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A B S T R A C T

Introduction: The understanding of biological pathways related to loneliness and social isolation remains 
incomplete. Cutting-edge population-based proteomics offers opportunities to uncover novel biological pathways 
linked to social deficits.
Methods: This study employed a proteome-wide and data-driven approach to estimate the cross-sectional asso-
ciations between objective measures of social connections (i.e., social isolation) and subjective measures (i.e., 
loneliness) with protein abundance, using the English Longitudinal Study of Ageing.
Results: Greater social isolation was associated with higher levels of 11 proteins (TNFRSF10A, MMP12, TRAIL- 
R2, SKR3, TNFRSF11A, VSIG2, PRSS8, FGFR2, KIM1, REN, and NEFL) after minimal adjustments; and three 
proteins were significantly associated after full adjustments (TNFRSF10A, TNFRSF11A, and HAOX1). Findings 
from two-sample Mendelian randomization indicated that a lower frequency of in-person social contact with 
friends or family causally increased levels of TNFRSF10A, TRAIL-R2, TNFRSF11A, and KIM1, and decreased the 
level of NEFL. The study also highlighted several enriched biological pathways, including necrosis and cell death 
regulation, dimerization of procaspase-8, and inhibition of caspase-8 pathways, which have previously not been 
linked to social deficits.
Conclusion: These findings could help explain the relationship between social deficits and disease, confirming the 
importance of continuing to explore novel biological pathways associated with social deficits.

1. Introduction

A large body of work now demonstrates the substantial impact that 
deficits in social connections have on health (National Academies of 
Sciences, 2020; Office of the Surgeon General, 2023). Both social 
isolation (the objective presence or absence of other people in our lives 
and the frequency that which we engage with them) and loneliness (the 
perceived availability of others to fulfil our personal needs) are clear 
predictors of incidence of physical diseases (e.g. cardiovascular disease, 
dementia and diabetes) (Valtorta et al., 2016; Hodgson et al., 2020; 
Kuiper et al., 2015; Lara et al., 2019), psychiatric disorders (including 
depression, anxiety and schizophrenia) (Erzen and Çikrikci, 2018; Mann 
et al., 2022), age-related decline (Gale et al., 2018; Nummela et al., 
2011), and mortality (both through suicide and other causes) (Holt- 

Lunstad, 2021; Holt-Lunstad et al., 2015; McClelland et al., 2020).
Numerous different theories provide direct and indirect explanations 

for why these effects occur. In relation to direct pathways, according to 
the social neuroscience model, homo sapiens is an inherently social 
species, relying on others for species survival. If humans find themselves 
socially isolated and therefore vulnerable, they no longer feel safe, and 
experience social stress and emotional symptoms of isolation (i.e. 
loneliness), resulting in a cascade of bio-behavioral effects being acti-
vated, all to increase preparedness for potential assaults (Hawkley and 
Cacioppo, 2010). These effects include an increased vigilance for social 
threats, less settled sleep (to avoid predation), decreased impulse con-
trol, increases in depressive symptomatology (to signal the need for 
support and connection), and a host of physiological changes indicating 
a hypervigilant stress response system (e.g. elevated vascular activity, 
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heightened hypothalamic–pituitary–adrenal (HPA) axis activity, and 
enhanced immune activation) (Cacioppo et al., 2014). However, while 
these neural and behavioral responses may increase the likelihood of 
short-term survival, if isolation becomes repeated or chronic, they can 
carry long-term costs, including increasing the risk of chronic illness. 
Biologically, the mechanisms that specifically link chronic social isola-
tion to disease include (i) an overactive HPA axis resulting in receptor 
cells developing glucocorticoid resistance, leading to a greater suscep-
tibility to inflammation (itself associated with adverse health condi-
tions), (ii) dysregulation of the autonomic nervous system’s ability to 
regular cardiovascular activity (including decreased heart rate vari-
ability), (iii) changes in immunological responses (including increased 
secretion of inflammatory cytokines, growth factors and antibodies) (iv) 
reduced repair and restorative processes (such as decreased natural 
killer cell activity and slower wound healing), and (v) changes in brain 
structure and functioning (including increased brain atrophy and 
reduced neurogenesis) (Hawkley et al., 2007; Roddick and Chen, 2021; 
Freilich, 2023; Xiong and Zhang, 2013).

In addition, social isolation and loneliness may influence health 
outcomes via indirect pathways. According to the social control hy-
pothesis, social networks tend to discourage poor health behaviors and 
encourage good health behaviors, thereby supporting the health of the 
group as a whole by promoting the health of the individuals within it 
(Umberson, 1987). When individuals become socially isolated, they lose 
this beneficial influence and are more likely to engage in adverse health 
behaviors, including substance use (e.g. alcohol, cannabis, opiates, and 
tobacco), reduced physical activity, poor diet (leading to increased risk 
of malnutrition, eating disorders, and consumption of ultra-processed 
foods), reduced adherence to health guidelines (e.g. reduced medica-
tion adherence, use of preventative healthcare screening, visits to pri-
mary health care services, and following of basic hygiene procedures 
like hand-washing), and fewer recuperative behaviors (e.g. leisure ac-
tivities) (National Academies of Sciences, 2020; Freilich, 2023).

