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Resilient Microgrid Scheduling with Synthetic Inertia from Electric
Vehicles within a Network of Charging Stations

Yixun Wen, Zhongda Chu, Amber Srivastava, Fei Teng, and Boli Chen

Abstract—Vehicle-to-Grid technologies are proposed as poten-
tial providers of virtual inertia for microgrids (MGs). This paper
addresses an energy and charging scheduling problem for a MG
and investigates how to utilize a network of electric vehicle (EV)
charging stations (CSs) to provide sufficient virtual initial for
frequency regulation that guarantees the safe transition of MG
to the islanded operation during extreme events. The charging
behavior of EV within a CS network is complex and can be
actively influenced by charge point power and tariff set up by
the CS network operator subject to MG operation requirements.
A novel modeling framework is proposed to capture these aspects
and integrate them into the MG energy management. The goal
is to determine the optimal power allocation among distributed
energy resources within an MG, minimizing operation costs while
ensuring sufficient frequency support with virtual inertia contri-
bution from EVs. To deal with inevitable uncertainties associated
with EV arrivals at a CS, we employ joint distributionally robust
chance constraints (DRCCs) to mitigate the impact of uncertainty
and enhance the robustness of the algorithm. These joint DRCCs
are decomposed into individual ones via an optimized Bonferroni
approximation method, then suitably relaxed into convex forms,
which maintains the solvability of the overall problem. The
effectiveness of the method is validated with case studies based
on a modified IEEE 14-bus system.

Index Terms—Microgrid Scheduling, Virtual Inertia, Vehicle-
to-Grid, Joint Distributionally Robust Optimization

NOMENCLATURE

Acronyms
BoA Bonferroni approximation
CG Conventional Generator
CS Charging station
DRCC Distributionally robust chance con-

straint
EV Electric vehicle
FR Frequency response
MG Microgrid
OCGT Open Cycle Gas Turbine
PV Photovoltaic
RES Renewable Energy Resource
SI Synthetic inertia
SoC State of charge
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WT Wind turbines
Indices and Sets
V Set of all CSs in the MG
G/g Set and indices of CGs within the MG
Ki/k Set and indices of EV fleets in charging

station i
s Index of MG operation scenarios
Parameters
−Pmin/Pmax The maximum discharging/charging

power output of a single charger
−P disc

PV /P ch
PV The maximum discharging/charging

power output of the PV storage system
∆ḟ The rate of change of frequency (Ro-

CoF)
∆fqss Quasi-steady-state frequency deviation
πs The probability of scenario s
P̃WT
s /P̃PV

s /P̃ load
s The predicted power output of wind

turbine/PV/load for scenario s
ε0/εdep Initial SoC of EV fleets/ expected SoC

when leaving
εmin/εmax The minimum/maximum allowable

SoC of EV fleets
Crun/Cstart/CM Financial cost of running CGs/starting

CGs/trading with the main grid
D Damping of the system
Earr(t) The energy of arrival EVs
Narr(t) The number of arrival EVs
Nf The total number of EV fleets
T the optimization time horizon
ZEV The capacity of a single EV
Variables
∆PEV,t The additional power provided by EVs

for frequency support at time t
E(t) Energy state vector of EV fleets
Edep(t) Energy state vector of departure EVs
LEV (t) EV number vector of departure EVs
NEV (t) EV number vector of EV fleets
PEV (t) Charging or discharging power vector

of EV fleets
εk(t) The average SoC of the kth EV fleet at

time t
H/HCG/HEV Inertia of the system/of all CGs in the

MG/ synthetic inertia form EVs
Q(t) The number of EVs in the queue

I. INTRODUCTION

Power grids are one of the most critical systems that require
significant transformation with the goal of reducing carbon
emissions and enhancing energy efficiency [1]. The potential
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of renewable energy resources has been explored [2], leading
to the widespread implementation of renewable generators and
the adoption of clean energy-dependent loads, such as electric
vehicles (EVs). The growing penetration of distributed gen-
erators, energy storage systems and flexible loads [3] allows
forming microgrids (MGs) to coordinate different resources
and enable localized optimal energy management [4]. More-
over, MGs are able to enhance the resilience of energy supply
by isolating from the main grid and operating in islanded mode
during extreme events [5]. However, due to the sudden loss
of power and frequency support from the main grid during
the transition, the MG may experience power imbalances and
frequency instability. This makes MG scheduling of distributed
energy resources even more crucial to maintain frequency
stability [6]–[8], which will be the focus of the present paper.

With a high penetration of renewable energies, the system
inertia significantly decreases due to the reduced presence of
conventional synchronous generators [9], leading to faster and
more vulnerable frequency dynamics. To compensate for low-
inertia power systems, many studies have been focusing on
the frequency stability of the main grid or the islanded MG.
In [10], frequency constraints are incorporated into the unit
commitment problem of the main grid for the first time. Fre-
quency supports from wind turbines (WT) and photovoltaics
(PVs) for isolated MGs are proposed in [11], [12], addressing
both the low-level control phase and the high-level planning
phase. However, only a few studies focus on the frequency
dynamics of the MG during the transient period when the MG
switches from connected mode to islanded mode. Frequency
dynamics during the transient period including synthetic iner-
tia (SI) provision from WTs are considered, and corresponding
frequency constraints are reformulated and incorporated into
the MG scheduling problem. Frequency dynamics including
SI provision from WTs, and PVs are considered in [13], [14],
to guarantee the frequency constraints during MG islanding
events. However, relying on renewable energy sources for
frequency support is often uneconomical due to the need to
maintain headroom during normal operation. Hence, it is of
great interest to investigate other frequency regulation agents
like battery storage systems and EVs, which are capable of
immediate bidirectional power transfer during the transition
process.

Frequency support from EVs for low inertia system is
investigated in [15]–[17]. However, onsite EV numbers are
formulated in the scheduling problem as a given external input
(based on historical data) rather than a decision variable that
can be optimised. Additionally, the use of EVs to support MG
islanding transitions is not explored in the aforementioned
works. In cases of sudden power imbalance resulting from
an islanding event, frequency support must react in a short-
term transient period to mitigate frequency deviations [18].
The amount of frequency support from EVs is limited by
the number of EVs that are plugged-in inside the MG. This
highlights the need for better planning, especially for charging
stations (CSs), which involve complex interactions with EVs.
EV owners or charging navigation systems [19], [20] select
CSs based on factors such as charge point power, expected
vehicle dwell times, traffic, CS locations, and tariffs. Some

of these factors can be directly or indirectly influenced by
grid operations, promoting an integrated coordination scheme
rather than siloed, sequential decision-making. Despite the rich
literature in scheduling for charging networks that also takes
both power grid and transportation into account [21]–[23],
the study on the contribution of CS network to the frequency
support of the MG remains obscure.

