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Abstract  On the deep and dark seafloor, a cryp-
tic and yet untapped microbial diversity flourishes 
around hydrothermal vent systems. This remote envi-
ronment of difficult accessibility exhibits extreme 
conditions, including high pressure, steep tempera-
ture- and redox gradients, limited availability of oxy-
gen and complete darkness. In this study, we analysed 
the genomes of three aerobic strains belonging to 
the phylum Planctomycetota that were isolated from 
two deep-sea iron- rich hydroxide deposits with low 
temperature diffusive vents. The vents are located in 
the Arctic and Pacific Ocean at a depth of 600 and 
1,734  m below sea level, respectively. The isolated 
strains Pr1dT, K2D and TBK1r were analyzed with a 
focus on genome-encoded features that allow pheno-
typical adaptations to the low temperature iron-rich 
deep-sea environment. The comparison with genomes 

of closely related surface-inhabiting counterparts 
indicates that the deep-sea isolates do not differ sig-
nificantly from members of the phylum Planctomyce-
tota inhabiting other habitats, such as macroalgae bio-
films and the ocean surface waters. Despite inhabiting 
extreme environments, our “deep and dark”-strains 
revealed a mostly non-extreme genome biology.

Keywords  Planctomycetota · Deep sea · Iron 
hydroxide deposits · Surface water · Biofilm · 
Genome comparison

Introduction

The deep sea is the largest ecosystem on Earth and 
accounts for approximately 75% of the total ocean 
volume and hosts 62% of the global biosphere 
(Fang et  al. 2010; Kallmeyer et  al. 2012). Bacteria Supplementary Information  The online version 
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inhabiting surface environments and those thriving 
in the depths of the ocean have diverged over evolu-
tionary time, leading to distinctive genomic adapta-
tions that enable them to exploit the resources and 
withstand the stresses of their specific ecological 
niches (DeJong and Karl, 2005; Zhou et  al. 2020). 
Surface-dwelling bacteria typically encounter fluc-
tuating conditions, including variable light, tempera-
ture, and nutrient levels, and often rely on photosyn-
thetic energy sources or organic matter derived from 
terrestrial ecosystems. In contrast, deep-sea bacteria 
are adapted to a cold, high-pressure, nutrient-scarce, 
and completely dark environment, where they depend 
on chemosynthesis or the limited organic matter that 
sinks from the upper layers of the ocean (Lauro and 
Barlett, 2008). Surface bacteria frequently harbor 
genes that confer adaptability to dynamic condi-
tions, such as mechanisms for rapid metabolic shifts, 
genes for UV resistance, and a broad range of trans-
port systems for varied nutrient sources. By contrast, 
deep-sea bacterial genomes often reflect streamlined 
metabolic pathways, adaptations for coping with 
high hydrostatic pressure, and genes for metaboliz-
ing the limited nutrients available in the deep ocean 
(Oger et  al., 2010). Additionally, the relatively sta-
ble but extreme conditions of the deep sea may favor 
genomic traits that promote long-term survival over 
rapid growth, in contrast to the more opportunistic 
strategies often observed in surface bacteria. Deep-
sea ecosystems are largely unexplored and harbour an 
untapped diversity of life, including archaea and bac-
teria (Hoshino et al. 2020; Salazar et al. 2015; Walsh 
et al. 2016).

A phylum of ubiquitous bacteria is Planctomyce-
tota that has attracted the interest of several research 
groups since the last century (Neef et  al. 1998). 
Members of the phylum are characterized by a com-
plex cell plan and life cycle, unknown secondary 
metabolite biochemistry and enigmatic genomes with 
a high percentage of genes with an unknown func-
tion (Kallscheuer and Jogler 2021; Rivas-Marín and 
Devos 2018; Rivas-Marin et al. 2020; Wiegand et al. 
2018). Phylogenetically, the phylum is part of the 
Planctomycetota, Verrucomicrobiota, Chlamydiota 
(PVC) superphylum (Oren and Garrity 2021; Wagner 
and Horn 2006). The current taxonomy of the phy-
lum comprises two classes: Planctomycetia (Vitorino 
and Lage 2022), which is the best explored class as 
assessed by cultivation-dependent and -independent 

methods, and the less explored class Phycisphaerae 
(Fukunaga et  al. 2009). In addition, a third provi-
sional class, Candidatus Brocadiia (Lodha et  al. 
2021), includes bacteria capable of anaerobic ammo-
nium oxidation (“anammox” metabolism) (Strous 
et  al. 1999). Recently, the provisional class Candi-
datus Uabimicrobiia was added after the isolation of 
two Candidatus Uabimicrobium species, exceptional 
obligatory predatory bacteria capable of phagocyto-
sis-like cell engulfment (Shiratori et al. 2019, Wurz-
bacher et al. 2024).

All validly described members of the phylum are 
chemoorganotrophs that occur in a wide range of 
habitats (Lage et  al. 2019). Many strains have been 
detected in or isolated from aquatic environments, 
both marine and freshwater, e.g. directly from the 
water column, marine snow, the surface of macroal-
gae and aquatic animals, and from coastal sediments 
(Wiegand et  al. 2018). However, their occurrence is 
not limited to aquatic habitats, as they are also found 
in terrestrial, extreme and polluted environments or 
associated with various eukaryotes including humans 
(Cayrou et  al. 2013; de Araujo et  al. 2021). Despite 
their ubiquity, they are in most cases not the most 
abundant phylum. However, high abundances have 
been reported, for example, in the following habi-
tats: biofilms of macroalgae (Bengtsson and Øvreås, 
2010) and seagrass (Kohn et al. 2020a); aridic regions 
in China (23.7% of the bacterial community (Chen 
et al. 2017a)); the active layer above permafrost soils 
on the Tibetan Plateau (Chen et  al. 2017b); acidic 
Sphagnum peat bogs and lichen-dominated tundra 
wetlands (Dedysh and Ivanova 2018; Ivanova and 
Dedysh 2006); marine snow (Reintjes et al. 2023); the 
oxygenated hypolimnion of freshwater lakes (Oka-
zaki et  al. 2017); and moist acidic tundra soil (Kim 
et  al. 2016). Aerobic and anaerobic members of the 
two validly published classes have also been isolated 
from deep sea environments (Storesund et  al. 2018; 
Storesund and Øvreås, 2013; Zheng et al. 2024).

