
Actuator faults in autonomous
underwater vehicles: simulation and

computer-aided control synthesis

by

Davide Grande

A thesis submitted for the degree

of

Doctor of Philosophy

Department of Mechanical Engineering

University College London

September 26, 2024

ii

Principal Supervisor: Professor Giles Thomas

Subsidiary Supervisor: Dr Yuanchang Liu

Industrial Supervisors: Dr Enrico Anderlini

Dr Georgios Salavasidis

Dr Alexander B. Phillips

Dr Catherine A. Harris

iii

I, Davide Grande, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the work.

I, Davide Grande, declare that Artificial Intelligence technologies, including the

ones based on Large Language Models, were not employed at any stage of the writing

process of the presented research. Artificial Intelligence-assisted technologies were,

at times, consulted to assist in the research of keywords or resources. An Artificial

Intelligence-based tool was used to generate icons, as acknowledged in the relevant

section in Chapter 4.

Abstract

Autonomous Underwater Vehicles (AUVs) are routinely deployed worldwide to record

real-time in-situ data, at times taking part in months-long missions. Collision or en-

tanglement with drifting debris or interference by marine creatures can cause damage

to an AUV’s structure and exposed actuators, with the possibility of compromising

the vehicle’s operations. To mitigate potentially catastrophic effects of such hazards,

fault-tolerant control (FTC) systems can be employed.

Conventional FTC systems rely on monitoring the health status of the actuators

using sensors or detection algorithms, which in themselves require energy resources

and dedicated design efforts. Alternatively, passive FTC (pFTC) systems employing

fixed gain controllers can be devised, eliminating the need for confirmatory data as to

the occurrence of faults. Currently, pFTCs are designed through linearisation of the

system dynamics. Recent advancements in computer-aided control methods compris-

ing the use of Artificial Neural Networks (ANNs) hold significant potential to design

control laws without relying on linear approximations, but lack formal closed-loop

stability guarantees.

To address the limitations of the available FTCs, three open-source software tools

were developed as part of this research. The first software tool labelled OpenMAUVe

is a modular simulator for innovative AUV concepts. The second software tool named

ANLC facilitates the automatic synthesis of ANN-based nonlinear control laws with

formal proof of stability. The third software tool titled pFT-ANLC devises pFTC laws

for systems subject to faults at actuators. Finally, the control laws generated with

the pFT-ANLC were verified using the OpenMAUVe simulator, thus demonstrating

the capability of the control laws to cope with faults at multiple thrusters on AUVs,

Abstract v

without requiring the faults having to be detected.

Impact Statement

The outcomes of this work are aimed at benefiting academia, industry and policymak-

ers in the Autonomous Underwater Vehicle (AUV) technology field. The research

and results of this work will advance the understanding of the effect of faults dur-

ing AUV operations. Moreover, this thesis illustrates strategies to mitigate potentially

catastrophic outcomes of faults, in turn reducing the risk of vehicle loss, or, worse, of

erratic behaviours leading to damage to property, harm to marine life in the form of

marine pollution or harm to humans. The outreach potential of the outputs of this work

extends beyond the classical AUV control field, but can impact the oceanographic ex-

ploration of planetary bodies beyond Earth.

Impact on academia
• A first contribution of this research is the development of OpenMAUVe1, an

open-source software tool to simulate complex AUVs composed of several rigid-

bodies constituted by the hull and internal moving masses. Such software in turn

streamlines the simulation of the vehicles’ dynamics, supporting further research

in the field of guidance, control and navigation systems of AUVs.

• A second key outcome is an open-source software tool to automatically syn-

thesise control laws with certified stability guarantees2. Such software can aid

students and researchers in the field of control systems to assist with the de-

sign of stabilising control laws for generic nonlinear dynamics. Owing to the

intrinsic nonspecific nature of the dynamical systems control field, the proposed

1Link to software: https://github.com/grande-dev/OpenMAUVe.
2Link to software: https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control.

https://github.com/grande-dev/OpenMAUVe
https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control

Impact Statement vii

method (and software tool) can be employed in its present iteration to virtually

any dynamical system (subject to the limitations that will be illustrated), not

being specifically designed for use in AUV applications only.

• A final key outcome entails a new method to design nonlinear passive fault-

tolerant control laws for systems affected by actuator faults. Associated with

the method devised, a corresponding software tool was released open-source3.

This control method sheds new light on a research direction that is often dis-

missed due to, among other reasons, a lack of control frameworks to address the

problem.

Impact on industry
• Owing to the underlying modular nature of the AUV simulator, the software tool

is particularly suited to the testing, verification and performance assessment of

the manoeuvring capability of innovative AUV concepts. The tool facilitates the

exploration of unconventional designs and of their consequent ability to com-

plete the intended missions, both when operating in nominal modes and when

subjected to faults.

• This study provides industry with an "as is" software framework to design fault-

tolerant-capable control laws. This is currently the only software available open-

source to design formally-correct nonlinear control laws to stabilise faulty dy-

namical systems.

• The fault-tolerant method proposed in this work holds a significant financial po-

tential to reduce the cost of designing AUVs. The method can drive a paradigm

shift in safety-critical applications. The current industrial practice in fault-

tolerant control systems entails the reliance on the presence of monitoring sen-

sors or algorithms to detect the occurrence of faults, followed by a tailored con-

trol system that reacts by adapting to the new fault modes. The method proposed

in this work eliminates the need for detection sensors and algorithms. As a con-

3Link to software: https://github.com/grande-dev/pFT-ANLC.

https://github.com/grande-dev/pFT-ANLC

Impact Statement viii

sequence, the mechanical, electronic and control design processes can be simpli-

fied, reducing the overall system costs and enhancing the resilience of automatic

systems to faults.

Impact on policymakers
In the last two decades, policymakers in the United Kingdom and internationally

started to direct interest towards the regulation of autonomous maritime vehicles. As

of summer 2024, there is no specific international regulation covering the design, cer-

tification and operation of Unmanned Maritime Systems (UMSs)4 [2].

Specific focus has recently been on surface vessels. With the rapidly paced devel-

opment of Maritime Autonomous Surface Ship (MASS) systems5, in 2021, with the

MSC.1/Circ.1638 the International Maritime Organisation (IMO) recognised the need

to provide standards and best practices to designers, builders, owners and operators of

MASSs [3]. The first requirements for Remotely Operated Vehicles (ROVs) were set

in 2024 by the Maritime & Coastguard Agency (MCA), defining standards for safety

and cyber security measures [4], with the regulation coming in place in 2027. Plan on

adopting a mandatory operational code for MASSs is set to come into place in 2032,

with an updated regulatory code being currently drafted by IMO.

On the contrary, no extensive guidelines or defined standards exist with regards

to the deployment and operation of AUVs. Regulation has the potential to be ever

more convoluted for certain classes of vehicles, such as the Underwater Gliders (UGs)

(which will be discussed in this thesis), that might be classified as ships, submarines or

scientific research equipment [5]. Nonetheless, embedding fault-tolerant capabilities

onboard AUVs appears to be on the agenda of regulatory bodies, such as highlighted

in a British Parliamentary committee [6]. Similarly, the European Defence Agency

(EDA) in 2022 remarked that UMSs need to be able to handle abnormal situations

such as faults and critical system failures [2].
4Within North Atlantic Treaty Organization (NATO) terminology, a UMS is defined as a system

operating in the maritime environment (subsurface, surface, air) whose primary component is at least
one unmanned vehicle [1]

5A MASS is defined as a ship which, to a varying degree, can operate independent of human inter-
action [3]. The degree refers to the level of autonomy onboard the ship, ranging from the assistance in
supervisory tasks, to fully autonomous ships without onboard crew.

Impact Statement ix

To conclude, within this thesis, diverse technical solutions to embed fault-tolerant

capabilities onboard AUVs were surveyed, offering an introductory perspective to

technical committees on the matter. Additionally, the proposed solution devised in

this work might represent a starting point to discuss whether current design paradigms

are suited to safety-critical systems such as UMSs.

Impact on human space exploration
In the most recent decades, space exploration efforts have been directed towards the

planetary bodies confirmed to (or speculated to) possess frozen or liquid water, ow-

ing to the interest in search of alien life forms and habitability of other planets. A

first case is represented by the possibility of water in liquid form being hosted beneath

the Martian ice caps [7]. Another remarkable study regards the icy moons of Jupiter,

specifically Europa, which is surmised to harbour liquid water oceans under the outer

icy surface layer, following exploration by the National Aeronautics and Space Ad-

ministration (NASA) Galileo spacecraft in 1996-1998 [8].

Two follow up missions were envisioned. European Space Agency (ESA) Jupiter

Icy Moons Explorer (JUICE), currently in its deep-space voyage towards Jupiter and

set to reach the icy moons Europa, Ganymede and Callisto in 2032 [9], and NASA

Europa Clipper, set to reach Europa in 2031 (provided a successful launch within the

scheduled launch window in February 2025). Should these missions confirm the pres-

ence of liquid water, the natural next stage will entail the deployment of probes to

penetrate the ice shelf and to collect in-situ data. To this end, early concepts (2001)

such as cryobots were envisioned with the idea of penetrating the Martian ice caps or

Europa’s ice layer [10]. Similar ice-melting submarine concepts were developed more

recently [11], ARTEMIS [12] and TRIPLE [13]. In the design of the vehicle guid-

ance and control system, specific focus was dedicated to fault detection and recovery,

highlighting the growing attention on the matter.

The output of this thesis is well suited to these concept missions, where no human-

in-the-loop possibility exists and where the detrimental effects of faults on the mission

success should be kept under control with every known technical solution.

Acknowledgements

This section was redacted to anonymise names and personal identifiers.

To Professor Giles Thomas, for the unique chance to undertake this experience, for

being the rational Pole Star, and for the care taken in nurturing me.

To my family and extended family, for the support and the patience despite my ab-

sence during these years.

To my grandparents, for their efforts through time.

To all my friends, for the fantastic experiences despite the time given with the dropper.

To all my present and past friends and colleagues of the 5th floor, for creating the

environment that made this time unforgettable.

To the friends and colleagues who provided specific support over the years. To F, for

the support with robust control concepts and for the excellent reading recommenda-

tions. To A, for the help with calculating obscure hydrodynamic coefficients. To M,

for sharing the journey together.

To Y, for finding this PhD posting, for lighting up the research fire and for supporting

me on countless occasions.

Acknowledgements xi

To Dr Andrea Grech La Rosa, for being a reason to start this experience, for always

sparing time to help and for the teaching about all-things-tanks.

To T, A, S, F, J, C and A, for being my first family in London.

To D, G, S and E, for sharing this experience even when at great distance, and for

always being present when needed.

To D, for the long days in the office and beyond, for the discussions about fundamen-

tal concepts, which had thus far remained a mystery.

To Dr Catherine A. Harris, Dr Yuanchang Liu, Prof Elias B. Kosmatopoulos, Dr

Rachel Pawling, Prof Helge Wurdemann, Dr Francesca Boem, Dr Sicun Gao, Dr

Soonho Kong, Dr Riccardo M.G. Ferrari, Prof Steven Bishop, Dr Davide Fenucci

and Dr Daniele Masti, for the time and advice, which helped shaping the work that

followed.

To Prof Alfredo Martins and Prof Luca Bascetta, for the early support, and for trans-

mitting the passion for control systems and underwater robotics.

To my Professors during my years at Polimi and UCL, especially Prof Riccardo Scat-

tolini, Prof Paolo Bolzern, Prof Nicola Schiavoni, Dr Fabio Dercole and Prof Matteo

Corno, for their precious and passionate teachings.

To R and G, for having trusted me as a growing child, bearing long-lasting impact.

To the staff at UCL, especially Anthony, Peter, Ray, Adam, Luna, Angelo, Steve,

Mykal, Matthew, Rachel, Marvin and Kevin, for their support on every occasion.

Acknowledgements xii

To Anthony Grout, Prof Paul Hellier and Dr Llwellyn Morse, for the commitment to

their roles and for the assistance during these years as a student at UCL.

To Dr Ben Hanson, Prof Ryo Torii, Dr Ali Abolfathi, Dr Ema Muk-Pavic, Prof Giles

Thomas and Dr Tom Smith, for trusting me to help with the teaching activities at

UCL.

To the University College London and National Oceanography Centre, especially Dr

Alexander B. Phillips, Dr Enrico Anderlini and Prof Giles Thomas, for funding this

research and for gifting me with great research freedom for these many years.

To Dr Adam Wojcik, Prof Ian Eames, Dr Sara Abad Guaman, Prof Nader Saffari,

Prof Andrea Ducci and Prof Manish K. Tiwari, for the precious time gifted and for

the valuable discussions about the engineering discipline, teaching and knowledge

sharing.

To Konrad Yearwood, for the painstaking review of this thesis (not manuscript), and

for the help in understanding my own work to another level.

To Dr Georgios Salavasidis, for the invaluable advice and for the rational perspectives

over research topics, and more.

To Dr Enrico Anderlini, for the forever-lasting help, for the research direction, for the

help with navigating through this experience and for supporting this project until the

very end.

To Dr Andrea Peruffo, for the research advice, for the technical support, for the pa-

tience and for representing a great role model.

Acknowledgements xiii

To L, for the tireless support in taking care of me. Without you, I would have not

arrived to write these lines.

Contents

Abstract iv

Impact Statement vi

Acknowledgements x

List of Figures xix

List of Tables xxv

Acronyms xxvii

Nomenclature xxxiii

Relevant publications 1

Research Paper Declaration Form 3

1 Introduction and motivation 7

1.1 Problem definition . 7

1.2 Thesis outline . 13

2 Literature Review 14

2.1 Introduction . 14

2.2 Preliminary concepts . 14

2.3 Causes of faults in AUVs . 15

2.4 The fault-tolerant control field: an overview 18

Contents xv

2.5 Actuator Fault Accommodation: a taxonomy 21

2.5.1 Multiple-Model aFTC . 21

2.5.2 Adaptive aFTC . 22

2.5.3 Model Predictive Control aFTC 23

2.5.4 (Embedded) Control allocation aFTC 24

2.5.5 Reconfigurable Eigenstructure Assignement aFTC 25

2.5.6 Sliding Mode Controller aFTC 26

2.5.7 Conclusions on aFTC methods 26

2.5.8 H∞H∞H∞ pFTC . 28

2.5.9 Lyapunov-based pFTC . 28

2.5.10 Machine Learning-based Passive pFTC 29

2.5.11 Conclusions on pFTC methods 31

2.6 Actuator Fault Accommodation in AUVs 31

2.7 Recent trends in machine learning-based control for AUVs 35

2.8 Dynamic model and simulation . 36

2.9 Conclusions . 40

3 Research Approach 41

3.1 Research gap analysis . 41

3.2 Research vision . 42

3.3 Research questions . 42

3.4 Research approach . 43

4 OpenMAUVe: an open-source Modelica simulator for Autonomous Un-

derwater Vehicles and Gliders 47

4.1 Introduction . 47

4.2 Overall simulator design . 48

4.3 Autonomous Underwater Vehicles modelling 53

4.3.1 Hydrodynamics . 58

4.3.2 Hydrostatics . 63

4.3.3 Actuators . 67

Contents xvi

4.3.3.1 Control surfaces 68

4.3.3.2 Variable ballast devices 69

4.3.3.3 Thrusters . 69

4.3.3.4 Movable masses 70

4.3.4 Modelling assumptions summarised 72

4.4 Simulator architecture design . 72

4.5 Simulator verification and quasi-validation 75

4.5.1 ROGUE glider . 76

4.5.2 Seawing glider . 79

4.5.3 Simulator utilisation example: hybrid AUV 81

4.6 Conclusions . 84

5 Augmented Neural Lyapunov Control: a method to automatically synthe-

sise nonlinear control functions for nonlinear dynamical systems 86

5.1 Introduction . 86

5.2 Preliminaries . 87

5.2.1 Lyapunov’s theory preliminaries 87

5.2.2 Automatic synthesis of (Control) Lyapunov Functions 91

5.2.2.1 Lyapunov Function synthesis via Neural Lyapunov

Control . 94

5.2.2.2 Satisfiability Modulo Theories 95

5.2.3 Declaration of aim . 98

5.3 Neural Lyapunov Control method: initial assessment 99

5.4 Synthesis of Control Lyapunov Functions 103

5.4.1 Learner . 104

5.4.1.1 Control architecture 104

5.4.1.2 Loss functions . 106

5.4.2 Translator . 108

5.4.3 SMT Falsifier . 110

5.5 Augmented Neural Lyapunov Control: tailored improvements 111

5.5.1 Augmented Falsifier . 111

Contents xvii

5.5.2 Network-specific Learning Rate and Scheduler 113

5.5.3 Counterexample Selection 113

5.5.4 Algorithm and software . 114

5.5.5 ANLC upgrades summary 119

5.6 Numerical Evaluation . 119

5.6.1 Control system without initialisation 119

5.6.2 Controlled Lorenz system 124

5.7 Conclusions . 127

6 Passive Fault-Tolerant Augmented Neural Lyapunov Control 129

6.1 Introduction . 129

6.2 Preliminaries . 130

6.3 Design of a Passive Fault-Tolerant Control method based on the ANLC 131

6.3.1 Fault-tolerant Learner . 133

6.3.2 Fault-tolerant Falsifier . 135

6.4 Algorithm and software . 135

6.5 Numerical Evaluation . 138

6.5.1 Case study 1: control of an inverted pendulum with actuator

redundancy . 138

6.5.1.1 LQR control . 141

6.5.1.2 Augmented Neural Lyapunov Control 141

6.5.1.3 Passive Fault-Tolerant ANLC 142

6.5.2 Case study 2: Control of an Autonomous Underwater Vehicle 144

6.5.2.1 Shifting the equilibrium state 146

6.5.2.2 Results . 149

6.5.3 Case study 3: Underwater Glider with saturated control 153

6.6 Control law selection . 161

6.7 Actuator loss of efficiency . 166

6.7.1 Case Study 4: Autonomous Underwater Vehicle with reduc-

tion in thruster efficiency . 167

6.8 Comparison with H∞H∞H∞ control method 169

Contents xviii

6.8.1 Region of Attraction shaping and estimation 175

6.9 Conclusions . 177

7 OpenMAUVe and pFT-ANLC: an AUV case study 179

7.1 Introduction . 179

7.2 Simulator architecture definition . 179

7.3 Synthesis of the control law . 183

7.4 Numerical Evaluation . 187

7.4.1 Simulation A: simulation with four faults injected 187

7.4.2 Simulation B: tracking a time-varying yaw angle reference . . 190

7.5 Discussion on limitations . 193

7.6 Conclusions . 194

8 Concluding remarks 196

8.1 Overview statements . 196

8.2 Recommendations for future research 201

Bibliography 203

Appendices 229

A OpenMAUVe class implementation example 229

B Example of a CLF synthesised with the ANLC method 232

C Examples of a Lie derivative function synthesised with the ANLC method235

List of Figures

1.1 Argo floats deployment map as of June 2024 [14]. 8

1.2 Publications containing the keywords control system and machine-

learning [15]. 11

2.1 Shark bite marks on Seaglider operating in UK waters - courtesy of

NOC. 18

2.2 Shark attacks recorded on autonomous vehicles. 18

2.3 Seaglider affected by barnacles’ growth [16]. 19

2.4 The fault-tolerant control field: a taxonomy. 20

2.5 Actuators Fault Accommodation methods taxonomy (adapted from [17]). 32

2.6 AUV terminology as employed in this thesis. 37

3.1 Venn diagram of the control method selected for the present research

(adapted from [18]). 44

3.2 Venn diagram of fault-tolerant control methodology. 45

3.3 Summary of the research approach envisioned for this thesis. 46

4.1 Selected reference frames in use for AUV modelling (Seaglider UG -

ogive model), © 2022 IEEE [19]. 56

4.2 AUV masses definition (adapted from [20]). 58

4.3 OpenModelica - preliminary simulator architecture for a multibody

AUV, © 2022 IEEE [19]. 73

4.4 Proposed OpenMAUVe Modelica library, where VehicleBody and

Joints are imported from the MSL, while ForcesMoments and Actu-

ators are custom developed. 74

List of Figures xx

4.5 ROGUE dynamics simulation. 78

4.6 Seawing dynamics simulation. 80

4.7 HybridAUV1 class design. 83

4.8 HybridAUV1 icon, to be imported in a wider scope simulation. 83

5.1 Lyapunov stability theory: t1 defines a (Lyapunov) stable equilibrium,

t2 an asymptotically stable equilibrium, and (t3, t4) an unstable equilib-

rium, with t4 covering the specific case of trajectories converging to a

limit cycle. 91

5.2 Using a feedforward ANN to represent a Lyapunov Function, with the

red line denoting the loss function back propagation (adapted from [21]). 93

5.3 CEGIS learning method with Augmented Falsifier, © 2023 IEEE [22]. 104

5.4 Augmented Neural Lyapunov Control architecture with Lyapunov

ANN (blue box), nonlinear control ANN (green box) and linear con-

trol ANN (orange box). The red line represents the loss function back

propagation, and κ the control-branch training selector. 105

5.5 Control architecture upon deployment in closed-loop applications,

showcased when a nonlinear control function is employed, © 2024

Elsevier [23]. 106

5.6 Effect of tuning αROA in the loss function (5.9), © 2024 Elsevier [23]. 107

5.7 Dataset with initial points (SI) and clustered counterexamples, © 2023

IEEE [22]. 114

5.8 Dataset with selective sliding window logic, with S = SI∪SCE , © 2023

IEEE [22]. 114

5.9 Code modules designed. 115

5.10 ANLC library call graph. 118

5.11 CLF inverted pendulum, © 2023 IEEE [22]. 123

5.12 Lie derivative inverted pendulum, © 2023 IEEE [22]. 123

5.13 Inverted pendulum phase plane. 124

5.14 Controlled Lorenz system: open-loop trajectory (no control applied),

© 2023 IEEE [22]. 125

List of Figures xxi

5.15 Controlled Lorenz system: Lie derivative in the (x1,x2)-plane over

subsequent training iterations, © 2023 IEEE [22]. 126

5.16 Controlled Lorenz system: closed-loop trajectories, © 2023 IEEE [22]. 126

5.17 Lyapunov values along Lorenz system trajectories, © 2023 IEEE [22]. 127

5.18 Control function values over time, © 2023 IEEE [22]. 127

6.1 Inverted pendulum with redundant actuator set, © 2024 IEEE [24]. . . 139

6.2 Inverted pendulum closed-loop tests. Color code: blue lines (pFT-

ANLC), orange lines (LRQ2), green lines (vANLC). Line style: solid

(nominal dynamics), dashed with square markers (fault 1), dashed with

round markers (fault 2), © 2024 IEEE [24]. The systems dynamics can

be visualised at: https://github.com/grande-dev/pFT-ANLC-preview. 144

6.3 Hover-capable AUV developed at the National Oceanography Centre,

illustrated from [25]. 145

6.4 AUV with three (fixed) thrusters moving over the horizontal plane,

characterised by surge speed (u), sway speed (v) and angular rate (r). . 146

6.5 Synthesised CLF for the AUV system, © 2024 Elsevier [23]. 151

6.6 Lie derivative associated to the AUV system with fault at F1. 151

6.7 Closed-loop test AUV system: range of surge dynamics associated to

10 synthesised controllers (blue interval) — fault at F1 injected at t=50

[s], © 2024 IEEE [24]. 152

6.8 Closed-loop test AUV system: range of control efforts associated to

10 synthesised controllers (blue, red and green intervals) — fault at F1

injected at t=50 [s], © 2024 IEEE [24]. 153

6.9 Closed-loop test AUV system: range of angular rate dynamics associ-

ated to 10 synthesised controllers (blue interval) — fault at F3 injected

at t=50 [s], © 2024 IEEE [24]. 154

6.10 Nonlinear trajectories for the AUV dynamics, illustrating the signifi-

cance of the ε-stability bound. 155

6.11 Magnified view of Fig. 6.10. Upon occurrence of the fault at F1, the

dynamics remain bounded within the ε-stability bound. 155

https://github.com/grande-dev/pFT-ANLC-preview

List of Figures xxii

6.12 Test of the dynamics after injecting a fault at F2, not covered during

the training. Upon the occurrence of the fault, the dynamics leave the

ε-stability bound. 156

6.13 Underwater Glider dynamics in the sagittal plane with restoring forces

(Gs,Gp,B(∇h)), hydrodynamic forces (L,D), control forces (B(uV BD),

Fδ1 , Fδ2) and inertial forces (including added mass). The forces are

modelled in the inertial frame (origin {Oi}, in orange), body-fixed

frame (origin {Ob}, in green) and flow-fixed frame (origin {Ob}, in

red), © 2024 Elsevier [23]. 158

6.14 Synthesised control function for the Underwater Glider encompassing

actuator saturation (u1 with σ1 = 1.0), © 2024 Elsevier [23]. 160

6.15 Underwater Glider training: Lie derivative associated to the nominal

dynamics at successive training iterations, © 2024 Elsevier [23]. . . . 161

6.16 Underwater Glider verification test: surge speed when the control sur-

face δ2 jams at t=1.8 [s], © 2024 Elsevier [23]. 162

6.17 Range of possible surge dynamics associated to the converged con-

trollers with fault at F1 at 50 [s], © 2024 Elsevier [23]. 165

6.18 Magnified view of Fig. 6.17a: the selected controller minimises the

tracking error (x⋆1− x1) following a fault at F1 at 50 [s] (tuning Ja), ©

2024 Elsevier [23]. 165

6.19 Range of control efforts associated to the converged controllers with

different tuning following a fault at F1, © 2024 Elsevier [23]. 166

6.20 Partial loss of efficiency for the AUV case study: efficiency of the first

actuator (µ1) over time, © 2024 Elsevier [23]. 168

6.21 Partial loss of efficiency for the AUV case study: control input forces,

© 2024 Elsevier [23]. 168

6.22 Partial loss of efficiency for the AUV case study: dynamic response to

varying thruster efficiency (e1), © 2024 Elsevier [23]. 169

6.23 H∞ control scheme. 170

List of Figures xxiii

6.24 H∞ control scheme with multiple plant models, with K(s) denoting a

generic control law. 171

6.25 H∞ for AH1 control scheme, with K(s) denoting a generic control law. 172

6.26 Control laws comparison for AUV case study: pFT-ANLC (blue) vs

multiple H∞ tuning (purple and orange), © 2024 Elsevier [23]. 174

6.27 Control laws comparison for AUV case study: F1 control effort with

pFT-ANLC strictly respecting the desired actuator saturation, © 2024

Elsevier [23]. 174

6.28 pFT-ANLC controller — different CLF tuning factors. Domain bound-

aries in dashed lines and ROA in white solid line, © 2024 Elsevier [23]. 177

7.1 AUV vehicle model with four (fixed) thrusters moving over the hori-

zontal plane. 180

7.2 OpenMAUVe simulator architecture: ModelAUV class. 181

7.3 OpenMAUVe simulator architecture: SimulateAUV class encompass-

ing the AUV dynamics (ModelAUV class, right hand-side), the control

laws (ControlAUV class, lower left-hand side) and the signals of the

faults (FaultsAUV class, top left-hand side). 181

7.4 OpenMAUVe simulator architecture: ControlAUV class. 182

7.5 Results of the pFT-ANLC synthesis for the AUV case study, plotted

for x1 = x2 = 0. 186

7.6 OpenMAUVe AUV test case: actuator efficiency profiles. 188

7.7 OpenMAUVe AUV test case A: control force generated by the first

thruster (F1). 188

7.8 OpenMAUVe AUV test case A: magnified view of Fig. 7.7 in the first

20 [s] of the simulation. 189

7.9 OpenMAUVe AUV test case A: surge dynamics (u). 189

7.10 OpenMAUVe AUV test case A: magnified view of Fig. 7.9 in the first

20 [s] of the simulation. 190

7.11 OpenMAUVe AUV test case A. 190

7.12 OpenMAUVe AUV test case B: actuator efficiency profiles. 192

List of Figures xxiv

7.13 OpenMAUVe AUV test case B: yaw angle dynamics with time-varying

reference and fault injected at time=100 [s]. 193

7.14 OpenMAUVe AUV test case B: yaw angle tracking response. 194

A.1 Elevator component interfaces. 231

List of Tables

4.1 ROGUE dynamical parameters. 77

4.2 Theoretical vs. simulation results, © 2022 IEEE [19]. 79

4.3 Simulation results comparison, © 2022 IEEE [19]. 80

5.1 Inverted pendulum campaign – NLC architecture encompassing the

input layer, one hidden layer and the output layer. 100

5.2 Neural Lyapunov Control (NLC) test campaign – varied parameters

range. 101

5.3 NLC test campaign – additional elements investigated. 101

5.4 Breakdown of the ANLC improvements. 120

5.5 ANLC: inverted pendulum campaign parameters. 121

5.6 Sensitivity to control weights initialisation, © 2023 IEEE [22]. 123

6.1 Inverted pendulum with redundancy dynamical parameters. 140

6.2 Redundant inverted pendulum: ANN architecture of the vANLC and

pFT-ANLC. 142

6.3 Redundant inverted pendulum: closed-loop poles location © 2024

IEEE [24]. 143

6.4 AUV dynamical parameters. 147

6.5 AUV campaign – ANN architecture. 149

6.6 AUV campaign – Synthesis statistics. 150

6.7 UG dynamical parameters. 159

6.8 H∞-control tuning design specifications and synthesis results. 173

7.1 AUV dynamical parameters. 184

List of Tables xxvi

7.2 AUV campaign – ANN architecture. 184

Acronyms

2D two-dimensional. 53

3D three-dimensional. 53, 72, 75, 78–80

AFA Actuator Fault Accommodation. 19–21, 31, 32

AFDI Actuator Fault Detection, Identification. 20

AFDIA Actuator Fault Detection, Identification, and Accommodation. 19, 20

aFTC active fault-tolerant control. 21–25, 27, 31–33

AI Artificial Intelligence. 11–13, 230

ANLC Augmented Neural Lyapunov Control. 111, 115, 119–122, 129, 131–133,

140, 177, 199–201

ANN Artificial Neural Network. 30, 35, 36, 92–94, 99, 100, 104, 105, 107, 108,

113–115, 121, 122, 125, 137, 142, 149, 150, 161, 183, 193

AUV Autonomous Underwater Vehicle. vi–ix, 9, 10, 12–18, 20, 31–43, 45, 47–49,

52–55, 57–59, 61–63, 67–75, 81–85, 130–132, 138, 144–146, 148–150, 156,

167, 169, 171, 178–181, 183, 185, 187, 189–191, 194–196, 198, 199, 201

BMI Bilinear Matrix Inequalities. 28

CA Control Allocation. 24, 25, 27, 32

CE counterexample. 94, 97, 101, 103, 110–115, 119, 120, 127, 128, 133, 135, 137,

138, 176

Acronyms xxviii

CEGIS Counterexample-Guided Inductive Synthesis. 94, 95, 98, 112, 113, 115

CEM Control Effectiveness Matrix. 24

CFD Computational Fluid Dynamics. 158

CLF Control Lyapunov Function. 29, 89, 92–94, 96–98, 100, 101, 103–108, 110,

112, 114, 115, 119–122, 126, 128, 132–135, 137, 150, 160, 167, 175, 176, 185,

193, 199, 232

COB Centre of buoyancy. 55, 64, 67, 82

COG Centre of gravity. 64, 65, 67, 70, 71, 82, 145, 183

COP Centre of pressure. 60, 68

CPU Central Processing Unit. 119, 149

DAE Differential Algebraic Equation. 39, 51, 54, 85, 197

DC Direct Current. 70

DF Discrete Falsifier. 112

DOF Degree Of Freedom. 24, 32, 38, 41, 48, 49, 54, 71, 146

DRL Deep Reinforcement Learning. 12, 30

DVL Doppler Velocity Logger. 37, 157

ECEF Earth-centred Earth-fixed. 55

EDA European Defence Agency. viii

ESA European Space Agency. ix

FDI Fault Detection and Isolation. 20, 24, 25, 27, 31–34, 130

FT-BIC fault-tolerant bio-inspired controller. 30, 31

Acronyms xxix

FTC fault-tolerant control. 9–13, 18–21, 25, 26, 28, 34, 41, 67, 74, 131, 132, 138,

169, 197

GD Gradient Descent. 92

GNC Guidance, Navigation and Control. 201, 202

GPU Graphics Processing Unit. 119, 149

IDE Integrated Development Environment. 50, 52

IMM Interacting Multiple Models. 22

IMO International Maritime Organisation. viii

JUICE Jupiter Icy Moons Explorer. ix

LF Lyapunov Function. 87, 89, 92, 93, 98

LNN Lyapunov Neural Network. 92, 93, 98

LQ Linear-Quadratic. 161

LQR Linear Quadratic Regulator. 100, 121, 122, 140, 141, 143

LSTM Long Short-Term Memory. 30, 31, 35

MASS Maritime Autonomous Surface Ship. viii

MCA Maritime & Coastguard Agency. viii

MILP Mixed Integer Linear Programs. 98

ML machine learning. 29–31, 35, 42–44, 86, 99, 129, 196

MM Multiple Model. 21, 22, 27

MMST Multiple Model Switching and Tuning. 22

MPC Model Predictive Control. 23, 24, 27, 33

Acronyms xxx

MRAC Model Reference Adaptive Control. 22

MSL Modelica Standard Library. 52, 73, 180

NASA National Aeronautics and Space Administration. ix

NATO North Atlantic Treaty Organization. viii

NED North-East-Down. 55, 154

NLC Neural Lyapunov Control. xxv, 36, 43–45, 86, 94, 98–104, 106, 111, 113, 119,

121, 122, 127, 128

NMPC Nonlinear Model Predictive Control. 24, 26, 27, 33

NOC National Oceanography Centre. 17, 183

NP nondeterministic polynomial time. 111, 112, 137

ODE Ordinary Differential Equation. 49, 51, 54, 87, 88

pFT-ANLC passive Fault-Tolerant-Augmented Neural Lyapunov Control. 135, 138,

140–144, 161, 169, 171, 173–175, 178, 179, 183, 191, 194, 195, 199–201

pFTC passive fault-tolerant control. 27–31, 33, 34, 41, 42, 44, 130, 132, 140, 177,

178, 196, 199, 201

PID proportional integral derivative. 30, 170

PWL piecewise linear systems. 98

RAM Random Access Memory. 119, 149

REA Reconfigurable Eigenstructure Assignement. 25, 27

RL Reinforcement Learning. 35

RMSE Root Mean Square Error. 163

RNN Recurrent Neural Network. 35

Acronyms xxxi

ROA Region of Attraction. 87, 89, 100, 106, 107, 124, 125, 129, 134, 175, 176, 199

ROS Robot Operating System. 51

ROV Remotely Operated Vehicle. viii, 16, 20, 34, 37, 38, 49, 180, 196

RPM Repetition Per Minute. 67

SFA Sensor Fault Accommodation. 20

SFDI Sensor Fault Detection, Identification. 19

SFDIA Sensor Fault Detection, Identification, and Accommodation. 19

SGD Stochastic Gradient Descent. 104, 114, 116, 136, 137

SMC Sliding Mode Control. 26, 27, 33

SMT Satisfiability Modulo Theories. 94–98, 110–113, 115, 120, 130, 137, 175, 200,

201

SNAME Society of Naval Architects and Marine Engineers. 56, 61

SSW selective sliding window. 113, 120

TAM Thruster Allocation Matrix. 24, 25, 32

TCM Thruster Configuration Matrix. 24

UG Underwater Glider. viii, 15–17, 20, 34–38, 42, 47, 49, 52, 53, 55, 68, 70, 71, 75,

76, 78–81, 84, 138, 153, 154, 156, 196, 201

UMS Unmanned Maritime System. viii, ix

vANLC vanilla Augmented Neural Lyapunov Control. 140–144

VBD Variable Buoyancy Device. 37, 38, 43, 52, 53, 64, 65, 69, 72, 79, 82, 156, 157

WOCE World Ocean Circulation Experiment. 7

Acronyms xxxii

wrt with respect to. 147, 184

Nomenclature

Vectors, Matrices and Sets

Bold symbols are used exclusively to denote vectors, matrices, and sets.

Greek symbols

α Angle of attack

α j Tuning parameters of the ANLC/pFT-ANLC loss functions

β Sideslip angle

β j Orientation of the j-th thruster with respect to the yb-axis

βs Constant incremental step

βρ Value of the Lyapunov Function level set

βmax Maximum value of the Lyapunov Function level set

ω̇ωω000 Angular acceleration of a frame {O}

µµµ Set of the actuator efficiency values

ωωω000 Angular velocity of a frame {O}

ΦΦΦ Set of possible system faults

ΘΘΘ Set of the Euler angles

δ dReal verification precision

NOMENCLATURE xxxiv

δcs Deflection angle of a control surfaces

ε ε-stability bound

η ANN hyperparameters

κ Control-branch training selector

λ Learning rate of the Lyapunov ANN

λc Learning rate of the control ANN

µ j Efficiency of the j-th actuator

Ωβ Inner approximation of the ROA

γ Upper boundary of the verification domain

σ j Saturation limits of the j-th actuator

τ Optional prescribed precision of approximation of the CLF

φ Roll angle

φ j Fault mode j-th

ψ Yaw angle

ρ Fluid density

σ j Activation function of the j-th ANN layer

σL Scalar parameter of the controlled Lorentz system

θ Pitch angle

ξ Glide path angle

ζDF Maximum cardinality of CEDF

ζSMT Maximum cardinality of CESMT

NOMENCLATURE xxxv

Other Symbols

∇∇∇(((VVV))) jjj Gradient of a function V , calculated with respect to the independent vector jjj

∥aaa∥2 2-norm of a vector aaa

Q+ Set of the positive rational numbers

R Set of the Reals

R+ Set of the positive Reals

C 1 A function with continuous first derivative with respect to its argument

D Domain over the Reals

H2 H2-norm of system H

H∞ H∞-norm of system H

R(·) Rectified Linear Unit function

⇒ implies

© Copyright symbol

Roman Symbols

v̇vv000 Linear acceleration expressed in frame {O}

ẋxx Time-derivative of the space vector

k̂kkiii Versor of the i-th axis of the inertial frame

BBBhhh Buoyancy force vector due to vehicle hull volume

BBB jjj Bias of the j-th ANN layer

BBBV Buoyancy force vector due to the VBD volume

fff j Force vector expressed in the j-th frame

NOMENCLATURE xxxvi

fff 000 External forces applied to a frame {O}

FFF f
hd Hydrodynamic force vector in the flow frame

III000 Inertia tensor calculated with respect to a frame {O}

III Identity matrix

KKK
ωωω111 Vector of the linear damping coefficients of the viscous moment

KKK
ωωω222 Vector of the quadratic damping coefficients of the viscous moment

mmm000 Moment of the external forces and external torques with respect to a frame {O}

MMMAAA Added inertia matrix

MMM f
hd Hydrodynamic moment vector with respect to the flow frame

rrrbbb Distance of the variable ballast mass from {Ob}

rrrggg Distance of the centre of gravity from the body-fixed frame {Ob}

rrrppp(t) Distance of the movable mass from {Ob}

rrrwww Distance of the non-homogeneous from {Ob}

rrrwww Distance of the non-homogeneous mass from {Ob}

RRR j
i Rotation matrix from the j-th frame to the i-th frame

sss jjj Sample j within the set S

uuu Control input vector

vvv000 Linear velocity vector expressed in frame {O}

vvvccc Linear velocity vector of the ocean currents expressed in the body-fixed frame

WWW jjj Weight of the j-th ANN layer

WWW Gravity force vector

NOMENCLATURE xxxvii

xxx⋆ State-space vector equilibrium

xxx State-space vector

xxx0 State-space vector at time t=0

zzz j−1 Input to the j-th ANN layer

zzz j Output of the j-th ANN layer

ēee RMSE of the reference tracking error

eee Reference tracking error

fff nnn Nominal system dynamics

QQQ State weighting matrix

RRR Control input weighting matrix

rrr Reference tracking value

uuu fff Control input embedding the faults

ṁb Rate of change of the variable ballast mass

V̇ Lie derivative

V̇ S
η Candidate translated Lie derivative

V̇n Lie derivative of the nominal system mode

V̇φ j Lie derivative of the j-th fault mode

∇h Volume of the vehicle hull

∇V Volume of the VBD

{Ob} Origin of the body-fixed frame

{O f } Origin of the flow frame

NOMENCLATURE xxxviii

{Oi} Origin of the inertial frame

A Vehicle cross sectional area

a Minor-semi axis of an ellipsoidal body along the yb-body axis

b Minor-semi axis of an ellipsoidal body along the zb-body axis

Bh Modulus of the buoyancy force vector due to vehicle hull volume

bL Scalar parameter of the controlled Lorentz system

bp Drag coefficient of the pendulum

BV Modulus of the buoyancy force vector due to the VBD volume

c Major-semi axis of an ellipsoidal body along the xb-body axis

CD Drag coefficient

CL Lift coefficient

CDL j Drag coefficient of the viscous moment around the j-axis of the flow frame

CSF Side-force drag coefficient

CEDF CE returned by the DF Falsifier

CESMT CE returned by the SMT Falsifier

D Drag force

d Number of actuators that can be affected by faults

Dp Propeller diameter

Fj Force generated by the j-th thruster

g Earth’s gravity constant

g j Number of neurons within the j-th ANN layer

NOMENCLATURE xxxix

h j Health status of the j-th actuator

Ik̇ Added mass coefficient along the I-th body axis due to an acceleration along

the k-th axis

J Performance index

Je Performance index associated to the tracking error

Jp Moment of inertia of the pendulum

Ju Performance index associated to the control input

Jz Moment of inertia of the AUV around the vertical axis (including the added

inertia)

k Total number of ANN layers

K j j-th quasi-steady state drag coefficient

KT Propeller constant coefficient

L Lift force

l j Distance of j-th actuator from the COG

lp Length of the pendulum arm

Lcs Lift force generated by a control surface

LELR Empirical Lyapunov Risk Loss function

l j,x Distance of j-th actuator from the COG, projected along the xb-axis

l j,y Distance of j-th actuator from the COG, projected along the yb-axis

LSLR Strict Lyapunov Risk Loss function

m Mass

m0 Net buoyancy

NOMENCLATURE xl

mb Variable ballast mass

mh Mass of the hull

mp Movable mass

ms Stationary mass

mv Overall vehicle mass

mw Non-homogeneous mass distribution

Mcs Moment of the lift force generated by a control surface

np Propeller rotation rate

P Power consumption

p Angular velocity around the x-axis of the body-fixed frame

Pg Generalised plant

pw Water pressure

q Angular velocity around the y-axis of the body-fixed frame

qI Optional initial control gain

r Angular velocity around the z-axis of the body-fixed frame

rL Scalar parameter of the controlled Lorentz system

rcsx Control surface axial distance from {Ob}

Re Reynolds number

S ANLC/pFT-ANLC training set

SI ANLC/pFT-ANLC initial dataset

SCE ANLC/pFT-ANLC counterexample dataset

NOMENCLATURE xli

Scs Control surface planform area

SF Side-force (or crossflow drag)

t Time

Tp Thrust generated by a propeller

Tw Water temperature

TDL j Viscous moment around the j-th axis of the flow frame

u Surge velocity, or linear velocity along the x-axis of the body-fixed frame

ur Linear velocity of the ocean currents along the x-axis of the body-fixed frame

V (Control) Lyapunov Function

v Sway velocity, or linear velocity along the y-axis of the body-fixed frame

Vc Candidate Control Lyapunov Function

Vr Magnitude of the flow speed vector

vr Linear velocity of the ocean currents along the y-axis of the body-fixed frame

V S
η Candidate translated Control Lyapunov Function

vp,in Propeller flow inlet velocity

vp,out Propeller flow outlet velocity

W Modulus of the gravity force vector

w Heave velocity, or linear velocity along the y-axis of the body-fixed frame

wr Linear velocity of the ocean currents along the z-axis of the body-fixed frame

x⋆j Equilibrium value of the j-th state-space variable

x j x-axis of a frame of origin {O j}

NOMENCLATURE xlii

y j y-axis of a frame of origin {O j}

z j z-axis of a frame of origin {O j}

Relevant publications

The core ideas illustrated in this thesis were published in an original version in the

following publications, and were later extended in the development of this thesis:

1. Modelica simulator: "Open-source Simulation of Underwater Gliders", D.

Grande, L. Huang, C. Harris, P. Wu, G. Thomas, E. Anderlini, IEEE Oceans

Conference Record, 2021 [19].

2. Computed-aided control synthesis: "Augmented Neural Lyapunov Control",

D. Grande, A. Peruffo, E. Anderlini, G. Salavasidis, IEEE Access, 2023 [22].

3. Fault-tolerant computed-aided control synthesis: "Systematic Synthesis of

Passive Fault-Tolerant Augmented Neural Lyapunov Control Laws for Nonlinear

Systems", D. Grande, D. Fenucci, A. Peruffo, E. Anderlini, A. B. Phillips, G.

Salavasidis, G.Thomas, IEEE Conference on Decision and Control, 2023 [24].

4. Fault-tolerant computed-aided control synthesis: "Passive Fault-Tolerant

Augmented Neural Lyapunov Control: A method to synthesise control func-

tions for marine vehicles affected by actuators faults", D. Grande, A. Peruffo, G.

Salavasidis, E. Anderlini, D. Fenucci, A. B. Phillips, E. B. Kosmatopoulos, G.

Thomas, Control Engineering Practice, 2024 [23].

Correlated research was carried out with lessons learnt embedded within this thesis:

1. Fault detection: "Smart anomaly detection for Slocum underwater gliders with

a variational autoencoder with long short-term memory networks", Z. Bedja-

Johnson, P. Wu, D. Grande, E. Anderlini, Applied Ocean Research 120, 2021

[26].

Relevant publications 2

2. Modelica simulation: "Vector Field-based Guidance Development for Launch

Vehicle Re-entry via Actuated Parafoil", S. Farì, D. Grande, International Astro-

nautical Congress, IAC, 2021 [27].

Research Paper Declaration Form

1. Relevant publication:

(a) Title: Open-source Simulation of Underwater Gliders

(b) DOI: https://doi.org/10.23919/OCEANS44145.2021.9705852

(c) Publication venue: IEEE OCEANS 2021

(d) Publisher: IEEE

(e) Publication date: 15-02-2022

(f) Manuscript authors: D. Grande, L. Huang, C. Harris, P. Wu, G. Thomas,

E. Anderlini

(g) Peer-review: Extended Abstracted peer reviewed

(h) Copyright status: Held by publisher

(i) Earlier forms of the manuscript: None

(j) Statement of contribution: The author of this thesis is the main contribu-

tor of the research publication as titled at point (a).