On the other hand, to tackle the uncertainties involved
in MG scheduling problem (e.g., load, wind, solar), chance
constraints are frequently used in MG scheduling to restrict the
violation risk of constraints within an acceptable rate. Specifi-
cally, distributionally robust chance constraints (DRCCs) have
great advantages over other chance constraints in that the
full probabilistic distribution of uncertainties is not required
[24], and they are widely applied in grid scheduling problems.
In [13], uncertain noncritical load shedding is modeled in a
DRCC form to ensure a resilient MG scheduling. In [25],
deep learning methods are used to construct the ambiguity set
representing WT output power while the DRCC is applied to
deal with WT uncertainties in economic dispatch optimization.
In [26], a data-driven DRCC method is proposed to tackle
multiple uncertainties, including virtual inertia uncertainty and
wind power uncertainty for the scheduling problem. To provide
enhanced guarantees regarding the overall system stability
[27], uncertainty-involved constraints need to be formulated
into a joint form, allowing for the simultaneous fulfillment
of multiple constraints while maintaining an acceptable joint
violation rate [28]. However, obtaining tractable solutions
for the joint DRCC is challenging, as exact reformulations
are often elusive. Therefore, various approximation methods
for joint DRCCs, such as Bonferroni approximation (BoA)
are commonly utilized in many works [29], [30]. The main
challenge of the BoA is in allocating the violation probability
among individual chance constraints. A common approach
is to separate the joint violation probability equally among
individual chance constraints. However, this usually leads to
overly conservative estimates.

This article aims to fill the aforementioned research gaps
by a novel resilient MG scheduling paradigm, which can
explicitly fuse the complex behavior of EVs among a network
of CSs in MG scheduling for enhanced resiliency. The results
can maintain sufficient overall inertia for the system and can
be used as cost-effective references for low-layer control. The
main contributions of the paper are summarized as follows:

1) The proposed day-ahead scheduling provides MG opera-
tor with a plan that takes into account both MG operation
requirements from CS and the costs required for CS
to incentivize EVs. To bridge MG operation and on-
road EVs for an enhanced energy management solution,
a dynamic EV charging behavior model within a CS
network is developed, which takes into account queuing,
extra dwelling for recharging the grid, and navigation to
alternative CSs in case of congestion. Consequently, the
SI provision from EVs can be accurately included in the
frequency constraints arising from frequency dynamics
in the transient islanding period, ensuring adequate in-
ertia for MG islanding events.

2) The joint DRCCs are applied to handle the uncertain
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Figure 1. EV flows at the i-th charging station.

error between estimated numbers of arriving EVs and
real arriving EVs at CSs and restrict overall violation
rates of EV charging/discharging power and SOC level
limits in each time slot. In contrast to the classic BoA
method, an optimized BoA method is utilized in the
paper to separate the joint constraints, which can be less
conservative [31]. Additionally, the effect of uncertain-
ties on each time slot is evaluated and optimized by an
extra decision variable, which narrows down the impact
range of uncertainties and leads to a less conservative
solution.

3) The effectiveness of the proposed method is validated
with case studies based on a modified IEEE 14-bus
system. It is demonstrated that the extended dwelling
time of EVs can substantially enhance the SI provision,
thereby diminishing the total operational cost of the
system. Furthermore, the consideration of EV navigation
among a CS network can diminish queueing time, hence
alleviating the adverse impact on queuing time resulting
from the prolonged presence of EVs.

The rest of the paper is organized as follows: Section II
introduced the dynamic model for EV at a single CS and the
interaction between CSs. Section III constructs the frequency-
constrained day-ahead MG scheduling problem framework
with DRCC constraints. Section IV elaborates on case studies
and simulation results, and Section V concludes this work.

Notation: Let R, R≥0, R>0, N, and N>0 denote the real, the
non-negative real, the strict positive real sets of numbers, set of
natural numbers, and the set of positive integers, respectively.

II. DYNAMIC MODEL FOR EVS AMONG A CS NETWORK

This section proposes a dynamic system model that captures
EV dynamic behaviors within a CS network to enhance
EV frequency support ability. From a day-ahead planning
perspective, it is reasonable to group certain EVs as a fleet

rather than modelling each EV individually. To achieve more
precise scheduling of the EV charging/discharging scheme and
the associated frequency support provision, both the average
state of energy of the EV fleet and the number of EVs involved
are modeled.

A. Dynamic Model of EVs at a Single CS

This subsection proposes a system model including both
the quantity and average energy level of EVs at a single CS
as illustrated in Figure 1. Consider Th ∈ R>0 the planning
horizon time length and T ∈ N>0 the number of time steps,
and let the time steps for the dynamic system be indicated by
t = 0, 1, . . . , T . The arrival of all EVs over the entire period
T can be divided into T fleets to model the changes in the
number of EVs connected to the charger, while the number
of EVs being disconnected from the charging station at each
time step serves as the control input. The state of EV numbers
in a single CS has the following dynamics:

NEV
i (t+ 1) = NEV

i (t)− LEV
i (t+ 1)

+(N char
i (t+ 1)+Qi(t)−Qi(t+ 1)) · et+1, i ∈ V,

(1)

where NEV
i (t) = [Ni,1(t) Ni,2 · · · Ni,T (t)]

⊤ ∈ NT ,
LEV
i (t) = [Li,1(t) Li,2 · · · Li,T (t)]

⊤ ∈ NT are the number
of EVs that are connected to the charger and leaving the CS
at time t, respectively. Specifically, the k-th elements Ni,k(t)
and Li,k(t) denote the number of charging and leaving EVs
from the k-th EV fleet at time t. Li,k(t) is modelled as
the control variable in (1). The initial condition NEV

i (0) =
[Ni,1(0) Ni,2(0) · · · Ni,T (0)]

⊤ follows Ni,k(0) = 0, ∀k > 1
and Ni,1(0) ≥ 0 denotes the residual vehicles in CS before
scheduling. V = {1, 2, . . . , ι} is a finite nonempty set of all
CSs in the MG, with ι representing total number of CSs within
the network, i is the indices of CSs in the MG, N char

i (t) ∈ N
is the estimated number of EVs arrivals at CS i at the time
t (as illustrated in Section II-B). Qi(t) ∈ N is the number
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of EVs in the queue at time t, which will be defined later
in (3). ek+1 ∈ RT is the unit vector with all zeros and only
the (k + 1)-th element being 1, so as to merge the the newly
connected EV into the (k+1)-th fleet, as shown in Figure 1. In
addition, for the k-th fleet, there is no EV before t = k. Hence,
Ni,k(t) should satisfy Ni,k(t) = 0, when 0 ≤ t < k. Provided
that EVs will not leave without using charging infrastructures,
the number of departing EVs must not exceed the number of
existing charging EVs from the previous time slot:

Li,k(t+ 1) ≤ Ni,k(t). (2)

The number of EVs waiting in queue is given by:

Qi(t) = max{nEV
i (t− 1) +N char

i (t) +Qi(t− 1)

−ndep
i (t− 1)−N

char

i , 0}
(3)

where nEV
i (t) =

∑T
k=1 Ni,k(t) and ndep

i (t) =
∑T

k=1 Li,k(t)
denotes the total number of charging (i.e., occupied EV
chargers) and departing EVs at time t, respectively. N

char

i

is the maximum capacity of CS i. Herein, we limit the length
of the queue for each time slot by:

Qi(t) ≤ Qi,max, (4)

where Qi,max represents maximum acceptable queue length of
CS i. Considering that the MG may have to compensate the
CSs for their efforts to encourage EVs to stay connected to the
charger, the connection time for all EVs should be minimized,
which is calculated as follows:

Ccs =
∑
i∈V

T∑
t=1

t∑
k=1

Ni,k(t)∆t, (5)

where ∆t is the time interval duration of the MG scheduling,
for instance ∆t = 24/T in the context of day-ahead schedul-
ing.

By analogy to the EV quantity model introduced previously,
the dynamics of EV fleet average energy state are regulated
by:

Ei(t+ 1) = Ei(t) +PEV
i (t)∆t

+ Earr
i (t+ 1) · et+1 −Edep

i (t+ 1), i ∈ V,
(6)

where EEV
i (t) = [Ei,1(t) Ei,2 · · · Ei,T (t)]

⊤ ∈ RT
≥0,

PEV
i (t) = [Pi,1(t) Pi,2(t) · · · Pi,T (t)]

⊤ ∈ RT are the
total energy and collective charging/ discharging power (pos-
itive/negative for charging/discharging) of each EV fleet,
respectively. Specifically, the k-th elements Ei,k(t) and
Pi,k(t) represent the total energy and the aggregate charg-
ing/discharging power of the k-th EV fleet, the control variable
of (6). PEV

i (t) is the combination of two separate control
inputs for charging and discharging PEV

i (t) = ϱdβPEV,d
i (t)+

ϱc(1 − β)PEV,c
i (t) where ϱd = 1.05, ϱc = 0.95 are the

charging/discharging coefficients respectively, and β is a bi-
nary variable indicating whether EVs are discharging or not.
Edep

i (t) ∈ NT is the energy taken by EVs that leave at time
t. Total initial energy Earr

i (t) corresponds to the number of
EVs that connect to chargers at time t so it can be expressed
as:

Earr
i (t) = [N char

i (t) +Qi(t− 1)−Qi(t)]ε
0
i,tZ

EV , (7)

where ε0i,t is the average initial SoC, ZEV is the prescribed
average energy capacity of an EV. The energy of the departing
EVs Edep

i (t) in terms of the number of departing EVs at time
t is given by:

Edep
i (t) = LEV

i (t)εdepZEV , (8)

where εdep is the expected SoC level that owners expect
their EVs to reach before leaving. The collective charg-
ing/discharging power of each fleet is bounded by

−Ni,k(t)P
min ≤ Pi,k(t) ≤ Ni,k(t)P

max, (9)

with Pmin, Pmax denoting the charging infrastructure charg-
ing/ discharging limits. Finally, to protect EV battery, the
average SoC of each fleet should be within a certain range:

εmin ≤ εi,k(t) ≤ εmax, (10)

where εmin, εmax are the minimum and maximum SoC limits.

B. Interaction Between Charging Stations

CSs within an MG are interconnected via traffic networks.
In a CS network, the charging demand of a CS typically
depend on the traffic volume passing through the CSs, which
can be obtained from historical data. Meanwhile, CS can influ-
ence EVs of choosing stations by dynamically adjusting prices
to avoid long queues and to allow for a higher concurrent
presence of EVs at individual sites, thereby contributing to
SI provision. This section proposes a strategy to estimate
N char

i (t), the number of EVs arriving at CS i, based on
historical traffic data. Specifically, N char

i (t) is obtained by
assigning EVs with charging requirements to different CSs
based on MG operation and traffic cost, to reflect the influence
of CSs on EVs. The assigning process is optimally decided
concurrently with the MG scheduling, hence a more resilient
energy management plan can be obtained.

To facilitate the mathematical description, we constructed
a simplified traffic network consisting of CSs in the MG
and traffic roads connecting them as illustrated in Fig 2.
Considering the complexity of the traffic network, it is fair
to assume that there always exists a path between any two
of the CSs. To streamline the formulation, the CS network
is modelled by a simple complete undirected weighted graph
G = (V,L), where L ∈ Rι×ι is the weighted adjacency
matrix that satisfies Li,i = 0, Lij = li,j for i, j ∈ V , where
li,j ∈ R>0 is the length of the path. Note that li,j is not
necessarily equal to lj,i, and G is assumed to be a simple
graph so that li,j is unique (which can be understood as the
length of the optimal path in terms of travel time or energy
consumption).

The number of vehicles passing by a certain CS can be
described as the overall traffic flow along the roadway adjacent
to that CS, and only a portion of these vehicles are EV with
charging requirements. Therefore, the number of EVs with
charging requirements passing through the i-th CS, Narr

i (t),
is estimated by

Narr
i (t) = γc

i γ
e
i η

in
i (t), (11)
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Figure 2. A charging station network connected by roads.

where ηini (t) is the forecasted aggregation of vehicles of
roadways traversing CS i, γe

i denotes the constant ratio of EVs
in the traffic flow, and γc

i denotes a split ratio representing the
probability of EV to charge up in CS i while on the road.
As described in [32], the probability depends on the current
SoC of the EV and the minimum acceptable SoC level for not
charging. It is expressed using the logistic function as:

γc
i =

(
1 + e−ρ(ε0−ε)

)−1
(12)

with ρ being a scaling coefficient, and ε being the average
EV owners’ minimum acceptable SoC levels. Fig. 3 shows
the value of γc

i against ε0 when ρ = 0.15 and ε = 30%. For

0 20 40 60 80 100
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Figure 3. Parameter values of γc
i when ρ = 0.15, ε = 30%.