Knowledge on the presence and function of 
planctomycetes in deep-sea environments is scarce, 
particularly when compared to shallow and sur-
face waters from which most of the hitherto iso-
lated strains have been obtained. Bacteria belong-
ing to the “anammox group” of the phylum (class 
Ca. Brocadiia) are known to exist in the Black 
Sea’s suboxic zone (Kirkpatrick et al. 2006; Fuchs-
man et  al. 2012). The diversity of the phylum in 
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two different marine hydrothermal vent deposits, 
the Mohns Ridge, a part of the Arctic Mid Ocean 
Ridge (AMOR, 600  m depth) and the Valu Fa 
Ridge (VFR, 1,734  m depth) in the Southwestern 
Pacific, was analysed by both cultivation-depend-
ent and -independent approaches (Storesund et  al. 
2018; Storesund and Øvreås, 2013). Abundances 
of 10–11% for the phylum Planctomycetota were 
observed in both locations.

Since environmental factors (temperature, avail-
ability of light and electron donors, etc.) in the 
deep sea differ significantly from conditions close 
to the surface of the water column, these differ-
ences might also be reflected in the lifestyle as 
assessed by alterations in metabolic capabilities. 
As a starting point to decode the cell biological 
and metabolic capabilities in the phylum Plancto-
mycetota, we performed a comparative analysis of 
genomic features of three aerobic planctomycetes 
isolated from the deep sea and close relatives that 
were retrieved from surface waters.

Materials and methods

Isolation and cultivation of three deep‑sea 
planctomycetotal strains

The three deep-sea isolates Pr1dT, K2D and TBK1r, 
were analysed and compared with close relatives from 
the water surface (Table  1). Strain Pr1dT was col-
lected from iron-hydroxide deposits at 600  m depth 
from the Mohns Ridge (Storesund and Øvreås, 2013). 
The temperature at the site was 2 °C in the surround-
ing seawater and 7 °C 10 cm into the iron hydroxide 
deposits. The pH was 6.6 in the sampled material. 
Samples were collected and placed in a container 
at the bottom of the sea which was closed before it 
was transported to the surface through the water col-
umn. Strains K2D and TBK1r were isolated from 
iron-hydroxide deposits in the south Pacific Ocean, 
more specifically from the northern end of the Valu 
Fa Ridge segment, the Vai Lili vent fields at 1,734 m 
depth (Storesund et al. 2018). The seawater tempera-
ture at the bottom was 2.5  °C. The sample material 

Table 1   Information on the isolation and physiological characteristics of the deep-sea strains and close relatives isolated from the 
water surface. n.d. not determined

Characteristics Bythopirellula 
goksoeyrii

Bythopirellula 
polymerisocia

Botrimarina mediterranea Botrimarina 
mediterranea

Stieleria sp. Stieleria sp.

Pr1dT Pla144T K2D Spa11T TBK1r SV7_m_r

Family Lacipirellu-
laceae

Lacipirellu-
laceae

Lacipirellulaceae Lacipirellu-
laceae

Pirellulaceae Pirellulaceae

Geographic 
loation

Arctic ocean Estuary of the 
Baltic Sea

South Pacific Ocean Mediterra-
nean Sea

South Pacific 
Ocean

Sælenvannet 
lake

Sampling 
coordinates

71.300000, 
− 5.783333

54.097000, 
12.151000

− 22.214133,   − 176.608017 41.663000, 
2.910000

− 22.214150, 
− 176.608017

60.331700, 
5.277300

Depth 600 m surface 1,734 m surface 1,734 m 7 m
Time of sam-

pling
2006 2014 2009 2014 2009 2014

Environment Marine Brackish Marine Marine Marine Brackish
Habitat Iron hydroxide 

deposits
Polyethylene 

particles
Iron hydroxide deposits Seawater Iron hydroxide 

deposits
Meromictic 

lake (brack-
ish water)

Relation to 
oxygen

Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic

Isolation M13 
medium gel-
rite plates

M1H NAG 
ASW agar 
plates

M30 medium gelrite plates M1H NAG 
ASW agar 
plates

Seawater, 
peptone, yeast 
extract (SPYG) 
gelrite plates

M30 
medium gel-
rite plates

Temperature 
range (°C)

10-27 20–30 10-30 10-36 10-30 n.d.

Energy souce Heterotrophy Heterotrophy Heterotrophy Heterotrophy Heterotrophy Heterotrophy
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at this site was fluffier and was therefore collected 
by a slurp gun by sucking the material into a clean 
container connected to the Remote Operated Vehicle 
(ROV). The container was closed before the samples 
were brought back to the water surface and brought 
onto the boat. The samples from this site had a lower 
pH with values > 2.8. It also contained high concen-
trations of iron and manganese (1000–10 000 µmol/
kg and ~ 8 × 103 µmol/kg respectively). Samples were 
inoculated into various aerobic media for stimulat-
ing enrichment of planctomycetotal strains. Strain 
Pr1dT was grown in M13 medium (Schlesner 1994), 
prepared in aged 70% (v/v) seawater (sea water kept 
under dark for at least 8  weeks, (ZoBell 1946)). 
Strain K2D was cultivated in M30 medium (Schle-
sner 1994), also prepared in aged 70% (v/v) seawater, 
whereas strain TBK1r was cultivated by diluting the 
samples 1:100 before plating directly on gelrite plates 
containing seawater-peptone-yeast extract (SPYG). A 
detailed description on the cultivation conditions is 
given in Storesund and Øvreås (2013) and Storesund 
et al. (2018). All isolation media contained 200 mg/L 
ampicillin and the cultures were incubated under aer-
obic conditions in the dark.

