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Abstract

T cells are an integral part of the adaptive immune system. They de-
tect host cells that have been compromised due to infection or mutation,
and eliminate them through direct attack or recruitment of other effector
immune cell types. This is achieved through T cell receptors (TCRs) ex-
pressed on their surface, which allows T cells to bind to peptide-major
histocompatibility complexes (pMHCs) in a target-specific manner.

Uncovering the rules of TCR-pMHC specificity has the potential for
profound and positive impact in biomedicine. However, this remains an
unsolved challenge made particularly difficult by the immense numbers
of possible TCRs (∼ 1060) and pMHCs (∼ 1015). While it remains implau-
sible to empirically map out anywhere near a majority of the possible
binders, an application of machine learning may help us better under-
stand the binding rules by extrapolating from existing data.

Recent advances in the natural language processing (NLP) field have
demonstrated the impressive ability of transformer language models to
learn from unsupervised objectives using large corpora of unlabelled
text. Since TCRs, like other proteins, can naturally be represented as a
sequence of amino acids, there has been growing interest in applying
language modelling technologies to the TCR domain. However, how to
most effectively design unsupervised training objectives to optimise lan-
guage models for downstream TCR-pMHC specificity prediction remains
an open question.

The core theme of this thesis is the investigation of contrastive learning
as a method of training transformer-based TCR representation models. In
this regard, I show that combining unsupervised contrastive learning (au-
tocontrastive learning) with the traditional masked-language modelling
(MLM) objective is a highly effective way of pre-training a TCR represen-
tation model. In addition to the above, the thesis presents related work
that I have conducted during my PhD candidacy around automated TCR
data standardisation as well as a statistical framework for calibrating TCR
distance metrics to probabilities of TCR co-specificity.
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Impact statement

From an academic point of view, my work presented in this thesis con-
veys useful ideas for furthering our progress towards tacking the un-
solved grand challenge of predicting TCR-pMHC binding using machine
learning technologies. This includes 1) how to focus machine learning
models on useful information about TCR specificity contained in their
amino acid sequences, 2) ways we can address the need for robust uncer-
tainty quantification in TCR specificity prediction, and 3) what the most
effective strategies for TCR data generation may be from the perspective
of training computational models of specificity.

From a more practical point of view, my work provides the commu-
nity with useful, free and open-source tools to expedite and improve
pipelines for quantitative and computational TCR analysis. As a result
of my efforts presented in chapter 3, I maintain an open-source software
library named tidytcells (https://pypi.org/project/tidytcells) that
helps scientists around the globe prepare standardised and computer-
readable TCR/major histocompatibility complex (MHC) datasets – a pre-
requisite for effective TCR data analysis. I have also made publicly avail-
able the state-of-the-art TCR representation model we call Simple contrastive
embedding of the primary sequence of T cell receptors (SCEPTR), which
resulted from my work in chapter 4 (https://pypi.org/project/sceptr).
SCEPTR provides the community with an easy-to-use tool to generate
high-quality vector embeddings of TCRs for downstream specificity pre-
diction and alignment-free TCR clustering. While my work in chap-
ter 5 on Bayesian nearest neighbour association (BANANAS) – a statisti-
cal framework for converting TCR distance measures into well-calibrated
predictions of TCR specificity – has not yet been shared with the wider
public, my collaborators and I plan to distribute an open-source imple-
mentation of the methodology once it is sufficiently polished and fully
investigated.

There are a multitude of potentially high-impact applications of the
presented technologies. For example, using SCEPTR’s TCR embeddings,
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it may be possible to train algorithms to detect diseases based on the dis-
tribution of TCR sequences in patients’ peripheral blood samples. This
could provide minimally invasive screening against numerous conditions
and save lives while potentially reducing healthcare costs by prevent-
ing further disease progression. Alternatively, SCEPTR’s measures of
TCR similarity and its conversion to calibrated probabilities of specificity
with BANANAS may be useful for detecting clusters of similar TCRs that
proliferate in response to antigens of interest. This could better inform
and expedite the identification of candidate TCRs for T cell therapies, as
well as reverse epitope discovery for vaccine design, and enable more
cost-effective development of both curative and preventative therapeu-
tics. In general, tidytcells, SCEPTR, and BANANAS together provide the
community with the necessary components to build a fully open-source
pipeline for high-throughput computational screening of TCR specificity:
tidytcells for the collation and pre-processing of specificity-annotated ref-
erence TCR data, SCEPTR for detecting query TCRs that are similar to
those in the reference set, and BANANAS for the generation of well-
calibrated TCR specificity predictions based on SCEPTR’s TCR similarity
measures. Such a pipeline can be used for the purposes of any of the
applications mentioned above, and more.

Finally, while all technologies presented in this thesis have been or
plan to be released in a free and open-source manner, improved versions
of the tools – either through further technical innovation or through the
provision of high-quality and high-volume proprietary TCR data – have
the potential to be effectively monetised for commercial purposes.
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Chapter 1

Overview

The purpose of this chapter is to give the reader an executive overview of
the contents of the following chapters, and provide a narrative of how the
various pieces of work have come together and influenced one another.

Chapter 2 provides the reader with some background knowledge on
the key topics that come up later in this thesis. I first provide a high-level
overview of T cell biology and the importance and challenge of studying
the interaction between T cell receptors (TCRs) and peptide-major histo-
compatibility complexes (pMHCs). This is followed by an introduction
to the study of TCR coincidence statistics: a framework through which
to quantitatively examine the relationship between measures of TCR sim-
ilarity and their probabilities of sharing pMHC specificity. I dedicate
the final sections of this chapter to relevant machine learning concepts in-
cluding transformer neural networks, commonly used measures of model
performance, and a brief review of existing literature in the space of TCR
machine learning.

In chapter 3, I go over tidytcells, a free an open-source TCR/pMHC
data standardisation software that I developed during the early part of
my PhD candidacy. The first order of business when applying machine
learning to the TCR field is to prepare clean, consistent and machine-
readable TCR data. When surveying available TCR/pMHC data from
both publicly available as well as internal sources, I found that TCR
and major histocompatibility complex (MHC) nomenclature was not stan-
dardised across different datasets. This was an obstacle when trying to
design pipelines for data analysis and machine learning, as my data pars-
ing logic often had to be modified depending on the dataset I was look-
ing at. Furthermore, combining independent datasets became difficult
as I often had to resolve nomenclature between them. I wrote tidytcells
to automate the nomenclature standardisation process, and to promote

1



2 CHAPTER 1. OVERVIEW

the usage of International immunogenetics information system (IMGT)-
compliant TCR and MHC nomenclature.

Chapter 4 covers my work investigating the application of language
modelling technologies to TCR machine learning. This has been the main
focus of my PhD candidacy. Currently, efforts to apply machine learn-
ing to computational TCR specificity predictions suffer from the limited
availability of specificity-labelled TCR data. One way to alleviate this
data bottleneck is to exploit the larger volume of available unlabelled
TCR data for pre-training an unsupervised representation model. TCRs,
like other proteins, can naturally be represented as a sequence of amino
acid residues. This fact, coupled with the recent advances in natural lan-
guage processing (NLP) and the advent of pre-trained transformers, has
made the application of the latter technology to the field an area of active
interest. However, how to best go about such an application currently
remains an open question. To address this gap in our knowledge, I in-
vestigated the use of unsupervised contrastive learning (autocontrastive
learning) as a pre-training strategy for a transformer-based TCR repre-
sentation model. The resulting model which we call Simple contrastive
embedding of the primary sequence of T cell receptors (SCEPTR), shows
superior downstream TCR specificity prediction performance compared
to existing protein language models (PLMs) that are only trained through
the more traditional objective of masked-language modelling (MLM). I
also provide evidence that supervised contrastive learning can be used as
a fine-tuning strategy to specialise TCR language models on discriminat-
ing between a number of predetermined pMHC specificities of interest.

Something else that I demonstrate in chapter 4 is that when the num-
ber of known binders for a pMHC is small, simple nearest-neighbour pre-
diction based on embedding space distances remains competitive with
more complex algorithmic approaches. Now, one of the end goals of
quantitative TCR analysis is its application in the biomedical field, where
the cost of incorrect inference is often high. For this reason, it is of utmost
importance to consider how computational models of TCR specificity can
provide robust uncertainty quantification. To this end, I have been jointly
leading a collaborative effort on Bayesian nearest neighbour association
(BANANAS): a principled framework through which such TCR distance
measurements can be rescaled to generate well-calibrated estimations of
the posterior probability of TCR specificity given the distance values that
are observed between a query and reference TCRs. I present my contribu-
tions to our work in progress in chapter 5. While I focus on the applica-
tion of BANANAS to distances as measured by SCEPTR, the framework
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is general and could theoretically be used to calibrate any arbitrary mea-
sure of distances between TCRs.

I conclude my thesis with an executive discussion in chapter 6. There,
I provide the reader with an executive review of the work presented, its
contributions to the field, its limitations, and finally speculate on avenues
for future research.
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Chapter 2

Background

2.1 A brief introduction to T cells

The body’s immune system can largely be divided into two parts: the
innate arm and the adaptive arm [1]. Cells of the innate immune system
are more ubiquitous across the body, and can respond more rapidly to
incoming invaders. However, they lack the ability to mount focused,
target-specific responses, and thus are usually unable to completely clear
the source of immune stimulus (such as an infectious agent) on their own.
This is why an initial innate immune encounter against an invader is
designed to then invoke a subsequent adaptive immune response, which
can mount highly specific responses against the target in question. T
cells are a central cell type of the adaptive immune system, whose wide
range of roles include the orchestration, regulation, and execution of the
adaptive immune response [2].

2.1.1 The T cell receptor

T cells express T cell receptors (TCRs) on their cell surface, which allow
them to bind to specific peptide antigens – also referred to as epitopes –
presented on other host cells via the major histocompatibility complex
(MHC) [4] (Fig. 2.1). A unique TCR can only bind to a narrow range
of possible peptide-major histocompatibility complexes (pMHCs), which
are often referred to as the TCR’s “cognate” targets. This specific binding
between TCRs and pMHCs are what give T cells their target-specific abil-
ities. Epitopes can be presented on either class I or class II MHCs, and
which ones a TCR can interact with is determined by the phenotype of
the T cell on which it is expressed [1] (see section 2.1.2).

5
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Figure 2.1: A schematic of a TCR binding to a pMHC. The T cell re-
ceptor (TCR) is a heterodimer, comprised of either an α and a β chain, or
a γ and δ chain. The schematic above shows an αβ TCR with its α chain
marked as “TRA” and beta chain as “TRB”. Each chain is comprised of
a constant membrane region (bottom region shown in grey), which is
spliced together with a variable binding domain (shown in red and blue).
The binding domain itself is a result of splicing together a set of gene
regions, called the V (variable), D (diversity, only in β and δ chains), and
J (joining) regions. The boundary where the V, (D) and J regions join
together is called the CDR3 or junction region (marked with a red dot-
ted circle). The CDR3 region is structurally what tends to most directly
contact the peptide epitope when a TCR engages with a pMHC. Adapted
from my own publication [3] (licensed CCBY).

https://creativecommons.org/licenses/by/4.0/
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V genes D genes J genes Constant
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Transcribed TCR

D-J recombination

V-DJ recombination

Figure 2.2: A schematic of VDJ recombination. The mammalian
genome encodes a number of possible V (variable), D (diversity, only for
β and δ chains) and J (joining) gene segments that can comprise a TCR
chain. During VDJ recombination, one of each gene segments are selected
stochastically and spliced together to form a complete TCR chain. The D
and J segments are recombined first, although this only happens for the β
and δ chains (the α and γ chains do not have a D region). This is followed
by the recombination of the V and (D)J segments. The recombined VDJ
exon together with a constant region is transcribed which leads to the
expression of a full TCR chain.

TCRs are heterodimeric receptors [5]. They can either be composed of
an α and β chain, or a γ and δ chain, although the vast majority of the
body’s T cells express αβ TCRs. Unlike other proteins, the underlying
nucleotide sequence of the TCR is not germline-encoded, and is instead
produced through a stochastic process of somatic gene rearrangement
called VDJ recombination (Fig. 2.2) [5, 6]. VDJ recombination occurs dur-
ing the early stages of development for every new T cell generated by
the body, which means that in general, the TCR amino acid sequence and
hence target specificity is unique between different T cell clones.

During VDJ recombination, one each out of multiple available C (con-
stant), V (variable), D (diversity, only for β and δ chains) and J (joining)
gene segments are spliced together to generate both chains of the TCR [1,
7] (Fig. 2.2). In addition to the combinatorial variation resulting from the
stochastic selection of the individual gene segments, the imprecise nature
of the splicing process introduces somatic mutations at the junction re-
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gions where different gene segments are glued together. This results in
a staggering number of possible TCR amino acid sequences that can be
produced, with estimates as high as ∼ 1060 [8]. In this way, the mam-
malian adaptive immune system has evolved to cover a broad range of
possible antigens that can be presented via the pMHC.

There are three sites within the amino acid sequence of the TCR that
are particularly variable across different receptors [1, 5]. These are re-
ferred to as the complementarity determining regions (CDRs). Each TCR
chain has three CDRs, where the first two lie within the germline-encoded
V gene, and the third is defined to be the junction region between the V,
(D) and J regions. Due to its junctional nature, the third CDR is the most
diverse. Structurally, the third CDRs of both TCR chains are also the re-
gions of the receptor that most directly contact the target epitope when
interacting with a pMHC (Fig. 2.1) [9].

2.1.2 T cell development and thymic selection

T cells are generated in the bone marrow [1]. However, they do not be-
come fully functional until they are trafficked through the circulation to
the thymus, where only a subset survive what is known as thymic selec-
tion. At a high level, this process selects for T cells with TCRs that fulfil
the following criteria:

1. They must be functional (i.e. able to engage productively with
pMHCs)

2. They must not be auto-reactive (i.e. not interact strongly with pMHCs
that are presenting self-antigens)

This is achieved through the unique ability of thymic epithelial cells to
express a wide variety of host proteins – even those reserved for other
tissue types – and present the resulting self-peptides on their pMHCs [2].
T cells that do not interact sufficiently with these pMHCs (non-functional)
are left to die, while those that interact too strongly (auto-reactive) are
killed.

Also during thymic selection, T cells commit to one of two families
of differentiation pathways by choosing to express either CD4 or CD8
molecules on their surface [1]. T cells expressing CD4 (sometimes re-
ferred to generally as “helper” T cells) are able to interact with class
II pMHCs expressed on the surfaces of so-called professional antigen-
presenting cells (APCs) like dendritic cells. These APCs act as hubs where
many immune cells types can convene, and thus CD4+ T cells’ interaction
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with class II pMHCs allow them to act as facilitators and directors of the
overall immune response. T cells expressing CD8 (sometimes referred to
generally as “cytotoxic” T cells) are able to interact with class I pMHCs,
which are expressed on all nucleated cells in the body. Most CD8+ T cells
assume an effector role, and can detect and kill compromised host cells
through cytotoxic attack. While their detailed exploration is outside the
scope of this short review, it should be noted that the CD4+ and CD8+ T
cell lineages can be subdivided into finer pathways of differentiation, and
that there are some exceptions to the general model outlined above [1, 2]
(e.g. CD4+/CD8+ regulatory T cells, natural killer T cells, γδT cells, etc.).

2.1.3 The T cell receptor repertoire

The multiset of all TCRs that exist within a host’s T cell population at
a particular point in time is referred to as the host’s TCR repertoire [2].
One useful and common way of thinking about the TCR repertoire is as a
series of samples from some underlying probability distribution over the
set of possible TCR sequences.

A widely accepted model for this underlying distribution is one where
there are two major influencing factors [1, 2, 8, 10]. The first is the genera-
tive distribution associated with VDJ recombination, which is predictable
and non-uniform over TCR sequence space [11]. The statistics of this
process are largely universal with only minor variation between individ-
uals [12]. The second factor is the clonal expansion of T cells in response
to immune stimuli. That is, when there is an immune signal – for exam-
ple due to an infection – T cells with TCRs that recognise the invading
pathogen through its epitopes will become activated, causing them to
proliferate and thus increasing their observed frequencies.

In contrast to TCR generation probabilities, the effects of immune ex-
posures to the TCR repertoire is dynamic. The binding specificity of TCRs
to pMHCs mean that the set of TCRs whose frequencies increase as a re-
sult of an immune stimulus is a function of the epitopes produced by the
source of the stimulus. Therefore, how this process shapes a host’s TCR
repertoire depends on what stimulates the immune system and when. An-
other nuanced but important thing to note here is that the gene loci cod-
ing for the proteins comprising the MHC are highly polymorphic between
individuals [1, 6]. This means that in general, different individuals will
produce slightly different MHC molecules with distinct binding pockets,
and thus the same antigens will produce different pMHCs. Therefore,
how immune stimuli shape a host’s repertoire is also a function of what
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MHC alleles they carry, or their MHC restriction.
While being temporally dynamic, the effects of immune stimuli on the

repertoire are not entirely transient [1]. When the source of an immune
stimulus is successfully cleared from the host, most of the expanded T
cells die. However, a subset of the responding cells – called memory T
cells – persist in the repertoire. Therefore, a host’s TCR repertoire is
a mixture of TCRs on naı̈ve T cells that have not yet encountered their
cognate targets, potentially those on currently active T cells responding
to an ongoing stimulus, and finally those on memory T cells that remain
from previous exposures.

This type of model of the TCR repertoire have led to hypotheses that
sequencing TCRs from the peripheral blood of patients can provide a
minimally invasive method to profile the current state of the patients’ im-
mune system, and even detect disease [13–18]. For example, if one can
develop a general understanding of what lung cancer-responsive TCRs
look like, their presence in a patient’s peripheral blood can be used as
a biomarker for disease. An alternative approach to hunting for specific
TCRs of interest might be to use more global measures of TCR repertoire
state, via diversity indices or by quantifying the degree of clonal TCR
expansion seen [19]. There is some speculation that the exponential na-
ture of the initial T cell response against immune stimuli may make the
TCR repertoire a particularly sensitive biomarker for early detection of
disease. However, it is not yet clear to what extent the effects of initial T
cell responses, which are usually tissue-restricted to the site of infection
or cancer, are visible in the peripheral blood.

2.2 The TCR-pMHC problem

The rules governing which TCRs can bind which pMHCs is an unsolved
grand challenge in systems immunology, which if we can crack, has sig-
nificant potential for positive impact in healthcare [20]. From the ther-
apeutic standpoint, it may lead to better-informed designs of vaccines
(particularly for those that must induce cellular responses) as well as
cellular immunotherapies. From the diagnostic standpoint, it may pro-
vide a minimally invasive medium through which to rapidly screen for a
wide variety of diseases with immune correlates, such as infections, au-
toimmune conditions, and cancer. However, several factors make this a
challenging task.

Firstly, TCR-pMHC binding is promiscuous. The number of unique
TCRs that can exist in a human host at one moment in time (∼ 106 −
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1010) [20, 21] is dwarfed by the number of possible pMHCs that the im-
mune system must be prepared to respond against (∼ 1015) [22]. Thus,
the physiological dynamics of TCR-pMHC interaction must be that a
unique TCR can respond to more than one cognate pMHC. Similarly,
the size of a human TCR repertoire is also miniscule compared to the
universe of possible TCR sequences (∼ 1060) [8], which makes seeing the
same TCR in the repertoires of two distinct hosts extremely rare. There-
fore, it is likely that multiple TCRs are able to respond to the same pMHC.
Indeed, we see empirically that many different TCRs are able to interact
strongly with the same pMHC, and vice versa [23–25]. This suggests a
fuzzy and complex many-to-many mapping between the set of possible
TCRs and pMHCs.

The second and related issue is the vast size of the problem space
(∼ 1075 receptor-ligand pairs). Although advances in high throughput
assays of T cell function have accelerated data generation of interacting
TCR-pMHC pairs, an exhaustive empirical survey of all possible pairs
remains implausible. For this reason, there has been growing interest in
applying machine learning to gain inroads into the problem [20, 26]. A
brief review of existing machine learning work on TCR specificity predic-
tion can be found in section 2.6.

2.3 T cell receptor coincidence statistics

As discussed above, one major factor which makes learning the TCR-
pMHC binding rules challenging is the vastness of the problem space.
In particular, only a minute proportion of the total possible diversity of
pMHCs is explored in the specificity-annotated TCR data that is currently
available. This poses a significant challenge, as the primary interest of the
field is to discover binding rules that generalise across different pMHCs.
One way to mitigate this problem as proposed by Mayer and Callan is
to focus on the two-point statistics of TCRs [22]. By two-point statistics,
I refer to the statistics of drawing pairs of TCRs from a distribution, as
opposed to drawing individual TCR instances. I introduce the reader to
this framework here, as it has played a significant role in motivating and
shaping my own PhD work presented in the later chapters, and it will be
helpful to understand it beforehand.
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2.3.1 Intuition and motivation

What exactly do we mean by two-point statistics, and why would we be
interested in it for quantitative TCR analysis? To make this idea clearer,
let us build a mental model around TCR specificity inference from the
statistical point of view. Let T and P be the set of possible TCRs and
pMHCs respectively. Let pB(τ), τ ∈ T be the background distribution
of TCR sequences from VDJ recombination. Finally, let pS|Π(τ|π), τ ∈
T , π ∈ P be the distribution of specific binder TCRs against some pMHC
π.

One of the end goals of quantitative TCR analysis is to be able to ac-
curately predict TCR specificity against any arbitrary pMHC. At a high
level, this means accurately approximating pS|Π(·|π) for arbitrary π. Now,
we see from empirical evidence that different pMHCs in general select for
different-looking TCRs. That is, the locations of high density of pS|Π(·|π)
in T vary with different π. Therefore, to get a generalisable approxima-
tion of pS|Π, one would need specificity-annotated TCR data such that:

1. A reasonable variety of different pMHCs specificities are covered

2. Each such pMHC has a sufficient number of binder TCRs sampled

Unfortunately, there is a general agreement that current limitations in
data availability mean that these requirements are not yet met.

Now, let us turn to two-point statistics. Let d be some metric over
T that measures a distance between any two TCRs– Mayer and Callan
choose to investigate the Levenshtein distance between their amino acid
sequences. Mayer and Callan propose a quantity they call the “near-
coincidence probability” pC[·](δ), which is a functional of some given
probability distribution p over TCRs:

pC[p](δ) := ∑
τ∈T

∑
τ′∈T

p(τ)p(τ′)Id(τ,τ′)=δ (2.1)

Here, Id(τ,τ′)=δ is an indicator function that evaluates to one when d(τ, τ′) =

δ, and zero otherwise1. pC[p](δ) quantifies the probability that two inde-
pendent draws from p result in a pair of TCRs that are a given distance δ
away from one another according to d. Put simply, pc[p](δ) is the distri-
bution of distances between TCRs sampled from p.

1Mayer and Callan specifically investigate Levenshtein distance, which is a discrete
distance measure. This makes d(τ, τ′) = δ a well-defined event. However, the eagle-eyed
reader may notice that this setup no longer works for continuous metrics. In such cases,
one may consider a definition of near-coincidence based on the inequality d(τ, τ′) < δ.
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Since co-specific TCRs tend to have similar sequences, we might ex-
pect pC[pS|Π](δ) to skew towards smaller values compared to pC[pB](δ).
If we could accurately estimate these two distance distributions, we would
be able to quantify such a skew, and thus have a principled framework
through which to make inferences about the probability that two TCRs
are co-specific given that they are at some distance away from one an-
other.