(k) Relevant chapters: Chapter 2, Chapter 4.

□✓ I acknowledge permission of IEEE to include in this thesis portions

of the publication. Material from this publication is included in this

thesis with the associated label "© 2022 IEEE [19]".

2. Relevant publication:

(a) Title: Augmented Neural Lyapunov Control

(b) DOI: https://doi.org/10.1109/ACCESS.2023.3291349

https://doi.org/10.23919/OCEANS44145.2021.9705852
https://doi.org/10.1109/ACCESS.2023.3291349

Research Paper Declaration Form 4

(c) Publication venue: IEEE Access, Volume 11, Pages 67979 - 67986

(d) Publisher: IEEE

(e) Publication date: 03-07-2023

(f) Manuscript authors: D. Grande, A. Peruffo, E. Anderlini, G. Salavasidis

(g) Peer-review: Regular peer-review

(h) Copyright status: Held by publisher

(i) Earlier forms of the manuscript: None

(j) Statement of contribution: The author of this thesis is the main contribu-

tor of the research publication as titled at point (a).

(k) Relevant chapters: Chapter 2, Chapter 5.

□✓ I acknowledge permission of IEEE to include in this thesis portions

of the publication. Material from this publication is included in this

thesis with the associated label "© 2023 IEEE [22]".

3. Relevant publication:

(a) Title: Systematic Synthesis of Passive Fault-Tolerant Augmented Neural

Lyapunov Control Laws for Nonlinear Systems

(b) DOI: https://doi.org/10.1109/CDC49753.2023.10383378

(c) Publication venue: 2023 62nd IEEE Conference on Decision and Control

(CDC)

(d) Publisher: IEEE

(e) Publication date: 19-01-2024

(f) Manuscript authors: D. Grande, D. Fenucci, A. Peruffo, E. Anderlini, A.

B. Phillips, G. Salavasidis, G.Thomas

(g) Peer-review: Regular peer-review

(h) Copyright status: Held by publisher

(i) Earlier forms of the manuscript: None

(j) Statement of contribution: The author of this thesis is the main contribu-

tor of the research publication as titled at point (a).

https://doi.org/10.1109/CDC49753.2023.10383378

Research Paper Declaration Form 5

(k) Relevant chapters: Chapter 2, Chapter 6.

□✓ I acknowledge permission of IEEE to include in this thesis portions

of the publication. Material from this publication is included in this

thesis with the associated label "© 2024 IEEE [24]".

4. Relevant publication:

(a) Title: Passive Fault-Tolerant Augmented Neural Lyapunov Control: A

method to synthesise control functions for marine vehicles affected by ac-

tuators faults

(b) DOI: https://doi.org/10.1016/j.conengprac.2024.105935

(c) Publication venue: Control Engineering Practice

(d) Publisher: Elsevier

(e) Publication date: 07-2024

(f) Manuscript authors: , D. Grande, A. Peruffo, G. Salavasidis, E. Ander-

lini, D. Fenucci, A. B. Phillips, E. B. Kosmatopoulos, G. Thomas

(g) Peer-review: Regular peer-review

(h) Copyright status: Held by publisher

(i) Earlier forms of the manuscript: None

(j) Statement of contribution: The author of this thesis is the main contribu-

tor of the research publication as titled at point (a).

(k) Relevant chapters: Chapter 2, Chapter 6.

□✓ I acknowledge permission of Elsevier to include in this thesis portions

of the publication. Material from this publication is included in this

thesis with the associated label "© 2024 Elsevier [23]".

e-Signatures confirming that the information above is accurate: digitally signed

Candidate: Davide Grande

Date: September 16, 2024

https://doi.org/10.1016/j.conengprac.2024.105935

Research Paper Declaration Form 6

Supervisor: Giles Thomas

Date: September 16, 2024

Chapter 1

Introduction and motivation

1.1 Problem definition

Deepening our knowledge of the oceans is vital to understand the links to the Earth’s

climate and to better protect its natural resources [28]. Studying the oceans addition-

ally assists with forecasting sea bed phenomena such as earthquakes and tsunamis [29].

Moreover, ocean research supports long-term weather forecasts linked to food produc-

tion and water supply, in turn helping to investigate, forecast and mitigate the impact

of undesirable climate anomalies and extreme weather events [30].

In the 1980s and 1990s, concerns started to grow regarding the monitoring of the

ocean environment, its temperature, the concentration of pollutants and how the ocean

currents affect the spreading and dilution of human-made byproducts. Early attempts

at understanding the oceans’ circulatory systems were carried out by World Ocean Cir-

culation Experiment (WOCE), involving research vessels as a means of data collection

[31]. It was soon realised that methods relying on extensive human involvement, such

as oceanographic ships, were not an economically viable option to collect sufficient

data to construct and validate theoretical oceanographic models.

The need to envision new solutions to provide subsea data at a higher scale and

frequency, matching the remote sensing acquisition capability of satellites for surface

data, became the focus of a new ocean engineering research stream. In the two decades

that have followed, ocean observing technologies such as tide gauges, surface drifters

and profiling floats were developed, systems today routinely deployed worldwide in

1.1. Problem definition 8

their thousands to record real-time in-situ data [32].

Tide gauges are docked instruments measuring trends in mean sea level, wind

speed and direction, air and water temperature, and are employed to support harbour-

ing operations, navigation and to detect extreme conditions such as storm surges and

tsunamis [33]. In contrast, surface drifters and profiling floats are free floating ocean

instruments. The drifters are transported by the ocean currents and assist validating

satellite sea surface temperature measurements which are used to improve weather

models and to verify hurricane intensity forecasts [34], while profiling floats are robotic

platforms that move in a vertical motion by adjusting their buoyancy while mapping

parameters of the water profiles. The extent of the deployment of the Argo drifters is

reported as an example in Fig. 1.1.

Figure 1.1: Argo floats deployment map as of June 2024 [14].

In short, satellites offer a large spatial coverage but are constrained to surface

observations, profiling floats and drifters are suited to collect and categorise subsurface

low-scale data, while the use of research ships is constrained by the prohibitive costs

associated with their operations [35]. These limitations highlighted the need to develop

new instruments to advance data collection on a large scale within accessible costs,

while not being constrained to surface or purely vertical data.

In parallel, in the second half of the 20th century, design efforts focused on the

1.1. Problem definition 9

design of AUVs, inheriting lessons learnt from earlier studies derived from the use of

torpedoes for military operations [36]. AUVs were developed for different purposes

ranging from ocean monitoring for scientific purposes, to inspection of underwater in-

stallations and to military applications such as underwater mine detection and removal

[37]. Significant achievements were accomplished in the past seventy years of AUVs

design, with some of these platforms today being capable of months-long deployments

and with operational ranges of up to thousands of kilometres [38].

Despite the advantages, AUVs suffer from a range of potential issues during the

deployment missions. Given the unstructured nature of the underwater environment, a

variety of unforeseen and unplanned for events can occur that may have the potential to

jeopardise the mission’s success. In the case of AUVs, collisions with debris, or with

other vessels during the communication phase at surface, or attacks by large ocean

predators and growth of marine life on the vehicle hull can all lead to malfunctions.

These elements encompass damages to the vehicle hull or to the exposed components,

such as the actuators.

Faults at actuators can manifest as thruster obstruction, thruster flooding and ro-

tor failure [39]. Sea borne solid objects such as ice, seaweed or other marine detrita

entering between the blades, the propeller and the enclosure, can result in damage

to the propeller blades and impact the torque required to rotate the propulsion mo-

tor, while water ingress inside sealed electronic compartments can lead to shorts or

current dispersion. At other times, despite the vastness of the oceans, instantaneous

faults at control surfaces can appear due to sudden collisions, most likely with other

vessels [40]. During long-lasting deployments in challenging environments, such as

when conducting missions under the ice caps [41], AUVs have been lost, and often the

causes have remained unknown [42].

As with space systems or aircraft, AUVs need appropriate recovery strategies

to cope with unforeseen and unplanned for events. Since there is no "panic button"

to press, such as turning the power off or engaging an emergency brake [43], tailored

control logic needs to be embedded within the vehicle prior to deployment. The branch

of control system that tackles such a need is referred to as fault-tolerant control (FTC).

1.1. Problem definition 10

FTC involves the design of an automatic control system based on one of two

underlying principles: either the sources of faults are detected and counteracting mea-

sures are taken accordingly, or the system is designed to be intrinsically robust to faults.

The first type of control system relies on sensors or algorithms that constantly monitor

the working status of the actuators and can react appropriately when anomalies are

detected. These strategies, which currently represent the industrial solution most com-

monly applied, introduce additional issues in the context of AUV operations. First,

the presence of additional sensors render the overall vehicle design more complex, and

hence more prone to additional faults, i.e. mitigating strategies need to be put in place

to manage those cases when the monitoring sensors fail. Next, these control strate-

gies assume fast and reliable identification of the faults, with delays in identification

potentially leading to instabilities in the closed-loop dynamics. Next, these strategies

require dedicated energy to power the sensors, with energy consumption being already

at a premium and currently representing the main limitation to extending deployment

time.

Alternatively, robust FTC systems can be developed, designed to be resilient to

loss of efficiency of actuators, to jamming of control surfaces, or to full loss of indi-

vidual thrusters. This type of control system does not require monitoring sensors or al-

gorithms, thereby delivering overall improved reliability and energy consumption. On

the downside, to achieve robustness, robust FTC systems compromise performance,

for instance involving the relaxing of target control objectives such as the asymptotic

stability of a prescribed equilibrium. Currently, robust FTC systems can either be de-

vised by relying on linearisation of dynamical models, or, when accounting for the

non-linearised dynamics, can guarantee closed-loop stability only under specific cases

of loss of efficiency of the actuators [44].

To increase the AUV operational capabilities, namely to enhance deployment

times while maximising vehicle resilience to unforeseen external factors and while

minimising the need for human intervention, robust FTC represent an attractive solu-

tion. Nonetheless, a lack of a unified and generic control solution to increase reliability

of AUVs when subjected to actuator faults provides the motivation for further research

1.1. Problem definition 11

efforts in robust FTC solutions.

In recent years, a surge in Artificial Intelligence (AI)-based applications has

steered research focus in academia and industry. Applications ranging from image and

speech detection and synthesis, to driving assistance technologies and tools support-

ing the motion-picture industry, semi-automatic coding and generative text are quickly

finding their way at an incredible pace. As recently as 2016, it was speculated that a

super intelligent AI could complete the writing of a PhD thesis in one afternoon [45].

Within less than ten years of that forecast, in the summer of 2024, such a feat is already

possible, although the quality of the thesis would still be debatable, luckily for today’s

PhD candidates.

AI-based technologies have been gaining interest within the control system com-

munity, owing to their potential they hold to solve complex problems, such as design-

ing nonlinear control functions for high-dimensional dynamical systems, a notably

complicated endeavour. Academic research is increasingly being focused on AI-based

technologies, as illustrated in Fig. 1.2, reporting the number of works published in the

interval 2000-2023, containing the keywords control systems and machine-learning1.

Figure 1.2: Publications containing the keywords control system and machine-learning [15].

1Comparable results can be obtained by combining similar keywords, such as artificial intelligence,
machine-learning, control systems and automatic control.

1.1. Problem definition 12

Nonetheless, issues persist as the formality of such solutions lying within black-

box approach and often based on paradigms such as the Deep Reinforcement Learning

(DRL), is not guaranteed. The conundrum is rendered more complicated. On the one

hand AI-based solutions are often empirically found to work in practice, but do not

offer any formal proof of correctness and are, most rightfully, often viewed with scep-

ticism. On the other hand, classical control techniques offer a solid theoretical base,

but either require approximations such as linearisation, or do not always offer closed-

form solutions, often becoming a prohibitive endeavour even to graduate scholars in

the field.

The question is then as follows: in control system engineering, a field charac-

terised by sound theories and precise mathematical formulations, is there a place for

AI-based solutions?

When AI-based models deliver false or misleading information, it is said that the

model is undergoing a hallucination [46]. In other terms, the result of the model is

incorrect, and, despite the fact that it works in the overall majority of instances, it is

at times failing. How can we then trust a model that is producing excellent results in

the overall majority of cases but, at random times, hallucinates? One example of a

hallucination is as follows [47]:

Question A man and a goat are on one side of the river. They have a boat. How can they

go across?

Answer The man takes the goat across the river first, leaving the boat on the original

side. Then, the man returns alone with the boat. He leaves the goat on the other side and

takes the boat back to the original side. Finally, he takes the cabbage across the river.

Clearly, in safety critical applications, such as the driving an autonomous car, or the

control of an AUV navigating under the ice caps, hallucinations are not tolerable.

In this thesis, an attempt is made to exploit novel AI-based technologies, without

compromising on the classical formal theories and the associated mathematical formu-

lations, eliminating any possibility of an occurrence of a hallucination. Specifically,

AI-based technologies will be employed to assist the tackling of non-trivial control

problems, such as computing robust FTC solutions for AUVs, without requiring the

1.2. Thesis outline 13

use of sensors to confirm the presence of faults and without compromising on dynam-

ical model linearisation.

To find a solution to the problem, the first section of the work was dedicated to

researching FTC methods, as well as the possible causes of faults on AUVs and their

impacts on the vehicle components. The following segment was dedicated to devising

a simulation framework allowing the investigation of dynamical models of different

AUVs. Next, an AI-based control method with formal proof of stability was designed

and verified. Finally, the method that was developed was extended to account for the

presence of faults at actuators, and showcased in diverse AUV case studies.

1.2 Thesis outline
The remainder of this thesis is organised as follows.

• Chapter 2 covers previous research in the field of FTC methods, their application

to the case of AUVs affected by actuator faults and modelling and simulation of

AUVs.

• Chapter 3 illustrates the research gaps prompting the research questions, and the

research approach selected to tackle the research questions that have been posed.

• In Chapter 4, dynamic modelling of AUVs is introduced and a framework to

simulate different vehicles is presented.

• Chapter 5 outlines the proposed method to synthesise control functions with AI-

based techniques, without compromising on formal stability guarantees.

• Chapter 6 extends the method to account for different types of faults at actuators.

• A conclusive case study illustrating how the methods and tools devised can be

integrated in an organic study is presented in Chapter 7.

• Conclusions are presented in Chapter 8, alongside discussing future research

directions.

Chapter 2

Literature Review

2.1 Introduction
This chapter outlines the current state-of-the-art in the field of faults at actuators in un-

derwater vehicles. First, the causes and effects of actuator faults will be investigated.

Next, an overview of the fault-tolerant control field is presented, followed by a taxon-

omy of the methods available against actuator faults. The prevailing status of actuator

fault accommodation in AUVs will then be detailed, with emphasis on the recent trend

of machine learning-based methods. To conclude, current available methods that can

be employed to model and simulate complex AUV concepts are discussed.

2.2 Preliminary concepts
In this thesis, the term actuator is used to denote a device that responds to an input

signal with an action into the physical world [48]. Such action can be a linear dis-

placement, an expansion or contraction, a change of electrical signals, amongst others.

Conversely, a sensor is a device that responds to a physical input with a recordable,

functionally related output, usually being in the form of a calibrated electrical, me-

chanical, pneumatic or optical response [49].

Next, a clarification of the use of words faults and failure as they will be employed

in this thesis is provided, as diverse definitions of such words have been provided over

the years. In this thesis, a fault is defined as an undesired abrupt change in the dynamics

of a signal of a sensor or an actuator [50]. More specifically, a fault was formally de-

fined as a change in the characteristics or in the performances of a component that does

2.3. Causes of faults in AUVs 15

not compromise the entire functionality of the parent system [51]. In other words, a

fault is an event causing the change of the characteristics of a component from its nom-

inal behaviour to act in an undesired manner. A fault can be worked around so that the

overall system can still accomplish its original task, even with a level of performance

degradation [52].

Faults can be classified based on temporal behaviour as permanent (the fault per-

sists without ever disappearing after its first occurrence), as transient (the fault appears

only "una tantum" for a finite time), as intermittent (the fault occurs repetitively, for

finite time period each time) or as steadily increasing (due to progressive performance

degradation – at times referred to as incipient) [53, 17]. Permanent faults are usually

the result of hardware damage. Transient faults are at times linked to temporary ac-

tuator freezing, clogging or jamming. Intermittent faults can be due to odd electrical

contacts. Steadily increasing faults are often associated with wear and ageing [52].

In contrast to component faults, failures denote the inability of a system to accom-

plish its function [54]. Once a failure is recorded, the overall system is irrecoverable

and it needs to be shut down and external intervention is required.

2.3 Causes of faults in AUVs

During an underwater vehicle deployment, a noticeably significant variety of un-

planned for conditions can occur and jeopardise the mission success. In a survey of 58

UGs operating over a four year period, faults were reported as being due to mechani-

cal, logistical and environmental causes [55]. The issues linked to mechanical failures

comprise incorrect design, leaks and malfunctioning components, while the logistic-

driven faults are typically linked to human error, examples being incorrect ballasting

and trimming set up. Mechanical faults in AUVs can be associated with any of up

to nine subsystems: power, leak detection, diving, environmental detection, collision

avoidance, computer hardware, propulsion, communication and navigation [56].

Further research surveyed faults in two REMUS-100 AUVs [57]. Out of the 186

missions recorded, 37 unique faults were detected and 28 missions were aborted due

to failures and not by pilot decision. The majority of faults were not hardware or

2.3. Causes of faults in AUVs 16

software-related, but rather driven by external environmental factors, e.g. collisions

with debris or other vessels. Another recent survey supports these results, reporting

that 84% of the research on faults in AUVs entails actuator malfunctions, owing to the

persistent exposure of the actuators to the surrounding environment as compared to the

sensors which are normally protected by being housed within the vehicle’s hull [58].

While most of the mechanical faults can be mitigated with effective planning and

preliminary mission tests, environmental failures can be more severe and difficult to

forecast due to their abrupt and chaotic nature. The frequency and the severity of faults

are likely to increase as AUVs are deployed in more challenging environments, such

as when conducting missions under ice caps [41], or near hydrothermal vents (TUNA-

SAND AUV) [59], or other otherwise inaccessible areas such as flooded mine pits

(EVA ROV/AUV) [60], (UX-1 AUV) [61].

As an example of failures that occur while operating in extreme environments, a

modified version of the Autosub AUV designed to penetrate into cavities beneath the

Fimbul Ice Shelf, Antarctica [42] was lost in 2005 due to unknown causes. In 2010,

the ABE AUV disappeared on its journey to the surface during the ascent phase, and

the final cause of the loss was never confirmed [62]. During another Antarctic mission,

the Romeo ROV experienced a block of ice getting trapped within the propeller blades,

requiring remote human intervention to disable the affected thruster [39]. In 2018,

during one of the Antarctic deployments, the Autosub Long Range AUV encountered

an issue while penetrating 20 km under the ice shelf, when the rudder got stuck at full

travel for 3.5 hours due to the combination of almost freezing temperature and water

within the actuator voids [63].

Collisions with other vessels were reported in AUVs during the communication

phase of the missions, when the vehicles are floating at the sea surface. When the ve-

hicles surface, particularly in congested areas, pilots deliberately try to minimise the

communication time in an attempt to reduce the risks of accidents, but, at times, colli-

sions with passing vessels have occurred. For instance, a Seaglider UG was reported

losing communication and could not be subsequently recovered [35]. It was assumed

that there was most likely a collision with a ship navigating in the area. It is surmised

2.3. Causes of faults in AUVs 17

that the antenna, one of the most fragile and critical vehicle components, was com-

promised during the collision and prevented further retrieval operations. At least four

UGs were confirmed as having collided with other vessels in just four years [55]. In

further reports, two UGs each lost a wing, theorised to be the result of collisions with

other vessels [40].

Obstacles such as drifting fishing debris pose an additional threat to AUVs. Re-

search efforts are ongoing to equip AUVs with algorithms for the early detection of

fishing nets using sonars [64]. Several UGs got tangled in deployed fishing nets and

were subsequently taken onboard fishing vessels [65, 66, 67]. Two further UGs got

trapped in deployed nets and were consequently recovered by the associated fishing

boats during the period between 2008 and 2012.

Another set of disruptive events encompass encounters with marine creatures.

Shark attacks were identified after recovering the vehicles as testified by bite marks

left on the hull, or were detected during the mission time due to damaged wings or

external sensors [68], or due to very erratic movements detected in the depth profile.

For instance, a white shark attacked a MBARI LRAUV [69], leaving bite marks and a

set of teeth in the pressure hull. The attack resulted in the AUV being almost flipped

over, with the roll angle abruptly spiking to almost 180 [deg] in just a few seconds. An

example of the bite marks left on the hull of Seaglider UG operated by the National

Oceanography Centre (NOC) (Southampthon, UK) is reported in Fig. 2.1.

Additional shark attacks were reported in the seas off Australia and Central Amer-

ica, where sizable sharks severely damaged the hulls of an UG and an AUV, as illus-

trated in Fig. 2.2a and Fig. 2.2b, respectively.

Additionally, biofouling effects encompassing the growth of barnacles and mus-

sels can become critical for vehicles deployed for weeks or months, as illustrated in

Fig. 2.3. Marine growth can reduce the efficiency and the range of motion of the con-

trol surfaces or reduce the thrust generated by a propeller. Long duration UGs missions

deployed in shallow tropical waters near the equator are particularly prone to biofoul-

ing [72].

2.4. The fault-tolerant control field: an overview 18

Figure 2.1: Shark bite marks on Seaglider operating in UK waters - courtesy of NOC.

(a) Shark bite marks on an UG
[70].

(b) Shark chasing a REMUS AUV before striking
[71].

Figure 2.2: Shark attacks recorded on autonomous vehicles.

With the increased interest towards deploying AUVs in ever more challeng-

ing environments and on long-lasting missions, a significant variety of unpredictable

environmentally-driven faults can occur. The effects of faults, especially at the actua-

tors, need to be mitigated to prevent a component fault evolving into a system failure.

2.4 The fault-tolerant control field: an overview

In accordance with the definitions provided in Section 2.2, FTC refers to the set of

hardware and software systems responsible for preventing a component fault from

2.4. The fault-tolerant control field: an overview 19

Figure 2.3: Seaglider affected by barnacles’ growth [16].

evolving into a failure of the overarching system [54]. Naturally, FTC constitutes

one of the building blocks of a feedback loop [73]. The FTC block adds robustness

and operating margin to the overall feedback loop, which is conventionally designed

assuming that the system is operating around target nominal conditions. FTC architec-

tures aim at keeping the system operational, guaranteeing system stability even under

degraded performance conditions (stability-related concepts are formally introduced in

Section 5.2) [74].

Confusion with terminology often arises as the term FTC is at times used to

broadly denote a specific branch of control theory, and, at other times, FTC is used

to denote the methods employed to overcome the faults at sensors and actuators. In

this thesis, the term FTC field will be used to denote the overall field of research, while

FTC will be used as a synonym of the term Actuator Fault Accommodation (AFA), as

further detailed in the present section.

The FTC field dates back to the 1970s originating from within the aerospace in-

dustry. A significant number of surveys on the FTC field were presented over time,

remarkably in 1976 [50], 1988 [75], 1997 [76], 2015 [77] and 2020 [78].

An FTC architecture needs to manage two tasks: Sensor Fault Detection, Iden-

tification, and Accommodation (SFDIA) and Actuator Fault Detection, Identification,

and Accommodation (AFDIA) [79]. The Sensor Fault Detection, Identification (SFDI)

involves the monitoring of the degree of deterioration of the accuracy in the measure-

2.4. The fault-tolerant control field: an overview 20

ments, this conventionally being achieved by inspecting threshold violations or rapid

variation in spectral property [52]. The Sensor Fault Accommodation (SFA) performs

the task of replacing the corrupted measurements with appropriate estimations.

More specifically, Fault Detection refers to deciding whether a fault has occurred

in the first place, while Fault Isolation entails determining which component is being

affected, and Fault Estimation defines the estimation of the fault severity [52]. Fault

Detection and Isolation (FDI) is traditionally carried out by consistency-based tech-

niques, which are function of residuals between a nominal signal and its measured (or

estimated) current value [52].

In a similar fashion, the AFDIA includes the Actuator Fault Detection, Identifica-

tion (AFDI) and the AFA. The AFDI manages the anomalies and the possible causes

of actuators malfunctions, while AFA is tasked with applying suitable control actions

to the system in keeping with to the most up to date information supplied by the AFDI.

A taxonomy of FTC research field is provided in Fig. 2.4.

Figure 2.4: The fault-tolerant control field: a taxonomy.

Given the causes of faults surveyed in AUVs proffered at Section 2.3, it is apparent

that actuators represent a key point of weakness in the operation of these vehicles.

Owing to the hazardous nature of the ocean environment, faults at actuators have been

recorded as the cause of disruption of a range of missions, involving AUVs, ROVs

and UGs. On top of identifying the faults and their severity, it is therefore relevant to

2.5. Actuator Fault Accommodation: a taxonomy 21

delve deeper into the AFA strategies proposed thus far to tackle the case of an actuator

malfunction.

2.5 Actuator Fault Accommodation: a taxonomy
Given the specific focus of this research into the effects of actuator faults, in accordance

with the definitions provided in Section 2.4, the term FTC will be used henceforth

as synonym of AFA. This choice of terminology is consistent with that used in the

majority of the resources surveyed in the following section.

FTC methods are conventionally divided into either Active or Passive techniques.

The active fault-tolerant control (aFTC) methods exploit Fault Detection and Isola-

tion diagnosis systems [80] and cover a range of diverse control architectures. aFTC

architectures comprise a range of strategies, such as switching between a set of pre-

computed control laws, online re-tuning of control gain, or even redesigning of the

controller structure, among other approaches. In other terms, aFTC refers to all the

methods that entail the updating of control gain following the occurrence of a fault

[52].

In the following subsections, a review of the key concepts and methods within the

field of aFTC is provided.

2.5.1 Multiple-Model aFTC

The Multiple Model (MM) control is a class of methods based on the definition of a

finite set of linear models capturing the dynamics of the system at different operating

points, for instance associated with a set of (actuator) faults [17]. MM aFTC is clas-

sified as a projection-based method, which relies on the idea of dynamically selecting

control laws based on a set of pre-computed gains [81].

MM aFTC consists of defining a parametric dynamical model, in approximating

the nonlinear dynamics with a corresponding linear model and in associating to each

linearised model an ad hoc control law which has been pre-designed off-line [17]. The

applied control action is based on a probabilistic weighted combination of possible

control actions, where probabilities are assigned based on the likelihood that each lin-

ear model has to represent the current dynamics.

2.5. Actuator Fault Accommodation: a taxonomy 22

In short, the overarching concept relies on four stages: a) anticipate possible

faults; b) develop a (linearised) dynamical model for each fault; c) design a control

law for each fault; d) design a gain switching logic.

Within the MM aFTC, two methods stand out: Multiple Model Switching and

Tuning (MMST) and Interacting Multiple Models (IMM). When a fault is detected, if

the MMST is employed the problem is formulated as "which dynamical model best

resembles the current operating dynamics" and hence which model-control pair should

be applied. If the IMM is employed instead, when a fault is detected, the applied

control law is based on a convex combination of all the pre-computed fault models.

Both MMST and IMM suffer from a range of issues. First, a closed-loop sys-

tem controlled using the MMST method is stable if the set of models is sufficiently

dense and if the sampling rate of the dynamics is fast enough [82, 17]. Additionally,

a time delay is required to prevent fast switching of the control law which could lead

to closed-loop dynamic instability. With the IMM method, the assumption that every

fault mode can be described as a convex combination of other models has not been

proved, and no clear approach to define the model set has yet been established [17].

Moreover, MM methods cannot account for uncertainties in the dynamics and

cannot cope with actuator saturation. Finally, both methods rely on linearising the

dynamics, leading to the standard local-only arguments associated to the linearised

control theory.

2.5.2 Adaptive aFTC

The adaptive aFTC method attempts to reconfigure the control law online, without nec-

essarily detecting and isolating the fault. The adaptive aFTC problem assumes to deal

with a time-varying dynamical system. Time-varying dynamics might be associated

with environmental disturbances, to unmodelled dynamics or to system bifurcating,

e.g. due to the occurrence of a fault. To cope with dynamic variations, the feedback

control gain is continuously updated in response to the current operating conditions of

the dynamical system [83].

A popular control method within this class is the Model Reference Adaptive Con-

trol (MRAC). MRAC relies on designing a target dynamical model representing an

2.5. Actuator Fault Accommodation: a taxonomy 23

ideal behaviour, and setting the closed-loop to track such target, independent of the

current state of the dynamics. This scheme relies on two key elements: an adjustment

mechanism, which is in charge to evaluate the residuals, i.e. the difference between the

ideal system output and the measured (or estimated) output, and the control law, that

is updated to mimic the desired dynamics [84].

Several control schemes capable of handling different combinations of distur-

bances, by modelling uncertainties and actuator faults were proposed [81, 84, 85].

In general terms, the key advantage of the adaptive aFTC is its capability to react to

unmodelled dynamics. In other words, there is no need to specify an apriori set of

possible dynamics associated with the faults.

On the downside, adaptive aFTC copes better when parameter variations are slow,

with such method possibly failing to deliver satisfactory performance under abrupt

or severe fault conditions [83]. Upon the occurrence of a permanent fault, typically

associated with a hardware fault, adaptive aFTC can suffer from closed-loop instability

unless the gain is rescheduled in a timely manner. In general, adaptive aFTC does not

formally offer such a guarantee on timely updating of the control gain, and thereby

leading to the system possibly entering instability regions (i.e. a failure mode).

2.5.3 Model Predictive Control aFTC

Model Predictive Control (MPC) is established as a widely employed control method

in fault-free control scenarios. MPC has its roots within optimal control theory applied

to multivariable nonlinear systems with input and state constraints [86]. As computing

an analytical solution for the optimal control problem for nonlinear systems with con-

straints is computationally demanding, MPC attempts to achieve results within a finite

time span, usually relying on linearised system dynamics [87].

Due to the nature of the MPC formulation, such a control method is particularly

suited to systems with faults, as the limits of the actuators (or model dynamics) can be

promptly re-defined following the identification of a malfunction [17]. Owing to the

same features, the MPC aFTC method can account for an actuator that is jammed at a

fixed position, by setting a control variable to a constant value with its associated rate

of change being set equal to zero.

2.5. Actuator Fault Accommodation: a taxonomy 24

However, the performance of the MPC method is tightly bound to the accuracy

of the underlying dynamic model [17, 86]. Additionally, MPC-derived control laws

can only guarantee local closed-loop stability. During the development of this thesis, a

first attempt was carried out to extend the conventional (linear) MPC aFTC method as a

nonlinear method [88]. Such extension entails employing Nonlinear Model Predictive

Control (NMPC) to compensate for the faults on motors, and was demonstrated in a

real-time control application. On the downside, this method assumes, at this stage,

exact knowledge of the system faults through an idealised FDI block.

2.5.4 (Embedded) Control allocation aFTC

The Control Allocation (CA) aFTC, at times designated as Embedded CA, represents

an instance of a cascade control system, where several loops are nested one inside

another, each outputting a value that is fed as the reference to the next inner loop.

In rigid-body control applications, conventionally, an outer loop generates a reference

vector of desired virtual control inputs (i.e. forces and torques) to the innermost loop,

tasked with generating commands to the actuators to match the required force and

torque outputs [89].

The innermost loop, referred to as the CA loop, allocates the control effort re-

quired from the available actuators using a matrix denoted as Thruster Allocation Ma-

trix (TAM), or Control Effectiveness Matrix (CEM), or Thruster Configuration Ma-

trix (TCM). The TAM is a matrix collecting the geometric properties of the actuators,

namely position and orientation with respect to a designated origin, mapping how the

force of an actuator affects each Degree Of Freedom (DOF) of the body it is attached

to. Within the CA aFTC, the TAM is updated in real-time, allocating the desired virtual

inputs to the available actuators, excluding the faulty ones.

The solution of the CA problem depends on the number of available actuators. In

the most general formulation, the TAM is not a square matrix, leading to an ill-posed

problem, i.e. the solution is not unique. The solution is usually computed employing a

pseudo-inverse (or generalised inverse) function. Under the special condition regard-

ing the TAM being full-rank, the solution can be trivially computed by means of the

Moore-Penrose pseudoinverse, otherwise more advanced techniques employing regu-

2.5. Actuator Fault Accommodation: a taxonomy 25

larisation terms are required. When fault information is available, the inverse of the

TAM can be computed by including a diagonal weighting matrix, set to an identity in

the nominal (faultless) case, and where entries set to zero denote a fault at the associ-

ated thruster. Solving the weighted Moore-Penrose pseudo-inverse problem produces

a feasible thruster allocation solution, excluding the faulty thrusters.

In line with the previous aFTC methods, CA relies on precise information regard-

ing the status of the actuators being provided by an external FDI block. Moreover,

closed-form solutions only exist when the actuator saturation is neglected. When ac-

tuator saturation is to be included, more advanced solution techniques are required,

among which there are the redistributed pseudo-inverse, the daisy chaining, the direct

allocation and numerical solutions based on linear, quadratic, nonlinear and mixed-

integer programming [90].

2.5.5 Reconfigurable Eigenstructure Assignement aFTC

The idea behind the Reconfigurable Eigenstructure Assignement (REA) method is to

place the eigenvalues of a linear (or linearised) system in desired locations (within

the Gauss plane) using a state-feedback control law, and using any remaining design

freedom to attempt aligning the eigenvectors as desired [91]. As the eigenspace deter-

mines the shape of the dynamic response, the REA attempts to match the eigenspace

of a faulty system to that of a nominal dynamics [17].

A control law leading to the eigenspace that exactly matches a target solution

only exists when redundant actuators are available [52]. When the dynamical system

does not possess redundant actuators, approximate solutions minimising the difference

between the target eigenvalues and the real eigenvalues can be designed.

The REA aFTC is a particularly attractive method owing to the availability of

closed-form solutions, which in turn results in the possibility to compute and imple-

ment control laws with limited computational burden. In the context of FTC, the con-

trol gain can be re-calculated online based on the current available actuators and their

associated Jacobian control matrix.

On the downside, the ability to place the eigenspace is limited by conditions re-

lated to the control and output Jacobians remaining full rank following any one fault.

2.5. Actuator Fault Accommodation: a taxonomy 26

Additionally, actuator saturation cannot be accounted for using this method. Finally,

the effect of the eigenvectors of the faulty system not fully matching those of the nom-

inal system is yet to be extensively studied and understood [17].

2.5.6 Sliding Mode Controller aFTC

The Sliding Mode Control (SMC) method tackles the design of control laws for non-

linear dynamical systems that are affected by model and parametric uncertainties [92].

SMC is characterised by a series of feedback control laws, and a decision rule (at times

termed a switching function) [93]. The decision rule is tasked with applying the most

suitable control law based on the input measurements.

The SMC method is suited for use in FTC applications owing to the method’s

ability to cope with model uncertainties, which faults are are a particular case of. On

the positive side, SMC can cope with actuator saturation and with actuator rate lim-

its, at times employing terms that dynamically adapt to fault modes [94], setting this

method apart from those illustrated thus far.

A first disadvantage of the method is the necessity to implement a discontinuous

control signal which, in theoretical terms, must switch at infinite frequency to pro-

vide total rejection of uncertainty [93]. The discontinuous nature of the control signal

generates high-frequency control commands, conventionally referred to as chattering,

lowering control accuracy and increasing wear in mechanical systems [95] and heat in

electrical power circuits [96]. Actuator chattering can be mitigated by smoothing the

control functions, at the cost of sacrificing the full ability to reject disturbances [93].

Further limitations of the method are linked to the robust nature of the SMC, that re-

quires the knowledge of (or the assumption of) an upper bound to the uncertainty [94].

Additionally, in the general formulation, total loss of actuator efficiency can not be

accommodated [17]. Extended SMC formulations were proposed to deal with full loss

of efficiency scenarios, but might result in overly excessive conservative controllers.

2.5.7 Conclusions on aFTC methods

Active methods can generally ensure satisfactory control performance following a

fault, but are at times computationally expensive (i.e. NMPC) and rely on precise fault

2.5. Actuator Fault Accommodation: a taxonomy 27

information provided by an FDI block (i.e. MM, NMPC, CA, REA). When closed-

form solutions exist, thus avoiding the need to solve optimisation problems online, ei-

ther the methods rely on linearisation assumptions (i.e. MM, MPC, REA), or are prone

to limitations regarding the parameter evolution being slow (i.e. Adaptive aFTC) or as-

sumptions on redundancy need to hold (i.e. REA, SMC), or the ability to cope with

actuator saturation in an explicit form is lost (i.e. MM, CA, REA). Further limitations

associated with each method were described in the dedicated sections.

A range of additional disadvantages characterises this class of methods. aFTCs

might suffer from dynamical instabilities during the transient period (from when the

faults occur to when they are detected and isolated), as, during this time interval, the

faulty system is still controlled by the nominal controller [53]. More specifically, the

term reaction time is used to define the sum of the time the FDI requires to identify the

fault, the time to reschedule the control law, and the time to apply the corrective control

actions [97]. If the reaction time is excessive (dependent on the specific application and

fault), the system might enter an unrecoverable state, i.e. a failure mode. Similarly, if

the FDI system is not conveying precise and timely information, the dynamics might

violate state and input constraints [54]. Moreover, the control reconfiguration mech-

anism needs to be sufficiently fast, and must select the correct control law to prevent

triggering instabilities [48].

A further speculative issue, i.e. not supported by current theories, is that a FDI

system designed to detect a fault with an minimum of delay (in an attempt to minimise

possible instabilities associated with the reconfiguration time) might in turn lead to

further closed-loop instabilities. In actuality, a fast acting FDI algorithm might increase

the detection of false positives, triggering the reconfiguration of a control law designed

for a different operating mode.

In opposition to aFTC methods, passive fault-tolerant control (pFTC) methods

entail designing a unique set of static gains that guarantees stability in both nominal

and fault modes [98]. In other terms, pFTC refers to all the methods used to devise

control laws which remain static, independent of whether or not the fault is detected,

isolated and evaluated [52].

2.5. Actuator Fault Accommodation: a taxonomy 28

2.5.8 H∞H∞H∞ pFTC

In general terms, the pFTC can be formulated as an optimisation problem with the

aim of minimising the worst-case setpoint tracking performance of a set of dynamics

affected by faults [99]. Stabilising controllers for linear and linearised systems can be

designed with the objective of minimising target conditions such as the H∞-norms (or

H2-norm) between the exogenous inputs and the desired performance [52].

The H∞ control method is particularly suited for application to FTC problems.

Given a set of prescribed faults, the H∞ pFTC aims to design a controller for the worst-

case scenario, usually coinciding with the fault at one actuator [100]. This method is

also known as reliable control [99].

In its original form, the H∞ control method is frequency-domain based. This

formulation, when applied to multiple-input, multiple-output systems, renders the de-

sign phase to be more convoluted when compared to time-domain control specification

descriptions. Additionally, when design constraints such as desired state limits are in-

cluded in the formulation, the solution of an H∞ problem becomes very challenging or

even undecidable [101]. Moreover, such a method often results in high-order control

laws, increasing the computational burden to synthesise a solution, especially for high

dimensional systems [102].

Upgraded variants of the method were proposed, such as the structured H∞, com-

prising a fixed structure of the controller with the possibility to add control require-

ments in the time-domain [101]. Nonetheless, the structured H∞ problem results in a

system of Bilinear Matrix Inequalitiess (BMIs) to be solved, which is conventionally

non-convex. To conclude, further limitations of the H∞ pFTC include the linearised

nature of the system description, and the inability to strictly enforce state and input

constraints.

2.5.9 Lyapunov-based pFTC

In an attempt to overcome the limitations of the linear pFTC methods, nonlinear control

theory was employed to envision new nonlinear pFTC methods. One such example

comprises the use of Lyapunov theory (which will be discussed in Section 5.2) to

ensure stability of the closed-loop system [44]. This method is henceforth referred to

2.5. Actuator Fault Accommodation: a taxonomy 29

as Lyapunov-based pFTC.

The Lyapunov-based pFTC method involves the augmentation of a nominal con-

trol law designed for the nominal (fault-free) dynamics with an additional term tasked

with addressing possible faults. In such a formulation, faults at actuators are described

as additional or multiplicative factors. Starting from the nominal control law and as-

suming to have computed a Control Lyapunov Function (CLF) for the nominal closed-

loop system (with the formal definition of CLF provided at Definition 4), this method

proposes an extra control term to manage the fault modes. This extra control term, once

added to the nominal control law, ensures robust stability in all operational modes.

The most attractive feature of this method lies in the simple (and elegant) closed-

form solution. This method follows an intuitive design and tuning process, and results

in a computationally inexpensive implementation. However, the method has three in-

herent disadvantages. First, it assumes the availability of a CLF, which is not trivial

to compute for generic nonlinear systems. Second, formally the method can only cope

with partial loss of efficiency, i.e. the control law cannot cope with the total loss of an

actuator. Finally, the greater the loss of actuator efficiency that needs to be accommo-

dated, the more conservative the resulting control law becomes. When practical fixes

are attempted by including an almost complete loss of actuator efficiency (e.g. 99%),

the control law often demands unreasonably high control effort.

2.5.10 Machine Learning-based Passive pFTC

The field of machine learning (ML) focuses on the design of computer programs that

can automatically improve the ability to complete their tasks as their experience pro-

gresses [103]. Despite the success in other fields of computer science and engineering

disciplines such as speech and vision synthesis and robotics, as of 2020, the start time

of the present project, no ML-based had been applied to solving pFTC problems [104].

During the development of this thesis, two methods employing ML methods tailored

to pFTC applications were proposed in parallel.

A first method was envisioned for application in cyber-attacks [48]. The under-

lying concept is built upon employing a reliable simulated version of the system to be

controlled. Next, fault at actuators (as well as sensors) are injected in a set of sim-

2.5. Actuator Fault Accommodation: a taxonomy 30

ulation runs, while the system is controlled via a traditional control law. During the

simulations, input and output dynamics are recorded. At the end of the data collection

stage, a neural controller is trained to maximise the capacity to track the time-varying

reference while being fed with the current target reference, the previous control input

and the system output. Within this control framework, different neural architectures

were proposed, encompassing Long Short-Term Memorys (LSTMs) and ensembles

of LSTMs at times combined with proportional integral derivative (PID) controllers.

Such method was trialled in a simulation environment showing the ability to reject

faults at actuators. This method is denoted as LSTM-pFTC in the following sections.

A second method, named fault-tolerant bio-inspired controller (FT-BIC) [105], is

designed to compute a control law in the form of an Artificial Neural Network (ANN)

based on the DRL training paradigm. The control synthesis problem is formulated as

the iterative solution of an optimising problem, aimed at minimising the state distance

from a target equilibrium. During the training the faults are injected at the actuators,

but never fed back to the control system, that remains oblivious on whether a fault has

occurred.

The LSTM-pFTC and FT-BIC control methods represent a first step to the em-

ploying of an ML-based approaches to solve the pFTC problem, but report certain

limitations. First, the synthesised control laws are empirically verified to show re-

silience to faults, but, at this stage, no theoretical guarantee as regards to closed-loop

stability is proffered. In other terms, classical control performance criteria, such as

robustness in the presence of uncertainties, phase or gain margins, linear or nonlinear

stability properties, cannot be certified.

These methods offer innovative solutions that overcome the limits previously

highlighted in the other pFTC methods, such as H∞ pFTC and Lyapunov-based pFTC.

Nonetheless, the lack of stability guarantees is a source of concerns in real-world safety

critical applications, e.g. control of nuclear fusion reactors and power grid regulation

[106]. Further effort is required to bridge the gap between the significant potential such

methods hold and their widespread applicability to real-world research and industrial

applications.

2.6. Actuator Fault Accommodation in AUVs 31

2.5.11 Conclusions on pFTC methods

pFTC methods can overcome different types of faults while preserving the system sta-

bility under different operating modes. However, these methods suffer from common

limitations such as either relying on linearisation assumptions (i.e. H∞ pFTC), or com-

promising on the loss of actuator efficiency that can be tolerated (i.e. Lyapunov-based

pFTC). Other methods need an accurate simulator to generate the training dataset (i.e.

LSTM-pFTC, FT-BIC). Additionally, none of the reviewed methods can explicitly en-

sure actuator saturation is not exceeded (i.e. H∞ pFTC, Lyapunov-based pFTC, ML-

based methods). Moreover, pFTC methods can only overcome the predefined set of

faults they are designed to mitigate, and cannot formally cope with fault modes be-

yond their design scope [44]. Finally, pFTC methods comprise reduced operational

performance, both in the nominal and fault modes, due to the intrinsic epistemic un-

certainty under which these control laws operate.

Nonetheless, pFTC methods provide certain advantages when compared to aFTC

methods. First, pFTC methods do not require the design of a FDI scheme, reducing

both the overall cost and complexity of the control architecture design. In turn, the

absence of a FDI scheme prevents a range of issues related to closed-loop instability

that may be triggered either by delayed or inaccurate information flow. pFTC methods

are also comparatively easier to implement and can be run without limitation on com-

paratively basic hardware, as the control laws are based on fixed gains as opposed to

relying on the computation of solutions online, as required by the aFTC methods.

It is apparent that choosing whether to employ either an aFTC or a pFTC control

scheme depends on the application of interest and on the acceptable trade off between

stability requirements and control performance [17]. A taxonomy of these AFA meth-

ods is reported in Fig. 2.5.

2.6 Actuator Fault Accommodation in AUVs
Having now detailed a taxonomy covering the main aFTC and pFTC methods, this

section focuses on a review of the current state of the art of AFA, specifically in AUV

2.6. Actuator Fault Accommodation in AUVs 32

Figure 2.5: Actuators Fault Accommodation methods taxonomy (adapted from [17]).

applications.