However, while both these direct and indirect pathways provide 
some biological plausibility to the link between social connections and 
adverse health outcomes, they may not provide a complete picture. 
There is a risk that as certain biological pathways between social deficit 
and disease become better understood, they can dominate research, and 
attempts to identify novel pathways decline. In recent years, with the 
increasing availability of high-throughput measurements of molecular 
phenotypes such as protein abundance, there are novel opportunities to 
substantially expand our understanding of the biological implications of 
social deficits. Notably, several studies have focused on the impact of 
social isolation on protein expression in rodents, with findings identi-
fying some novel biological pathways previously not connected to social 
deficits (Lavenda-Grosberg et al., 2022; Perić et al., 2021; Filipović et al., 
2024). But to date, there are no studies focusing on humans.

Consequently, in this study, we focused specifically on identifying a 
protein signature for loneliness and social isolation using large-scale 
novel proteomics data from a representative cohort study in older 
adults; a life-stage when social deficits can become particularly pro-
nounced (Graham et al., 2024; Yang and Victor, 2011; Cudjoe et al., 
2020). Indeed these problems are so pressing among older people that 
the National Academies of Sciences, Engineering and Medicine issued 
their consensus study in 2020 (National Academies of Sciences, 2020). 
Literature on the relationship between social deficits and disease inci-
dence suggest distinct risks from both loneliness and isolation (Valtorta 
et al., 2016; Paul et al., 2021; Wang et al., 2023; Penninkilampi et al., 
2018; Hong et al., 2023), and previous research involving individual 
proteins relating to inflammatory pathways have corroborated the 
concept of distinct biological pathways for different types of social 
deficits (Matthews et al., 2024; Walker et al., 2019). Therefore, we hy-
pothesized that there would be distinct protein signatures for loneliness 
and social isolation. Our objectives were (i) to identify proteins associ-
ated with loneliness and social isolation, (ii) to apply two-sample 
Mendelian Randomisation (MR) to explore the potential causal effects 

of social deficits on the significantly associated proteins, and (iii) to 
undertake enrichment analysis of the identified proteins to identify 
which biological pathways are regulated by loneliness and/or isolation.

2. Material and methods

2.1. Study population

This study used data from the English Longitudinal Study of Ageing 
(ELSA) − a longitudinal study of individuals in England aged 50 and 
older, and their partners. ELSA started by using data from the Health 
Survey in England (1998, 1999, and 2001) and collected its first wave of 
data in 2002/2003 through in-person interviews and self-reported sur-
veys (Steptoe et al., 2013). Blood samples were collected in ELSA 
starting from the second nurse visit in 2004 and then at four-year in-
tervals thereafter.

The blood samples obtained during the wave 4 nurse visit in 2008 
were utilized for proteomic profiling in ELSA (N = 6,271). Exclusion 
criteria were applied, excluding participants who either died within two 
years after the wave 4 nurse visit (N = 134) or were lost to follow-up 
(missing at least two consecutive waves) (N = 1,340). A total of 3,325 
frozen plasma blood samples were sent to Olink for division into ali-
quots, plating, and conducting proteomics assays. A final 3,305 samples 
from wave 4 was viable for proteomic profiling. The analyses encom-
passed a final combined dataset of 3,262 participants after conducting 
stringent quality control of the samples (see section below). The 
participant selection for the proteomics assays in ELSA is depicted in 
Supplementary Fig. 1.

2.2. Loneliness

Based on the wave 4 data, ELSA measured loneliness with the three- 
item R-UCLA loneliness scale (Lee et al., 2021; Hughes et al., 2004): (1) 
how often do you feel you lack companionship? (2) how often do you 
feel isolated from others? (3) how often do you feel left out? Each 
question asks the participant to rank their experience on a three-point 
Likert scale (hardly ever/never, some of the time, or often), and re-
sults in a scale ranging from 3 to 9, in which a greater score corresponds 
with a higher level of perceived loneliness (Cronbach’s α = 0.82).

2.3. Social isolation

Social isolation was measured on a 7-point scale, in which each of the 
following represented one point: living alone, not working, not volun-
teering, not belonging to a club or social organisation, and having less 
than monthly interaction with friends, relatives, or children, respec-
tively. This measure was adapted from the scale proposed by Bu et al. 
(Bu et al., 2020). The score ranged from 0 to 7, with higher value 
indicating greater level of social isolation.

2.4. Proteomic data

The Olink technology employs the Proximity Extension Assay (PEA), 
utilizing a matched pair of antibodies labelled with unique comple-
mentary oligonucleotides (proximity probes). These probes bind to their 
respective target proteins in a sample, bringing them into proximity. 
This proximity allows the probes to hybridize, enabling DNA amplifi-
cation of the protein signal. The amplified signal is then quantified using 
next-generation sequencing (Wik et al., 2021).

The curation of the proteomics data in ELSA was initially to inves-
tigate proteomic signatures related to cognitive decline and dementia 
specifically, resulting in a more focused selection of proteins. Three 
Olink™ Target 96 panels were selected for the proteomics assays: Car-
diovascular II (CVDII), Neurology I (NEUI), and Neurology Exploratory 
(NEX). These encompass an extensive array of cardiovascular, immu-
nological and inflammatory markers, as well as markers integral to 
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neurological processes such as axon guidance, neurogenesis, and syn-
apse assembly.

These assays incorporate an inherent quality control mechanism 
utilizing four internal controls added to all samples, along with external 
controls. The stringent quality control pipeline has been previously 
described (Gong et al., 2024), and is further detailed in Supplementary 
Methods.