By turning to the two-point distance statistics, the objective has shifted
from the challenge of estimating pS|Π(τ|π) for all T × P , to the easier
task of estimating pC[pB](δ) and pC[pS|Π](δ) for δ in the range of d (Z+

for Levenshtein distance). There are a couple of reasons why I claim the
latter estimations are easier. Firstly, the pairwise nature of the problem
means that from N samples of TCRs, you can generate (N

2 ) ∼ O(N2) TCR
pairs, giving you more empirical data points to make estimations from.
Secondly, we made the observation earlier that the locations of high den-
sity for pS|Π vary when considering different pMHC specificities. How-
ever, as long as the shapes of pS|Π stay roughly similar – that is, the local
co-specificity rules stay consistent – across pMHCs, pC[pS|Π(·|π)] should
also behave similarly between different π. If so, we depend less on having
specificity-annotated TCR data against many different pMHCs in order
to learn something useful about local co-specificity rules, and indeed to
estimate a general:

pC[pS|Π] := E
π∈P

{
pC[pS|Π(·|π)]

}
(2.2)

2.3.2 Hints of generalisable co-specificity rules

Mayer and Callan used publicly available TCR data to estimate pC[pB](δ)
and pC[pS|Π](δ) and revealed that there is a large degree of enrichment for
both exact and near coincidences in epitope-specific repertoires compared
to background [22]. They show across different pMHCs and datasets that
the profiles of the enrichment ratio pC[pS|Π](δ)/pC[pB](δ) consistently
display an exponential falloff to some plateau value with a decay rate
(with respect to Levenshtein distance on the CDR3 sequences) around 10
(Fig. 2.3). In summary, the study of TCR coincidence statistics provides
a principled framework through which to quantify the notion that TCR
pairs with similar sequences are likely to recognise similar sets of pMHCs.
Mayer and Callan’s results provide evidence that while we may not yet
have enough data to predict the locations of binding solutions against
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Figure 2.3: Near-coincidence enrichment ratios between various
specificity-restricted repertoires and background consistently show ex-
ponential decay to a plateau. The y axes of all subplots show the
near-coincidence probability enrichment ratio pC[pS|Π](δ)/pC[pB](δ) in
log base 10 scale. The distance between the TCR pairs vary along the x
axes. The top row shows the ratio calculated where distances are calcu-
lated between the CDR3 amino acid sequences of both α and β chains.
The middle and bottom rows show similar plots only measuring distance
between the α and β CDR3 sequences respectively. Each subplot is la-
belled in its top right hand corner with the assay method used to obtain
the specificity-restricted repertoire data, and beneath this text is a list of
species which would have produced the epitopes against which the TCRs
in the specificity-restricted repertoire are responding. The purple points
show the empirical estimates, overlaid with a red line showing a model
fit of (K10−∆ + 1)/Z. Such a model with an exponential decay rate of
10 with respect to Levenshtein edit distance seem to fit well with all the
profiles shown. Reprinted with permission from [22] (licensed CCBY).

https://creativecommons.org/licenses/by/4.0/
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arbitrary pMHCs, the local co-specificity rules active around such binding
solutions are learnable and generalisable across pMHCs.

2.4 Transformer neural networks

Later in chapter 4, I discuss my work on a TCR language model with a
transformer neural network architecture. Here I provide the reader with
an introduction to the architecture, its original motivation, a high-level
overview of how it works, and some historical context.

2.4.1 How does it work?

The transformer is a neural network architecture originally developed for
machine translation in the field of natural language processing (NLP) [27].
It is composed of an encoder network, which takes a piece of text in the
model’s input language and maps it to a series of numerical vectors that
represent its semantic content, and a decoder network, which uses these
numerical vectors to generate a corresponding text in the model’s tar-
get language that best emulates the meaning of the original input text.
An overview schematic from the original transformer publication [27] is
shown in figure 2.4. Focused schematics for the encoder and decoder
components are shown in figures 2.5 and 2.7 respectively.

The encoder

The transformer encoder’s job is to take a piece of text in the model’s
input language, and map it to a set of vectors that encode its semantic
content [27] (Fig. 2.5). Let us go over step by step how this mapping
occurs.

Any input text provided to the transformer will be in its raw string
form, which to the computer is just a sequence of individual characters.
This must first be processed by a module within the encoder called the to-
keniser, which splits the string into short and meaningful segments called
tokens. A token is usually a word or a word-piece (e.g. common prefixes
or suffixes). Earlier tokeniser modules used simple rules such as splitting
on whitespace characters, but this approach has been made obsolete by
more intelligent algorithms that can learn to tokenise languages that do
not use white space [28].

Once the input text is tokenised, an embedding module is used to map
each token to a vector representation of itself. One can think of the em-
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Figure 2.4: A schematic of the transformer encoder-decoder neural
network architecture as originally proposed by Vaswani et al. The orig-
inal transformer architecture was designed for machine translation, and
is comprised of an encoder network (left) and a decoder network (right). The
input to the transformer network is text in the model’s input language,
which is split into tokens (usually words, or word-pieces like common
prefixes or suffixes) by the model’s tokeniser module (Fig. 2.5). Then, these
tokens are passed to the input language embedding module, which maps
each token to a learned vector representation that capture the semantic
information contained in the token. After being infused with an explicit
encoding of their position within the input sequence, the embedded token
vectors are passed to a stack of multi-head attention networks (Fig. 2.6)
that adjust the input token embeddings such that their representation
of the tokens’ semantic content takes into account the rest of the input
text as context. The decoder network then uses these improved input
token embeddings as its guiding context to autoregressively generate a
token sequence in the model’s target language, completing the transla-
tion (Fig. 2.7). Taken from [27] with permission from Google.
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"T cell receptors are interesting." Original input text

Sequence of tokens

Initial/raw token
embedding vectors

Position
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Figure 2.5: A simplified schematic of the transformer encoder. Input
text is first segmented into meaningful subunits by the tokeniser mod-
ule. Then, each token is mapped to an initial non-contextualised vector
representation through the embedding module. These are infused with
positional information through a summation with positional vector em-
beddings, and then passed through a stack of MHA and feed-forward
layers. The job of the MHA layers are to intelligently adjust the vector
embeddings of the various tokens such that they reflect their semantic
content, in context of the rest of the input sequence.
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bedding module as a large look-up table that stores a vector representa-
tion for every possible token. Of course, the embedding module has a
finite capacity, and so the set of tokens to be accounted for must be set
beforehand. A common practice has been to tabulate all possible tokens
seen in the training corpus for the model’s input language, and to use
this for setting the embedding module’s capacity. Sometimes, a special
<unk> (for “unknown”) token is also registered in case an unseen word
is encountered at deployment time2. The vector representations for each
token is randomly initialised at first, and are learnt together with the rest
of the network parameters through gradient descent. The idea is that
these learned vector representations, or embeddings, should converge to
encode the typical “meanings” of the tokens.

The token embeddings are then summed with position embeddings,
which are vectors that encode information on the position of a token
within the sequence. Such explicit encodings of token positions are neces-
sary when using transformers, since the transformer architecture is such
that its output will be token order-invariant without them (as you will see
in a moment). In their original publication, Vaswani et al. generated po-
sition embeddings by computing a vector whose components evaluated
to sinusoidal functions of the token’s position index, where the period of
the sinusoid increased geometrically with each subsequent component.

Finally, these token embeddings are operated on by a stack of multi-
head attention (MHA) layers. The design of these MHA networks is the
primary innovation of the transformer. They model the intuitive idea
that the function or meaning of a token in a natural language sequence
is often influenced by its surrounding context. For instance, consider the
word “cell” in the example sentence used in figure 2.5. Without any con-
text, its meaning is ambiguous – “cell” could refer to a confined room, or
perhaps a battery. It is only after considering the rest of the sentence that
it becomes clear: here, “cell” should represent the idea of the smallest
unit of a living system. MHA networks can learn to adaptively and intel-
ligently adjust the values of the token embeddings, such that they better
convey their contextualised meanings. These contextualised embeddings
are the final output of the transformer encoder network.

How do the MHA networks compute such contextualised embed-
dings? Let us start with the high-level intuition. First, they use a learned
rule-set to estimate the interaction strength (often referred to as “atten-

2While use of an <unk> token was common in the past, modern tokenisation meth-
ods [28] have made this largely unnecessary since they reserve each character/alphabet
in their input language as a token and thus guarantees that any word be tokenisable.
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tion” in the NLP literature) between every token pair in the input se-
quence. Then, for each token, the distribution of attention scores between
it and all input tokens (including itself) is used to compute a weighted
sum over the original token embeddings. This weighted sum becomes the
token’s new contextualised representation. In transformer models, layers
of MHA networks are often chained in sequence such that the output of
one feeds into the next, and thus the process of token contextualisation
is done in increments. As an additional comment, the MHA layers in the
transformer encoder are also referred to as self-attention networks, because
they compute attention scores within tokens of the input sequence.

Now let us examine how each MHA layer implements this computa-
tion. Vaswani et al. propose a mechanism called scaled dot-product atten-
tion, where the attention between two tokens is computed as the dot prod-
uct between (transformations of) their representations. Let X ∈ Rd×M =

[xi]
M
i=1 be the input to an MHA layer, which we represent as a matrix

whose column vectors are the d-dimensional token embeddings of an
input sequence with M tokens. In the simplest case, an MHA layer im-
plements three learnable affine transformations3:

q : Rd → Rdk (q for query)

k : Rd → Rdk (k for key)

v : Rd → Rdv (v for value)

Let Q, K, V represent the matrices whose ith column vectors are q(xi),
k(xi) and v(xi) respectively. Then, the output of this MHA layer can be
described as follows:

MHA(X) := V×softmax(
Q⊤ × K√

dk
)⊤ (2.3)

where:

softmax(A)ij :=
exp Aij

∑n
k=1 exp Aik

, A, softmax(A) ∈ Rm×n (2.4)

Can we interpret what is happening in equation 2.3? The purple por-
tion corresponds to the MHA layer using the dot product q(xi)

⊤k(xj) to
compute the attention score between the tokens at indices i and j (note
that the presence of the q and k transformations make this computation

3An affine transformation is that of the form f (x) = Wx+b, where the weight matrix
W and bias vector b are learnable.
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asymmetric and thus give attention scores directionality). These attention
scores are weighted by the square root of dk to promote gradient stability
when training. The orange portion corresponds to how all the attention
scores from the same token are normalised with respect to each other (in
this matrix formulation, this is row-wise) using the softmax function to
produce a probability distribution over tokens. Finally, the green portion
corresponds to computing the weighted sum of the v transformations of
the token embeddings according to the probability distributions calcu-
lated in the previous step, to produce an updated embedding for each
token.

I mentioned earlier that my description above represents the simplest
case. This is because in reality, what equation 2.3 describes is the com-
putation of one attention head. As its name suggests, a multi-head attention
layer can have more than one attention head, each with its own learnt q,
k and v projections. In an MHA layer with Nh heads, the outputs of all
attention heads are computed in parallel and then concatenated to pro-
duce the overall output of the MHA layer: X∗ ∈ RNhdv×M. It is common
to set the dimensionality dv of the attention head outputs to d/Nh, such
that the dimensionality of the layer’s final output embeddings remains
the same as that of the input.

Before the output embeddings of one MHA layer reach the next MHA
layer in the stack, they are passed through a feed-forward layer, which is
simply a composition of two affine transformations: the first from Rd to
a higher-dimensional space Rdff , dff > d, and the second back to Rd. A
rectified linear unit (ReLU) activation function is put in between the two
affine projections, such that the overall computation of a feed-forward
layer is:

FF(X) := W2ReLU(W1X + b1) + b2 (2.5)

where:

ReLU(x)i := max(0, xi) (2.6)

W1 ∈ Rdff×d, W2 ∈ Rd×dff , b1 ∈ Rdff , b2 ∈ Rd (2.7)

The presence of these feed-forward networks provide the transformer
with additional flexibility.

The decoder

The responsibility of a transformer decoder is to take the numerical rep-
resentation of the input text generated by the encoder, and translate it to
a sequence of tokens (and hence text) in the target language [27] (Fig. 2.7).
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Figure 2.6: A simplified schematic depicting the internals of the trans-
former multi-head attention stack. The schematic is accurate for the case
of a single attention head per layer. In the more general case of Nh at-
tention heads, each MHA block will have Nh parallel q, k and v linear
projections, each from dimensionality d to dimensionality d/Nh. Each
parallel set of q, k and v vectors/matrices undergo the series of opera-
tions shown in the schematic. Finally, the final output vector (of shape
d/Nh × 1) from each parallel branch are concatenated together to pro-
duce the output of the MHA block (of shape d × 1). Taken from my own
preprint, [29] (licensed CCBY).

https://creativecommons.org/licenses/by/4.0/
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Figure 2.7: A simplified schematic of the transformer decoder. The
decoder network generates a translation of the input text in an auto-
regressive manner. Given an incomplete translation, the model predicts
the next token. All model translations are started with the <start> token,
which allows the model to predict the first real token of the translation.
The model is applied recursively to iteratively construct the full transla-
tion. This is halted when the model predicts the <end> token, which signi-
fies that the translation is complete. The decoder works by first mapping
the tokens of the current translation in progress to a set of embeddings,
then infusing the embeddings with positional information using position
embedding vectors, and passing the resulting initial embeddings through
a stack of MHA and feed-forward layers that contextualise the token em-
beddings not only with respect to themselves, but also to the output em-
beddings of the encoder. Finally, the contextualised embedding for the
final token in the current translation sequence is pushed through a linear
layer with softmax activation to predict the next token.
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Like the encoder, the decoder also has an embedding module. This
time, the embedding module contains mappings from tokens in the target
language to their initial embedding vectors. It also registers additional
special tokens called <start> and <end> which represent the beginning
and end of a translated sequence, respectively. Why these are necessary
will become clear in a moment.

The primary portion of the decoder is also a stack of MHA layers and
feed-forward layers, but they function in a slightly different way. We will
again first start with the intuition. Unlike the encoder whose job is to
process incoming data, the decoder must generate a new sequence. This
generative process is modelled by training the decoder to predict the next
token in an unfinished translation. This framework, combined with the
assertion that all translations must begin with the <start> token, allows
the transformer decoder to use the starter-sequence [<start>] to predict
the first token of the translated sequence, append its own prediction to the
end of the current translation sequence, then use this to predict the second
token, and so on – slowly building up the translation one token at a time.
This process of next-token-prediction continues until the predicted token
is the <end> token, which signals that the translation is over.

Now, let us follow step-by-step the computations of the decoder net-
work. First, the decoder embedding module is used to map the current
translation sequence into a sequence of embedding vectors (in the begin-
ning, this will be of length one, and only contain the <start> token). This
sequence of vectors is then passed to a stack of MHA and feed-forward
layers.

Unlike the encoder, each repeating unit of the transformer decoder has
three layers. The first is a self-attention MHA network, and it functions
much like those discussed previously for the encoder. That is, its job is
to contextualise the token embeddings of the translation sequence with
respect to one another.

The second second layer is also an MHA network – but in contrast
to the self-attention MHA layers discussed until now, this one uses the
token embeddings from the current state of the translation to generate
the Q matrix, while using the output of the encoder network to generate
the K and V matrices. Put into words, the second MHA layer updates
the embeddings of the tokens in the translation sequence by computing
a weighted sum over the embeddings of the model’s input in the original
language. Since this second MHA layer computes attention across the
input sequence and the generated output translation sequence, it is often
called the cross-attention layer. The idea is that the cross-attention layer
helps the model align its translation to the semantic content of its input.
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Finally, the output of the cross-attention layer is passed through a
feed-forward layer. This concludes the computation of one repeatable
element of the decoder stack.

From the output of the final layer of the decoder stack, the column
vector corresponding to the final token in the current translation sequence
is fed through an affine projection to RNt followed by a softmax activation,
where Nt is the number of tokens in the target language. This generates a
probability distribution over possible tokens which can be used to predict
the identity of the next token in the translation. If the predicted identity
of the next token is <end>, the translation is halted and the resulting token
sequence in the target language is used as the model’s output translation.
With this, we have gone over all computations inside of the transformer
architecture. The curious reader is referred to the original publication for
further details of the model architecture [27].

2.4.2 Unsupervised pre-training of transformers

In Vaswani et al.’s original publication, the transformer encoder-decoder
stack needed to be trained end-to-end using labelled data with paired
translations between the target languages. However the volume of avail-
able human-translated paired sentence datasets quickly became a bottle-
neck for training. Later works addressed this challenge by proposing
methods of unsupervised pre-training, both for the encoder [30] as well
as the decoder [31].

On the encoder side, Devlin et al. proposed Bidirectional Encoder Rep-
resentations from Transformers (BERT) [30]. Devlin et al.’s key innova-
tion was an unsupervised pre-training strategy called masked-language
modelling (MLM), where a transformer encoder would be given a real
token sequence with the identity of a fixed proportion of tokens hidden,
or “masked”. The objective of the model would be to predict back the
correct identities of the masked tokens, based on visible portion of the
input as context. At a high level, this objective encourages the model to
learn any contextual interactions that may exist between tokens of the
input language, while also precluding the requirement for any human-
translated text. In this way, MLM allowed Devlin et al. to train BERT, a
large transformer encoder network, in a completely unsupervised man-
ner. BERT and its derivative models have been able to achieve high levels
of performance on various downstream textual tasks with relatively little
supervised fine-tuning on labelled data. Furthermore, the encoder-only
nature of the BERT architecture has made it useful for text processing
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tasks outside of machine translation, most notably for text representa-
tion and classification. There is growing interest in applying BERT-like
transformer encoders to protein analysis, where they are pre-trained on
polypeptide sequences instead of natural language. My work in chap-
ter 4 is one example of this. Other works applying this technology to
TCR analysis are mentioned in section 2.6.

On the generative decoder transformer side, Radford et al. proposed
the generative pre-trained transformer (GPT) [31]. They demonstrated
that an unsupervised pre-training strategy where the model is fed the be-
ginning of a text and trained to maximise the conditional probability of
generating the correct subsequent token sequence results in a generative
language model that is highly capable of intelligent behaviour, partic-
ularly with interactive question answering. As with BERT, fine-tuned
GPTs have proven to be generally useful for interactive text generation
outside of machine translation, and now form the backbone of the lat-
est language-model-based AI assistant services including OpenAI’s Chat-
GPT [32], Anthropic’s Claude [33], and Google’s Gemini [34].

2.5 Measures of model performance

In machine learning, the act of evaluating model performance is just as
crucial as the act of training the models. In this section, I introduce the
reader to some common measures of model performance often seen in the
machine learning literature. I focus on measures of binary classification
performance, both due to their popularity in use and their relevance to
my own work shown in the later chapters of this thesis.

2.5.1 The confusion matrix

One simple way to summarise the statistics of the performance of a binary
classifier is by building a 2 × 2 confusion matrix [35, 36] (Fig. 2.8). The two
rows of the matrix correspond to the statistics of the ground truth label,
with the top row assigned to the positive case, and the bottom row to
the negative case. The two columns correspond to the statistics of labels
as predicted by the binary classification model of interest, with the left
column for positives, and the right column for negatives. We can now fill
each cell of the matrix with the joint probability of obtaining the ground
truth and prediction labels associated with it. For example, the top left
cell corresponds to the joint probability of obtaining a true positive (TP)
sample (i.e. ground truth positive, predicted positive). Going across from
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Figure 2.8: The confusion matrix. The confusion matrix is a table whose
entries are the joint probabilities of different combinations of true and
predicted binary labels. It is a useful tool through which to understand
various performance metrics of binary classifiers.

the top left to the bottom right, we will refer to the cells in the matrix as
TP, false positive (FP), true negative (TN), and false negative (FN).

Many useful metrics of binary classification performance can be cal-
culated based on the values in such a confusion matrix. Here, I will
introduce the four arguably most commonly used [35]:

1. Sensitivity

2. Specificity

3. Positive predictive value (PPV)

4. Negative predictive value (NPV)

Sensitivity and specificity

The sensitivity (also known as recall) of a binary classifier is the conditional
probability of a positive model prediction given a positive ground truth
label. Its complement is the specificity, which is the conditional probability
of a negative prediction given a negative ground truth label. Their values
can be respectively obtained from the cells in the confusion matrix as
follows.

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN
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Note that both sensitivity and specificity integrate out the statistics
of the ground truth label through conditioning, and purely describe the
behaviour of label predictions. This makes both of these measures an
intrinsic property of a given binary classifier. For this reason, they are
very popular and often used in machine learning and statistics.

Positive and negative predictive values

The PPV (also known as precision) of a binary classifier is the conditional
probability of a positive ground truth label given a positive prediction. Its
complement, the NPV, is the conditional probability of a negative ground
truth label given a negative prediction. They can be obtained from the
confusion matrix as follows.

PPV =
TP

TP + FP

NPV =
TN

FN + TN

Note how in contrast to sensitivity and specificity, PPV and NPV are
dependent on the marginal probability of a positive ground truth label,
sometimes referred to as the prevalence (TP + FN). To see this more
clearly, we can for example re-express PPV as the following:

PPV =
TP

TP+FN (TP + FN)
TP

TP+FN (TP + FN) + FP
FP+TN (FP + TN)

=
Sensitivity × Prevalence

Sensitivity × Prevalence + (1 − Specificity)× (1 − Prevalence)

A similar rearrangement can be done for the NPV as well. The conse-
quence is that even the same model with the same sensitivity and speci-
ficity can produce very different values for PPV and NPV under different
prevalences [35] (Fig. 2.9). That being said, in cases where the prevalence
is known, the PPV and NPV are directly useful measures of how one’s
beliefs about the potential label of an unknown sample should update
depending on an outcome of the model prediction. For this reason, these
values are also commonly used.

2.5.2 Performance curves

In many cases, the raw output of a model underlying a binary predictor is
a scalar value. Binary predictions are then obtained from such models by
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picking a threshold value such that whenever the model output is above
this threshold, the model prediction is interpreted as being positive, and
vice versa. But in such situations, any of the four performance measures
discussed in the previous section may change depending on the choice
of the threshold. This becomes particularly clear when we consider the
most extreme thresholds. For example, if the threshold were set to the
lowest possible value for the model output, the resulting model prediction
would always be positive. Thus the model’s sensitivity would be one, and
the specificity would be zero. A threshold on the other extreme would in
contrast lead to a sensitivity of zero, and specificity of one.

Threshold in between interpolate between such extremes, and in fact,
the nature of this interpolation contains valuable information about the
“goodness” of a model. This makes intuitive sense – if one were to slowly
increase the threshold from its lowest extreme, an ideal model’s specificity
should quickly shoot up to one, while the sensitivity should remain high
and close to one as well. The nature of such trade-offs can be visualised
and quantified by plotting how these performance measures change as
the threshold is varied from one extreme to the other.

Two very commonly used examples of such performance curves are
the receiver operating characteristic (ROC) and precision-recall (PR) curves [36,
37]. The ROC curve plots the trade-off between sensitivity (usually on the
y axis) and specificity as a model’s threshold is varied, while the PR curve
plots the change in PPV (precision, usually on the y axis) against sensi-
tivity (recall). Examples of ROC and PR curves are shown in figure 2.9.

The reader may have noticed that both axes of the ROC curve track one
of the two previously discussed performance measures that are intrinsic
properties of the model. Indeed, this means that the behaviour of the
ROC curve should not depend on the prevalence. On one hand, this
property of the ROC curve makes it a robust measure of performance
that requires no assumptions about the prevalence [36]. However, ROC
curves must be interpreted with caution in situations where it is known
that the model will have to operate in regimes of extremely high or low
prevalence. This is because in such situations, it becomes necessary to
guarantee either a very high sensitivity or specificity. As such, the regions
of importance of the ROC curve become limited to their corresponding
extremities. In such cases, looking at the entire ROC curve may create
a misguided impression of good performance when this may not be the
case when operating at the regimes of interest.

In contrast, the variables tracked by the PR curve include the PPV,
which is explicitly affected by the prevalence. As such, a PR curve is use-
ful in situations where there is a known typical prevalence – one which
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Figure 2.9: An illustration of how the ROC and PR curves change with
respect to changing classifier behaviour as well as the prevalence. It is
common for the model underlying a binary classifier to have a scalar out-
put that is converted into a binary classification by defining a threshold
output above which the model’s prediction is set to be positive. The ROC
curve plots the trade-off between sensitivity and specificity with varying
thresholds, while the PR curve plots the trade-off between precision (PPV)
and recall (sensitivity). a) Say the prevalence of some condition is 50%
(leftmost plot). Then, a simulated binary classifier with the conditional
output distribution shown in the 2nd plot from the left will produce the
ROC and PR curve shown in the 3rd and 4th plots from the left respec-
tively. b) A change in the prevalence does not affect the ROC curve, but
significantly affects the PR curve. c) A change in the conditional model
output distribution affects both the ROC and PR curves.
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the model should be trained for, and will operate at [36]. On the other
hand, a PR curve is less appropriate when the prevalence is either un-
known or can change depending on the situation.

For both ROC and PR curves, a commonly reported summary statistic
is the area under the curve (AUC). Since an AUC is effectively an integra-
tion over the x axis, it can be interpreted as the mean sensitivity across
specificities (ROC) or the mean PPV across sensitivities (PR). This sum-
mary statistic is commonly called the area under the receiver operating
characteristic (AUROC) for the ROC curve, and average precision for the
PR curve [36].

2.6 Machine learning on T cell receptors

While the rest of this thesis presents my own efforts on machine learning
strategies for TCR analysis, it is important to put this in the context of
others’ work as well. I conclude this chapter with a brief review of exist-
ing work in the TCR machine-learning field, broadly categorised by their
formulations of the machine learning problem. In the following text, let
f denote a machine-learning model, T the set of all possible TCRs, P
the set of all pMHCs. Let τ ∈ T and π ∈ P denote individual TCRs
and pMHCs, respectively. In the vast majority of contexts, T and P are
considered to be and modelled as spaces, so I will be referring to them as
such.