Recent surveys reveal that a significant stream of research of AFA in AUV ap-

plications assumes the availability of both an FDI scheme and redundant thrusters

[107, 58]. Under such assumptions, the CA aFTC method is usually employed, which

entails the redistribution of the required control forces across the healthy thrusters, ini-

tially with actuator saturation limits assumed to be negligible [108, 89, 109]. When

the thruster set is redundant, i.e. when the TAM is rectangular, it is possible to turn

off the broken thruster and still retain control of the AUV over the 6 DOFs. More

advanced CA formulations were devised to account for actuator saturation [110, 111],

in turn reducing issues linked to limit cycling instabilities [112]. The common choice

of employing a CA method follows on from the relative simplicity of embedding AFA

capabilities in the traditional control schemes, which can be achieved by means of

a closed-form solution without modifications to the classical cascade control scheme

where actuator forces are generated independent from the outer loops.

Another research stream focused on developing adaptive aFTCs, based on the idea

of considering the faults as part of the model uncertainty to be compensated for [113].

Such methods rely on defining two control laws: a fixed-gain controller designed for an

ideal model without disturbance nor uncertainties, and a second adaptive control law

to compensate for model uncertainty. In line with the general adaptive aFTC concepts

reviewed thus far, this class of methods suffers from a delay from the fault estimation

and its compensation (up to 35 [s] in this exploration). Additionally, this methods

2.6. Actuator Fault Accommodation in AUVs 33

assumes a certain onboard computation availability to complete the required adaptation

online.

Next, the MPC aFTC method was used to control faulty AUVs. One such example

involves designing an outer kinematic control loop with a standard MPC law combined

with an inner robust loop to control the dynamics [114]. Once a fault is detected, the

fault information is propagated in the form of an equivalent maximum desired force

vector, which is in turn translated in to maximum desired velocities, which the MPC

can account for during the solution of the optimisation problem. To overcome the lin-

earised nature of the MPC aFTC method, a control system combining NMPC and SMC

was proposed and validated in the context of AUVs [115]. Such a scheme inherits the

capability to handle constraints inherent to the NMPC method, and embeds the capac-

ity to accommodate uncertainties that results from the SMC formulation. Despite the

significant advantages, this method suffers from a lack of formal theoretical stability.

SMC schemes alone, i.e. without being mixed with other methods (e.g. MPC),

were also successfully designed and implemented onboard AUVs. Assuming that a

reliable FDI system is available, SMC aFTC methods were developed and were shown

to be able to promptly compensate thruster faults by rescheduling (i.e. adapting) the

control gain, while additionally tackling conventional SMC limits such as chattering

[116].

A different stream of research focused on pFTC methods, eliminating the need for

FDI schemes. When compared to the aFTC sources surveyed thus far, a comparatively

limited number of reports on pFTC methods applied to the control of AUVs is avail-

able. A robust H∞ pFTC method was proposed to manage the guidance (in the form of

waypoint following) and control (low-level control allocation) problems [117]. Such

H∞-based methods can additionally be employed to detect and isolate the faults, ad-

dressing what is defined as an integrated regulation and diagnosis problem, designed

to switch to another controller should excessive change in the dynamics be detected

[117]. In line with comparable research reports employing H∞ methods in the AUV

field [118, 119], issues that were highlighted included the difficulty encountered when

synthesising the controller as the model uncertainty grows, the non-intuitive nature of

2.6. Actuator Fault Accommodation in AUVs 34

the weighting matrices, and the need to select a sensible model linearisation condition.

Finally, in line with the idea of extending the robust linear results to nonlinear

control systems, pFTC methods were recently applied to submersible vehicles [120].

Due to the straighforward implementation of the Lyapunov-based pFTC method [44],

further applications are expected to arise in the near future in the field. Nonetheless,

the method, at this stage, cannot ensure stability for complete loss of actuator effi-

ciency, i.e. can only tolerate partial loss of efficiency, requiring further theoretical

advancement before being deployed onboard real vehicles.

After reviewing the information sources detailed in this section, it is apparent that

underwater vehicles, such as AUVs, ROVs and UGs, represent a category of platforms

operating in highly uncertain conditions, where reliability and safety are often placed

at a higher priority than outright performance. In practical applications, such as in

UG operations, where energy efficiency determines the ability to extend operational

endurance so as to collect additional or more detailed data, employing dedicated sen-

sors to continuously monitor the status of the actuators does not represent an attractive

option. Onboard sensors used to estimate position, velocity and attitude are, at times,

completely turned off and the entire control system module is, in such extreme circum-

stances, only switched on intermittently to perform periodic corrective actions [20].

In such operational scenarios, it becomes prohibitive to rely on a control system

encompassing an FDI block and on a reconfiguration mechanism, or on prompt online

gain adaptation. Moreover, even with assuming that such systems are designed and

enough onboard energy is dedicated to the FTC scheme, all these subsystems need

to work in harmony to ensure closed-loop stability, with any one failing determining

potentially catastrophic outcomes [97].

More broadly, in any application where widespread sensor and algorithm use can-

not be assumed due to there being financial cost, power or complexity constraints,

pFTC represents the option with the most significant potential impact. Therefore, the

pFTC class of controllers is chosen as the area with higher applicability potential and

worthy being investigated.

2.7. Recent trends in machine learning-based control for AUVs 35

2.7 Recent trends in machine learning-based control

for AUVs
In the last two decades, ML-based control systems surged from within the control and

computer science communities. Most of the proposed methods employ control laws

(or policies) based on training ANNs through learning-based approaches [18]. Upon

training completion, an ANN deployed in a control loop solves a sequential decision-

making problem, namely the determination of what control input should be applied

given the current state of the system [121].

Early works in the research and use of ANNs, e.g. [122] (1989), [123] (1991), and

[124] (1993), increased the ANN capability to approximate complex nonlinear func-

tions, eventually culminating in the universal approximation theorem [125] (1998).

The universal approximation theorem states that any arbitrary nonlinear continuous

function can be approximated with an ANN of sufficiently complex architecture. In

actuality, ANNs architectures of increasing complexity were developed in the past

decades, with notable results being Recurrent Neural Networks (RNNs) [126], multi-

layer feedforward networks [124], LSTM networks [127] and Transformers [128].

Architectures employing ANNs were specifically employed to tackle a diverse

range of the AUV guidance and control problems. For instance, path planning al-

gorithms were devised using the Reinforcement Learning (RL) learning paradigm to

train ANN laws within the Q-learning framework [129], the Deep Deterministic Pol-

icy Gradient [130] and the Actor-Critic [131]. Further notable examples in the field

encompass the docking of an AUV where the control laws were derived via RL [132],

and the control of a hybrid UG dynamics via an ANN-inverse control [133].

These research reports are motivated by the need to devise control laws for com-

plex nonlinear dynamical systems, i.e. AUVs and UGs, subject to dynamic parameters

that are particularly costly to derive, and subject to model and environmental uncertain-

ties and disturbances. Under such conditions, ANN-based control laws clearly stand

out as an invaluable tool to derive both robust and adaptive laws. On the downside, a

shared characteristic of the surveyed works is the lack of formal stability guarantees. In

other terms, classical stability results, such as those based on classical control theory as

2.8. Dynamic model and simulation 36

in Bode and Nyquist criteria, are not proffered. Conversely, ANN-based control laws

are often verified with practical (i.e. simulated) tests or validated upon deployment on

the real systems.

To cope with the lack of stability guarantees, a most recent control stream focuses

on equipping ANN-based control with formal proof of stability. One such example is

the NLC, a method to devise ANN-based control laws while guaranteeing formal sta-

bility guarantees based on Lyapunov’s stability theory [134]. Such a method exploits

a training loop generating at the same time a candidate control law and a stability

certificate function. Upon minimisation of the target loss function, the correctness

of the candidate control law and stability certificate pair is verified over a continuous

domain, e.g. a subset of the Reals, either formally guaranteeing or disproving the sta-

bility of the obtained solution. Since the proposal of the original NLC method, a range

of works followed, extending the nature of stability guarantees that can be provided

[135, 136, 137], and focusing on discrete-time systems [138, 139].

The NLC method holds significant potential to exploit the advantages of the ANN-

based control methods employed in AUV applications, without compromising the sta-

bility guarantees provided. Nonetheless, common limitations of the NLC-works sur-

veyed persist. First, the derived control laws are linear [134, 137], while the nonlinear

nature of the ANNs is only exploited in the stability certificate functions. Next, an

initial value of the control law is always provided through classical state-feedback so-

lutions, e.g. optimal control methods. Moreover, as the system dimension increases,

training and verification times of up to several days were reported [138]. Given the re-

cent nature of this research stream, a limited number of works are currently available,

highlighting the possibility for further research to provide clarifications and solutions

to the stated limitations.

2.8 Dynamic model and simulation

Different terms exist within the context of modelling and simulation (and control) of

underwater vehicles. In this work, the term traditional AUV defines an AUV actuated

by means of thrusters and control surfaces only. In contrast, UGs are the vehicles

2.8. Dynamic model and simulation 37

employing a combination of Variable Buoyancy Device (VBD) and internal moving

masses as means of propulsion. More recently, the term hybrid AUV was used to

denote vehicles with mixed actuator sets, namely employing thrusters, VBDs, steering

surfaces and internal moving masses [140]. As reported in Fig. 2.6, the term AUV is

selected henceforth to denote generically any one of these three classes of vehicles,

while the specific terms (i.e. traditional AUV, UG, hybrid AUV) will be employed to

refer to the vehicles in individual contexts.

Figure 2.6: AUV terminology as employed in this thesis.

To design and validate control laws in a safe manner, AUVs can either be tested in

dedicated tanks or in simulation environments. However, specific size criticalities per-

sist in the cases of certain vehicles, e.g. UGs, the dynamics of which require dozens of

meters to reach steady-state gliding conditions, making their tests in physical facilities

a highly complex undertaking.

Several AUV simulators were developed for the purpose of testing new vehicle

designs, to validate the functionality of sensors and to analyse the interaction with the

marine environment [141, 142, 143, 144]. Recently, research focused on designing

general underwater simulators, which include prompt adaption to different underwater

platforms (e.g. ROVs, UGs, sonobuoys, etc.), while accounting for the integration of

conventional underwater sensors (e.g. Doppler Velocity Logger (DVL)) and environ-

mental effects [145]. As of summer 2024, development is still ongoing to simulate

the dynamics of the more complex vehicles, i.e. vehicles with internal moving masses

2.8. Dynamic model and simulation 38

such as the UGs1.

Underwater vehicles of different types, including ROVs, traditional and hybrid

AUVs and UGs, share key elements of fluid dynamic modelling owing to the fluid dy-

namic interaction of a hull with the surrounding environment. However, these vehicles

can be subject to different dynamic modelling procedures given the diverse natures of

their physical designs. AUVs and UGs differ in terms of their sets of available actua-

tors: while AUVs mainly use thrusters as the main means of propulsion, UGs employ

VBDs and internal moving masses to perform spatial manoeuvres. These different

types of actuators lead to specific modifications in the development of the dynamical

models.

Dynamical models of underwater vehicles derived following the Newton-Euler

formulation were extensively researched in the previous decades [146, 147, 148].

These analytical formulations were focused on rigid-body vehicles with 6 DOFs, suited

to describe conventional vehicles with a hull and a standard set of actuators (such as

thrusters and control surfaces). Such formalism demonstrated to be satisfactorily suited

to describe the dynamics of traditional AUVs.

With the introduction of the UGs, a new vehicle design paradigm started to appear,

namely where traditional actuators were combined with internal moving masses, as a

means to enhance control ability of the vehicle [149, 150]. An example of UG with a

shifting mass is the Slocum (Webb Research Corporation) [151], while vehicles with a

mass shifter allowing for both pitch and roll control are the Spray (Scripps Institution

of Oceanography) [152], the Seaglider [153] and the Deepglider [154] (both from the

University of Washington’s Applied Research Laboratory). Advanced glider design

concepts as in hybrid AUVs were also developed to further increase manoeuvrability

and available speed range [155]. Hybrid AUV designs comprising a combination of

control surfaces, jet pumps and VBD include the Sea-Whale 2000 [156], the Folaga

[157] and the Liberdade class gliders (Stingray, XRay, ZRay) inspired by the Flying

Wing design (2006-2011, US Navy Office of Naval Research) [149].

1Ongoing plan to extend the vehicle dynamics to account for moving masses (as of August 2024):
https://github.com/Field-Robotics-Lab/dave/blob/master/urdf/robots/glider_description/urdf/glider-
_hybrid_whoi.xacro.

https://github.com/Field-Robotics-Lab/dave/blob/master/urdf/robots/glider_description/urdf/glider_hybrid_whoi.xacro
https://github.com/Field-Robotics-Lab/dave/blob/master/urdf/robots/glider_description/urdf/glider_hybrid_whoi.xacro

2.8. Dynamic model and simulation 39

Once the dynamic model of a vehicle comprising an arbitrarily complex set of

actuators is available, the equations of motions are implemented in a simulator. AUV

simulators are conventionally designed based on the causal paradigm. In a causal

simulator, the existing connections between subsystem blocks represent the flow of

analytical quantities from the output of a block to the input of the next block. In

other words, the output of each block is a function of the block inputs in a causal

fashion. This is the case for models built, for instance, in Simulink, where the designed

scheme reflects the solver calculation procedure more than the physical structure of the

simulated system [158].

The second possible design paradigm is defined as declarative or acausal, where

each building block embeds a set of equations associated with a physical component

(examples being the characteristic equation of a motor, the equations of motions of a

rigid-body, etc.), and the connections among blocks serve as a proxy for the exchange

of physical variables. As an example, in an acausal simulator, an interface between two

blocks might be represented by a mechanical flange, denoting an exchange of force and

torque.

In causal simulators, minor changes in the system equations can require substan-

tial modifications of the simulation model. Conversely, the acausal modelling design

grants modularity by simplifying the addition of sequential components without the

need to assemble a new dedicated system of equations. However, acausal models

might give rise to sets of Differential Algebraic Equation (DAE) due to algebraic con-

straints set between variables, linked to the connection of components one to another

[159]. DAEs lead to higher order systems or algebraic loops, in turn requiring more

sophisticated solution algorithms to perform symbolic manipulation of variables and

reduce the order of the system [159].

Currently, there is a lack of simulators for AUV applications that were designed

following the acausal approach. This is most likely due to the recent interest towards

such an approach, when compared with the traditional causal approach. All the sim-

ulators surveyed thus far are designed with a causal approach, being more limited in

the range of actuators that can be promptly embedded onboard the vehicles. In the

2.9. Conclusions 40

currently available simulators, the addition of a new shifting mass, for instance, would

require the update of the equations of motion and, in turn, prompt a significant re-

design of the simulator. The same task, in an acausal simulator, would more simply

require the connection of a new rigid-body (the sliding mass) to the original vehicle

body, via a mechanical flange (e.g. a prismatic joint).

Despite disadvantages at the solver level, the acausal approach appears to be bet-

ter suited to simulate a wider range of underwater vehicles. Moreover, the enhanced

modularity capability could be further exploited to support the design of new concept

vehicles. For instance, an acausal simulator would facilitate exploring the addition

of an actuator on an existing vehicle, in turn investigating the effect on the vehicle’s

manoeuvrability, or its resilience to faults.

2.9 Conclusions
In this chapter, the causes and effects of actuator faults in AUVs missions were first

outlined. An overview of the fault-tolerant control field was presented, with specific

focus on the methods available to mitigate the problem of faults at actuators. Finally,

methods which can be used to model and simulate different AUV concepts were com-

pared and discussed.

In the following chapter, a summary of the identified research gaps is presented,

followed by the research vision defining this work. Research questions are formulated

next, and an associated research approach is envisioned.

Chapter 3

Research Approach

3.1 Research gap analysis

Following the literature review presented in Chapter 2, clear research gaps were iden-

tified, which will be discussed and summarised in this chapter.

First, given the growing interest in underwater marine robotics applications, an

ever more diverse range of autonomous vehicles is proliferating. Simulation of AUVs

is rendered particularly complicated by the increasing employment of internal mechan-

ical components to serve as actuators. Modern AUV concepts leverage internal shifting

and rolling masses to enhance the ability to control the AUV’s pitch and roll, in place

of (or in combination with) traditional control surfaces. The presence of these internal

actuators leads to the simulation of the vehicle dynamics becoming a significantly more

convoluted process when compared to modelling traditional AUVs, resulting from the

multibody dynamics nature of the vehicles. Currently available simulators implement

standard 6 DOF rigid-body models, which lack the modularity to be readily extended

to suit the multibody dynamics characteristics of this new generation of AUVs.

Second, developing FTC capability was shown to be of paramount importance for

AUV missions, owing to the unstructured nature of the operating environment within

which the vehicles operate. One of the limitations reported in relevant research is the

difficulty encountered when devising a unique control law for multiple fault modes,

with no clear method that stood out as offering a conventional solution to the problem.

Relevant research in the field of FTC conveys the message that efforts to find pFTC

3.2. Research vision 42

solutions can not be justified both due to a lack of available methods and due to the

control solution possibly being over-conservative.

Recent control methods based on ML hold the potential to provide innovative per-

spectives to unresolved control problems, such as the design of pFTC laws. However,

ML-based methods conventionally suffer from a lack of stability guarantees that make

their application unsuited to safety-critical control applications, such as when control-

ling AUVs. Therefore, a new investigation into pFTC methods by applying recent

results in ML without compromising on the classical formal stability theories shall be

conducted. Should an effective pFTC method be devised, the potential to reduce the

vehicle design complexity and cost by eliminating the need for detection algorithms

and monitoring sensors would be substantial.

3.2 Research vision
Based on the identified research gaps, this work aims first to develop a unified frame-

work to simulate diverse underwater vehicles, ranging from traditional AUVs to UGs

and hybrid vehicles. Differing from the traditional causal simulation approach, this

work intends to explore the acausal simulation paradigm, employing class-oriented

modelling to enhance simulation design modularity along with the capability to simu-

late the dynamics of a wider range of more complex underwater vehicles.

Next, in line with encouraging recent works in the field of pFTC, this thesis chal-

lenges the common view that pFTC has limited applicability due to the difficulty

encountered in the synthesis of the control law. Recent advancements in ML-based

control methods, together with the increased availability of open-source software re-

sources, have the potential to shed new light on the field of pFTC engineering.

3.3 Research questions
Three research questions were derived from the identified research gaps, these in turn

representing the three focal points that would need to be addressed to advance the pub-

lic knowledge in the field of simulation and control of a diverse range of autonomous

underwater vehicles with ML-based methods.

RQ1 Are multibody object-oriented simulators suitable for simulating the dynamics

3.4. Research approach 43

of autonomous underwater vehicles?

RQ2 Is the Neural Lyapunov Control method an effective approach to design stable

control laws for nonlinear systems?

RQ3 How can the Neural Lyapunov Control method be extended to a passive fault-

tolerant control approach to ensure closed-loop stability for platforms affected

by actuator faults?

3.4 Research approach

To simulate the latest generation of AUV concepts based on a class-oriented modelling

paradigm, a comprehensive library encompassing the dynamics of the hull and the

internal moving components, together with hydrostatic and hydrodynamic effects will

be developed. The full range of actuators conventionally mounted on AUVs, such

as control surfaces, thrusters and VBDs, will be included for use in the library. The

simulation of any AUV comprising the use of any combination of such actuators will be

made possible by assembling the sub-components of which the vehicle is comprised.

Experimental evaluation of the simulator will follow in two steps of increasing

complexity. First, a verification of the associated equations of motion will be carried

out, namely a comparison of the simulated results against theoretical analytical results.

Next, the validation of the simulation output will be carried out against deployment

data, providing an overview with regard to the accuracy of the developed simulation

tool.

In the second part of this research, focus will be shifted to the control methods.

Specifically, the NLC method will be investigated to assess its capability to systemat-

ically design control laws in an automated manner. The NLC mixes sound theoreti-

cal results rooted in nonlinear control theory with the computational attractiveness of

ML-based approach and stability guarantees certified through formal verification, as

illustrated in Fig. 3.1.

As the NLC was initially designed to extend the closed-loop performance of a

state-feedback control law, target interest will be directed to analyse the capability of

the method to automatically design control laws. The NLC method will be challenged

3.4. Research approach 44

Figure 3.1: Venn diagram of the control method selected for the present research (adapted
from [18]).

to synthesise stabilising control laws for a set of benchmark dynamics. Two outcomes

will follow. If the NLC is found to already be suitable for the intended purpose in

its current form, the research will proceed by extending the NLC as a pFTC method.

Otherwise, tailored modifications will be trialled to render the NLC suitable to the

automatic synthesis of control laws.

The third part of this research will focus on enhancing the NLC method with

fault-tolerant capability. Once the NLC has the proven capability to synthesise control

laws, the enhanced method will be challenged to simultaneously stabilise a series of

system dynamics associated to the nominal and to the fault modes. The fault-tolerant

problem is thus formulated as the feasibility of the design of a unique control law to

stabilise a prescribed set of operational modes problem. Naturally, the fault-tolerant-

capable NLC will inherit the same properties of the unmodified NLC, namely bringing

together the fields of fault-tolerant control with ML and formal verification, as shown

in Fig. 3.2.

3.4. Research approach 45

Figure 3.2: Venn diagram of fault-tolerant control methodology.

To conclude, the complete process entailing the design of a fault-tolerant-capable

NLC law applied to a AUV operating under fault conditions and verified with the

developed simulation tool will be designed and verified.

The overall research approach that will be followed in this thesis is illustrated in

Fig. 3.3.

3.4. Research approach 46

Figure 3.3: Summary of the research approach envisioned for this thesis.

Chapter 4

OpenMAUVe: an open-source

Modelica simulator for Autonomous

Underwater Vehicles and Gliders

4.1 Introduction

This chapter outlines the design and verification of a generic simulator for a wide range

of AUVs, including traditional AUVs, UGs and hybrid AUVs. First, the modelling the-

ory used to describe the fluid dynamics interaction of the vehicles with the surrounding

environment is reported. Next, a modular Modelica-based simulator architecture is de-

signed, accommodating the implementation of different vehicles. Then, the simulator

is verified through comparison of the obtained results with an analytical dynamical

model. Following, the simulator is (quasi-) validated through comparison with another

AUV simulator. To conclude, instructions on how to employ the simulator are provided

and implementation examples are showcased1.

The outcome of this chapter provides answers to RQ1: are multibody object-

oriented simulators suitable for simulating the dynamics of autonomous under-

water vehicles?

1The complete software framework associated with the simulator described in this chapter
is scheduled to be released in a dedicated publication, and will be released open-source at:
https://github.com/grande-dev/OpenMAUVe.

https://github.com/grande-dev/OpenMAUVe

4.2. Overall simulator design 48

4.2 Overall simulator design
Simulator design for AUVs is most often carried out by employing a MAT-

LAB/Simulink framework [160, 161, 162, 163, 164]. This choice of design tools

allows the designer to employ libraries inherited from other applications, such as those

stemming from the aerospace community. One such example is the 6-DOF Motion

Platform2, designed within the Simulink Aerospace Blockset.

The MATLAB/Simulink framework constitutes an instance of causal simulators:

individual components or blocks, each with their own input and output signals are

connected in series, where each block input is determined by the output of the previous

block. In such a framework, the dynamic response is then simulated through time-

based propagation of an initial input signal and/or conditions, in what is referred to as

signal flow mode [165].

Employing a methodology that differs radically from the causal simulator de-

scribed above, the acausal (or non-causal) paradigm involves designing component

models and connecting them via ports through which data may be exchanged [165]. A

component model encapsulates the set of describing equations with the interfaces rep-

resenting relevant physical information (e.g. the model of a spring might be designed

with an interface representing an external applied force, or a displacement) [166].

When modelling complex mechanical structures, acausal simulators offer a high

degree of design flexibility when compared to the causal counterpart. An articulated

mechanical structure is assembled within the simulator after defining the dynamic

equations of the constituent sub-components, e.g. several 6 DOFs rigid-bodies can be

connected by physical interfaces and re-arranged as needed. This modelling paradigm

greatly simplifies the design process of multibody dynamics, which are error prone,

less scalable, and need to be implemented in an ad hoc simulator. In the context of

simulating a wide range of AUVs encompassing several combinations of actuators,

opting for acausal simulators allows for a more straightforward re-design of the vehi-

cle, for instance by adding or removing target components.

When simulating AUVs, the equations of motion encompassing both the rigid-

2https://uk.mathworks.com/help/simulink/slref/six-degrees-of-freedom-6-dof-motion-
platform.html.

https://uk.mathworks.com/help/simulink/slref/six-degrees-of-freedom-6-dof-motion-platform.html
https://uk.mathworks.com/help/simulink/slref/six-degrees-of-freedom-6-dof-motion-platform.html

4.2. Overall simulator design 49

body dynamics and the external forces and moments, such as hydrostatics and hy-

drodynamics, are to be implemented. Different AUVs such as traditional AUVs and

UGs share similarities in the modelling of external forces and moments owing to the

common nature of the hydrodynamic interaction of the hull with the surrounding fluid.

However, internal actuators involving the displacement of moving masses or determin-

ing a time-varying system mass, lead to differences in the equations of motion.

Hence different actuators lead to equations of motions that are described by sys-

tems of Ordinary Differential Equations (ODEs) of different dimensions.

Definition 1 (Dynamic model dimension [92]) Given a dynamic model defined by a

system of ODEs, the model dimension or, more simply, the dimension, defines the num-

ber of dependent variables.

Traditional AUV (and ROV) are conventionally modelled by means of 6 DOFs

rigid-body dynamics, resulting in 6-dimensional models [147]. In contrast, the mod-

elling of UGs and hybrid AUVs involves additional DOFs associated to the internal

moving components, resulting in higher dimensional models. Including these addi-

tional dimensional considerations can result in models of up to 9 dimensions and above

[20].

In the context of employing acausal simulators in underwater vehicles applica-

tions, high-dimensional AUVs models can be simulated by assembling the constituent

sub-components. Each physical component, such as the hull or a movable mass is

described as an element with a mass and an inertia, defined by a set of equations of

motion.

Once the individual sub-components are designed, connecting them by means

of mechanical constraints results in a leaner and less complex design solution than

implementing ad hoc the complete set of equations of motions, as required by the

causal paradigm. This design choice renders it possible to simulate and test several

vehicle architectures with different combinations of current available actuators or even

including new one actuators with less design effort and complexity.

There are two main alternative languages and tools that currently represent the

4.2. Overall simulator design 50

current state-of-the-art for acausal modelling: Simscape and Modelica. Simscape3 is

an add-on tool to the MATLAB/Simulink environment, offering several libraries for

different physical domains, such as SimElectronics, SimHydraulics and SimMechan-

ics. Modelica4, first developed in 1997 from the Modelica Association [167], with its

initial theoretical foundation proposed in 1978 [168], is an open-source object-oriented

modelling language. Similar to Simscape, it offers libraries that may be used to model

mechanical, electrical, electronic, hydraulic, thermal, and control elements.

When compared to Simscape (owned by Mathworks), Modelica has open-source

fully customisable packages. A growing pool of academic and industrial partners share

new results at the annual or biennial International Modelica Conference5.

Different Integrated Development Environments (IDEs) for Modelica are avail-

able including, among others, Dymola and OpenModelica. Dymola6 (DYnamic MOd-

eling LAboratory), developed by Dassalut Systèmes, represents a widely used com-

mercially available option with a user-friendly interface encompassing diagram and

icon layers [169].

OpenModelica7 is currently deemed the most complete open-source development

environment [170]. Although not currently offering the same level of interface so-

phistication of Dymola, OpenModelica users are consistently developing additional

capabilities, as shown in the recent advancements in the 2023 Modelica Association

Project FMI [171] and corresponding developed tools8. As an example, these tools al-

low the user to export the designed models via Functional Mock-up Unit, an extension

based on the Functional Mock-up Interface, which is an open standard defining a struc-

ture and interface for exchanging dynamic simulation models using a combination of

binary files, a XML description, and C code.

Given the recent advancements in the Modelica language and associated tools,

it is possible to employ the Modelica language for simulating complex equations of

motions and interfacing to other popular software designed for different tailored pur-
3https://uk.mathworks.com/products/simscape.html
4https://www.modelica.org/
5https://modelica.org/events/
6https://www.3ds.com/products-services/catia/products/dymola/
7https://www.openmodelica.org/
8https://github.com/modelica/Reference-FMUs

https://uk.mathworks.com/products/simscape.html
https://www.modelica.org/
https://modelica.org/events/
https://www.3ds.com/products-services/catia/products/dymola/
https://www.openmodelica.org/
https://github.com/modelica/Reference-FMUs

4.2. Overall simulator design 51

poses. For instance, it is possible to complete the dynamics design process in Dymola

and then import the model in Simulink to exploit the control toolboxes designed by

Mathworks [172]. Moreover, Modelica offers standard communication interfaces to

interact with popular programming languages such as Python or with middleware soft-

ware applications such as Robot Operating System (ROS). This makes it an optimal

open-source choice for complex academic and industrial applications that can exploit

the best functionalities of each software tool, such as designing the system dynam-

ics in Modelica, the control laws in Python or C++, and the testing of closed-loop

performances in ROS.

Due to its unique simulation architecture, Modelica requires tailored numerical

methods to simulate the resulting dynamics. In actuality, connecting physical elements

each with an associated dynamics, might give rise to systems of DAEs. On top of the

dynamics of the individual objects, explicitly described during the component model

definition and ususally described by ODEs, the physical constraints add algebraic non-

differentiated equations. As an example, assuming there is a requirement to design a

class denoted as RigidBodyPair, representing the dynamics of a two generic rigid-body

joint together. Two single RigidBody objects can be instantiated, and connected to one

another by means of a prismatic joint. The physical constraint imposed by the joint is

represented at solver level as an algebraic equation that is automatically added to the

set of ODEs associated with the rigid-body dynamics defined during the design of the

RigidBodyPlane model. This initial step of model assembly through the creation of

a system of DAEs is defined as Flattening [167]. Next, equation manipulation (such

as automatic simplification or rearrangement) is performed to attempt solving sub-

systems of equations more efficiently in what is defined as Causalisation. Finally, the

Time integration steps are performed to simulate the required dynamics.

Owing to the different physical domains that can be simulated, Modelica models

can be composed such that both fast and slow dynamics need to be simulated, giving

origin to stiff problems. Fast dynamics force the solvers to take unreasonably small

steps, in turn leading to significantly degraded simulation performance when combined

to slow dynamics. To this end, Modelica offers acausal resolution algorithms capable

4.2. Overall simulator design 52

of increasing the simulation execution rate of complex dynamical systems, becoming a

key element when carrying out simulations replicating, for instance, long deployment

missions, where each one can last up to several weeks or months in actuality.

Despite the noted benefits, OpenModelica does present some deficiencies. First,

the graphical interface is not comparable with those provided by the commercially

available packages, namely Dymola or Simscape. Second, the resolution of bugs or

coding inefficiencies is left to the Modelica community, which often results in there

being longer delay for such issues being resolved. Despite the deficiencies, OpenMod-

elica is currently deemed to be the best option within the framework of simulating

complex multibody models employing open-source tools.

Modelica features a range of free mechanical, electrical, magnetic, thermal, fluid

and control systems models, collected within the Modelica Standard Library (MSL).

A growing number of free and commercial libraries developed by the Modelica asso-

ciation are also accessible within the OpenModelica IDE. Several libraries were devel-

oped based on the basic components offered from within the MSL to model different

vehicles, among which ground vehicles [173], reusable launch vehicles [172], rockets

landing via a parachute [27] and rigid and flexible aircrafts [174]. Despite the availabil-

ity of a wide range of free libraries, there is currently no library specifically dedicated

to the modelling and simulation of underwater vehicles.

Several components constituting the AUVs can already be found from within the

MSL. For instance, mechanical components available within the MSL can be used to

instantiate the rigid-bodies, which constitute the building blocks for the hull and inter-

nal moving masses of the UGs. However, these components do not include key hydro-

dynamic factors such as dynamic change of mass or volume of the vehicle (driven by

the VBD), as well as the ability to account for added mass effects. Additionally, forces

specific to the underwater environment such as hydrodynamic effects and conditions

such as buoyancy are not represented among the pre-defined blocks and need dedicated

development. The lack of a unified framework tailored to underwater factors led to the

necessity to develop a new library to facilitate ready prototyping and testing of control

laws for AUVs and UGs. The output of this chapter will therefore be a new set of tools

4.3. Autonomous Underwater Vehicles modelling 53

to simulate a broad range of underwater vehicles encompassing effects and different

actuators.

Following the library development, verification of the simulator will be carried

out in two phases of increasing complexity. First, a comparison of the devised sim-

ulator results against theoretical results will be performed. This is to verify whether

the vertical (two-dimensional (2D)) dynamics of an AUV simulated in OpenModel-

ica replicates the theoretical (i.e. analytical) model to within an acceptable margin of

accuracy. Second, data from a second simulation architecture implementing an AUV

performing more advanced vertical and spiralling (three-dimensional (3D)) manoeu-

vres will be used for purposes of empirical comparison.

4.3 Autonomous Underwater Vehicles modelling
AUVs dynamic modelling has followed different approaches based on the type of on-

board actuators. Modern AUVs leveraging internal shifting and rolling masses to en-

hance the ability to control the AUV’s pitch and roll dynamics prompted to extend

the traditional modelling approach characterised by the description of the vehicle as a

single rigid-body.

From a mechanical perspective, a traditional AUV has conventionally been repre-

sented as a single rigid-body, owing to the vehicle being actuated by means of thrusters

and steering surfaces [175]. The inertia of the thrusters (which at times might be com-

manded to rotate, as in the case of azimuth thrusters) and of the control surfaces is

often considered negligible when compared to the inertia of the vehicle hull. This

modelling choice allows to consider the vehicle as having a unique lumped mass and a

constant inertia tensor, simplifying the design of relevant dynamic models. Conversely,

UGs have been represented as multibody systems actuated with a combination of VBD

and internal moving masses. This modelling choice derives from the moving masses

generating significant dynamics on the hull, when set into motion.

According to the Newton-Euler formalism9, dynamic models can be constructed

9A preliminary version of Newtonian formalism was first published by Isaac Newton in 1687 for
point-particle systems and later extended to rigid-bodies by Leonhard Euler in 1736. In associated
literature, this modelling approach is commonly referred to as Newton-Euler formalism [176].

4.3. Autonomous Underwater Vehicles modelling 54

based on the principle of conservation of linear and angular momentum. This approach

was imported in 1991 into the marine industry in the form of the robot-like vectorial

model description [177], and became ubiquitous in modelling, guidance and control

applications. Selecting a vehicle of mass m and (constant) inertia tensor III000, and defin-

ing an arbitrary origin {O} (typically attached to the vehicle body), the Newton-Euler

formalism applied to AUVs yields the following equations of motion ∈ R6:

m(v̇vv000 +ωωω000× vvv000 + ω̇ωω000× rrrggg +ωωω000× (ωωω000× rrrggg)) = fff 000

mrrrggg× v̇vv000 +mrrrggg× (ωωω000× vvv000)+ III000ω̇ωω000 +ωωω000× (III000ωωω000) = mmm000

(4.1a)

(4.1b)

where vvv000 ∈ R3 is the velocity of {O}, ωωω000 ∈ R3 the angular velocity about {O} and

rrrggg ∈R3 the distance from {O} to the centre of gravity. Additionally, fff 000 ∈R3 represents

the external forces applied to {O} and mmm000 ∈ R3 the moment of the external forces

and the external torques about {O}. Finally, v̇vv000 ∈ R3 and ω̇ωω000 ∈ R3 denote the time

derivatives of vvv000 and ωωω000, respectively.

Assuming that an AUV is considered composed of a number j of internal bodies,

such as the hull and moving masses, one modelling approach involves using j 6 DOFs

models in parallel (from Eq. (4.1)) linked by the exchange of the reaction forces and

moments at the interface by means of fff 000 and mmm000. As is apparent, the derivation of such

a mathematical model is highly convoluted. Second, this approach requires significant

manipulation every time an additional moving mass is to be considered, as when a

different mechanical design is developed.

To simplify the modelling task and the corresponding implementation in a simu-

lator, computer-aided tools such as Modelica were developed. The Modelica compiler

automatically generates a system of DAEs, composed of one derivation of Eq. (4.1) for

each rigid-body (a set of ODEs), combined with algebraic equations associated to the

exchange of momenta at the physical constraints (e.g. prismatic joints, rotational links

etc.). Owing to the nature of the proposed approach, thorough comparison against the-

oretical results is rendered necessary. The focus of this section is the investigation of

external forces and moments experienced by a vehicle’s hull (namely fff 000 and mmm000), to

later verify whether a Modelica-based approach is a viable simulation option for this

4.3. Autonomous Underwater Vehicles modelling 55

class of complex multibody vehicles.

Dynamic models of underwater vehicles are conventionally developed employing

three reference frames: the inertial, the body and the flow frames [178, 20, 179]. This

modelling method allows the designer to express hydrostatic and hydrodynamic forces

(and moments) acting on the vehicle body in the most convenient reference and then

subsequently rotated onto the body-fixed frame.

The inertial frame is defined as a non-accelerating frame, usually set to be Earth-

fixed [175]. As a first approximation, a North-East-Down (NED) frame of origin {Oi}

can be selected as Earth-fixed and non-rotational, or inertial, such that Newton’s laws

of motion apply. This approximation is generally referred to as flat Earth navigation.

Care must be taken when missions of a size comparable to the Earth’s radius are being

simulated, or when several latitudes and longitudes are spanned during the operations.

In such cases, other frames that can account for the Earth’s angular rate of rotation

such, as the Earth-centred Earth-fixed (ECEF), need to be adopted.

Next, a body-fixed frame of origin {Ob} that moves with the vehicle is located at

the Centre of buoyancy (COB) of the hull. A standard procedure involves assuming

the COB to be geometrically fixed at the centroid of the hull volume. The hull volume

expands and contracts based on the operating depth, but the change in deformation is

assumed to be uniform, i.e. the hull does not experience different deformation rates on

different axes due to pressure. As the AUVs are typically designed with an ellipsoidal

body, the COB is set to coincide with the centroid of the ellipsoid. For non-ideal ellip-

soidal bodies, e.g. when the vehicle hull is composed of several sections with differing

geometries, further mechanical design effort is required to preserve the vehicle shape

under compression. An example of the need for this consideration is the Slocum UG,

which encompasses five sections of elliptical shapes and truncated cones and where

angles are chosen to provide comparable compressibility as the UG dives [180, 181].

For modelling convenience, the {Ob} axes of the vehicle are usually selected to align

to the principal axes of inertia of the vehicle. This means that there might be a transla-

tion from {Ob} to the principal axes of inertia of the vehicle, but no change of relative

orientation. Therefore, the xb-axis of the body frame is aligned with the longitudinal

4.3. Autonomous Underwater Vehicles modelling 56

axis of the vehicle and points towards the nose end, the zb-axis points downward and

the yb-axis completes the right-hand tern pointing starboard.

Since the hydrodynamic forces and moments are traditionally expressed as func-

tion of the relative velocity of the vehicle with respect to the surrounding fluid, a third

frame defined as flow frame, is introduced. The origin of the flow frame is coincident

with the origin of the body frame ({O f } ≡ {Ob}), and its orientation is obtained from

the body frame by performing two sequential rotations of the angles α and β (detailed

later in this section). The flow frame is specifically convenient when modelling hy-

drodynamic effects, such as lift and viscous damping. The frame definitions and the

selected convention of the axes are shown in Fig. 4.1.

Figure 4.1: Selected reference frames in use for AUV modelling (Seaglider UG - ogive
model), © 2022 IEEE [19].

In accordance with the Society of Naval Architects and Marine Engineers

(SNAME) nomenclature (1950) [182], vvv000 = (u, v, w) denote the components of the

body-fixed linear velocity with respect to {Oi} expressed in {Ob}. When a marine

vehicle is exposed to ocean currents of components vvvccc = (uc, vc, wc) as measured with

respect to {Ob}, the relative velocity vector along the three axes can be expressed in

the body-fixed frame as [175]:

ur = u−uc (4.2a)

vr = v− vc (4.2b)

wr = w−wc. (4.2c)

4.3. Autonomous Underwater Vehicles modelling 57

The magnitude of the flow speed vector, denoting the relative speed of the vehicle with

respect to the surrounding fluid, is defined as [175]:

Vr =
√

u2
r + v2

r +w2
r . (4.3)

Additionally, the hydrodynamic angles α and β , defined as angle of attack and the

sideslip angle, respectively, are computed as:

α = tan−1
(

wr

ur

)
(4.4a)

β = sin−1
(

vr

Vr

)
. (4.4b)

Following the introduction of the reference frames and their associated conven-

tion, the modelling focuses on the definition of the elements composing the vehicle’s

dynamics. AUV dynamics encompass several masses associated with the internal ele-

ments. The overall vehicle stationary mass (ms) is referred to as:

ms = mh +mw +mb (4.5)

where mh denotes the hull mass (uniformly distributed throughout the vehicle), mw a

fixed point mass that captures non-homogeneous mass distribution elements and mb

the variable ballast mass. Fig. 4.2 illustrates the definition of the masses and their

relative locations with respect to the {Ob}. mb is displaced from the {Ob} by the

distance rrrbbb and mw by the distance rrrwww, with (rrrbbb,rrrwww)∈R3. The mass mw is used during

the trimming of the vehicle to balance the pitching and rolling moments that results

from uneven mass distribution, that may be due to, for example, internal components

or manufacturing imperfections. The overall vehicle mass is defined as:

mv = ms +mp (4.6)

where mp denotes a movable mass, the position of which, with respect to to the {Ob},

4.3. Autonomous Underwater Vehicles modelling 58

is time-variant and denoted by rrrppp(t).

The mass of the fluid displaced by an AUV is typically referred to as m, and the

net buoyancy as m0 = mv−m. According to this convention, the vehicle is negatively

buoyant when m0 is positive and positively buoyant when m0 < 0.

Figure 4.2: AUV masses definition (adapted from [20]).

4.3.1 Hydrodynamics

Forces and moments acting on the vehicle will now be discussed. Hydrodynamic

forces and moments are highly nonlinear functions of the speed and attitude of a rigid

object’s interaction with a surrounding fluid [183]. While drag is the term employed

in aerodynamic applications, viscous damping or drag are interchangeable notations in

marine modelling and are used as synonyms in this thesis [147, 20]. Viscous damping

encompasses several phenomena as potential damping (associated to the oscillation

of a body subjected to wave excitation), skin friction damping (linked to shear forces

from water flowing alongside the hull) and form damping (due to pressure differences

between the bow and stern of the object) [184].

As it is generally difficult to isolate the effect of each component on the overall

damping, viscous effects are usually modelled as the sum of a linear and a quadratic

term [175]. The linear factor mostly captures potential damping and skin friction, while

the quadratic term encapsulates the form damping and the effect of vortex shredding

at sharp edges. Conversely, as an object moves in a fluid, the separation of the flow

induces an unbalanced pressure drop that in turn gives rise to forces that act perpendic-

ularly to the flow speed vector, denoted as lift. Lift forces are satisfactorily captured by

quadratic terms with respect to the object velocity [148]. Viscous linear and nonlinear

4.3. Autonomous Underwater Vehicles modelling 59

terms are calculated with respect to the flow frame: this modelling is based on the size

of the wetted area of the object (or its cross sectional area), the density of the fluid and

the speed relative to the surrounding fluid. All these factors can be retrieved through

analysis of the vehicle’s geometry and through sensoring.

A typical modelling choice of the hydrodynamics of submerged AUVs, as re-

ported in [20, 179], is represented by:

FFF f
hd =

[
−D SF −L

]T
(4.7a)

MMM f
hd =

[
TDL1 TDL2 TDL3

]T
(4.7b)

with D denoting the drag, SF the side-force (sometimes referred to as crossflow drag),

L the lift, and TDLi the viscous moment around the i-th axis of the flow frame. Hydro-

dynamic effects are highly nonlinear functions of the vehicle’s geometric properties,

speed and relative motion with respect to the surrounding fluid [175]. Models encom-

passing the use of linear terms only are employed for slow moving vehicles, (i.e. less

than 2 knots), while models that utilise quadratic terms are used for vehicles that move

at higher speeds, where the quadratic terms dominate. There are occasions in maritime

vehicles modelling when both linear and quadratic terms are employed in combina-

tion [185]. In the specific case of underwater vehicles where the hydrodynamic effects

due to wave excitation can be neglected, models developed with quadratic terms only

represent the de-facto modelling choice [184, 20, 148].

Hydrodynamic models as quadratic function of the flowspeed can be described,

for the forces, as:

D =−1
2

ρV 2
r ACD(α,β ,δcs,Re)

SF =
1
2

ρV 2
r ACSF(α,β ,δcs,Re)

L =−1
2

ρV 2
r ACL(α,β ,δcs,Re)

(4.8)

4.3. Autonomous Underwater Vehicles modelling 60

and, for the moments, as:

TDL1 =
1
2ρV 2

r ACDL1(α,β ,δcs,Re)

TDL2 =
1
2ρV 2

r ACDL2(α,β ,δcs,Re)

TDL3 =
1
2ρV 2

r ACDL3(α,β ,δcs,Re)

 +KKK
ωωω111ωωω +ωωωKKK

ωωω222ωωω (4.9)

where δcs denotes the effect of the control surfaces (e.g. rudders and stern-planes),

A the vehicle cross sectional area, Re the Reynolds number of the flow on the ve-

hicle, and CD,CSF ,CL,CDL1,CDL2,CDL3 the hydrodynamic coefficients, typically ob-

tained through Computational Fluid Dynamics modelling, KKK
ωωω111,KKKωωω222 the linear and

quadratic damping terms and ωωω the vector of the vehicle angular velocities.

While Eq. (4.8) and Eq. (4.9) capture high degrees of nonlinear hydrodynamic

effects, simplified models are often sufficient in dynamic modelling applications. One

such simplification choice entails considering the quasi-steady state hydrodynamic

form, as:

D≈ (KD0 +KDα
2)V 2

r (4.10a)

SF ≈ Kβ βV 2
r (4.10b)

L≈ (KL0 +KLα)V 2
r (4.10c)

TDL1 ≈ (KMRβ +Kp p)V 2
r (4.10d)

TDL2 ≈ (KM0 +KMα +Kqq)V 2
r (4.10e)

TDL3 ≈ (KMY β +Krr)V 2
r (4.10f)

with the hydrodynamic coefficients Ki being exclusively dependent on the geometry

of the vehicle, and, different from the coefficients Ci of Eq. (4.8) and Eq. (4.9), being

constant.