After excluding those did not pass quality control and outliers, a final 
combined dataset of 3,262 samples were included in the analyses, with a 
total of 276 unique proteins. All proteins were quantifiable, although a 
total of eight proteins (BNP, MAPT, CADM3, beta-NGF, HSP90B1, 
NXPH1, IKZF2, EPHA10) had ≥ 50 % below Limit of detection (LOD). 
However, these data points were not removed in the analyses, as some of 
the most distinct biomarkers may be low in some groups analysed but 
high in other groups, and by including data under LOD does commonly 
not increase false positives as there is generally no significant difference 
between groups under LOD. Protein concentrations were quantified 
using Olink’s standardized Normalized Protein eXpression (NPX) values, 
presented on a Log2 scale.

2.5. Covariates

Covariates included sociodemographic factors including age, non- 
pension wealth quintiles, age when left formal education, sex (female 
vs male), and ethnicity (White vs Other ethnic group). We also included 
health behaviors: smoking status, alcohol consumption, physical activ-
ity, and body mass index (BMI). Participant smoking was coded to 
identify if an individual had never smoked, previously smoked, or 
currently smoked. Alcohol consumption was ordinally coded based on 

the number of days the participant drank alcohol in the past week 
(ranged from 0 to 7). Physical activity was coded as a scale ranging from 
participants hardly ever or never exercising, exercising monthly, exer-
cising weekly, and exercising more than weekly. BMI was included as a 
continuous variable in analyses. As our outcome measure was biological 
markers that are either causal mediators to clinical illness or biological 
signatures of that illness, it was not appropriate to adjust for chronic 
conditions.

2.6. Statistical analysis

2.6.1. Data normalisation and missing data handling
Missing data were addressed by imputing data using K-nearest 

neighbours (KNN) (Batista and Monard, 2002), and multiple imputation 
by chained equations (MICE) methods (Van Buuren and Groothuis- 
Oudshoorn, 2011). Prior to the imputation, the protein levels under-
went rank-based inverse normal transformation and were scaled to 
achieve a mean of 0 and a standard deviation of 1. All proteins had < 6 % 
missing. KNN imputation was used to address missing data in the pro-
teomics data, and the number of neighbouring points (k = 57) was based 
on the square root of the total sample size (N = 3,262), using the 
‘impute’ package in R (Hastie et al., 2024). KNN imputation was chosen 
for its effectiveness in datasets where relationships between observa-
tions may be non-linear. This method imputes missing values based on 
sample similarity rather than relying on distributional assumptions, 
making it particularly suited for handling missing data in high- 
dimensional proteomics datasets. For imputing missing data in the ex-
posures and covariates, MICE was utilized (using the ‘mice’ R package 
(Graham et al., 2007), with 30 imputations and 10 iterations selected, to 

Fig. 1. Volcano plot showing minimally adjusted coefficient (x axis) and uncorrected two-sided P values (y axis) for the association between protein concentration 
with loneliness using imputed data. Coefficient from linear regression models adjusted for age, sex, education, ethnicity, education, wealth quintile. Proteins above 
the horizontal dotted red line were significantly associated with loneliness after false discovery rate (FDR)-correction with p-value < 0.05. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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reduce bias and increase the efficiency and reliability of the statistical 
estimates based on empirical evidence (White et al., 2011).

2.6.2. Cross-sectional linear regression model
Following this process, linear regression model was used to estimate 

the association between loneliness and social isolation with each pro-
tein, by pooling the estimates from all imputed datasets. Two-sided p- 
values were reported and displayed using a volcano plot, accompanying 
the coefficient, with a cut-off of 0.05 for p-value adjusted for false dis-
covery rate (FDR; denoted as PFDR) to indicate statistical significance. 
Two multiple-adjusted linear regression models were constructed: a 
minimally-adjusted model in which sociodemographic variables (age, 
sex, ethnicity, wealth quintiles, and education) were included as cova-
riates, and a fully-adjusted model in which sociodemographic and health 
behavior variables (alcohol consumption, smoking, BMI, and physical 
activity) variables were included as covariates.

2.6.3. Two-sample MR
Given that the limitations often associated with cross-sectional study 

design being unable to establish cause-and-effect relationships with 
temporal ambiguity, and issue with unmeasured confounding, we con-
ducted two-sample MR on the significant proteins associated with 
loneliness and social isolation, based on the proteins identified from the 
minimally- and fully-adjusted linear regressions to infer causality 
(Davey Smith and Hemani, 2014), by leveraging summary statistics 
from genome-wide association study (GWAS) based on data from the UK 
Biobank (Day et al., 2018).

We identified three GWAS that were considered closely related to our 
social isolation phenotype: 1) frequency of contact with family and 
friends, 2) living alone, and 3) a multi-trait GWAS (MTAG) combining 
the results from three separate GWAS studies on perceived loneliness, 
living alone, and the ability to confide into a single analysis (Day et al., 
2018). This meta-analytical approach enhances the discovery of genetic 
variants for a target trait by utilizing the statistical power from the 
additional traits. The pertinent information outlining the GWAS used for 
various measurements of social isolation is detailed in Supplementary 
Table 1.

For GWAS of protein levels, instruments representing changes in 
protein abundance were selected based on protein quantitative trait loci 
(pQTL) mapping of proteins, identifying primary genetic associations in 
individuals of European ancestry from the UK Biobank (https://doi.org/ 
10.7303/syn51364943) (Sun et al., 2023). Standardization of the effects 
of protein pQTL was conducted to ensure alignment with the same effect 
allele.