2.6.1 pMHC-specific models

One straightforward approach taken by several existing works is to train
pMHC-specific models fπ : T → R that takes an arbitrary TCR and pre-
dicts binding to some predetermined pMHC. Since these models are only
concerned with T , a key benefit is their ability converge to reasonably
accurate solutions as long as the binder TCRs against the pMHC of inter-
est are sufficiently well-sampled. However, an inherent downside is that
a brand-new model must be trained for every new target pMHC. To be
more precise, where there is no model of the pMHC space, it is difficult to
find well-defined ways to extrapolate knowledge gained from one pMHC
to another.

The earliest examples of this approach used decision trees, where in-
put TCRs were featurised according to their β chain CDR3 amino acid
sequences [38, 39]. Another work proposed training Gaussian process
classifiers on a TCR representation space defined by featurising the α
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and β chain V genes and CDR3 sequences using BLOSUM62 vectors [40].
More recently, deep neural networks of various architectures have been
applied to this approach, including fully connected networks [41], convo-
lutional neural networks (CNNs) [42, 43], and transformers [43–45], with
all of them using some combination of V gene usage and CDR3 sequence
data of both the α and β chains.

Independent benchmarking studies have demonstrated the success of
these models in predicting specificities against pMHCs for which we have
many known TCR binders [46], although prediction accuracy for pMHCs
with few known binders remain limited [47]. Currently, no particular
model architecture nor approach seem to show significantly superior per-
formance over the others. However, it is now widely recognised that mod-
els with full αβ chain inputs outperform α or β chain-only models, and
this pattern continues to be seen for models in all categories discussed
below [46].

2.6.2 General models of TCR-pMHC interaction

A more ambitious approach is to explicitly model both the TCR and
pMHC spaces and learn some function f : T × P → R that can predict
binding between any arbitrary TCR/pMHC pair. Due to their theoretical
ability to generalise their predictions to all possible TCR/pMHC combi-
nations, many consider learning an accurate function of this form to be
the holy grail of computational TCR analysis. That being said, only a
minute fraction of the diversity of the T ×P product space is covered by
the available specificity-annotated TCR data – especially with respect to
P – which currently presents a key challenge to this approach [20].

The vast majority of work under this approach implement their mod-
els as deep neural networks, with the most popular architectures split
between CNNs [48–54], recurrent neural networks [55–57], and trans-
formers [58–61]. Other approaches have included decision trees and ran-
dom forests [62, 63], fine-tuned protein structure predictors [64], physical
models of receptor-ligand interaction [65], and neural network ensemble
models [66]. All models cited above take TCR amino acid sequences as
input, although only some [49, 56, 60, 61, 63–66] use both the α and β
chains, with the rest using only β chain information. Three of the mod-
els [54, 64, 65] explicitly account for the structure of the input TCRs and
pMHCs.

Evidence from independent benchmarking studies show that these
more general models can produce accurate binding predictions for pMHCs
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with many known TCR binders seen during training, where they show
similar performance to those of the pMHC-specific models mentioned
above [46]. Unfortunately, generalisable performance to unseen pMHCs
currently remains elusive, most likely due to the limited coverage of the
T ×P space [20, 67]. There have been various attempts to ameliorate this
issue of data limitation through innovations including transfer learning
using general protein-ligand interaction data [51], pre-training on unla-
belled TCR data [60, 61], leveraging pre-trained protein multimer struc-
ture predictors [64], and meta-learning [59], but none have convincingly
been able to overcome the current data bottleneck.

2.6.3 Models of TCR co-specificity

Another approach is to shift to two-point statistics and re-frame the prob-
lem into TCR co-specificity prediction. Here, the objective is to learn a
model f : T × T → R that takes arbitrary TCR pairs and predicts their
likelihood of sharing specificity. This can be thought of as learning a sim-
ilarity measure or distance on TCR space. As discussed in section 2.3, a
benefit of shifting to two-point statistics is that we explicitly put our focus
on pair-wise patterns that generalise across pMHCs. Also mentioned was
a benefit from the machine-learning point of view that sampling pairwise
data points is cheaper, with N TCRs generating (N

2 ) ∼ O(N2) pairs. Fi-
nally, the pMHC-agnostic nature of the co-specificity formulation makes
models of this kind particularly suitable for downstream analyses on data
that only involve TCRs. A popular example of such analyses is TCR clus-
tering. Co-specificity models can still be applied to conventional speci-
ficity prediction by making a series of co-specificity inferences between a
query TCR and a set of known binders to the target pMHC. However, as
with the pMHC-specific models, there exist no obvious ways of making
predictions to unseen pMHCs with no known binders.

While models of the previous categories have been dominated by neu-
ral networks, TCR co-specificity models to date have been based on more
traditional bioinformatics methods, such as sequence alignment [68–71]
and string k-mer kernels [72]. When applied to TCR specificity pre-
diction, evidence from benchmarking studies suggest that co-specificity
models are similarly competitive to those of the previous two categories [46].

Despite the continued and widespread popularity of TCR clustering
as a method of TCR repertoire analysis, the TCR co-specificity prediction
paradigm seems to be understudied in comparison to the previous cat-
egories of models. In fact, only one of the works cited above [70] is a
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true machine learning method trained on TCR data – the others all have
model parameters that are inherited from existing work on general pro-
tein sequence statistics (e.g. the BLOSUM substitution matrices [73]), or
hand-engineered by the authors. Some groups have proposed methods
of mapping TCRs to numerical representation spaces, within which TCR
co-specificity inferences can be made [74, 75]. However, these too are
static, non-trained models whose main goals were to approximate exist-
ing sequence-based models but have faster computation times by being
alignment-free.

2.6.4 TCR repertoire classifiers

Zooming out from individual TCRs, some works directly optimise mod-
els for classifying TCR repertoires. Here, the objective is to learn a model
f : {τi ∈ T }N

i=1 → R that takes an arbitrary set of TCRs (a TCR reper-
toire) and predicts some global property of the repertoire’s host (typically
disease state, like cancer vs non-cancer). A strength of this approach is
that it directly addresses a key downstream application of computational
TCR analysis. Furthermore, there are some practical arguments to be
made for the relative scalability of data generation with repertoire-level
labels, compared to functional assays at the individual TCR level needed
to generate specificity-annotated TCR data.

As with other multiple instance learning problems, a key challenge
for repertoire classification is that in most cases only a small fraction of
the TCRs in a given repertoire is likely to be predictive of its disease
state label. For example, a sample from a cancer patient’s TCR repertoire
may contain some cancer-reactive TCRs, but the vast majority of TCRs
are likely to be bystanders. Additionally, there are many potential con-
founders when dealing with repertoire-level data, including repertoire
host age and MHC restriction, repertoire location (e.g. peripheral blood
vs. tissue), and statistical biases due to differences in sequencing assays.
Therefore, care must be taken to ensure repertoire classification models
do not over-fit to such false signals.

Existing work in this category include models trained to detect infec-
tious diseases such as HIV and SARS-CoV-2 [13–15], autoimmune con-
ditions like systemic lupus erythematosus [14], and early-stage cancers
of various types [16–18]. While many of these works report impressive
AUROC values of greater than 0.9, they still remain in a proof-of-concept
stage, due to a current lack of validation on large scale, unbiased, and
prospective patient data.
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Chapter 3

Automating TCR and MHC data
standardisation

TCRs underpin the diversity and specificity of T cell activity. As such,
TCR repertoire data is valuable both as an adaptive immune biomarker,
and as a way to identify candidate therapeutic TCR. Analysis of TCR
repertoires relies heavily on computational analysis, and therefore it is
of vital importance that the data is standardized and computer-readable.
However in practice, the usage of different abbreviations and non-standard
nomenclature in different datasets makes this data pre-processing non-
trivial. tidytcells is a lightweight, platform-independent Python pack-
age that provides easy-to-use standardization tools specifically designed
for TCR nomenclature. The software is open-sourced under the MIT li-
cense and is available to install from the Python package index (PyPI).
All work presented in this chapter has been published prior to the sub-
mission of this thesis under my authorship and copyright [3] (licensed
CCBY). This work was led by and written by myself, under the supervi-
sion of Benny Chain.

3.1 Introduction

T cells are an important immune cell population that helps orchestrate
the vertebrate adaptive immune system. They express TCRs on their cell
surface (Fig. 3.1a), which allows them to recognize and respond to anti-
gens presented on the surfaces of other cells via the MHC proteins [5, 6].
Each T cell clone has a specific antigenic stimulus that it can respond to,
often termed a T cell’s “cognate antigen”. The great range of target speci-
ficity is made possible by the fact that each new T cell clone generates its
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Figure 3.1: a) A diagram of a TCR interacting with a pMHC. The V,
D and J genes comprising each TCR chain are shown by colour. The
red dotted lines point out the junction sequences of both TCR chains.
b) An illustration of how tidytcells can help clean TCR data. By using
tidytcells, non-standard nomenclature in the “messy data” is corrected,
and any invalid values are filtered out. Reprinted from my own publica-
tion [3] (licensed CCBY).

own unique TCR via a stochastic process of somatic gene rearrangement
termed VDJ recombination.

Advances in high-throughput parallel sequencing allow large num-
bers of T cells isolated from blood or tissue to be sequenced. This gives
us a snapshot of which T cells exist in the immune system of an individual
at a given time, together with their frequency in the population, which
is referred to as the individual’s TCR repertoire. Because T cell clones
proliferate after recognising their cognate antigen, TCR repertoire data
has proven useful as an adaptive immune biomarker in various contexts,
from cancer [16, 19, 76, 77] to SARS-CoV-2 infection [78–81], and there is
growing excitement that TCR repertoire data can be used as a sensitive
yet minimally invasive diagnostic biomarker for many other transmissi-
ble and non-transmissible diseases [14]. TCR repertoire data may also be
exploited for therapeutic purposes, for example in the context of cellu-
lar therapies by contributing to the identification of TCR with reactivities
against clinically relevant targets [82, 83].

The TCR is a heterodimer, created by imprecise somatic recombina-
tion of one of a set of V and J genes (α and γ chains), or V, J and D genes
(β and δ chains) (Fig. 3.1a). The current convention is to represent TCR

https://creativecommons.org/licenses/by/4.0/
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sequence data by specifying, for each of the two chains that comprise it,
which variable (V) and joining (J) genes are used, and what the amino
acid sequence is of the junction region (also known as the CDR3) between
the V and J genes (Fig. 3.1b). Because of junctional imprecision, this se-
quence is not template-driven, and cannot be aligned to the germline se-
quence. In many cases, for example where populations of cells are lysed
before sequencing, α/γ to β/δ chain pairing is unresolved, and indeed
only one chain (typically the TCR β) may be sequenced. In many stud-
ies, TCR sequences are further annotated by their cognate peptide/MHC
(Fig. 3.1b).

Although the immunology community has generally converged to a
common format of TCR data representation and has developed an inter-
national standardised nomenclature [84], TCR data in practice still con-
tain variation due to several issues. These include (Fig. 3.1b):

• The use of non-standard TCR/MHC gene symbols

• The inclusion of non-functional TCR genes when one is only inter-
ested in data for functional TCR

• Differing levels of TCR/MHC gene resolution- for example, some
data may resolve TCR genes to the level of the allele (TRAV1-1*01)
while others only to the level of the gene (TRAV1-1)

This variation is particularly problematic when trying to compile large
sets of machine-readable TCR data for downstream computational analy-
sis. For example, algorithms may not easily recognise that TRAV1-1 and
TRAV1-1*01 are in fact the same TRAV. Similarly, HLA-A*01 may not be
understood as semantically identical to the abbreviated symbol A1.

tidytcells is a lightweight python package that addresses this issue
by providing simple-to-use utilities to standardize TCR nomenclature.
Its primary content is a set of functions that can convert non-standard
TCR/MHC gene symbols into their International immunogenetics in-
formation system (IMGT)-standard versions [85]. Additionally, it pro-
vides simple functions to standardize junction and epitope amino acid
sequences, as well as some other extra utilities.

tidytcells is available on the PyPI at https://pypi.org/project/

tidytcells/. The source code is available at https://github.com/yutanagano/
tidytcells under the MIT license. For more details such as the API refer-
ence, please see the documentation at https://tidytcells.readthedocs.
io/en/latest/.

https://pypi.org/project/tidytcells/
https://pypi.org/project/tidytcells/
https://github.com/yutanagano/tidytcells
https://github.com/yutanagano/tidytcells
https://tidytcells.readthedocs.io/en/latest/
https://tidytcells.readthedocs.io/en/latest/
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3.2 Method (Software Features)

I provide a high-level overview of tidytcells’ features below. For more
detailed instructions on use, including API references for each function,
please refer to the documentation page. The API references for each of
the standardization functions also include an outline of their decision
logic, so that users can make informed decisions about their scope and
limitations.

3.2.1 TCR gene symbol standardisation

tidytcells provides the function tr.standardize, which takes as input
a string representing a potentially non-standard TCR gene symbol, and
outputs the corresponding IMGT-standardized symbol.

By default, if the input string cannot be resolved to a known TCR
gene, the function outputs None. The function attempts to standardize to
human TCR genes by default, but Mus musculus genes are also supported.
Further options can be specified to exclude non-functional TCR genes, or
limit the resolution of the symbols to the level of the gene (as opposed to
allele). Below is a code block demonstrating the use of tr.standardize.

>>> import tidytcells as tt

>>> tt.tr.standardize("aj1")

"TRAJ1"

>>> tt.tr.standardize("TRBV6 -4*01", precision="gene")

"TRBV6 -4"

>>> result = tt.tr.standardize("TRBV1", enforce_functional=

True)

UserWarning: Failed to standardize "TRBV1" for species

homosapiens: gene has no functional alleles.

>>> print(result)

None

>>> tt.tr.standardize("TCRBV22S1A2N1T", species="musmusculus"

)

"TRBV2"

3.2.2 MHC gene symbol standardisation

A similar function mh.standardize is available for standardizing MHC
gene symbols. Its function signature and behaviour is essentially equiva-
lent to its TCR counterpart.

>>> tt.mh.standardize("HLA -A*01:01:01", precision="protein")

https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.html#module-tidytcells
https://tidytcells.readthedocs.io/en/latest/
https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.tr.html#tidytcells.tr.standardize
https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.tr.html#tidytcells.tr.standardize
https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.mh.html#tidytcells.mh.standardize
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"HLA -A*01:01"

>>> tt.mh.standardize("CRW2", species="musmusculus")

"MH1 -M5"

3.2.3 Junction/epitope sequence standardisation

aa.standardize and junction.standardize provide standardization util-
ities for amino acid sequences. aa.standardize can be used to clean
generic amino acid sequence data, including epitopes, while junction.standardize
provides TCR junction sequence-specific logic.

>>> tt.junction.standardize("sadaf")

"CSADAFF"

>>> result = tt.junction.standardize("sadaf", strict=True)

UserWarning: Input sadaf was rejected as it is not a valid

junction sequence.

>>> print(result)

None

3.2.4 Extra utilities

A brief list of additional features provided by tidytcells is shown in
table 3.1.

Table 3.1: A brief overview of extra utilities provided by tidytcells.
Function Description

mh.get chain Given an MHC gene symbol, classify as α or β chain
mh.get class Given an MHC gene symbol, classify as MH1 or MH2
mh.query Query the list of all known MHC genes/alleles
tr.get aa sequence Obtain the underlying amino acid sequence of a TCR gene
tr.query Query the list of all known TCR genes/alleles

3.3 Results (Application to real data)

As a test use case of tidytcells’ functionality, I used it in combination
with the pandas package to clean TCR and MHC data from the Immune
Epitope Database (IEDB) [24]. Where species data was available on the
database, it was used. For TCR or MHC samples missing species labels,
the species Homo sapiens was assumed. Other settings were left at default

https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.aa.html#tidytcells.aa.standardize
https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.junction.html#tidytcells.junction.standardize
https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.aa.html#tidytcells.aa.standardize
https://tidytcells.readthedocs.io/en/latest/generated/tidytcells.junction.html#tidytcells.junction.standardize
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Table 3.2: Examples of standardisation successes.
Category Species Input Output

TCR

Homo sapiens TCRBV17S1 TRBV17
Homo sapiens TRAV15 TRAV15-1/DV6-1
Homo sapiens 29/DV5*01 TRAV29/DV5*01
Homo sapiens TCRBV5-1*01 or TCRBV5-1*02 TRBV5-1*01
Mus musculus TCRAV14D-3/DV8*02&nbsp; TRAV14D-3/DV8*02

MHC

Homo sapiens HLA-A*02:01 W167A mutant HLA-A*02:01
Homo sapiens DQB1*06:02 HLA-DQB1*06:02
Homo sapiens B2M B2M
Mus musculus H2-Q9 MH1-Q9
Mus musculus H2-Db MH2-D1

Junction N/A AASANSGTYQR CAASANSGTYQRF
N/A CSVNRDTGAGGYTF CSVNRDTGAGGYTF

Epitope N/A VMAPRTLIL VMAPRTLIL

values, and no particular restrictions on gene functionality were imposed.
Standardization was considered a success if the species associated with a
particular value was supported, and the function managed to resolve the
value to a recognised IMGT-compliant symbol.

Out of 2225 unique TCR gene symbol values found in the database,
2127 values (95.6%) were standardized successfully. Similarly, 173 of 284
MHC genes (60.9%), 301,554 of 301,670 junction sequences (99.9%) and
1825 of 1996 epitopes (91.4%) were standardized. Some examples of stan-
dardization successes and failures are shown in tables 3.2 and 3.3.

3.4 Discussion

As demonstrated, tidytcells in its current form can successfully stan-
dardise the majority of TCR/MHC data from public databases such as
IEDB. However, there are still limitations to its standardization ability.
Below I discuss current limitations that we as maintainers of tidytcells
hope to address in the near future. The package is entirely open source
and code contributions from the community are welcome.

Currently, when tidytcells encounters a string of the general form
“A B” where A is a valid example of what it is attempting to standardize,
it will ignore “B” and return “A” as the standardized form. This works
well for cases like the first MHC success example, where the B string is a
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Table 3.3: Examples of standardisation failures.
Category Species Input Reason for failure

TCR

Homo sapiens TCRAJ1-3 Nonexistent gene
Homo sapiens TRBV14DV4 Nonexistent gene
Mus musculus 1 Insufficient information
Mus musculus 12D-2 Insufficient information
Mus musculus TRVB13-1*02 Nonexistent gene

MHC

Homo sapiens HLA class II Insufficient information
Homo sapiens HLA-DQ Insufficient information
Homo sapiens human MR1 K43A mutant Non-classical HLAs not

supported
Mus musculus M23I Mutation specifier with

no gene
Mus musculus HLA-DRB1*04:01 Incorrect species annota-

tion
Junction N/A IVRVSHN*G#RDNYGQNFV Ambiguity symbols not

supported

Epitope N/A LLFGFPVYV + SCM(F5) Peptide modification not
supported

N/A diclofenac Not a peptide

qualifier string that can be removed without fundamentally changing the
underlying data. However, in cases like the fourth TCR success example
where the string is of the form “A or B”, the intuitively better represen-
tation of the underlying data is to standardize to the greatest common
factor of A and B (i.e. TRBV5-1 in this case). Implementing separate logic
to handle these cases would improve standardization quality.

For junction sequence standardization, the default behaviour when
dealing with a valid amino acid sequence that does not start with a cys-
teine (C) and end with a phenylalanine (F) or tryptophan (W) is to ap-
pend a “C” at the beginning and an “F” at the end, and return the result-
ing string. The logic is implemented this way because the most common
reason for these missing residues is that some data sources encode the
junction as the CDR3 sequence (without the starting C and ending F/W).
However, this rudimentary logic always assumes that the junction termi-
nates with an F rather than a W. A possible improvement would be to
use prior knowledge of the amino acid sequences of J genes to better pre-
dict the terminal residue. It may also be useful to provide an option to
perform the reverse procedure (i.e. remove the C and F/W residues).

Other areas of potential improvement include parsing amino acid am-
biguity codes and peptide modification syntax, more optional standard-
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ization constraints (e.g. specify a-priori that values should be resolved
to TRAV genes/alleles as opposed to any TCR gene), support for non-
classical MHC, allele imputation (if a gene has only one allele, resolve
to that allele), and support for more species (only Homo sapiens and Mus
musculus are currently supported).

3.5 Conclusion

tidytcells is a lightweight Python package that solves the issue of messy
TCR/MHC data by providing easy-to-use utilities for standardizing TCR/MHC
gene symbols, as well as general and TCR junction amino acid data. I
believe this will prove to be a useful utility to the rapidly growing com-
munity of scientists who are studying the TCR repertoire.



Chapter 4

Contrastive learning of T cell
receptor representations

Computational prediction of the interaction of TCRs and their ligands is
a grand challenge in immunology. Despite advances in high-throughput
assays, specificity-labelled TCR data remains sparse. In other domains,
the pre-training of language models on unlabelled data has been suc-
cessfully used to address data bottlenecks. However, it is unclear how
to best pre-train protein language models for TCR specificity predic-
tion. Here I introduce a TCR language model called Simple contrastive
embedding of the primary sequence of T cell receptors (SCEPTR), ca-
pable of data-efficient transfer learning. Through this model, I intro-
duce a novel pre-training strategy combining autocontrastive learning
and masked-language modelling, which enables SCEPTR to achieve its
state-of-the-art performance. In contrast, existing protein language mod-
els and a variant of SCEPTR pre-trained without autocontrastive learning
are outperformed by sequence alignment-based methods. I anticipate
that contrastive learning will be a useful paradigm to decode the rules of
TCR specificity. All work presented in this chapter has been distributed
publicly as a preprint prior to the submission of this thesis under my
authorship and copyright [29] (licensed CCBY). This work was led by
and written by myself, with the collaboration of Andrew Pyo, Martina
Milighetti, James Henderson, and John Shawe-Taylor, and under the su-
pervision of Benny Chain and Andreas Tiffeau-Mayer.
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4.1 Introduction

Antigen-specific T cells play important protective and pathogenic roles
in human disease [2]. The recognition of pMHCs by αβTCRs determines
the specificity of cellular immune responses [4]. Hyperdiverse αβTCRs
are generated during T cell development in the thymus by genetic re-
combination of germline-encoded V, D (for TCR β) and J gene segments
with additional diversification through insertions and deletions of non-
template nucleotides at gene segment junctions.

A major goal of systems immunology is to uncover the rules govern-
ing which TCRs interact with which pMHCs [20]. Advances in high-
throughput functional assays of TCR specificity [68, 86, 87] have made
the use of machine learning a promising prospect to discover such rules.

The most direct approach for applying machine learning to TCR speci-
ficity prediction has been to train pMHC-specific models that take an ar-
bitrary TCR and predict binding [38, 40, 41, 44, 45, 49]. More ambitiously,
model architectures have been proposed that can in principle generalise
predictions to arbitrary pMHCs as well [51–53, 56–62, 65, 88]. Indepen-
dent benchmarking studies have shown that both approaches are effective
for predicting TCR binders against pMHCs for which many TCRs have
been experimentally determined [46], but generalisation to pMHCs not
seen during training has largely remained elusive [67] and prediction ac-
curacy is limited for pMHCs with few known binders [47]. This severely
limits the utility of current predictive tools given that only ∼ 103 of the
> 1015 possible pMHCs are currently annotated with any TCRs in VDJdb
[23], and given that for > 95% of them less than 100 specific TCRs are
known.

Meanwhile, there is abundant unlabelled TCR sequence data that may
be exploited for unsupervised representation learning. A TCR represen-
tation model that compactly captures important features would provide
embeddings useful for data-efficient training of downstream specificity
predictors.

In NLP, unsupervised pre-trained transformers have demonstrated
capacity for transfer learning to diverse downstream tasks [27, 30, 89].
This has spurred substantial work applying transformers to protein anal-
ysis. protein language models (PLMs) such as those of the ESM [90,
91] and ProtTrans [92] families have been successfully used in structure-
prediction pipelines and for protein property prediction [93–95]. PLMs
have also been applied to TCR-pMHC interaction prediction [44, 60, 61,
88], and the related problem of antibody-antigen interaction prediction
[96, 97]. However, there has been limited systematic testing of how com-
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petitive PLM embeddings are in the few-shot setting typical for most lig-
ands – that is, where only few labelled data points are available for trans-
fer learning.

To address this question, we benchmarked existing PLMs on a stan-
dardised few-shot specificity prediction task, and surprisingly found that
they are inferior to state-of-the-art sequence alignment-based methods.
This motivated us to develop SCEPTR, a novel TCR PLM which closes
this gap. Our key innovation is a pre-training strategy involving an au-
tocontrastive learning procedure adapted for αβTCRs, which we show is
the primary driver behind SCEPTR’s improved performance.