Hydrodynamic effects can be modelled as lumped forces acting in the Centre of

pressure (COP) of the vehicle. As the COP usually does not coincide with the centre

of the body frame {Ob}, the hydrodynamic forces give rise to a moment around the

origin of the body frame, captured by the TDL-terms of Eq. (4.9) and Eq. (4.10). The

4.3. Autonomous Underwater Vehicles modelling 61

hydrodynamic forces can be defined as FFF f
hd and considered acting on the centre of the

flow frame, with the generated moments denoted as MMM f
hd and where the superscript f

explicitly denotes that the forces and moments are calculated with respect to the flow

frame.

As the equations of motions are conventionally expressed with respect to the

body-fixed frame, FFF f
hd and MMM f

hd can be rotated into the body-fixed frame by means

of the following rotation matrix [20]:

RRRb
f =


cosα cosβ −cosα sinβ −sinα

sinβ cosβ 0

sinα cosβ −sinα sinβ cosα

 . (4.11)

Next, since marine applications involve the operation of vehicles that are fully

immersed in a fluid of density comparable to that of the object, hydrodynamic added

mass effects need to be considered and taken into account [20]. Added mass effects

capture the exchange of inertia between an object in motion with the surrounding fluid

and are dependent on the geometry of the vehicle. Hydrodynamic added mass can be

treated as a virtual mass that is added to the object when accelerating in a fluid [175].

Further added mass effects are linked to the frequency of the surrounding fluid due

to the currents and surface wave effects. For surface applications or for submerged

vehicles operating at shallow depth, potential added mass effects need to be mod-

elled. However, the de-facto standard model for underwater marine vehicles, initially

proposed in the early 1990s [147], relies on frequency-independent added mass coeffi-

cients, assuming that the AUVs operate at sufficient depth such that wave excitation is

negligible. The added mass coefficients can be collected in a hydrodynamic added in-

ertia matrix, referred to as MMMAAA ∈R6×6, that is positive definite and is defined according

to the SNAME notation:

4.3. Autonomous Underwater Vehicles modelling 62

MMMAAA =−



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Z ṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(4.12)

where the hydrodynamic derivatives are employed, i.e. constant parameters. The hy-

drodynamic derivatives notation is such that, for example, the hydrodynamic added

mass Z along the zb-axis due to an acceleration u̇ along the xb-axis is defined as:

Z =−Zu̇u̇. (4.13)

For underwater vehicles moving at low speed, symmetries can be exploited to reduce

the number of coefficients in MMMAAA. For a vehicle with three planes of symmetry, e.g. a

spherical vehicle [150], all the off-diagonal terms are identically null, namely:

MMMAAA = diag{Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ}. (4.14)

In the case of an AUV, the hull is usually designed with an ellipsoidal or ogival

form. Approximating the ogival form to a prolate spheroid gives two planes of sym-

metry, namely port-starboard and top-bottom. Even after such an approximation, the

off-diagonal elements are significantly smaller than the diagonal elements, and the di-

agonal approximation as shown in Eq. (4.14) is found to be sufficient for the majority

of applications. For such a geometry, the added mass coefficients can be computed as

4.3. Autonomous Underwater Vehicles modelling 63

reported in [186]:

e2 = 1− b
a

α0 =
2(1− e2)

e2 (
1
2

log(
1+ e
1− e

)− e)

β0 =
1
e2 −

1− e2

2e2 log(
1+ e
1− e

)

k1 =
α0

2−α0

k2 =
β0

2−β0

k′ =
e4(β0−α0)

(2− e2)[2e2− (2− e2)(β0−α0)]

Xu̇ =−k1m

Yv̇ = Zẇ =−k2m

Kṗ = 0

Mq̇ = Nṙ =−k′Iyy

(4.15)

where a and b represent the minor semi-axes, c the major semi-axis. In the case of

AUVs, c is aligned with the xb-axis, a with yb-axis and b with zb-axis, where the values

of a and b in cylindrical shaped hulls. An open-source utility to compute the added

mass coefficients of a prolate spheroid has been made available in the repository10.

More advanced models that cater for additional terms to factor in the added mass and

added inertia caused by the fins, are available [148]. For vehicles with sensors and

actuators that protrude extensively the hull surface, as in the case of the UX-1 AUV,

added mass coefficient estimation can be improved by considering the protrusions as

fins above the vehicle centre line [150].

4.3.2 Hydrostatics

Marine vehicles are under the influence of restoring forces, given by the combined

effect of gravity and buoyancy. Restoring forces are function of the vehicle mass, the

volume of water displaced and the water density.

AUVs are typically designed with a choice of two different types of ballast sys-

tems. One option entails the use of a syringe-type tank that can pump water in to or

10https://github.com/dave-ai/Added-mass-prolate-spheroid

https://github.com/dave-ai/Added-mass-prolate-spheroid

4.3. Autonomous Underwater Vehicles modelling 64

out of the vehicle enclosure, thereby affecting the overall net buoyancy by changing

the vehicle mass. A second system exploits a balloon-type oil-filled bladder, usually

located in the vehicle nose or aft section, that is inflated with oil pumped from an in-

ternal reservoir. The latter system affects the buoyancy of the vehicle by acting on the

overall volume. When these ballast systems are situated in a location not at the COB,

as is usually the case due to physical design constraints, an additional moment with

respect to the Centre of gravity (COG) is generated. This moment can be exploited

to affect the pitch dynamics, offering an additional control input. The actuator tasked

with changed either the overall vehicle mass or volume is referred to as VBD.

Given the possible presence of a VBD, it is convenient to split the overall effect

of the buoyancy force into two components, one that is a function of the volume of

the vehicle hull (Bh), acting on the centroid of the hull volume, and the other that is

generated by the VBD, acting on the centroid of the VBD (BV). Overall, restoring

forces can be computed as:

WWW = mvgk̂kkiii (4.16a)

BBBhhh =−ρg∇hk̂kkiii (4.16b)

BBBV =−ρg∇V k̂kkiii (4.16c)

where k̂kkiii represents the versor of the zi-axis (inertial-fixed frame), g the Earth’s gravity

constant, ∇h the volume of the hull and ∇V the volume of the VBD.

For underwater vehicles applications, the origin of the body frame {Ob} is con-

ventionally set to coincide with the COB, in turn coincident with the hull volume cen-

troid. With such modelling choice, the gravity force applies a moment with respect

to the origin of the body frame [147]. Conversely, when {Ob} is set to coincide with

the COG, the buoyancy force generates a moment with respect to {Ob}. By denoting

the modulus of the hydrostatic forces (namely neglecting the versor k̂kkiii), and defining

W = mvg, Bh =−ρg∇h, and BV =−ρg∇V , hydrostatic forces can be expressed (in the

inertial-fixed frame) as:

4.3. Autonomous Underwater Vehicles modelling 65

fff i
ggg = [0 0 W]T (4.17a)

fff i
hhh = [0 0 Bh]

T (4.17b)

fff i
VVV = [0 0 BV]

T (4.17c)

It is worth noting that the hull volume of the vehicle is not constant as the com-

pressibility of the hull in turn depends on the water temperature (Tw) and water pressure

(pw). More detailed volume formulations that consider ∇h(Tw, pw) are available [187],

but will be left to future extensions of this preliminary simulator design and verifica-

tion.

Next, to model the moment that the hydrostatic forces Eq. (4.17) exert with respect

to the vehicle body-fixed frame, it is possible to introduce the vectors rrrb
ggg = [xb

g,y
b
g,z

b
g]

T ,

rrrb
hhh = [xb

h,y
b
h,z

b
h]

T and rrrb
VVV = [xb

V ,y
b
V ,z

b
V]

T denoting the distances from {Ob} to the COG,

to the centroid of the hull and to the centroid of the VBD, respectively. Overall, the

contribution of the hydrostatic effects in the body-fixed frame results as:

gggb =−

 fff b
ggg + fff b

hhh + fff b
VVV

rrrb
ggg× fff b

ggg + rrrb
hhh× fff b

hhh + rrrb
VVV × fff b

VVV

 (4.18)

To pass from Eq. (4.17) representing the hydrodynamic forces in the inertial-fixed

frame, to their representation in the body-fixed frame as fff b
ggg, fff b

hhh and fff b
VVV , a rotation needs

to be performed. Generically, to define the orientation of the marine craft defined

by {Ob} with respect to the inertial reference frame centred in {Oi}, a set of three

parameters denoted as Euler angles ΘΘΘ ∈ R3 is often employed [147]. Euler angles

can be employed as a means of rotating vectors (e.g. forces) from the inertial to the

body-fixed frame and vice versa.

Euler angles are an instance of a minimal representation, i.e. a parametric repre-

sentation with 3 independent factors that fully describe a frame orientation with respect

to a given reference. Given an orthonormal group SO(m), a number of m(m− 1)/2

parameters are sufficient for a minimal representation [188]. Therefore, for a SO(3)

4.3. Autonomous Underwater Vehicles modelling 66

group, any representation entailing the use of 3 parameters is minimal. The Euler

angles parameterisation entails three successive rotations around three chosen axes,

provided that two successive rotations are not performed around the same axis. There

are 12 possible combinations of angle sequences, denoted with three letters, e.g. yzx to

indicate that the first rotation is performed around the original y-axis, to be followed by

a rotation around the newly obtained z-axis to conclude with a rotation around the most

recent x-axis. In aerospace and maritime applications, the most used combination is

represented by the zyx sequence. When this rotation sequence is applied starting from

a body-fixed reference frame, an orientation defined by three angles ΘΘΘ = [φ ,θ ,ψ]T ,

representing the roll, pitch and yaw angles respectively, is obtained. The final frame

orientation, derived by composing the three rotations starting from an original body-

fixed frame, is computed by performing pre-multiplication of the matrices of elemen-

tary rotation, being defined as:

RRRi
b(((ΘΘΘ))) = RRRz(ψ)RRRy(θ)RRRx(φ) =
cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sφsθsψ + cφcψ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

 . (4.19)

where s(·) = sin(·) and c(·) = cos(·), and where:

RRRz(ψ) =


cψ sψ 0

−sψ cψ 0

0 0 1

 ,RRRy(θ) =


cθ 0 −sθ

0 1 0

sθ 0 cθ

 ,RRRx(φ) =


1 0 0

0 cφ sφ

0 −sφ cφ


with RRRi(j) is a rotation matrix describing a rotation angle j about the i-axis.11

With the zyx rotation sequence, non-minimal parameterisations are required when

the vehicle can engage in manoeuvres including pitch angles of±π/2, as this results in

a kinematic singularity. In such a scenario, experienced for instance by spherical vehi-

cles designed to operate in a "nose down" configuration when diving into vertical mine

11Should it be necessary to perform the inverse rotation, namely to rotate a vector from the inertial-
fixed frame to the body-fixed frame, it is worth recalling that the coordinate transformation RRRi

b(((ΘΘΘ))) is
orthogonal, i.e. RRRi

b(((ΘΘΘ)))RRRi
b(((ΘΘΘ)))T = III or else RRRi

b(((ΘΘΘ))) = RRRb
i (((ΘΘΘ)))T .

4.3. Autonomous Underwater Vehicles modelling 67

shafts [61], other parameterisations, such as the quaternions, need to be employed.

For both surface vehicles and standard AUVs, such a singularity does not constitute a

matter of concern and Euler angles can typically be employed. The overall expression

for the hydrostatic vector Eq. (4.18) rotated in the body-fixed frame can be reported as

[175]:

gggb = −



(W −Bh−BV)sinθ

−(W −Bh−BV)cosθ sinφ

−(W −Bh−BV)cosθ cosφ

−(yb
gW − yb

hBh− yb
V BV)cosθ cosφ +(zb

gW − zb
hBh− zb

V BV)cosθ sinφ

(xb
gW − xb

hBh− xb
V BV)cosθ cosφ +(zb

gW − zb
hBh− zb

V BV)sinθ

−(xb
gW − xb

hBh− xb
V BV)cosθ sinφ − (yb

gW − yb
hBh− yb

V BV)sinθ .


(4.20)

It should be noted that for neutrally buoyant vehicles, i.e. when W = Bh +BV ,

gravity and buoyancy forces cancel each other out, while the restoring moments of the

forces due to there being any COG-COB separation remain.

4.3.3 Actuators

Actuators and their contributions to control forces and moments need to be modelled

next. AUV control strategies typically make use of four classes of actuators. These

classes encompass movable masses, changes in the vehicle ballast, thrusters and con-

trol surfaces.

In practical implementations, the control signals employed are the acceleration

along one or two directions of the movable mass, the ballast rate, the thruster force

(or the Repetition Per Minute (RPM)) and the deflection angles of the control surfaces

[20].

As this work is focused on the investigation of FTC applications where redun-

dancy plays a key role, it is necessary to develop a simulator model that can accom-

modate all types of available actuators. In the following subsections, the modelling of

the four classes of actuators are reported.

4.3. Autonomous Underwater Vehicles modelling 68

4.3.3.1 Control surfaces

First, control surfaces are considered, namely stern-planes and rudders. AUVs utilise

the actuation of stern-planes and rudders (when the moving speed is sufficiently high)

in order to control the attitude of the vehicle with minimal energy expenditure.

The Grace UG, for instance, makes use of a whale fluke-type tail to provide con-

trol of the vehicle vertical dynamics [189] or the Sea-Whale 2000 employs two coaxial

rudders and two coaxial elevators for control of the horizontal and vertical dynamics,

respectively [156].

From a modelling perspective, a control surface has an effect on the overall ve-

hicle lift. When actuated, the control surface contributes to the vehicle lift with an

additional term proportional to the deflection angle. Additionally, as the control sur-

face is typically located far from the COP due to design constraints, the generated

control force exerts an additional moment with respect to the COP, affecting the pitch

or yaw dynamics [190].

Under the previously stated assumption that the lift force in the typical range of

underwater vehicle applications can be accurately approximated by a quadratic term

with respect to velocity, the lift force and moment contributions of a control surface

can be modelled as:

Lcs =
1
2

ρCLcs(α)Scsδcsu2 (4.21a)

Mcs = rcsxLcs (4.21b)

with CLcs(α) the control surface lift coefficient, and Scs the control surface planform

area, respectively, rcsx the axial position of the control surface with respect to the vehi-

cle centroid in terms of body-fixed coordinates and δcs is the control surface deflection

angle.

Under the quasi-steady state approximation introduced in Eq. (4.10), the control

surface lift force and moment contributions can be simplified as [191]:

4.3. Autonomous Underwater Vehicles modelling 69

Lcs ≈ KFδ
V 2

r Kuδ
δcs (4.22a)

Mcs ≈−KMKuδ
δcsV 2

r (4.22b)

where, following the convention previously introduced, KFδ
,Kuδ

and KM are fixed-

values coefficients.

4.3.3.2 Variable ballast devices

The effect of the ballast adjusting system is now considered. Two different designs of

ballast systems can be employed: a syringe-type mechanism that displaces water into

the hull to increase the vehicle mass or an external oil-filled bladder to modify the ve-

hicle volume. According to the two mechanism designs, two modelling methodologies

are required to capture the effect of the VBD.

For the syringe-type of ballast adjustment system the methodology is based on

the control of the rate of change of the ballast mass ṁb [20, 192, 193, 178]. With such

modelling methodology, a VBD is modelled as an additional control input, as:

ub = ṁb. (4.23)

For the ballast adjustment systems employing oil-based bladders, the control is

achieved by means of a reference volume ∇V that can be inflated as needed, whose

effect is embedded in the hydrostatic vector gggb(BV) reported in Eq. (4.20), namely:

BV = ρguV BD (4.24)

where the control input uV BD defines the target volume of the bladder as uV BD = ∇V .

Due to the extensive use of the aforementioned ballast mechanisms onboard

AUVs, both models need to be included in the simulator.

4.3.3.3 Thrusters

Next, thruster modelling is considered. Underwater thrusters are devices designed to

overcome the resistance to motion of the vehicle [184]. Underwater thrusters are com-

4.3. Autonomous Underwater Vehicles modelling 70

monly composed of a screw propeller. For traditional AUVs and hybrid UGs, elec-

trically powered thrusters employing brushless Direct Current (DC) motors in a duct

with either air-sealed, oil-sealed, or fully flooded cases represent the standard design

choice. The spinning blades of the propeller induce a different pressure upstream and

downstream of the propeller that in turn generates an exchange of momentum between

the fluid and the device, in turn setting into motion the vehicle.

To quantify the generated thrust (Tp), nonlinear models that factor in the propeller

diameter (Dp), propeller inlet and outlet velocities (vp,in and vp,out , respectively) and

the propeller rotation rate (np) can be employed as:

Tp = ρDpnp(vp,out− vp,in). (4.25)

Due to the impracticality of measuring inlet and outlet fluid velocities, simplified

models such as the following can be utilised instead [147]:

Tp = ρD4
pKT n2

p (4.26)

with KT denoting a non-dimensional thruster coefficients, characteristic of each motor

design.

More advanced models catering for the motor dynamic transient are available

[112]. Nonetheless, dynamics responses inherent to underwater applications are com-

paratively slow to those of underwater thrusters, being the first time constants in the

order of several seconds, while in the order of [ms] the second ones [194]. Due to the

difference in these time constants, thrusters are usually considered as comparatively in-

stantaneous sources of applied forces, and their dynamics is conventionally neglected

[148].

4.3.3.4 Movable masses

Movable masses can be employed to modify the attitude of an AUV, by displacing

the overall vehicle COG from its original location. Movable masses are usually of

two different types, sliding masses or rotating masses. Internal components compar-

atively heavy with the overall vehicles mass, such as the batteries, are conventionally

4.3. Autonomous Underwater Vehicles modelling 71

employed for this purpose.

Some AUVs, such as the Slocum UGs, can actuate the movable mass along the

longitudinal axis of the vehicle, namely along the xb-axis [151, 153]. With such an

actuator design, the pitch dynamics of the vehicle can be modified. Other vehicles,

such as the Spray and Seaglider UGs, can also rotate the mass around the xb-axis,

allowing the roll dynamics to be affected [152]. Also, specific AUVs, such as the

spherical UX-1, use a device rotating the battery pack to affect the pitch dynamics

[150].

Different to the other three class of actuators described so far, no explicit expres-

sion to embed the effects of movable masses is available. As moving an internal mass

displaces the COG of the vehicle, from a modelling perspective, this class of actuators

requires dedicated extension of the vehicle equations of motions. In more detail, while

a traditional AUV moving by means of thrusters and control surfaces can be modelled

as a single rigid-body12, any moving mass transforms the vehicle mounting such ac-

tuator in a multibody system, where the hull represents one rigid-body and a moving

mass another rigid-body connected to the hull with dedicated joints.

To conclude, moving masses represent an element of major complexity when

modelling AUVs. To tackle this critical element, object-oriented simulators, such

as the one proposed in this chapter, can be utilised effectively. Specifically, moving

masses can be modelled as standalone rigid-bodies, connected to the hull of the ve-

hicle through mechanical joints. In the case of a sliding mass, a prismatic joint is

employed to allow one (controlled) DOF, represented by the linear displacement of

the mass, while the rotations between the mass and the hull are physically constrained.

In the case of a rolling mass, a revolute joint can be employed to constrain the mass

displacement while allowing on DOF as rotation. Combinations of linear and rolling

joints can be employed to define more complex actuators.

In Section 4.5.1, 4.5.2 and 4.5.3, further examples and details are provided to

better illustrate the concept of movable masses used as actuators.

12This modelling formalism holds under the stated assumption that the hull deformation with depth
can be neglected.

4.4. Simulator architecture design 72

4.3.4 Modelling assumptions summarised

Before moving to the simulator architecture design, the five modelling assumptions

discussed so far are hereby recapped:

1. the hull compresses uniformly as the operating depth increases and, hence, the

centre of buoyancy of the vehicle remains fixed over time with respect to hull;

2. added mass terms can be calculated under the assumption that the hull can be

approximated as a prolate spheroid;

3. the quasi-steady state state hydrodynamic formulation is sufficient to charac-

terise AUVs dynamics;

4. the vehicle operates fully submerged, and at a depth such that potential damping

and potential added mass effects can be neglected;

5. thrusters are instantaneous sources of forces.

4.4 Simulator architecture design
Based on the arguments proffered at Section 4.2, OpenModelica was the selected IDE

to simulate the AUV dynamics and the proposed operational environment. The simu-

lator design process follows the structure proposed in [195], i.e. the vehicle is designed

as a multibody model by linking components from the Mechanics.MultiBody library

where available, and custom designed where preconfigured components are not avail-

able.

The rigid-bodies representing the hull, movable masses, static offset mass, VBD

and steering surfaces were joint together through the use of prismatic and 3D revolute

joints. External forces that comprise the hydrostatics, the hydrodynamics, added mass

effects and control inputs were applied and exchanged between the bodies as reaction

forces throughout interfaces representing the mechanical flanges.

A preliminary simulator design is shown in Fig. 4.3. In this design, the simulated

system comprises the rigid-bodies associated with the hull, the sliding, the rolling,

the offset, the ballast and the VBD masses. Two bodies representing the rudder and

stern-planes are also added for the purpose of enhanched modularity.

4.4. Simulator architecture design 73

Figure 4.3: OpenModelica - preliminary simulator architecture for a multibody AUV, © 2022
IEEE [19].

Overall, the structure of the OpenMAUVe (Open Modelica AUV) library, en-

compassing the constituent elements of a generic AUV, is detailed in Fig. 4.4.

The OpenMAUVe library relies on the MSL, or more specifically on the Model-

ica.Mechanical.Multibody for the definition of the VehicleBody and Joints classes,

while it implies the design from scratch of the ForcesMoments and Actuators classes.

Three classes of external forces were then integrated into the simulator. Restor-

ing forces, namely forces due to gravity and buoyancy, are expressed as global forces,

meaning that they act on the entire simulation space as a uniformly distributed force

field. Restoring forces are implemented as ForcesMoments.Restoring according to

Eq. (4.20). Next, the hydrodynamic forces defined in Eq. (4.8), (4.9), (4.10) were

implemented as ForcesMoments.Hydrodynamics and applied to the body representing

4.4. Simulator architecture design 74

Figure 4.4: Proposed OpenMAUVe Modelica library, where VehicleBody and Joints are
imported from the MSL, while ForcesMoments and Actuators are custom

developed.

the hull of the vehicle. Similarly, added mass effects as defined in Eq. (4.12) were

implemented as ForcesMoments.AddedMass and, once more, applied to the body rep-

resenting the hull of the vehicle.

Hydrodynamic and added mass forces are dependent on the AUV veloc-

ity and acceleration, which are retrieved by means of virtual sensors measur-

ing relative quantities between different reference frames. In this case, Model-

ica.Mechanics.MultiBody.Sensors were employed to measure the relative speeds and

accelerations of the AUV’s body-fixed frame with respect to the inertial fixed-frame.

Following the definition of the forces, the implementation of the elements linked

to the actuators is discussed. As an example, the implementation of the elevator con-

trol surface class, defined within OpenMAUVe.Actuators.Elevator, is reported in Ap-

pendix A. The same design steps were followed for all the other components within

the ForcesMoments and Actuators package.

As this study is ultimately focused on FTC applications, minor additions were

4.5. Simulator verification and quasi-validation 75

later needed to manage the occurrence of faults at actuators. Further details regarding

the introduction of faults into the simulation are given in Chapter 7 with a dedicated

case study.

4.5 Simulator verification and quasi-validation

In this section, the simulator verification and quasi-validation will be illustrated in steps

of increasing complexity. The results generated by the OpenMAUVe were compared

against simulated results of two different vehicles available in associated literature.

UGs were preferred over traditional AUVs for this comparison as they encompass

the use of internal moving masses. As previously discussed, such moving masses

significantly increase the complexity of the models to be simulated due to the resulting

multibody dynamics involving the exchange of reaction forces and moments between

the external hull and internal moving components.

The vehicles selected for the comparison were chosen based on both the public

accessibility of geometric and hydrodynamic parameters and on the availability of re-

sults to allow for a quantitative comparison. First, a comparison of solely the vertical

dynamics in the sagittal plane (namely the plane defined by the xi-zi axes) was carried

out to perform an initial simulator verification. Next, complete dynamic motions in the

3D-space were performed and compared against the result output from a second UG

simulation and related deployment data.

It is worth noting that there is a current lack of publicly available data to perform

a definitive simulator validation against deployment data. Specifically, either deploy-

ment data are available but hydrodynamics coefficients or key geometric parameters

(such as the location of the internal masses) are missing, or, vice versa, the coefficients

are available but the deployment data is not public. At times, the control inputs to the

actuators are not logged instead, making impossible to attempt reproducing the same

manoeuvres.

This lack of results is believed to be due to the current practices in operating

UGs. The vehicles are first trimmed and ballasted in dedicated tanks before shipping

the vehicle to a mission location. Before deployment, due to small variations in the

4.5. Simulator verification and quasi-validation 76

expected water density and due to possible changes in the arrangement of actuators

and sensors, the vehicles undergo a final ballasting procedure in loco. During the latter

procedure, small weights are used to render the vehicle neutrally buoyant, and to trim

the attitude to avoid undesired pitch and roll angles. These changes are usually logged

by the deployment teams, but rarely released to the public as associated to the specific

mission. Even if these changes are minor, in order to claim the complete validation

of the OpenMAUVe simulator, further work is required to collect the required data

and coefficients for a set of deployment missions and quantify the discrepancies of the

simulation results with the recorded data.

Therefore, an initial verification, i.e. a comparison with the theoretical model

is presented first in Section 4.5.1. Then, a quasi-validation, i.e. a comparison with

another simulator that has been validated against deployment data, but for which de-

ployment data is not public, is presented in Section 4.5.2.

4.5.1 ROGUE glider

The ROGUE UG is the first vehicle integrated and tested to verify the vertical dynam-

ics [20]. The ROGUE is a laboratory-scale UG employing an internal ballast tank,

designed with a small ellipsoidal body with axes of 0.20x0.31x0.15 [m], allowing for

experiments of dynamics and control in small water tanks (less than 10 [m] in length)

or Olympic sized pools.

According to the original study [196], the quasi-steady hydrodynamic force ap-

proximation can be employed for this study, obtained by restricting Eq. (4.7) to the

vertical plane only as:

FFF f
hd =

[
−D 0 −L

]T
(4.27a)

MMM f
hd =

[
0 MDL 0

]T
(4.27b)

where:

4.5. Simulator verification and quasi-validation 77

D≈ (KD0 +KDα
2)(u2

r +w2
r) (4.28a)

L≈ (KL0 +KLα)(u2
r +w2

r) (4.28b)

MDL ≈ (KM0 +KMα)(u2
r +w2

r). (4.28c)

Hydrodynamic coefficients and geometric parameters of the vehicle selected for this

simulation are reported in Table 4.1.

Table 4.1: ROGUE dynamical parameters.

Parameters Values Units Explanation
mh 8.22 kg Vehicle hull mass
mp 2.0 kg Shifting mass
∇h 11.22 ×10−3 m3 Vehicle volume
zb

g 4 ×10−3 m COB-COG separation
along zb-axis

Xu̇ 2.0 kg Added mass coeff. on
xb-axis generated by

acceleration along xb-axis
Zẇ 2.0 kg Added mass coeff. on

zb-axis generated by
acceleration along zb-axis

Iyy 0.1 kg m2 Moment of inertia
around yb-axis

KD0 18.0 kg/m Quasi-steady state
drag force (offset) coefficient

KD 109.0 kg/(m rad2) Quasi-steady state
drag force coefficient

KL0 0.0 kg/m Quasi-steady state
lift force (offset) coefficient

KL 306.0 kg/(m rad) Quasi-steady state
lift force coefficient

KM0 0.0 kg Quasi-steady state
moment (offset) coefficient

KM -36.5 kg/rad Quasi-steady state
moment coefficient

To verify the simulator, four different sets of command inputs were used to test

the gliding dynamics of the vehicles, as selected from the relevant reference [20]. A

4.5. Simulator verification and quasi-validation 78

single path comprised of four segments encompassing two ascending and the two de-

scending sections with different characteristics can be simulated. When operating an

UG, a series of defined, steady straight-line paths are commanded, by setting a con-

stant flowspeed and a glide path angle for each segment. The glide path angle ξ is

defined as ξ = θ −α .

For this simulation, a flowspeed of Vr = 0.30 [m/s] was selected to perform two

paths at ξ = −30° and +30°. Next, a higher flowspeed of Vr = 0.37 [m/s] was set to

perform two steeper paths at ξ = −45° and +45°. Fig. 4.5a reports the UG path in

the sagittal plane, as composed by the four defined segments. A 3D rendering of the

vehicle during the first descending segment is shown in Fig. 4.5b.

(a) Path in the sagittal plane, ©
2022 IEEE [19].

(b) OpenModelica 3D
rendering, © 2022 IEEE
[19].

Figure 4.5: ROGUE dynamics simulation.

Finally, the numerical results obtained from the OpenMAUVe simulator during

the path were compared with the theoretical dynamic performance [20]. For each

ascending-discending section, the theoretical quasi-steady model shows symmetrical

behaviours, namely opposite values in terms of the flowspeed and angles ξ ,θ , and α ,

as reported in Table 4.1 of reference [20]. Hence, the results of the first and fourth

sections of the glide were compared, whilst the second and third were not reported as

the segments are symmetrical. Table 4.2 reports the comparison of Vr,ξ ,θ , and α in

terms of absolute values and corresponding relative errors.

The results used for comparison ([20]) were obtained by solving the equations

4.5. Simulator verification and quasi-validation 79

Table 4.2: Theoretical vs. simulation results, © 2022 IEEE [19].

Quantity ROGUE OpenMAUVe Relative error
theoretical

dynamics [20]
Down 30◦

ξ [◦] -30.0 -30.18 0.59%
θ [◦] -23.0 -23.97 4.05%
α [◦] 6.3 6.21 1.43%

Vr [m/s] 0.30 0.30 0.0%

Up 45◦

ξ [◦] 45.0 45.12 0.27%
θ [◦] 41.5 41.7 0.01%
α [◦] -3.5 -3.42 0.02%

Vr [m/s] 0.37 0.37 0.0%

of motion via a numerical solver tasked with explicitly solving the theoretical model

equation. This analysis highlights that the proposed simulator can produce results

from dynamic simulation with a maximum relative error bounded below 4.05% when

compared to the theoretical values. This first verification stage shows that, given a pre-

scribed quasi-steady dynamic model of an UG in the sagittal plane, the simulator can

qualitatively capture the dynamic effects as defined by closely matching the theoretical

equations of motion. A more advanced study expanding these preliminary results from

the sole sagittal plane to the whole 3D space is proposed next in Section 4.5.2.

4.5.2 Seawing glider

As a second step of quasi-validation of the OpenMAUVe simulator, a more complex

dynamic manoeuvre encompassing changes of both linear and angular momenta was

simulated. The Seawing UG was selected for this study as the associated literature was

deemed the most complete source of publicly available data [179]. The vehicle dy-

namics are analysed while performing a single continuous descending spiralling dive,

spanning over the whole 3D underwater space.

For this second test case, a broader range of actuators within the OpenMAUVe

was employed. First, the VBD was commanded to increase the overall vehicle mass,

second the sliding mass was moved towards the bow of the vehicle and, third, the

4.5. Simulator verification and quasi-validation 80

rolling mass was shifted to the port side so that the vehicle attains a constant roll

angle. The resulting 3D path, obtained by simulating the UG dynamics for 5000 [s],

is reported in Fig. 4.6a. A corresponding rendering of the Seawing UG is illustrated in

Fig. 4.6b, where the blue arrow denotes the overall force exerted on the vehicle during

the spiralling manoeuvre.

(a) Path in the 3D space, ©
2022 IEEE [19].

(b) OpenModelica 3D render-
ing.

Figure 4.6: Seawing dynamics simulation.

The numerical results obtained from the OpenMAUVe simulator were then com-

pared to those computed from a MATLAB-based simulator designed in [179], and

reported in Table 4.3.

Table 4.3: Simulation results comparison, © 2022 IEEE [19].

Quantity Seawing OpenMAUVe Relative error
reference [179]

Radius [m] 100.83 93.88 6.89%
α [◦] 1.267 1.258 0.71%
β [◦] -1.283 -1.396 8.81%

V [m/s] 0.490 0.491 0.2 %
r [rad/s] 0.0039 0.0033 15.39%

θ [◦] -13.703 -13.011 5.05%
φ [◦] -35.641 -35.643 0.01%

As already noted in the ROGUE case study, the OpenMAUVe simulator generated

dynamic behaviours of the Seawing comparable to the ones obtained in associated

literature [179]. Overall, the OpenMAUVe architecture generated a descending spiral

4.5. Simulator verification and quasi-validation 81

at the prescribed flowspeed of 0.49 [m/s] with a 0.2% error when compared to [179].

Numerical discrepancies between the proposed simulator and the MATLAB-

based model (at reference [179]) exist. On one hand, a comparatively small steady-

state roll angle relative error of 0.01% was obtained. On the other hand, the worst-case

difference was recorded in the yaw angular rate r, with a relative error of 15.39% on

r as expressed in [rad/s]. It should be noted that, even if this relative error appears to

be comparatively large, it represents a difference of 0.03 [deg/s] (in other terms, the

absolute error is comparatively low).

The two simulators under comparison employ different integrator methods, as

DASSL is selected as the solver for the OpenMAUVe design, an option not available

within MATLAB. Small differences in the absolute values within the dynamics are

naturally linked to the selected simulation setup, specifically to the choice of the in-

tegration method and solver tolerance. The different setups considered for this study

render impossible to provide a conclusive answer as simulations with the exact same

choice of integration method and tolerance cannot be performed.

As it can be noticed in the results offered within the Seawing report [179], dis-

crepancies between the MATLAB simulator and deployment data naturally exist. To

resolve the conundrum about which two simulation methods (MATLAB from [179],

or OpenMAUVe) most accurately reproduces UGs dynamics, a comparison with real-

deployment data is necessary. This step requires precise information regarding both

the hydrodynamic parameters of a vehicle, the ballasting and trimming configuration

chosen for a specific mission, and the presence of a dataset containing the actuators

commands and the corresponding estimate of velocities, accelerations and attitude.

Such information is currently not available to the public domain, and this study is

highlighted as future work.

4.5.3 Simulator utilisation example: hybrid AUV

Following the verification and quasi-validation of the OpenMAUVe simulator, an ex-

ample of utilisation of the tool is illustrated in this section. After proposing the util-

isation of the OpenMAUVe to simulate two UGs, in this section an hybrid AUV is

showcased instead. Hybrid AUVs represent the most complex category of AUVs, as

4.5. Simulator verification and quasi-validation 82

they feature both internal moving masses, thrusters and control surfaces.

Assume that an underwater vehicle with a set of five actuators is to be simulated.

The vehicle is comprised of a sliding mass, a rolling mass, as VBD and two elevators.

The vehicle will be denoted as HybridAUV1 (the lack of imagination derives from how

OpenModelica automatically instantiate a new class name).

The vehicle is to be subjected to hydrostatic, hydrodynamic, added mass

and control forces and moments. The hybrid AUV structure was built, start-

ing from the hull, by importing a single rigid-body as OpenMAUVe.VehicleBody.

Next, restoring forces were added, namely those forces due to gravity and the

buoyancy OpenMAUVe.ForcesMoments.Restoring. Added mass and hydrodynam-

ics effects were added following the same procedure, by importing the corre-

sponding elements from OpenMAUVe.ForcesMoments.Hydrodynamics and Open-

MAUVe.ForcesMoments.AddedMass, respectively. Restoring, Hydrodynamics and

AddedMass were then connected to the reference point within the hull volume, a

point that coincides with the COB of the hull, or its volume centroid. The hull’s

COG, where the gravity force is applied, was displaced from the point of applica-

tion of the forces by means of a translation element, imported from the Mechan-

ics.MultiBody.Parts.FixedTranslation.

Next, the dedicated set of actuators was imported. A rolling mass and and sliding

mass were added, interfaced to the rigid hull by means of a revolute and a prismatic

joint, respectively. Finally, the two elevators were included as defined from Open-

MAUVe.Actuators.Elevator. After importing the elements as described, the newly de-

fined HybridAUV1 class resulted in the connection diagram as illustrated in Fig. 4.7.

The HybridAUV1 class can in turn be imported as a single element in a wider

scope simulator, for instance to analyse its dynamics when a change to the VBD ref-

erence is commanded, or to test the performance of a control system. The instanced

object, reported in Fig. 4.8, exhibits the five actuators signals as inputs. In this exam-

ple, the set of three linear velocities expressed with respect to the body-fixed frame

was selected as output variables. In place of the set of linear velocities, variables,

such as position, attitude, or angular velocities can be selected, based on the desired

4.5. Simulator verification and quasi-validation 83

Figure 4.7: HybridAUV1 class design.

application.

Figure 4.8: HybridAUV1 icon, to be imported in a wider scope simulation.

A complete example of how an AUV can be designed within the OpenMAUVe

4.6. Conclusions 84

and used in a wider control-oriented simulator is presented and discussed in Chapter 7.

4.6 Conclusions

Simulators of underwater vehicles are of particular interest to investigate the com-

plex dynamics involved in underwater vehicles modelling and their interaction with

the highly nonlinear marine environment. The wide range of underwater vehicles

stems into significantly different dynamic models that usually require ad hoc re-

implementation. UGs and hybrid AUVs are specifically difficult to simulate given

the multibody nature of their designs, comprising several internal moving masses that

modify the momentum of the overall body.

In control applications, simplified control-oriented models are typically devised,

for instance by decoupling the sagittal and horizontal plane. Nonetheless, to verify

the correctness and performance of a synthesised control functions over the complete

nonlinear dynamics, a simulator accounting for the entirety of the nonlinear effects is

required. Given the large set of underwater vehicles and possible actuator configura-

tions available, modularising the simulation design process can significantly simplify

the testing and verification of control laws, eventually improving vehicle resilience in

a challenging environment, such as the underwater domain.

In this chapter, an open-source simulator architecture for underwater vehicles was

first designed, allowing the designer to compose dynamic models by assembling the

vehicle through selecting elements that replicate its physical components. Next, the

simulator was verified and quasi-validated by performing two test scenarios of in-

creasing complexity and comparing the results obtained with those made available

from other research.

Current simulation limitations encompass environmental disturbances, depth-

related hull expansion phenomena and non-idealised behaviours linked to the presence

of hull appendages. These elements were deemed not critical for this investigative

study and will be addressed in future work. Finally, a complete validation of the simu-

lator is required, which will be a comparison with real deployment data. The validation

stage requires at the same time the availability of an open-access dataset, the specific

4.6. Conclusions 85

details regarding the vehicle trimming configuration and the logging of real-time ac-

tuator commands. Specific information regarding the position of ballast masses, the

sensors mounted onboard and the trimming conditions are necessary to achieve a suf-

ficient level of modelling accuracy to provide a credible level of validation, and are

suggested as future extension to the work presented in this chapter.

Moreover, the OpenMAUVe simulator allows for efficient simulation of long-

lasting missions, owing to the enhanced capabilities to solve systems of DAEs when

compared to standard causal simulators. This can allow testing the effect of slow dy-

namical phenomena, such as the growth of biofouling agents on the hull. Finally, given

the capability to assemble vehicles through combination of mechanical components,

the simulator can be used as a fast prototyping tool for novel vehicle design, allow-

ing to promptly investigate the vehicle dynamics when subjected to different control

inputs.

Having now completed the design of the simulation architecture, focus is shifted

onto the design of the control method and in the introduction of fault, which will be

object of the following two chapters. To conclude, the OpenMAUVe simulator will be

used in a complete scenario covering an AUV control application in Chapter 7.

Chapter 5

Augmented Neural Lyapunov Control:

a method to automatically synthesise

nonlinear control functions for

nonlinear dynamical systems

5.1 Introduction

This chapter outlines the design of the ML-based control method for devising control

laws for generic nonlinear systems. First, the Lyapunov theory is introduced, followed

by an overview of methods aimed at the automatic synthesis of control laws. Next, the

NLC method, identified as the favourite alternative to automatically synthesis control

laws for nonlinear systems, is tested over a benchmark nonlinear system to evaluate

the robustness to parameter initialisation. After the critical aspects of the methods are

identified, an upgraded method is devised, addressing the NLC limitations through

tailored modifications. An open-source software tool is then designed and illustrated.

The newly defined method is challenged over two nonlinear systems and a comparison

with the NLC is carried out, while performances are evaluated. Finally, conclusions

are drawn and future research direction is presented.

As part of this research, a preliminary paper titled "Augmented Neural Lya-

punov Control" was published [22]. The software framework associated with this

5.2. Preliminaries 87

chapter is released open-source at: https://github.com/grande-dev/Augmented-Neural-

Lyapunov-Control.

The outcomes described in this chapter provide answers to RQ2: is the Neural

Lyapunov Control method an effective approach to design stable control laws for

nonlinear systems?

5.2 Preliminaries
In this section, an overview of the Lyapunov’s stability theory is provided first. Fun-

damental concepts and definitions such as a system’s equilibrium, Region of Attrac-

tion (ROA) and an equilibrium’s stability are introduced. Next, the different methods

currently available to synthesise Lyapunov Functions (LFs) and utilisation of formal

methods to ensure correctness of results are discussed.

5.2.1 Lyapunov’s theory preliminaries

The aim of the control engineering discipline is the study of the dynamical behaviours

of nonlinear systems and, consequently, how such behaviours can be modified to at-

tain prescribed performance. The dynamical behaviour of a nonlinear system can be

generically described as an n-dimensional ODE;

ẋxx = fff (t,xxx,uuu) (5.1)

where xxx ∈ Rn is the vector of the states, uuu ∈ Rm is the vector of the inputs, t ∈ R+ de-

notes that the system is time-variant, the ẋxx ∈Rn notation stands for the time-derivative

of xxx; and, fff (t,xxx,uuu) denotes a continuous vector field defined over Rn×Rm → Rn,

where a vector field defines a mapping from a domain D to an n-dimensional column

vector.

A key element of the control engineering design process is the analysis of the

equilibria of a dynamical system.

Definition 2 (Equilibrium [197]) A point xxx = xxx⋆ within the state-space is said to be

an equilibrium of Eq. (5.1) if it has the property that whenever the state of the system

starts at xxx⋆, the system state will remain at xxx⋆ for all future time.

https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control
https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control

5.2. Preliminaries 88

In other words, a state of equilibrium of system (5.1) is found by solving ẋxx = 0, ∀t ∈

R+, which represents a constant solution of the ODE.

Upon identification of the equilibria of a system, the control engineering disci-

pline focuses on analysing the nature of the nonlinear dynamical phenomena and on

how said phenomena may be modified via tailored control laws. Different to linear

systems where the (unique) equilibrium is either asymptotically stable, stable (in the

sense of Lyapunov) or unstable (with these concepts later introduced in this chapter)

[92], a range of different behaviours are to be expected in nonlinear systems. Equi-

libria can stem in foci, in limit cycles in second-order systems, and, among others, in

toroidal attractors or chaotic (or strange) attractors in higher-order systems [198].

One of the most common techniques employed to analyse the stability of a dy-

namical system is Lyapunov’s theory [92, 199]. In Alexandr Mikhailovich Lyapunov’s

PhD thesis (1892) [200], two methods are introduced to analyse the stability of non-

linear systems, conventionally referred to as Indirect and Direct Lyapunov methods in

associated literature [92].

The Indirect method (or linearisation method) allows one to infer the local sta-

bility properties of an equilibrium by analysing the sign of the eigenvalues associated

with the corresponding Jacobian matrix, obtained by means of linearisation around the

equilibrium point. The Indirect method states that the stability properties of the non-

linear system in the neighbourhood of an equilibrium resemble the behaviour of its

linearised approximation.

In contrast to the Indirect method, the more sophisticated Direct method does

not require linear approximations for the assessment of the nature of an equilibrium,

allowing conclusions to be drawn as regards the global behaviour of the nonlinear

system. This latter method is currently considered the fundamental pillar of modern

nonlinear control theory [92]. The Direct method can be employed to both assess the

stability of an equilibrium, or to support the design of control laws that modify the

nature of a system’s equilibrium.

In this work, the focus lies on the Direct method due to the fundamental proper-

ties it encompasses. The study of closed-loop stability allows the control engineer to

5.2. Preliminaries 89

draw specific conclusions about the global stability properties, providing key insight

on the system trajectories over the full state-space domain. Additionally, the Lyapunov

Direct method allows the ROA of an equilibrium to be estimated, so assessing the ro-

bustness of a closed-loop system. Note that the ROA is at times also defined as region

of asymptotic stability, domain of attraction, or basin [197].

Definition 3 (Region of Attraction [197]) Let xxx⋆ = 0 be an (asymptotically) stable

equilibrium point for the nonlinear system;

ẋxx = fff (t,xxx) (5.2)

where fff (t,xxx) : D ⊆ Rn→ Rn is defined over the domain D containing xxx⋆. Let x(t,xxx)

be the solution of (5.2) that starts at initial state xxx0 (reads xxx at time t = 0). The ROA of

the origin, denoted as RA, is defined by;

RA = {xxx ∈D : x(t,xxx)→ xxx⋆ as t→ ∞}. (5.3)

In other terms, the ROA of an equilibrium defines the set of initial values of the state-

space that gives rise to trajectories that eventually converge to the equilibrium.

The Lyapunov Direct method concludes that the stability of a generic equilibrium

xxx⋆ can be inferred by means of a scalar pseudo-energy function that decreases as the

state-space trajectories approach xxx⋆. Such a function is referred to as a LF in nonlinear

control literature. When a LF is associated with a dynamical system with exogenous

inputs, such as those considered in this work, it is referred to as a CLF instead [201].

Definition 4 (Control Lyapunov Function [202]) Given a domain D and a system

model fff (t,xxx,uuu) : D×U→D with unique equilibrium xxx⋆ ∈D, i.e. fff (t,xxx⋆,uuu) = 0 with

xxx ∈ D ⊂ Rn and uuu ∈ U ⊂ Rm, consider a function V : D→ R, V ∈ C 1, then V is a

Control Lyapunov Function if there exists uuu such that:

5.2. Preliminaries 90

V (xxx⋆) = 0, (5.4a)

V (xxx)> 0 ∀xxx ∈D\{xxx⋆}, (5.4b)

V̇ (xxx,uuu) = ⟨∇∇∇(((VVV)))xxx,,, fff (((xxx,,,uuu)))⟩< 0, ∃uuu ∀xxx ∈D\{xxx⋆}, (5.4c)

where C 1 denotes a function with continuous first derivative1, and where ⟨aaa,bbb⟩ denotes

the inner product of the terms aaa and bbb, namely ⟨aaa,bbb⟩= aaaT bbb = ∑
n
i=1 aibi [197]. Addi-

tionally, ⟨∇∇∇(((VVV)))xxx,,, fff (((xxx,,,uuu)))⟩ represents the Lie derivative of V with respect to xxx (or along

xxx), and defines the derivative of V along the trajectories of the system ẋxx = fff (t,xxx,uuu).