Selection of instruments for exposure (various social isolation phe-
notypes) was carried out by considering associations at genome-wide 
significance (P < 5 × 10− 8) to minimize pleiotropic effects, while 
excluding SNPs with a minor allele frequency (MAF) < 5 %. LD (linkage 
disequilibrium) clumping was performed with a window size of 10,000 
kilobases [kb], at an R2 < 0.001. In instances where a requested SNP 
from the exposure GWAS was not present in the outcome GWAS (protein 
concentration), a proxy SNP with an LD coefficient of R2 > 0.8 to the 
requested missing target SNP were sought as a substitute, utilizing the 
LDLink web server. LD proxies were determined using data from the 
1000 Genomes European sample. The returned information included the 
effect of the proxy SNP on the outcome, along with details such as the 
proxy SNP itself, the effect allele of the proxy SNP, and the corre-
sponding allele for the target SNP. The effects of SNPs on both outcome 
and exposure were then harmonized to be relative to the same allele. 
Positive strand alleles were inferred by utilizing allele frequencies for 
palindromes instead of eliminating palindromic variants. F-statistics 
were employed to assess the strength of SNP-exposure associations (F >
10). Effects for each individual variant were calculated using a two-term 
Taylor series expansion of the Wald ratio. Following this, we employed 
the weighted delta inverse-variance weighted (IVW) method to perform 
a meta-analysis of individual SNP effects, aiming to estimate the 

combined effect of the Wald ratios. Sensitivity analysis involved 
employing various MR methods, such as MR-Egger, Weighted Median, 
Maximum Likelihood, and Weighted Mode methods (Burgess et al., 
2019). All analyses were performed using the human genome reference 
build GRCh38. In cases where the genome build relied on GRCh37 as-
sembly Hg19, a lift-over process was carried out to convert genome 
coordinates and annotations to GRCh38 using a specified alignment, 
using CrossMap 0.7.0 in Python (version 3.8.8). MR analyses were 
conducted using the ’TwoSampleMR’, ’MendelianRandomization’, and 
’LDlinkR’ R packages (Yavorska and Burgess, 2017).

2.6.4. Enrichment analysis
Enrichment analysis was conducted by searching open-source data-

bases to further characterize the identified proteins based on the mini-
mally- and fully- adjusted linear regression models. We employed 
Enrichr (Kuleshov et al., 2016) using the full set of ELSA proteins as the 
background gene set to glean a deeper biological understanding, using 
Gene Ontology (GO) (Consortium GO, 2019): GO Molecular Function, 
GO Biological Process, and GO Cellular Component; Kyoto Encyclo-
paedia of Genes and Genomes (KEGG); (Kanehisa and Goto, 2000). 
Reactome Pathway Database (REACTOME); (Gillespie et al., 2022) and 
Genotype-Tissue Expression (GTEx) (Lonsdale et al., 2013). Statistical 
significance was indicated if PFDR < 0.05 for the enrichment analysis. 
Human Protein Atlas was also searched to further characterize the 
identified proteins (https://www.proteinatlas.org/) (Uhlen et al., 2010).

All analyses were conducted using statistical software R Studio 
(version 4.4.0).

3. Results

3.1. Study sample

At study wave 4 (2008–2009) in ELSA, the mean score for loneliness 
was 4.3 [standard deviation (SD) = 1.6], while the mean score for social 
isolation was 2.7 [SD = 1.6] (Table 1), based on the pooled imputed 
datasets. The mean age of the study sample was 63.4 years [SD = 9.2]), 
55 % of the participants were female, and 97 % were of White ethnicity.

3.2. Associations between protein with loneliness and social isolation

First, the cross-sectional associations for loneliness and social isola-
tion with the levels of 276 protein were estimated. By pooling the 30 
imputed datasets, no protein was found to be significantly associated 
with loneliness based on the minimally-adjusted models (Fig. 1). For 
social isolation, a total of 11 proteins were significantly associated after 
minimal adjustments, all indicating positive associations: TNFRSF10A 
(coefficient (β) [standard error (se)]: 0.061 [0.011]; False discovery rate 
(FDR) adjusted P (denoted as PFDR) = 9.89 × 10-6), MMP12 (β [se]: 
0.057 [0.011]; PFDR = 4.10 × 10-5), TRAIL-R2 (also known as 
TNFRSF10B) (β [se]: 0.056 [0.011]; PFDR = 8.34 × 10-5), SKR3 (also 
known as ACVRL1) (β [se]: 0.056 [0.011]; PFDR = 0.0001), TNFRSF11A 
(β [se]: 0.056 [0.011]; PFDR = 0.0001), VSIG2 (β [se]: 0.049 [0.011]; 
PFDR = 0.0026), PRSS8 (β [se]: 0.045 [0.011]; PFDR = 0.013), FGFR2 (β 
[se]: 0.045 [0.011]; PFDR = 0.021), KIM1 (also known as HAVCR1) (β 
[se]: 0.043 [0.011]; PFDR = 0.026), REN (β [se]: 0.041 [0.011]; PFDR =

0.045), and NEFL (β [se]: 0.035 [0.009]; PFDR = 0.047) (Fig. 2).
Based on the fully-adjusted models, there were no proteins signifi-

cantly associated with loneliness (Supplementary Fig. 2). For social 
isolation, TNFRSF10A (β [se]: 0.049 [0.011]; PFDR = 0.003), HAOX1 (β 
[se]: 0.047 [0.012]; PFDR = 0.014), and TNFRSF11A (β [se]: 0.044 
[0.011]; PFDR = 0.026) were found to be significantly associated in the 
fully-adjusted model (Supplementary Fig. 3), indicating higher protein 
levels associating with greater level of social isolation.
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3.3. Two-sample MR

Next, two-sample MR was conducted using summary statistics from 
GWAS to assess the potential causal relationship between social isola-
tion and the protein concentrations identified as significant based on the 
linear regressions.