4.2 Results

4.2.1 Benchmarking PLM embeddings on TCR specificity
prediction

Given the scarcity of specificity-labelled TCR data, it is of practical im-
portance to evaluate model performance where access to such data is
limited. Therefore, we set up a benchmarking framework focused on
few-shot TCR specificity prediction.

To conduct our benchmark, we curated a set of specificity-labelled
αβTCR data from VDJdb [23]. We only included human TCRs with full α
and β chain information, and excluded data from an early 10x Genomics
whitepaper [98], as there are known issues with data reliability in this
study [99, 100]. This left us with a total of 7168 αβTCRs annotated to 864
pMHCs. Of these, we used the six pMHCs with greater than 300 distinct
binder TCRs for our benchmarking task.

We created a benchmarking task that allowed us to directly com-
pare sequence alignment-based distance metrics such as the state-of-the-
art TCRdist [68, 82] (Fig. 4.1a) to distances in PLM embedding spaces
(Fig. 4.1b). For each pMHC, we tested models on their ability to distin-
guish binder TCRs from non-binders using embedding distances between
a query TCR and its closest neighbour within a reference set (Fig. 4.1c).
We call this nearest-neighbour prediction. This framework is simple and
attractive for benchmarking models in the few-shot regime, since it re-
mains well defined for as few as a single reference TCR and does not
require model specific fine-tuning.

We conducted multiple benchmarks for each pMHC, varying the num-
ber of its cognate TCRs used as the reference set. In each case, we com-
bined the remaining TCRs for the target with the rest of the filtered VD-
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Figure 4.1: Benchmarking TCR language models against sequence
alignment-based approaches on few-shot TCR specificity prediction. a)
TCR similarity can be quantified using sequence-alignment by taking a
(weighted) count of how many sequence edits turn one TCR into another.
b) Learned sequence representations allow alignment-free sequence com-
parisons based on distances in the embedding feature space. c) Sketch of
our standardized benchmarking approach to allow side-by-side compar-
ison of sequence-alignment and embedding methods. Using a reference
set of known TCR binders to a pMHC of interest, we propose nearest-
neighbour prediction as a task for unbiased comparison of the quality
of embeddings for specificity prediction. d) Performance of six different
models on TCR specificity prediction as a function of the number of ref-
erence TCRs. Specificity predictions were made by the nearest neighbour
method sketched in c against six different pMHCs and performance is
reported as the AUROC averaged across the pMHCs. Reprinted from my
own preprint [29] (licensed CCBY).
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Jdb dataset (including TCRs annotated to pMHCs other than the six target
pMHCs) to create a test set (see methods 4.4.1). By studying how perfor-
mance depends on the size of the reference set, we are effectively probing
representation alignment with TCR co-specificity prediction at different
scales.

We benchmarked six models: two alignment-based TCR metrics (CDR3
Levenshtein distance and TCRdist [68]), two general-purpose PLMs (Prot-
Bert [92] and ESM2 [91]), and two TCR domain-specific language models
(TCR-BERT [44] and our own model SCEPTR). We report performance
using the AUROC averaged over the tested pMHCs.

To our surprise, we found that TCR-BERT, ESM2, and ProtBert all
fail to outperform the baseline sequence alignment method (CDR3 Lev-
enshtein) and are significantly inferior to TCRdist (Figs. 4.1d / A.1).
A repeat of the benchmarking with a broader set of epitopes obtained
by including post-processed 10x Genomics whitepaper data [100], re-
capitulated these results, demonstrating the robustness of our findings
(Fig. A.2). In contrast to existing PLMs, SCEPTR performs on par with
or better than TCRdist. For a reference set of size 200, SCEPTR performs
best among all models for five out of six tested peptides (Table A.1).

We additionally compared models using the average distance between
a query TCR and all references, instead of only the nearest neighbour
(Fig. A.3). In this case, SCEPTR outperforms other models by an even
wider margin. Interestingly, all models perform worse compared to their
nearest neighbour counterpart. This finding might be explained mech-
anistically by the multiplicity of viable binding solutions with distinct
sequence-level features, which are thought to make up pMHC-specific
TCR repertoires [22, 101].

4.2.2 Autocontrastive learning as a pre-training strategy

We now briefly summarize SCEPTR’s architecture and autocontrastive
pre-training strategy (see Methods for full details). SCEPTR featurises an
input TCR as the amino acid sequences of its six CDR loops. It uses a
simple one-hot encoding system to embed the amino acid tokens, and
uses a stack of three self-attention layers to generate a 64-dimensional
representation vector of the input receptor (Fig. 4.2a,b). Unlike exist-
ing TCR language models, SCEPTR is jointly pre-trained using autocon-
trastive learning and MLM (Fig. 4.2c,d).

To motivate the considerations that have led us to adopt this train-
ing paradigm, some background on transformer architectures and their
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Figure 4.2: A visual introduction to how SCEPTR works. a) SCEPTR
featurises an input TCR as the amino acid sequences of its six CDR loops.
SCEPTR uses the contextualised embedding of the <cls> token as the
overall TCR representation, in contrast to the average-pooling representa-
tions used by other models. b) SCEPTR’s initial token embedding mod-
ule uses a simple one-hot system to encode a token’s amino acid identity
and CDR loop number, and allocates one dimension to encode the to-
ken’s relative position within its CDR loop as a single real-valued scalar.
c) Contrastive learning allows us to explicitly optimise SCEPTR’s repre-
sentation mapping for TCR co-specificity prediction. d) With supervised
contrastive learning, positive pairs are generated by sampling pairs of
TCRs that are known to bind the same pMHC. In the unsupervised set-
ting, positive pairs are generated by taking two independent “views” of
the same TCR. We implement this by independently removing a propor-
tion of input tokens and sometimes dropping the α or β chain entirely
for every view (see methods 4.4.3). Reprinted from my own preprint [29]
(licensed CCBY).
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training by MLM needs to be introduced. The transformer is a neural net-
work developed in NLP that uses dot-product attention to flexibly learn
long-range dependencies in sequential data [27]. BERT is an encoder-only
variation of the transformer useful for text analysis and processing [30].
BERT’s innovation was its ability to be pre-trained in an unsupervised
manner through MLM, where snippets of text are fed to the model with
a certain proportion of tokens (e.g. words) masked, and the model must
use the surrounding context to reconstruct the masked tokens. MLM
allowed BERT and its derivative models to exploit large volumes of unla-
belled data to learn grammar and syntax and achieve high performance
on downstream textual tasks with comparatively little supervised fine-
tuning.

While MLM-trained PLMs have been successful in some protein pre-
diction tasks [90–92], they have been documented to struggle with others
[95]. Our benchmarking results led us to believe that MLM pre-training
may not be optimal for TCR-pMHC specificity prediction. Firstly, the ma-
jority of observed TCR sequence variation is attributable to the stochastic
process of VDJ recombination. As such, MLM may not teach models
much transferable knowledge for specificity prediction. Secondly, since
the low volume of specificity-labelled TCR data provides limited oppor-
tunities for fine-tuning complex models, representation distances should
ideally be directly predictive of co-specificity.

We were inspired to use contrastive learning to overcome these prob-
lems by the success of our previous work using statistical approaches to
uncover patterns of sequence similarity characteristic of ligand-specific
TCR repertoires [22, 101, 102]. Contrastive learning minimises distances
between model representations of positive sample pairs while maximis-
ing distances between background pairs (Fig. 4.2c) through a loss function
of the following form [103, 104]:

Lcontrastive( f ) := E
(x,x+)∼ppos

{yi}N
i=1

iid∼pdata

[
− log

e f (x)⊤ f (x+)

e f (x)⊤ f (x+) + ∑i e f (x)⊤ f (yi)

]
(4.1)

where f : X → Sm−1 is a trainable embedding mapping from sample
observation space X to points on the m-dimensional unit hypersphere
Sm−1 ⊂ Rm, ppos is the joint distribution of positive pairs, pdata is the
overall data distribution, and N ∈ Z+ is some fixed number of back-
ground samples.

There are several well-known variants of this learning approach. In
supervised contrastive learning, positive pairs are generated by sampling
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observations known to belong to the same class (Fig. 4.2d top). In the
context of TCRs, we can define positive pairs to be TCRs annotated to in-
teract with the same pMHC, in which case we can show that contrastive
learning regresses distances between TCR pairs to their probabilities of
co-specificity (see appendix B). Autocontrastive learning approximates
such positive pairs through data augmentation by generating two inde-
pendent views of the same observation by passing it twice through the
model (Fig. 4.2d bottom).

Given the scarcity of available labelled data, we opted to use the au-
tocontrastive approach for purely unsupervised PLM pre-training (see
Sec. 4.2.5 for an application of supervised contrastive learning, more sim-
ilar to other recent applications of contrastive learning to TCRs [105, 106]).
We generate different “views” of a TCR by dropout noise as is standard
in NLP [107], but additionally adopted a censoring strategy inspired by
MLM that randomly removes a proportion of residues or even complete
α or β chains. In contrast to the only other study known to us having
explored the application of autocontrastive learning to TCRs [108], we
trained SCEPTR on all six hypervariable loops of the full paired chain αβ
TCR, as all contribute to TCR-pMHC specificity [101]. That being said,
our chain dropping procedure during censoring ensures that single chain
data are also in distribution for the model, giving SCEPTR flexibility for
downstream applications with bulk sequenced TCR repertoires.

We define SCEPTR’s output representation vector to be a contextu-
alised embedding of a special input token called <cls> (the naming con-
vention for <cls> comes from the fact that the output of this vector is
often used for downstream classification [30]), which is always appended
to the tokenised representation of an input TCR (Fig. 4.2a). This allows
SCEPTR to fully exploit the attention mechanism when generating the
overall TCR representation. Such training of a sequence-level represen-
tation is uniquely made possible by having an objective – the contrastive
loss (Eq. 4.1) – that directly acts on the representation output. In contrast,
MLM-trained PLMs such as ProtBert, ESM2 and TCR-BERT generate se-
quence embeddings by average-pooling the contextualised embeddings
of each input token at some layer: a destructive operation which risks
diluting information [95].

4.2.3 Ablation studies

To understand which modelling choices drive the improved performance
of SCEPTR, we trained variants of SCEPTR ablating a single component
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Figure 4.3: Autocontrastive pre-training significantly improves
SCEPTR’s downstream performance. The subplots show performance
profiles of SCEPTR, TCRdist, TCR-BERT, and various ablation variants
of SCEPTR on binary specificity prediction. a) Training SCEPTR solely
on MLM results in worse specificity prediction performance. b) The
baseline SCEPTR variant which uses the <cls> pooling method per-
forms marginally better than the variant which uses the average-pooling
method. However, the average-pooling variant still performs on par with
TCRdist. c) Replacing SCEPTR’s pre-training dataset with 1) the same
dataset from Tanno et al., but with α/β chain pairing shuffled, and 2)
synthetic data generated by OLGA both result in slightly inferior speci-
ficity prediction performance. d) Restricting SCEPTR’s featurisation of
input TCRs to the amino acids of the α and β CDR3 loops significantly
worsen downstream performance. Additionally restricting training to
only MLM further degrades performance, and produces a model with
a near-equivalent performance profile to TCR-BERT. Reprinted from my
own preprint [29] (licensed CCBY).
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of either its architecture or training at a time, and benchmarked them
using the framework described previously.

To establish the contribution of the autocontrastive learning to SCEPTR’s
performance, we trained the same model only using masked-language
modelling:

SCEPTR (MLM only) This variant is trained only on MLM, without jointly
optimising for autocontrastive learning. Following convention in
the transformer field [109], TCR representation vectors are gener-
ated by average-pooling the contextualised vector embeddings of
all constituent amino acid tokens produced by the penultimate self-
attention layer, and ℓ2-normalising the result.

The MLM-only variant underperforms compared to both SCEPTR and
TCRdist, demonstrating that autocontrastive learning is a necessary in-
gredient for the increased performance of SCEPTR in few-shot specificity
prediction (Figs. 4.3a / A.4a).

We next sought to determine how much our pooling strategy and
training dataset choice contributed to SCEPTR’s performance gain. First,
we asked whether autocontrastive learning also improves embeddings
generated via token average-pooling:

SCEPTR (average pooling) This variant receives both autocontrastive learn-
ing and MLM, but uses the average-pooling method to generate
TCR representations.

While SCEPTR’s <cls> embeddings achieve the best results, the au-
tocontrastive average-pooling variant still performs on par with TCRdist
(Figs. 4.3b / A.4b).

Second, we determined how the performance of SCEPTR depends on
the precise dataset used for pre-training. To answer this question we
trained two variants of SCEPTR using size-matched datasets:

SCEPTR (synthetic data) This variant is trained on a size-matched set
unlabelled αβTCRs generated by OLGA [7], a probabilistic model
of VDJ recombination.

SCEPTR (shuffled data) This variant is trained on the same set of αβTCRs
as the original model, but the α/β chain pairing is randomised.

We find that pairing information and the use of real post-selection
repertoires slightly improves SCEPTR’s performance, but variants trained
on alternative datasets still match TCRdist performance (Figs. 4.3c / A.4c).
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The synthetic data models the statistics of VDJ recombination and there-
fore estimates a pre-thymic TCR distribution. As such, SCEPTR’s slight
performance improvement using peripheral blood TCRs hints at a poten-
tial ability of language modelling to extract information from imprints
left by antigen-driven selection in memory repertoires [22]. Similarly, the
slight performance increase on paired TCR data suggests some ability to
extract information from pairing biases [9].

Taken together, these ablation studies provide evidence that autocon-
trastive learning is the main factor enabling SCEPTR to close the gap
between PLMs and alignment-based methods.

Information-theoretic analysis of the sequence determinants of TCR
specificity demonstrate that all CDR loops and their pairing are impor-
tant for determining binding specificity [101]. To understand how much
SCEPTR’s improved performance with respect to TCR-BERT is due to
the restriction of the latter model’s input to the CDR3 alone, we trained
variants of SCEPTR restricted to this hypervariable loop:

SCEPTR (CDR3 only) This variant only accepts the α and β chain CDR3
sequences as input (without knowledge of the V genes/first two
CDR loops of each chain). It is jointly optimised for MLM and
autocontrastive learning.

SCEPTR (CDR3 only, MLM only) This otherwise equivalent variant is
only trained using the MLM objective, and thus uses the average-
pooling representation method.

The results demonstrate that taking into account all CDR loops leads
to a performance gain as expected (Figs. 4.3d / A.4d). We also see that
autocontrastive learning even when restricted to CDR3 loops leads to a
substantial performance gain, helping the autocontrastive CDR3 variant
achieve similar performance to the full-input MLM-only variant (Fig. 4.3a,d).

4.2.4 Learning features within embedding spaces

So far we have focused on nearest-neighbour prediction using PLM em-
beddings as the most direct test of data-efficient transfer learning that
works with as little as a single reference sequence. If slightly more data is
available, another approach is to train simple supervised predictors atop
PLM embeddings. To test how much such training can improve predic-
tion performance, we trained linear support vector classifiers (SVCs) on
the PLM embeddings provided by different models. In each instance, we
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Figure 4.4: SCEPTR with nearest-neighbour prediction outperforms
other PLMs with a supervised support vector machine on top. We
trained a linear SVC on top of TCR-BERT’s featurisation of the TCR
to predict specificity, and compared its performance to the nearest-
neighbour predictions of both SCEPTR and TCR-BERT using the bench-
marking framework from section 4.2.1. We see that while training an SVC
on top of TCR-BERT improves its downstream performance for few-shot
TCR specificity prediction, it still does not outperform nearest-neighbour
predictions as made by SCEPTR. Reprinted from my own preprint [29]
(licensed CCBY).

https://creativecommons.org/licenses/by/4.0/
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trained the classifier to distinguish reference TCRs from 1000 randomly
sampled background TCRs (see methods 4.4.4).

We find that the SVC predictors for ProtBert, ESM2 and TCR-BERT all
perform better than their nearest-neighbour counterparts, but still worse
than SCEPTR’s nearest-neighbour predictions (Fig. 4.4 / A.6). We also
trained an SVC atop SCEPTR, which did not lead to further improvement
upon the nearest-neighbour prediction (Fig. A.6). These findings high-
light how in the low data regime typical of most pMHCs, misalignment
of pre-training to downstream tasks can only be partially remediated by
training on reference TCRs.

4.2.5 Supervised contrastive learning for fine-tuning

Supervised contrastive learning provides an avenue to further optimise
pre-trained embeddings for TCR specificity prediction. As a proof-of-
concept, we fine-tuned SCEPTR to better discriminate between the six
pMHC specificities used as the benchmarking targets in section 4.2.1.

For this task we took all the TCRs annotated against the target pMHCs
from our labelled TCR dataset, and split them into a training, a validation,
and a testing set. We ensured that no study used for training or valida-
tion contributed any data to the test set, so that the fine-tuned model
would not be able to achieve good performance simply by exploiting
inter-dataset biases. The training set included 200 binders against each
target pMHC, totalling to 1200 TCRs. The rest of the TCRs from the same
studies were used to construct the validation set. TCRs from all remain-
ing studies were used for the testing set, which comprised of 5670 TCRs.
SCEPTR was fine-tuned on the training set with supervised contrastive
learning, using the validation loss for early stopping (appendix 4.4.5).

We used the framework from section 4.2.1 to benchmark the perfor-
mance of fine-tuned SCEPTR, using the training set as the references. The
results show that fine-tuning can greatly improve the ability of the model
to discriminate between specificities (Fig. 4.5). Improvements are most
noticeable for the pMHCs against which other methods achieve relatively
low performance. However, model performance degrades with respect to
unseen pMHCs (Fig. A.5), perhaps unsurprisingly given the very limited
number of pMHCs represented in the training data. Interestingly, unlike
other models (Fig. A.3), fine-tuned SCEPTR makes better inferences by
measuring the average distance between a query TCR and all reference
TCRs instead only the nearest TCR (Fig. A.7). This suggests an ability of
supervised contrastive fine-tuning to help the model discover the com-
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Figure 4.5: Supervised contrastive learning improves discrimination
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monalities between the multiple different binding solutions thought to
exist for each pMHC.

4.3 Discussion

In this study, we have introduced SCEPTR, a pre-trained TCR PLM that
achieves state-of-the-art few-shot TCR-pMHC specificity prediction accu-
racy. Through SCEPTR we demonstrate that joint autocontrastive and
masked-language pre-training is a paradigm for learning PLMs better
aligned with TCR specificity prediction tasks. Our model can be read-
ily used for alignment-free TCR analysis in downstream applications
(see code availability) including the unsupervised discovery of antigen-
specific T cell groups (metaclonotypes) by sequence-based clustering [68,
82].

A limitation of our study is that we did not undertake a complete
exploration of training and architectural hyper-parameters. We envis-
age multiple avenues that may improve SCEPTR further. Firstly, training
could be made more efficient by optimising the distribution of masked/-
dropped tokens during pre-training, taking into account the variable rel-
evance of different parts of the sequence in determining specificity [101].
Secondly, as certain sequence motifs appear recurrently (e.g. CDR3 loops
often begin with CAS), a more intelligent tokenisation scheme could of-
fload learning of these primary sequence statistics into the tokenisation
process.

Pre-trained PLMs have achieved high performance on protein stability
and structural predictions [91, 92]. However, we find that existing PLMs
fail to confer similar benefits to predicting TCR-pMHC interactions. This
finding adds to recent work showing that current PLM pre-training is
not well-aligned with certain downstream tasks [95]. Importantly, we
show that autocontrastive pre-training can overcome misalignment, and
thus provide a constructive path out of this impasse which could also be
applied outside of the TCR domain.

What determines whether a certain downstream task is aligned with
MLM pre-training? MLM teaches PLMs to predict the conditional dis-
tribution of tokens given sequence context. Thus it stands to reason that
amenable downstream tasks involve predictions of properties that deter-
mine the distribution of observed proteins on sequence space. Observed
proteins tend to concentrate in areas of sequence space with higher pro-
tein stability since evolution on average selects for this property [110]. For
datasets containing protein families whose members have a conserved
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structure despite primary sequence variation, co-evolutionary couplings
driven by structural constraints influence allowed sequence variability
[91, 111, 112]. These data distributional properties might explain how
MLM can teach PLMs features related to both stability and structure.

In contrast, the distribution of TCRs over sequence space is primar-
ily shaped by the biases of VDJ recombination with antigen-specific se-
lection playing an important, but likely second-order effect [22]. While
long-term evolutionary pressures may act to align recombination statis-
tics with TCR function [10, 113], empirical evidence so far suggests re-
combination biases primarily anticipate thymic selection for stability and
folding [114]. In contrast, studies to date have found no clear relationship
between probabilities of recombination and the likelihood of receptors
engaging specific pMHCs [115]. Given these considerations, we expect
MLM pre-training to align better to tasks concerning VDJ recombina-
tion than to TCR specificity prediction. Indeed, previous work training
PLMs on adaptive immune receptors has demonstrated that embeddings
strongly depend on V/J gene usage and can be used to predict primarily
generation-related properties such as receptor publicity [88, 96].

Why does autocontrastive learning help to generate embeddings bet-
ter suited for specificity prediction? An interesting insight comes from an
asymptotic decomposition of the contrastive loss function into the unifor-
mity and alignment terms [103]:

Unif.( f ) = log E
x,yiid∼pdata

[
e−∥ f (x)− f (y)∥2

]
(4.2)

Align.( f ) := E
(x,x+)∼ppos

[
∥ f (x)− f (x+)∥

]
(4.3)

Uniformity incentivises the model to make use of the full representation
space, while alignment minimises the expected distance between positive
pairs (e.g. co-specific TCRs) [103]. From this view, contrastive learn-
ing on adaptive immune receptor data encourages PLMs to undo the
large-scale distributional biases created by VDJ recombination through
the uniformity term, while helping to identify features relating to TCR
(co-)specificity via the alignment term. While autocontrastive learning ap-
proximates the alignment term through the generation of pairs of views,
it still provides a direct empirical estimate for the uniformity term. Thus,
a key benefit of autocontrastive learning may be that it reduces the con-
founding effects of VDJ recombination in embedding space.

Comparing SCEPTR to other PLMs suggests that model complexity as
measured by either parameter count or representation dimensionality is
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Figure 4.6: Model complexity does not correlate with downstream per-
formance. Model performance as measured by mean 200-shot AUROC
(section 4.2.1) does not scale with model complexity as measured by ei-
ther a) parameter count or b) representation dimensionality. Despite be-
ing the smallest PLM by a wide margin, SCEPTR performs better than al-
ternative models. Reprinted from my own preprint [29] (licensed CCBY).
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not currently the limiting factor for TCR-pMHC prediction performance
(Fig. 4.6). This is directly supported by how the CDR3-only, MLM-only
variant of SCEPTR performs almost equivalently to the much larger but
similarly pre-trained TCR-BERT (Fig. 4.3d). This finding stands in con-
trast to observations of performance scaling with model size in general
PLMs [91] and antibody language modelling [97]. While the focus of the
current study was on training a simple model, it would be interesting in
future work to investigate performance scaling with model complexity
and training dataset size with our novel training procedure.

Looking forward, there are many exciting avenues to further develop
contrastive learning as a paradigm to crack the TCR code. For exam-
ple, there may be ways to exploit the uniformity (Eq. 4.2) and align-
ment (Eq. 4.3) decomposition to simultaneously train on unlabelled and
specificity-labelled data. A practical benefit of our contrastive learning
formulation is that it does not require any optimisation with respect to
the true negative distribution (i.e. TCRs that are explicitly not co-specific)
– a non-trivial distribution to estimate for TCRs [116].

Another interesting avenue is the use of labels other than pMHC speci-
ficity – such as phenotypic annotations from single-cell data – as addi-
tional supervised contrastive training signals. Finally, while supervised
contrastive learning does not currently lead to generalisable learning be-
yond training pMHCs, we expect a transition towards generalisation as
larger volumes of specificity-labelled TCR data become available, as has
been the case with supervised contrastive learning in other fields [107,
117–120]. Finally, while the focus of this work given current data limi-
tations has been on learning TCR embeddings, contrastive learning may
also help us learn effective joint TCR-pMHC embeddings in the future
when the joint space (and particularly the pMHC space) is better sam-
pled, and thus ultimately enable the zero-shot prediction of TCR-pMHC
specificity.