The Lyapunov Direct method determines that, if such a function V that satisfies

(5.4) exists, the point of equilibrium xxx⋆ is stable (or stable in the sense of Lyapunov)

[92]. As a consequence, the stability of xxx⋆ implies that the system trajectories can be

kept arbitrarily close to xxx⋆ if the initial conditions of these trajectories are set suffi-

ciently close to xxx⋆.

Definition 5 (Stability of an equilibrium [92]) An equilibrium xxx⋆ = 0 is said to be

stable if, for any R > 0, there exists r > 0 such that if ∥xxx0∥2 < r, then ∥xxx(t)∥2 < R ∀t ∈

R+,

with ∥aaa∥2 =
√

a2
1 + ...+a2

n denoting the 2-norm of vector aaa. In other terms, the sta-

bility definition implies that initialising the system within a domain Br defined by the

n-dimensional sphere of radius r (or hyper-sphere), no trajectory will ever leave a do-

main BR defined by the n-dimensional sphere of radius R.

An example of a stable trajectory is illustrated in Fig. 5.1, highlighted by trajec-

tory t1: starting from a value xxx0 within Br, the trajectories never leave the domain BR

(in this example xxx⋆ is a stable node, or focus).

Additionally, if V̇ (xxx,uuu)< 0 ∀xxx ∈D\{xxx⋆} in (5.4) (it reads Lie derivative strictly

less than 0), the equilibrium is defined as asymptotically stable. Asymptotic stability

implies that xxx⋆ is stable and that, additionally, xxx→ xxx⋆ as t→ ∞. One such example of

1In this case, V is C 1 with respect to its argument, namely the first partial derivative with respect to
xxx exists and it is continuous.

5.2. Preliminaries 91

asymptotically stable xxx⋆ is reported in Fig. 5.1 as trajectory t2.

Conversely, if it is possible to find a radius r such that when initialising the system

within Br, at least one trajectory will no longer satisfy the conditions to remain within

BR, xxx⋆ is defined as unstable (no matter how small r is). Instability of xxx⋆ implies

that either the trajectories "blow up", or, in other terms, that the trajectories move

further away from xxx⋆ as time progresses (e.g. trajectory t3 in Fig. 5.1), or that more

complicated nonlinear phenomena are to be expected. For instance, in the presence of

a limit cycle, as illustrated in Fig. 5.1 in pink solid line, it is possible to select a value of

BR such that for every r > 0, the trajectories initialised within Br leave BR, eventually

converging to the limit cycle (e.g. trajectory t4 in Fig. 5.1). Without loss of generality,

xxx⋆ is conventionally considered such that xxx⋆ = 0, as it is always possible to translate

the equilibrium through application of an appropriate substitution of variables, as will

be shown later in this work.

Figure 5.1: Lyapunov stability theory: t1 defines a (Lyapunov) stable equilibrium, t2 an
asymptotically stable equilibrium, and (t3, t4) an unstable equilibrium, with t4

covering the specific case of trajectories converging to a limit cycle.

5.2.2 Automatic synthesis of (Control) Lyapunov Functions

Despite the advantages of the Lyapunov Direct method, the composition (or synthesis)

of (C)LFs is a highly complex undertaking [92]. In the 132 years that have elapsed

5.2. Preliminaries 92

since the publication of Lyapunov’s theory to the writing of this thesis, no general

closed-form solution has yet been derived to synthesise CLFs for generic nonlinear

systems. Simplifications are available in the case of linear systems or for nonlinear

systems with specific characteristics, such as when ẋxx is a polynomial vector field [199].

Control engineers conventionally attempt to synthesise quadratic CLFs, but, in general

terms, CLFs can have arbitrarily complex shapes.

The matter is rendered more complicated as the inability to find a CLF does not

imply the instability of the equilibrium [21]. In actuality, when no CLF is derived, one

can only state that despite the design efforts, no CLF has been obtained, and not that

the system is unstable.

Several numerical methods have thus far been proposed in the literature to devise

and automate the synthesis of (C)LFs: notably, piecewise (linear or quadratic) and

Sum-of-Squares LFs [203, 204], Genetic Algorithms [205, 206] and ANNs [207, 21,

199]. Within the context of ANNs, the concept of Lyapunov Neural Network (LNN)

takes shape, representing the use of a feedforward ANN as a function approximator

for LFs [21].

Owing to their universal approximation capabilities, ANNs are good candidates

to be employed in the quest for deriving LFs. The original LNN concept deals

with discrete-time systems, while this thesis focuses on continuous-time dynamics.

Nonetheless, as the LNN introduces key ideas that will be employed later on in this

work, it is reported here for completeness. In the case of the LNN, the input of the

ANN is represented by the dynamics of the system (xxxk+1), while the output is repre-

sented by the associated scalar value of the LF (V (xxxk+1)), as reported in Fig. 5.2.

To assess the stability of the system, the error between two consecutive time steps

is computed, as:

eL =V (xxxk+1)−V (xxxk). (5.5)

Should the LNN approximate a LF, then eL ≥ 0 must hold, namely the function value

decreases as the time progresses. Additionally, the eL is used to update the weights

of the LNN through a Gradient Descent (GD) training algorithm, such that the LNN

incrementally increases the degree of approximation of a LF. If, during the training

5.2. Preliminaries 93

Figure 5.2: Using a feedforward ANN to represent a Lyapunov Function, with the red line
denoting the loss function back propagation (adapted from [21]).

process, the LNN weights do not require update for a sufficiently high number of train-

ing iterations, the LNN is assumed to be a good approximation of the LF. On the other

hand, if the LNN does not converge, no inferences can be drawn as regards the stabil-

ity of the target equilibrium; it is possible that either the LNN architecture has been

poorly designed, or that the training data has not been sensibly selected, or even that

the system is indeed unstable, or a combination of the above.

Another early example of the use of ANNs to assess the stability of equilibria

with ANN is the Lyapunov Machine [207]. A Lyapunov Machine is an ANN employed

to test positive definite semi-trajectories and, in turn, to assess the global asymptotic

stability of an equilibrium of a nonlinear system by proposing a candidate LF.

These works show a long-lasting effort to provide empirical methods to synthe-

sise CLFs with modern tools, in an attempt to devise more efficient techniques when

compared to the manual trial and error process. However, at the present stage, these

methods suffer certain shortcomings, mainly the lack of a formal proof of stability.

The problem of the automatic synthesis of CLFs is further complicated. The

candidate CLFs need to be proposed such that they obey the theoretical Lyapunov con-

ditions while, in parallel, a formal procedure to establish their correctness needs to be

put in place. In fact, even with assuming that a CLF can be obtained via an automated

procedure, the use of numerical methods alone cannot guarantee the correctness of the

5.2. Preliminaries 94

generated CLFs, for which further certification needs to be devised.

5.2.2.1 Lyapunov Function synthesis via Neural Lyapunov Control

Recent focus has been placed on providing a formal certification of the correctness

of CLFs, resulting into the NLC method [134]. Several works explore different ANN

architectures combined with formal verification tools to return correct-by-design solu-

tions [135, 136]. This new stream of learning architectures exploits a loop between a

Learner and a Falsifier. The Learner, using a finite set of samples, trains a neural net-

work to represent a candidate CLF, resembling the training stages of the early methods

previously introduced [207, 21]. In addition, the Falsifier module checks whether the

candidate CLF satisfies the conditions in (5.4) in a domain D over the Reals.

Advancements in formal techniques allow the verification of candidate CLFs as

certificate functions [208], by exploiting Satisfiability Modulo Theories (SMT) solvers,

capable of evaluating the correctness of a symbolic expression over a continuous do-

main, e.g. a subset of the Reals, and of assessing whether a formula holds true with

respect to a prescribed set of constraints [209]. While purely empirical (i.e. numer-

ical) methods rely on a finite-sized dataset, and assess whether a candidate CLF is

sufficiently correct via prescribed rules (e.g. by evaluating a sufficiently large number

of points, or through interrupting the training after a pre-defined number of success-

ful learning iterations), formal methods allow conclusions to be reached regarding the

unconditional correctness of a CLF.

The SMT class of solvers guarantees the soundness of the solution: when a logic

expression is evaluated as True, the result is deemed to be valid over the entire search

domain [210]. SMTs guarantee that even if the training relies on a finite number of

data points, the correctness of a CLF over a dense domain can be formally certified,

producing results equivalent to those of analytical proofs [135].

Furthermore, when the SMT solvers verify that an expression does not hold true,

a point violating the expression is returned. These points, referred to as counterexam-

ples (CEs), are added to the training set to further assist the scouting of CLFs. Such

an approach, based on a learning-verifying paradigm, with CEs iteratively added to

the training dataset is known as Counterexample-Guided Inductive Synthesis (CEGIS)

5.2. Preliminaries 95

[211]. The CEGIS architecture relies on the adversarial interaction of two modules,

jointly supporting the design of a desired function from an initial hypothesis space,

and has found success in several recent works [212, 134, 213, 214].

5.2.2.2 Satisfiability Modulo Theories

SMT solving involves the problem of deciding whether a mathematical formula is

satisfiable. Given a mathematical formula with specified variables, the goal of the

SMT solvers lies in searching for values of the variables that render the formula true,

or, in other words, that makes it satisfiable. As an example, it is possible to ask via

SMT if:

∃x : (x ∈D)⇒ x > 3.0 (5.6)

that entails asking if "there exists an assignment of a value of x ∈ D ≡ R such that

x > 3.0 holds true". In this case the formula in (5.6) is satisfiable, for instance when

x = 4.1. Conversely, a formula is unsatisfiable if there is no assignment of the variables

that satisfies the formula.

Within the frame of SMT solving, satisfiable is to be distinguished from valid: a

formula is valid only if it evaluates to true for every assignment of its variables (also

called a tautology). The formula in (5.6) is not valid over the whole domain of the real

numbers, as, for instance, x =−1.5 leads to the inequality not being satisfied. On the

other hand, if the domain D is bounded, namely rather than considering D ≡ R, one

considers D= [6.0,8.5], formula (5.6) is valid over D.

Formally, an SMT solver is an automated reasoning tool that verifies the satisfi-

ability of a logical formula. The complication is that the decision problem for SMT

formulas when applied to real numbers with generic nonlinear functions is undecid-

able2 (e.g. when trigonometric functions are involved) [215]. In other words, it is

demonstrated that there cannot be a procedure capable of always returning a correct

answer within a finite number of iterations. Thus, relaxations were proposed to render

the problem decidable, e.g. via the δ -weakening / δ -complete formulation [216, 217].

2Undecidable means that there is no sound and complete decision procedure to solve the decision
problem. In turn, a procedure for a decision problem is sound if it returns valid when the input formula is
valid. A procedure for a decision problem is instead complete if it returns valid when the input formula
is valid, and if it always terminates [210].

5.2. Preliminaries 96

Such a formulation is defined as follows:

Definition 6 (δ -complete [216]) A decision procedure is δ -complete if for every SMT

formula φ in a set S, with δ arbitrary such that δ ∈Q+, the procedure returns one of

the following answers correctly:

a) unsat if φ is unsatisfiable;

b) δ -sat if φ δ is satisfiable;

where φ δ denotes the δ -weakening of φ , that, in turn, encodes a numerical perturbation

of φ : for instance, the δ -weakening of x = 0 (with x∈R) is |x| ≤ δ [215]. The effect of

the δ -weakening relaxation is crucial as it transforms the SMT problem with generic

nonlinear formulae from undecidable to a correctly solvable numerically-driven proce-

dure, i.e. decidable. Additionally, if the formula φ is satisfiable, also φ δ is satisfiable

(but not vice versa). This leads to the following conclusion: when a formula is δ -sat,

either it is in fact satisfiable, or its δ -weakening renders is satisfiable [215].

Several SMT solvers have been developed in recent times, with notable mentions

being Z3, CVC and dReal. Z3 (also known as the Z3 Theorem Prover), is an SMT

solver developed by Microsoft (and released open source in 2015) [218]. Cooper-

ating Validity Checker (CVC) [219] collects a family of tools (developed from 2002

onwards) used (in its latest versions) to proof defect-free software and correct func-

tionalities of cloud services (e.g. Amazon Web Services).

dReal is an open-source SMT solver developed in 2013, specifically devised for

SMT formulas over the real numbers encompassing nonlinear functions, proved to be

δ -complete [216]. As this thesis specifically focuses on the problem of evaluating the

satisfiability of generic nonlinear formulae (i.e. polynomial and transcendental) over

the theory of real numbers, i.e. encompassing the verification of CLFs, dReal will be

the selected tool further discussed hereby. When dReal returns unsat, dReal guarantees

that the formula is unsatisfiable, namely dReal is a sound solver. On the other hand,

when the answer is δ -sat, it returns a solution within a precision δ . In practical terms, a

solution returned with δ -sat precision means that, rather than providing an exact value

as the solution, a possible box is returned within which the solution resides.

Assume now that one wants to check whether formula (5.6) is valid over a domain

5.2. Preliminaries 97

D = [2.0,4.0], using dReal as SMT solver. Recalling that dReal is δ -complete, it

is convenient to formulate the decision problem as the negation of formula (5.6): to

confirm that (5.6) is valid, the negation must be unsatisfiable. In the specific example,

the decision problem can be formulated as the negation of (5.6), namely:

∀ x : (x ∈D)⇒ x≤ 3.0 (5.7)

that entails asking if "for all the assignments of x in D, x always satisfies x ≤ 3.0". If

dReal was to return unsat, no assignment of x such that x≤ 3.0 would exist, or, in other

terms, x > 3.0,∀ x ∈ [2.0,4.0]. Naturally, this is not the case, as the formula (5.6) is

not valid and dReal would in actuality return an assignment of x that makes (5.7) sat-

isfiable. By selecting an arbitrary value δ = 0.01, dReal would terminate the decision

problem with δ -sat, returning, for example x = [2.39,2.41] as an instance satisfying

(5.7). This value of x is denoted as CE [217].

This uncertainty on the precision of the returned CE becomes of paramount im-

portance in the vicinity of the origin, where dReal returns spurious CEs. A spurious

CE denotes a false positive CE: even when an SMT query should return unsat, a ficti-

tious CE is returned instead. Due to the numerical nature of the verification approach,

the issue of the spurious CEs is inevitable.

This problem is clearly a limitation from a theoretical perspective, especially

when verifying formulae where inequalities and strict inequalities bear a specific mean-

ing. In the context of CLFs design, the equilibrium of a dynamical system is deemed

stable if there exists a function that vanishes exactly at the origin with its Lie derivatives

decreasing along the system trajectories. One could therefore claim that the employ-

ment of computer-aided methods introduces numerical errors that in turn render any

verification effort to be unfeasible. Since any numerical error blurs the difference be-

tween strict and non-strict inequality, one can conclude that numerically-driven meth-

ods are not suitable for verifying these strict constraints [216]. However, even verifying

that a system is stable within an arbitrarily small neighbourhood around the origin is

of great importance in practical control applications [220].

To this aim, the original concept of stability in the sense of Lyapunov was ex-

5.2. Preliminaries 98

tended and refined in later formulations. In practical terms, bounding a dynamical

system to oscillate sufficiently near the target equilibrium is a desired outcome of a

control system, tapping into the concept of practical stability introduced by LaSalle

and Lefschetz [221]. A modification to the concept of practical stability is introduced

in [220] as:

Definition 7 (ε-stability) An equilibrium xxx⋆= 0 is said to be ε-stable if, for any R> ε ,

there exists r > 0 such that if ∥xxx0∥2 < r, then ∥xxx(t)∥2 < R ∀t ∈ R+,

Proving the ε-stability of xxx⋆ guarantees that, at steady-state, the state-space trajectories

contract to ∥xxx∥2 ≤ ε [220], with ∥aaa∥2 =
√

a2
1 + ...+a2

n denoting the 2-norm of vector

aaa. The difference with respect to the classical definition of stability in the sense of

Lyapunov (Definition 5) lies in the fact that R is strictly bounded from below by a

quantity ε , and no longer by 0. Further details regarding the interpretation of the ε-

stability together with a numerical example are provided in Section 6.5.2.

It is worth reporting that, in opposition to the continuous time domain formulation

of the NLC, as for the original case of LNN, recent interest focuses on the synthesis

of CLF for discrete-time systems with formal certification of correctness. Associated

literature aims at designing LFs for specific hybrid dynamical systems, i.e. piecewise

linear systems (PWL) [138, 213]. Recent extensions focus on extending these works

to generic discrete-time models with a Lipschitz continuous map [139]. This stream of

research targeting discrete-time systems shares with the NLC the choice of the CEGIS

architecture as the learning paradigm to synthesise CLFs. In place of the SMT solvers,

these works use Mixed Integer Linear Programs (MILP)-based verifiers. As the ma-

jority of marine models and dynamics studies focus on continuous time models, this

thesis hereby focuses solely on continuous-time methods.

5.2.3 Declaration of aim

Following recent developments in the NLC framework [134, 135, 137], the initial goal

of the analyses proposed in this chapter is evaluating whether the NLC can system-

atically synthesise control laws for generic continuous-time nonlinear dynamical sys-

tems, while providing stability certificates via suitable CLFs. In the sections that fol-

5.3. Neural Lyapunov Control method: initial assessment 99

low, the NLC method will be used to attempt stabilising complex unstable dynamics,

constituting the foundation method for the subsequent extension to fault-tolerant con-

trol system design.

5.3 Neural Lyapunov Control method: initial assess-

ment
In line with standard practice in control system design, new methods are conventionally

verified using the inverted pendulum benchmark. The inverted pendulum dynamics can

be written as follows:

ẋ1 = x2

ẋ2 = J−1
p (mglp sinx1−bpx2 +u)

(5.8a)

(5.8b)

where x1, x2 represent the angular position and velocity of the swinging mass respec-

tively, and u the control input, denoting a torque applied at the supporting joint. The

scalar parameters bp, lp, m and Jp denote the drag coefficient, the length of the pendu-

lum arm, the value of the lumped mass and the moment of inertia, respectively.

The inverted pendulum system is used as a first case study in the original NLC

work [134] to demonstrate the convergence capabilities of the method. It is also em-

ployed in this work as a simple example to begin unwrapping the black box, i.e. to

better understand how the method and the associated tool work under the hood and

how the synthesis results are affected by changing the hyperparameters.

When devising ML-based methods, there is some difficulty in evaluating and com-

paring different techniques, as the choice of the hyperparameters can, and usually have,

a significant effect on output performance. To this aim, the initial hyperparameters are

setup as proposed in the code repository3 associated with the original NLC work [134],

and are then varied one at a time. Table 5.1 reports the hyperparameters initially pro-

posed for the ANN architecture, illustrated in terms of layer size, presence of bias and

selected activation function (σ) for the hidden layer and for the output layer.

3https://github.com/YaChienChang/Neural-Lyapunov-Control

https://github.com/YaChienChang/Neural-Lyapunov-Control

5.3. Neural Lyapunov Control method: initial assessment 100

Table 5.1: Inverted pendulum campaign – NLC architecture encompassing the input layer, one
hidden layer and the output layer.

Parameter Lyapunov ANN
Layer size [2, 6, 1]

Bias [Yes, Yes]
σ [tanh, tanh]

The parameters characterising the dynamics are selected as proposed in the NLC

work [134], namely as m = 0.15 [kg], lp = 0.5 [m], g = 9.81 [m/s2], Jp = 0.0375 [kg

m2] and bp = 0.1 [(kg m2)/s].

NLC makes use of a (linear) state-feedback control law, in this case initialised

as: u = −23.59x1− 5.31x2, obtained by solving a Linear Quadratic Regulator (LQR)

optimisation problem. Additional key hyperparameters encompass:

1. the learning rate set as λ=0.01;

2. the initial dataset of cardinality |SI|=500;

3. the dReal verification precision set as δ=0.01.

The general goal of the NLC method is to synthesise a control law that extends the

ROA with respect to that obtained by means of a LQR solution. In this case scenario,

the specific aim is to synthesise a control law to stabilise the pendulum in the upright

position, together with a CLF to certify the stability of the equilibrium, while ensuring

a ROA as large as possible. If such a solution is not obtained within 2000 learning

iterations, the ANN weight is re-initialised and the learning is re-started a second time

for up to another 2000 iterations. If a solution is still not obtained, the synthesis run is

concluded and it is reported as unsuccessful.

A systematic investigation was carried out by varying the original NLC param-

eters, with the ranges of the training settings and of the hyperparameters selected in

accordance with related literature [134, 135, 136, 222]. The ranges of explored values

are reported in Table 5.2.

Additional key elements were investigated to further test the robustness of the

NLC to changes in framework setup. These key elements were identified as the initial-

5.3. Neural Lyapunov Control method: initial assessment 101

Table 5.2: NLC test campaign – varied parameters range.

Parameter Min Max
hidden layer size 2 250

learning rate 10−6 102

|SI| 50 2000
δ 10−4 10−1

isation of the control gain (supplied as LQR solution in the original formulation), and

the number of learning iterations, as reported in Table 5.3.

Table 5.3: NLC test campaign – additional elements investigated.

Parameter Option 1 Option 2
control gain initialised Yes [134] No

maximum learning iterations 2000 [134] 105

To understand the effects on the learning outcome, over 1800 tests were run by

permuting different values of the parameters. The duration of the tests, ranging from a

few seconds to a maximum of 10 hours, was as expected significantly affected by the

overall number of learning iterations, initial dataset sample size and dReal precision.

The key gained practical takeaways are summarised here:

1. if a test converges, it does so within a relatively low number of learning itera-

tions. It follows that it is more beneficial to run several short tests rather than a

single test of extended duration;

2. increasing the hidden layer size significantly speeds up the learning of the can-

didate CLFs, but prevents the verification procedure from converging. This find-

ing is confirmed during later works [208], as 30 neurons was confirmed as the

maximum practical value that was within the verification engine’s processing

capability;

3. setting a verification precision δ to low values (e.g. δ = 10−6) prevents the

verification stage from converging; setting the δ value too high (e.g. δ = 10−1)

renders the returned CEs uninformative as their associated uncertainty is overly

excessive to be of practical use;

5.3. Neural Lyapunov Control method: initial assessment 102

4. starting with a high |SI| value has a detrimental effect on the computational time

of the learning stage and requires computational resources that are beyond the

capability of a standard office laptop;

5. initialising the control gain with random values leads the learning framework to

fail systematically.

This preliminary analysis returned practical insights relating to a sensible initiali-

sation of the hyperparameters. More importantly, it highlighted the initialisation of the

control gains as the key limiting factor of this framework.

It is worth noting that, at times, control functions were successfully synthesised.

This was observed when the random control gains are in the neighbourhood of sen-

sible state-feedback solutions. In the specific case that was analysed, an example of

a favourable random initial solution is u = −15.21x1−8.72x2, which lead the frame-

work to converge, while e.g. u=−0.0023x1−0.01x2 did not. This element is typically

symptomatic of a low learning rate value selected. Naturally, one could try increasing

the value of the learning rate. However, choosing learning rate values that are too high,

lead the framework to fail to find a solution either.

The initialisation of the control gain becomes even more critical as a state-

feedback control typically encompasses matrices KKK with high dimensions (in control

of perfectly actuated single-bodied underwater vehicles, for instance KKK ∈R6×6, i.e. 36

scalar values [61]), more than just the two parameters of this preliminary case study.

Moreover, if nonlinear control laws were to be devised instead, as per one of the stated

aims of this thesis, finding sensible initialisation of the control gain would be even

more complicated, if not too much of an endeavour to even consider the option for

practical use. As the goal is to streamline the automatic synthesis of control laws, the

sensitivity to the control gain initialisation was identified as a clear limiting factor that

would need to be addressed.

The results derived from this preliminary analysis showed that despite the NLC

method held significant promise when it comes to devising control laws while certify-

ing the closed-loop stability, improvements are necessary to increase the applicability

of the method. Specifically, as shown, the NLC method suffers when a favourable ini-

5.4. Synthesis of Control Lyapunov Functions 103

tialisation of the control gains is not provided, highlighting that further work is needed

to improve the method such that control functions for a range of benchmark systems

can be derived in a systematic manner.

Research question RQ2, initially formulated as:

Is the Neural Lyapunov Control method an effective approach to design stable

control laws for nonlinear systems?

is thus updated as follows:

Can an upgraded version of the Neural Lyapunov Control method be devised to

systematically design stable control laws for continuous-time nonlinear dynamical

systems?

The following sections outline the tailored improvements that were devised to

expand the learning ability of the framework, with a final comparison between the

NLC and its upgraded version provided in Section 5.5.

5.4 Synthesis of Control Lyapunov Functions

The framework outlined in this section is logically built upon the original NLC method,

with tailored modifications devised on all its constituent components. Minor modifi-

cations are reported in this section, while major elements are detailed in Section 5.5.

The proposed upgraded method employs sequential iterations of the Learner and

the Falsifier in order to i) tune the control gains while computing a candidate CLF,

and ii) formally verify the stability of the resulting closed-loop system. While the

Learner trains the ANNs, the Falsifier oversees the formal verification of the candidate

CLF and returns (if any) counterexamples to the Learner. The overall procedure is

illustrated in Fig. 5.3, where η embeds the network hyperparameters, VC(x) and uC(x)

represent the candidate CLF and the candidate control law, respectively, and S the

training dataset, initially populated with points generated from a Uniform distribution

from within a domain D. Additionally, CESMT and CEDF denote the CEs returned

by the two verification modules that comprise the (Augmented) Falsifier, as it will be

detailed in the following sections. The constituent elements reported in Fig. 5.3 are

detailed in the following sub sections.

5.4. Synthesis of Control Lyapunov Functions 104

Figure 5.3: CEGIS learning method with Augmented Falsifier, © 2023 IEEE [22].

5.4.1 Learner

The Learner is the module tasked with training the ANNs to tune the control gains and

to propose candidate CLFs.

Given a dynamical system ẋxx = fff (xxx,uuu) (note that the dependency of ẋxx on time is

henceforth dropped to simplify the notation) and a target equilibrium xxx⋆, the training

procedure is initiated by using a (small) initial sample set S= SI composed of randomly

selected states (sssiii) generated within a domain D (containing xxx⋆). During each learning

iteration, a cost function is evaluated and the ANN parameters (η), namely the weight

and bias, are updated according to the Stochastic Gradient Descent (SGD) algorithm

[223]. A detailed description of the cost functions is outlined in Section 5.4.1.2.

At the end of the training, this procedure returns a candidate control law and a

candidate CLF that satisfy the Lyapunov conditions (5.4) over the finite sample set S,

i.e. Vc(sssiii)> 0, V̇c(sssiii,uuuiii)< 0, ∀sssiii ∈ S, where uuuiii represents the control law evaluated at

sample sssiii.

Next, the selected ANN architecture, the loss function and the tuning of the learn-

ing parameters are discussed.

5.4.1.1 Control architecture

Following the seminal NLC method, several other works propose the synthesis of

(C)LFs employing neural architectures, from shallow ANNs [135, 136] to deep net-

works [222, 137, 138]. Moreover, the selected activation functions vary significantly:

e.g. ReLU, polynomial, tanh [134, 136], and softplus [222, 137]. Different to the NLC,

the control architecture proposed in this work is composed of three networks embody-

5.4. Synthesis of Control Lyapunov Functions 105

ing the CLF, the linear and the nonlinear control laws, with the nonlinear control

laws constituting the element of novelty. A user-defined Boolean parameter, denoted

control-branch training selector (κ), is employed to train either one of the two control

ANNs. The resulting architecture is illustrated in Fig. 5.4.

Naturally, a wider and deeper network ensures more flexibility and approxima-

tion power. However, a deeper network increases the computational training time and

convolutes the symbolic expression of the CLF, which would typically present a chal-

lenge for the Falsifier. As a consequence of these conflicting requirements, the network

architecture must be carefully selected, balancing flexibility against overly excessive

expressions that cannot be verified. To this end, a network composed of two hidden

layers was experimentally found to be a sensible trade off for benchmark dynamics

of up to 12 dimensions, as it was shown capable of consistently delivering CLFs, in

accordance with related findings [135, 137, 222, 138].

Figure 5.4: Augmented Neural Lyapunov Control architecture with Lyapunov ANN (blue
box), nonlinear control ANN (green box) and linear control ANN (orange box).
The red line represents the loss function back propagation, and κ the control-
branch training selector.

Once the learning stage terminates, i.e. upon successful synthesis of a CLF, the

control function is deployed in a classical closed-loop control scheme. An example of

the closed-loop scheme is reported in Fig. 5.5.

5.4. Synthesis of Control Lyapunov Functions 106

Figure 5.5: Control architecture upon deployment in closed-loop applications, showcased
when a nonlinear control function is employed, © 2024 Elsevier [23].

5.4.1.2 Loss functions

The loss function has a twofold objective in that it is required to drive the candidate

CLF to satisfy the Lyapunov constraints, while maximising the ROA. As such, a mod-

ification to the original NLC loss function was devised. The Empirical Lyapunov Risk

Loss (LELR) is introduced as:

LELR = α1

|S|

∑
i=1

R(−V (sssiii))+α2

|S|

∑
i=1

R(V̇ (sssiii,uuuiii))+

α3V (0)2 +α4
1
|S|

|S|

∑
i=1

(∥sssiii∥2−αROA V (sssiii))
2 (5.9)

where R(a) = ReLU(a) = max(0,a) for a general input a, and where α1, ...,α4,αROA

are tuning parameters and |S| is the cardinality of the dataset S (containing samples

sssiii), and where ∥sssiii∥2 denotes the 2-norm of the sample sssiii. The first three terms of

Eq. (5.9) account for the theoretical Lyapunov conditions in Eq. (5.4), while the final

term’s function is maximising the size of the ROA [134].

By weighting the first three terms of the loss function higher than the fourth term,

the ROA tuning term can be considered as an additional side feature. The fourth com-

ponent induces a parabolic shape of V , with αROA regulating the function steepness.

The effect of tuning αROA is shown in Fig. 5.6, with γ denoting the upper boundary of

5.4. Synthesis of Control Lyapunov Functions 107

the domain. Assuming that, ideally, at the end of the training:

∥sss∥2−αROA V = 0 (5.10)

holds true, the effect of different tuning values can be illustrated by selecting two

numerical values:

(i) case αROA = γ: from Eq. (5.10) at the edge of the domain (i.e. ∥sss∥2 = γ), it

holds: γ− γ V = 0→V = 1.

(ii) case αROA = 2γ: at the edge of the domain it holds: γ−2γ V = 0→V = 1
2 .

Overall, the lower the αROA value, the steeper the CLF. The presence of the forth

term in Eq. (5.9) has the effect of shaping the CLF to approximate a parabola (or

a paraboloid of revolution for n-dimensional systems), as it will be shown later by

numerical analysis in Section 6.8.1.

Figure 5.6: Effect of tuning αROA in the loss function (5.9), © 2024 Elsevier [23].

When the fourth term in not employed, i.e. when maximising the ROA is not a

priority, the values of α1,α2 and α3 can be set up to 1.0, and α4 = 0.0, without any

loss of generality (as shown in the case studies of Section 5.6). Additionally, when

V (0) = 0 holds true by construction, such as when the Lyapunov ANN has no bias and

the activation function is zero in zero, α3 can also be set to zero.

In parallel to Eq. (5.9), to monitor whether the Lyapunov constraints alone are

5.4. Synthesis of Control Lyapunov Functions 108

satisfied, the Strict Lyapunov Risk Loss is introduced (LSLR):

LSLR =
|S|

∑
i=1

R(−V (sssiii)) +
|S|

∑
i=1

R(V̇ (sssiii,uuuiii)) + V (0)2 (5.11)

which returns a positive value whenever any point in the dataset S violates Eq. (5.4).

With the logic further detailed in Section 5.5.1, this function is used to reduce the

computational burden of the procedure by executing callbacks to the Falsifier only

when the LSRL is equal to zero.

In the following Section 5.4.2, details are provided as regards to how to evaluate

the quantities V (sssiii) and V̇ (sssiii,uuuiii) in (5.9)-(5.11).

5.4.2 Translator

Once a candidate pair (Vc,uc) is obtained, a corresponding symbolic expression needs

to be passed to the Falsifier. This step is carried out by a module typically referred

to as the Translator [136], that is derived here in the most general formulation for a

feedforward ANN encompassing bias. First the output of a feedforward ANN layer i

is recalled as:

zzziii = σi(WWW i zzzi−1 +BBBi), i = 1, . . . ,k (5.12)

where zzzi−1 represents the input to the i-th layer, and WWW iii,BBBiii,σi are the corresponding

weight, bias and activation function, respectively, and k is the total number of ANN

layers.

The symbolic expression of a CLF V (xxx) can thus be obtained by a forward pass

of the Lyapunov network as:

V (x) = σk(WWW k zzzk−1 +BBBkkk). (5.13)

Next, the symbolic expression of a Lie derivative needs to be derived. Formally,

a Lie derivative is defined as:

V̇ = ⟨∇∇∇(((VVV)))xxx,,, fff (((xxx,,,uuu)))⟩ (5.14)

5.4. Synthesis of Control Lyapunov Functions 109

with:

∇∇∇(((VVV)))xxx :=
∂V
∂xxx

= [
∂V
∂x1
· · · ∂V

∂xn
]T . (5.15)

Next, the gradient ∂V
∂xxx can be evaluated as the following chain rule:

∂V
∂xxx

=
∂ zi

∂ zzzi−1

∂ zzzi−1

∂ zzzi−2
· · · ∂ zzz1

∂ zzz0
(5.16)

with zzz000 = xxx and zi = V . The partial derivative of a generic layer i with respect to the

previous layer can be evaluated by means of (5.12) as:

∂ zi

∂ zzzi−1
=

∂σ(WWW iii zzzi−1 +BBBiii)

∂ zzzi−1
=

∂σ(WWW iii zzzi−1 +BBBiii)

∂ (WWW iii zzzi−1 +BBBiii)

∂ (WWW iii zzzi−1 +BBBiii)

∂ zzzi−1
. (5.17)

It is thus possible to compute the first factor of Eq. (5.17) as:

∂σ(WWW iii zzziii−111 +BBBiii)

∂ (WWW iii zzziii−111 +BBBiii)
= diag[σ ′(WWW iii zzziii−111 +BBBiii)], (5.18)

where diag[aaa] represents a diagonal matrix whose entries are the elements of vector [aaa]

and with gi denoting the number of neurons of the i-th layer, such that WWW iii ∈ Rgi×gi−1 ,

BBBiii ∈ Rgi and zzziii ∈ Rgi .

Next, the second factor of Eq. (5.17) can be calculated as:

∂ (WWW iii zzzi−1 +BBBiii)

∂ zzzi−1
=WWW iii (5.19)

Overall, Eq. (5.17) can be expressed as:

∂σ(WWW iii zzzi−1 +BBBiii)

∂ zzzi−1
= diag[σ ′(WWW iii zzzi−1 +BBBiii)] WWW iii (5.20)

To conclude, the Lie derivative of V (x) is computed as:

V̇ =

(
k

∏
i=1

diag[σ ′k−i+1(WWW k−i+1 zzzk−i +bbbk−i+1)] WWW k−i+1

)
fff (((xxx,,,uuu))) (5.21)

where fff (((xxx,,,uuu))) embeds the symbolic expression of uuu(((xxx))), which is in turn obtained via

5.4. Synthesis of Control Lyapunov Functions 110

Eq. (5.12).

5.4.3 SMT Falsifier

The Falsifier module is designed to formally verify whether a candidate function Vc(x)

is in fact an unconditionally correct CLF. This statement corresponds to evaluating the

expression:

∀xxx : (xxx ∈D)⇒ (Vc(xxx⋆) = 0∧Vc(xxx)> 0∧V̇c(xxx,uuu)< 0) (5.22)

This expression can be simplified: recalling Eq. (5.13), it is possible to note that

V (000) = 0 holds true if bbbiii = 0 and activation functions such that σi(0) = 0 for all i are

chosen. The falsification step is thus formulated as the logical negation of Eq. (5.22),

meaning that the SMT solver searches for a solution of:

∃xxx : (xxx ∈D)⇒ (Vc(xxx)≤ 0∨V̇c(xxx,uuu)≥ 0) (5.23)

It should be noted that condition V (xxx⋆) = 0 is omitted from the Falsifier constraints

Eq. (5.22). This condition is verified separately since it simply represents a pointwise

evaluation.

When solving Eq. (5.23), if there exists such a point xxx, the candidate Vc(xxx) does

not satisfy the constraints Eq. (5.4); hence, Vc is discarded and xxx is returned to the

Learner as a CE.

Additionally, it is recalled that dReal is a δ -complete solver. This ensures that

whenever Vc is deemed valid, then Vc is a CLF. However, dReal may return spuri-

ous counterexamples within a δ -error. While this may generate an infinite number of

loops between Learner and Falsifier, it does not impair the correctness of the proposed

procedure.

The δ precision is problematic when checking the constraints (5.4) within a neigh-

bourhood of the origin. The exclusion of a small neighbourhood of the origin from the

verification step was proposed as mitigation [134] and it is adopted in this work, in-

troducing a lower boundary on the domain of validity of the CLF. In the case of a

spherical domain, the domain is defined as: ε ≤ ∥xxx∥2 ≤ γ , for given radii ε and γ , with

5.5. Augmented Neural Lyapunov Control: tailored improvements 111

ε,γ scalar design parameters. As such, this method guarantees the ε-stability of the

underlying model [220], formally guaranteeing that the state remains bounded within

ε upon convergence. In other words, at steady-state the state-space trajectories are

guaranteed to contract to ∥xxx(t)∥2 ≤ ε, t → ∞. Further details regarding the meaning

of the ε-stability are provided in Section 6.5.2, together with numerical examples and

illustrations.

In line with the NLC framework, in this work, dReal is selected as SMT solver to

evaluate the SMT query (5.23) owing to its capability to handle polynomials, trigono-

metric and exponential expressions.

5.5 Augmented Neural Lyapunov Control: tailored im-

provements
In this section, the specific NLC limitations, identified in Section 5.3, are discussed

in more detailed and mitigation strategies are proposed. Four main elements of im-

provements will be discussed: the generation of CEs, the selection of the learning rate,

the composition and cardinality of the dataset and algorithmic logic refinements. The

upgraded procedure devised is henceforth identified as Augmented NLC (Augmented

Neural Lyapunov Control (ANLC)).

5.5.1 Augmented Falsifier

At each callback of the SMT Falsifier, one single CE box is identified and a point cloud

within such box is returned. The SMT callback process is generally time-consuming,

causing a bottleneck in the procedure.

It should be noted that the bounded (i.e. when considering a finite-spaced do-

main) SMT problem with exponential and trigonometric functions over the Reals is

nondeterministic polynomial time (NP)-complete [215], while the problem, for generic

nonlinear functions, is NP-hard instead [134].

A decision problem belongs to the complexity class NP if, given an input u, it is

possible to verify that u is an instance satisfying the problem in polynomial time [224].

In other words, NP is the set of problems that can be efficiently verified [225]. Proofs

5.5. Augmented Neural Lyapunov Control: tailored improvements 112

about whether efficient algorithms exist to verify NP-complete problems are currently

the object of extensive research effort, but it is believed that an NP-complete prob-

lem might only have non-polynomial verification solutions, i.e. non-efficient solutions

[224].

NP-complete problems are the more complex problems in NP, and NP-hard are at

least as hard as the hardest problem in NP. These theoretical insights point towards an

intrinsic limitation of the method linked to the computational burden required during

the verification stage.

To overcome this computational bottleneck, a numerical unit, called Discrete Fal-

sifier (DF), is introduced to attempt an initial generation of CEs before the SMT call.

In more detail, the DF is designed to minimise the number of callbacks to the SMT

Falsifier, while the SMT Falsifier is tasked with only providing a certificate of correct-

ness at the end of the learning procedure, rather than being employed recursively to

provide CEs.

With such architecture to generate CEs in place, the overall learning loop evolves

as follows. Starting from an initial dataset S, the training attempts to minimise LELR,

with the training ceasing when the condition LSRL = 0 is attained. When this occurs,

the candidate CLF has satisfied the constraints (5.4) over all samples. Next, the DF

is called. The domain is discretised over a grid specified by user-defined precision,

and the values of V (sssiii) and V̇ (sssiii,uuuiii) are evaluated over the discrete points. If points

violating Eq. (5.4) are identified, these points are stored in the set CEDF and added to

the dataset and the training resumes. If the cardinality of CEDF exceeds a threshold

ζDF , a randomly selected subset of cardinality ζDF is added to the dataset. Adding a

limited number of points is more in line with the CEGIS paradigm, where the solu-

tion is recursively refined, as opposed to being excessively updated at each learning

iteration. In those particular cases where CEs are not generated, the SMT is invoked

to formally verify the correctness of the candidate. Finally, if the SMT locates a CE,

a set containing ζSMT new points is added to the dataset (defined as SCE in Fig. 5.3),

otherwise Vc(x) is formally verified to be a CLF.

5.5. Augmented Neural Lyapunov Control: tailored improvements 113

5.5.2 Network-specific Learning Rate and Scheduler

In line with previous observations, the learning rate has a significant impact on the

learning ability of ANNs [226, 227]. Low values of learning rate often lead to the loss

function getting stuck in local minima, while high values typically result in unstable

training [228].

In the original NLC work [134], both the Lyapunov and the control ANNs use

a single learning rate value; following the preliminary investigation reported thus far,

this design choice is believed to leading the training to at times becoming stalled. As

a consequence, in this work, the Lyapunov and control learning rates of the Lyapunov

and control ANNs are separated, and are referred to as λ and λc, respectively.

Additionally, to resemble the re-initialisation of the ANN weights carried out in

the NLC algorithm, a cosine annealing scheduler is added [229]. This scheduler cycli-

cally oscillates the learning rate between a minimum and a maximum value, while

briefly undertaking both conservative (low values) and aggressive (high values) learn-

ing rate tuning. This element is introduced to avoid the requirement for hard reset of

the ANN weights at pre-defined intervals, mitigating the risk of losing the learning

progress in the midst of the training process.

5.5.3 Counterexample Selection

The CEGIS paradigm gives rise to a dynamic dataset that increases in size as succes-

sive CEs are returned by the Falsifier. As the CEGIS loops progress, the algorithm

slows down, since the computational burden derived from the training of the ANNs is

impacted by the size of the dataset, in addition to other parameters. Note that, experi-

mentally, the SMT often returns similar CEs at successive iterations, i.e. a significant

portion of the dataset becomes clustered in a small region of the state-space. This event

is denoted counterexample overfitting, as illustrated in Fig. 5.7.

In this work, a device called selective sliding window (SSW) is introduced as a

means of mitigation. The initial dataset SI , which contains samples scattered over the

entire domain, is held unchanged. A sliding window is applied to the counterexample

dataset SCE . When a prescribed maximum dataset size |S|= Smax is attained, the least

recent CEs are deleted in order to keep the dataset cardinality bounded, as illustrated in

5.5. Augmented Neural Lyapunov Control: tailored improvements 114

Fig. 5.8. This element limits the risk of CE overfitting – already identified as a possible

cause of reduced algorithm efficiency [138], while the fixed dataset dimension prevents

the training performance from deteriorating over successive loops.

Figure 5.7: Dataset with initial points (SI) and clustered counterexamples, © 2023 IEEE [22].

Figure 5.8: Dataset with selective sliding window logic, with S = SI ∪SCE , © 2023 IEEE [22].

5.5.4 Algorithm and software

The algorithm starts by generating a training dataset S composed of random samples

sssiii from a uniformly distributed hypercube of side length γ . If the linear control branch

has been selected, the linear control weight can be optionally set to an initial value

(qI). Next, at each training iteration the Learner gradually minimises the loss LELR by

updating the ANN weights through a SGD step. In any training iteration, the current

values of the ANNs weight and bias are collected in a vector η , defining Vη and uη .

Iterations of the learning steps continue until the Lyapunov conditions are verified

∀sssiii ∈ S, i.e. when LSLR = 0. Once LSLR = 0 holds true, the candidate CLF (V S
η) and

the Lie derivative (V̇ S
η) are symbolically obtained by means of the Translator. The

Discrete Falsifier is thus invoked to find CEs (CEDF) over a prescribed discretisation of

the domain D. If CEs are found, these are added to S and the learning step is restarted.

If no CEs are obtained, the SMT Falsifier is tasked with verifying the candidate CLF

5.5. Augmented Neural Lyapunov Control: tailored improvements 115

(V S
η) over the dense domain of the Reals. Next, if a CE is obtained via SMT-solving

(CESMT), the CESMT is added to S and the learning step restarted. Otherwise, the

candidate CLF is formally verified to be correct (the SMT callback terminates with

unsat), and the algorithm returns the synthesised control law.

The schematic algorithm of the ANLC method is reported in Algorithm 1, where

the timeout defines a time threshold within which the SMT Falsifier is required to

compute the CEs. If such a timeout value is reached, the verification procedure is

stopped and the training is flagged as unsuccessful.

The core modules of the library are structured as reported in Fig. 5.9. The main

file retrieves the values of the hyperparameters and the description of the dynamical

system from the configuration file. Next the callback to the CEGIS loop is performed

and the training stage is set up. Within the CEGIS file, the ANNs are instantiated,

and the training stage started. Next, the learning is iterated until a candidate CLF is

obtained. The candidate CLF is then passed to the Falsifier to verify its correctness.

Upon termination, the postprocessing module is called, tasked with producing the plots

and saving the logs of the training run. Finally, optional closed-loop testing runs are

performed to confirm successful synthesis of the control law.

Figure 5.9: Code modules designed.