Based on results from two-sample MR, lower frequency of friend/ 
family visits was causally linked to an increased level of TNRFSF10A (β 
[se]: 0.245 [0.117]; P = 0.037, based on IVW; β [se]: 0.324 [0.143]; P =
0.023, based on weighted median; β [se]: 0.249 [0.103]; P = 0.016, 
based on Maximum likelihood) (Fig. 3; Supplementary Table 2); and 
increased level of TRAIL-R2 (also known as TNRFSF10B) (β [se]: 0.264 
[0.102]; P = 0.010, based on IVW; β [se]: 0.274 [0.104]; P = 0.008, 
based on Maximum likelihood); increased level of TNRFSF11A (β [se]: 
0.210 [0.103]; P = 0.042, based on Maximum likelihood); increased 
level of KIM1 (also known as HAVCR1) (β [se]: 0.195 [0.095]; P =
0.040, based on Maximum likelihood); and decreased level of NEFL (β 
[se]: − 0.257 [0.105]; P = 0.014, based on IVW; β [se]: − 0.248 [0.101]; 
P = 0.014, based on Maximum likelihood). MRs of living alone or the 
multi-trait loneliness-isolation GWAS did not show any significant 
findings.

3.4. Enrichment analysis

The enrichment analysis of the identified proteins unveiled a spec-
trum of pathways and expressions significantly enriched, by searching 
relevant public bioinformatics databases using EnrichR (Kuleshov et al., 
2016) (Fig. 4; Supplementary Table 3). These pathways include RIPK1- 
mediated regulated necrosis, TP53 regulation of death receptors and 
ligands transcription, and TRAIL signalling. Additionally, pathways 
regulating necrosis and cell death, such as death receptor activity and 
caspase activation via death receptors in the presence of ligands, and via 
extrinsic apoptotic signalling pathways, were prominently featured. 
Moreover, inhibition of caspase-8 activity, and dimerization of 
procaspase-8 pathways was identified. These findings collectively indi-
cate the identified proteins have pivotal role in regulating processes 
associated with cell death, death receptor signalling cascades, and cas-
pase activation.

4. Discussion

Overall, the current study utilized a data-driven approach to reveal a 
protein signature for social deficits. As hypothesized, we saw distinct 
findings for objective measures of social connections (i.e. social isola-
tion) and subjective measures (i.e. loneliness). Specifically, greater so-
cial isolation was related to increased levels of 11 proteins cross- 
sectionally (TNFRSF10A, MMP12, TRAIL-R2 (also known as 
TNFRSF10B), SKR3 (also known as ACVRL1), TNFRSF11A, VSIG2, 
PRSS8, FGFR2, KIM1 (also known as HAVCR1), REN, and NEFL), after 
minimal adjustments; and three proteins were significantly associated 
after full adjustments (TNFRSF10A, TNFRSF11A, and HAOX1). Find-
ings from two-sample MR indicated that a lower frequency of in-person 
social contact with friends or family causally increased levels of 
TNRFSF10A, TRAIL-R2 (also known as TNFRSF10B), TNRFSF11A, 
and KIM1 (also known as HAVCR1), and decreased level of NEFL. The 
study also highlighted several enriched biological pathways, including 
necrosis and cell death regulation, dimerization of procaspase-8 and 
inhibition of caspase-8 pathways, which have previously not been linked 
to social deficits and could help to explain their relationship to disease, 
confirming the importance of continuing to explore novel biological 
pathways associated with social deficits.

This is, to our knowledge, the first study looking at the relationship 
between phenotypic loneliness and social isolation and human protein 
expression. A previous study mapped protein expression to GWAS that 
had been undertaken to identify single nucleotide polymorphisms 
(SNPs) associated with composite indices of social deficits (loneliness, 
living alone, low social contact and a lack of confidants) (Gu et al., 
2023). There was no overlap between the proteins identified there and 
in our study. However, that study explored the alternative end of the 
molecular cascade, i.e. how genetic risk for loneliness or isolation is 
related to protein expression, rather than how phenotypic experiences of 
loneliness or isolation could moderate protein expression. What the 

Table 1 
Descriptive statistics of participants in the sample.

Raw 
dataset

Composite of 30 imputed 
datasets

Loneliness (scale 3–9)
Mean (SD) 4.2 (1.5) 4.3 (1.6)
Missing 384 (11.8 

%)
0 (0.0 %)

Social Isolation (scale 0–7)
Mean (SD) 2.7 (1.6) 2.7 (1.6)
Missing n (%) 118 (3.6 %) 0 (0.0 %)
Age
Mean (SD) 63.4 (9.2) 63.4 (9.2)
Sex, n (%)
Female 1793 (55.0 

%)
1793 (55.0 %)

Male 1469 (45.0 
%)

1469 (45.0 %)

Ethnicity, n (%)
White 3163 (97.0 

%)
3163 (97.0 %)

Other ethnic groups 99 (3.0 %) 99 (3.0 %)
Body Mass Index
Mean (SD) 28.2 (5.2) 28.2 (5.3)
Missing n (%) 81 (2.5 %) 0 (0.0 %)
Drinking (number of days with a drink over past 7 days)
Mean (SD) 2.2 (2.4) 2.2 (2.4)
Missing n (%) 22 (0.7 %) 0 (0.0 %)
Smoking Status, n (%)
Never smoked 1317 (40.4 

%)
1327 (40.7 %)

Formerly smoked 1468 (45.0 
%)