4.4 Methods

4.4.1 Model benchmarking

For each pMHC, we varied the number k of reference TCRs where k ∈
{1, 2, 5, 10, 20, 50, 100, 200}. Within each model-pMHC-k-shot combina-
tion, we benchmarked multiple reference-test splits of the data to en-
sure robustness. For k = 1, we benchmarked every possible split. For
k ∈ [2, 200], we benchmarked 100 random splits, where we ensured that
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the same splits were used across all models to reduce extraneous vari-
ance. Variations in model performance across different splits were used
to generate confidence intervals for differences in performance, for exam-
ple in figure A.1.

The CDR3 Levenshtein model computes the distance between two
TCRs as the sum of the Levenshtein distances between the receptors’ α
and β CDR3 loops.

Note that while SCEPTR’s architecture and training allows it to di-
rectly generate representation vectors for complete αβ TCR sequences
(Fig. 4.2a, methods 4.4.2), this is not the case for the other PLMs. For
TCR-BERT, ESM2 and ProtBert representations for the α and β chains
were independently generated, then concatenated together, and finally
average-pooled to produce an embedding of the heterodimeric receptor
(see appendix A.1).

4.4.2 SCEPTR architecture

SCEPTR is a BERT-like transformer encoder that maps TCR sequences to
vector embeddings. Like BERT, it is comprised of a tokeniser module, an
embedder module and a self-attention stack (Fig. 4.2a).

The tokeniser module represents each input TCR as the amino acid
sequences of the first, second and third complementarity-determining re-
gions (CDRs) of each chain, where each amino acid is a token. A special
<cls> token is appended to each input TCR, as its contextualised em-
bedding will eventually become SCEPTR’s output representation vector
(Fig. 4.2a,b).

SCEPTR uses a simple, non-trainable embedder module, where a one-
hot vector is used to encode token identity (22 dimensions for 20 amino
acids plus special tokens <cls> and <mask>), and token positions are spec-
ified by first one-hot encoding the containing CDR loop number (6 di-
mensions), then encoding the token’s relative position within the loop as
a single scalar variable (Fig. 4.2b). This results in initial token embed-
dings in R29, which are passed through a trainable linear projection onto
R64. SCEPTR’s self-attention stack then operates at this fixed dimension-
ality (see background section 2.4 for more details on the transformer and
self-attention stack architecture). SCEPTR’s self-attention stack comprises
three layers, each with eight attention heads and a feed-forward dimen-
sionality of 256, and is thus substantially simpler than existing models.
Our tests suggest that relative position embedding helps SCEPTR learn
better calibrated TCR co-specificity rules (see appendix A.2).
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4.4.3 SCEPTR Pre-training

Data

The unlabelled paired-chain αβTCR sequences used to pre-train SCEPTR
were taken from a study by Tanno et al. [121], which provides 965,523
unique clonotypes sampled from the blood of 15 healthy human subjects.
As opposed to traditional single-cell sequencing, Tanno et al. used a
ligation-based sequencing method to resolve which α chains paired with
which β chains. To mitigate potential noise from incorrect chain pairing,
we applied an extra processing step to remove clonotypes that shared the
same nucleotide sequence for either the α or the β chain, as previously
described [22]. After filtering for functional TCRs using tidytcells, a TCR
gene symbol standardiser [3], we retained 842,683 distinct clonotypes.

A random sub-sample of 10% of this data was reserved for use as an
unseen test set, containing 84,268 unique clonotypes distributed across
83,979 unique TCRs. Of the remaining 90% of the data, we filtered out
any clonotypes with amino acid sequences that also appeared in the test
set, resulting in a training set of 753,838 unique clonotypes across 733,070
unique TCRs.

Procedure

SCEPTR was jointly optimised for MLM and autocontrastive learning,
where the total loss of a training step was calculated as the sum of the
MLM and autocontrastive (Eq. 4.4) losses.

We implemented MLM following established procedures [30]. Namely,
15% of input tokens were masked, and masked tokens had an 80% proba-
bility of being replaced with the <mask> token, a 10% probability of being
replaced by a randomly chosen amino acid distinct from the original, and
a 10% probability of remaining unchanged. The MLM loss was computed
as the cross-entropy between SCEPTR’s predicted token probability dis-
tribution and the ground truth.

Our choice of autocontrastive loss function is inspired by related work
in NLP [107] and computer vision [104], but adapted to the TCR setting.
Let B = {τi}N

i=1 be a minibatch of N TCRs. We generate two independent
“views” of each TCR τi by passing two censored-variants of the same re-
ceptor through the model. Our censoring procedure removes a random
subset of a fixed proportion (20%) of the residues from the tokenised rep-
resentation of the CDR loops and with a 50% chance drops either the full
α or β chain. To ensure that censoring does not fundamentally alter the
underlying TCR sequence, the positional encoding for each token remains
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fixed relative to the original TCR. In addition to the random censoring,
views also differ due to dropout noise during independent model passes.
Taken together, this procedure maps the minibatch B to the set of 2N TCR
views V = {vj}2N

j=1, where v2i and v2i−1 are two independent views of the
same TCR τi (i ∈ {1...N}). Where k ∈ I = {1...2N} is an arbitrary index
of a view vk ∈ V, let p(k) be the index of the other view generated from
the same TCR, and N(k) = {l ∈ I : l ̸= k} be the set of all indices apart
from k itself. Let rk denote SCEPTR’s vector representation of TCR view
vk. Then the autocontrastive loss for minibatch B is computed as follows:

LAC(B) =
1

2N ∑
k∈I

− log
er⊤k rp(k)/t

∑n∈N(k) er⊤k rn/t
(4.4)

Here, t is a temperature hyper-parameter which we set to 0.05 during
training, following previous literature [107].

We used ADAM (adaptive moment estimation) [122] to perform stochas-
tic gradient descent. We chose a minibatch size of 1024 samples and
trained for 200 epochs, which equated to 143,200 training steps. The in-
ternal dropout noise of SCEPTR’s self-attention stack was set to 0.1.

Our methodology of randomly censoring residues and even entire
chains stands in contrast to previous work in NLP by Gao, Yao, and
Chen, who found that relying only on the internal random drop-out noise
of the language model was sufficient for effective autoconstrastive learn-
ing. However, our experiments suggest that in the TCR domain, residue
and chain censoring leads to embeddings with better downstream TCR
specificity prediction performance (Fig. A.8).

4.4.4 Using SVCs to learn PLM features

To train the linear SVCs on top of PLM features, we sampled 1000 random
background TCRs from the training partition of the unlabelled Tanno et
al. dataset. We employed a similar strategy to our benchmarking in sec-
tion 4.2.1 to split our dataset of curated specificity-annotated αβTCRs into
a reference set and testing set. For each PLM-pMHC-split combination,
we trained a linear SVC using the PLM embeddings of the reference TCRs
as the positives and those of the 1000 background TCRs as the negatives.
The same 1000 background TCRs were used across model-pMHC-split
combinations to ensure consistency. We accounted for the imbalance be-
tween the number of positive and negative samples used during SVC
fitting by weighting the penalty contributions accordingly. Finally, we
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tested SVCs using the same benchmarking classification task as previ-
ously described.

4.4.5 SCEPTR fine-tuning with sup. contrastive learning

Data

For supervised contrastive fine-tuning we took all TCR binders against
the six best-sampled pMHC targets from our labelled TCR dataset, and
split them into a training, a validation, and a test set such that no study
used to construct the training or validation sets contributed any TCRs to
the test set (Table A.2).

Procedure

The fine-tuning process involved the joint optimisation of SCEPTR on
MLM and supervised contrastive learning. As during pre-training, the
overall loss for each training step was computed as the unweighted sum
of the MLM and supervised contrastive (Eq. 4.5) losses. The pre-trained
state of SCEPTR was used as the starting point for fine-tuning. With
only 200 TCRs for each target pMHC to train on, we limited the number
of learnable parameters by only allowing the weights of the final self-
attention layer to be trainable. Additionally, we monitored increases in
validation loss for early stopping of fine-tuning, which occurred after 2
epochs, where one epoch is defined as the model seeing 100,000 binders
for each pMHC. Given our a batch size of 1,024 TCRs, this corresponded
to a total of 1,172 training steps.

Our implementation of supervised contrastive learning closely follows
the formulation suggested by Khosla et al. [104]. This approach to super-
vised contrastive learning combines loss contributions from true positive
pairs, with those from second views of each positive instance (as in auto-
contrastive learning) as well as all views of all other sample points with
the same pMHC label. Let B = {τi}N

i=1 be a minibatch of N pMHC-
annotated TCRs. We use the same procedure as in our autocontrastive
framework (see methods 4.4.3) to generate two views of each of the TCRs,
producing a set of 2N views V = {vj}2N

j=1. Let Y = {yi}N
i=1 be the index-

matched pMHC labels for TCRs in B, and ȳj denote the labels mapped
to the indices of the views in V such that ȳ2i = ȳ2i−1 = yi. Now given
arbitrary sample view index k, let P(k) = {l ∈ A(k) : ȳl = ȳk} be the set
of all indices whose corresponding samples have the same pMHC label
as vk, with cardinality |P(k)|. The supervised contrastive loss for TCR
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minibatch B is:

LSC(B) =
1

2N ∑
k∈I

1
|P(k)| ∑

p∈P(k)
− log

er⊤k rp/t

∑n∈N(k) er⊤k rn/t
(4.5)

Each batch during fine-tuning has an equally balanced number of binders
to each of the six pMHCs.

4.5 Code Availability

https://github.com/yutanagano/sceptr This is a readily usable deploy-
ment of SCEPTR and all its variants seen in this publication.

https://github.com/yutanagano/tcrlm This repository houses code used
for designing and training our models.

https://github.com/yutanagano/libtcrlm This repository houses some
library code that powers both the sceptr and tcrlm repositories
above.

https://github.com/yutanagano/sceptr
https://github.com/yutanagano/tcrlm
https://github.com/yutanagano/libtcrlm
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Chapter 5

Calibrating SCEPTR’s distances
to a probability of specificity

Robust model calibration and uncertainty quantification is an important
aspect of machine learning, especially for domains like TCR analysis
where the ultimate aim is for models to be applied to downstream medi-
cal applications. In chapter 4, we saw that distance-based TCR specificity
predictions – in particular those made using the nearest neighbour pre-
diction scheme – remain competitive in the few-shot setting, in which
most real-world applications of TCR modelling technologies will have to
operate. However, none of the available distance-based TCR models have
any way to calibrate observed TCR distances to posterior probabilities of
(co-)specificity. In this chapter, I present some early work on Bayesian
nearest neighbour association (BANANAS), a framework to convert dis-
tances from a query TCR of unknown specificity to its nearest neigh-
bour in a reference set of known binders (see section 4.2.1) to the poste-
rior probability that the query TCR is specific to the pMHC of interest.
BANANAS makes use of the machinery proposed by Mayer and Callan
for the study of TCR coincidence statistics (see [22] and section 2.3) and
should theoretically be able to convert TCR distances as measured by
any arbitrary TCR metric1 into a posterior probability of specificity. In
my preliminary experiments shown later in section 5.2, I focus on ap-
plying BANANAS to SCEPTR’s distances. This work is jointly led by
myself alongside Sankalan Bhattacharyya and James Henderson, under
the supervision of Andreas Tiffeau-Mayer. All of the writing and analysis
presented in this chapter is my own.

1By metric here I mean a distance metric – that is, some symmetric and positive
definite function that can measure distances between TCRs.

67
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5.1 Theory

To recap, making inferences using the nearest neighbour prediction scheme
requires three things: a TCR metric d, a set of query TCRs Q, and a set of
known binder (reference) TCRs R to the pMHC of interest π. The TCR
metric is used to measure the distance from every query TCR in Q to its
nearest neighbour in R, and this distance is used to generate inferences
about whether each query TCR is also likely to be binder to π.

5.1.1 Posterior probability of specificity

We will begin by constructing a simple model for the distribution of TCR
sequences in the query set Q. Let pB and pS|Π(·|π) be two probability dis-
tributions defined over the set of all TCRs, where pB is the background
distribution and pS|Π(·|π) is the distribution of binders to π. Suppose
that Q is a sample from a mixture distribution where a fraction λ ∈ [0, 1]
of the TCRs are “spiked-in” binders to π and the rest are background
sequences. Then, a random sample Q from Q will be distributed accord-
ingly:

Q ∼ pQ, pQ(τ) = E
z∼pZ

[
pQ|Z(τ|z)

]
(5.1)

where:

pQ|Z(τ|z) =
{

pS|Π(τ|π) if z = 1
pB(τ) if z = 0

(5.2)

pZ(z) = Bernoulli(λ) (5.3)

Notice that the latent variable Z acts as a “label” for specificity, since
Z = 1 indicates that Q was sampled from the spike-in fraction of Q, and
vice versa.

Let us start with the simplest case, and imagine that R consists of a
single known binder TCR R ∼ pS|Π(·|π). We will denote the distance
between our query and reference as ∆ = d(Q, R). Note that since Q and
R are both random variables, ∆ is also a random variable.

We can approximate2 the probability that Q is also a binder to π with
the probability that Q was sampled from the spike-in fraction of Q, which
is equivalent to the probability that Z = 1. Given that we observe some

2The reason why this is technically an approximation, and the underlying theoretical
limitation of this framework is further expanded on in the later discussion section 5.3.
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distance δ between Q and our single reference R, this is:

P(Z = 1|∆ = δ) =
P(∆ = δ|Z = 1)P(Z = 1)

P(∆ = δ)
(5.4)

=
1

1 + P(∆=δ|Z=0)P(Z=0)
P(∆=δ|Z=1)P(Z=1)

(5.5)

Now, we can use the idea of near-coincidence distributions from Mayer
and Callan to express the conditional probability distributions of ∆:

P(∆ = δ|Z = 1) = pC[pS|Π(·|π)](δ) (5.6)

P(∆ = δ|Z = 0) = ∑
τ∈T

∑
τ′∈T

pB(τ)pS|Π(τ′|π)Id(τ,τ′)=δ ≈ pC[pB](δ) (5.7)

where T denotes the set of all TCRs. Equation 5.6 follows from the fact
that Z = 1 implies both Q and R are sampled independent and identically
distributed (IID) from the binder distribution pS|Π(·|π). The motivation
behind the approximation in equation 5.7 can be seen in appendix C.
Finally, P(Z = 1) = λ and P(Z = 0) = 1 − λ. This gives us all the pieces
necessary to evaluate the posterior probability of specificity:

P(Z = 1|∆ = δ) =
1

1 + χ(δ)−1O−1 (5.8)

where:

χ(δ) :=
pC[pS|Π(·|π)](δ)

pC[pB](δ)
(5.9)

O :=
λ

1 − λ
(5.10)

This simple model assumes that there exists only one reference TCR
against which we are measuring a distance. With greater numbers of
references, the probability of spuriously detecting smaller distances will
increase. Therefore, this model may overestimate the posterior probabili-
ties in such scenarios. In the following section, I propose a way to correct
for this behaviour.

5.1.2 Correction for number of reference TCRs

Let us now consider the case where we have K > 1 reference sequences,
where each reference is IID with pS|Π(·|π):

R =
{

Ri : Ri ∼ pS|Π(·|π)
}K

i=1
(5.11)
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We can now define a set D of K distances between Q and each element
Ri ∈ R:

D = {∆i : ∆i = d(Q, Ri)}K
i=1 (5.12)

Note that for all i, ∆i ∼ ∆, with ∆ = d(Q, R) from the earlier simpler case
considering only one reference TCR.

Let ∆(1) be the minimum of D – that is, the distance from Q to its
nearest neighbour in R. Then:

P(∆(1) = δ|Z = 1) = KP(∆ = δ|Z = 1)P(∆ > δ|Z = 1)K−1 (5.13)

= KpC[pS|Π(·|π)](δ)

[
1 −

∫ δ

0
pC[pS|Π(·|π)](t)dt

]K−1

(5.14)

Note that the integral above would be replaced by a sum for discrete
distance metrics. Similarly:

P(∆(1) = δ|Z = 0) ≈ KpC[pB](δ)

[
1 −

∫ δ

0
pC[pB](t)dt

]K−1

(5.15)

The above is an approximation for the same reason as equation 5.7 (see
appendix C).

Thus, the posterior probability of specificity given the distance to the
nearest neighbour reference corrected for multiple reference binders is:

P(Z = 1|∆(1) = δ) =
1

1 + χ(δ)−1
(

1−PC[pB](δ)
1−PC[pS|Π(·|π)](δ)

)K−1
O−1

(5.16)

where:

PC[p](δ) :=
∫ δ

0
pC[p](t)dt (5.17)

5.1.3 Model tractability

With equation 5.16, we now have a calibration model for the posterior
probability for specificity. But is the model tractable? Using available
datasets of specificity-annotated and background TCRs, we should be
able to obtain empirical estimates for the cumulative distribution func-
tions (CDFs) PC[pS|Π(·|π)](δ) and PC[pB](δ). This would allow us to
estimate the correction term for having multiple reference TCRs. Fur-
thermore, we should also be able to obtain estimates for pC[pS|Π(·|π)](δ)
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and pC[pB](δ) either directly or by differentiation of our estimates of the
above CDFs, which allows us to estimate χ(δ). The only free term that
remains is the prior odds, O.

Given a set of query TCRs Q and estimates for PC[pS|Π(·|π)](δ) and
PC[pB](δ), we can self-consistently generate an estimate for O using the
near-coincidence statistics of Q by considering the following. Accord-
ing to our model for the distribution of the elements of Q (Eq. 5.1), the
distribution of distances within elements of Q should be:

pC[pQ](δ) = ∑
τ∈T

∑
τ′∈T

E
z∼pZ

[
pQ|Z(τ|z)

]
E

z∼pZ

[
pQ|Z(τ

′|z)
]

Id(τ,τ′)=δ (5.18)

= ∑
τ∈T

∑
τ′∈T

(
λ2pS|Π(τ|π)pS|Π(τ′|π)

+ 2λ(1 − λ)pS|Π(τ|π)pB(τ
′)

+(1 − λ)2pB(τ)pB(τ
′)
)

Id(τ,τ′)=δ

(5.19)

≈ λ2pC[pS|Π(·|π)](δ) + (1 − λ2)pC[pB](δ) (5.20)

where line 5.19 above is obtained from the fact that:

E
z∼pZ

[
pQ|Z(τ|z)

]
= λpS|Π(τ|π) + (1 − λ)pB(τ)

and the approximation in line 5.20 is the same as that used for equa-
tion 5.7 (see appendix C). Along similar lines, we get:

PC[pQ](δ) ≈ λ2PC[pS|Π(·|π)](δ) + (1 − λ2)PC[pB](δ) (5.21)

Therefore, by fitting either equation 5.20 or 5.21 to the empirical dis-
tribution of distances within TCRs from Q with λ as the free parameter,
we get an estimate of the spike-in fraction of Q which is comprised of
specific binders. Since O depends only on λ, we also get an estimate for
the odds.

5.2 Preliminary experiments

With the theory developed, I conducted some preliminary experiments to
investigate the quality of calibrations that the framework could produce
using SCEPTR as the underlying TCR metric.
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5.2.1 Estimating SCEPTR’s near-coincidence statistics

The first order of business was to obtain estimates for TCR near-coincidence
statistics using SCEPTR’s distances. Due to the continuous (as opposed
to discrete) nature of SCEPTR distances3, I chose to obtain empirical es-
timates for the CDFs (PC[·](·)), fit a parametric model to them, and dif-
ferentiate the parametric models to obtain the respective density func-
tions (pC[·](·)). Using specificity-annotated TCR data from Minervina et
al. [25], I generated empirical estimates for the cumulative near-coincidence
curves for the binder distributions against several different pMHCs, shown
through solid grey and orange lines in figure 5.1. The curve for each indi-
vidual pMHC is shown in transparent grey, while an average over all the
pMHCs considered is shown in orange. I also used 10,000 background
TCRs generated by a synthetic model of VDJ recombination [7] to esti-
mate the background distance statistics, which is shown using a solid
purple line (Fig. 5.1).

Plotting these empirical estimates of the near-coincidence CDFs shows
two things. Firstly, the background curve seems to display a steady expo-
nential increase until plateauing around a distance of 1.5. This is a hint
that the CDF may be well-approximated by a logistic function. Secondly,
we see that there is some variation in the co-specific near-coincidence
curves between different pMHCs. However, especially in the regime
of very small distances, the inter-pMHC variation is a couple of orders
of magnitude smaller than the difference between the average pMHC-
specific (orange) curve and the background (purple) curve. This moti-
vates the approximation:

pC[pS|Π(·|π)](δ) ≈ E
π′

[
pC[pS|Π(·|π′)](δ)

]
(5.22)

for any pMHC of interest π, which allows us to fit our BANANAS model
once to the average pMHC-specific curve, and reasonably apply it to pre-
dictions against multiple different pMHCs.

As I have alluded to in the previous paragraph, the CDF for the back-
ground near-coincidence probabilities closely resembles a logistic func-
tion. Therefore, I fitted to it the model shown in equation 5.23, which is
a logistic function corrected such that logisticcorr(2) = 1. The correction

3While SCEPTR’s distances are indeed continuous with respect to its model param-
eters, the fact that the TCR space is discrete means that SCEPTR’s distances are still
technically discrete with respect to its TCR inputs. That being said, the set of all pos-
sible discrete distances across all TCRs is intractable. Therefore, we will approximate
SCEPTR distances as being continuous for the rest of this chapter.
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Figure 5.1: Empirical estimates and model fits to the cumulative near-
coincidence probability distributions PC[·](·) of SCEPTR. The purple
curve shows the CDF for the background distribution, whereas the or-
ange curve shows the CDF for co-specific TCRs averaged over the 10
pMHCs in the Minervina et al. dataset which had more than 100 known
binder TCRs [25]. The transparent grey lines show the curves individually
for each of the 10 pMHCs. The solid lines represent empirical estimates
of the CDFs, while the dotted lines show model fits to the background
and co-specific CDFs. The y axis is logged and shows the cumulative
probability of sampling distances less than or equal to a certain value.
The x axis shows the distances.
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is applied because a CDF must evaluate to one at the maximum of the
distribution’s domain (if it exists), and the maximum possible Euclidean
distance within SCEPTR’s representation space is 2 (recall that SCEPTR’s
representations live on the unit hypersphere).

logisticcorr(x; a, b) =
1

1 + e−a(x−b) − ϵ
, ϵ := e−a(2−b) (5.23)

The average co-specific near-coincidence CDF appears to behave very
similarly to the background distribution at high distances, but is enriched
for smaller distances. In fact, the co-specific curve seems to have a shal-
lower exponential decay rate from roughly distance 1 towards 0 compared
to the background curve. I decided to model this with a mixture of logis-
tic curves:

Fcospec(x; l, a, b) = l × logisticcorr(x; a, b) + (1 − l)× Fback(x) (5.24)

where Fback is fixed, and is the result of fitting the corrected logistic func-
tion to the background CDF.

The result of both fits are shown in figure 5.1 as the dotted lines. Al-
though the model fit to the background curve tends to overestimate the
cumulative probability mass at smaller distances, the two model fits are
reasonably close to the empirical data. Differentiating the model fits with
respect to the distance inputs x and taking the ratio of the co-specific to
the background curve gives us an estimate for χ, shown in figure 5.2.
Since my model fit overestimates the probability of small distances in the
background distributions, one may expect the model-based approxima-
tion of χ to underestimate its value in this regime. To investigate whether
this was the case, I compared the model-based approximation of χ to a
more direct estimate, which was obtained by first discretising SCEPTR
distances through binning, then computing direct estimates of the (now
probability mass-) functions pC[pS|Π](δ) and pC[pB](δ), and finally taking
their ratio. The results of this direct estimation is shown with orange
crosses in figure 5.2. As expected, the model-based approximation of χ
underestimates its value compared to the direct statistics obtained from
the data. However for the purposes of my preliminary experiments, I
decided to use the model-based approximation, since it extrapolates to
regions of very low and very high distances, where there is a lack of
sufficient data for direct estimation.
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Figure 5.2: Estimate for χ according to the model fits to the cumu-
lative PC[·](·) distributions. The purple curve shows the estimate for
χ(δ) obtained by taking the ratio of the derivates of the model fits to the
co-specific and background cumulative near-coincidence probability dis-
tributions. The orange crosses show a more direct estimate of χ(δ) which
was obtained by discretising SCEPTR distances into bins of width 0.1
from δ = 0 to δ = 2, directly estimating the probability mass functions of
the discretised distances for the background and co-specific distributions,
and taking the ratio. The y axis corresponds to the value of χ(δ), while
the x axis corresponds to the distance δ. The model fit underestimates the
value of χ at smaller distances.
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5.2.2 Uncorrected model

Using the obtained estimates for χ, PC[pS|Π](·) and PC[pB](·), I conducted
some empirical calibration studies of the BANANAS model. At the cur-
rent preliminary stage, I chose to conduct these evaluations with the
same datasets used to fit the model. This was done to ensure that the
data statistics during model evaluation were kept similar to those during
model fitting, such that any inaccuracies in the resulting calibration can
be attributed to inherent problems with the model itself, such as incorrect
choices of approximations, or bad fits.