The call graph representing the flow of the subroutines involved in the run of a

template 2-dimensional system is illustrated in more detail in Fig. 5.104. The software

tool employs either Python 3.7, dReal 4.21 and PyTorch 1.4, or Python 3.9, dReal 4.21

4The call graph is generated with the code2flow library
(https://github.com/scottrogowski/code2flow)

https://github.com/scottrogowski/code2flow

5.5. Augmented Neural Lyapunov Control: tailored improvements 116

Algorithm 1 Augmented Neural Lyapunov Control
1: function LEARNER(S, f ,ANNη)
2: repeat
3: Vη(x),uη(x)← ANNη(x) ▷ ANN forward pass
4: V̇ ← Translator
5: Compute loss LELR,LSLR
6: η ← η−∇η LELR ▷ Update weights via SGD
7: until (LSLR > 0)
8: return Vη(x),uη(x)

9:
10: function DISCRETE FALSIFIER(V S

η ,V̇
S
η ,D,ζDF)

11: Discretise D

12: Numerically evaluate (V S
η ≤ 0, V̇ S

η ≥ 0)
13: CEDF ← Violations points (max size ζDF)
14: return CEDF

15:
16: function SMT FALSIFIER(V S

η ,V̇
S
η ,D)

17: Using SMT solver to verify conditions
18: return unsat or CESMT

19:
20: function MAIN()
21: Input: f , S, ζDF , ζSMT , D, ε , γ , η ,λ , λc, φ , α1,α2,α3,α4,αROA, optional

control gains (qI)
22: Initialise ANN size (optional: initialise linear control gains with qI)
23: repeat
24: if (N ≥ Smax): Apply sliding window
25: Vη(x),uη(x)← LEARNER(S, f ,ANNη)
26: Compute symbolic values f S

η ,u
S
η ,V

S
η ,V̇

S
η

27: if (LSLR == 0) then
28: CEDF ← DISCR. FALSIFIER(V S

η ,V̇
S
η , D, ζDF)

29: if CEDF is None then
30: CESMT ← SMT FALSIFIER(V S

η ,V̇
S
η ,D)

31: SCE ← (CEDF ∪CESMT)
32: if (not unsat): S← (S∪SCE)

33: until (unsat or timeout)

and PyTorch 1.7. Installation instructions designed to enhance portability over different

Operating Systems and a user-guide are provided within the associated repository page

at https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control, under the In-

stallation section. Different approaches to install the software tool are made available,

such as installing it at system level, or within an Anaconda environment, or within a

https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control

5.5. Augmented Neural Lyapunov Control: tailored improvements 117

virtual environment.

5.5. Augmented Neural Lyapunov Control: tailored improvements 118

Fi
gu

re
5.

10
:A

N
L

C
lib

ra
ry

ca
ll

gr
ap

h.

5.6. Numerical Evaluation 119

5.5.5 ANLC upgrades summary

Having now completed the investigation into the NLC algorithmic details, the different

learning capabilities of the NLC and ANLC can be narrowed down to five factors.

The improved elements are summarised in Table 5.4, which illustrates the aspects of

the NLC that required further refinement, together with the corresponding selected

mitigating measures.

In summary, the NLC requires improvements to be capable of generating control

laws systematically and automatically without requiring ad hoc initialisation. The el-

ements in need of improvements are highlighted as: inefficient CEs generation, CE

overfitting, algorithmic inefficiencies, dataset size and sensitivity to learning rate. All

these elements lead to the training process getting stuck in local minima or to learn-

ing instabilities, to a continuously growing dataset and to the possibility of infinite CE

generation loops. The ANLC tackles the issues mentioned one by one, significantly

expanding the learning capabilities such that both CLFs and the control functions can

be consistently learnt altogether.

A quantitative comparison of the performance of the NLC and the ANLC methods

is provided in the following section.

5.6 Numerical Evaluation
In this section, following the proposed methodological upgrades, the original NLC

and the new ANLC methods are compared with respect to the initial benchmark of the

inverted pendulum system. Next, the ANLC is challenged over a Lorenz attractor sys-

tem, which has been chosen as a more advanced benchmark. The results reported in the

following section highlight the improvements gained when compared to the original

approach. All the training runs illustrated are executed on a standard low-specification

office laptop computer with 8 Central Processing Units (CPUs) at 1.90GHz and 16 GB

of Random Access Memory (RAM), no Graphics Processing Unit (GPU).

5.6.1 Control system without initialisation

The problem of the stabilisation of an inverted pendulum is once again selected as the

comparison benchmark test, following the analysis of Section 5.3. In the original NLC

5.6. Numerical Evaluation 120

Table 5.4: Breakdown of the ANLC improvements.

Element NLC ANLC ANLC improvement interpretation
Falsifier as
CEs genera-
tor

The SMT
Falsifier
returns one
CE at each
callback.

The Aug-
mented
Falsifier re-
turns several
CEs at each
callback.

The improvement is twofold: a) the CE
overfitting issue is reduced, as the points
added to the dataset are more likely to be
spread over the full search domain; b) the
algorithm learns much faster (as multiple
CEs are added every time), reducing the
risk to hit a timeout.

Algorithmic
logic

The Falsifier
is called at
fixed inter-
vals.

The Aug-
mented
Falsifier is
called only
when the
loss function
(LSLR) is
equal to
zero.

The improvement is twofold: a) adding
new CEs at pre-defined time often leads to
two successive callbacks of the SMT Fal-
sifier returning the same CE, as the vio-
lation identified can still be located in the
same subspace of D. This logic is ineffi-
cient, as the dataset grows in size by adding
multiple instance of the same CE, progres-
sively slowing down the learning and with-
out bringing any added benefits; b) as the
SMT Falsifier callback represents the com-
putational bottleneck of the Lyapunov Con-
trol method, our approach invokes the CLF
verification only when strictly necessary,
further reducing the overall learning time
and the risk to hit the timeout threshold.

Dataset
composition

It can cluster
around sin-
gle CE.

The SSW
limits clus-
tering by
preserv-
ing points
spreaded out
over D.

The risk of overfitting clusters of CE is re-
duced.

Dataset size It grows in-
definitely.

The car-
dinality is
capped at
a specified
value (Smax).

The ANLC algorithm does not slow down
once |S|> Smax as the SSW starts removing
old CEs points. A large dataset can render
this procedure unusable, especially when
higher dimensional systems are considered,
thus |S| is kept bounded via the SSW.

Learning
rate

Is fixed. Is varied
with a
scheduler.

The scheduler allows to explore a wider
range of learning rate values, preventing the
loss function getting stuck in local minima
(if the learning rate is too low), and reduc-
ing the risk of training instability (if the
learning rate is too high).

5.6. Numerical Evaluation 121

Table 5.5: ANLC: inverted pendulum campaign parameters.

ε [deg] γ [deg] δ |SI| λ λc

5.73 343 10−6 500 [0.0, 0.01] [0.0, 1.0]

work, the control ANN is initialised with a pre-computed LQR law. When the control

weight is not initialised, the NLC is found to not be able to systematically synthesise

CLFs. In this section, the effect of not initialising the control ANN weight is quantified

and synthesis statistics are reported.

Table 5.5 details the test parameters, chosen according to relevant literature [134,

137]. Note that as ANLC uses two distinct learning rates for the control and Lyapunov

ANNs, the values of λ and λc are reported in terms of the minimum and maximum

values of the cosine annealing scheduler. To allow for a fair comparison, in the ANLC

tests, the loss function gains have intentionally not been fine tuned (i.e. α1,2,3 = 1

and α4 = 0), while the values of the NLC loss function are selected as reported in the

associated literature [134]. Each hidden layer is composed of 10 neurons in accordance

with the considerations provided in Section 5.3. The selected activation functions are

linear for the first hidden layer, quadratic for the second hidden layer and linear for the

output layer.

To compare the performance of the NLC and the ANLC algorithms, a simulation

campaign composed of six case scenarios was designed, with the results reported in

Table 5.6. For each scenario, 50 tests were run, where each run was started from

a different seed. A seed is an integer value that is used to initialise the values of

free (random) parameters. Within the context of the ANLC, the choice of the seed

determines the initial (random) values of the weights and bias on the ANNs, and the

initial (random) sample composing the training set. By employing the same value

of the seed over successive training runs, one can ensure reproducible results, as the

ANNs are guaranteed to have the same initial values and the training sets comprise

the same samples. The results are presented in terms of iterations required for the

algorithms to converge and reported as per mean value (mean) and standard deviation

(std.). A test was defined as having converged when a stabilising control law and a CLF

were obtained within the prescribed threshold of the maximum number of learning

5.6. Numerical Evaluation 122

iterations.

An initial NLC comparison scenario was designed to verify the necessity to peri-

odically re-initialise the ANNs weight, listed as Scenarios 1a and 1b in Table 5.5. Each

test was run for up to a maximum of 2×1000 iterations, value selected in accordance

with the original NLC work [134]. If the test had not converged to a solution within the

first 1000 iterations, the weights of the ANNs were re-initialised and the test was run

once more for up to 1000 more iterations. The results showed that when the control

network was not initialised with a LQR solution, the convergence percentage of the

algorithm drops from 78% (Scenario 1a) of successful syntheses to 0% (Scenario 1b).

These two scenarios underlined that the weight re-initialisation (after 1000 learning

iterations) is not a key element of the algorithm, while the result clearly highlights that

the control initialisation is a fundamental component of the NLC method.

The next two scenarios, denoted as Scenarios 2 and 3 in Table 5.5, were designed

to compare the performance of the ANLC algorithm against that of the NLC algorithm,

with further focus on the control weight initialisation. Each test comprised a maximum

of 1000 iterations to resemble Scenario 1 without weights re-initialisation. Once more,

it was observed that the performance of the NLC algorithm reduced when the control

network was not initialised, with convergence reducing from from 52% (Scenario 2a,

with initialisation) to 0% (Scenario 3a, without initialisation). The ANLC method out-

performed the NLC when the control was initialised returning an 84% convergence

(Scenario 2b, with initialisation) vs. a 52% convergence (Scenario 3b, without initiali-

sation). This result was further reinforced when comparing the results for Scenario 1a

to those for Scenario 2b the convergence rate increased from 78% to 84% even though

in Scenario 2b the weights were not reinitialised. It is worth noting that, when com-

paring Scenario 2b with Scenario Scenario 1a, ANLC was run for half of the iterations

with respect to the NLC, while still delivering a higher successful synthesis rate.

The CLF synthesised in one of the ANLC tests, obtained by selecting V =

WWW 3(WWW 2(WWW 1xxx))2 as the architecture, is illustrated in Fig. 5.11. The associated CLF

symbolic expression is reported in Appendix B. The corresponding Lie derivative func-

tion, is depicted in Fig. 5.12, with the symbolic expression reported in Appendix C.

5.6. Numerical Evaluation 123

Table 5.6: Sensitivity to control weights initialisation, © 2023 IEEE [22].

Scenario Method Control Weights Iterations Converged
pre-initialised re-initialised mean(std.) tests [%]

1a NLC Yes Yes 1107(746) 78
1b NLC No Yes 2000(0) 0
2a NLC Yes No 698(318) 52
2b ANLC Yes No 478(148) 84
3a NLC No No 1000(0) 0
3b ANLC No No 464(373) 60

Figure 5.11: CLF inverted pendulum, © 2023 IEEE [22].

Figure 5.12: Lie derivative inverted pendulum, © 2023 IEEE [22].

Finally, the phase planes that are associated with the open-loop (no control law)

and closed-loop inverted pendulum systems are compared. Fig. 5.13a reports the open-

loop phase plane, with two visible stable foci, associated to the pendulum in the down-

5.6. Numerical Evaluation 124

ward position (xxx⋆1,2 = [±π,0]). Fig. 5.13b reports the closed-loop system following the

synthesis of a control law u = −4.65223x1− 4.19965x2, with a unique stable focus

in xxx⋆ = [0,0], namely when the pendulum is stable in the upright position. Further

considerations regarding the ROA of the closed-loop systems will be discussed in Sec-

tion 6.8.1.

(a) Open-loop system. (b) Closed-loop system.

Figure 5.13: Inverted pendulum phase plane.

5.6.2 Controlled Lorenz system

To investigate how the framework performs over more advanced benchmarks, the syn-

thesis of nonlinear control laws was trialled for the 3-dimensional Lorenz system. The

Lorenz system is a simplified model of highly nonlinear and coupled phenomena of

atmospheric convection [230], identified as a system of interest owing to its complex

and chaotic dynamics. For this analysis, the controlled Lorenz system [231, 232] is

considered, i.e. the system described by:


ẋ1 =−σL(x1− x2)+u1

ẋ2 = rLx1− x2− x1x3 +u2

ẋ3 = x1x2−bLx3 +u3

(5.24a)

(5.24b)

(5.24c)

where x = [x1,x2,x3]
T represents the state-space vector, p = [σL,rL,bL]

T the scalar pa-

rameters and uuu = [u1,u2,u3]
T the control input. By selecting σL = 10.0, bL = 8/3 and

5.6. Numerical Evaluation 125

rL = 28.0, as in [231, 232], and by setting the control input to zero (namely consid-

ering the open-loop case), the origin can be rendered as an unstable equilibrium and

the characteristic butterfly-like strange attractor (or Lorenz attractor) is obtained, as

reported in the open-loop trajectory of Fig. 5.14. For this study, a nonlinear control

law was selected by employing softplus activation functions, and two hidden layers

of 8 neurons each. The Lyapunov ANN is chosen as V = WWW 3(WWW 2(WWW 1xxx)2), with the

hidden layers composed of 10 neurons each.

Figure 5.14: Controlled Lorenz system: open-loop trajectory (no control applied), © 2023
IEEE [22].

Out of ten tests, each one run with a different seed, seven converged within 1000

iterations (maximum computational time of 352 [s]). The evolution of V̇ (x,u), plotted

in the (x1,x2)-plane (with x3 set to zero), is reported in Fig. 5.15a and in Fig. 5.15b,

corresponding to the first and last training iterations respectively. Note that the Lie

derivative is initially non-negative due to the random character of the ANNs initialisa-

tion, and evolves into a negative definite function upon convergence.

As a verification of the correctness of the closed-loop behaviour, Fig. 5.16 reports

30 closed-loop trajectories starting from points selected sufficiently close to the system

origin (Section 6.8.1 discusses this matter in terms of the associated ROA in greater

detail), while Fig. 5.17 highlights the corresponding fast decreasing Lyapunov values

as the solutions approach the equilibrium. The control function values over time, cor-

5.6. Numerical Evaluation 126

responding to one converged controller, are reported in Fig. 5.18.

(a) First training iteration. (b) Last training iteration.

Figure 5.15: Controlled Lorenz system: Lie derivative in the (x1,x2)-plane over subsequent
training iterations, © 2023 IEEE [22].

Figure 5.16: Controlled Lorenz system: closed-loop trajectories, © 2023 IEEE [22].

As expected, the synthesis of CLFs with nonlinear control laws is computation-

ally more demanding and takes more time for the processes to complete, both on the

Learner side, as more iterations are needed for the convergence of the training, and on

the Falsifier side, as a more complex symbolic expression is being evaluated. Hence,

a trade off must be made between the flexibility of the network and the computational

time, in particular when higher dimensional systems are analysed. This would equate

5.7. Conclusions 127

Figure 5.17: Lyapunov values along Lorenz system trajectories, © 2023 IEEE [22].

Figure 5.18: Control function values over time, © 2023 IEEE [22].

to the system having more than 10 dimensions, in line with previous findings [222].

5.7 Conclusions
In this chapter, an initial investigation of the NLC method was carried out, followed by

the design of upgraded method tackling some of the NLC limitations, concluding with

numerical simulations and evaluations.

The initial NLC investigation highlighted the need to upgrade the method to ren-

der it capable of synthesising control laws without the need to pre-initialise the control

gain via other solutions (such as via optimal state-feedback control laws). Five ele-

ments that would benefit from improvements were highlighted and addressed: the CEs

5.7. Conclusions 128

generation logic, the dataset composition, the possible dataset overfitting, the algorith-

mic inefficiencies and the sensitivity to the learning rate.

As a consequence, an upgraded Falsifier module mitigating the issues linked to the

overfitting of clustered CEs and rendering the CE generation more efficient was pro-

posed. Next, a sliding window to selectively disregard previously targeted old dataset

points was devised, reducing the required computational burden. Finally, algorithmic

refinements were introduced.

The improvements to the learning scheme help to overcome critical limitations,

such as the need to pre-initialise the control gains and the periodic re-start of the neural

network training. The architecture offers the possibility to design nonlinear control

laws, and in so doing presents another element of novelty. As a result, a method,

which is robust to well-known issues, to inductively synthesise CLFs, by devising an

upgraded Falsifier and careful selection of useful counterexamples, was presented.

The Augmented NLC method was shown to be capable of computing stabilising

control laws without the need to pre-initialise the control gains, further increasing the

generalisation power and overall applicability of this method. Both linear and nonlin-

ear control laws were synthesised for unstable dynamics, showing the modularity of

the proposed architecture, while limitations were highlighted.

Possible extensions should focus on scalability to both higher dimensional and

uncertain dynamics, issues that will require dedicated assessment. Methods and tools

introduced in this chapter serve as the base to compute fault-tolerant control laws,

which is the focus of the following chapter.

Chapter 6

Passive Fault-Tolerant Augmented

Neural Lyapunov Control

6.1 Introduction

This chapter outlines the design of the ML-based control method for devising control

laws for nonlinear systems affected by actuator faults. First, an introductory overview

to the problem is provided. Next, the underlying idea behind the extension of the

ANLC method previously presented in Chapter 5 to account for actuator faults is illus-

trated. Then, modifications to both the Learner and Falsifer are introduced. According

to the new fault-tolerant-capable method, an open-source software tool is designed and

described. A numerical evaluation covering three case studies of increasing complex-

ity is carried out next. Further refinements to the methods are then presented, such as

the introduction of performance criteria to select which of the synthesised control laws

best suits target control performance, and how to account for actuator saturation. A

comparison with robust H∞ control laws is presented next. To conclude, a procedure

to use the proposed method to shape the ROA of a desired equilibrium is illustrated.

The software framework associated with this research is released open-source at:

https://github.com/grande-dev/pFT-ANLC.

The outcome of this chapter provides answers to RQ3: how can the Neural Lya-

punov Control method be extended to a passive fault- tolerant control approach

to ensure closed-loop stability for platforms affected by actuator faults?

https://github.com/grande-dev/pFT-ANLC

6.2. Preliminaries 130

6.2 Preliminaries

During AUV deployments, a variety of unforeseen and unplanned for events can occur

and may have the potential to jeopardise the mission success. Collision with drift-

ing debris, growth of marine organisms, mechanical and electrical faults or attacks by

ocean predators were identified as possible causes of the total or partial loss of effi-

ciency of thrusters and of control plane jamming. To prevent an irrecoverable loss of

the vehicle without relying on external information from a FDI system, pFTC methods

can be devised.

Reliable control methods are often employed to design pFTCs, by minimising,

for instance, the H∞-norms between exogenous inputs and desired performances [52].

Moving forward from the linear methods, nonlinear control methods such as the

Lyapunov-based pFTC can also be employed. The Lyapunov-based pFTC methods

start from the design of a nominal control law that can cope with the faultless case, and

encompass the addition of an extra term to compensate for the effect of a fault [44].

Such nonlinear methods can cope with partial loss of actuator efficiency, but not with

the case of full loss of actuator efficiency. No nonlinear pFTC method is currently

available to cope with the full range of possible faults, including partial loss of actua-

tor efficiency, total loss of actuator efficiency, or a jammed actuator.

In the underwater environment, the application of linear pFTC methods, has been

thoroughly investigated [117, 233]. The first limiting factor when employing linear

pFTCs is represented by the necessity to define sensible operating points for lineari-

sation [118]. This poses a twofold challenge: a) a sub-optimal linearisation choice

naturally leads to degraded performance, an issue that is unavoidable when the system

is highly nonlinear; b) the controller could turn out to be ineffective when the sys-

tem operates far away from the linearisation point, especially under faulty conditions.

These elements point to the necessity to advance the studies of nonlinear pFTCs such

that they are better suited for use in the underwater environment.

A new trend focuses on designing controllers for nonlinear dynamical sys-

tems in an automatic fashion. These automatically synthesised controllers can be

equipped with formal proof of stability, for instance by exploiting SMT-solving

6.3. Design of a Passive Fault-Tolerant Control method based on the ANLC 131

[135, 136, 234, 235]. One such architecture relying on SMT-solving is the ANLC,

which was introduced in Chapter 5.

In the reminder of this chapter, tailored modification to the ANLC learning-

verification paradigm are devised, allowing the method to be extended to the case of

nonlinear systems affected by actuator faults.

6.3 Design of a Passive Fault-Tolerant Control method

based on the ANLC
The ANLC method illustrated in Chapter 5 can be extended to guarantee FTC proper-

ties by devising tailored modifications to both the Learner and the Falsifier.

Based on literature relevant to control and operation of AUVs, three underlying

assumptions of the problem need to be stated first.

Assumption 1 It is assumed and accepted that a maximum of only a single fault will

exist at any period in time. A situation where multiple faults materialise at the same

time is often symptomatic of a non-recoverable problem on the platform, and more

drastic countermeasures (e.g. abort of the mission and recover the vehicle) are re-

quired.

Assumption 2 The dynamical system being considered is (locally) controllable in

both the nominal and fault modes.

Analysing the local controllability (or Kalman controllability) of a nonlinear sys-

tem around a prescribed system state allows for a preliminary assessment regarding

whether it is possible to control the nonlinear system in the neighbourhood of such

state in each mode (faultless and fault mode) [236]. It is worth recalling that patho-

logical cases exist: as with the case of stability analysis, a nonlinear system may be

controllable, while a linearisation of such a system might not be [92]. To this regard,

if the local controllability check is passed, namely if the linearisation of the nonlinear

system around the desired state is controllable, it is worth proceeding with the attempt

to synthesise the control law. If the local controllability of the system is not guaranteed,

more comprehensive nonlinear controllability analyses need to be performed.

6.3. Design of a Passive Fault-Tolerant Control method based on the ANLC 132

Assumption 3 Faults of different nature are expected during AUV operations, namely

partial loss of actuator efficiency, total loss of actuator efficiency and jammed actu-

ators. It is assumed that once a fault occurs, it remains unresolved; in other words,

faults are permanent events, and intermittent faults are not being considered.

Focus of this study is the design of passive fault-tolerant control laws for a non-

linear dynamical system:

ẋxx = fff (xxx,uuu,φi), (6.1)

where xxx∈D⊆Rn is the system’s state, uuu∈U⊆Rm is the control input, and φi denotes

possible system faults. It is assumed that each one of the d actuators can be affected

by faults (collected in a set ΦΦΦ). For brevity, the shorthand fff nnn(xxx,uuu) is employed with

reference to the nominal system, i.e. in the absence of faults, while fff φ j
(xxx,uuu) denotes

the dynamics characterised by the fault of the j-th actuator (with φ j ∈ΦΦΦ).

The aim of this work is the design of a control law that drives the system to an

equilibrium state xxx⋆ ∈ D. Without loss of generality, it is assumed that the system

exhibits an equilibrium xxx⋆ = 0. Details regarding how to extend the formulation when

xxx⋆ ̸= 0 are provided in Section 6.5.2. Along with the design of a control law, a certifi-

cate of the closed-loop stability via a CLF is provided.

The ANLC procedure can be extended to FTC by a) defining a set of dynam-

ics capturing the nominal and faulty systems and b) rendering all the associated Lie

derivatives as negative definite. Assuming to have d actuators that can be affected by

faults, overall (d + 1) dynamics can be used to describe the nominal and faulty sce-

narios. To guarantee that xxx⋆ is stable for all the (d + 1) dynamics, the corresponding

(d +1) Lie derivatives need to be rendered as negative definite; formally:

(V̇n(xxx,uuu)< 0)∧ (∀ j ∈ΦΦΦ : {V̇φ j(xxx,uuu)< 0}). (6.2)

where V̇i(xxx,uuu) = ⟨∇∇∇(((VVV)))xxx,,, fff iii(((xxx,,,uuu)))⟩, with i = n for the nominal mode or i ∈ ΦΦΦ for the

fault modes.

A key element used to extend the ANLC method to solve pFTC problems lies in

the formal stability certificates that can be provided with dReal. It is worth recalling

6.3. Design of a Passive Fault-Tolerant Control method based on the ANLC 133

that dReal is a sound solver, namely, when no CE is obtained, the CLF is formally

valid over (a domain of) the real numbers. Nonetheless, dReal is δ -complete, so spu-

rious CEs might be returned in the neighbourhood of the origin (within a precision

δ). Therefore, a small neighbourhood that encompasses the origin is excluded from

the SMT solver domain. This limits the stability certificate that can be provided with

dReal to the ε-stability of xxx⋆: namely, at steady-state the state-space trajectories con-

tract to:

∥xxx∥2 ≤ ε (6.3)

with ∥aaa∥2 =
√

a2
1 + ...+a2

n denoting the 2-norm of vector aaa [220]. This feature, rather

than being a limitation, represents a useful additional tuning parameter, especially

within the fault-tolerant framework. In the presence of an actuator fault, the dynamical

model is expected to deviate from the reference trajectory: the scope of fault-tolerant

control includes the minimisation of this deviation. The ε-stability property proves

that trajectories never exit a neighbourhood of the target setpoint, or, in other words,

guarantees the forward invariance of the ε-bound. The validity domain is thus defined

as:

xxx ∈D : ε ≤ ∥xxx∥2 ≤ γ (6.4)

where ε,γ are design parameters. This property fulfils one of the most significant

requirements of FTC, i.e. guarantees a graceful performance degradation within a

prescribed region that can be tuned during the control system design.

In the following section, modification to the learning-verification paradigm to syn-

thesise a CLF abiding Eq. (6.2) is discussed.

6.3.1 Fault-tolerant Learner

As proposed for the ANLC method, two loss functions are employed in this work. The

first, denoted as Strict Lyapunov Risk Loss (LSLR), is employed to detect when, over

every sample (sssiii) within the dataset S, the theoretical Lyapunov conditions are verified,

namely occurring when:

∀sssiii ∈ S : {V (sssiii)> 0,V̇ (sssiii,uuuiii)< 0}. (6.5)

6.3. Design of a Passive Fault-Tolerant Control method based on the ANLC 134

The LSLR, is therefore defined as:

LSLR =
|S|

∑
i=1

R(−V (sssiii))+
|S|

∑
i=1

R(V̇ (sssiii,uuuiii))+V (0)2 (6.6)

where R(a) = ReLU(a) = max(0,a) for a generic input a and |S| the cardinality of the

sample set S.

When the LSLR is equal to zero, all the points within S respect the theoretical Lya-

punov conditions (5.4) as the Learner finds a candidate CLF, that can be translated

and passed to the Falsifier for formal verification. Although a candidate CLF is ob-

tained when LSLR = 0, a user may be interested in encouraging a paraboloid shape to

the CLF, in order to increase its ROA. To this end, an improved loss function is de-

fined, referred to as Empirical Lyapunov Risk Loss (LELR), while LSLR is employed as

a logical condition to terminate the learning procedure.

The Empirical Risk Loss extends the definition of LSLR by accounting for a fourth

term regulating the size of the ROA through modification of the CLF shape, and for

further properties of the Lie derivative as:

LELR = α1

|S|

∑
i=1

R(−V (sssiii))+α2LV̇ +α3V (0)2

+α4
1
|S|

|S|

∑
i=1

(∥sssiii∥2−αROA V (sssiii))
2, (6.7)

with α1,α3,α4,αROA tuning coefficients that can be selected as discussed in Chapter 5.

The newly introduced loss term associated with the Lie derivative (LV̇), capturing both

nominal and faulty dynamics is:

LV̇ =
|S|

∑
i=1

R(∇∇∇VVV (sssiii) · fff nnn(sssiii,uuuiii)+αoff)+

d

∑
j=1

|S|

∑
i=1

R(∇∇∇VVV (sssiii) · fff φ j
(sssiii,uuuiii)+αoff) (6.8)

where αoff is an optional tuning term used to enforce more negative Lie derivatives

[134].

6.4. Algorithm and software 135

This loss function at the same time imposes V being positive-definite, the Lie

derivatives being V̇i negative definite, the condition V (0) = 0, and it fosters circular

level sets of the CLF. It is important to recall that the goal of the training is to achieve

LELR ≈ 0, namely it is required that the CLF approximately resembles a paraboloid of

revolution, while verifying LSLR = 0 exactly.

6.3.2 Fault-tolerant Falsifier

Once the training procedure reaches the end of its operations, the Learner passes a

suitable candidate CLF, which is checked by the verification engine to formally certify

that the Lyapunov conditions are satisfied over the whole continuous domain D. If the

CLF is found to not conform to the theoretical Lyapunov conditions, a CE is returned.

This CE added to the training set S and the training is restarted. The verification check

introduced in Chapter 5 as Eq. (5.23) can be modified to accommodate faulty dynamics

as follows:

∃xxx : xxx ∈D\{xxx⋆} =⇒
(

V (xxx)≤ 0 ∨ V̇n(xxx,uuu)≥ 0 ∨

{V̇φ j(xxx,uuu)≥ 0}d
j=1

)
, (6.9)

where the term {V̇φ j(xxx,uuu)≥ 0}d
j=1 denotes the sequence of the d Lie derivatives asso-

ciated to the fault modes. Similar to the nominal case, if the falsifier cannot find an

instance that satisfies Eq. (6.9), the control Lyapunov function is certified to be valid

and, consequently, the system stability is guaranteed even when an actuator within

the set ΦΦΦ fails. The proposed method will henceforth be designated as passive Fault-

Tolerant-Augmented Neural Lyapunov Control (pFT-ANLC).

6.4 Algorithm and software
Following the description of the proposed pFT-ANLC method, the pseudocode under-

lying the open-source software tool is introduced in Algorithm 2. The algorithm details

the Learner, Discrete and SMT falsifiers, while illustrating the overall learning logic.

The algorithm starts by generating a training dataset S composed of random sam-

ples sssiii from a uniformly distributed hypercube of side length γ . If the linear control

6.4. Algorithm and software 136

Algorithm 2 Passive Fault-Tolerant-Augmented Neural Lyapunov Control
1: function LEARNER(S, f ,ANNη)
2: repeat
3: Vη(si),uη(si)← ANNη(si) ▷ ANN forward pass
4: V̇ ← Translator
5: Compute loss LELR,LSLR
6: η ← η−∇η LELR ▷ Update weights via SGD
7: until (LSLR > 0)
8: return Vη(si),uη(si)

9:
10: function DISCRETE FALSIFIER(V S

c ,V̇
S
nc
,V̇ S

φi,c
,D, ζDF)

11: Discretise D and numerically evaluate (V S
c ≤ 0, V̇ S

nc
≥ 0,V̇ S

φi,c
≥ 0)

12: CEDF ← Violations points (max size ζDF)
13: return CEDF

14:
15: function SMT FALSIFIER(V S

c ,V̇
S
nc
,V̇ S

φi,c
,D)

16: Using SMT solver to verify conditions
17: return unsat or CESMT

18:
19: function MAIN()
20: Input: dynamics (fn, fφi), initial dataset (S), Falsifier domain D (ε,γ), loss

function (α(·), τ), learning rates, optional initial linear control gains (qI)
21: Initialise ANN size (optional: initialise linear control gains with qI)
22: repeat
23: if (N ≥ Smax): Apply sliding window
24: Vη(x),uη(x)← LEARNER(S, f ,ANNη)
25: Compute symbolic values: f S

nc
, f S

φi,c
,uS

c ,V
S
c ,V̇

S
nc
,V̇ S

φi,c

26: if (LSLR == 0 and LELR ≤ τ) then
27: CEDF ← DISCR. FALSIFIER(V S

c ,V̇
S
nc
,V̇ S

φi,c
,D, ζDF)

28: if CEDF is None then
29: CESMT ← SMT FALSIFIER(V S

c ,V̇
S
nc
,V̇ S

φi,c
,D)

30: SCE ← (CEDF ∪CESMT)
31: if (not unsat): S← (S∪SCE)

32: until (unsat or timeout)

6.4. Algorithm and software 137

branch has been selected, the linear control weight can be optionally set to an initial

value (qI). Next, at each training iteration the Learner gradually minimises the loss

LELR by updating the ANN weights through a SGD step. At each learning iteration,

the current values of the ANNs weight and bias are collected in a vector η , defining

Vη and uη . Iterations of the learning steps continue until the Lyapunov conditions are

verified ∀sssiii ∈ S, i.e. when LSLR = 0. Once LSLR = 0 holds true, the candidate CLF

(V S
c), the nominal Lie derivative (V̇ S

nc
) and the set of Lie derivatives associated to the

faulty systems (V̇ S
φi,c

) are symbolically obtained by means of the Translator. The Dis-

crete Falsifier is thus invoked to find CEs (CEDF) over a prescribed discretisation of

the domain D. If CEs are found, these are added to S and the learning step is restarted.

If no CEs are obtained, the SMT Falsifier is tasked with verifying the candidate CLF

(V S
c) over the dense domain of the Reals. Next, if a CE is obtained via SMT-solving

(CESMT), the CESMT is added to S and the learning step restarted. Otherwise, the can-

didate CLF is formally verified to be correct (the SMT terminates with unsat), and

the algorithm returns the synthesised control law.

As the aim of the tool is to synthesise CLFs that minimise the loss function LELR, a

parameter τ is introduced, setting a prescribed precision of approximation of the CLF,

i.e. the smaller the magnitude of τ the closer the CLF will resemble the paraboloid of

revolution with the desired characteristics. Note that this is an additional feature that

can be turned off when not required.

It is worth recalling that the decision problem of first-order logical formulae with

generic nonlinearities over the theory of nonlinear arithmetic is an undecidable prob-

lem. The SMT solver chosen for this study, i.e. dReal, solves a δ -complete falsification

constraint resulting in an NP-hard task [134]. Such an SMT choice guarantees that the

problem can be formally solved provided there is the exclusion of the ε-bound in the

neighbourhood of the origin. As the verification step represents the computational

bottleneck of the procedure, a timeout value is introduced, defining an allocated

maximum time threshold for the SMT Falsifier to compute the CEs. If the time thresh-

old is exceeded, the training run is halted, flagged as not successful and a new run

initialised with a different seed is initiated.

6.5. Numerical Evaluation 138

Finally, the use of a selective sliding window is recalled from Chapter 5, ensuring

the maximum dataset cardinality remains bounded as the training proceeds and new

CEs are generated.

The software tool aims at synthesising a unique set of gains that guarantees

closed-loop stability in both the nominal and the faulty-case scenarios. The control

function, which has been trained offline, is then deployed online in closed-loop appli-

cations without requiring further adjustments or real-time tuning. The proposed soft-

ware tool employs Python 3.9, dReal 4.21 and PyTorch 1.7. Installation instructions

designed to enhance portability over different Operating Systems and a user-guide are

provided within the associated repository page at https://github.com/grande-dev/pFT-

ANLC, under the installation section. Different approaches to install the software tool

are made available, such as installing it at system level, or within an Anaconda envi-

ronment, or within a virtual environment.

6.5 Numerical Evaluation
In this section a series of tests are performed to verify the efficacy of the proposed

method. First, the method is tested using an inverted pendulum system adapted to FTC

applications. Next, the pFT-ANLC is tested against more complex benchmarks encom-

passing several AUVs, such as a traditional AUV affected by thruster malfunctions and

an UG suffering the jamming of one stern-plane.

6.5.1 Case study 1: control of an inverted pendulum with actuator

redundancy

In this section, a preliminary study showcasing the pFT-ANLC method applied to a

simple dynamical system is illustrated. Once again, as per standard practice in control

engineering applications, the method is first tasked with stabilising a pendulum in its

upright position.

Naturally, the classical pendulum model presenting only one actuator is not suited

for FTC studies, as the controllability of the system is lost upon injection of a complete

fault, namely Assumption 2 is not satisfied. As a result, a modification to the inverted

pendulum system is provided by introducing a redundant actuator set, namely two

https://github.com/grande-dev/pFT-ANLC
https://github.com/grande-dev/pFT-ANLC

6.5. Numerical Evaluation 139

Figure 6.1: Inverted pendulum with redundant actuator set, © 2024 IEEE [24].

motors at the pendulum joint are available, representing two distinct control inputs.

The nominal dynamics fff nnn of an inverted pendulum with a redundant actuator set

can be written as:


ẋ1 = x2

ẋ2 =
mglp sinx1−bpx2 +h1u1−h2u2

Jp

(6.10a)

(6.10b)

where x1 and x2 represent the pendulum angular position and velocity respectively, u1

and u2 indicate the torques generated by two distinct motors, bp, lp, m and Jp denote the

drag coefficient, the length of the pendulum arm, the value of the lumped mass and the

moment of inertia, respectively. Also, hi denotes the health status of the i-th actuator,

namely hi = 1 when the actuator is functioning nominally, and hi = 0 when the fault

occurs. It follows that in the nominal scenario h1 = h2 = 1 holds true. A schematic

depiction of the pendulum system with redundant actuators is shown in Fig. 6.1, while

the numerical values of the parameters selected for this study are reported in Table 6.1.

Initially, the local controllability of the nominal and faulty models around xxx⋆ was

checked. First, the model (6.10) was linearised, resulting in the state and control Jaco-

bians (A and B, respectively) being:

6.5. Numerical Evaluation 140

Table 6.1: Inverted pendulum with redundancy dynamical parameters.

Parameters Values Units Explanation
m 0.15 kg Pendulum mass
lp 0.5 m Length of the pendulum arm
bp 0.1 kg m2 s−1 Drag coefficient
Jp 0.0375 kg m2 Moment of inertia
g 9.81 m s−2 Earth’s gravity constant

A|x=x⋆ =

 0 1
mglp cosx1

Jp

−bp
Jp

 (6.11)

B(h1,h2) =

 0 0
h1
Jp

−h2
Jp

 . (6.12)

Then, the state Jacobian A was evaluated at the target unstable equilibrium (namely

xxx⋆ = [0,0]T). Next, three values of the control Jacobian B were obtained by selecting

Bn(h1 = 1,h2 = 1), Bφ1(h1 = 0,h2 = 1) and Bφ2(h1 = 1,h2 = 0), corresponding to the

nominal case scenario, and to the two modes characterised by there being one actuator

fault at a time, respectively. Recalling that for the system under consideration xxx∈Rn=2

and uuu ∈ Rm=2, the controllability matrices were obtained as:

CCCooo =
[
B AB

]
∈ Rn×mn (6.13)

where B = {Bn,Bφ1,Bφ2}. The local controllability could hence be assessed by check-

ing the rank of the controllability matrices, resulting in full rank in both faultless and

faulty operational mode.

In the remainder of this chapter, the notation vanilla Augmented Neural Lyapunov

Control (vANLC) is introduced to denote the ANLC method to indicate the non-fault-

tolerant version of the methods (presented in Chapter 5), versus the newly devised

fault-tolerant-capable version, namely pFT-ANLC. The pFT-ANLC is hereby com-

pared using the redundant inverted pendulum benchmark against two LQR laws and

against one vANLC, in order to demonstrate the preliminary capabilities of the pFTC

6.5. Numerical Evaluation 141

method. In order to provide comparable results, in this section only linear control laws

are synthesised via vANLC and pFT-ANLC, while more advanced tests encompassing

the design of nonlinear control laws will follow in the subsequent Section 6.5.2 and

Section 6.5.3.

6.5.1.1 LQR control

The LQR method was chosen as a comparative approach owing to its intrinsic robust-

ness properties, namely of [1
2 ,+∞] of gain margin and of [−60◦,+60◦] of phase margin

[237, 238].

Two LQR laws were tuned based on different weights assigned to the actuators

(denoted LQR1 and LQR2). In the first case, u1 and u2 were considered as equally im-

portant; in the second case, one motor was considered as the preferred control source,

i.e. different control weights are imposed within the matrix RRR. The gains were tuned

using the legacy Bryson and Ho’s rule [239]. For the state weighting matrix (com-

mon to both the LQR laws) a maximum desired error of q1,max = 10 [deg] (equivalent

to 0.175 [rad]) and 10 [deg/s] (equivalent to 0.175 [rad/s]) was imposed, resulting in

QQQ = diag(1
0.17542 ,

1
0.17542) = diag(32.83,32.83).

Next, the first control tuning was obtained by imposing a conservative choice of

the control effort. A maximum desired target torque was selected as u1,max = u2,max =

0.1 [Nm], resulting in the matrix RRR111 = diag(1
0.12 ,

1
0.12) = diag(100.0,100.0).

The second LQR law was instead designed by assuming a limited use of the first

actuator as u1,max = 0.1 [Nm], while prioritising the second actuator by setting a higher

torque threshold as u2,max = 10.0 [Nm]. The control input matrix associated to this

choice of actuator priority resulted in RRR222 = diag(100.0,0.1).

6.5.1.2 Augmented Neural Lyapunov Control

Next, a linear control law was synthesised employing the vANLC method. To repli-

cate the case of actuators with different weights covered by LQR introduced above, a

modification to the loss function described in Eq. (6.7) was introduced as:

LvANLC = LELR +αu1

|S|

∑
i=1

u2
1,i +αu2

|S|

∑
i=1

u2
2,i, (6.14)

6.5. Numerical Evaluation 142

with αu1 ∈ R, αu2 ∈ R being scalar parameters. These last two terms present in

Eq. (6.14) add, on top of the stability requirements, the minimisation of the energy

spent by the actuators as a further optimisation objective. By tuning the parameters αu1

and αu2 the effort of the two actuators can be penalised differently. For this training

scenario, the parameters were chosen as αu1 = 0.7, αu2 = 0.0 to demonstrate qualita-

tively different behaviours of the two actuators.

6.5.1.3 Passive Fault-Tolerant ANLC

Finally, a pFT-ANLC law was devised. The pFT-ANLC encompasses, besides the

nominal model, two faulty systems associated to the fault at u1 and u2, namely derived

from Eq. (6.10) as fφ1(h1 = 0,h2 = 1) and fφ2(h1 = 1,h2 = 0).

For this scenario, 10 training runs were set up with the same hyperparameters

(with the exception of the seed, cycled from 1 through 10), where the same learning

parameters as the vANLC training were selected (architecture of the ANNs, learning

rates, initial dataset size and loss function coefficients tuning). Note that each test

results with a controller with slightly different performance, but are all certified to

stabilise the closed-loop system. Given target performance criteria, such as optimum

energy consumption or minimum convergence time, the best performing controller

could be selected. The definition of such an indicator is provided in Section 6.6, but,

for this preliminary study, a random law is selected from within those that converged.

Control laws comparison The following analysis includes the nominal case along

with two faulty scenarios, for each of the four control schemes, resulting in 12 different

case studies. The selected ANN architecture shared by the vANLC and pFT-ANLC is

reported in Table 6.2, where the input, hidden, and output layers’ sizes are outlined.

The resulting closed-loop system eigenvalues are reported in Table 6.3.

Table 6.2: Redundant inverted pendulum: ANN architecture of the vANLC and pFT-ANLC.

Parameter Lyapunov ANN Control ANN
Layer size [2, 10, 10, 1] [2, 3]

Bias [No, No, No] No
σ [x2, linear, linear] linear

As expected, every control scheme guarantees closed-loop stability under the

6.5. Numerical Evaluation 143

Table 6.3: Redundant inverted pendulum: closed-loop poles location © 2024 IEEE [24].

Dynamics
Scenario Controller Nominal (fn) Fault 1 (fφ1) Fault 2 (fφ2)

1 LQR1 -1.29, -22.06 -0.37, -12.92 -0.37, -12.92
2 LQR2 -1.01, -160.39 -0.99, -145.98 0.18, -17.28
3 vANLC -1.91, -128.18 -1.02, -132.29 0.28±9.50 j
4 pFT-ANLC -1.68, -208.76 -1.59, -101.87 -1.58, -108.08

nominal scenario, namely when the system is faultless. Additionally, every control

law is able to stabilise the pendulum when a fault is introduced on the first actuator,

even those methods that are not fault-tolerant. This behaviour is expected as each

non fault-tolerant control law is either designed with both actuators having the same

weight, i.e. for the LQR1, or with the second actuator prioritised, i.e. for the LQR2

and vANLC. Prioritising the second actuator means that the first actuator performs an

accessory role and, in presence of a fault at u1, closed-loop behaviour is affected but

not up to the point of reaching instability. It should be noted that the poles reported

in the first three scenarios of Table 6.3 undertake a shift towards the imaginary axis

in the Fault 1 mode when compared to the Nominal mode, hinting towards a reduced

stability margin.

Finally, when the fault is injected on the second motor, two of the closed-loop

systems become unstable, namely the LQR2 and vANLC. On the other hand, both the

LQR1 and pFT-ANLC methods retain stability.

The closed-loop dynamics of the LQR2, vANLC, and pFT-ANLC are illustrated

in Fig. 6.2 (LQR1 is not shown for readability, but the dynamics qualitatively resem-

ble those of the pFT-ANLC). The corresponding graphical animations of the pen-

dulum motion with the three control laws are provided within the repository page:

https://github.com/grande-dev/pFT-ANLC-preview. All three control laws illustrated

in Fig. 6.2 can be seen stabilising the pendulum in the nominal case (solid lines) and

first faulty model (square markers). When a fault at the second motor occurs, only

the pFT-ANLC can stabilise the system; both the green and orange lines with round

markers do not converge to the desired equilibrium point.

This preliminary analysis results in two conclusions. First, the analysis trivially

https://github.com/grande-dev/pFT-ANLC-preview

6.5. Numerical Evaluation 144

Figure 6.2: Inverted pendulum closed-loop tests. Color code: blue lines (pFT-ANLC), orange
lines (LRQ2), green lines (vANLC). Line style: solid (nominal dynamics), dashed
with square markers (fault 1), dashed with round markers (fault 2), © 2024 IEEE
[24].
The systems dynamics can be visualised at: https://github.com/grande-dev/pFT-
ANLC-preview.

remarks how state-feedback control laws are not always able to guarantee stability

when the underlying system deviates from the nominal dynamics, such as the loss of

one actuator. Additionally, the analysis confirms how the modification to the vANLC

leading to the pFT-ANLC method enables the synthesis of control laws capable of

guaranteeing stability when subjected to faulty conditions.