1478 (45.3 %)

Currently smoking 454 (13.9 
%)

457 (14.0 %)

Missing 23 (0.7 %) 0 (0.0 %)
Education, n (%)
Never went to school 16 (0.5 %) 16 (0.5 %)
Left school at 14 or under 273 (8.4 %) 273 (8.4 %)
Left school at 15 1026 (31.5 

%)
1026 (31.5 %)

Left school at 16 743 (22.8 
%)

743 (22.8 %)

Left school at 17 264 (8.1 %) 264 (8.1 %)
Left school at 18 249 (7.6 %) 249 (7.6 %)
Left school at 19 or over 633 (19.4 

%)
633 (19.4 %)

Not yet finished school 58 (1.8 %) 58 (1.8 %)
Non-Pension Wealth Quintiles, n (%)
1st 718 (22.0 

%)
737 (22.6 %)

2nd 670 (20.5 
%)

686 (21.0 %)

3rd 611 (18.7 
%)

624 (19.1 %)

4th 630 (19.3 
%)

642 (19.7 %)

5th 560 (17.2 
%)

573 (17.6 %)

Missing 73 (2.2 %) 0 (0.0 %)
Physical Activity, n (%)
Less than monthly moderate and 

vigorous exercise
424 (13.0 
%)

424 (13.0 %)

Monthly moderate and/or vigorous 
exercise

196 (6.0 %) 196 (6.0 %)

Weekly moderate or vigorous 
exercise

1588 (48.7 
%)

1588 (48.7 %)

Weekly moderate and vigorous 
exercise

1054 (32.3 
%)

1054 (32.3 %)
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combination of our findings with those of this previous study suggest is 
that the molecular influence of phenotypic experiences of loneliness/ 
isolation may not be restricted to proteins transcribed and translated 
from genes specific to loneliness/isolation. Indeed, even looking across 
other genetics studies, none of the proteins that related to social isola-
tion come from genes that have previously been related to social deficits 
(Goossens et al., 2015).

Instead, we identified novel proteins that may be causally influenced 
by social isolation, and in doing so, we identify a number of new bio-
logical pathways that have previously not been associated with social 
deficits. TNFRSF10A, TNFRSF10B (also known TRAIL-R2) and 
TNFRSF11A (also known as TRANCE receptor or RANK) are upregulated 
in the blood in various cancers including myeloma, several leukaemia 
and lung cancer, which could provide some explanation for the rela-
tionship between isolation and cancer mortality (Wang et al., 2023). 
TNFRSF10A and TNFRSF10B also initiate the cascade of caspases that 
mediates apoptosis and promotes the activation of NF-κB (Chaudhary 
et al., 1997). According to the Conserved Transcriptional Response to 
Adversity theory (CTRA), when socially isolated, humans are evolu-
tionarily primed to express a higher concentration of genes relating to 
increased inflammation and decreased antiviral activity (Cole, 2019). 
The social signal transduction process involved in this gene expression is 
thought to involve peripheral neural signalling via neurotransmitters 
such as dopamine and norepinephrine that then leads to cellular signal 
transduction and the activation of multiple transcription factors 
including CREB and NF-κB. So, our finding of greater TNFRSF10A and 
TNFRSF10B abundance in response to social isolation aligns with pre-
vious theoretical and empirical work.

Amongst other proteins that we identified as associated with social 

isolation, KIM1 (also known as HAVCR1) is a member of the TIM (T-cell 
immunoglobulin and mucin) gene family, which plays an important role 
in host-virus interactions, and acts as a receptor for viruses including 
Ebola, Marburg, Dengue, Zika and possible SARS-CoV-2 (Uhlen et al., 
2010). This could help to explain studies demonstrating increased viral 
susceptibility amongst those who are socially isolated (Cohen et al., 
2015). However, it is perhaps surprising that NEFL levels were lower 
amongst those with social isolation. NEFL is a biomarker of axonal 
damage and is widely implicated in neurological disorders. We also 
identified diverse enriched biological pathways related to cell death, 
death receptor signalling cascades, and caspase activation (intrinsic 
both to apoptosis and inflammation responses). This is noteworthy not 
just in terms of alignment with the literature on immunological response 
to social isolation, but also given oxi-inflamm-aging theories suggesting 
the critical role of chronic oxidative and inflammatory stress in bio-
logical ageing specifically (Garrido et al., 2022). However, caution is 
important when attempting to interpret the clinical relevance of these 
proteins. Given the highly complex interplay between molecular bio-
markers in the pathogenesis of disease, further research is required to 
replicate the findings here in other datasets.

While we identified these biological responses for social isolation, it 
is notable that no proteins in our analyses were associated with loneli-
ness in fully-adjusted models. In considering why we saw results for 
isolation but not loneliness, there are two explanations. Taking both a 
social neuroscience perspective and considering the social control hy-
pothesis, it is the act of being physically isolated that is the risk to sur-
vival and activates direct and indirect pathways. However, it is also 
important to remember that this study focused on protein panels that 
were developed to be particularly relevant to neurological and 

Fig. 2. Volcano plot showing minimally adjusted coefficient (x axis) and uncorrected two-sided P values (y axis) for the association between protein concentration 
with social isolation using imputed data. Coefficient from Linear Regression models adjusted for age, sex, education, ethnicity, education, wealth quintile. Proteins 
above the horizontal dotted red line were significantly associated with social isolation after false discovery rate (FDR)-correction with p-value < 0.05. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cardiovascular conditions. Loneliness may be related to protein abun-
dance at other parts of the human proteome. As such, our results do not 
necessarily imply that social isolation has greater effects on protein 
abundance than loneliness.