A calibration test consisted of 100 repeated and random constructions
of a reference set of K known TCR binders against a particular pMHC
target π, and a query set of 200 TCRs of which some spike-in fraction λ
were also binders to π, and the rest were sampled from the background
set. All sampling during the reference and query set construction were
done without replacement, which ensured that none of the TCRs used in a
particular reference set would ever appear in its corresponding query set.
Within each split, the BANANAS model was used to compute the prob-
abilities of specificity for all members of the query set. These probability
scores, along with the true label of the corresponding TCR, were collected
across all splits, and used to compute a calibration curve. A calibration
curve compares the predicted probabilities of specificity with the empiri-
cal fraction of truly specific TCRs that were assigned such scores. I con-
ducted calibration tests for the 5 different pMHCs in the Minervina et al.
dataset that had more than 200 known binders, across 7 different settings
for the number of reference sequences K ∈ {1, 2, 5, 10, 20, 50, 100}, and
4 different settings for the spike-in fraction of positive query sequences
λ ∈ {0.01, 0.05, 0.10, 0.50}.

In these preliminary calibration experiments, the BANANAS model
was told the true prior λ/(1 − λ). This was done again to separate the
issue of the quality of the model itself from that of prior estimation. I will
address the issue of testing how well we can use the distance statistics to
infer the prior odds in the later section 5.2.4.

Let us begin by examining the calibration of the BANANAS model
without the correction for multiple reference sequences – that is, the
model shown in equation 5.8. The calibration plot for this model is shown
in figure 5.3. Firstly, we can see that the predicted probability scores do
not scale linearly with the true posterior probabilities. In particular, the
model tends to relative under-confidence towards the upper end of the
posterior probabilities. At the same time, we also see that the model
becomes generally overconfident in its predictions during testing condi-
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Figure 5.3: Calibration plot for the uncorrected BANANAS model.
This plot visualises the calibration of BANANAS without correcting for
the multiplicity of reference sequences (Eq. 5.8). Within a calibration ex-
periment, all test samples were collected into deciles according to their
predicted probability scores. Within each decile group, the mean pre-
dicted probability (x axis) was calculated, as well as the fraction of true
positives (y axis). One curve is drawn per experiment. The curves are
coloured according to: a) the pMHC specificity of interest, b) the num-
ber of references K, and c) the spike-in fraction λ. The black dotted line
shows the y = x diagonal, representing a theoretical perfectly-calibrated
model. The uncorrected BANANAS model generates overconfident pre-
dictions when run with greater numbers of reference sequences.
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tions with greater numbers of reference TCRs. This is expected, since this
model does not correct for the multiplicity of reference TCRs. Next, let
us inspect what the calibration curves look like for the corrected model.

5.2.3 Model corrected for reference multiplicity

The calibration plot for the corrected model is shown in figure 5.4. These
preliminary results show that the correction for multiple reference se-
quences does indeed help reduce overconfidence in the model. However,
this comes at the cost of accentuating the model’s tendency to increas-
ingly generate under-confident predictions towards higher true fractions
of positives.

5.2.4 Inferring prior odds

In section 5.1.3, I proposed a way to self-consistently infer the spike-in
fraction of the query set, and hence the prior odds O. How well does this
work in practice? Figure 5.5 shows some empirical results of implement-
ing the proposed method, where I have summarised the results separately
according to the pMHC specificity of interest. As it stands, the accuracy
of the inferences is poor. Furthermore, we also see that there is a large
variance in the predicted spike-in fractions between similar conditions
across different pMHCs.

5.3 Discussion

In this chapter, I have presented some preliminary work on BANANAS, a
statistical framework through which to calibrate nearest neighbour distance-
based predictions of TCR specificity. The results presented demonstrate
that a prototype implementation of the framework on SCEPTR’s dis-
tances can produce monotonically increasing calibration profiles that re-
main within reasonable distance to the diagonal. Furthermore, there are
promising signs that correcting for the multiplicity of reference sequences
does indeed improve calibration – notably, it makes it less likely for the
model to generate over-confident predictions. However, the quality of
calibration in this prototype implementation is currently poor, especially
considering the fact that the preliminary evaluations were conducted us-
ing the same dataset to which the model was fit. Below I discuss some
of the limitations of the current work and possible ideas for addressing
these issues, as well as points for further investigation.
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Figure 5.4: Calibration plot for the full BANANAS model with a cor-
rection term for the multiplicity of reference TCRs. This plot is com-
plementary to figure 5.3, but shows results for BANANAS with the cor-
rection term for the multiplicity of reference TCRs (Eq. 5.16). In settings
with larger K, adding the correction term shifts the calibration curves to
the left, making the model less likely to produce overconfident estimates
of the posterior probability of specificity. However, this comes at the
expense of increased under-confident predictions in the regime of high
values for the true fraction of positives.
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Figure 5.5: Estimating the spike-in fraction λ of true positives in the
query set. This plot visualises the results of estimating the fraction of
the query set that is comprised of co-specific binders using the model
from equation 5.21 and the near-coincidence statistics within the query
set. The results are shown separately for calibration experiments using
binder data for different pMHCs. The y axis shows the mean predicted
value for λ using the proposed method, while the x axis shows the true
value for λ. The dotted black line shows the y = x diagonal, on which
perfect predictions would lie. The results of the proposed method pro-
duce inaccurate predictions, and there is a large degree of variance seen
between calibration experiments using data from different pMHCs.
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Both the uncorrected and corrected BANANAS models tend to make
under-confident predictions towards the upper end of the posterior prob-
abilities. While this can be due to multiple reasons, the most likely culprit
is the inaccuracies in my approximation of χ. In particular, my model-
based approximation of χ(δ) underestimates its value at small δ, which
would have led to lower posterior probabilities in that region. Since the
query sequences with lowest δ should be the ones that are most likely to
be truly positive, this may explain both models’ relative under-confidence
in this regime. One way to improve in this regard may be to use more
flexible classes of models to estimate the CDFs PC[·](·). One promising
candidate is the cubic basis splines: as well as providing the flexibility
to approximate arbitrary shapes, they also guarantee the existence of a
smooth first derivative, which is desirable if we choose to estimate χ us-
ing the first derivatives of the fit curves. It is worth noting here that
an application of BANANAS to simpler metrics such as Levenshtein dis-
tance on the CDR3 sequences may pose less difficulties in estimating the
near-coincidence probability distributions. Firstly, fully discrete metrics
like Levenshtein distance are more coarse-grained in nature, which means
each possible distance value will have more empirical data-points asso-
ciated to it. Secondly, such metrics where the two chains of the TCR
independently contribute to the distance allow for factorisation assump-
tions to be made when estimating the background near-coincidence prob-
ability distributions, which is useful since the probabilities of encoun-
tering exact/very-near coincidences in the background distribution are
extremely low.

My preliminary attempts at estimating the prior odds from data have
not shown great success. However, this may partly be a result of the prac-
tical limitations of my experimental setup, where the size of the query set
was fixed at a relatively small 200 TCRs. The reason for this was data vol-
ume. For some of the pMHCs investigated in the presented experiments,
only around 200 binder TCRs were available. I wanted to keep the query
set size consistent across experiments and data splits, to keep conditions
as similar as possible. To do this while ensuring that up to half of the
query set can be comprised of spiked-in positive TCRs, under the con-
straint that up to 100 binder TCRs must be reserved for the construction
of a reference set, the query set size needed to be kept at 200. It is possible
that in real-life scenarios where the query set is much larger, we would
have enough statistics to more reliably estimate the spike-in frequency.

That being said, there are other possible reasons for the poor quality
of the inferred spike-in fractions. For example, if the parametric mod-
els I fit to the co-specific and background near-coincidence distributions
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are inaccurate as alluded to in the previous paragraphs, this may have
precluded the model in equation 5.21 from reliably producing accurate
results. Another possibility with wider consequences for the validity of
BANANAS’s theory is that the approximation in equation 5.20 (and also
in Eq. 5.7):

∑
τ∈T

∑
τ′∈T

pB(τ)pS|Π(τ′|π)Id(τ,τ′)=δ ≈ pC[pB](δ)

is not a good one. To investigate whether this is the case, an empiri-
cal study of the distance distributions between TCRs sampled from var-
ious pMHC-specific datasets and some background dataset should be
conducted. Thirdly, it is worth remembering that data outside of TCR
sequencing can also inform one’s prior beliefs about the odds – for exam-
ple, functional assays can reveal what fraction of T cells from the same
sample show markers of activation after being stimulated by antigens that
produce the pMHC of interest. Therefore, even if estimating the spike-in
frequency using TCR sequencing data were to remain challenging, this
would not preclude the utility of the BANANAS framework.

A nuanced theoretical limitation of the BANANAS framework is that
the posterior probability computed, P(Z = 1|∆ = δ), is only an approx-
imation to the posterior probability that a query TCR is able to bind the
pMHC of interest π. To better understand the reason why, let us re-
mind ourselves of the meaning behind the posterior event of considera-
tion Z = 1. In our model, Z is a latent variable which indicates whether
the query TCR was sampled from the spike-in fraction of the query set
whose elements follow the distribution pS|Π(·|π) of binders to π, or the
remaining portion of the query set that is distributed according to the
background distribution pB. Indeed if a query TCR is a sample from
the spike-in fraction, then by definition it is a binder to π. Thus, Z = 1
implies that the query TCR is a binder. However, Z = 0 does not im-
ply that the query TCR is not a binder. This is because by definition,
the background distribution pB should assign non-zero probabilities to
all possible TCR sequences, including all binders to π. Thus, the proba-
bility being estimated by the BANANAS framework is fundamentally an
approximation. That being said, it can be argued that in most if not all
real-life scenarios where a method such as BANANAS may be deployed
(e.g. examining the repertoire of an individual infected with a pathogen
and fishing out the TCRs that are likely to be responding to a pMHC
produced by said pathogen), the spike-in fraction λ for TCRs with the
specificity of interest is likely to be orders of magnitude larger than the
probability mass assigned to the set of binders in the background dis-
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tribution. Therefore, in most situations, this approximation should be
justified.

Finally, one of the biggest limitations of this preliminary work is the
fact that the BANANAS model has only been tested within strictly con-
trolled artificial conditions where many of its arguably non-trivial as-
sumptions are made to be true. For example, the model assumes that the
query set is a simple mixture of a background TCR distribution and a
binder distribution to one pMHC specificity of interest. By the construc-
tion of my experimental setup, this assumption holds. However, the true
statistics of query data distributions in the real world will never be this
simple. Furthermore, the preliminary tests documented in this chapter
were produced with the same dataset used to fit the parameters of the
BANANAS model itself. Thus, further investigation is necessary in or-
der to examine how model performance will generalise to independent
datasets. The fact that my implementation of BANANAS still struggles
with certain aspects of the calibration even in such controlled environ-
ments is evidence that there is much work left to be done.

In conclusion, BANANAS is a Bayesian framework that transforms
nearest neighbour distance measurements to a posterior probability of
specificity. I present a prototype implementation of this framework on
top of SCEPTR’s TCR distances. Preliminary results demonstrate that the
BANANAS model produces monotonically increasing calibration curves,
and provides a way to correct for the number of reference TCRs used,
which can otherwise bias predicted probabilities towards over-confident
values. However, the model transitions to significant under-confidence in
regions of high posterior probability, which may be due to a poor esti-
mation of the near-coincidence probabilities according to SCEPTR’s dis-
tances. Additionally, a proposed method of self-consistent prior odds es-
timation produces results of poor quality. Further work is required to de-
termine whether changes to the implementation can improve BANANAS
model fit to SCEPTR’s distance statistics, and if that can produce better-
calibrated results. Finally, and crucially, more rigorous evaluation of this
framework should be conducted using a wider diversity of datasets (with
datasets that are independent of model training as an important first step)
in order to gain insight into the generalisability of this framework. Model
calibration and uncertainty quantification should be a key component of
quantitative models of TCR specificity, given its potential impact in down-
stream biomedical applications. However, its implementation remains
challenging in the face of limited specificity-annotated TCR data. Further
thoughts around uncertainty quantification and probabilistic modelling
of TCRs can be found section 6.3.2 of the executive discussion.
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Chapter 6

Discussion

6.1 My contributions

In chapter 3, I presented my work on a piece of open-source software
named tidytcells that standardises TCR and MHC nomenclature to make
them compliant with the IMGT naming conventions. Through this work,
I contribute a tool to the quantitative immunology community which
makes the preparation of clean, standardised TCR and pMHC datasets
easier and less error-prone. This is important for making TCR datasets
more computer-readable – particularly when conducting analyses that in-
volve comparing and contrasting different datasets (e.g. querying TCRs
of unknown specificity against a database of specificity-annotated TCR
data), where correct comparisons depend on a consistent encoding of the
underlying data.

In chapter 4, I presented my work investigating autocontrastive learn-
ing as a strategy for pre-training PLMs. Through this work, I demon-
strate that existing PLMs underperform at few-shot TCR specificity pre-
diction compared to simpler and more traditional sequence alignment-
based methods. In search of an explanation for this surprising finding,
I speculate that MLM is ill-aligned to TCR specificity prediction, and
demonstrate that the addition of an autocontrastive pre-training signal
closes this performance gap. Within the context of recent trends in train-
ing expressive models using large volumes of unlabelled data, my find-
ings highlight the importance of choosing well-aligned pre-training ob-
jectives in order to achieve high downstream performance. In addition to
these insights, I contribute to the community a readily-usable and highly
effective TCR representation model by open-sourcing a user-friendly de-
ployment of my model SCEPTR.

85
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Finally in chapter 5, I presented some early work on BANANAS: a
Bayesian framework for predicting the probability of specificity of a TCR
based on the distance between it and its nearest neighbour in a refer-
ence set of known binders to some pMHC of interest. While the work
is still in its preliminary stages, it addresses an important need for ro-
bust uncertainty quantification in the computational modelling of TCR
specificities, and to the best of my knowledge, is the first of its kind for
distance-based TCR models. The generality of the theory underpinning
BANANAS means that it can calibrate distances as measured by any ar-
bitrary TCR metric, and gives it the potential to stay useful and relevant
for the quantitative immunology community regardless of preferences
towards certain TCR metrics over others, or future developments of im-
proved TCR representation models and metrics. If a fuller and more pol-
ished version of this work can demonstrate its ability to reliably produce
well-calibrated specificity predictions, then it could be combined with:

1. A semi-automated collation and standardisation of specificity-annotated
TCR data using tidytcells

2. Distance measurements within SCEPTR’s highly informative repre-
sentation space

to create a fully free and open-source pipeline for TCR specificity predic-
tion with robust uncertainty quantification.

6.2 Overall limitations

Here I take the opportunity to go over a few overarching limitations of
my work that have not yet been addressed in the discussion sections of
the preceding chapters.

Firstly, there are some fundamental limitations to the co-specificity-
focused approach that I have taken throughout the work of my PhD
candidacy. While there is strong evidence that TCR sequence similar-
ity enriches for co-specificity, many if not most pMHCs have multiple
binding solutions comprised of TCRs with significantly divergent pri-
mary sequences [22, 101]. As such, it is not uncommon for large fractions
of binder TCRs against one pMHC to fail to cluster with any of the other
co-specific TCRs based on measures of sequence similarity alone [72]. In
many ways, it is this difficulty in resolving disparate binding solutions
that is the biggest bottleneck to significant improvements in TCR speci-
ficity modelling. Although SCEPTR provides improved performance on
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TCR specificity prediction compared to existing models, SCEPTR’s re-
liance on unsupervised training objectives such as MLM and autocon-
trastive learning mean that it is very unlikely to have learned how to re-
solve co-specific TCRs with very different sequences. Indeed, the fact that
SCEPTR generates comparable AUROC scores to the sequence alignment-
based TCRdist is evidence that the co-specificity rules as learned by SCEPTR
is still tightly aligned to some notion of TCR sequence similarity (Fig. 4.1d).
Without, for example, significant increases in the volume of available
specificity-annotated TCR data enabling large-scale supervised learning,
or further innovations allowing us to use the currently limited amounts
in a generalisable manner, the contrastive learning approach is likely to
remain fundamentally limited in this way.

Secondly, more work can be done to better compare my own methods
to other existing ones. For example in chapter 4, I compare SCEPTR’s
performance to 3 other PLMs and 2 sequence-alignment-based TCR met-
rics, but this is only a subset of the many existing TCR specificity mod-
els. Furthermore, while I did my best in the same chapter to compare
SCEPTR and the aforementioned 5 models through a variety of inference
modalities including nearest-neighbour prediction (Fig. 4.1d), linear SVCs
(Fig. 4.4), and the average distance between a query TCR and all reference
binders (Fig. A.3), there are other simple yet interesting approaches that
have not yet been tried. Some candidates for future investigation are the
use of non-linear kernel-based SVCs, and the fine-tuning of the general
PLMs on TCR sequences. A similar criticism can be made towards the
preliminary work on BANANAS in chapter 5. A more polished future
version of this work should contain comparisons between the calibration
quality of BANANAS to other methods of calibration such as naive k-
nearest neighbours, or even other Bayesian methods such as Gaussian
processes fitted on SCEPTR’s representation space.

Thirdly, I have not presented any work on applying the developed
models and methods on downstream applications. The end goal of com-
putational TCR analysis is for the technology to better inform down-
stream biomedical applications of immunological knowledge. While my
work does improve on the status quo of TCR representation modelling
and specificity prediction, it is not yet clear to what extent these improve-
ments translate to performance on higher-level tasks such as TCR reper-
toire classification [13–18], or the needle-in-a-haystack style identification
of candidate TCRs as the payload of T cell therapies or reverse epitope
discovery for vaccine design [82, 83] (e.g. due to its probably specificity
to a pMHC of interest). To maximise the positive impact of my work,
applications of SCEPTR and BANANAS on the above downstream ap-
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plications are high-priority candidates for future investigation (see the
following section).

6.3 Future work

While the limited 3-year timespan of my PhD candidacy has prevented
me from fully addressing the above limitations, this leaves plenty of room
for exciting avenues for further research. Below I share some ideas on
future extensions to the work presented in this thesis.

6.3.1 Downstream applications of SCEPTR

Repertoire classification

From the diagnostic point of view, a major downstream application of
computational TCR analysis is repertoire classification. That is, could
TCR repertoire sequencing be used as a minimally invasive biomarker
to diagnose diseases? SCEPTR’s ability to produce highly informative
embeddings of the TCR sequence may make it a useful component for a
wider repertoire classification model.

Recall from my earlier review of existing works on TCR machine
learning (see section 2.6) that repertoire classification is a multiple in-
stance learning problem. In other words, repertoire classifiers should be
able to make accurate predictions even in situations where only a small
proportion of the TCRs in an input repertoire are predictive of the un-
derlying disease state. With that in mind, one way to apply SCEPTR to
downstream repertoire classification is shown in figure 6.1.

Here, the primary trainable component is a repertoire-level trans-
former. Its key and value vectors each represent a TCR, and are generated
using SCEPTR’s embeddings. It has one query vector ξ that is trainable,
whose job is to adaptively pool information from across all input TCRs to
generate a single repertoire-level representation vector. Finally, a single-
(or multi-) layer perceptron maps the repertoire representation to a clas-
sification of disease state. Such a transformer-based architecture is a the-
oretically justified choice for the multiple instance learning setting, since
the model can learn to adaptively attend to the most predictive TCRs
within the input repertoire, even if they represent only a small propor-
tion of the whole input set. This architecture also enables flexible scaling
in complexity through 1) increasing the number of attention heads inside
the repertoire transformer, or 2) allowing for multiple learned query vec-
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Figure 6.1: Repertoire classification with SCEPTR. TCR repertoire clas-
sification can be difficult because it is a multiple instance learning prob-
lem. One principled way [13] to use SCEPTR’s embeddings for repertoire
classification is to train a simple transformer that uses a fixed number of
trainable query (q) vectors [ξi]

N
i=1, and uses transformations of SCEPTR’s

TCR embeddings as its key (k) and value (v) matrices (see section 2.4 for
details on the transformer architecture). This type of architecture would
be appropriate for a multiple-instance problem like repertoire classifica-
tion as it will be able to flexibly attend to only the relevant and informa-
tive TCRs within a repertoire (some bystander TCRs may not be informa-
tive), and generate an overall repertoire representation selectively from
that information. This repertoire representation can be passed through a
simple perceptron to generate a repertoire classification.
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tors [ξi]
N
i=1. Both strategies to increase complexity may help the model

more fully capture repertoire-level signals in cases where a set of multi-
ple diverse disease-associated TCR metaclonotypes are thought to exist,
whereas tactical reductions in complexity can improve model tractabil-
ity when either 1) the available data is sparse and there is a high risk of
model over-fitting, or 2) available compute is a limiting factor.

The architecture proposed above is similar to Widrich et al.’s DeepRC,
which instead uses a CNN-based TCR representation model upstream of
the repertoire transformer [13]. However, a key difference between my
proposition above and existing repertoire classifiers including DeepRC is
that SCEPTR is already pre-trained – thus, its weights can remain fixed.
This leaves the repertoire transformer and final perceptron as the only
trainable parts and helps protect the overall model from over-fitting to pa-
tient repertoire training data, which can often be noisy due to differences
in donor age, MHC restriction, and sequencing depth and technology.
If such a methodology were to work, it would be a useful step towards
more robust models of TCR repertoire classification.

Meta-clonotyping/reverse epitope discovery

TCRs within a repertoire can be clustered using measures of sequence
similarity in order to identify groups of receptors that are likely to re-
spond to the same target. Mayer-Blackwell et al. refer to these groups of
receptors as meta-clonotypes [82]. Pogorelyy et al. have shown in the con-
text of SARS-CoV-2 that meta-clonotypes identified from real-world pa-
tient data can be used in conjunction with laboratory-generated specificity-
annotated TCR data in order to conduct what they call reverse epitope dis-
covery – that is, an initial identification of immunodominant TCR meta-
clonotypes, followed by a targeted search for their cognate pMHC [83].

Meta-clonotype identification and reverse epitope discovery are im-
portant downstream applications of quantitative TCR analysis from the
therapeutic point of view, as it can help identify candidate TCRs for en-
gineered T cell therapies, and can also better inform designs for vaccines
that aim to elicit cellular immune memory. It is also synergistic with the
aforementioned application of TCR repertoire classification, as such iden-
tified TCRs may act as biomarkers of interest, whose presence may be
predictive of certain disease states.

The simplest way to apply SCEPTR to this use-case is to use the dis-
tances within its representation space to generate TCR clusters. This
should already improve upon available methods, given how our findings
from chapter 4 indicate that distances within SCEPTR’s representation
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space do indeed correlate better with receptor co-specificity compared to
existing models. There is also potential to combine SCEPTR distances
with an improved BANANAS framework, which may enable intelligent
and adaptive decisions on what distance thresholds to use in order to
construct TCR cluster candidates based on posterior probabilities of TCR
co-specificity.

6.3.2 Further improving SCEPTR

Intelligent tokenisation of TCR sequences

Current PLMs including SCEPTR treat input proteins as sequences of
individual residues [44, 60, 61, 91, 92]. In other words, each residue by
itself is considered a token – which would be the equivalent to a word or
a word-piece in natural language. On one hand, this choice of metaphor
between proteins and natural language has some nice properties. Firstly,
it keeps protein tokenisation inexpensive, since all that needs to be done is
to separate input strings by character. Secondly, it may also improve the
interpretability of PLMs, since a model’s understanding of a particular
amino acid type can be unambiguously interrogated by examining the
contents of, and information flow from, its unique corresponding token.

However, I would argue that it also comes with drawbacks, particu-
larly when considering TCR language models. Apart from the central
region of the CDR3 junction, the amino acid sequence of a TCR is fairly
low-entropy [9, 101]. In such low-entropy regions, a residue-by-residue
tokenisation of the TCR sequence forces earlier layers of a TCR language
model to “memorise” predictable germline-encoded sequences to achieve
high performance on MLM. This wastes model capacity on learning in-
formation that has very little if anything to do with the pMHC specificity
of the TCR.