16S rRNA gene amplification and sequencing

After three weeks of incubation, biomass of the cul-
tures was collected and prepared for DNA extraction 
and sequencing. The near full-length sequence of 
the 16S rRNA gene was amplified using the primer 
combination A8f and 1542r (Edwards et  al. 1989; 
Lane 1991). Amplification and sequencing were 
performed as previously described (Storesund and 
Øvreås, 2013). The PCR products were purified using 
the Illustra Exostar Kit as described by the manufac-
turer (USB Corporation) and subsequently sequenced 
using the Big-Dye.3.1 kit (ABI 3700 PE; Applied 
Biosystems). Sanger sequencing was performed 
on separate 16S rRNA gene amplicons, using an 
ABI3700 sequencing system (Applied Biosystems).

Genome sequencing and data availability

Genome sequencing of the three isolates was part 
of a previous study (Wiegand et  al. 2020). The 
sequences of the 16S rRNA genes and genomes are 
available from GenBank under the following acces-
sion numbers: strain K2D: MK554527 (16S rRNA 

gene), CP036350 (chromosome) and CP036351 
(plasmid); strain Pr1dT: MK554554 (16S rRNA 
gene) and CP042913; strain TBK1r: MK554535 (16S 
rRNA gene) and CP036432. A surface isolate, strain 
SV_7m_r, was sequenced in addition and included 
in the comparative genomics analyses. The 16S 
rRNA gene and genome sequence of this strains are 
available from GenBank under accession numbers 
MK554510 and CP036272, respectively (Wiegand 
et  al. 2020). Strain SV_7m_r was isolated from sur-
face water of the brackish lake Sælenvannet (sam-
pling location: 60.332 N 5.277 E). The lake is part of 
the North Sea fjord system (Nordåsvannet) close to 
Bergen, Norway.

Analysis of phylogenetic markers and tree 
reconstruction

Phylogenetic analyses were performed for the novel 
isolates and closely related strains belonging to the 
same respective genus (Table  1). All genomes were 
retrieved from the NCBI Genbank database. The 
sequence identities of the 16S rRNA and rpoB genes 
(both used as phylogenetic markers) were assessed via 
BLASTn (Altschul et al. 1990; Johnson et al. 2008). 
Average Nucleotide Identity (ANI) values were cal-
culated using CJ Bioscience’s online ANI calcula-
tor at the EzBioCloud platform (Yoon et  al. 2017). 
Average Amino Acid Identities (AAI) were obtained 
with the online All-vs-all ANI/AAI matrix calculator 
of the enveomics collection using default parameters 
(Rodriguez-R and Konstantinidis 2016). The percent-
age of conserved proteins (POCP) was analysed as 
described (Qin et  al. 2014). A multi-locus sequence 
analysis (MLSA)-based maximum likelihood phy-
logenetic tree was constructed using autoMLST 
with 500 bootstrap replicates (Alanjary et  al. 2019). 
The analysis was performed with the autoMLST-
simplified-wrapper tool available on GitHub (https://​
github.​com/​KatSt​einke/​autom​lst-​simpl​ified-​wrapp​er). 
The analysis included the genomes of strains Pr1dT, 
K2D, TBK1r and SV_7m_r along with the reference 
genomes of strains belonging to the current families 
Pirellulaceae and Lacipirellulaceae (order Pirellula-
les, class Planctomycetia). The genomes of Gimesia 
maris CA11 (GenBank acc. no. GCA_007747015.1), 
Rubinisphaera brasiliensis DSM 5303  T (acc. no. 
GCA_000165715.3) and Planctopirus limnoph-
ila DSM 3776  T (acc. no. GCA_000092105.1) (all 

https://github.com/KatSteinke/automlst-simplified-wrapper
https://github.com/KatSteinke/automlst-simplified-wrapper
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belonging to the family Planctomycetaceae) served as 
outgroup. The phylogenetic tree was visualized with 
iTOL v.6 (Letunic and Bork 2021).

Pangenome construction and analyses of 
genome‑encoded features

The pangenomes were constructed using anvi’o 8 
based on the pangenomics workflow described on 
the anvi’o website (https://​anvio.​org/​learn) (Eren 
et al. 2021). The “Estimate Metabolism” workflow of 
anvi’o 8 (Eren et al. 2021) and RAST (Rapid Anno-
tation using Subsystem Technology) (Brettin et  al. 
2015) were used for the prediction of metabolic path-
ways and functions. The profiles of putative carbo-
hydrate-active enzymes (CAZymes) were extracted 
after annotation of the genomes with eggNOG-map-
per 2.1.12 (Cantalapiedra et  al. 2021). Biosynthetic 
gene clusters (BCGs) potentially associated with sec-
ondary metabolite biosynthesis were analyzed using 
antiSMASH 7.1.0 with strict detection and all extra 
features (KnownClusterBlast, ClusterBlast, Sub-
ClusterBlast, MIBiG cluster comparison, ActiveSite-
Finder, RREFinder, Cluster Pfam analysis, Pfam-
based GO term annotation, TIGRFam analysis, TFBS 
analysis) enabled (Blin et al. 2023, 2021). Metabolic 
functions related to iron acquisition, iron oxidation or 
reduction, and siderophore formation were analysed 
with FeGenie (Garber et  al. 2020). The analysis of 
genes putatively involved in antimicrobial resistance, 
stress response, and virulence was performed with 
the NCBI Antimicrobial Resistance Gene Finder Plus 
(AMRFinderPlus) with the “plus” function enabled 
(Feldgarden et al. 2021).