It is also of note that although we did identify a signature involving 
several different proteins associated with social isolation, MR analyses 
suggested the finding was not necessarily causal across all MR analyses. 
Some of the proteins identified in this study could be correlates of other 
molecular biomarker changes that occur due to social isolation or even 
of the disease states that are increased as a result of social deficits, rather 
than direct causal products of isolation themselves. It is possible that 
proteins could also affect broader psychological pathways influencing 
social behaviours, since inflammation and other biological processes are 
known to influence mood states. Further, although we used large GWAS 
data on social isolation, none of the measures of isolation exactly 
replicated the social isolation phenotype we used, so there may be 
additional aspects of our phenotype not captured in the GWAS. Fre-
quency of social contact (the MR that produced the findings discussed 
above) was the closest in measuring objective aspects of structural social 
connections. The “living alone” GWAS was limited in only measuring the 
more limited domain of domestic isolation, while the multi-trait GWAS 
included combinations of structural, functional and quality aspects of 
social connections that are much broader than the structural construct 
we tested phenotypically. Our GWAS summary data were also taken 
from UK Biobank, which contains a younger age range than ELSA, and 
age has been shown to affect the prediction accuracy of polygenic score 
(PGS) (Mostafavi et al., 2020). As such, it is possible that alternative 
GWAS could have yielded different results. There are also broader 
acknowledged challenges around using MR for social and behavioral 
traits (Cerdeña and Considerations, 2024). While a person’s genome can 
undoubtedly influence factors that have a relevance to social traits, from 
physical traits to personality characteristics, health factors and 

behaviors that could causally influence loneliness/isolation, the degree 
of variance that can be explained with a PGS is always limited by the 
true heritability a trait, which is likely smaller for complex social traits 
like loneliness/isolation that have large environmental components 
(Marigorta et al., 2018). If the alleles in the PGS for loneliness/isolation 
are not directly causally related to loneliness/isolation but in fact based 
on indirect pathways (e.g. assortative mating of sociable parents) or the 
involvement of many pleiotropic genetic variants also strongly involved 
in downstream health conditions related to loneliness (Freilich, 2023), 
polygenic loneliness/isolation scores may in fact not be a valid tool to 
enhance our understanding of causality. As a result, we encourage that 
the MR analyses reported are interpreted cautiously.

This study has many strengths, including its use of a large, repre-
sentative cohort of older adults of white European ancestry, rich vali-
dated measures of both social isolation and loneliness, and use of MR 
and enrichment analyses to explore issues of causality and biological 
plausibility with respect to disease risk. However, the study has several 
limitations. Because we focused on older adults, we do not know 
whether the biological responses identified in this study are stable across 
the life-course. We only had data on protein abundance for one time-
point, so we focused on cross-sectional relationships between social 
deficits, using MR to explore the direction of the association. But as the 
incorporation of high-throughput measurements of molecular pheno-
types becomes more common within cohort studies, the potential in-
clusion of further waves of proteomics data could support the analysis of 
changes in protein abundance over time in relation to changing social 
deficits. Consequently, many pathways related to loneliness and social 
isolation might not have been detected. Broader proteome-wide studies 
are encouraged to replicate and extend our findings. Additionally, this 
study focused on the chronic effects of loneliness and social isolation on 
the proteome. But given animal research suggesting that isolation also 
induces acute fluctuations in protein expression, leading to different 

Fig. 3. Two-sample Mendelian randomisation scatter plots for frequency of friend/family visits and TNFRSF10A, TRAIL-R2 (TNFRSF10B), TNFRSF11A, KIM1 
(HAVCR1), NEFL. Analyses were conducted using the inverse variant weighted, maximum likelihood, MR-Egger, Weighted median, Weighted mode methods. The 
slope of each line corresponding to the estimated MR effect per method.
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molecular signatures for each stage of response (Lavenda-Grosberg 
et al., 2022), future studies are encouraged that explore the dynamic 
profile of isolation on the human proteome. Finally, we ran analyses that 
were adjusted for core confounders, as well as those adjusted for health 
behaviors. This split model adjustment was conducted as behavioral 
confounders may also be partial mediators of effects, with loneliness and 
isolation predisposing individuals to substance use, low physical activ-
ity, and other health behaviors such as sleep disturbances and poor diet 
(as proposed in the social control hypothesis) (Freilich, 2023). While it is 
important to acknowledge their effects on molecular biomarkers, we do 
not know whether social deficits lead to changes in biomarkers that then 
causally influence health behaviors, or whether the changes in health 
behaviors lead to alterations in the biomarkers. Hence, we have pro-
vided results from both models. We did not control for chronic condi-
tions and clinical features, as these are likely inherently bound with the 
protein changes identified. However, we acknowledge that the absence 
of adjustment for clinical data is a limitation in our study. Future studies 
are recommended in larger samples assessing the stability of the findings 
in different clinical populations and exploring further the potential 
causal pathway between social deficits, proteins and disease.

Overall, our study showed novel protein signatures for social 

isolation but not loneliness in a large sample of older adults, providing 
the first large-scale data on the relationship between social deficits and 
the human proteome. Our findings demonstrated novel biological 
pathways influenced by social deficits including (but not limited to) 
those involved in cell death, malignancies, and host vulnerability, which 
could help to provide further biological plausibility and mechanistic 
evidence for the impact of social deficits on human diseases. This re-
inforces the importance of undertaking future research into the molec-
ular mechanisms of social deficits.