Narr
i (t), EVs with charging requirements, CS i is the most

convenient CS for EVs along their travel route. However, to
enhance the SI provision and alleviate the charging pressure,
CSs may guide EVs to other CSs. We model the arriving EVs
influenced by CSs as follows:

N char
i (t) = Narr

i (t)−
∑

j∈V,j ̸=i

ξi,j(t)n
rl
i,j(t)+

∑
j∈V,j ̸=i

ξj,i(t)n
rl
j,i(t)

(13)
where nrl

i,j(t) is the number of EVs with charging requirements
passing through CS i that are guided to CS j within the time
slot [t, t+1) or vice versa. Both nrl

i,j(t) and nrl
j,i(t) are decision

variables of the scheduling problem. ξi,j(t) is a binary variable
with ξi,j(t) = 1/0 indicating if there exists EVs being directed
from CS i to CS j or not. Note that if EVs passing CS i with
charging requirements are directed to CS j within the slot
[t, t + 1), which means charging at CS j has advantages in
time cost or MG operation over CS i within the current time

slot, there should be no EVs directed in the opposite direction.
Hence ξi,j(t) satisfy:

ξi,j(t) + ξj,i(t) = 1. (14)

It is important to consider the additional costs incurred by
the CS to incentivize electric vehicles to reroute to specific
locations. These costs are influenced by the extra time and
energy expenditure resulting from the rerouting, which must
be factored into the scheduling problem. The traveling time
between two CSs is estimated using the latency function
as illustrated in [20]. EVs with charging requirements only
account for a small fraction of all vehicles on the road, so it
is reasonable to assume that their impact on the traffic flow
can be ignored. In this context, the traveling time ∆ti,j(t)
required from node i to j can be expressed as:

∆ti,j(t) = t̂i,j

1 + 0.15

(
ηi,j(t)

ηmax
i,j

)4
 , (15)

where t̂i,j = li,j/v
max
i,j is the ideal traffic time with no traffic

with vmax
i,j being the maximum allowable velocity along the

path, ηmax
i,j is the capacity of the path, and ηi,j(t) is the traffic

flow at t. Then the total time cost CT (t) including traveling
and queuing time can be expressed as:

CT (t) =
∑

i, j∈V,i̸=j

ξi,j(t)n
rl
i,j(x, t)∆ti,j(t) +

∑
i∈V

κqQi(t),

(16)

with κq denoting a coefficient transforming the number of
queuing EVs to the queuing time. Consider the vi,j as the
average velocity along the path {i, j}, the energy cost of
traveling through this path is evaluated by [33]:

∆ei,j(t) = η−1
EV

(
Fr + Fav

2
i,j(t)

)
li,j , (17)

where ∆ei,j(t) is the energy cost, ηEV is the energy transition
efficiency of EV, Fr is related to the rolling friction of EV,
Fa is related to the air resistance. The total energy cost can
be expressed as:

CE(t) =
∑

i, j∈V,i̸=j

ξi,j(t)n
rl
i,j(s, t)∆ei,j(t). (18)

The total time cost Crlc of the reallocation can be expressed
as follows:

Crlc =

T∑
t=1

(
CT (t) + κCE(t)

)
, (19)

where κ is a coefficient transforming the energy into time cost.
Given that the additional energy cost, CE(t), for rerouting
needs to be replenished eventually, the coefficient κ is defined
as:

κ =
1

Pmax
(20)

where Pmax = 60 kW.
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III. DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINED
DAY-AHEAD MG SCHEDULING PROBLEM

The frequency-constrained day-ahead MG scheduling prob-
lem is formulated in this section. To obtain a resilient solution,
frequency constraints are derived from frequency dynamics
during the transient islanding period and they are incorporated
into the MG scheduling problem, and the optimal frequency
support provided by conventional generators (CGs) and EVs
is decided accordingly. WTs are also capable of providing
frequency support, as introduced in [13], [34], but at the cost
of stored kinetic energy. To emphasize the effects of frequency
support provision from EVs, frequency support from WTs
is not considered in this paper. Various uncertainties from
WT, PV, loads, and EVs are taken into account to ensure the
robustness of the algorithm.

Figure 4. Structure of a microgrid.

As shown in Fig. 4, the MG is comprised of CGs, WTs,
PVs, EV CSs, and loads. The power output and on/off states
of CGs, the power transaction with the main grid, and the
charging/discharging power of EVs are optimally decided
subject to the predictions of loads and WT, PV’s output
power, focusing on minimizing the total cost of MG over the
whole time horizon. Uncertainties from WT, PV, and loads
are handled by the two-stage stochastic programming, which
minimizes the average operation cost for all scenarios. MG’s
total cost is given below:

CMG =
∑
s∈S

T∑
t=1

πs

[∑
g∈G

(
CrunPG

g,t,s∆t

+ Cstartbg,t,s
)
+ CM

t PM
t,s

]
,

(21)

where S denotes the set of all potential MG operation sce-
narios corresponding to diverse weather conditions, with πs

representing the probability associated with each scenario [35].
G denotes the set of all CGs, Crun and Cstart denote the
operational and start-up costs of CGs, respectively, PG

g,t,s is
the power output of CGs, and the binary indicator bg,t,s
signifies the operational states of CGs. CM

t stands for the
electricity trading price while PM

t,s is MG’s power transaction
with the main grid, with positive/negative value indicating
the purchase/sale of electricity from/to the main grid. Further
constraints of AC power flow and frequency constraints are
given below.

A. Power Balance Constraints

The active power balance constraint is as follows:∑
g∈G

PG
g,t,s + P̃PV

s (t) + P̃WT
s (t) = PM

t,s + P̃ load
s (t)

+
∑
i∈V

T∑
k=1

Pi,k,s(t), (22)

with P̃PV
s (t), P̃WT

s (t) denoting predicted output power of PV
and WT in scenario s from [35] described by an appropriate
scenario tree. P̃ load

s (t) is the predicted load of the MG, and
Pi,k,s(t) represents the value of charging/discharging power
Pi,k(t) in scenario s. Further conventional AC power flow
constraints including the reactive power balance and the line
transmission capacity constraints as in [13], are also included
for modeling accuracy.