Results and discussion

Phylogenetic analysis and positions of the strains in 
the phylogenetic tree

The phylogenetic inference of the three deep-sea 
isolates Pr1dT, K2D and TBK1r was performed 
based on five phylogenetic markers and the estab-
lished threshold values for the delineation of spe-
cies and genera currently used for the phylum 
Planctomycetota (Table  S1). The phylogenetic 
markers included: (1) 16S rRNA gene sequence 

similarity (genus threshold: 94.5%, species thresh-
old 98.7%) (Yarza et  al. 2014), (2) similarity of 
a ca. 1300  bp partial sequence of the gene rpoB 
encoding the β-subunit of the RNA polymerase 
(genus threshold range 75.5–78.0%, species thresh-
old: 96.3% Bondoso et al. 2013; Kallscheuer et al. 
2020b), (3) ANI (genus threshold: 73.1%, spe-
cies threshold: 95%) (Barco et al. 2020; Kim et al. 
2014), (4) AAI (genus threshold range: 60–80%, 
species threshold: 95% (Luo et  al. 2014) and (5) 
POCP (genus threshold: 50%, no species threshold) 
(Qin et al. 2014).

The constructed MLSA-based phylogenetic 
tree places all three strains in the order Pirellula-
les, more specifically strains Pr1dT and K2D in the 
family Lacipirellulaceae and strain TBK1r in the 
family Pirellulaceae (Fig.  1). The analyzed phy-
logenetic markers suggest that strain K2D belongs 
to the already described species Botrimarina medi-
terranea (with type strain Spa11T). Strain Pr1dT 
(the here analysed isolate) was previously val-
idly published as the type strain of the species 
Bythopirellula goksoeyrii (Storesund and Øvreås, 
2021) (Table  S1). A second member of the genus, 
Bythopirellula polymerisocia Pla144T, was isolated 
from the surface of brackish water in an estuary of 
the Baltic Sea in Northern Germany (Table 1). The 
phylogenetic position of strain TBK1r is ambigu-
ous. While the strain is clearly a member of the 
genus Stieleria, the single gene markers (16S rRNA 
and rpoB gene sequence similarity) suggest that 
the strain belongs to the recently described species 
Stieleria sedimenti (16S rRNA gene sequence simi-
larity: 98.9%, rpoB sequence silimarity: 99.5%), 
whereas the whole genome-based markers ANI and 
AAI would place it as a novel species (ANI: 91.6%, 
AAI: 92.1 for comparison of strain TBK1r with S. 
sedimenti ICT_E10.1). In the light of the previously 
observed low reliability of the species threshold for 
16S rRNA gene sequence similarity in the phylum 
(Kohn et  al. 2020b), we give greater weight to the 
whole genome-based markers and designate the 
strain Stieleria sp. TBK1r.

Despite the isolation from the deep sea, all three 
strains show close phylogenetic relationship on 
the level of the same or separate species to already 
described taxa, for which the respective type strains 
have all been isolated from surface waters or from 

https://anvio.org/learn
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abiotic or biotic surfaces in the upper water column. 
The close relationship and the aerobic lifestyle of all 
analysed strains facilitates the search for habitat-spe-
cific genes that may be required for survival and bio-
mass formation in the respective ecosystems.

Comparison of genomic features

Basic genomic features of strains Pr1dT, K2D and 
TBK1r were analyzed and compared to close rela-
tives isolated from the water surface (Table  2). The 
genomes of strains Pr1dT and K2D are similar in size 

Fig. 1   Multi-locus sequence analysis (MLSA)- based phylo-
genetic tree. The maximum likelihood phylogenetic tree high-
lights the position of the three deep-sea strains (highlighted in 
orange). The tree was constructed based on the genomes of all 
effectively or validly described members of the families Pire-
llulaceae and Lacipirellulaceae. The genomes of three mem-

bers of the family Planctomycetaceae were used as outgroup 
(see Material and methods section for details). Bootstrap val-
ues are given at the nodes (in %). The scale bar indicates the 
number of subtitutions per position. The surface strains that 
were used for comparison are highlighted in blue
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(6.47 and 5.84 Mbp, respectively) and several Mbps 
smaller than the genome of strain TBK1r (10.77 
Mbp). Consequently, the number of genes is also 
higher in strain TBK1r than in the other two strains. 
The relative number of genes coding for hypotheti-
cal proteins was similarly high; with 41% for Pr1dT, 
44% for K2D and 46% for TBK1r (based on the auto-
mated RefSeq annotation). A high number of proteins 
with an unknown function has been often observed 
for members of the phylum Planctomycetota (Lage 
et al. 2019; Overmann et al. 2017) and typically falls 
between 25 and 45%, depending on the used annota-
tion algorithm and the genome size. The comparison 
of genomic features of the deep sea isolates and the 
surface strains only yielded minor differences (reflect-
ing the close phylogenetic relationship), except for the 
two Stieleria strains that showed major differences in 
size (and consequently numbers of encoded features) 
and G + C content (Table 2).

Pangenomics and singleton gene analyses

In the search for genome-encoded features that may 
reflect the lifestyle in the deep sea, we first com-
pared strains K2D, Pr1dT and TBK1r individually. 
The comparison was performed against the genomes 
of all characterized members of the respective gen-
era to which the strains belong, namely Botrimarina, 
Bythopirellula and Stieleria (cf. Figure 1). The type 
strains of all described species chosen for comparison 

were isolated from the surface zone of marine or 
brackish environments in Europe (North Sea, Baltic 
Sea, Mediterranean Sea or Atlantic Ocean) or India 
(Table 1). Based on the pangenomes, singleton genes 
of the deep sea-originating strains were extracted and 
analyzed based on their annotation (Tables S2, S3 and 
S4).