5. Statement of ethics

Ethical consent has been obtained for all waves and components of 
ELSA, according to the ethical approval system in operation at the time 
and in accordance with the Declaration of Helsinki. The National 
Research Ethics Service (London Multicentre Research Ethics Commit-
tee) granted ethical approval for each ELSA wave. Written informed 
consent to participate in the study were obtained from ELSA 
participants.

UK Biobank has approval from the Northwest Multi-center Research 
Ethics Committee (MREC) as a Research Tissue Bank (RTB) approval. 

Fig. 4. Enrichment analysis of the identified proteins. Enrichment for Gene Ontology (GO) 2023, Genotype-Tissue Expression (GTEx) 2023, Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) 2021, and Reactome pathways 2022. Significant proteins after false discovery rate (FDR) correction derived from linear regression 
models in the minimally- and fully-adjusted models were fed into Enrichr (https://maayanlab.cloud/enrichr/) for enrichment analysis. The full list of proteins from 
ELSA was used as the background gene set. Terms displayed on the bar plot were filtered by a two-sided p-value < 0.05. Terms above the horizontal dotted red line 
were enriched after FDR-correction with p-value < 0.05, and the text were highlighted in red. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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Written informed consent to participate in the study were obtained from 
UK Biobank participants.

6. Funding sources

The English Longitudinal Study of Ageing is funded by the National 
Institute on Aging (grant number R01AG17644) and the National 
Institute for Health and Care Research (198/1074–02). The National 
Institute of Aging (NIA) (grant No. [R01AG17644]) funded the prote-
omics data curation in ELSA. J.G. is supported by the NIA (grant No. 
[R01AG17644]). Z.P. is supported by the Economic and Social Research 
Council (ESRC) and the Biotechnology and Biological Sciences Research 
Council (BBSRC) UCL Soc-B Doctoral Studentship programme (ES/ 
P000347/1).

CRediT authorship contribution statement

Jessica Gong: Writing – review & editing, Writing – original draft, 
Visualization, Supervision, Software, Project administration, Method-
ology, Investigation, Formal analysis, Data curation, Conceptualization. 
Zohar Preminger: Writing – original draft, Investigation, Formal 
analysis. Andrew Steptoe: Writing – review & editing, Supervision, 
Investigation, Funding acquisition, Data curation, Conceptualization. 
Daisy Fancourt: Writing – review & editing, Writing – original draft, 
Supervision, Methodology, Investigation, Formal analysis, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

We would like to thank the participants in ELSA for their contribu-
tion to the research. We additionally want to acknowledge the partici-
pants and investigators of the UK Biobank study. We would like to thank 
Olink representatives and the Newcastle laboratory for their support for 
the proteomics data procurement and data pre-processing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bbi.2024.11.024.

Data availability

The ELSA data is available on the UK Data Service. The proteomics 
data in ELSA will be deposited on the UK Data Service upon publication. 
All GWAS summary statistics are available online at: https://doi.org/ 
10.7303/syn51364943; https://gwas.mrcieu.ac.uk/; https://doi.org/ 
10.17863/CAM.23511. The codes used for all analyses are available on 
GitHub repository: https://github.com/jgong94/ELSA_proteomics_SI_L. 

References

Batista, G.E., Monard, M.C., 2002. A study of K-nearest neighbour as an imputation 
method. His. 87 (251–260), 48.

Bu, F., Zaninotto, P., Fancourt, D., 2020. Longitudinal associations between loneliness, 
social isolation and cardiovascular events. Heart 106 (18), 1394–1399.

Burgess, S., Smith, G.D., Davies, N.M., Dudbridge, F., Gill, D., Glymour, M.M., et al., 
2019. Guidelines for performing Mendelian randomization investigations: update for 
summer 2023. Wellcome Open Research. 4.

Cacioppo, S., Capitanio, J.P., Cacioppo, J.T., 2014. Toward a neurology of loneliness. 
Psychol. Bull. 140 (6), 1464.

Cerdeña J, Non A. Considerations, Caveats, and Suggestions for the Use of Polygenic 
Scores for Social and Behavioral Traits. Behavior Genetics: an international journal 
devoted to research in the inheritance of behavior in animals and man. 2024;54(1).

Chaudhary, P.M., Eby, M., Jasmin, A., Bookwalter, A., Murray, J., Hood, L., 1997. Death 
receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent 
apoptosis and activate the NF-κB pathway. Immunity 7 (6), 821–830.

Cohen, S., Janicki-Deverts, D., Turner, R.B., Doyle, W.J., 2015. Does hugging provide 
stress-buffering social support? A study of susceptibility to upper respiratory 
infection and illness. Psychol. Sci. 26 (2), 135–147.

Cole, S.W., 2019. The conserved transcriptional response to adversity. Curr. Opin. Behav. 
Sci. 28, 31–37.

Consortium GO, 2019. The gene ontology resource: 20 years and still GOing strong. 
Nucleic Acids Res. 47 (D1), D330–D338.

Cudjoe, T.K., Roth, D.L., Szanton, S.L., Wolff, J.L., Boyd, C.M., Thorpe Jr, R.J., 2020. The 
epidemiology of social isolation: National health and aging trends study. The 
Journals of Gerontology: Series B. 75 (1), 107–113.

Davey Smith, G., Hemani, G., 2014. Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum. Mol. Genet. 23 (R1), R89–R98.

Day, F.R., Ong, K.K., Perry, J.R., 2018. Elucidating the genetic basis of social interaction 
and isolation. Nat. Commun. 9 (1), 2457.
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