B. Frequency Constraints

The frequency stability of the power system can be evalu-
ated by three indicators: Rate of Change of Frequency (Ro-
CoF), frequency nadir, and steady-state frequency deviation.
Frequency constraints are imposed to restrict the three values
within the allowable range. The frequency behavior of the
power system, enhanced by frequency support from both CGs
and EVs, can be described by a swing equation stemming from
the concept of Center of Inertia [36]:

2H∆ḟ(t)=−D∆f(t) + ∆RCG(t)−∆PL, (23)

with H and D denoting the overall inertia and damping of
the system, respectively. ∆RCG is the primary frequency
response (FR) from CGs. ∆ḟ represent the value of RoCoF.
∆f(t) is the frequency deviation. ∆PL represents the power
loss attributed to islanding events, as depicted by a step
disturbance. ∆PL equals the power required from the main
grid in this case and is a decision variable. The overall inertia
H in (23) can be specifically described as:

H = HCG +
∑
i∈V

T∑
k=1

HEV
i,k , (24)

where HCG denotes the inertia from CGs. HEV
i,k denotes the

SI provided by the k-th EV fleet in CS i. Based on the findings
of [13], a series of frequency constraints can be derived from
(23).

1) RoCoF Constraint: The peak value of RoCoF is
achieved at the moment when the islanding event that causes
power loss takes place, that is when ∆PL occurs and FR from
CGs haven’t responded yet. Hence the constraint of RoCoF
can be expressed as:∣∣∣∣− ∆PL

2H(t)

∣∣∣∣ ≤ ∆ḟmax, (25)

with ∆ḟmax denoting the maximum allowable value of Ro-
CoF.
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2) Steady-State Frequency Deviation Constraint: The max-
imum steady-state frequency deviation is attained as the sys-
tem returns to the steady state after the occurrence of ∆PL

when ḟ = 0. ∣∣∣∣∆RCG −∆PL

D

∣∣∣∣ ≤ ∆fmax
qss , (26)

with ∆fmax
qss representing the maximum allowable value for

the steady-state frequency deviation.
3) Frequency Nadir Constraint: Frequency nadir is as-

sumed to happen when RoCoF reaches 0, hence we can get
the time instance when frequency nadir is reached from (23).
Then the analytical expression of frequency nadir can be
obtained as in [13]. Finally, the frequency nadir constraints
are reformulated into the second-order cone form as follows:∥∥∥∥ 2a2

H −∆RCG

∥∥∥∥
2

≤ H +∆RCG, (27)

where a2 =
∆P 2

LTg

4∆fmax − ∆PLTg

4 D and ∆fmax is the maximum
allowable value for frequency deviation of nadir.

C. SI Provision from EVs

To better control the RoCoF and frequency nadir within
allowable limits, the SI control, which injects additional active
power proportional to the RoCoF signal ∆ḟ into the grid,
is employed instead of droop control. The corresponding
proportionality factor (HEV

i,k in (28)) is referred to as SI as
it contributes to the value of H (through (24)). SI control
from EVs remains inactive as long as the active power balance
is maintained. When an event happens causing ∆PL ̸= 0,
the energy stored in EV batteries is then utilized to provide
additional power for frequency support.

∆Pi,k(t) = −2HEV
i,k ∆ḟ , (28)

where ∆Pi,k(t) presents the extra SI power provided by the
k-th fleet for frequency support. Subsequently, the charg-
ing/discharging limits of devices need to be considered as
follows when EVs are providing frequency support:

−Ni,k(t)P
min ≤ Pi,k(t)− 2HEV

i,k ∆ḟ ≤ Ni,k(t)P
max. (29)

As we only consider positive values of H here, we can obtain
EV charging/discharging power constraints by combining (9)
and (29) as:

−Ni,k(t)P
min + 2HEV

i,k ∆ḟ ≤ Pi,k(t) ≤ Ni,k(t)P
max. (30)

D. Joint Distributionally Robust Chance Constraints

To address uncertain errors between the real arriving EVs
and N char

i (t), constraints (10) and (30) are reformulated into
joint DRCC forms in this section. In this way, the overall
violation risks of constraints that involve uncertainties derived
from arriving EVs are limited to a low rate. The joint DRCCs
are then convexified by suitable relaxation, maintaining the
solvability of the overall scheduling problem.

First, we define the uncertain errors, ∆arr
i , between

the real arriving EVs and N char
i (t) as: ∆arr

i =

[
δarri,1 δarri,2 · · · δarri,T ,

]⊤
in which the element δarri,k repre-

sents the error between the actual number of arriving EVs and
the estimated arriving EVs at k-th time slot at i-th CS. So for
each time slot k, the actual number of arriving EVs, Ñ char

i (k),
can be expressed as:

Ñ char
i (k) = N char

i (k) + (ek)⊤∆arr
i︸ ︷︷ ︸

δarr
i,k

. (31)

For the k-th EV fleet, δarri,k is introduced to Ni,k(t) concur-
rently with N char

i (k). For the subsequent time slot t > k, δarri,k

will affect the number of departure EVs, causing deviations
in Li,k(t) until the end of the scheduling horizon when all
EVs are supposed to leave. We have the following relationship
between the deviations of the departure EVs and δarri,k .

T∑
t=k+1

δLi,k(t) = (ek)⊤∆arr
i , (32)

where δLi,k(t) is the deviations of the number of departure
EVs for the k-th EV fleet at time t in CS i. We can then
express δLi,k(t) as:

δLi,k(t) =

{
0, t ≤ k,

αi,k(t)(e
k)⊤∆arr

i , k < t ≤ T,
(33)

with αi,k(t) representing the portion of uncertain errors δarri,k

that affect Li,k(t). We consider αi,k(t) as a decision variable
so that the errors can be optimally dealt with. Following (34),
αi,k(t) satisfying:

T∑
t=k+1

αi,k(t) = 1. (34)

For t > k, the deviation in Ni,k(t) caused by uncertain errors
will decrease because of the errors handled by Li,k(t), and
can be calculated following (33):

δNi,k(t) =


0, t < k,

(ek)⊤∆arr
i , t = k,

h(αi,k)(e
k)⊤∆arr

i , k < t ≤ T,

(35)

where h(αi,k)(t) = 1−
∑t

τ=k+1 αi,k(τ).
The uncertainties in charging numbers of EVs derive from

various sources, e.g., uncertain traffic conditions or unpre-
dictable human behaviors. As a consequence, it is difficult
to get the full distributional information of the error and
commit it to a single distribution pattern. In this case, DRCC
is an alternative to original chance constraints which require a
specific distribution. DRCC tackles the uncertainty with partial
information by limiting the violation rates over a family of
probability distributions defined by an ambiguity set (e.g., the
moment-based ambiguity sets, distance-based ambiguity sets)
that the uncertainty might belong to. Firstly, we define the
ambiguity set P by the first two moments of ∆arr

i as follows:

P = {P : EP[∆
arr
i ] = µarr

i ,

EP[(∆
arr
i − µarr

i )(∆arr
i − µarr

i )⊤] = Σi} (36)
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with µarr
i =