6.5.2 Case study 2: Control of an Autonomous Underwater Vehi-

cle

In this section, the proposed method is applied to a case study involving the control

of an AUV. The AUV actuator configuration is inspired by the hover-capable AUV

developed at the National Oceanography Centre1 and shown in Fig. 6.3. The schematic

representation of the actuator configuration of the vehicle is illustrated in Fig. 6.4. Each

thruster is capable of generating force along the thruster axis in both the positive and

1https://noc.ac.uk/technology/technology-development/marine-autonomous-robotic-systems

https://github.com/grande-dev/pFT-ANLC-preview
https://github.com/grande-dev/pFT-ANLC-preview
https://noc.ac.uk/technology/technology-development/marine-autonomous-robotic-systems

6.5. Numerical Evaluation 145

Figure 6.3: Hover-capable AUV developed at the National Oceanography Centre, illustrated
from [25].

negative directions.

For this study, a two dimensional dynamical model accounting for surge speed

(u) and angular velocity around the vertical axis (r), is used to describe the planar

motion of the AUV, while the sway speed (v) is neglected. Each of the thrusters Fi is

oriented at an angle βi with respect to the y-axis of the body frame (yB) and is located

at distance li from the COG, with li,x and li,y indicating the projections along the xb

and yb-axis, respectively. By denoting m as the mass of the vehicle and with Jz the

vehicle’s moment of inertia around the vertical axis, the AUV dynamics in a horizontal

plane, characterised by xxx = [u,r]T and uuu = [F1,F2,F3]
T , are described as:



ẋ1 =
−Xux1−Xuux2

1 +h1F1,x +h2F2,x +h3F3,x

m

ẋ2 =
−Nrx2−Nrrx2

2 +(−F1,xl1,y +F1,yl1,x)h1

Jz
+

(−F2,xl2,y +F2,yl2,x)h2 +(−F3,xl3,y +F3,yl3,x)h3

Jz

(6.15a)

(6.15b)

where Fi,x = Fi sin(βi) and Fi,y = Fi cos(βi) represent the projection of Fi along the xB

and yB-axes, respectively; Xu, Xuu denote the linear and quadratic surge drag coeffi-

6.5. Numerical Evaluation 146

Figure 6.4: AUV with three (fixed) thrusters moving over the horizontal plane, characterised
by surge speed (u), sway speed (v) and angular rate (r).

cients, while Nr, Nrr the linear and quadratic yaw drag coefficients. Note that, with

respect to the dynamical models introduced in Chapter 4, the Coriolis effects, inducing

cross coupling between the DOFs, do not explicitly appear in Eq. (6.15), due to the

sway dynamics being neglected. The numerical values of the parameters selected for

this study are reported in Table 6.4.

Different to the neural-Lyapunov analyses discussed in relevant literature [134]

and in the previous sections, the goal of this study is to synthesise a control law to

stabilise the system around a non-zero equilibrium. In this specific case, a non-zero

equilibrium coincides with maintaining the AUV at a desired target speed.

6.5.2.1 Shifting the equilibrium state

The control design problem is formulated as the stabilisation of the dynamics about a

generic desired equilibrium state xxx⋆. When the desired xxx⋆ does not coincide with the

origin, it is at times convenient to shift the equilibrium to the origin. This considera-

tion is particularly relevant in the method proposed, as both the Learner and Falsifier,

described so far, assume the equilibrium to be located at the origin.

6.5. Numerical Evaluation 147

Table 6.4: AUV dynamical parameters.

Parameters Values Units Explanation
m 500.0 kg Vehicle mass

including added mass
Jz 300.0 kg m2 Vehicle inertia (around vertical axis)

including added inertia
Xu 6.106 kg s−1 Surge linear drag coefficient
Xuu 5.0 kg m−1 Surge quadratic drag coefficient
Nr 210.0 kg m2 s−1 Yaw linear drag coefficient
Nrr 3.0 kg m2 Yaw quadratic drag coefficient
l1,x -1.01 m Distance of F1 projected along xB
l1,y -0.353 m Distance of F1 projected along yB
β1 110.0 deg Orientation of F1 with respect to (wrt) yB
l2,x -1.01 m Distance of F2 projected along xB
l2,y 0.353 m Distance of F2 projected along yB
β2 70.0 deg Orientation of F2 wrt yB
l3,x 0.75 m Distance of F3 projected along xB
l3,y 0.0 m Distance of F3 projected along yB
β3 180.0 deg Orientation of F3 wrt yB

To shift the equilibrium to the origin, a new set of coordinates, described by the

pair (x̃xx, ũuu) can be defined and a controller to drive the dynamics to the origin of ˙̃xxx =

fff (x̃xx, ũuu) can be devised.

Given a nonlinear system with exogenous inputs in the form:

ẋxx = fff (xxx,uuu) (6.16)

it is possible to analyse the stability of the equilibrium of interest by defining a new set

of coordinates by extending [92] (pp. 45) as:

x̃xx = xxx− xxx⋆ (6.17a)

ũuu = uuu−uuu⋆, (6.17b)

transforming the dynamics into:

˙̃xxx = fff (x̃xx+ xxx⋆, ũuu+uuu⋆). (6.18)

6.5. Numerical Evaluation 148

It should be noted that the AUV system proposed in this section shows a trivial

equilibrium at the origin, corresponding to the vehicle having zero surge speed (u) and

zero angular rate (r). To control the dynamics around a target (generic) operating point

xxx⋆ = [u⋆,r⋆]T , the corresponding shifted dynamical model is defined as:



˙̃x1 =
−Xu(x̃1 + x⋆1)−Xuu(x̃1 + x⋆1)

2 +h1(F̃1,x +F⋆
1,x)

m
+

h2(F̃2,x +F⋆
2,x)+h3(F̃3,x +F⋆

3,x)

m

˙̃x2 =
−Nr(x̃2 + x⋆2)−Nrr(x̃2 + x⋆2)

2 +(−(F̃1,x +F⋆
1,x)l1,y +(F̃1,y +F⋆

1,y)l1,x)h1

Jz
+

(−(F̃2,x +F⋆
2,x)l2,y +(F̃2,y +F⋆

2,y)l2,x)h2

Jz
+

(−(F̃3,x +F⋆
3,x)l3,y +(F̃3,y +F⋆

3,y)l3,x)h3

Jz

(6.19a)

(6.19b)

By inserting the target equilibrium value xxx⋆, it is possible to design a control law

to stabilise the origin of system in Eq. (6.19) to correspondingly stabilise the system

in Eq. (6.15) around xxx⋆. Care must be taken during the synthesis of such a control

law: for a system with an equilibrium at the origin, the control law is designed as

uuu = KKKxxx, with KKK being a generic state-feedback control gain. In addition, for the shifted

system expressed in coordinates (x̃xx, ũuu), the control law needs to be adapted to the new

coordinate frame as ũuu = KKKx̃xx. Upon devising such a control law ũuu, it might be desirable

to apply the control law in the original coordinate system (xxx,uuu). By substitution, it is

possible to obtain:

ũuu = (uuu−uuu⋆) = KKKx̃xx, (6.20)

and, finally:

uuu = KKKx̃xx+uuu⋆. (6.21)

Intuitively, this means that to control the dynamical system around a target non-zero

equilibrium, a constant input uuu⋆ needs to be applied. Obtaining such a value uuu⋆ is not

trivial, and would require manual calculations, defeating the purpose of the automatic

control synthesis proposed in this work. To this aim, the learning architecture can be

6.5. Numerical Evaluation 149

modified to automatically compute the value of uuu⋆ while synthesising the usual control

gain KKK. Thus, for a non-zero target equilibrium, the control law needs to encompass

a bias term, resulting in the form uuu = KKKxxx+ bbb, where both the terms KKK and bbb will be

automatically computed by the software tool.

First, as with the case of the inverted pendulum system (Section 6.5.1), the con-

trollability assumption was checked. Recalling that for the system under consideration

xxx ∈ Rn=2 and uuu ∈ Rm=3, the Kalmann controllability matrices corresponding to the

nominal and fault modes were obtained as CCCooo =
[
B AB

]
∈ Rn×mn. The local con-

trollability was assessed by checking the rank of the controllability matrices obtained

by setting B = {Bn,Bφ1 ,Bφ2,Bφ3}, resulting in full rank in each operational mode.

6.5.2.2 Results

The proposed case study investigates the capability to synthesise control laws in

scenarios involving progressively more faults, while maintaining the AUV at x⋆ =

[0.5,0.0]T , in both the nominal and fault modes.

Three scenarios of possible faults are reported in Table 6.6. First, a scenario

considering a possible fault occurring only at thruster F1 (aft port) was considered.

Next, possible faults at F1 or at F3 (bow) were considered. Finally, possible faults at

F1 or at F2 (aft starboard) or on F3 were investigated. For this application, a nonlinear

control law was employed. The selected ANN architecture is reported in Table 6.5,

where the input, hidden, and output layers’ sizes are presented, along with the presence

of the bias and the choice of activation functions.

Table 6.5: AUV campaign – ANN architecture.

Parameter Lyapunov ANN Control ANN
Layer size [2, 10, 10, 1] [2, 30, 3]

Bias [No, No, No] [Yes, Yes]
σ [x2, linear, linear] [tanh, linear]

The training was carried out on an unassuming office laptop without GPU module.

The machine featured an Intel Core i7-8665U CPU with 8 cores running at 1.90GHz

and 16 GB of RAM. During the training, 4 threads are generated and executed over 2

CPU cores, while 0.7 GB of RAM was utilised.

6.5. Numerical Evaluation 150

Table 6.6: AUV campaign – Synthesis statistics.

Faulty Iterations Time [s] Success
actuators rate [%]

F1
F1 or F3
F1 or F2 or F3

min mean(std.) max
18 96(67) 253
18 116(85) 300
64 562(343) 1000

min mean(std.) max
1 3(2) 5
1 4(2) 9
4 10(10) 39

100
100
90

Table 6.6 reports the results of three simulation campaigns run for different fault

scenarios. Each simulation campaign is composed of 10 tests, all sharing the same

hyperparameters with the exception of the seed (within each campaign, the seeds are

cycled from 1 to 10). Results are reported in terms of: number of learning iterations (as

minimum, maximum, mean and standard deviation), computational time and success

rate (what percentage of the 10 tests successfully find a valid CLF). Note that if a CLF

is not found within 1000 learning iterations, the run is flagged as unsuccessful.

For the most demanding test scenario, i.e. the one with faults occurring at F1 or F2

or F3, all the 9 tests that converged terminated within a maximum time of 39 [s]. The

results reported in Table 6.6 hints towards a required computational effort increasing

as more faults are accounted for. Additionally, fine-tuning the hyperparameters of the

control ANN became more challenging as the number of faults increases. Smaller

architectures were tested for the case of faults on F1 alone and of (F1 or F3) being

faulty, without significant differences in the success rate values. ANN architectures

with a limited number of neurons failed to systematically synthesise CLFs when faults

can occur at all three thrusters, highlighting the need to select sufficiently expressive

nonlinear control functions as the complexity of the problem increases. One resulting

CLF for the case of F1 or F3 faulty, obtained after 142 training iterations is reported in

Fig. 6.5, with the Lie derivative associated to the system with a fault at F1 illustrated in

Fig. 6.6.

Finally, closed-loop performance of the resulting fault-tolerant dynamics is illus-

trated and discussed. Fig. 6.7 reports the AUV surge dynamics, showing the range of

different dynamics emerging from different control laws (depicted with the blue in-

terval), stemming from the 10 converged runs synthesised for the case of (F1 or F3)

thrusters possibly at fault. The surge dynamics are initialised at 0.4 [m/s], and are

6.5. Numerical Evaluation 151

Figure 6.5: Synthesised CLF for the AUV system, © 2024 Elsevier [23].

Figure 6.6: Lie derivative associated to the AUV system with fault at F1.

shown converging to the desired ε-stability bound (0.5± 0.01 [m/s]). When a fault

occurs at t=50 [s] at thruster F1, the surge speeds undergo a drop that always remain

within the desired ε-stability threshold (regardless of the initial conditions, or seed, of

the test). This behaviour is achieved through the pFT-ANLC learning to automatically

set the steady-state target higher to compensate for the possible occurrence of faults.

This is in turn accomplished by applying an excess of force at F2 with respect to F1 and

a non-zero force F3, as illustrated in Fig. 6.8. Analogous behaviour is noticed in the

angular rate dynamics, reported in Fig. 6.9 for the case of a fault at F3: the controllers

learn to converge to an offset value with respect to x⋆2 during nominal operations to

mitigate for possible faults.

It should be noted that some values of the angular velocity dynamics in Fig. 6.9

6.5. Numerical Evaluation 152

Figure 6.7: Closed-loop test AUV system: range of surge dynamics associated to 10 synthe-
sised controllers (blue interval) — fault at F1 injected at t=50 [s], © 2024 IEEE
[24].

seem misleading exceeding the ε-stability bound during the time span between t=0.0

[s] and t=10.0 [s]. The system exhibits this behaviour because the dynamics have

in fact not yet converged to within the ε-stability bound. To further illustrate such

behaviour, in Fig. 6.10 the dynamics in the (x1,x2) plane is reported. The dynamics

are initialised as xxx0 = [0.4,0.0]T and converge towards xxx⋆ = [0.5,0.0]T . A magnified

view of the dynamics in the neighbourhood of the origin is presented in Fig. 6.11.

The x2 dynamics reach the desired stability threshold, by temporarily assuming values

x2(t)> |ε|, during the transient phase. Once the dynamics enter the ε-stability bound,

they no longer exceed the boundaries of the region. Interestingly, it can be noticed

how, in this case scenario, the faultless dynamics converge to the outer bound of the

ε-stability domain, to then transition to another equilibrium state (still within the ε-

stability bound) upon the injection of a fault.

Finally, recalling that these results are associated to training runs carried out by

considering faults at F1 or F3 only, it would be possible to wonder what happens when

a fault at F2 is injected into the system. In fact, due to the symmetry of actuators F1

and F2, one could surmise that the system is already robust to faults at F2. Evaluating

6.5. Numerical Evaluation 153

Figure 6.8: Closed-loop test AUV system: range of control efforts associated to 10 synthesised
controllers (blue, red and green intervals) — fault at F1 injected at t=50 [s], © 2024
IEEE [24].

this scenario is equivalent to test a beyond-design fault, namely consisting in injecting

a fault which the control system was not designed to compensate for [97].

To this aim, Fig. 6.12 reports a similar case scenario as discussed above but for a

fault at F2. The dynamics are initialised as xxx0 = [0.4,0.0]T converging in the faultless

scenario to the outer bound of the ε-stability domain. Once the fault is introduced at

F2, the dynamics leave such ε-stability region, in turn revealing that the control law is

not able to control such fault mode. Naturally, this result is to be expected as the fault

at F2 is beyond-design and no assumption of further robustness shall be made without

an appropriate stability verification analysis.

6.5.3 Case study 3: Underwater Glider with saturated control

This following case study focuses on an UG during the most common operating con-

dition, i.e. a profiling steady dive, covering the majority of the deployment time [178].

Gliders follow a saw tooth pattern adopting steady gliding conditions on both the ascent

and descent manoeuvring phases, such as the glide previously illustrated in Fig. 4.5a.

The UG alternates a positive buoyancy and nose-up attitude during the climbing phase

6.5. Numerical Evaluation 154

Figure 6.9: Closed-loop test AUV system: range of angular rate dynamics associated to 10
synthesised controllers (blue interval) — fault at F3 injected at t=50 [s], © 2024
IEEE [24].

with a negative buoyancy combined with a nose-down attitude during the diving phase.

For this case study, only the vertical dynamics were considered, as the sagittal plane is

proved to be invariant [20]. When no initial linear or angular out-of-plane accelerations

are provided, the vehicle remains on that plane indefinitely.

The modelling of the UG vehicle employed for this case study follows the deriva-

tion provided in Chapter 4, with the main elements recalled hereby. A NED frame

with origin {Oi} was chosen as inertial reference since the distances involved in the

simulations proposed are of small scale when compared to the Earth’s radius. Next, a

body-fixed reference frame of origin {Ob} and with axes xb-zb was fixed at the centre

of buoyancy of the glider, which in turn coincides with the centroid of the hull. The

orientation of the hull is obtained by applying a rotation of θ (pitch angle) around

yi (positive nose-up). The xb-axis of the body frame is aligned with the longitudinal

axis of the vehicle, while the zb-axis points downward. Next, a flow reference frame

was aligned with the direction of the glider velocity (Vr), with its origin coinciding

with {Ob}, and the axes x f and z f are obtained by applying a rotation of α (angle of

attack) from the body-fixed axes. This choice of the terns, reported in Fig. 6.13, is

6.5. Numerical Evaluation 155

Figure 6.10: Nonlinear trajectories for the AUV dynamics, illustrating the significance of the
ε-stability bound.

Figure 6.11: Magnified view of Fig. 6.10. Upon occurrence of the fault at F1, the dynamics
remain bounded within the ε-stability bound.

convenient when expressing forces according to standard hydrodynamic theory [20].

Hydrodynamic forces, namely lift (L) and drag (D), are aligned with the flow-tern axes.

Restoring forces, namely gravity (G) and buoyancy (B) act parallel to the inertial axes.

6.5. Numerical Evaluation 156

Figure 6.12: Test of the dynamics after injecting a fault at F2, not covered during the training.
Upon the occurrence of the fault, the dynamics leave the ε-stability bound.

The inertia forces (accounting for added mass terms) are expressed in the body-fixed

reference.

The aim of this study was to devise a control law that maintains the body-fixed

velocities of the UG within prescribed bounds when potential faults occur. The body-

fixed velocity along the xb-axis is hereby denoted as v1, while v3 is used to denote the

velocity along zb. The onboard system employs three actuators, a VBD and a pair of

independent stern-planes (δ1 and δ2). This vehicle concept is inspired by AUVs with

redundant movable surfaces designed in “+” (or cruciform-stern) or “×” (or X-stern)

configurations, such as the ones on board the Autosub Long Range series [240] and

hybrid AUVs such as the Sea-Whale 2000 [156]. These AUV configurations allow the

exploiting of redundant actuators when one of the two stern surfaces fail. Additionally,

as per standard glider modelling, two masses can be identified: a uniformly distributed

static mass, lumped within a single term (ms) located at {Ob}, and an internal shifting

mass (mp). The position of mp is typically used to control the angular momentum of

the vehicle, in turn affecting the vehicle pitch angle. Since neither the pitch angle nor

the associated angular rate of the vehicle are controlled in this study, mp is modelled

within the system dynamics, but not included in the control vector.

Hydrostatic forces accounting for the gravity effect of the static mass (ms) and of

6.5. Numerical Evaluation 157

the shifting mass (mp) are computed respectively as:

Gs = msg (6.22a)

Gp = mpg. (6.22b)

The buoyancy force, accounting for both the constant volume of the hull (∇h) and for

the variable volume associated with the VBD, is computed as:

B = B(∇h)+B(uV BD) = ρg∇h +ρguV BD. (6.23)

In this preliminary study, the volume of the glider hull was assumed to be constant

and independent of the vehicle’s depth. More advanced formulations that can accom-

modate hull compression due to pressure and temperature can be considered when

enhancing this application [187, 72].

Next, control forces were considered. Each stern-plane j generates an additional

lift force parallel to zb [191], computed as:

Fδ j = KFδ
Kuδ

V 2
r δ j, (6.24)

with Ki representing wing-specific hydrodynamic coefficients and δ j the control sur-

face deflection angle, with j ∈ [1,2]. Forces and terns are reported in Fig. 6.13. Finally,

m1 and m3 represent the sum of the overall dry glider mass (ms +mp) and the added

mass along the longitudinal and vertical body axes, computed approximating the glider

hull to a prolate spheroid.

This model leverages three assumptions, as follows. In profiling operations, as

the VBD is actuated over a time span of 30 [s] or more to save energy, the actuator dy-

namics are neglected [187]. It is assumed that the body-fixed velocities are measured,

(for instance) by means of a DVL. Finally, pitch angle and angle of attack changes are

negligible, as it is standard practice for the pilots to tune flight parameters such as to

ensure a constant glide slope angle.

The corresponding dynamical model, derived based on previous works [20, 187,

6.5. Numerical Evaluation 158

Figure 6.13: Underwater Glider dynamics in the sagittal plane with restoring forces
(Gs,Gp,B(∇h)), hydrodynamic forces (L,D), control forces (B(uV BD), Fδ1 , Fδ2)
and inertial forces (including added mass). The forces are modelled in the iner-
tial frame (origin {Oi}, in orange), body-fixed frame (origin {Ob}, in green) and
flow-fixed frame (origin {Ob}, in red), © 2024 Elsevier [23].

192], is described as:


v̇1 =

1
m1

(−Dcosα +Lsinα + sinθ(B−Gs−Gp))

v̇3 =
1

m3
(−Dsinα−Lcosα + cosθ(−B+Gs +Gp)+Fδ1 +Fδ2)

(6.25a)

(6.25b)

with the state-space vector defined as xxx= [v1,v3]
T , and uuu= [uV BD,δ1,δ2]

T denoting the

control vector. The control signals are in turn embedded in the corresponding restoring

and hydrodynamic forces as u1 = B(uV BD), u2 = Fδ1(δ1) and u3 = Fδ2(δ2). Given the

steady-state nature of the gliding phases, hydrodynamic forces are computed through

the quasi-steady state approximation as:

D≈ (KD0 +KDα
2)V 2

r (6.26a)

L≈ (KL0 +KLα)V 2
r (6.26b)

where Vr =
√

v2
1 + v2

3, and KD0,KD,KL0,KL represent the hydrodynamic coefficients,

estimated through model identification or Computational Fluid Dynamics (CFD) anal-

6.5. Numerical Evaluation 159

yses.

For this study, the Seaglider (ogive model) geometric and hydrodynamic parame-

ters derived in Chapter 4 were employed, as reported in Table 6.7. Finally, the values

KFδ
and Kuδ

were set as per standard glider stern-planes design [191].

Table 6.7: UG dynamical parameters.

Parameters Values Units Explanation
ms 44.9 kg Vehicle hull mass
mp 11.0 kg Shifting mass
m1 64.84 kg Mass along xb

including added mass
m3 99.43 kg Mass along zb

including added mass
KD0 0.04 kg/m Quasi-steady state

drag (offset) coefficient
KD 9.44 kg/(m rad) Quasi-steady state

drag coefficient
KL0 2.16 kg/m Quasi-steady state

lift (offset) coefficient
KL 4.88 kg/(m rad) Quasi-steady state

lift coefficient
∇h 0.054 m3 Vehicle volume
KFδ

10.0 kg/(m rad) Control surfaces coupling factor
Kuδ

1.0 adimensional Control surfaces scale constant
ρ 1027.5 kg/m3 Seawater density

For this case study, interest lies in investigating the effect of a stern-plane jamming

at a specific angle during the glide ascent phase, simulating the case of a frozen hinge

or the presence of detritus. A more advanced control system accounting for saturated

control inputs was designed. The control function with saturation was synthesised as

follows:

uuu =


σ1 tanh(·)

. . .

σm tanh(·)

(KKKeee+++BBB) (6.27)

where σ j represents the saturation limits of the j-th actuator, KKK the ANN weight, BBB

the ANN bias (as justified in Section 6.5.2) and eee the state-space error vector.

6.5. Numerical Evaluation 160

Given the complexity of this dynamical model, short training runs (i.e. com-

posed of 1000 iterations) were observed leading to unsuccessful tests. After grad-

ually increasing the number of iterations, the software tool synthesised a control

function for the selected equilibrium xxx⋆ = [0.300,−0.018] after 1944 training itera-

tions (completed within 103 [s]). The resulting u1, saturated to the desired actua-

tor limit σ1 = 1.0, is illustrated in Fig. 6.14. The control function was obtained as

u1 = tanh(0.014− 6.571x1 + 4.912x2), while the resulting CLF was synthesised as:

V = 0.264975x1x2 +0.522009x2
1 +0.288912x2

2.

Figure 6.14: Synthesised control function for the Underwater Glider encompassing actuator
saturation (u1 with σ1 = 1.0), © 2024 Elsevier [23].

The evolution of the learning process is showcased by reporting the changing

shape of the Lie derivative function for the nominal (faultless) dynamics (note that the

evolution of the Lie derivatives associated to the fault modes follow the same trend). In

Fig. 6.15a (learning iteration #1) and Fig. 6.15b (learning iteration #5) the contour lines

of the Lie derivatives can been seen exhibiting positive values within D. Upon con-

vergence, the Lie derivative became negative definite over the entire domain, as shown

in Fig. 6.15c. Finally, a closed-loop system verification test is reported in Fig. 6.16,

showing the capability to track xxx⋆ within the target bounds despite the jamming of δ2

happening at t = 1.8 [s].

6.6. Control law selection 161

(a) Training iteration #1 (initial random
value).

(b) Training iteration #5 (during the train-
ing).

(c) Training iteration #1944 (upon con-
vergence).

Figure 6.15: Underwater Glider training: Lie derivative associated to the nominal dynamics at
successive training iterations, © 2024 Elsevier [23].

6.6 Control law selection
The output of a pFT-ANLC training campaign is not a unique control law, but rather

a series of synthesised control laws, all guaranteed to hold stabilising properties but

with performances slightly different from one another. As each run is generated us-

ing a different seed, every training starts from a different initialisation of the ANN

parameters and might converge to different minima. In other words, the pFT-ANLC

method solves a feasibility problem, attempting to find any controller that stabilise a

closed-loop fault-tolerant problem, and the solution might not be unique.

The scope of this section is to provide tools to select which control law, from

among those generated, best fits the target operating objectives, such as prescribed

values of steady-state tracking accuracy, or lower energy consumption.

A Linear-Quadratic (LQ) criterion is conventionally employed to assess control-

system performance [97]. In this section, a criterion encompassing both a term related

6.6. Control law selection 162

Figure 6.16: Underwater Glider verification test: surge speed when the control surface δ2 jams
at t=1.8 [s], © 2024 Elsevier [23].

to the reference tracking error and a factor associated to the control effort is proposed

as:

J =
∫

∞

0
(eeeT QQQeee+uuuT

fff RRRuuu fff)dt (6.28)

where uuu fff represents the control signal embedding the faults, eee the reference tracking

error with eee = rrr− xxx and rrr the reference tracking value, while QQQ and RRR (symmetric

positive semi-definite) are the weighting matrices. For convenience, the performance

index J is split into the sum of two terms:

J = Je + Ju (6.29)

where Je denotes the performance related to the tracking error and Ju the performance

associated with the control input. Je can be designed to evaluate the tracking ability of

a controller, namely:

Je = ēeeT QQQ111ēee+ ēeeT
b f QQQ222ēeeb f + ēeeT

a f QQQ333ēeea f + eT
stQ4est (6.30)

where:

6.6. Control law selection 163

• ēee denotes the Root Mean Square Error (RMSE) of eee, computed as:

ēee = RMSE(eee) =
√

∑
T
i=0(ri−xi)2

T , with T the number of available samples;

• the subscripts bf stands for before fault and af for after fault;

• the subscript st indicates the settling time;

• QQQ111,QQQ222,QQQ333,Q4 are the weighting matrices.

Note that the first three terms of Eq. (6.30) express how accurately the control tracks

the target value, while the last term indicates how fast the control reaches the steady-

state value. The settling time is calculated as the time required to the dynamics to

reach, and to remain bounded within a ±2% error from the target setpoint value.

To evaluate the performance of the control signals, the following cost function Ju

is defined as:

Ju = max(uuu)T RRR111 max(uuu)+max
(

duuu
dt

)T

RRR222 max
(

duuu
dt

)
+R3

∫ T

0
P(t)dt (6.31)

where the first and second terms penalise the maximum values of the control forces

and of the actuator rates, respectively, while the third factor accounts for the power

consumption over time. In an application using thrusters as actuators, if the force

generated by each thruster (Fi) is known, the overall power consumption at time t = kt

can be computed as [175]:

Pkt = (
m

∑
i=0
|Fi,kt |

(3/2)) (6.32)

with m being the total number of available thrusters.

It follows that:

eee ∈ Rn (6.33a)

uuu ∈ Rm (6.33b)

QQQ111,QQQ222,QQQ333 ∈ Rn×n (6.33c)

RRR111,RRR222 ∈ Rm×m (6.33d)

R3,Q4 ∈ R. (6.33e)

6.6. Control law selection 164

A quantitative example for the definition of a performance criterion is provided here.

Given the system defined by Eq. (6.15), a simulation campaign consisting of 10 runs

was executed. Two different cost function tunings were defined, and denoted as Ja

and Jb. The first tuning, denoted as Ja, prioritised reference tracking performance,

after the faults have occurred, over the control effort, i.e. the tracking error penalty

terms were the highest. On the contrary, the second tuning priorities limiting of the

overall power consumption, therefore tracking goals were relaxed while the power

consumption penalty gain was the highest.

For instance, possible weighting terms associated with the first tuning choice were

selected as follows:

QQQaaa
111 = QQQaaa

222 = diag(1.0, 1.0)

RRRaaa
111 = RRRaaa

222 = diag(1.0, 1.0, 1.0)

Qa
4 = Ra

3 = 1.0

QQQaaa
333 = diag(100.0, 100.0),

where the term QQQ333 denotes the tracking error penalty following the occurrence of the

faults and Q4 the settling time penalty.

In contrast, the control tuning that prioritises the minimisation of the overall

power consumption, denoted with Jb, can be selected by imposing the following tuning

factors:

QQQbbb
111 = QQQbbb

222 = QQQbbb
333 = diag(1.0, 1.0)

RRRbbb
111 = RRRbbb

222 = diag(1.0, 1.0, 1.0)

Qb
4 = 1.0

Rb
3 = 100.0.

The closed-loop dynamics resulting from the two different tunings are compared

here. Fig. 6.17a reports the vehicle surge speed associated with the tuning that priori-

tises minimisation of the reference tracking error following the fault, where x1 (dotted

6.6. Control law selection 165

line) denotes the controller minimising Ja. Similarly, Fig. 6.17b illustrates the resulting

dynamics of the more energy-conservative tuning Jb. A magnified view of the surge

dynamics following the injection of a fault at F1 is reported in Fig. 6.18. The chosen

control law associated with Ja minimises the tracking error following the occurrence

of a fault, as desired.

(a) Tuning minimising the tracking error
(Ja) denoted with x1.

(b) Tuning minimising the overall power
consumption (Jb) denoted with x1.

Figure 6.17: Range of possible surge dynamics associated to the converged controllers with
fault at F1 at 50 [s], © 2024 Elsevier [23].

Finally, the forces generated by the three thrusters are illustrated in Fig. 6.19a and

Fig. 6.19b for the tuning Ja and Jb, respectively. As expected, tuning Ja, leading to a

faster converging dynamics, requires an excess of forces when compared to Jb.

Figure 6.18: Magnified view of Fig. 6.17a: the selected controller minimises the tracking error
(x⋆1− x1) following a fault at F1 at 50 [s] (tuning Ja), © 2024 Elsevier [23].

6.7. Actuator loss of efficiency 166

(a) Tuning minimising the tracking error (Ja)
highlighted with dashed lines.

(b) Tuning minimising the overall power con-
sumption (Jb) highlighted with dashed lines.

Figure 6.19: Range of control efforts associated to the converged controllers with different
tuning following a fault at F1, © 2024 Elsevier [23].

6.7 Actuator loss of efficiency

In the previous sections, the case of a jammed control surface and of a complete loss of

one or more actuators were investigated. While the case of a complete loss of actuator

efficiency represents an interesting case study, at times, in real-life applications, faults

appear as partial loss of actuator efficiency. This could be the case if minor electrical

or mechanical issues arise, or if fishing debris or seaweed foul the thrusters, increasing

the resistance to rotation and limiting the overall rate of rotation. In the specific case of

gliders with missions extending for weeks or months, biofouling of marine growth on

the control surfaces can reduce the efficiency of the lift generated by the stern-planes

or the thrust generated by a propeller. These occurrences do not lead to a complete

loss of actuator functionality but rather limit the delivered actuator effect, and can be

modelled as a factor that multiplies the nominal control effort.

In line with the remainder of this work, the aim of this section is the design of

a control law that stabilises the system around a target equilibrium when the loss of

efficiency of an actuator occurs. To this end, the method introduced in Section 6.3.1

and Section 6.3.2 can be extended by accounting for the efficiency of the j-th actuator,

modelled as a real (continuous) variable µ j ∈ [0,1]. In practical terms, the Lyapunov

conditions Eq. (5.4) can be extended to include non-binary faults. This formally results

6.7. Actuator loss of efficiency 167

in:

V (xxx⋆) = 0, (6.34a)

V (xxx)> 0 ∀xxx ∈D\{xxx⋆}, (6.34b)

V̇n(xxx)< 0∧{V̇µ j(xxx,uuu)< 0}d
j=1 ∀xxx ∈D\{xxx⋆}, (6.34c)

where V̇µ j(xxx,uuu) represents the Lie derivative in the presence of a fault at the actuator j,

with actuator efficiency µ j (with µ j ∈ µµµ). The Falsifier conditions (6.9) can therefore

be modified as follows:

∃(xxx : xxx ∈D\{xxx⋆},µµµ : µµµ ∈ [0,1]) =⇒(
V (xxx)≤ 0 ∨ V̇n(xxx,uuu)≥ 0 ∨{V̇µ j(xxx,uuu)≥ 0}d

j=1

)
, (6.35)

where any instance of (xxx, µµµ) that satisfies these conditions would falsify the candidate

CLF, and hence the proposed control law, triggering a restart of the training procedure.

6.7.1 Case Study 4: Autonomous Underwater Vehicle with reduc-

tion in thruster efficiency

The concept of how to tackle the loss of actuator efficiency is illustrated in the case of

the two dimensional AUV introduced in Section 6.5.2. The model includes a possible

loss of efficiency (µ1) on the first actuator (F1), and can be expressed as:



ẋ1 =
−Xux1−Xuux2

1 +µ1F1,x +F2,x

m

ẋ2 =
−Nrx2−Nrrx2

2 +(−F1,xl1,y +F1,yl1,x)µ1

Jz
+

(−F2,xl2,y +F2,yl2,x)+(−F3,xl3,y +F3,yl3,x)
Jz

(6.36a)

(6.36b)

where the same model coefficients listed in Table 6.4 are employed.

The result of a successful training run with target x⋆ = [0.5,0.0]T and ε = 0.025 is

presented here. To verify the correctness of the method, the efficiency µ1 was modified

over time in line with the profile reported in Fig. 6.20, with µ1 set to arbitrary values

6.7. Actuator loss of efficiency 168

Figure 6.20: Partial loss of efficiency for the AUV case study: efficiency of the first actuator
(µ1) over time, © 2024 Elsevier [23].

ranging from 100% (fully functioning) to 0% (fully compromised). The corresponding

forces applied by the controller during a closed-loop test can be viewed in Fig. 6.21,

with the resulting dynamics illustrated in Fig. 6.22a and Fig. 6.22b.

Figure 6.21: Partial loss of efficiency for the AUV case study: control input forces, © 2024
Elsevier [23].

It can be noted that despite the efficiency of the actuator is being arbitrarily varied

over different values in the range (100% to 0%), the control system is able to bound

the dynamic response within the prescribed practical stability threshold.

6.8. Comparison with H∞H∞H∞ control method 169

(a) Surge dynamics (x1). (b) Yaw rate dynamics (x2).

Figure 6.22: Partial loss of efficiency for the AUV case study: dynamic response to varying
thruster efficiency (e1), © 2024 Elsevier [23].

6.8 Comparison with H∞H∞H∞ control method
In this section, results of the synthesis of pFT-ANLC laws for the two dimensional

AUV are compared to the state-of-the-art method within the frame of Passive fault-

tolerant Control for AUVs, namely the H∞ robust controller.

As was previously introduced in Section 2.5.8, the H∞ method applied to FTC

problems aims at finding a unique control law for a linear (or linearised) system af-

fected by uncertainties and/or multiple operating modes. In more detail, given the

state-space vector xxx ∈ Rn, the control vector uuu ∈ Rm, the measurement output yyy ∈ Rr,

the exogenous input vector www ∈ Rk and the performance output vector zzz ∈ Rl , a state-

space representation of the generalised plant (Pg) can be formulated as:


ẋ = Ax+B1w+B2u

z =C1x+D11w+D12u

y =C2x+D21w+D22u

(6.37)

The H∞ problem synthesis aims at minimising the H∞ norm of the transfer matrix

TTT zzzwww (from w to z), namely ∥TTT zzzwww∥∞, where ∥TTT zzzwww∥∞ = sup{σmax(TTT zzzwww(jω)) : ω in R},

with σmax(·) denotes the maximum singular value. Intuitively, the ∥TTT zzzwww∥∞ norm can

be viewed as the maximum energy gain that the controller attempts to minimise [118].

Given the generalised plant Pg, the goal is to design an (output) feedback controller in

the form uuu = KKK(s)yyy, where the dependency from the Laplace operator s indicates that

6.8. Comparison with H∞H∞H∞ control method 170

the function can be frequency-dependent. The block diagram used for the synthesis of

the control law is reported in Fig. 6.23.

Figure 6.23: H∞ control scheme.

The control synthesis process starts by selecting a fixed-structure control law (e.g.

a PID, or a static gain or a state-space model), with the parameters updated iteratively

until a stabilising solution is obtained or, optionally, until further design requirements

are met. Typical examples of these design requirements are obtaining a prescribed set-

tling time to a step response input, having a maximum response overshoot, or placing

the closed-loop poles in a specific region of the complex plane. Design requirements

can be formulated as hard or soft optimisation constraints, with the solution being sub-

jected to satisfying of the hard tuning constraints while trying to additionally satisfy the

soft tuning constraints. Thus, given a controller structure with a vector of free control

parameters to tune θθθ , by providing the design goals as soft requirements (expressed as

a normalised value fff (θθθ)) and hard constraints (expressed as a normalised value ggg(θθθ)),

the optimizer iteratively solves the following problem:

min(max fff (θθθ)))

subject to:

maxggg(θθθ)< 1

θθθ min < θθθ < θθθ max

(6.38)

where θθθ min and θθθ max are the minimum and maximum values of the free control pa-

rameters. In other words, the optimal solution is returned when all the hard constraints

(including closed-loop stability) are strictly verified by a choice of the free variable θθθ ,

6.8. Comparison with H∞H∞H∞ control method 171

Figure 6.24: H∞ control scheme with multiple plant models, with K(s) denoting a generic
control law.

with optional verification of the additional soft constraints.

Similar to the pFT-ANLC formulation, the H∞ problem is set up as the simulta-

neous minimisation of the H∞-norm of ∥TTT zzzwww∥∞ of a set of plants, each corresponding

to one operating mode, i.e. nominal mode or one fault modes [100]. In detail, given

a plant (Gn) corresponding to the nominal faultless system and given d plants, each

one corresponding to one admissible fault (φi), the controller aims at minimising the

worst case scenario of ∥TTT zzzwww j∥∞, with j = n,1, ...,d. A corresponding illustration of the

control scheme is reported in Fig. 6.24, with P= {Gn∪Gφi} with i = 1, ...,d.

In the specific case of the AUV dynamics described in Eq. (6.15), the control

synthesis was formulated as an optimisation problem with the objective of minimising

the tracking error (e) between the reference signal (r) and the output of the augmented

plant (y). In this study, the exogenous input vector www coincides with the reference

signal rrr, the control vector u = [F1,F2,F3]
T , the measured output y = [y1,y2]

T and

z = [y,u,e]T . The system state and control Jacobians (A and B, respectively) were

obtained through linearisation as:

A|x=x⋆ =

−Xu−2Xuux⋆1
m 0

0 −Nr−2Nrrx⋆2
Jz

 (6.39)

6.8. Comparison with H∞H∞H∞ control method 172

Figure 6.25: H∞ for AH1 control scheme, with K(s) denoting a generic control law.

B =

 sinα1
m

sinα2
m

sinα3
m

−l1y sinα1+l1x cosα1
Jz

−l2y sinα2+l2x cosα2
Jz

−l3y sinα3+l3x cosα3
Jz

 (6.40)

with the state-to-output and control-to-output matrices selected as:

C =

1 0

0 1

 (6.41)

D =

0 0 0

0 0 0

 . (6.42)

For this study, the case of three faults at thrusters were considered (at most one at any

one time), leading to the definition of four plants, namely Pg = {Gn,Gφ1,Gφ2,Gφ3}.

Each of the four systems G j was then evaluated around the target operating point xxx⋆ =

[0.5,0.0]T . Finally, the overall control scheme is reported in Fig. 6.25.

For this analysis, three H∞ optimisation problems with different requirements

were formulated and are detailed in Table 6.8. The requirements were formulated to

devise controllers with different performance characteristics.

To tune the gain, a target response time of 10 [s] was set (a realistic value for

the application being considered) while the maximum tolerated steady-state error was

6.8. Comparison with H∞H∞H∞ control method 173

varied from 40% in the conservative tuning scenario, to a more stringent 5% in the

aggressive tuning scenario.

Additionally, in the conservative scenarios, an extra constraint to limit the control

effort was considered. Actuator saturation was set at a limit of 37.1 [N], chosen as the

maximum force generated by a BlueRobotics T200 thruster. This thruster model was

selected in this example due to its widespread use in underwater robotics applications.

The aggressive scenario was solved within 1 [s] of computational time. However,

the synthesis failed to converge when the actuator saturation limit of 37.1 [N] was im-

posed, despite 10 rounds of optimisation were attempted. Each attempt started from

a different seed, to ensure that the optimisation problem comprised different initial

values of the free control parameters. The conservative solution was thus obtained by

incrementally increasing the control effort saturation limit from 37.1 [N]. A saturation

of 880.0 [N] was found to be the first value that enabled the H∞ synthesis to success-

fully converge. The conservative synthesis scenarios were solved within a maximum

of 208 iterations and terminated within 10 [s] of computational time.

Table 6.8: H∞-control tuning design specifications and synthesis results.

Control Response Max. steady- Control Controller
tuning time [s] state error [%] Saturation found

aggressive 10 5 None Yes
conservative 10 40 37.1 [N] No
conservative 10 40 880.0 [N] Yes

Next, the devised H∞ laws were compared with control laws synthesised via pFT-

ANLC. The pFT-ANLC solution was obtained by selecting the same architecture hy-

perparameters previously described in Table 6.5, while adding the output saturation

value as 37.1 [N].

The resulting closed-loop responses when a fault at F2 occurs can now be com-

pared. Fig. 6.26a reports the closed-loop surge dynamics, while Fig. 6.26b reports

the corresponding angular rate dynamics. It can be appreciated how the synthesised

pFT-ANLC law (in blue) are linked to dynamics that show qualitatively comparable

steady-state errors to those of the H∞ dynamics, while they are slower in terms of

convergence time. As expected, the aggressive H∞ tuning (in orange) shows faster

convergence rate and improved tracking performance both before and after the occur-

6.8. Comparison with H∞H∞H∞ control method 174

rence of the fault at the cost of an increased control effort, with F1 reported as an

example in Fig. 6.27. The aggressive H∞ tuning in fact requires a control effort that is

two orders of magnitude higher than that of pFT-ANLC (F2 and F3 follow comparable

trends). Additionally, Fig. 6.27 highlights how pFT-ANLC is the only controller that

guarantees feasible control actions by strictly respecting the actuator saturation limit.

(a) Surge dynamics (x1). (b) Yaw rate dynamics (x2).

Figure 6.26: Control laws comparison for AUV case study: pFT-ANLC (blue) vs multiple H∞

tuning (purple and orange), © 2024 Elsevier [23].

These results highlight how the proposed framework can synthesise control laws

that are qualitatively comparable with well established robust control methods, while

providing additional benefits from the perspective of formal guarantees. Despite H∞

method benefiting from highly optimised commercial tools resulting in faster tuning of

Figure 6.27: Control laws comparison for AUV case study: F1 control effort with pFT-ANLC
strictly respecting the desired actuator saturation, © 2024 Elsevier [23].

6.8. Comparison with H∞H∞H∞ control method 175

control laws (10 seconds for the H∞ tuning, against the 92 seconds of the pFT-ANLC,

in this study), pFT-ANLC provides benefits from both the theoretical and practical

perspectives. First, pFT-ANLC does not rely on the linearisation of the system dynam-

ics, representing an advantage in every application catering for highly nonlinear and

coupled dynamics, such as those characterising the underwater environment. Second,

as the pFT-ANLC synthesises a CLF, additional information regarding the properties

of the nonlinear closed-loop system, such as the shape and dimensions of the ROA

is available. An investigation about the properties of the ROA of an equilibrium con-

trolled with a pFT-ANLC-derived control laws is outlined in the following section.

6.8.1 Region of Attraction shaping and estimation

Conventionally, in control design applications, interest lies in providing a control law

with a ROA that is as large as possible. To this aim, pFT-ANLC allows shaping the

ROA by calibrating α4 in Eq. (6.7). To showcase the ROA shaping procedure, two

distinct tunings of the loss function parameters Eq. (6.7) were trialled, and will be

compared and discussed in this section.

An initial training was performed with α4 = 0.0 (disabling the ROA tuning factor),

and, following, a second training encompassing α4 = 1.0 and αROA = 100.0 was carried

out. Upon completion of the training, the resulting ROAs associated with the two

CLFs were calculated. It is worth recalling that the exact calculation of the ROA for

arbitrarily high dimensional systems exhibiting complex nonlinear phenomena is not

a trivial task [197]. In this work, calculating an estimate of the ROA, i.e. an inner

approximation (conservative), is deemed a sufficient solution. Such an approximation

can be calculated as a set Ωβ ⊂D such that:

Ωβ = {V (xxx)≤ βρ} (6.43)

where, D = ε ≤ ∥xxx∥2 ≤ γ , and βρ defines the maximum level set of V (xxx), coinciding

with the estimate the ROA.

To calculate such a value βρ , SMT solvers can be employed. A recursive SMT

formula can be evaluated, as:

6.8. Comparison with H∞H∞H∞ control method 176

∀xxx : (xxx ∈D)⇒ (V (xxx)> βρ). (6.44)

To this aim, a simple algorithm recursively increasing the value βρ was devised

and it is here reported as Algorithm 3. In such algorithm, βs ∈R represents the constant

incremental step. The procedure terminates when a CE of Eq. (6.44) is returned, or

when the upper limit of the domain is reached, namely βρ = βmax. When βρ = βmax

holds, it equates to the case when the ROA approximates D, as it will be shown in the

following analysis.