What are some possible ways to address this issue? Let us use SCEPTR
as a case study. The only germline-encoded sequences within SCEPTR’s
input are the first and second CDR sequences of the α and β chains,
both of which are contained in their respective chain’s V gene sequence.
Therefore, a possible solution could be to replace the sequences of the first
two CDRs with a single token representing a V gene, while maintaining
residue-by-residue tokenisations of the CDR3 sequences. While this does
compress the germline-encoded V gene CDRs into a single token, it does
not address the fact that the CDR3 sequence at the N- and C-termini still
have relatively low entropy and can be trivially predicted given knowl-
edge of the V- and J gene usages. Furthermore, this new design prevents
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Figure 6.2: Adding convolutional layers to a TCR language model. A
TCR language model like SCEPTR may benefit from being augmented
with convolutional layers on top of its MHA-based transformer architec-
ture. Compared to natural language, relationships between close-range
neighbour residues on the CDR loops seem to contain significant informa-
tion regarding a TCR’s pMHC specificity. Therefore, the addition of one-
dimensional convolutions between MHA layers inside the transformer
encoder stack may help the model better pick up on such patterns.

the model from generalising any information learned from one V gene to
another, since no V gene pairs share any common tokens. As a result, the
model’s understanding of the least frequently used V genes is likely to
become unreliable.

Is there any way to interpolate between the extreme options of residue-
by-residue tokenisation and compressing the entire V gene into one to-
ken? The problem of learning optimal tokenisation strategies from data is
well-studied in NLP, where variational inference methods such as Google’s
SentencePiece have shown great success across different languages [28].
We know from multiple sequence alignments of germline-encoded TCR
genes that there exist shared or similar substrings across sequences of
different V, D and J gene segments. Therefore, methods similar to Sen-
tencePiece may also work for learning bespoke tokenisation strategies for
TCR sequences. A successful implementation of this idea would effec-
tively be trading an increase in the vocabulary size of the TCR language
with easier access by the language model proper to higher-order sequence
features.
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Adding convolutional layers

The success of string k-mer kernel methods and CNNs in the field of
TCR machine learning suggest that local patterns in the TCR sequence
are highly informative of the receptor’s target specificity [19, 42, 43, 72,
123]. This makes sense – since the CDRs are unfolded loops, the struc-
tural and physical properties of a particular residue within it would be
most influenced by their closest neighbours. Therefore, adding dedicated
model components like CNNs designed to detect such short-range pat-
ters into the language model stack of SCEPTR may help it better focus on
such signals (Fig. 6.2).

Furthermore, transferring the load of learning such close-range depen-
dencies to embedded CNN layers may free up the self-attention layers to
focus more on longer-range dependencies where its strengths will shine
brighter. In this sense, incorporating CNNs into SCEPTR may be a soft
solution to the issue of low-entropy TCR sequences discussed in the pre-
vious section, if the CNN layers were to take over the responsibility of
memorising germline-encoded TCR sequence patterns.

Intelligent distribution of token masking/censoring

My colleagues and I have demonstrated that information regarding epi-
tope specificity is not uniformly distributed within the residues of the
TCR sequence [101]. Namely, the β chain is more informative than the
α chain, and the CDR3 sequences are more informative than the V genes
(and thus the first two CDRs). In a separate preprint, my colleagues and
I also provide evidence that information is more concentrated around
the central region within the CDR3 loop [9]. However, token masking
and censoring during SCEPTR’s pre-training was done uniformly across
the chains, CDR loops and token positions. Better aligning the distri-
bution of masked/censored sequence features to that of information re-
garding pMHC specificity may help improve the efficiency of SCEPTR’s
pre-training. Furthermore, biasing the training towards such informative
features may be yet another way of mitigating the issue of model capacity
being wasted on learning germline-encoded sequence patterns that are in
contrast uninformative.

Semi-supervised learning

In chapter 4, I briefly introduced Wang and Isola’s asymptotic decompo-
sition of the contrastive learning loss into the uniformity and alignment
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terms. For clarity, I provide a simplified version of the decomposition
below (see [103] and appendix B for a more in-depth exploration).

Lcontrastive( f ) := E
(x,x+)∼ppos

{yi}N
i=1

iid∼pdata

[
− log

e f (x)⊤ f (x+)

e f (x)⊤ f (x+) + ∑i e f (x)⊤ f (yi)

]

lim
N→∞
= Uniformity( f ) + Alignment( f ) + log N

Uniformity( f ) := log E
x,yiid∼pdata

[
e f (x)⊤ f (y)

]
Alignment( f ) := E

(x,x+)∼ppos

[
− f (x)⊤ f (x+)

]
What this decomposition allows us to do is to separate the terms

within the contrastive loss that are optimised with respect to the posi-
tive pair distribution ppos, and the background data distribution pdata.
In chapter 4, I used the decomposition as a theoretical tool to reason
about why an autocontrastive objective helped improve the pre-training
of SCEPTR. I noted that while autocontrastive learning approximates the
alignment term using random views of the same underlying TCR, it still
gives us an unbiased estimate of the uniformity term (assuming that the
training data is IID with the background TCR distribution). I specu-
lated that having a high-quality estimate of the uniformity term helped
SCEPTR “unlearn” VDJ recombination statistics such that TCR distances
in its representation space account for biases in generation probability,
and lead to better co-specificity prediction.

But studying this decomposition begs the question: can we go fur-
ther than using alignment and uniformity in a theoretical capacity? If we
were to directly use the decomposed form of the loss to optimise SCEPTR,
then the separation afforded by the decomposition would allow us to con-
tinue using the plentiful unlabelled background TCR data to approximate
the uniformity term, while simultaneously using specificity-labelled TCR
data to obtain a better approximation of the alignment term. This could
lead to improvements in SCEPTR’s representation quality, since it would
then be learning from real examples of TCR pairs that are different in
sequence but co-specific in function.

On one hand, I do believe that such strategies which can combine
unsupervised and supervised learning (sometimes referred to as semi-
supervised learning) will eventually yield the best results. Thus, I think
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Figure 6.3: The challenge of effective semi-supervised contrastive
learning on expressive language models with limited TCR data. The
volume of TCR sequence space explored by specificity-annotated TCR
data is relatively small compared to that explored by unlabelled back-
ground data. Because of this stark difference in the marginal TCR dis-
tributions of the two datasets, optimising alignment using labelled data
and uniformity using unlabelled data can easily lead to a situation where
the alignment penalty can be made small by pushing the TCR subspace
explored by the labelled data into one corner of the representation space,
while the uniformity penalty is kept low by spreading out the rest of the
TCR space that is well-explored by the unlabelled data. This will not lead
to a generalisable model, as none of the co-specificity rules learned from
the labelled data necessarily restrict the model behaviour in the other
parts of the representation space.
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this general idea of optimising uniformity and alignment separately is
worth studying. However, I suspect that current limitations in data avail-
ability pose significant challenges to realising the idea successfully. The
main issue I see with a naı̈ve implementation of the above idea is that
the proportion of TCR space explored by currently available specificity-
annotated data is small compared to that explored by the unlabelled back-
ground data. This poses a challenge, since independent minimisations of
the alignment and uniformity terms over the two datasets is likely to lead
to a sort of “false optimum” – one where the specific areas of TCR space
explored by the labelled data are pushed to one corner of the representa-
tion space to minimise the alignment penalty, while the rest of the TCR
space that is only explored by the background data is spread out widely
to optimise for the uniformity penalty (Fig. 6.3). Indeed, this is what I
have seen when conducting my own preliminary experiments trialling
this approach.

This may sound contradictory to how I introduced the study of TCR
coincidence statistics in section 2.3. After all, one of its motivating factors
is its focus on local TCR co-specificity rules, which seemed to remain in-
variant regardless of where you looked in TCR space [22]. If that were
truly the case, shouldn’t learning the co-specificity rules in one area be
enough to generalise to all other areas? Not necessarily – the key fac-
tor here is model flexibility. As far as PLMs go, SCEPTR is a relatively
small model, but it still contains roughly 105 parameters. Because of its
expressiveness, the local rules that SCEPTR learns in one corner of the
TCR space need not significantly inform or restrict the local rules in other
parts of the TCR space. This is how we can end up in a situation such as
the one described in the previous paragraph.

With all of this in mind, I think the best way to implement semi-
supervised contrastive learning is to first focus on very simple TCR met-
rics. Specifically, the model must be designed such that any co-specificity
rules learned in one area of TCR space do highly restrict its predicted co-
specificity rules in all other areas. This model property should mitigate
the consequences of the aforementioned data limitations. One example
of such a model might be a simple weighted edit distance over CDR3
sequences – like TCRdist – but where the substitution matrix is learnable.

To be clear, this this is not to say that there is no longer a place for
more expressive representation models like SCEPTR. Firstly, they should
eventually become the better choice – even with naı̈ve supervised con-
trastive learning – once there is enough specificity-annotated TCR data
available. Secondly, the flexibility of such models mean that there exist
other ways of potentially improving their training (for example, see the
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following two sections). Thirdly, the fact that such models map TCRs
to a numerical representation space come with various practical benefits
that make them easier to use as foundational components of downstream
models, including the fact that distances are cheaper to compute on nu-
merical vectors (and particularly fast if graphics processing units (GPUs)
are available), and the existence of a vast literature studying parametric
models over numerical vector spaces. I am simply speculating that from
the very specific point of view of semi-supervised contrastive learning, a
direct application to SCEPTR may not yield the best results.

That being said, if we find that simpler models of TCR co-specificity
can be trained effectively through semi-supervised contrastive learning,
then those simpler models could prove useful in guiding or improving
the training of SCEPTR. For example, the rules as learned by the simpler
model could be used to: 1) better inform token masking or censoring
during MLM and autocontrastive learning (further discussed in the pre-
vious section), 2) generate data-informed synthetic positive TCR pairs,
and/or 3) mine TCR pairs from unlabelled data that are highly proba-
ble to be co-specific in order to conduct weakly-supervised contrastive
learning. If such a guided training regime can help SCEPTR recapitulate
the co-specificity rules as learned by the simpler model, we can reap the
rewards of semi-supervised contrastive learning while also retaining the
benefits of a numerical representation model. Similar strategies of using
simpler models to guide the training of larger models in settings with
limited data availability have been used to great effect when fine-tuning
large language models (LLMs) in NLP [32, 33], so it is not unreasonable
to think that such an approach may also be effective in the TCR domain.

Using phenotypic labels as supervised signals in contrastive learning

In the previous section, I discussed the distributional properties of specificity-
annotated TCR data that currently make it hard to use for supervision
during contrastive learning. Namely, we want the marginal TCR distri-
bution represented by specificity-annotated TCR data to be similar to the
background TCR distribution, but this is currently not the case. From the
data generation point of view, what is required for us to be able to gen-
erate a dataset that fits this criteria? Given current assay and sequencing
technologies, specificity-annotated TCR data is generated by first fixing a
set of pMHC targets, and subsequently testing a large number of TCRs
against them for specificity. The implication of this is that we need to
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know a priori a selection of pMHCs P such that:

E
π∈P

[
pS|Π(τ|π)

]
≈ pB(τ) (6.1)

where pS|Π(·|π) is the distribution of TCR binders to a pMHC π, and pB
is the background TCR distribution. However, this presents a chicken-
and-egg problem since it is difficult to know prior to data generation
what the binder distributions to each of these pMHCs look like. Further-
more, the vastness of the TCR space and its wide coverage by the back-
ground distribution means that the cardinality of P will likely need to be
very large for equation 6.1 to be a good approximation. This makes the
generation of a specificity-annotated TCR dataset suitable for contrastive
learning a fundamentally hard problem.

In contrast, phenotypic annotations (e.g. CD4/CD8 positivity) can di-
rectly be obtained for TCRs sampled IID from background. This can be
done, for example, by conducting single-cell ribonucleic acid (RNA) se-
quencing on T cells isolated from peripheral blood samples of healthy
donors. Furthermore, such labels for TCRs are relatively cheaper to pro-
duce at a large scale. Finally, the associated T cell CD4/CD8 positiv-
ity of a TCR conveys information on what MHC structures that TCR
can engage; thus, we can expect these labels to contain partial informa-
tion regarding our primary dependent variable of interest, pMHC speci-
ficity. For these reasons, phenotypic labels present a promising interpolat-
ing step between unsupervised contrastive learning and fully supervised
specificity-based contrastive learning on TCRs.

Probabilistic machine learning

In many ways, the end goal of quantitative TCR analysis is for the insights
gained to be applied in the medical setting, where the cost of incorrect
predictions is high. Therefore, robust uncertainty quantification is an
important factor to consider.

On one hand, there are ways to implement uncertainty quantification
by building additional machinery on top of SCEPTR. The BANANAS
framework introduced in chapter 5 is one example of this. As alluded
to earlier in section 6.2, there also exist other Bayesian methods such
as Gaussian processes that can be fitted over SCEPTR’s representation
space to produce probabilistic predictions. In fact, Jokinen et al. have
demonstrated that training a Gaussian process on simple BLOSUM62-
based representations of the TCR can produce competitive specificity pre-
dictors [46] – thus, trying a similar methodology using SCEPTR’s poten-
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tially better-behaved representation space may be an interesting avenue
for future work in its own right.

However, I argue that there are reasons to build uncertainty quan-
tification directly into the representation model itself. This is because
sometimes, we do not have full information about an input TCR. For ex-
ample, consider that many TCR datasets are obtained through bulk RNA
sequencing, and therefore only contain data on one (usually the β) chain.
When embedding a lone β chain sequence, an ideal TCR representation
model should be able to output a distribution over its latent space, to rep-
resent the scope of possible specificities the true underlying TCR could
have depending on its unknown complementary chain.

One way to turn a TCR language model like SCEPTR into a prob-
abilistic representation model is to train it as a variational autoencoder
(VAE) [124]. The VAE is an application of deep neural networks to vari-
ational inference, where the objective is to train a model q to approximate
the posterior distribution of some latent variable Z given some observable
variable T. In our case, the observed variable would be the amino acid
sequences of a TCR, and the latent variable would be a numerical rep-
resentation of that receptor. The probabilistic framing of the variational
inference problem necessitates that the model q outputs a distribution
over possible representations.

More explicitly, the VAE paradigm is set up in the following way.
Let Z be a random latent vector and T a random variable in TCR se-
quence space. Let us define a directed graphical model (Fig. 6.4) such
that an observation on Z induces a distribution on T. We set a prior pZ
for Z, use one neural network with parameters θ to specify the likeli-
hood pT|Z;θ(τ|z), and use a second network qZ|T;ϕ(z|τ) with parameters
ϕ to approximate the posterior pZ|T;θ(z|τ) (solving for the exact posterior
involves an intractable integral over the support of Z). Note how this
setup resembles the general autoencoder approach, where the qZ|T;ϕ net-
work acts as an encoder/representation model and the pT|Z;θ network acts
as a decoder model. Like with any other variational inference problem,
we make observations τ of T and maximise the evidence lower bound
(ELBO):

LELBO(θ, ϕ; τ) = log pT;θ(τ)− KL(qZ|T;ϕ(·|τ)∥pZ|T(·|τ)) (6.2)

= E
z∼qZ|T;ϕ(z|τ)

[
log pT|Z;θ(τ|z)

]
− KL(qZ|T;ϕ(·|τ)∥pZ) (6.3)

where the evidence pT;θ(τ) = Ez∼pZ pT|Z;θ(τ|z), and KL(a∥b) is the Kullback-
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Figure 6.4: Variational inference with a TCR representation model.
a) Let us define a directed graphical model where a latent TCR repre-
sentation Z induces a distribution of possible TCR sequences followed
by observed random variable T. Setting some simple prior distribution
pZ on the latent representations, one can optimise a (“decoder”) neu-
ral network with parameters θ to model the generative distribution pT|Z,
while simultaneously optimising a second (“encoder”) neural network q
with parameters ϕ to approximate the posterior distribution pZ|T. The
q encoder network can then be used to get probabilistic embeddings of
TCRs. b) A SCEPTR-like TCR language model can be used as the encoder
network qZ|T;ϕ that takes in a TCR sequence and outputs some sufficient
statistics for the approximated posterior distribution of the latent variable
Z. A realisation of Z can be sampled from the predicted distribution, and
a generative model (e.g. transformer decoder, see section 2.4) can be used
as the decoder network pT|Z;θ to reconstruct the TCR sequence from the
sampled value of Z. The ELBO loss (Eq. 6.3) is used to optimise both the
encoder and decoder networks, where the regularisation term ensures
that the predicted posteriors by q does not stray far from the set prior
pZ, and the reconstruction term ensures that the reconstructed TCR by p
closely matches the original input TCR.
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Leibler (KL) divergence between two probability distributions a and b:

KL(a∥b) := E
x∼a

[
log

a(x)
b(x)

]
(6.4)

The KL divergence is positive definite1 and can be thought of as a mea-
sure of how dissimilar two probability distributions are.

Line 6.2 above motivates the use of the ELBO by showing that its
maximisation is equivalent to jointly maximising the evidence (fitting the
generative model to the data) and minimising the KL divergence between
q and the true posterior distribution (making the probabilistic represen-
tation model q a better approximation to the true posterior). To make the
maximisation tractable, we must rearrange terms to get line 6.3. The first
term in line 6.3 can be thought of as a reconstruction error (if we used q
to encode a TCR, could we generate it back with high probability?) and
the second term acts as a regularisation factor which pulls q towards the
prior pZ.

Why would I now suggest a VAE approach, after having spent the
entirety of chapter 4 advocating for the contrastive approach? The first
and obvious reason is the motivation of this section, which is uncertainty
quantification. Secondly, the two approaches are not mutually exclusive
and can be combined either jointly or in sequence when training mod-
els. Thirdly, the VAE framework gives us a two-way mapping between
the representation space and the TCR space – when only using the con-
trastive approach, mapping from the representation space back to TCR se-
quences is not possible. Finally, recall how I speculated in chapter 4 that a
primary benefit of introducing an autocontrastive objective to SCEPTR’s
pre-training was its tendency to push the mapping of the background
TCR distribution to a uniform distribution over the representation hyper-
sphere. If this is indeed the case, then there is good reason to believe
that the VAE approach will also produce good results. This is because
the VAE approach allows us an explicit choice in assumption of the prior
latent distribution pZ – the second “regularisation” term in line 6.3 re-
flects this, as it does not let the posterior predicted by q to venture too
far from the set prior. With a hyper-spherical representation space, we
can for example set the prior as the uniform distribution, and use the von
Mises-Fisher (vMF) distribution over the unit hypersphere as the family
of posteriors generated by the q network. In fact, VAEs of this type have
shown superior performance compared to traditional VAEs that use the
multivariate Gaussian distribution as the latent prior and posterior [125].

1KL(a∥b) ≥ 0, KL(a∥b) = 0 ⇐⇒ a ≡ b
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6.4 Closing remarks

TCR-pMHC interaction is a central mechanism that enables T cell func-
tion, and is what endows T cells with target specificity. As such, uncov-
ering the rules that govern which TCRs can engage which pMHCs is an
important step in our journey as the collective scientific community to
better understand our own adaptive immune system. However, the im-
mense complexity of the system and the problem space combined with a
limited volume of annotated TCR-pMHC pairs makes this a hard problem
to solve. An effective machine learning-based solution to the problem re-
quires three things: 1) the collation of large volumes of high-quality TCR
data, 2) a way to train a model on the said data, and 3) a way to obtain
useful predictions from the said model. To this end, I have presented
1) tidytcells, a free and open-source Python library for automating the
preprocessing and standardisation of TCR and MHC data, 2) SCEPTR, a
small transformer-based TCR representation model that shows state-of-
the-art few-shot TCR specificity prediction performance, and provides us
with some insight on how to best train PLMs on TCR data, and 3) BA-
NANAS, a Bayesian framework for calibrating TCR metrics like SCEPTR
for distance-based TCR specificity prediction. These three works all build
on and are only made possible by the past hard work of the collective sci-
entific community. My hope is that my work presented here may also one
day contribute as a stepping stone and inspiration for further progress to-
wards cracking the immune code.



Abbreviations

APC antigen-presenting cell.

AUC area under the curve.

AUROC area under the receiver operating characteristic.

BANANAS Bayesian nearest neighbour association.

BERT Bidirectional Encoder Representations from Transformers.

CDF cumulative distribution function.

CDR complementarity determining region.

CNN convolutional neural network.

ELBO evidence lower bound.

FN false negative.

FP false positive.

GPT generative pre-trained transformer.

GPU graphics processing unit.

IEDB Immune Epitope Database.

IID independent and identically distributed.

IMGT International immunogenetics information system.

KL Kullback-Leibler.

LLM large language model.
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MHA multi-head attention.

MHC major histocompatibility complex.

MLE maximum likelihood estimation.

MLM masked-language modelling.

NLP natural language processing.

NPV negative predictive value.

PLM protein language model.

pMHC peptide-major histocompatibility complex.

PPV positive predictive value.

PR precision-recall.

PyPI Python package index.

ReLU rectified linear unit.

RNA ribonucleic acid.

ROC receiver operating characteristic.

SCEPTR Simple contrastive embedding of the primary sequence of T cell
receptors.

SVC support vector classifier.

TCR T cell receptor.

TN true negative.

TP true positive.

VAE variational autoencoder.

vMF von Mises-Fisher.
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Appendix A

Supplementary analyses of
SCEPTR

The following are supplementary material complementing the work dis-
cussed in chapter 4. All work presented in this chapter of the appendix
has been distributed publicly as part of a preprint prior to the submission
of this thesis under my authorship and copyright [29] (licensed CCBY).

A.1 Embedding TCRs with existing PLMs

A.1.1 TCR-BERT

The TCR-BERT model was downloaded through HuggingFace at https:
//huggingface.co/wukevin/tcr-bert. Since TCR-BERT is trained to read
one CDR3 sequence at a time, we generated TCR representations by gen-
erating two independent representations of the α and β chain, and con-
catenating them together. The TCR-BERT representation of a chain was
generated by feeding the model its CDR3 sequence, then taking the av-
erage pool of the amino acid token embeddings in the 8th self-attention
layer, as recommended by the study authors [44].

A.1.2 ESM2

The ESM2 (T6 8M) model was downloaded through HuggingFace at
https://huggingface.co/facebook/esm2_t6_8M_UR50D. ESM2 is trained
on full protein sequences, but not protein multimers. Therefore, we gen-
erated ESM2 representations for the α and β chains separately, and con-
catenated them to produce the overall TCR representation. To generate
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the representation of a TCR chain, we first used Stitchr [126] to recon-
struct the full amino acid sequence of a TCR from its CDR3 sequence
and V/J gene. Then, the resulting sequence of each full chain was fed to
ESM2. We took the average-pooled result of the amino acid token embed-
dings of the final layer to generate the overall sequence representation, as
recommended [91].

A.1.3 ProtBert

The ProtBert model was downloaded through HuggingFace at https:

//huggingface.co/Rostlab/prot_bert. Similarly to ESM2, ProtBert is
trained on full protein sequences. Therefore, we again used Stitchr to
generate full TCR chain amino acid sequences, and fed them to ProtBert
to generate independent α and β chain representations. We again as rec-
ommended average-pooled the amino acid token embeddings of the final
layer [92].

A.2 On different position embedding methods

To better understand TCR similarity rules as learned by PLMs, we mea-
sured the average distance penalty incurred within a model’s representa-
tion space as a result of a single amino acid edit at various points along
the length of the α/β CDR3 loops. To do this, we randomly sampled
real TCRs from the testing partition of the Tanno et al. dataset [121] and
synthetically introduced single residue edits in one of their CDR3 loops.
Then, we measured the distance between the original TCR and the single
edit variant according to a PLM. For each model, we sampled TCRs until
we had observed at least 100 cases of: 1) each type of edit (insertions,
deletions, substitutions) at each position, and 2) substitutions from each
amino acid to every other. Since CDR3 sequences vary in length, we cate-
gorised the edit locations into one of five bins: C-TERM for edits within the
first one-fifth of the CDR3 sequence counting from the C-terminus, then
M1, M2, M3, and N-TERM, in that order. For this analysis, we investigated
SCEPTR and TCR-BERT, since they are the two best performers out of the
PLMs tested (Fig. 4.1d).

Both SCEPTR and TCR-BERT generally associate insertions and dele-
tions (indels) with a higher distance penalty compared to substitutions
(Fig. A.9a). While SCEPTR uniformly penalises indels across the length
of the CDR3, TCR-BERT assigns higher penalties to those closer to the
C-terminus. We hypothesised that the variation in TCR-BERT’s indel

https://huggingface.co/Rostlab/prot_bert
https://huggingface.co/Rostlab/prot_bert
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penalties is a side-effect of its position embedding system. TCR-BERT,
like many other transformers, encodes a token’s position into its initial
embedding in a left-aligned manner using a stack of sinusoidal func-
tions with varying periods [27, 30, 44] This results in embeddings that are
more sensitive to indels near the C-terminus, which cause a frame-shift
in a larger portion of the CDR3 loop and thus lead to a larger change in
the model’s underlying TCR representation. To test this hypothesis, we
trained and evaluated a new SCEPTR variant:

SCEPTR (left-aligned) This variant uses a traditional transformer em-
bedding system with trainable token representations and left aligned,
stacked sinusoidal position embeddings.

