be separated in the Hamilton-
Jacobi formalism and can be analytically integrated in
terms of elementary and elliptic functions. The solutions
are completely characterized by the four constants of
motion, namely the particle’s total energy, its angular
momentum with respect to the symmetry axis, the nor-
malization condition, and the separation constant. The
mathematical structure of the decoupled geodesic equations
resembles the one in the swirling universe.
Insight into the type of test particle motion possible can

be obtained directly from the equations of motion. A
typical orbit, just like in the swirling universe, is bounded
in the ρ direction and escapes to infinity in the z direction.
Geodesic motion can be planar only in the absence of
angular momentum. In that case, a massless particle can
escape to radial infinity. However, for charged particles, the
electromagnetic interaction can counter-balance the drag-
ging effect, and orbits can also be planar by a proper choice
of angular momentum and energy. This is possible for both
types of particles.
The next natural step in our research would be to

consider the immersion of a black hole into the EMS
space-time. Similarly to the swirling or the Melvin uni-
verse, the EMS space-time can be thought of as a back-
ground in which compact objects, such as black holes, can
be immersed. The immersion of a Schwarzschild black hole
has already been discussed in [6]. However, the space-time
containing a black hole is no longer of Petrov type D but of
the more general type I. Therefore, a full separation of
variables is not expected.
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APPENDIX A: AFFINE PARAMETERS

The motion discussed in the main body of the paper has
been given in terms of the Mino time, λ, which relates to the
affine parameter, τ, via

dτ
dλ

¼ Λ: ðA1Þ

This is an elliptic integral of the third kind and, hence, can
be solved analytically. By performing the same trans-
formations as discussed in Sec. IVA, we find

dτ
dλ

¼ ϵ0 þ
ϵ1

v − α
þ ϵ2
ðv − αÞ2 ðA2Þ

with α − b2=12, and the constants are

ϵ0 ¼ Λð ffiffiffiffiffi
y0

p Þ; ϵ1 ¼
b3ðN2 þ ðj2 þ N4Þy0Þ

2
;

ϵ2 ¼
b23ðj2 þ N4Þ

16
: ðA3Þ

Thus, the solution is given by

τðλÞ ¼ ϵ0 þ ϵ1I1ðλ; yαÞ þ ϵ2I2ðλ; yαÞ: ðA4Þ

APPENDIX B: INTEGRATION OF ELLIPTIC
INTEGRALS OF THE THIRD KIND

Some of the integrals discussed in this paper are elliptic
integrals of the third kind. In this appendix, we present the
formulae to evaluate integrals of the type In ¼

R
v
v0

1
ð℘ðv0Þ−γÞn,

with n ¼ 1, 2 or 3, where γ ¼ ℘ðyγÞ is a single pole of the
above function. A table with these and other relations can
be found in [11].
The starting point is to expand the function as

℘0ðyÞ
℘ðvÞ − ℘ðyÞ ¼ ζðv − yÞ − ζðvþ yÞ þ 2ζðyÞ; ðB1Þ

which can then be directly integrated using the definition of
the σðxÞ function, ln σðxÞ ¼ R

ζðxÞdx, to get

I1ðv;yÞ ¼
Z

dv
℘ðvÞ−℘ðyÞ ¼

1

℘0ðyÞ
�
2ζðyÞvþ ln

σðv− yÞ
σðvþ yÞ

�
:

ðB2Þ

Terms of higher order can be found after performing
some algebra on Eq. (B1). Taking the derivative of Eq. (B1)
with respect to y and using ζðxÞ ¼ −

R
℘ðxÞdx one gets

1

ð℘ðvÞ − ℘ðyÞÞ2 ¼
1

℘0ðyÞ2
�
℘ðv − yÞ þ ℘ðvþ yÞ þ 2℘ðyÞ

−
℘00ðyÞ

℘ðvÞ − ℘ðyÞ
�
: ðB3Þ

This can then be directly integrated and lead to

I2ðv;yÞ ¼
Z

dv
ð℘ðvÞ−℘ðyÞÞ2 ¼−

℘00ðyÞ
℘0ðyÞ2 I1

−
1

℘0ðyÞ2 ðζðvþ yÞþ ζðv− yÞþ 2℘ðyÞvÞ: ðB4Þ

Applying the same idea and taking the second derivative of
Eq. (B1) with respect to y, one gets
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1

ð℘ðvÞ − ℘ðyÞÞ3 ¼
1

2℘ðyÞ3
�
℘0ðv − yÞ þ ℘0ðvþ yÞ − 2℘0ðyÞ − 12℘0ðyÞ℘ðyÞ

℘ðxÞ − ℘ðyÞ −
3℘0ðyÞ℘00ðyÞ

ð℘ðvÞ − ℘ðyÞÞ2
�
; ðB5Þ

where ℘ð3ÞðyÞ ¼ 12℘ðyÞ℘0ðyÞ has been used. Integrating the above expression then leads to

I3ðv; yÞ ¼
Z

dv
ð℘ðvÞ − ℘ðyÞÞ3

¼ 1

2℘ðyÞ3 ½℘ðvþ yÞ − ℘ðv − yÞ − 2℘0ðyÞv − 12℘0ðyÞ℘ðyÞI1 − 3℘0ðyÞ℘00ðyÞI2�: ðB6Þ
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