The Botrimarina pangenome (based on four 
genomes) consisted of 7060 clusters, of which 295 
were specific for strain K2D (Fig. 2A). After extrac-
tion of the annotation information based on NCBI’s 
Database of Clusters of Orthologous Genes (COG20) 
and curation of the list by removal of hypotheti-
cal proteins and proteins with an unknown function, 
84 genes remained (Table  S2). In the same manner, 
pangenomes of the current genera Bythopirellula (two 
genomes, 6547 clusters) and Stieleria (including the 
genus “Roseiconus”) (nine genomes, 22,507 clusters) 
were constructed (Fig.  2B, C). After curation, 747 
singleton genes with a putative gene annotation were 
obtained for strain Pr1dT and 408 for strain TBK1r 
(Tables  S3 and S4). The inspection of the curated 
lists (with entries of hypothetical proteins removed) 
did not yield any genes coding for enzymes with pri-
mary (metabolic) functions, e.g. involved in central 
metabolism, transcription, translation, amino acid and 
nucleotide biosynthesis, etc. This can be regarded as 
a plausibility control for the performed analysis since 
these genes are expected to fall in the respective core 
genomes (and were also found therein). However, 

Table 2   Genomic features of the deep-sea isolates and close relatives isolated from the water surface

Characteristics Bythopirellula 
goksoeyrii

Bythopirellula 
polymerisocia

Botrimarina 
mediterranea

Botrimarina 
mediterranea

Stieleria sp. Stieleria sp.

Pr1dT Pla144T K2D Spa11T TBK1r SV7_m_r

Genome size (bp) 6,473,141 6,143,780 5,839,026 5,871,207 10,769,056 7,107,266
Plasmids no inconclusive 1 no no no
DNA G + C content (%) 52.8 52.9 64.1 64.1 58.5 55.3
Genes 5107 4902 4609 4549 7611 4991
Protein-coding genes 5007 4794 4516 4484 7337 4848
Protein-coding genes/Mbp 774 780 773 764 681 682
Hypothetical proteins 2036 2020 1973 1925 3393 1876
Hypothetical proteins (%) 40.7 42.1 43.7 42.9 46.2 38.7
Coding density (%) 86.5 86.7 86 85.8 87.4 86.4
CRISPR arrays 1 0 1 0 0 0
tRNA genes 70 79 47 46 106 43
rRNA genes (5S-16S-23S) 1-1-1 1-1-1 1-1-1 1-1-1 2-2-3 2-2-2
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immediate hits that might indicate a facultatively 
anaerobic/microaerophilic lifestyle or adaptation to 
higher concentrations of (heavy) metals expected 
to be required for survival in the deep sea were not 
obvious. The lists consisted mainly of strain-specific 
genes that e.g. encode enzymes with regulatory func-
tions (protein kinases, transcriptional regulators, 
sigma factors), DNA-modifying enzymes (recom-
binases, transposases, CRISPR-Cas proteins, endo-
nucleases, enzymes of restriction-modification sys-
tems), polysaccharide catabolic enzymes (sulfatases, 
sugar debranching enzymes, glycosyltransferases), 
transporters and phage proteins and mobile elements. 
In particular the presence of “selfish” genes of phage 
origin has been consistently observed in studies of 
deep-ocean microorganisms (Konstantinidis et  al. 
2009, Smedile et al., 2013). The maintenance of these 
genes is assumed to be favored by relaxed purify-
ing selection in deeper waters (Konstantinidis et  al. 
2009). While identifying functions from the genomic 

analysis along is difficult, their presence suggests a 
role in environmental adaptation. The axenic strains 
are available for more detailed analyses, which can be 
a decisive advantage over analyses based on metage-
nome-assembled genomes (MAGs). Many of the 
putative transporters are annotated as efflux proteins 
for toxic compounds including heavy metals, how-
ever, their exact function cannot be derived from the 
genome information only.

In order to check for the presence of conserved 
deep-sea specific genes, a combined pangenome 
of the three deep-sea isolates and their respective 
next relatives was constructed in a second approach 
(Fig. 3). For strain TBK1r, Stieleria sp. SV_7m_r, a 
free-living isolate from surface water of a meromic-
tic lake was used, since many of the other close rela-
tives were either isolated from non-natural abiotic 
surfaces or from sediments or lack complete genome 
sequencing data (assembly level “contigs” or “scaf-
folds”). Strain Pr1dT only has one closest relative 

Fig. 2   Visualization of the individual pangenomes. A Genus 
Botrimarina and strain K2D, B Genus Bythopirellula and 
strain Pr1dT, C) Genus Stieleria and strain TBK1r. Each open 
circle represents the pangenome of all strains but is colored 

darker when the gene is present in the respective genome. The 
analyzed deep-sea strains are shown in orange, all others in 
blue. The asterisk marks the singleton genes of the respective 
deep-sea strain
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belonging to the same genus, Bythopirellula poly-
merisocia, whereas strain K2D belongs to the already 
validly published species Botrimarina mediterranea 
(Fig. 1). The obtained combined pangenome did not 
reveal a conserved set of genes that is absent in the 
surface strains (Fig.  3). Since the analysed strains 
belong to two different families, the phylogenetic dis-
tance might be already too large for yielding reliable 
results. The shared genes in the pangenome reflect the 
closer phylogenetic relationship (9–12 o’clock in the 
pangenome visualization in Fig. 3) within the genus 
boundaries. Unfortunately, the analysis did not reveal 
additional candidates specifically present in the deep 
sea isolates.