While we detect no significant difference in downstream performance
between SCEPTR and its left-aligned variant (Fig. A.10), this may be be-
cause cases where the differences in their learned rule sets affects perfor-
mance are rarely seen in our benchmarking data. The edit penalty profile
of the left-aligned variant shows a similar falloff of indel penalties than
TCR-BERT with higher penalties at the C than N-terminals (Fig. A.9b).
As their is no clear biological rationale for this observation, these results
suggest that SCEPTR’s relative position encoding might result in a better-
calibrated co-specificity ruleset. These preliminary findings add to the
ongoing discussion around how to best encode residue position informa-
tion in the protein language modelling domain [93].

Interestingly, the penalty falloff seen with SCEPTR (left-aligned) is
sharper than that of TCR-BERT, whose indel penalties plateau past M1.
As TCR-BERT is a substantially deeper model (12 self-attention layers, 12
heads each, embedding dimensionality 768), it might be partially able to
internally un-learn the left-aligned-ness of the position information. If
this is true, then position embedding choices are particularly important
for training smaller, more efficient models.
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A.3 Supplementary Figures/Tables
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Figure A.1: Statistical analysis of benchmark performance differences
with respect to SCEPTR. This is an accompanying plot to the bench-
marking results shown in figure 4.1. The number of reference sequences
varies along the x axis. The y axis shows the difference between the mean
AUROC (∆AUROC) of SCEPTR and other models. The error bars repre-
sent standard deviations, which were calculated across pMHCs and data
splits. Reprinted from my own preprint [29] (licensed CCBY).
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Figure A.2: Benchmarking PLM embeddings on TCR specificity pre-
diction with Montemurro et al.’s post-processed 10xGenomics dataset
included. This is a repeat of the benchmarking study from sec-
tion 4.2.1 with a larger dataset of labelled TCRs. This includes six
more sufficiently sampled pMHC specificities (with epitopes ELAGIGILTV,
GLCTLVAML, AVFDRKSDAK, IVTDFSVIK, RAKFKQLL, KLGGALQAK). On both sub-
plots, the number of reference sequences varies along the x axis. a) The
y axis shows the models’ AUROCs averaged across pMHCs. b) The y
axis shows the distribution of ∆AUROC between SCEPTR and the other
models (see Fig. A.1). The trends seen in section 4.2.1 are recapitulated.
Reprinted from my own preprint [29] (licensed CCBY).

Table A.1: Per-epitope summary of the different models’ performances
from the nearest-neighbour prediction benchmarking (see section 4.2.1)
with the number of reference TCRs k=200. The best AUROC per epitope
is shown in bold.

SCEPTR TCRdist CDR3 Levenshtein TCR-BERT ESM2 (T6 8M) ProtBert
epitope

GILGFVFTL 0.911 0.904 0.872 0.876 0.831 0.845
NLVPMVATV 0.691 0.648 0.632 0.655 0.652 0.629
SPRWYFYYL 0.728 0.695 0.610 0.637 0.604 0.575
TFEYVSQPFLMDLE 0.976 0.970 0.964 0.966 0.937 0.950
TTDPSFLGRY 0.708 0.720 0.600 0.576 0.579 0.564
YLQPRTFLL 0.775 0.762 0.743 0.698 0.697 0.669

https://creativecommons.org/licenses/by/4.0/
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Figure A.3: Nearest neighbour prediction is more performant than
using the average distance to all references. We repeated the bench-
marking procedure used to produce figure 4.1d, but instead of making
inferences based on the distance between a query TCR and its closest ref-
erence neighbour, we averaged its distance to all references. The results
are shown in panel b, with panel a showing the original nearest neigh-
bour prediction-based benchmarking results for comparison. The x axes
show the number of reference sequences given to the model, while the y
axes show average AUROC. SCEPTR shows state-of-the-art performance
in both cases. All models perform better when applied through nearest
neighbour prediction. Reprinted from my own preprint [29] (licensed
CCBY).
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Figure A.4: Statistical analysis of benchmark performance differences
from the ablation studies. This is an accompanying figure to the ablation
study results shown in figure 4.3. The number of reference sequences
varies along the x axis. The y axis shows the distributions of ∆AUROC
to SCEPTR (see Fig. A.1). Reprinted from my own preprint [29] (licensed
CCBY).
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Figure A.5: Benchmarking fine-tuned SCEPTR on TCR specificity
prediction for unseen pMHCs. This figure shows the result of bench-
marking fine-tuned SCEPTR (see section 4.2.5) against TCRdist, TCR-
BERT and the baseline SCEPTR model on pMHC targets unseen during
SCEPTR’s fine-tuning. Here, we use the benchmarking framework from
section 4.2.1, with the prediction targets being all pMHCs other than the
six seen during fine-tuning that have at least 120 known binders. The
number of reference sequences k varies along the x axis. Here, we bench-
mark k ∈ [1, 20] as we want to always have at least 100 positive test cases
for each data split. a) The y axis shows the models’ AUROCs averaged
across pMHCs. b) The y axis shows the distribution of ∆AUROC (see
Fig. A.1) between the baseline SCEPTR model and the others. Fine-tuned
SCEPTR performs significantly worse compared to the baseline model.
Reprinted from my own preprint [29] (licensed CCBY).
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Figure A.6: Benchmarking linear support vector classifiers trained on
PLM features on TCR specificity prediction. These plots compare the
performances of different PLMs applied to few-shot TCR specificity pre-
diction, either through nearest neighbour prediction (models marked as
“NN” in the legend, see section 4.2.1) or using a linear support vector
classifier trained atop their TCR featurisations (models marked as “SVC”
in the legend, see section 4.2.4, methods 4.4.4). Benchmarking was done
using the framework outlined in section 4.2.1. In both plots, the num-
ber of reference sequences varies along the x axis. a) The y axis shows
the models’ AUROCs averaged across pMHCs. b) The y axis shows the
distribution of ∆AUROCs (see Fig. A.4) between SCEPTR (NN) and the
other models. For all PLMs except SCEPTR, training a linear SVC atop
the model’s features improves performance. SCEPTR (NN) outperforms
all methods, even the SVC trained atop its own features. Reprinted from
my own preprint [29] (licensed CCBY).
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Figure A.7: Comparing nearest neighbour and average distance im-
plementations of the baseline and fine-tuned SCEPTR models. This is
an accompanying plot to figure 4.5. Here, we investigate the TCR speci-
ficity prediction performance of the baseline and fine-tuned versions of
SCEPTR, implemented via the nearest neighbour (NN) or average dis-
tance (Avg dist) prediction frameworks (see section 4.2.1). For the base-
line model, we see that the nearest neighbour implementation performs
better on average, consistent with the results seen in figure A.3. In con-
trast, the average distance implementation of the fine-tuned model greatly
outperforms its nearest neighbour counterpart. Our primary hypothesis
as to why most models including the baseline SCEPTR model perform
better through nearest neighbour prediction (Fig. A.3) is that each pMHC
has multiple viable binding solutions comprised of TCRs with different
primary sequence features, which means that averaging distance to all
reference TCRs across binding solutions dilutes signal. The fact that the
fine-tuned model no longer shows this property may hint at its ability to
better resolve these distinct binding solutions into a single convex cluster.
Reprinted from my own preprint [29] (licensed CCBY).
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Figure A.8: Residue and chain dropping provide an improved noise
model during autocontrastive learning. This plot summarises bench-
marking results comparing SCEPTR with a variant (SCEPTR (dropout
noise only)) which does not employ any extra noising operations when
producing the two views of the same TCR during autocontrastive learn-
ing, solely relying on SCEPTR’s internal dropout noise (see section 4.4.3).
The benchmarking framework as outlined in section 4.2.1 is used. The
number of reference sequences varies along the x axis. a) The y axis
shows the models’ AUROCs averaged across pMHCs. b) The y axis
shows the distribution of ∆AUROCs (see Fig. A.1) from the dropout
noise only variant to the baseline model. While overall performance is
similar, the addition of out residue- and chain- dropping noise model im-
proves downstream performance. Reprinted from my own preprint [29]
(licensed CCBY).
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Figure A.9: Investigating TCR co-specificity rules as learned by dif-
ferent PLMs. Here we investigate TCR co-specificity rules as learned by
various representation models by measuring the expected distance penal-
ties incurred by single residue edits in different regions of the α and β
CDR3 loops. We investigate three models: SCEPTR, TCR-BERT, and a
SCEPTR variant which replaces its simplified initial embedding module
with one that emulates the traditional transformer architecture, including
a left-aligned position embedding system (see appendix A.2). The x axis
shows different regions of the CDR3 divided into five bins, where C-TERM

represents the first fifth of the loop counting from the C-terminal, N-TERM
represents the last fifth of the loop on the N-terminal end, and the mid-
dle regions numbered from the C-terminal as shown. The y axis hows
the expected distance penalty incurred by different types of single edits.
The different lines show the expected penalty curves with respect to in-
sertions (purple), deletions (orange) and substitutions (green). The error
bars show the standard deviations. According to all models, substitutions
on average incur a smaller distance penalty compared to indels. While
SCEPTR uniformly penalises indels, both TCR-BERT and the left-aligned
SCEPTR variant assign higher distance penalties to indels closer to the
C-terminal. Reprinted from my own preprint [29] (licensed CCBY).
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Figure A.10: SCEPTR with its simplified embedder module performs
similarly to a variant with an embedder module emulating the tradi-
tional transformer architecture. Here we show the results of benchmark-
ing SCEPTR against a variant which replaces SCEPTR’s simplified em-
bedder module (see methods 4.4.2) with an implementation emulating
the traditional transformer architecture (“left-aligned” variant in plot, see
appendix A.2). The benchmarking framework as outlined in section 4.2.1
is used. The number of reference sequences varies along the x axis. a) The
y axis shows the models’ AUROCs averaged across pMHCs. b) The y axis
shows the distribution of ∆AUROCs (see Fig. A.1) from the left-aligned
variant to the baseline model. We detect no significant difference in per-
formance between the two models. Reprinted from my own preprint [29]
(licensed CCBY).
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Table A.2: The different studies that contributed TCR data to the train-
ing/validation and test splits for the supervised contrastive learning fine-
tuning task. For datasets without a PubMed ID the table indicates the
VDJdb GitHub issue number corresponding to the dataset inclusion.
epitope training/validation test

GILGFVFTL PMID:28636592 PMID:12796775, PMID:18275829,
PMID:28250417, PMID:28931605,
PMID:7807026, PMID:28423320,
PMID:28636589, PMID:27645996,
PMID:29483513, PMID:29997621,
PMID:34793243, VDJdbID:215

NLVPMVATV PMID:28636592, VDJdbID:332 PMID:19542454, PMID:26429912,
PMID:19864595, PMID:28423320,
PMID:16237109, PMID:28636589,
PMID:36711524, PMID:28623251,
PMID:9971792, PMID:17709536,
PMID:28934479, PMID:34793243, VDJdbID:252

SPRWYFYYL PMID:33951417,
PMID:35750048

PMID:33945786, PMID:34793243

TFEYVSQPFLMDLE PMID:35750048 PMID:37030296
TTDPSFLGRY PMID:35383307 PMID:35750048
YLQPRTFLL PMID:35383307,

PMID:34793243
PMID:34685626, PMID:37030296,
PMID:33664060, PMID:33951417,
PMID:35750048, VDJdbID:215

https://github.com/antigenomics/vdjdb-db/issues/215
https://github.com/antigenomics/vdjdb-db/issues/332
https://github.com/antigenomics/vdjdb-db/issues/252
https://github.com/antigenomics/vdjdb-db/issues/215


Appendix B

Deriving contrastive loss from a
model of TCR-pMHC binding

The contrastive loss has recently gained popularity in the context of rep-
resentation learning [103], and it takes the form:

Lcontrastive( f ) := E
(x,x+)∼ppos

{yi}N
i=1

iid∼pdata

[
− log

e f (x)⊤ f (x+)

e f (x)⊤ f (x+) + ∑i e f (x)⊤ f (yi)

]
(B.1)

Here, f : X → Sm−1 is some representation model mapping ele-
ments from observation space X to the m-dimensional unit hypersphere
Sm−1 ∈ Rm, ppos is the joint distribution of positive data pairs, pdata is the
background distribution of all data, and N ∈ Z+ is some fixed number
of negative samples.

Wang and Isola have shown that at the limit of infinite data, optimis-
ing the contrastive loss is equivalent to jointly optimising “alignment”
(Eq. B.2) and “uniformity” (Eq. B.3). Alignment describes how close to-
gether positive pairs are in the representation space, while uniformity is
a measure of how fully a representation model uses this space. These two
metrics together can be used to evaluate the quality of a representation
mapping onto the unit hypersphere [103].

Alignment( f ) := E
(x,x+)∼ppos

[
∥ f (x)− f (x+)∥α

2
]

, α > 0 (B.2)

Uniformity( f ) := log E
x,yiid∼pdata

[
e−t∥ f (x)− f (y)∥2

2

]
, t > 0 (B.3)
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Here I provide some insight on why the application of this form of
contrastive learning to the TCR co-specificity problem is principally jus-
tified, as well as a more TCR-oriented interpretation of what model be-
haviour the contrastive loss function is really enforcing. I do this by first
proposing a simple model of TCR co-specificity backed up by empirical
evidence, then using maximum likelihood estimation (MLE) to end up
with a loss formulation equivalent to Wang and Isola’s alignment and
uniformity, which in turn is asymptotically equivalent to the contrastive
loss.

B.1 The model

Let pB(τ) be the background probability that a TCR τ exists in an indi-
vidual’s TCR repertoire at any given time. Then, one way to model the
probability pcosel that two distinct TCRs τx and τy will both be selected
against the same epitope stimulus within the same repertoire is:

pcosel(τx, τy) = q(τx, τy)pB(τx)pB(τy) (B.4)

Here, pB(τx)pB(τy) is the joint background probability of the two
TCRs, and q(τx, τy) can be thought of as a co-selection factor which quanti-
fies the functional similarity between the two TCRs.

It has previously been shown that the probability of observing co-
specific TCR pairs with a sequence similarity up to some Levenshtein
edit distance falls off exponentially with respect to the distance [22]. This
motivates us to define q as the negative exponential of a function d with
trainable parameters θ (Eq. B.5). Here we can imagine d as some ‘func-
tional distance’ measure between two TCRs, which the model formula-
tion asserts also has the same exponential fall-off property. I furthermore
introduce s, a selection factor that captures the general ability of a TCR to
be selected for any epitope stimulus such that s(τ)pB(τ) = pS(τ) is the
general post-selection distribution of TCRs. The resulting expression for
pcosel in terms of θ is shown in equation B.6. Note that Zθ here is a normal-
isation factor to ensure that pcosel is a well-defined probability distribution
over its domain of all possible pairs of TCRs (i.e. ∑τx,τy pcosel = 1).

q(τx, τy; θ) :=
1

Zθ
e−d(τx,τy;θ)s(τx)s(τy) (B.5)

=⇒ pcosel(τx, τy; θ) =
1

Zθ
e−d(τx,τy;θ)pS(τx)pS(τy) (B.6)
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B.2 Maximum likelihood estimation

Assume we have a training set T := {τi}G
i=1 of G distinct sets τi =

{τij}Ni
j=1 of Ni epitope-restricted TCRs. Assume furthermore that the co-

selection probability pcosel of a set τi of Ni > 2 TCRs can be approximated
as the product of the pairwise co-selection probabilities pcosel(τix, τiy) over
all pairs of TCRs in τi (Eq. B.7). Substituting in equation B.6, the pseudo-
likelihood approximation over T then becomes:

pcosel(T ; θ) =
G

∏
i=1

pcosel(τi; θ)

≈
G

∏
i=1

[
∏

τix,τiy∈τi

pcosel(τix, τiy; θ)

]
(B.7)

=
G

∏
i=1

{
∏

τix,τiy∈τi

[
1

Zθ
e−d(τix,τiy;θ)pS(τix)pS(τiy)

]}
(B.8)

Evaluating the negative log likelihood, we get:

− log pcosel(T ; θ) ≈ −
G

∑
i=1

{
∑

τix,τiy∈τi

log
[

1
Zθ

e−d(τix,τiy;θ)pS(τix)pS(τiy)

]}

=

[
G

∑
i=1

∑
τix,τiy∈τi

d(τix, τiy; θ)

]
+ Np log Zθ + const. (B.9)

where Np = ∑G
i=1 Ni

2 is the total number of epitope-matched TCR pairs
in T , and terms unrelated to θ are summarised as “const.”. Dividing
everything by Np, ignoring the constant term with respect to θ, and taking
the limit to infinite training data, we get an expression for a TCR co-
selection loss function Lcosel:

Lcosel :=
1

Np

[
G

∑
i=1

∑
τix,τiy∈τi

d(τix, τiy; θ)

]
+ log Zθ

lim
G,Ni→∞
= E

(τx,τ+
x )∼pcosel

[
d(τx, τ+

x ; θ)
]
+ log Zθ (B.10)
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By recalling that Zθ is a normalisation factor defined in the scope of equa-
tion B.6, we can express its value in terms of d:

∑
τx,τy

pcosel(τx, τy) = 1 =
1

Zθ
∑

τx,τy

e−d(τx,τy;θ)pS(τx)pS(τy)

=
1

Zθ
E

τx,τy
iid∼pS

[
e−d(τx,τy;θ)

]
=⇒ Zθ = E

τx,τy
iid∼pS

[
e−d(τx,τy;θ)

]
(B.11)

This allows us to express Lcosel completely in terms of d:

Lcosel = E
(τx,τ+

x )∼pcosel

[
d(τx, τ+

x ; θ)
]
+ log E

τy,τz
iid∼pS

[
e−d(τy,τz;θ)

]
(B.12)

B.3 Relationship to alignment and uniformity

The first and second terms in our final expression for Lcosel (Eq. B.12)
look very similar to Wang and Isola’s alignment (Eq. B.2) and uniformity
(Eq. B.3) respectively. In fact, they are both direct analogues. Below are
some observations from my derivations of TCR alignment (Eq. B.13) and
uniformity (Eq. B.14):

AlignmentTCR(d) := E
(τx,τ+

x )∼pcosel

[
d(τx, τ+

x ; θ)
]

(B.13)

UniformityTCR(d) := log E
τx,τy

iid∼pS

[
e−d(τx,τy;θ)

]
(B.14)

The positive distribution The distribution pcosel is the TCR analogue to
the positive-pair distribution ppos in the general ML setting, specifically
in this context of TCR epitope restriction.

The data distribution The distribution pS is the TCR analogue to pdata
in the general ML setting, as both represent a form of background distri-
bution of the data. However, note how pS is not necessarily pB, reflecting
how some TCRs may generally have a lesser ability to respond to pMHCs
in general. On one hand, the naı̈ve but most direct way to estimate pS
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may be to sample from the union of epitope-specific TCR sets across all
(or as many available) pMHCs:

pS(τ) = E
π

[
pS|Π(τ|π)

]
(B.15)

where pS|Π(·|π) is the binder distribution to a particular pMHC π. How-
ever, considering that the number of pMHCs for which we have specificity-
annotated TCR data is extremely limited, the best empirical estimation of
pS may still be to sample from the peripheral blood of healthy individu-
als.

Alignment and uniformity hyper-parameters Any transformations to
the distance (α from equation B.2, t from equation B.3) should appear
equivalently on both the alignment and uniformity metrics to keep them
on an equivalent scale. If we want a negative exponential relationship
between co-selection and distance, then this corresponds to α = 1 and
t = 1. Opting for a Gaussian kernel (as Wang and Isola do in their
formulation of uniformity) means that the distance should be squared in
both the alignment and uniformity terms.

Alignment and uniformity weighting The MLE framework suggests
that alignment and uniformity should be optimised with equal weighting
(i.e. one unit of alignment is equivalent to one unit of uniformity).

Generality to arbitrary metrics My derivation suggests that we can gen-
eralise the idea of alignment and uniformity from euclidean distances
between unit-hypersphere embeddings to an arbitrary notion of TCR dis-
tance.

B.4 Relationship to contrastive loss

Since cosine similarity1 is monotonically negative to distance, let us define
d with respect to some representation model f such that:

d(x, y) = − f (x)⊤ f (y) (B.16)

Then, we can rearrange the terms in the expression for Lcontrastive (Eq. B.1)
and show that at the limit of infinite negative samples, it is equivalent to

1Recall that the model in question f maps to the unit hypersphere, so a dot product
between model outputs is equivalent to the cosine similarity between them.
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our co-selection loss. This is similar to what Wang and Isola show in
terms of their alignment and uniformity formulations, but in this case
the limit is exact.

Lcontrastive = E
(x,x+)∼ppos

{yi}N
i=1

iid∼pdata

[
− log

e−d(x,x+)

e−d(x,x+) + ∑i e−d(x,yi)

]

= E
(x,x+)∼ppos

{yi}N
i=1

iid∼pdata

{
d(x, x+) + log

[
e−d(x,x+) + ∑

i
e−d(x,yi)

]}

lim
N→∞
= E

(x,x+)∼ppos

{
d(x, x+) + log

[
N × E

y∼pdata

{
e−d(x,y)

}]}
= E

(x,x+)∼ppos

[
d(x, x+)

]
+ log E

x,yiid∼pdata

[
e−d(x,y)

]
+ log N (B.17)

In other words, we can interpret contrastive loss as a within-batch empir-
ical estimation of the co-selection loss with a log N term added on.



Appendix C

BANANAS: Approximating
background distance likelihood

In equation 5.7 of chapter 5, I make the following approximation1:

P(∆ = δ|Z = 0) = ∑
τ∈T

∑
τ′∈T

pB(τ)pS|Π(τ′|π)Id(τ,τ′)=δ

≈ pC[pB](δ)
(C.1)

Let us see how to arrive at this approximation, and what assumptions are
necessary in order for it to be valid.

Without loss of generality, let us re-express the distribution pS|Π(·|π)
as follows:

pS|Π(τ|π) = qπ(τ)pB(τ), subject to E
τ∼pB

[qπ(τ)] = 1 (C.2)

where qπ can be thought of as a selection factor which quantifies the rel-
ative propensity of a TCR τ to engage with the target pMHC of interest
π. The constraint that the expectation of qπ over the background TCR
distribution is equal to one comes from the fact that the right-hand side
of equation C.2 needs to be a well-defined probability distribution.

Plugging this re-expression back into equation C.1, we get:

∑
τ∈T

∑
τ′∈T

pB(τ)pS|Π(τ′|π)Id(τ,τ′)=δ = ∑
τ′∈T

pB(τ
′)qπ(τ

′) ∑
τ∈T

pB(τ)Id(τ,τ′)=δ

(C.3)

= E
τ′∼pB

[
qπ(τ

′)nδ(τ
′)
]

(C.4)

1For a reminder of the notation used, please refer back to chapter 5.
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where:
nδ(τ) := ∑

τ′∈T
pB(τ

′)Id(τ,τ′)=δ (C.5)

is the total probability mass of all TCRs that are a certain distance δ away
from some anchor TCR τ.

Imagine that we have a random variable in TCR sequence space T ∼
pB. Then, qπ(T) and nδ(T) are both also random variables. If we assume
that qπ(T) and nδ(T) are independent random variables, then we get:

E [qπ(T)nδ(T)] = E [qπ(T)]E [nδ(T)] (C.6)
= E [nδ(T)] (C.7)

= ∑
τ∈T

pB(τ) ∑
τ′∈T

pB(τ
′)Id(τ,τ′)=δ (C.8)

= pC[pB](δ) (C.9)

where line C.6 results from the assumption of independence, line C.7
follows from the constraint on qπ in equation C.2, line C.8 expands nδ

according to its definition, and the final line follows from the definition
of pC[·](·).

In other words, the approximation in equation C.1 is exact if the
propensity of a TCR to engage the pMHC π is independent of the prob-
abilities of generation of its neighbours at distance δ. With smaller val-
ues of δ, nδ(T) is roughly proportional to pB(T), since the generation
probabilities of TCRs that are similar in sequence tend to be close to one
another. There is currently no evidence to suggest any relationship be-
tween the generation probability of a TCR and its ability to bind specific
pMHCs. Therefore, at small values of δ – which is practically the only
regime in which any real information about the specificity of a query
TCR can be gained – the assumption that qπ(T) and nδ(T) are inde-
pendent should be a reasonable one, and the approximation should be
justified.
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