[
µi,1 µi,2 · · · µi,T

]⊤
being the mean and

Σi being the covariance matrix. To guarantee high overall
security of the system, we reformulate constraints (10) and
(30) into joint DRCC form and substitute (33), (35) as follows:

inf
P∈P

P
[
Ei,k(t) ≤ (Ni,k(t) + h(αi,k(e

k)⊤∆arr
i )Emax,

(Ni,k(t)+h(αi,k(e
k)⊤∆arr

i )Emin≤Ei,k(t),

Pi,k(t)−Ni,k(t)P
max ≤ Pmaxh(αi,k)(e

k)⊤∆arr
i ,

−Ni,k(t)P
min− Pi,k(t)+2HEV

i,k ∆ḟ

≤Pminh(αi,k)(e
k)⊤∆arr

i ,

∀k ∈ {1, 2, ..., t}
]
≥ 1− ϵ (37)

where Emax = εmaxZEV , Emin = εminZEV , and ϵ is a
predefined risk tolerance of the joint DRCC. There are totally
4t constraints in (37), and it means that all constraints in (37)
of the first fleet to the t-th fleet are required to be satisfied
simultaneously with the probability not lower than 1− ϵ.

The joint nature of (37) makes it hard to be reformulated
directly into solvable form. Therefore, an optimized Bon-
ferroni approximation scheme [31] is utilized to decompose
the joint DRCCs into single DRCCs. Single DRCCs are
then approximated into a convex form. In consequence, the
solvability of the scheduling problem is maintained. Therefore,
(37) can be decoupled as follows:

inf
P∈P

Pk

[
δarri,k : Ei,k(t) ≤(Ni,k(t) (38)

+h(αi,k)(e
k)⊤∆arr

i Emax

]
≥ 1− ϵi,k,1(t)

inf
P∈P

Pk

[
δarri,k : (Ni,k(t)+h(αi,k)(e

k)⊤∆arr
i Emin≤ Ei,k(t)

]
≥ 1− ϵi,k,2(t) (39)

inf
Pk∈Pk

Pk

[
δarri,k : Pi,k(t)−Ni,k(t)P

max (40)

≤Pmaxh(αi,k)δ
arr
i,k

]
≥1− ϵi,k,3(t)

inf
Pk∈Pk

Pk

[
δarri,k : −Ni,k(t)P

min − Pi,k(t) + 2HEV
i,k ∆ḟ

≤ Pminh(αi,k)(e
k)⊤∆arr

i

]
≥ 1−ϵi,k,4(t) (41)

4∑
p=1

t∑
k=1

ϵi,k,p(t) ≤ ϵj , (42)

where ϵi,k,p(t) is an optimal variable and p ∈ {1, 2, 3, 4}
represents the p-th inequality constraint in (37). As (38-41)
can be approximated and reformulated into convex forms in a
similar way, we only take (40) as an example to elaborate the
reformulation in the following. According to [37], the DRCC

constraint (40) can be relaxed by the following probability
inequality

− Pmaxh(αi,k)µ
arr
i,k +

√
1− ϵi,k,3(t)

ϵi,k,3(t)

∣∣∣Pmaxh(αi,k)σi,k

∣∣∣
≤ Ni,k(t)P

max − Pi,k(t), ∀k ∈ {1, 2, ..., t}, (43)

where σ2
i,k is the variance of δarri,k . To deal with the nonconvex

term
√

ϵi,k,3(t)
1−ϵi,k,3(t)

and product of decision variables that appear
on the left-hand side of (43), we first reformulate (43) as

κi,k,3(t) ≤

√
ϵi,k,3(t)

1− ϵi,k,3(t)
(44)∣∣∣Pmaxh(αi,k)σi,k

∣∣∣ ≤ κi,k,3(t)
[
Ni,k(t)P

max − Pi,k(t)

+Pmaxh(αi,k)µ
arr
i,k

]
,∀k ∈ {1, 2, ..., t} (45)

With
√
ϵi,k,3(t)(1 + ϵi,k,3(t)) being an inner approximation

of
√

ϵi,k,3(t)
1−ϵi,k,3(t)

as shown in Fig. 5, the inequality condition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

Figure 5. The profiles of
√

ϵ/(1− ϵ) and
√

ϵ(1 + ϵ). The maximum
deviation is less than 0.5% when ϵp < 0.1.

(44) can be relaxed into a standard second-order cone form:

4κ2
i,k,3(t) + 1 ≤ (2ϵi,k,3(t) + 1)2 (46)

For (45), we use the binary expansion method to handle
the right-hand side term that involves the product of two
continuous variables. First, κi,k,3(t) is discretized:

κi,k,3(t) = ∆κ

Z∑
z=1

2z−1ui,k,3,z(t) (47)

where κi,k,3(t) ∈ [0,
√

ϵ
1−ϵ ], ∆κ =

√
ϵ

1−ϵ

2Z
, Z ∈ N>0 such that

2Z is the number of discrete points, and ui,k,3,z(t) is a binary
variable. Then the right-hand side of (45) can be modeled as:

∥Pmaxh(αi,k)σi,k∥2 ≤ ∆κ

Z∑
i=1

2i−1vi,k,3,z(t) (48)

−M(1−ui,k,3,z(t)) ≤Pmaxh(αi,k)µ
arr
i,k +Nk(t)P

max

−Pi,k(t)−vi,k,3,z(t) ≤ M(1−ui,k,3,z(t)) (49)
−Mui,k,3,z(t) ≤ vi,k,3,z(t) ≤ Mui,k,3,z(t) (50)

with

vi,k,3,z(t) = ui,k,3,z(t)
[
Nk(t)P

max − Pi,k(t)

+Pmaxh(αi,k)µ
arr
i,k

]
.
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The big-M method is used in (49) and (50) to model the rela-
tion that vi,k,3,z = [Nk(t)P

max−Pi,k(t)+Pmaxh(αi,k)µ
arr
k ]

if ui,k,3,z = 1; vi,k,3,z = 0 if ui,k,3,z = 0.
Combining with other operational and safety constraints,

the overall MG scheduling problem can be formulated as a
Mixed-Integer Linear Programming (MILP) problem. It can
be written as:

min
x

C(x) = CMG + λ(CCS + Crlc) (51)

s.t.