Analysis of plasmid‑encoded genes in strain K2D

The deep-sea strain K2D harbours a 70 kb plasmid 
with 65 predicted open reading frames that is absent 

in the surface strain Spa11 (belonging to the same 
species). 61 of these plasmid-encoded genes turned 
out the be singletons that were also detected in the 
pangenome analysis. The plasmid-encoded nature 
of these singleton genes can provide additional sup-
port for specialized functionalities associated with 
the presence of this extrachromosomal element in 
strain K2D. Indeed, the automated annotation of 
several of the plasmid-encoded proteins suggests a 
role in heavy metal resistance, e.g. including puta-
tive subunits of a cobalt-zinc-cadmium efflux pro-
tein (CzcABC) and cobalt-zinc-cadmium: H+ /
K+ antiporter (CzcD) along with putative mercuric 
reductase (MerA), cadmium-transporting ATPase 
(CadA) and ferrous iron efflux protein F. The genes 
are organized as a “heavy metal resistance genomic 
island” between kilobase positions 38 and 55 rela-
tive to the replication initiator protein-encoding 
gene (rotated to position 1).

Fig. 3   Visualization of the combined pangenome. The open 
circle depicts the pangenome of the three deep-sea strains (in 
orange) and a respective close relative from the same genus 
obtained from surface water (in blue). Each open circle repre-

sents the pangenome of all strains but is colored darker when 
the gene is present in the respective genome. The heatmap 
in the upper right corner shows the phylogenetic relationship 
based on average nucleotide identity (ANI) values
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Genome‑based estimation of metabolic pathways

The “Estimate Metabolism” workflow (of anvi’o 
8) was used to assign proteins encoded by the three 
deep-sea isolates to primary metabolic pathways 
based on KEGG pathway modules. For comparison, 
the genomes that were also used for the individual 
pangenome analyses were included. The lists with 
complete modules (> 75% of the required enzymes 
per pathway present) for all analyzed strains were 
concatenated and inspected for pathways specific 
to the deep-sea isolates (Table  S5). Except for dif-
ferences in the completeness of some biosynthetic 
pathways for amino acids and vitamins, no path-
ways exclusively present in the deep-sea strains were 
obtained. All isolates including the three aerobic 
deep-sea strains harbour the genes coding for the 
subunits of the cytochrome c oxidase catalyzing the 
terminal oxygen-dependent step. The same is true for 
the light-dependent DNA photolyase. None of the 
strains harbours rhodopsin-encoding genes.

In a separate analysis, an annotation using the 
RAST server was performed for all six genomes. 
The above-mentioned strain pairs (A: deep-sea iso-
late, B: surface isolate) were compared using the 
“Function-based comparison” tool of the SEED-
Viewer. The predicted functions present in strain A 
and absent in B, and the other way around (absent in 
A and present in B) were collected (Table  S6). For 
the Botrimarina strain pair, four protein functions 
were specific to strain K2D and seven to strain Pla144 
(Table S6A, B). These include reactions involved in 
amino acid and vitamin biosynthesis (cysteine, his-
tidine, folate) and DNA-binding and/or -modifying 
enzymes (CRISPR-Cas proteins, restriction modifica-
tion system, transcriptional regulators). A comparison 
of the Bythopirellula spp. pair yielded 32 specific hits 
each for both analyzed genomes (Table S6C, D). The 
respective functions comprise amino acid and cofac-
tor biosynthesis, nitrogen metabolism and various 
electron transfer and transport processes. The largest 
differences were obtained for the two compared Stie-
leria spp. 125 proteins were predicted to be specific 
for the deep-sea strain TBK1r and 42 for the surface 
isolate SV_7m_r (Table  S6D, E). The data suggest 
the absence of the NADH:ubiquinone oxidoreduc-
tase NDH-1 (complex I of the respiratory chain) in 
the surface strain SV_7m_r. This finding was con-
firmed with the genome annotation obtained from 

eggnog-mapper that yielded the respective genes 
(nuoA-nuoN) in strain TBK1r, but only nuoL in strain 
SV_7m_r. The complete set of nuo genes was also 
detected in the draft genome of Stieleria sedimenti 
ICT_E10.1. The transfer of electrons from NADH is 
probably taken over by the NADH:ubiquinone oxi-
doreductase NQR that is coupled to the transport of 
Na+ ions from the cytoplasm to the periplasm. The 
respective genes (nqrA-F) could be identified in all 
six analysed genomes. Genes encoding an Na+/H+ 
antiporter consisting of seven different subunits were 
also absent from the genome of strain SV_7m_r, but 
encoded in strain TBK1r. Several proteins involved in 
partial steps of cobalamin (vitamin B12) biosynthesis 
were among the functions predicted to be present in 
strain SV_7m_r but absent in strain TBK1r.

In a more targeted search, genes involved in com-
mon fermentation pathways and nitrate respiration 
were analyzed in the six genomes (Table 3). Each of 
the six genomes harbours a lactate dehydrogenase-
encoding gene (Idh or IdhA) that should allow the 
formation of lactate from pyruvate. Genes encoding 
enzymes involved in acetate formation from acetyl-
CoA (phosphotransacetylase and acetate kinase) were 
found in four out of six strains. A reductive tricarbo-
xylic acid cycle seems to be absent from all strains 
since genes encoding the three key enzymes fumarate 
reductase, 2-oxoglutarate synthase and ATP citrate 
lyase were not detected. Only the two Botrimarina 
strains harbour a putative phosphoenolpyruvate car-
boxylase gene. The surface isolate B. polymerisocia 
Pla144 is the only of the compared strains that har-
bours a gene set for a respiratory nitrate reductase. 
Putative nitrite reductase-encoding genes were pre-
dicted in B. goksoeyrii and the two Stieleria spp. As 
suggested by the automated genomic comparison 
with anvi’o and RAST, the three strain pairs show 
only minor differences regarding genes involved in 
fermentation and nitrate respiration pathways that are 
apparently independent of the strains’ origin (surface 
or seafloor).