Gx = g

Hx ≤ h

∥Ax+ b∥2 ≤ c⊤x+ d,

(52)

where x represents the decision variables PG
g,t,s, bg,t,s, PM

t,s ,
Pi,k,s, LEV

i , HEV , αi,k, ϵi,k,p, κi,k,p, ui,k,p,z , and vi,k,p,z . It
subjects to equality constraints Gx = g including (1), (6), (7),
(8), (13), (14), (22), and (47); inequality constraints Hx ≤ h
including (2), (4), (25), (26), (42), (48), (49), and (50); second-
order-cone constraints ∥Ax+b∥2 ≤ c⊤x+d including (27) and
(46). λ represents a coefficient that can be adjusted according
to the willingness of EV owners to participate in MG FR. A
smaller value of λ indicates that EV owners are more inclined
to sacrifice their time to contribute to MG FR.

IV. SIMULATION RESULTS

The effectiveness of the proposed MG scheduling method
is validated in this section with numerical comparisons with
benchmark solutions.

A. Experimental Setup

A modified version of the IEEE 14-bus distribution system
is employed in case studies as shown in Fig. 6. A simplified
real-world traffic network in Ireland is obtained utilizing
hourly traffic data from a case study of Darkwell cloud-hosted
data platform [38]. Then EVs’ traffic data is obtained by as-
suming certain EV penetration rate. The optimization problem
is solved by Gurobi (10.0.2) in a horizon of 24 hours with the
time step being 1 hour, i.e., T = 24. The model proposed in
[39] and [40] is applied to simulate and calibrate the value
of forecast power output from WTs. The predictions of PV
output power is obtained from [41]. The weather conditions
are obtained from the online numerical forecast of the weather
[42]. Then a stochastic unit commitment model in [35] is
adopted, where the renewable energy source uncertainties are
described by constructing an appropriate scenario tree.

Figure 6. Modified version of IEEE 14-Bus Microgrid System

Figure 7. A simple traffic network.

As shown in Fig. 6, PV with the battery storage system is
installed on BUS 6, WT is installed on Bus 8, and Open Cycle
Gas Turbines (OCGTs) are installed on Bus 1,2 and 3 with
a total capacity of 2.50 GW. System Generator parameters
and CS parameters are listed in Table I. The simplified traffic

Table I
SIMULATION PARAMETERS.

Generation OCGT
BUS 1 2 3

Number of Unit 20 20 10
Rated Power (GW) 0.05
No-Load Cost (£/h) 300

Marginal Cost (k£/GWh) 50
Startup Cost (£) 600

Inertia Constant (s) 5
Max Slow FR Capacity (GW) 0.05

Tg(s) 10
System parameters

System damping D 0.5%
∆ḟmax (Hz/s) 0.5
∆fmax (Hz) 0.8
∆fmax

qss (Hz) 0.5

CS parameters
CSs CS1 CS2 CS3
BUS 7 10 14

Capacity 250 250 250
Max Charge Rate (kW) 60 60 60

Max Discharge Rate (kW) 10 10 10
EV parameters

Battery capacity (KWh) 100
Fr (N) 378.28
Fa (kg) 0.1845

γe
i 60%

ϱd 1.05
ϱc 0.95

network is shown in Fig 7. The hourly traffic condition data for
road connecting CSs is derived from Darkwell cloud-hosted
data platform [38] and is shown in Fig. 8. The initial SoCs of
EVs upon arriving CSs are modeled as random variables that
follow the truncated Gaussian distribution ε0 ∈ (0.2, 0.6) with
µ being 30% and σ being 10% as illustrated in [43].

B. Effectiveness Validation of Proposed Model

This simulation demonstrates the effectiveness of the pro-
posed model by comparing the following cases: 1) The
baseline case serves as a benchmark that represents common
household/parking lot EV charging models utilized in existing
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Figure 8. Arriving EVs at the three CSs.

Table II
MG OPERATIONAL AND EV TIME COST.

Cases Cost(k£) Total Queuing Time(h) Traffic Time Cost(h)
Baseline 67.3 814 5154

Case2 63.2 1155 7030
Case3 60.4 548 6495

MG scheduling works [15], [16], where the behaviors of
EV follow certain patterns and the number of arriving and
departure EVs depend on the historical data, and the influence
of CS is omitted. 2) This case only considers the extra dwelling
time of EVs in the isolated CS that without EV routing within
the charging network. 3) The case proposed in this paper. Total
costs of three cases are shown in Table II. Compared with
the baseline case, EV extra dwelling time (Case Two) can
save up to 6.1% of total cost and further enabling EV routing
among the charging network (Case Three) can save 10.4% of
total cost. As illustrated in Fig. 9, the SI supplied by EVs
is quantified by the value of total HEV . It shows that the SI
provided by EVs accounts for more than 85% of the overall
system inertia during t = 8− 24 h.

Comparisons of EV numbers across the three cases are
depicted in Fig. 10. As illustrated, Case Three significantly
contributes to the provision of SI. Specifically, Case Three
provides an average of 31% more SI during 3 − 6 h, 8%
during time 13 − 16 h, and 153% during 21 − 24 h. The
comparison between Case Two and the Baseline Case reveals
that additional dwelling behavior results in an increase in
queuing time. However, as demonstrated by Case Three, the
consideration of routing within the charging network can
mitigate queuing time while preserving the contribution of
EVS to SI provision.

Fig. 11 shows the MG operational cost of three cases and
the number of operating OCGTs can be represented by the

0 3 6 9 12 15 18 21 24

0

0.01

0.02

0.03

Figure 9. The SI provided by EVs and total system inertia.
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Figure 10. Top: The value of total virtual inertia provided by EVs in three
cases. Middle: The total number of EVs connected to the charger in three
cases. Bottom: The number of EVs in the queue in three cases.
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Figure 11. Top: The total power output of OCGTs in three cases and the
power output of renewable energy resources (RESs). Middle: The no-load cost
in three cases. Bottom: The value of total primary FR provided by OCGTs
in three cases.

no-load cost. During the intervals t = 1 − 7 h, the power
output generated by PVs is constrained and the number of
connected EV is limited, which results in a greater reliance
on OCGTs for power generation and inertia provision. With a
large number of OCGTs in operational states, OCGTs are the
main system inertia providers during this period.

During t = 8 − 18 h, when the output power of PV is
relatively large, only a few OCGTs are in operation, leading
to a decrease in system inertia. In the meantime, more EVs
have arrived in CSs so CSs are capable of larger SI provision.
Consequently, the proportion of SI provided by EVs increases
dramatically during this period. Starting from t = 17 h, as
the output power of PVs declines to a certain level, several
OCGTSs are reactivated, leading to a reduction in the total
value of HEV derived from EVs. Concurrently, the decreased
need for SI provision results in a decrease in the number of
connected EV.

It is noteworthy that the no-load cost of Case Two and Three
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Figure 12. The results of MG operational cost and total time cost with
different coefficient λ Values. The horizontal axis represents the MG operation
cost, and the vertical axis represents the time cost including dwelling time
and relocation time of EVs and the energy cost of relocation that transformed
into time cost by κ.

is reduced during t = 1 − 7 h and t = 21 − 24 h compared
to the Baseline Case. On the other hand, more EVs are kept
in the CS and more HEV are provided during this period.
This proves that the extra dwelling time can contribute to SI
provision and decrease the number of operating OCGTs, thus
reducing the MG operational cost.

It should be noted that during t = 16 − 20 h, although
there are more EVs in the CS in Case Two and Three, the
quantity of HEV provided is less than the baseline case. This
discrepancy arises due to smaller average charging power of
EVs caused by the prolonged presence of EVs. During this
period, the numbers of operating OCGTs in the three cases
are the same. With lower output power, OCGTs have more
potential to provide RCG. Hence less SI is required from EVs.

Through the comparison of results across the three cases,
it is evident that the additional dwelling time of EVs can
significantly contribute to the SI provision, consequently re-
ducing the overall operational cost of the system. Moreover, by
considering routing among the charging network, the queuing
time can be reduced, mitigating the negative impact of extra
dwelling time.

C. Selection of Coefficient λ

Fig. 12 shows the relation between MG operational cost and
EV time cost when different values of λ are selected. Specifi-
cally, EV time cost includes dwelling time and relocation time
of EVs and the energy cost of relocation that transformed into
time cost by κ. The value of λ can be adjusted to align with the
tendency of EV owners towards providing frequency support
or to fulfill the specific requisites of the MG. As illustrated
in (51), larger values of λ lead to higher operational costs of
MG and less cost for EV incentive, and vice versa. Combined
with the result in Table III, it can be found that the MG
operational cost increases rapidly when λ > 1e− 3 while the
queuing time becomes 0. The queuing time increases largely
and even exceeds the Baseline Case when λ < 1e− 3. Hence
to minimize the MG operational cost and at the same time
maintain acceptable queuing time, λ = 1e − 3 is chosen in
our case.

Table III
MG OPERATIONAL COST AND TOTAL TIME COST WITH DIFFERENT λ

VALUES.

Value of λ 5e-4 1e-3 4e-3 6e-3
MG Operational Cost 60.0 60.4 80.3 90.3

Total Time Cost 6568 6495 4589 4521
Queuing Time 993 548 0 0
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68

Figure 13. Total cost obtained by different violation rates of the joint DRCC.

D. Effects from Uncertainties

In this section, we examine the impact of incorporating
uncertain arriving EVs on MG operations. The mean and
variance for arrival EV forecast errors are derived from data in
the Darkwell cloud-hosted data platform [38]. Subsequently,
various violation rates are applied, and their implications on
the operational costs of the MG are evaluated. As illustrated in
Fig. 13, we compare the average system costs over a 24-hour
period across different cases:

• proposed optimized BoA approximation method to sepa-
rate joint DRCCs

• classical BoA approximation to separate joint DRCCs
• lower bound solution where violation rates for all indi-

vidual DRCCs are set to ϵi,k,p = 1 (no uncertainty case).

As depicted in Fig. 13, the total cost of the extreme case is
represented by the blue dotted line. The operational cost of the
system exhibits a declining trend with increasing violation risk
with a lower bound of the case when ϵi,k,p = 1. This aligns
with expectations, as indicated by (43), a smaller violation rate
leads to a larger value of

√
1−ϵi,k,3(t)
ϵi,k,3(t)

. This narrows down the
feasible space of decision variables and consequently, leads to
an increase in the operational cost of the system.

Notably, the adoption of the optimized BOA approximation
leads to a reduction in total costs in contrast to the BOA
method, which proves that the optimized BOA method is less
conservative than the BOA method. Specifically, when the
aggregate violation risk ϵ = 0.05, employing the optimized
BOA approximation yields a reduction in total cost by 4.8%
compared to the BOA method. However, the cost difference
between the two methods diminishes as the violation risk
increases. This can be attributed to the fact that the accuracy
of the inner approximation employed in (46) degrades as ϵ
increases, particularly when ϵ > 0.1, the inner approximation
becomes overly conservative.
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E. Sensitivity Study of Various Pmin Values

In this section, we investigate the impact of different dis-
charging limits of the charger on MG operation. As shown
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Figure 14. The results of no-load cost, SI provision from EVs, numbers of
EVs in CS, and numbers of EVs in the queue with different values of Pmin.

in Fig. 14(a), the no-load cost of Open Cycle Gas Turbines
(OCGTs) decreases as the discharging power limit increases
from 5 kW to 20 kW, indicating that EVs contribute more
to SI provision. This is further validated in Fig. 14(b), which
shows the SI provision from EVs. It should be noted that
CS occupation increases as Pmin rises from 5 kW to 10 kW,
as shown in Fig. 14(c). However, occupation decreases when
Pmin increases further from 10 kW to 20 kW. This may be
because when Pmin is limited to 5 kW, the capacity of the
CSs can easily become saturated, although more SI provision
is requested for optimal operation. With a moderate increase of
Pmin from 5 kW to 10 kW, the greater SI provision resulting
from increased CS occupation leads to more OCGTs being
shut down, thus increasing occupation. When Pmin further
raised to 15 kW and 20 kW, sufficient SI provision can be
delivered with even lower CS occupation. During t = 9−23 h
in these cases, almost no OCGTs are in operation, meaning
the onsite EVs can provide sufficient SI, and no additional
EVs are needed.

V. CONCLUSION

This paper presents a microgrid (MG) scheduling problem
involving detailed frequency dynamic constraints with electric
vehicles (EVs) provision of synthetic inertia (SI). The model
of networked charging stations (CSs) are proposed and EV
dynamic behaviors including charging/discharging, dwelling,

and traveling to neighboring are optimized aiming to fulfill
the frequency dynamic requirements during MG islanding
period and to minimize the MG operational cost. To guarantee
the overall resilience of the system, the uncertain forecast
errors from the number of arriving EVs are handled by
joint distributionally robust chance constraints (DRCCs). To
maintain the solvability of the problem, joint DRCCs are
then conservatively separated into individual ones using the
optimized Bonferroni approximation method and reformulated
into convex forms using reasonable relaxation and lineariza-
tion. Finally, the effectiveness of the method is validated by
case studies based on a modified IEEE 14-bus system. The
simulation result shows that the proposed model can save up
to 10.4% of the total MG operational cost compared with the
baseline case, and SI provided by EVs can account for up to
85% of the total system inertia most of the time.
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