Carbohydrate‑active enzymes

Carbohydrate-active enzymes (CAZymes) are 
classes of proteins involved in the synthesis, modi-
fication or degradation of complex polysaccharides 
(Sun et  al. 2023; Wecker et  al. 2010). Members of 
the phylum Planctomycetota thrive on the surface 
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of photosynthetically-active primary producers and 
have been recognized as important part of bacterial 
communities during the late decay stage of macro-
scopic phototrophs (Kallscheuer et  al. 2021; Zhang 
et al. 2024). Hence, we checked for differences in the 
numbers of CAZyme genes in the surface and deep-
sea isolates. The compared strains harbour between 
8–13 CAZyme-encoding genes per Mbp and showed 
similar CAZyme profiles in the direct comparison 
between the closely related isolates (Table 4). Notice-
able is the lack of polysaccharide lyase genes in the 
deep-sea strains, while one putative gene was found 
in each of the three strains isolated from the surface. 
However, more deep-sea strains are required to check 
if this observation is consistent, as with the small 
sample size the correlation could also be purely coin-
cidental. For the Stieleria strains, TBK1r stood out as 
its genome encodes approximately twice as many gly-
coside hydrolases, glycosyltransferases and enzymes 

with carbohydrate-binding modules as the genome of 
the compared close relative strain SV_7m_r.

Secondary metabolism‑associated biosynthetic gene 
clusters

Genome mining of planctomycetal genomes using 
antiSMASH yielded 1–2 biosynthetic gene clusters 
(BGCs) potentially associated with the production 
of secondary metabolites (Kallscheuer and Jogler 
2021; Wiegand et  al. 2020). The relevance of such 
clusters in the phylum has so far been linked to the 
biosynthesis of carotenoids, N-acylated amino acids 
and phenolic compounds (Kallscheuer et  al. 2020a; 
Milke et al. 2024; Panter et al. 2019; Santana-Molina 
et  al. 2022). Most of the predicted clusters have not 
yet been linked to actual compounds. The here inves-
tigated strains harbour 5–10 BGCs predicted by ant-
iSMASH. While the two B. mediterranea strains were 

Table 3   Presence or absence of genes coding for enzymes 
involved in fermentation pathways and nitrate respiration. 
The analysis is based on the annotation of the analyzed strains 

using eggnog-mapper. NCBI accession numbers are provided 
in case that the enzyme is present

Enzyme E.C. number Bythopirellula 
goksoeyrii

Bythopirellula 
polymerisocia

Botrimarina 
mediterranea

Botrimarina 
mediterranea

Stieleria sp. Stieleria sp.

Pr1dT Pla144T K2D Spa11T TBK1r SV_7m_r

Fermenation pathways
L–lactate dehy-

drogenase
1.1.1.27 no no QDV79991.1 QDV75322.1 QDV84145.1 QDT61696.1

D–lactate dehy-
drogenase

1.1.1.28 QEG36332.1 TWU24790.1 no no no no

Phosphotransa-
cetylase

2.3.1.8 no TWU24779.1 QDV80294.1 QDV75658.1 QDV81448.1 no

Acetate kinase 2.7.2.1 QEG35494.1 TWU24780.1 QDV80295.1 QDV75659.1 QDV81447.1 QDT60495.1
Reductive TCA cycle
Phospho-

enolpyruvate 
carboxylase

4.1.1.31 no no QDV77716.1 QDV73143.1 no no

Fumarate reduc-
tase

1.3.1.6 no no no no no no

2-Oxoglutarate 
synthase

1.2.7.3 no no no no no no

ATP citrate lyase 2.3.3.8 no no no no no no
Nitrogen metabolism
Respiratory 

Nitrate reduc-
tase

1.7.5.1 no TWU21779.1–
TWU21782.1

no no no no

Nitrite reductase 1.7.1.15 QEG37230.1 no no no QDV86603.1 QDT58782.1
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indistinguishable in their BGC profile, only slight dif-
ferences were obtained for the other two genera.

Analysis of proteins putatively involved in iron 
homeostasis

To identify genes coding for proteins involved in 
iron homeostasis (transport, oxidation/reduction and 
storage), the genomes were analysed based on the 
entries of the FeGenie database (Table 5). The results 
revealed that no genes for iron reduction or iron oxi-
dation were found in any of the isolates. However, 
genes related to iron transport, siderophore synthesis, 
transport, and gene regulation are present. Also, genes 
encoding putative iron storage proteins were obtained 

in all isolates. However, these genes were also found 
to be present in the analysed strains isolated from the 
water surface in similar numbers (Table  5), indicat-
ing that these genes are probably not correlated with 
the environmental conditions of the isolates from the 
deep-sea environment.

Prediction of genes involved in stress‑response

NCBI’s AMRFinderPlus was used to analyse the 
genomes for genes involved in antimicrobial resist-
ance, virulence and stress responses including heavy 
metal tolerance (Tables  S7, S8 and S9). The tool 
predicted several genes that might be involved in 
the resistance against antibiotics and heavy metals 

Table 4   Numbers of genes encoding carbohydrate-active enzymes (CAZymes) and predicted secondary metabolite-associated bio-
synthetic gene clusters

Characteristics Bythopirellula 
goksoeyrii

Bythopirellula 
polymerisocia

Botrimarina 
mediterranea

Botrimarina 
mediterranea

Stieleria sp. Stieleria sp.

Pr1dT Pla144 K2D Spa11 TBK1r SV_7m_r

Genome size (Mb) 6.47 6.14 5.84 5.87 10.77 7.11
CAZymes
Glycoside hydrolases 46 46 44 49 35 20
Glycosyltransferases 17 15 22 24 40 21
Polysaccharide lyases 0 1 0 1 0 1
Carbohydrate esterases 2 1 1 1 1 2
Carbohydrate-binding modules 2 2 3 3 8 4
Auxiliary activities 0 0 0 0 0 0
Total 67 65 70 78 84 48
CAZyme genes / Mbp 10 11 12 13 8 7
Biosynthetic gene clusters
type I PKS 1 1 1 1 1 0
mixed type I PKS-NRPS 0 0 0 0 1 0
type III PKS 0 0 1 1 1 1
N–acyl amino acid 0 0 1 1 2 1
NRPS-like 1 1 1 1 2 1
betalactone 1 1 1 1 0 0
other 1 1 1 1 0 0
Non-alpha poly-amino acids 1 0 0 0 0 0
N–acetyl–Gln–Gln amide 1 1 0 0 0 0
arylpolyene 0 1 0 0 0 0
lanthipeptide 0 0 0 0 1 0
ectoine 1 0 0 0 0 0
terpene 1 1 0 0 2 2
Total 8 7 6 6 10 5
BGCs / Mbp 1.2 1.1 1.0 1.0 0.9 0.7



Antonie van Leeuwenhoek          (2025) 118:33 	 Page 13 of 17     33 

Vol.: (0123456789)

(arsenic, copper, nickel, cadmium and silver), how-
ever, most of these were equally detected in both 
genomes of the respective strain pairs. The deep-
sea strain TBK1r was enriched in putative stress 
response genes. These included genes encoding the 
Ag+-translocating P-type ATPase SilP (silver stress) 
and CopR-like transcriptional regulators along 
with CopA (copper-resistance protein, laccase-like 
oxidase).

Conclusions

In this study, we performed genome-based analyses of 
the three aerobic strains Pr1dT, K2D and TBK1r that 
were obtained from the deep sea. Biomass produc-
tion at the seafloor at about 600 or 2,000 m below sea 
level requires a source of organic matter (OM) that 
can be used as carbon and energy source. OM is typi-
cally synthesized in the surface layers of the oceans 
by photosynthetic organisms (primary producers) and 
part of this material sinks and can reach the seafloor 
where it can feed the biota of the deep ocean (Kirch-
man 2018). Deep-sea bacteria may also derive carbon 
from chemoautotrophic microorganisms that oxidize 
inorganic chemical substances like iron as sources of 
energy and fix carbon dioxide in the hydrothermal 
vent system (Dick 2019).

Our analysis points towards a heterotrophic life-
style like that of strains thriving in surface ecosys-
tems. Isolates found in the deep sea may well be 

passively transported on sinking particles from the 
surface (Mestre et  al. 2018). We cannot rule out 
such as scenario for the three here presented isolates, 
which is in line with the recent finding that members 
of the phylum Planctomycetota are more widespread 
in surface ecosystems (Ruff et  al. 2024). Still, the 
three isolates need to ensure propagation or at least 
survival and persistence in the deep sea environment. 
The analysis of individual pangenomes revealed sin-
gleton genes of potential phage origin or with regu-
latory functions that are commonly enriched in deep 
sea bacteria (Konstantinidis et  al. 2009). In particu-
lar the maintenance of a plasmid harbouring a heavy 
metal resistance-related genomic island in strain K2D 
supports additional functionalities towards heavy 
metal resistance in this strain. The availability of all 
strains in axenic cultures is crucial for phenotypic 
analyses in future studies, a decisive advantage over 
genome analyses based on assembled metagenomes.

In the laboratory, all three strains were isolated 
under aerobic conditions. Hence, the isolation strat-
egy is biased towards strains that can grow in the 
presence of atmospheric O2 levels and the isolates are 
not necessarily representative for the typical lifestyle 
or microbial community compositions observed in 
deep-sea iron deposits. Still, the isolation of closely 
related strains from the deep sea and the surface of 
the water column is an indication of a broader meta-
bolic versatility of members of the phylum, especially 
when regarded in the context of the large genomes 
and the high number of proteins with an unknown 

Table 5   Results of the FeGenie analysis of the three deep-sea strains and close relatives isolated from the water surface

Protein function Bythopirellula 
goksoeyrii

Bythopirellula 
polymerisocia

Botrimarina 
mediterranea

Botrimarina 
mediterranea

Stieleria sp. Stieleria sp.

Pr1dT Pla144 K2D Spa11 TBK1r SV_7m_r
Iron transport 5 5 4 4 4 6
Heme transport 0 0 0 0 0 0
Heme oxygenase 0 0 0 0 0 0
Siderophore synthesis 0 0 0 0 0 0
Siderophore transport 0 3 0 0 5 4
Siderophore transport potential 8 8 11 11 14 11
Iron-dependent gene regulation 22 21 28 28 28 19
Iron oxidation 0 0 0 0 0 0
Iron reduction 0 0 0 0 0 0
Iron storage 4 2 1 1 3 3
Magnetosome formation 0 0 0 0 0 0
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function. Analyses based on strains with a for the 
most part uncharacterized central metabolism and 
40% of the annotated proteins being of unknown 
function are challenging. Since the analyses were 
performed with state-of-the art bioinformatic tools 
and most recent database versions, additional planc-
tomycetal functionalities are beyond what is accessi-
ble with current prediction algorithms. Despite these 
limitations, the analyses yielded a list of candidate 
genes involved in stress response and related regula-
tory functions that need to be analysed in the context 
of planctomycetal lifestyles and growth profiles in 
greater detail. The relatively slow growth observed 
for members of the phylum (with typical generation 
times between 10 and over 100  h under laboratory-
scale cultivation conditions) may be a generalist strat-
egy allowing the survival under different environmen-
tal conditions.

Axenic cultures of the presented isolates are a con-
tribution towards understanding life in an environ-
ment that challenges our knowledge due to remote 
and almost inaccessible locations and unculturability 
of the microbiota (Dick 2019).
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