Algorithm 3 Estimation of the Region Of Attraction

1: function LYAPUNOV CHECK(V S
c ,D,βρ)

2: Check condition Eq. (6.44)
3: return unsat or CE
4:
5: function MAIN()
6: Input: V S

c ,D,βs
7: βρ : V (∥xxx∥2 = ε) = βρ

8: βmax : V (∥xxx∥2 = γ) = βmax
9: repeat

10: CE← LYAPUNOV CHECK(V S
c ,D,βρ)

11: if unsat then βρ = βρ +βs

12: until CE or βρ = βmax

Algorithm 3 is trialled over two CLFs synthesised with different loss function

tunings. The ROA corresponding to a CLF synthesised without tuning factor (i.e.

α4 = 0) is reported in Fig. 6.28a, while the ROA associated to the use of a tuning

factor (i.e. α4 = 1, αROA = 100) is shown in Fig. 6.28b. It should be noted that, in the

second tuning, the ROA approximately overlaps the whole domain D, as circular level

sets were enforced during the training.

The analyses illustrated thus far highlighted how the joint synthesis of nonlinear

control laws and CLFs proposed in this study can be employed to generate control laws

capable of accounting for practical nonlinear effects, such as actuator saturation. As

an additional benefit, the resulting ROA can not only be estimated, but can be shaped

by means of a dedicated tuning parameter during the synthesis stage. These elements

represent key advantages in further assessing closed-loop dynamic properties when

6.9. Conclusions 177

compared to the robust methods traditionally employed in the field.

(a) CLF synthesised without ROA tuning factor. (b) CLF synthesised with ROA tuning factor.

Figure 6.28: pFT-ANLC controller — different CLF tuning factors. Domain boundaries in
dashed lines and ROA in white solid line, © 2024 Elsevier [23].

6.9 Conclusions
In this chapter, a novel, automated method to design pFTC control laws was presented.

The proposed approach relies on the ANLC architecture described in Chapter 5 to syn-

thesise a unique control function with fixed gain that guarantees the ε-stability of the

target equilibrium. Both linear and nonlinear control laws were synthesised for bench-

mark systems of increasing complexity. The approach was shown to be capable of

maintaining the system dynamics within prescribed stability bounds, without relying

on external information flow from a Fault Detection and Isolation system. The method

further benefits from an intuitive understanding of the tolerated performance degra-

dation, expressed as the maximum state-space deviation from the target equilibrium

value.

A dedicated software tool, used to generate the results presented, was described

and released open-source. The proposed tool was run on standard office laptops with-

out demanding performance requirements.

Faults of different natures, ranging from full to partial loss of actuator efficiency,

to control surfaces jamming were analysed, with encouraging outcomes. Finally, a

method to account for actuator saturation was illustrated, and a comparison with dif-

ferent control laws tuned through a robust H∞ technique was presented. As a result, the

6.9. Conclusions 178

pFT-ANLC was the only method shown capable to successfully account for actuator

saturation.

After having completed the design of the desired pFTC method, in the following

chapter, a complete case study entailing the control of a faulty AUV will be investi-

gated.

Chapter 7

OpenMAUVe and pFT-ANLC: an

AUV case study

7.1 Introduction
This chapter outlines the modelling-simulation-control process aimed at controlling an

underwater vehicle affected by actuator faults. First, the vehicle dynamics are imple-

mented within the OpenMAUVe simulator introduced in Chapter 4. Next, the design

of a control law using the pFT-ANLC method is carried out, in accordance with the

early investigations reported in Chapter 6. Two simulation scenarios are performed

and the results obtained are analysed. The analysis of the results and the limitations of

the proposed methods and tools are presented, with proposals for and the direction of

future research work reported discussed.

7.2 Simulator architecture definition
The OpenMAUVe simulator, introduced in Chapter 4, represents a quick prototyping

tool that can be employed to analyse the dynamics of a wide range of underwater ve-

hicles. Additionally, the OpenMAUVe simulator can be used in control applications to

verify the stability of closed-loop control laws, or to support the fine-tuning of control

gains. To showcase the versatility of the simulator, this section outlines the design

steps required to simulate the dynamics of an AUV.

For this case study, a neutrally buoyant AUV moving in an horizontal plane was

considered. The AUV employed for this study is inspired by both the hover-capable

7.2. Simulator architecture definition 180

Figure 7.1: AUV vehicle model with four (fixed) thrusters moving over the horizontal plane.

AUV introduced in Section 6.5.2, and the ROVs with fixed thrusters positioned at the

extremities of the vehicle [241, 242]. The vehicle, featuring four fixed thrusters, is

illustrated in Fig. 7.1.

To investigate the AUV dynamics, the simulator architecture was designed as

detailed below. First, the ModelAUV class was created, encompassing dynamic el-

ements as in the restoring forces, the hydrodynamic forces and the control forces.

Additionally, Coriolis and centripetal terms were accounted for within the Model-

ica.Mechanical.Multibody.Body class from the MSL. Moreover, four input interfaces

were included to allow the flow of the control forces generated by the four thrusters

F1, F2, F3 and F4. Finally, virtual sensors were introduced to measure the vehicle’s

linear velocities, angular velocities and attitude angles. The overall definition of the

ModelAUV class is shown in Fig. 7.2.

Next, the ModelAUV class was embedded within a closed-loop architecture, al-

lowing control of the surge speed, the sway speed, the angular rate around the z-body

axis, and the yaw angle. The closed-loop architecture was defined in a class named

7.2. Simulator architecture definition 181

Figure 7.2: OpenMAUVe simulator architecture: ModelAUV class.

Figure 7.3: OpenMAUVe simulator architecture: SimulateAUV class encompassing the AUV
dynamics (ModelAUV class, right hand-side), the control laws (ControlAUV class,
lower left-hand side) and the signals of the faults (FaultsAUV class, top left-hand
side).

SimulateAUV, illustrated in Fig. 7.3. The SimulateAUV class encompasses three ele-

ments: the class implementing the AUV dynamics (ModelAUV), the class dedicated to

the definition of the control laws (ControlAUV) and the class required to manage the

fault signals (FaultsAUV).

The class defining the control laws, named ControlAUV, receives the target mea-

7.2. Simulator architecture definition 182

Figure 7.4: OpenMAUVe simulator architecture: ControlAUV class.

sured states and the measured states as inputs, and outputs the force commands to the

four thrusters. Additionally, the saturation of the actuators was included as a limit to

the thruster control signal. Finally, a signal hi, representing the health status of the i-th

actuator is input to the control class. The control class outputs each control input ui as

ui = hiudes
i where udes

i represents the desired control input, i.e. the ideal control input

without the factoring in of any faults. The resulting ControlAUV class is reported in

Fig. 7.4.

Finally, the FaultsAUV class, accounting for the definition of the fault signals,

was created. This class outputs four signals (one signal per actuator). Each signal

hi ∈ [0,1] denotes the efficiency of the i-th actuator, namely hi = 1 when the actuator

is functioning nominally, and hi = 0 when the actuator is completely faulty.

In the following sections, the control function is derived and, following that, two

examples of closed-loop control scenarios are simulated and discussed.

7.3. Synthesis of the control law 183

7.3 Synthesis of the control law

To control the AUV’s surge speed, sway speed, angular rate around the z-axis and

yaw angle, a pFT-ANLC law was first derived. The dynamical model was selected by

extending the AUV dynamics described in Eq. (6.15) to include the sway speed and

yaw angle. The vehicle 4-dimensional dynamics, characterised by xxx = [u,v,r,ψ]T and

uuu = [F1,F2,F3,F4]
T , are defined as:



ẋ1 =
−Xux1−Xuux2

1 +mx2x3 +h1F1,x +h2F2,x +h3F3,x +h4F4,x

m

ẋ2 =
−Yvx2−Yvvx2

2−mx1x3 +h1F1,y +h2F2,y +h3F3,y +h4F4,y

m

ẋ3 =
−Nrx3−Nrrx2

3 +(−F1,xl1,y +F1,yl1,x)h1 +(−F2,xl2,y +F2,yl2,x)h2

Jz
+

(−F3,xl3,y +F3,yl3,x)h3 +(−F4,xl4,y +F4,yl4,x)h4

Jz

ẋ4 = x3,

(7.1a)

(7.1b)

(7.1c)

(7.1d)

where Fi,x = Fi sin(βi) and Fi,y = Fi cos(βi) represent the projection of Fi along the xB

and yB-axes, respectively; Xu, Xuu denote the linear and quadratic surge drag coeffi-

cients, Yv, Yvv the linear and quadratic sway drag coefficients, while Nr, Nrr the linear

and quadratic yaw drag coefficients. Additionally, the angle βi represents the orien-

tation of thruster i-th with respect to yB, and li the distance from the COG, with li,x

and li,y indicating the projections along the xb and yb-axis, respectively. Finally, m

represents the mass of the vehicle (including the added mass) and with Jz the vehicle’s

moment of inertia around the vertical axis (including the added inertia). For this study,

geometric and hydrodynamic parameters are selected as reported in Table 7.1, where

such parameters are inspired to a design iteration of the hover-capable AUV developed

at the NOC.

To synthesise the control law, training insights gained from the investigations dis-

cussed in Chapter 5 and Chapter 6 were employed. First, the hyperparameters of the

Lyapunov ANN and of the Control ANN were chosen as reported in Table 7.2.

Having selected the ANN architectures, a control law that can accommodate ac-

7.3. Synthesis of the control law 184

Table 7.1: AUV dynamical parameters.

Parameters Values Units Explanation
m 500.0 kg Vehicle mass

including added mass
Jz 300.0 kg m2 Vehicle inertia (around vertical axis)

including added inertia
Xu 6.106 kg s−1 Surge linear drag coefficient
Xuu 5.0 kg m−1 Surge quadratic drag coefficient
Yv 6.106 kg s−1 Sway linear drag coefficient
Yvv 5.0 kg m−1 Sway quadratic drag coefficient
Nr 210.0 kg m2 s−1 Yaw linear drag coefficient
Nrr 3.0 kg m2 Yaw quadratic drag coefficient
l1,x -1.01 m Distance of F1 projected along xB
l1,y -0.353 m Distance of F1 projected along yB
β1 135 deg Orientation of F1 wrt yB
l2,x -1.01 m Distance of F2 projected along xB
l2,y 0.353 m Distance of F2 projected along yB
β2 45 deg Orientation of F2 wrt yB
l3,x 1.01 m Distance of F3 projected along xB
l3,y -0.353 m Distance of F3 projected along yB
β3 45 deg Orientation of F3 wrt yB
l4,x 1.01 m Distance of F4 projected along xB
l4,y 0.353 m Distance of F4 projected along yB
β4 135 deg Orientation of F4 wrt yB

Table 7.2: AUV campaign – ANN architecture.

Parameter Lyapunov ANN Control ANN
Layer size [2, 10, 1] [4, 4]

Bias [No, No] [Yes]
σ [x2, linear] [linear]

7.3. Synthesis of the control law 185

tuator saturation was selected to better replicate a realistic control design process. The

actuator saturation was set at a limit of 37.5 [N], a value chosen within the usual range

of underwater robotic vehicle applications (once again selected as the maximum force

generated by a BlueRobotics T200 thruster).

In line with previous analyses, the target setpoint was chosen as xxx⋆ =

[0.5,0.0,0.0,0.0]T . This choice of setpoint targets the condition of the AUV mov-

ing at prescribed surge speed, while controlling the sway speed, the angular rate and

the yaw angle at 0 ±ε .

For this study, the CLF domain was selected as D= 1.0 and ε = 0.05. The value

of ε was determined iteratively: starting from a relaxed value of ε = 0.3, the value was

gradually reduced until ε = 0.05, empirically found to be the smallest value that would

lead to the training terminating successfully.

By selecting the faults as total loss of actuator efficiency of either F1, F2 F3 or F4,

one nominal fault free mode and four fault modes are defined. With this definition of

the faults, one converging training run was completed within 716 learning iterations.

The CLF V is obtained as:

V = (0.878x2
1 +0.861x2

2 +3.568x2
3 +1.599x2

4+

0.067(x1x2)+0.711(x1x3)+0.301(x1x4)+0.0179(x2x3)+

0.429(x2x4)+3.549(x3x4)).

(7.2)

A projection of V (x1,x2,x3,x4) over the plane defined by x1 = x2 = 0 is reported in

Fig. 7.5a.

The control functions, encompassing the thruster saturation set at 37.5 [N], are

synthesised as follows:

7.3. Synthesis of the control law 186

(a) Synthesised CLF V (x1,x2,x3,x4).
(b) Synthesised control function

F1(x1,x2,x3,x4) with saturation.

Figure 7.5: Results of the pFT-ANLC synthesis for the AUV case study, plotted for x1 = x2 =
0.

F1 = 37.5tanh(0.208−4.826x1−7.430x2 +4.724x3 +3.484x4) (7.3a)

F2 = 37.5tanh(−0.133+5.510x1−4.630x2 +9.201x3 +4.962x4) (7.3b)

F3 = 37.5tanh(−0.165+4.351x1−3.627x2−7.429x3−6.505x4) (7.3c)

F4 = 37.5tanh(0.177−3.689x1−3.990x2−8.501x3−6.153x4). (7.3d)

After having synthesised the control functions, the expressions of Eq. (7.3) are

applied in a closed-loop within the OpenMAUVe.ControlAUV class, as:

F1 = 37.5tanh(0.208−4.826e1−7.430e2 +4.724e3 +3.484e4) (7.4a)

F2 = 37.5tanh(−0.133+5.510e1−4.630e2 +9.201e3 +4.962e4) (7.4b)

F3 = 37.5tanh(−0.165+4.351e1−3.627e2−7.429e3−6.505e4) (7.4c)

F4 = 37.5tanh(0.177−3.689e1−3.990e2−8.501e3−6.153e4), (7.4d)

where ei represents the error of the i-th state, namely ei = xm
i −x⋆i with xm

i the measured

value of xi and with x⋆i the target state value.

7.4. Numerical Evaluation 187

7.4 Numerical Evaluation
After having synthesised the control law and implemented it within the OpenMAUVe

simulator, closed-loop tests were devised to verify the efficacy of the control strategy.

To verify that the control law can cope with the faulty actuators, two simulated sce-

narios were devised and are presented hereby. First, a constant target setpoint was

requested and faults at different thrusters were injected. Second, a simulation encom-

passing the tracking of a time-varying reference yaw angle was carried out. Finally,

the results of these two simulated scenarios will be analysed to determine whether or

not the control strategy is verified.

7.4.1 Simulation A: simulation with four faults injected

The first simulated scenario was with the AUV initially set at rest, namely xxx0 =

[0.0,0.0,0.0,0.0]T , controlled to move to a target setpoint xxx⋆ = [0.5,0.0,0.0,0.0]T .

This setpoint represents a condition where the AUV is commanded to move with a

constant surge speed of 0.5 [m/s], with the other states controlled at 0.

During the simulation, faults were injected on either F1, F2, F3 or F4 (only a

maximum of one fault present at any time). The efficiency profile of the actuators are

reported in Fig. 7.6, with each fault injected for a time period of 200 [s], during which

time the other three actuators are functioning nominally.

A simulation lasting for 1700 [s] was run. The thruster forces were analysed to

verify that the control commands did not result in the actuator saturation limits being

exceeded. As an example, F1 is illustrated in Fig. 7.7, with a magnified view of the first

20 [s] of the simulation reported in Fig. 7.8 (F2, F3 and F4 follow similar trends). The

plots highlight how the requested control force remains bounded within the saturation

limits set at 37.5 [N]. Additionally, it is worth noting that F1 outputs null force in the

time range from 100 [s] to 300 [s], when the fault at F1 is injected.

Finally, the AUV’s dynamics were inspected to verify the efficacy of the control

law. First, the surge dynamics (u) are reported in Fig. 7.9, with the ε-stability bound

highlighted in green and with the target setpoint u⋆ = 0.5 [m/s] reported with dashed

lines. A magnified view of the surge dynamics over the first 20 [s] of the simulation is

reported in Fig. 7.10. Fig. 7.9 and Fig. 7.10 illustrate how the surge speed enters the

7.4. Numerical Evaluation 188

Figure 7.6: OpenMAUVe AUV test case: actuator efficiency profiles.

Figure 7.7: OpenMAUVe AUV test case A: control force generated by the first thruster (F1).

7.4. Numerical Evaluation 189

Figure 7.8: OpenMAUVe AUV test case A: magnified view of Fig. 7.7 in the first 20 [s] of the
simulation.

Figure 7.9: OpenMAUVe AUV test case A: surge dynamics (u).

ε-stability bound after 3.11 [s], and remains within the region defined by u⋆±ε for the

remainder of the simulated scenario, even when faults occur.

Similar to the surge speed dynamics, the sway speed dynamics (v), the angular

rate dynamics (r) and the yaw angle dynamics (ψ) are illustrated in in Fig. 7.11a,

Fig. 7.11b, and Fig. 7.11c, respectively. As expected, all the dynamic responses remain

within the ε-stability bound for the duration of the simulation, both during the nominal

(faultless) operation and during operation under fault mode conditions.

After having confirmed that the synthesised control law can control the AUV

around xxx⋆ even when faults occur, a more advanced simulation scenario is set up.

7.4. Numerical Evaluation 190

Figure 7.10: OpenMAUVe AUV test case A: magnified view of Fig. 7.9 in the first 20 [s] of
the simulation.

(a) Sway speed dynamics (v).
(b) Angular rate around the z-axis dynamics

(r).

(c) Yaw angle dynamics (ψ).

Figure 7.11: OpenMAUVe AUV test case A.

7.4.2 Simulation B: tracking a time-varying yaw angle reference

In this second scenario, the AUV was required to track a time-varying yaw angle ref-

erence. This simulation study recreates a scenario where the AUV is requested to

7.4. Numerical Evaluation 191

perform a manoeuvre encompassing time-varying heading, such as in lawnmower ap-

plications for sonar search [25, 243]. In this scenario, the AUV moves at constant

depth, with the surge speed set to the desired cruise speed, and where the reference

yaw angle is used to control the desired heading.

For this study, the overall simulation time is set to 200 [s], with the target cruise

speed selected as u⋆ = 0.5 [m/s], with v⋆ = 0.0 [m/s] and r⋆ = 0.0 [rad/s]. The control

system is tasked with tracking a time-varying yaw angle reference ψ⋆(t).

It is of paramount importance to recall that the pFT-ANLC is designed to ensure

tracking of a unique setpoint value, and not tracking of a generic time-varying refer-

ence value xxx⋆. Nonetheless, certain reference tracking capabilities are retained in spe-

cific dynamical models, such is the case for the 4-dimensional AUV model Eq. (7.1),

selected for the present study.

In model Eq. (7.1), the fourth state (namely the yaw angle ψ), does not appear in

the dynamics of the other states. For this reason, the shifted model ˙̃xxx= fff (x̃xx+xxx⋆, ũuu+uuu⋆)

(discussed in Section 6.5.2.1), used to synthesise the control law, is independent from

the value of ψ⋆ (i.e. x⋆4). Model Eq. (7.1), shifted such that x̃xx coincides with the origin,

shows the following coupling:



˙̃x1 = f (x1,x⋆1,x2,x⋆2,x3,x⋆3 +uuu)

˙̃x2 = f (x1,x⋆1,x2,x⋆2,x3,x⋆3 +uuu)

˙̃x3 = f (x1,x⋆1,x2,x⋆2,x3,x⋆3 +uuu)

˙̃x4 = f (x3,x⋆3).

(7.5a)

(7.5b)

(7.5c)

(7.5d)

From a physical perspective, this means that stabilising model Eq. (7.5) around

x⋆4 = 0, or around any other value x⋆4(t) ∈ R, does not entail any change in the control

function design. This clearly represents a beneficial feature from an analytical perspec-

tive, that well couples with the yaw angle being a perfect candidate for a conventional

time-varying heading tracking application. For the sake of this numerical example, the

target x⋆4(t) will be slowly varying; the associated limitations are discussed in more

detail in Section 7.5.

Once again, to evaluate the capability to track ψ⋆(t) both during nominal and fault

7.4. Numerical Evaluation 192

Figure 7.12: OpenMAUVe AUV test case B: actuator efficiency profiles.

modes, faults at different thrusters are injected. As an example, the case of F1 being

faulty is showcased here (with the other fault modes following comparable trends). The

efficiency profiles of the actuators are reported in Fig. 7.12, with the fault at F1 injected

halfway through the simulation at 100 [s], while the other three actuators continue to

function nominally.

To demonstrate the system’s ability to track a varying yaw angle target profile

ψ⋆(t), the desired angle is initially set to 0 [deg], then set to +10 [deg] at 50 [s],

and finally set to -10 [deg] after 150 [s]. The yaw dynamic response is illustrated in

Fig. 7.13. As it can be seen, the yaw dynamic response tracks the reference value

within the ε-stability bound both during nominal operations (all four thrusters func-

tioning nominally) and during faulty operations (after 100 [s]).

In line with the previous case study, surge speed (u), sway speed (v) and angular

rate (r) remain within the ε-stability bound during the simulation, with the surge speed

reported as an example in Fig. 7.14.

7.5. Discussion on limitations 193

Figure 7.13: OpenMAUVe AUV test case B: yaw angle dynamics with time-varying reference
and fault injected at time=100 [s].

7.5 Discussion on limitations
During the development of the numerical experiments reported in Section 7.4, two

limitations were highlighted. Both theoretical and practical limitations are discussed

in more detail hereby.

1. With respect to the case studies reported earlier in Chapter 5 and Chapter 6,

this investigation focuses on the case of a 4-dimensional dynamical system. In

accordance with findings discussed in the earlier chapters, the difficulty of syn-

thesising control laws and CLFs grows as the dimension of the system increases

or as the complexity of the nonlinearities rises.

More specifically, a key limiting element observed is the tuning of the hyperpa-

rameters. Deeper and wider ANN architectures benefit the Learner, while, at the

same time, render the CLFs’s formal verification stage more convoluted. The

synthesis of the control law illustrated in Section 7.3 required over 20 tuning

7.6. Conclusions 194

Figure 7.14: OpenMAUVe AUV test case B: yaw angle tracking response.

attempts, with the associated work ranging over a working week. These findings

confirm that the proposed control synthesis approach, in the present form, is not

suited for high-dimensional systems.

2. The pFT-ANLC method is designed to solve a problem of setpoint-tracking.

From a broader operational perspective, this represents the major limitation.

Nonetheless, as shown in the case study reported in Section 7.4.2, specific prop-

erties of the dynamical systems can be leveraged to extend the framework to

time-varying reference tracking applications.

7.6 Conclusions
In this chapter, a complete example of how to exploit the techniques and tools de-

veloped in this thesis to complete the modelling-simulation-control stages for a faulty

AUV was detailed. First, a dynamical model of an AUV was defined within the Open-

MAUVe simulator framework. Next, four possible faults were defined, and a dedicated

7.6. Conclusions 195

control law was automatically synthesised with the pFT-ANLC method. The control

law was then implemented in a closed-loop architecture within the OpenMAUVe sim-

ulator and tested in nominal and faulty operational modes, demonstrating the ability

to control the vehicle dynamics within the prescribed stability bounds. In the second

simulation scenario, a time-varying reference yaw angle was requested, resembling a

conventional lawnmower operational mode, such as during sonar searches.

The results presented highlight how the methods and tools developed and pre-

sented within this thesis are an effective suite to devise control laws for complex non-

linear dynamics such as those characterising AUVs applications. In line with results

illustrated in the previous chapters, limitations are noticed. An example on how to

leverage the physical dynamical properties is illustrated as the base for future studies.

In the current industrial landscape characterised by the development and use of

ever more sophisticated AUVs, automating the synthesis of control laws along while

streamlining the test and verification of closed-loop dynamics, represents a necessary

step in the future of AUVs operational control. The pFT-ANLC methods represents the

first step towards increasing the reliability of AUVs to actuator faults, and to ensure

the capability to successfully and safely complete the allocated tasks.

Chapter 8

Concluding remarks

8.1 Overview statements
In this thesis, novel ML-based technologies were exploited to tackle unresolved control

problems without compromising on the classical formal theories characterising the

control engineering discipline. Specifically, ML-based technologies were employed

to tackle non-trivial control problems, such as the computation of pFTC solutions for

AUVs, eliminating the need to use sensors to confirm the existence of faults.

Three research questions were initially formulated, and are recapped here together

with the related answers that were derived as result of this investigation.

Research Question RQ1

Are multibody object-oriented simulators suitable for simulating the dynamics of

autonomous underwater vehicles?

Answer Yes, multibody object-oriented simulators are a particularly suitable tools to

investigate the dynamics of AUVs. The associated study, reported in Chapter 4 and

which resulted in the design of the OpenMAUVe simulator, illustrated how exploit-

ing the classes-object paradigm to define the rigid-bodies composing an AUV signifi-

cantly simplifies the construction of complex multibody dynamics. Employing object-

oriented simulation tools well fits the increasing need to efficiently test and simulate

an ever growing number of different vehicles. To this aim, it was shown how ROVs,

AUVs, UGs and hybrid vehicles obey the same underlying hydrodynamic characteris-

tics, that can be captured by using standard blocks to model the hydrodynamic inter-

8.1. Overview statements 197

actions with the surrounding environment. When non-standard dynamics arise, such

as where shifting and rolling internal masses are employed, the multibody modelling

approach offers a clear advantage over the traditional causal simulators, that require

the equations of motions to be derived ad hoc. As movable masses are increasingly

being used as control inputs in combination with the more traditional actuators such

as thrusters and control surfaces, multibody simulators allow prompt re-design of the

vehicle and testing the different actuator configurations and arrangements. In the FTC

context, where actuator redundancy plays a crucial role, the ability to promptly test a

vehicle with different actuators can provide key insights regarding safety and reliabil-

ity of target design choices. To this end, the OpenMAUVe environment was used in

Chapter 7 to verify the use of control laws, highlighting how such simulation tool can

be used to verify the behaviour and performance of a control law in a safe manner.

Moreover, the OpenMAUVe simulator allows for efficient simulation of long-lasting

missions, owing to the enhanced capabilities to solve systems of DAEs when compared

to standard causal simulators. This can allow testing the effect of slow dynamical phe-

nomena, such as the growth of biofouling agents on the hull. Finally, given the ca-

pability to assemble vehicles through the combination of mechanical components, the

simulator can be used as a fast prototyping tool for novel vehicle design, allowing the

understanding of how the dynamics change when subjected to different control inputs.

Research Question RQ2 (initial)

Is the Neural Lyapunov Control method an efficient approach for the design of

stable control laws for nonlinear systems?

Answer Experiments have shown that the Neural Lyapunov Control, in its original for-

mulation, can not be used to design stable control laws for nonlinear systems without

proving sensible initialisation parameters. This conclusion was reached after running

over 1800 training scenarios where the hyperparameters of the methods were systemat-

ically permuted. It must be noted that the Neural Lyapunov Control was not originally

proposed as a method to synthesise control laws, but rather as a method to certify the

closed-loop stability and extend the Region of Attraction of an equilibrium of a nonlin-

ear system by starting from a candidate stabilising control law. The systematic analysis

8.1. Overview statements 198

highlighted areas of improvements that were deemed worth investigating to render the

method fit for the purpose of systematically synthesising control laws. Based on these

findings, Research Question RQ2 was reformulated as follows.

Research Question RQ2 (reformulated)

Can an upgraded version of the Neural Lyapunov Control method be devised to

systematically design stable control laws for continuous-time nonlinear dynamical

systems?

Answer Yes, the Neural Lyapunov Control can be modified to design control laws for

continuous-time nonlinear dynamical systems. The modified version of the method

proposed in this thesis is denoted as Augmented Neural Lyapunov Control. Such a

method was shown capable to automatically synthesise both linear and nonlinear con-

trol laws for benchmark systems, without requiring the provision of an initial sensible

control candidate solution to successfully converge.

Research Question RQ3

How can the Neural Lyapunov Control method be extended to a passive fault-

tolerant control approach to ensure closed-loop stability for platforms affected by

actuator faults?

Answer The (Augmented) Neural Lyapunov Control method can be extended to fit

such a purpose in the form of the passive Fault-Tolerant Augmented Neural Lyapunov

Control. The method relies on the idea that, given a nominal dynamical system and a

finite number of fault modes, each one associated with the fault of one actuator, the Lie

derivatives of each mode must be negative definite at the same time. The method allows

the derivation of a unique control law that stabilises both the nominal and fault modes.

Such a method is robust to a set of predefined faults, and does not require confirmatory

information as to the status of the actuators that would normally be provided by sensors

and detection algorithms.

The tools and methods developed in this thesis can serve as a foundation for fur-

ther academic research and for implementation by industrial practitioners. Three open-

source software tools in the field of simulation and control of AUVs were developed

8.1. Overview statements 199

as part of this research. These contributions are summarised as follows.

• Upon validation, the OpenMAUVe simulator can be used to test, tune and verify

different control laws and navigation algorithms in AUV applications. Addition-

ally, due to the possibility to effectively simulate long-lasting missions, the tool

can be used to investigate the effect of gradually changing dynamical phenom-

ena, such as biofouling growth on the vehicle hull.

• Resulting from the ability to promptly compose vehicles as assemblies of me-

chanical subcomponents, OpenMAUVe can assist the design of novel AUVs

concepts, allowing the investigation of the vehicle dynamics and the response

to prescribed control inputs.

• The ANLC software tool can assist every control application that can benefit

from the definition of an associated CLF. Despite the fact that synthesis of state-

feedback control functions is achieved conventionally with standard analytical

techniques, a control law synthesised through the ANLC adds additional infor-

mation regarding the ROA, in turn providing insights regarding the nonlinear dy-

namics, rather than just on the usual linearised behaviour in the neighbourhood

of an equilibrium. Additionally, the ANLC software tool allows the synthesis of

nonlinear state-feedback control laws, allowing enhanced flexibility when com-

pared to the conventional linear counterpart.

• The pFT-ANLC software tool represents a first in the synthesis of pFTC account-

ing for the complete loss of actuator efficiency, without requiring linearising (i.e.

simplifying) the system dynamics. Additionally, this tool allows to factor in ac-

tuator saturation. These features facilitate the enhancing of the onboard control

software reliability, requiring fewer assumptions and accounting for more ad-

vanced real nonlinear phenomena.

Overall, these tools aim at supporting academic and industrial applications in the

maritime field, increasing the reliability of the vehicles and their ability to respond

to unforeseeable scenarios. In turn, these research outputs increase the confidence

8.1. Overview statements 200

in autonomous vehicles’ ability to successfully complete the assigned missions, by

autonomously responding to disruptive events.

Nevertheless, the applicability of the work illustrated in this thesis is subject to

certain limitations. First, the OpenMAUVe simulator was verified against theoreti-

cal models and compared against the results of other simulators. Complete valida-

tion of the simulator is not possible at this stage, due to a lack of publicly available

datasets encompassing the time series commands to the actuator, the measured and

estimated position, velocities and attitude of the vehicle, and the details regarding the

vehicle trimming configuration. Even more than a conventional caveat, the results of

the OpenMAUVe simulator need to be critically analysed and not used as a source of

ground truth at this stage. Additionally, current limitations encompass environmental

disturbances, depth-related hull deformation phenomena and non-idealised behaviours

linked to the presence of hull appendages, that can not yet be accounted for.

Second, the ANLC and pFT-ANLC exhibit common limitations, owing to their

underlying shared methodological basis. The major limitation is linked to the lack of

scalability to high dimensional systems. In this work, it was possible to systematically

obtain control laws for dynamical systems of up to four states. When analysing higher-

dimensional dynamics of six states and above, such as those characterising a rigid-

body moving unconstrained in space, the difficulty in formally verifying the solution

increases. Issues of scalability are intrinsically linked to the nature of the SMT solvers

that, with current available technologies, do not have a trivial solution. To mitigate such

a limitation, careful tuning of the hyperparameters needs to be carried out, especially

when dealing with dynamical models encompassing transcendental functions.

Third, the ANLC and pFT-ANLC methods are currently designed to solve the

problem of setpoint stabilisation. Within the specific application of autonomous nav-

igation, interest instead lies in solving problems of reference-tracking. In the current

formulation, the proposed methods cannot generically solve a problem of reference-

tracking. However, in Chapter 7, it was shown how favourable properties of certain

dynamical systems can be leveraged to solve the problem of tracking a time-varying

reference.

8.2. Recommendations for future research 201

8.2 Recommendations for future research
This section suggests a set of research directions that can further progress the work

presented in this thesis. Naturally, certain research directions would follow from ad-

dressing the aforementioned limitations.

• A validation of the OpenMAUVe simulator is necessary to increase the trustwor-

thiness of the output results. Given the lack of open-access data from repositories

and other publications, collaborations with a research centre that is remotely op-

erating and deploying AUVs (even more possibly UGs) is necessary to retrieve

the necessary hydrodynamic parameters of a vehicle, together with the trimming

conditions and the associated deployment data.

• To increase the fidelity of the OpenMAUVe simulator, models of environmental

disturbances need to be included, as well as more advanced formulations accom-

modating for hull deformation phenomena due to pressure and temperature and,

where fitted, the effects of hull appendages.

• In order to scale the ANLC and pFT-ANLC methods to higher dimensional sys-

tems, alternatives to SMT solvers need to be considered as stability certificates.

As of the summer of 2024, there is no alternative technology to provide the same

certificate over the dense domain of the Reals. Nonetheless, a possible relaxation

entails using probabilistic verification methods, rather than exact methods, in or-

der to reduce the associated complexity burden and render the problem tractable

within limited computational means.

• Further tests of the application of pFT-ANLC to AUV studies are suggested. In

more detail, a proposed set of tests will encompass wrapping the pFTC control

law within a complete Guidance, Navigation and Control (GNC) architecture.

For instance, testing a classical cascade control architecture where the AUV de-

sired heading is provided by a top level planner (or Guidance-law), is deemed

the most straightforward follow-up stage.

• Another suggested research direction encompasses veering away from the clas-

8.2. Recommendations for future research 202

sical cascade GNC architectures where possible faults are typically managed at

the innermost control loop, e.g. the force and moment control loop, and address-

ing the faults at a higher level, namely at the Guidance level. To this regard, the

concept of fault-tolerant guidance rather than fault-tolerant control is highlighted

as a valuable research direction.

Bibliography

[1] A Evangelio, O Nyaas, G Yuzichuck, S Sweeney, M Karagoz, M Coffman, and

J Fox. Guidance for developing maritime unmanned systems (MUS) capability.

Combined Joint Operations from the Sea Centre of Excellence Report, 12:029–

02, 2012.

[2] European Defence Agency. Best practice guide for unmanned maritime systems

handling, operations, design and regulations. https://eda.europa.eu/do

cs/default-source/documents/eda_ums-bpg-edition-2022_publ

ic.pdf, (Accessed: 16/09/2024).

[3] International Maritime Organisation. Msc.1/Circ.1638 - outcome of the regulatory

scoping exercise for the use of Maritime Autonomous Surface Ships (MASS). https:

//wwwcdn.imo.org/localresources/en/MediaCentre/PressBrie

fings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The

%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%2

0Maritime%20Autonomous%20Surface%20Ships...%20(Secretaria

t).pdf, (Accessed: 16/09/2024).

[4] Maritime & Coastguard Agency. The Workboat Code, edition 3, 2024. https:

//assets.publishing.service.gov.uk/media/667c2220aec8650

b10090087/Workboat_Code_Edition_3.pdf, (Accessed: 16/09/2024).

[5] Tobias Hofmann and Alexander Proelss. The operation of gliders under the international

law of the sea. Ocean Development & International Law, 46(3):167–187, 2015.

https://eda.europa.eu/docs/default-source/documents/eda_ums-bpg-edition-2022_public.pdf
https://eda.europa.eu/docs/default-source/documents/eda_ums-bpg-edition-2022_public.pdf
https://eda.europa.eu/docs/default-source/documents/eda_ums-bpg-edition-2022_public.pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://assets.publishing.service.gov.uk/media/667c2220aec8650b10090087/Workboat_Code_Edition_3.pdf
https://assets.publishing.service.gov.uk/media/667c2220aec8650b10090087/Workboat_Code_Edition_3.pdf
https://assets.publishing.service.gov.uk/media/667c2220aec8650b10090087/Workboat_Code_Edition_3.pdf

Bibliography 204

[6] Committees UK Parliament. National Oceanography Centre (NOC) – written evidence

(AUV0056). https://committees.parliament.uk/writtenevidence

/74298/html/, (Accessed: 16/09/2024).

[7] Anja Diez. Liquid water on Mars. Science, 361(6401):448–449, 2018.

[8] Margaret G Kivelson, Krishan K Khurana, Christopher T Russell, Martin Volwerk,

Raymond J Walker, and Christophe Zimmer. Galileo magnetometer measurements: A

stronger case for a subsurface ocean at Europa. Science, 289(5483):1340–1343, 2000.

[9] Olivier Grasset, MK Dougherty, A Coustenis, EJ Bunce, C Erd, D Titov, M Blanc,

A Coates, P Drossart, LN Fletcher, et al. JUpiter ICy moons Explorer (JUICE): An

ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and

Space Science, 78:1–21, 2013.

[10] Wayne Zimmerman, Robert Bonitz, and Jason Feldman. Cryobot: an ice penetrating

robotic vehicle for Mars and Europa. In 2001 IEEE Aerospace Conference Proceedings

(Cat. No. 01TH8542), volume 1, pages 1–311. IEEE, 2001.

[11] Rodrigo Perez Fernandez and Antonio Sanchez-Torres. Underwater Exploration Mis-

sion on Europa Jovian Moon. International Journal of Engineering Research & Science,

1, 2015.

[12] Peter W Kimball, Evan B Clark, Mark Scully, Kristof Richmond, Chris Flesher, Laura E

Lindzey, John Harman, Keith Huffstutler, Justin Lawrence, Scott Lelievre, et al. The

ARTEMIS under-ice AUV docking system. Journal of field robotics, 35(2):299–308,

2018.

[13] Dirk Heinen, Jan Audehm, Fabian Becker, Georg Boeck, Clemens Espe, Marco Feld-

mann, Gero Francke, Pia Friend, Niklas Haberberger, Klaus Helbin, et al. The TRIPLE

melting probe-an electro-thermal drill with a forefield reconnaissance system to access

subglacial lakes and oceans. In OCEANS 2021: San Diego–Porto, pages 1–7. IEEE,

2021.

[14] University of California San Diego. Argo float map. https://www.ocean-ops

.org/board, (Accessed: 16/09/2024).

https://committees.parliament.uk/writtenevidence/74298/html/
https://committees.parliament.uk/writtenevidence/74298/html/
https://www.ocean-ops.org/board
https://www.ocean-ops.org/board

Bibliography 205

[15] Web Of Science. List of publications containing the kewords "control systems",

"machine-learning" within the engineering field. https://www.ocean-ops.o

rg/board, (Accessed: 16/09/2024).

[16] Souther Ocean Carbon and Climate Observatory. Ocean gliders battle southern ocean

in order to capture the seasonal cycle. https://socco.org.za/news/ocea

n-gliders-battle-southern-ocean-in-order-to-capture-the-s

easonal-cycle/attachment/figure-2/, (Accessed: 16/09/2024).

[17] Michel Verhaegen, Stoyan Kanev, Redouane Hallouzi, Colin Jones, Jan Maciejowski,

and Hafid Smail. Fault Tolerant Flight Control - A Survey, pages 47–89. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010.

[18] Rosana Cibely Batista Rego. Lyapunov-based intelligent control. PhD thesis, Univer-

sidade Federal do Rio Grande do Norte, 2022.

[19] Davide Grande, Luofeng Huang, Catherine A Harris, Peng Wu, Giles Thomas, and

Enrico Anderlini. Open-source simulation of underwater gliders. In OCEANS 2021:

San Diego–Porto, pages 1–8. IEEE, 2021.

[20] Joshua Grady Graver. Underwater gliders: Dynamics, control and design. PhD thesis,

Princeton University, 2005.

[21] Gursel Serpen. Empirical approximation for Lyapunov functions with artificial neural

nets. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks,

2005., volume 2, pages 735–740. IEEE, 2005.

[22] Davide Grande, Enrico Anderlini, Andrea Peruffo, and Georgios Salavasidis. Aug-

mented Neural Lyapunov Control. IEEE Access, 2023.

[23] Davide Grande, Andrea Peruffo, Georgios Salavasidis, Enrico Anderlini, Davide

Fenucci, Alexander B Phillips, Elias B Kosmatopoulos, and Giles Thomas. Passive

Fault-Tolerant Augmented Neural Lyapunov Control: A method to synthesise control

functions for marine vehicles affected by actuators faults. Control Engineering Prac-

tice, 148:105935, 2024.

https://www.ocean-ops.org/board
https://www.ocean-ops.org/board
https://socco.org.za/news/ocean-gliders-battle-southern-ocean-in-order-to-capture-the-seasonal-cycle/attachment/figure-2/
https://socco.org.za/news/ocean-gliders-battle-southern-ocean-in-order-to-capture-the-seasonal-cycle/attachment/figure-2/
https://socco.org.za/news/ocean-gliders-battle-southern-ocean-in-order-to-capture-the-seasonal-cycle/attachment/figure-2/

Bibliography 206

[24] Davide Grande, Davide Fenucci, Andrea Peruffo, Enrico Anderlini, Alexander B

Phillips, Giles Thomas, and Georgios Salavasidis. Systematic Synthesis of Passive

Fault-Tolerant Augmented Neural Lyapunov Control Laws for Nonlinear Systems. In

2023 62nd IEEE Conference on Decision and Control (CDC), pages 5851–5856. IEEE,

2023.

[25] Davide Fenucci, Francesco Fanelli, Alberto Consensi, Georgios Salavasidis, Miles Pe-

body, and Alexander B Phillips. A multi-platform Guidance, Navigation and Control

system for the autosub family of Autonomous Underwater Vehicles. Control Engineer-

ing Practice, 146:105902, 2024.

[26] Zachary Bedja-Johnson, Peng Wu, Davide Grande, and Enrico Anderlini. Smart

anomaly detection for slocum underwater gliders with a variational autoencoder with

long short-term memory networks. Applied Ocean Research, 120:103030, 2022.

[27] Stefano Farì and Davide Grande. Vector Field-based Guidance Development for Launch

Vehicle Re-entry via Actuated Parafoil. In Proceedings of the International Astronauti-

cal Congress, IAC, 2021.

[28] Asher Bender, Daniel Matthew Steinberg, Ariell Lee Friedman, and Stefan B Williams.

Analysis of an autonomous underwater glider. In Proceedings of the Australasian con-

ference on robotics and automation, pages 1–10, 2008.

[29] NOAA Office of Ocean Exploration and Research. Why do we explore the ocean?

https://oceanexplorer.noaa.gov/backmatter/whatisexplorat

ion.html#:~:text=Information%20from%20ocean%20exploratio

n%20can,%2C%20tsunamis%2C%20and%20other%20hazards, (Accessed:

16/09/2024).

[30] NASA Jet Propulsion Laboratory. Why study the ocean? https://sealevel.jpl

.nasa.gov/ocean-observation/why-study-the-ocean/overview/,

(Accessed: 16/09/2024).

[31] Henry Stommel. The slocum mission. Oceanography, 2(1):22–25, 1989.

[32] Dean Roemmich, Gregory C Johnson, Stephen Riser, Russ Davis, John Gilson,

W Brechner Owens, Silvia L Garzoli, Claudia Schmid, and Mark Ignaszewski. The

https://oceanexplorer.noaa.gov/backmatter/whatisexploration.html#:~:text=Information%20from%20ocean%20exploration%20can,%2C%20tsunamis%2C%20and%20other%20hazards
https://oceanexplorer.noaa.gov/backmatter/whatisexploration.html#:~:text=Information%20from%20ocean%20exploration%20can,%2C%20tsunamis%2C%20and%20other%20hazards
https://oceanexplorer.noaa.gov/backmatter/whatisexploration.html#:~:text=Information%20from%20ocean%20exploration%20can,%2C%20tsunamis%2C%20and%20other%20hazards
https://sealevel.jpl.nasa.gov/ocean-observation/why-study-the-ocean/overview/
https://sealevel.jpl.nasa.gov/ocean-observation/why-study-the-ocean/overview/

Bibliography 207

Argo Program: Observing the global ocean with profiling floats. Oceanography,

22(2):34–43, 2009.

[33] European Global Ocean Observing System. Tide gauges. https://eurogoos.e

u/tide-gauge-task-team/, (Accessed: 16/09/2024).

[34] NOAA National Ocean Service. What drifters are. https://www.aoml.noaa.

gov/phod/gdp/faq.php#drifter1, (Accessed: 16/09/2024).

[35] Bastien Y Queste, Karen J Heywood, Jan Kaiser, Gareth A Lee, Adrian Matthews,

Sunke Schmidtko, Christopher Walker-Brown, and Stephen W Woodward. Deploy-

ments in extreme conditions: Pushing the boundaries of Seaglider capabilities. In 2012

IEEE/OES Autonomous Underwater Vehicles (AUV), pages 1–7. IEEE, 2012.

[36] Anton Zhilenkov. The study of the process of the development of marine robotics.

Vibroengineering Procedia, 8:17–21, 2016.

[37] Alexander Brian Phillips. Simulations of a self propelled autonomous underwater vehi-

cle. PhD thesis, University of Southampton, 2010.

[38] Daniel T Roper, Alexander B Phillips, Catherine A Harris, Georgios Salavasidis, Miles

Pebody, Robert Templeton, Sriram Vikraman Sithalashmi Amma, Micheal Smart, and

Stephen McPhail. Autosub long range 1500: An ultra-endurance AUV with 6000 km

range. In OCEANS 2017-Aberdeen, pages 1–5. IEEE, 2017.

[39] M Caccia, R Bono, Ga Bruzzone, Gi Bruzzone, E Spirandelli, and G Veruggio. Experi-

ences on actuator fault detection, diagnosis and accomodation for ROVs. International

Symposiyum of Unmanned Untethered Sub-mersible Technol, pages 3–21, 2001.

[40] Enrico Anderlini, Catherine A Harris, Georgios Salavasidis, Alvaro Lorenzo, Alexan-

der B Phillips, and Giles Thomas. Autonomous detection of the loss of a wing for

underwater gliders. In 2020 IEEE/OES Autonomous Underwater Vehicles Symposium

(AUV)(50043), pages 1–6. IEEE, 2020.

[41] Sarah E Webster, Lee E Freitag, Craig M Lee, and Jason I Gobat. Towards real-time

under-ice acoustic navigation at mesoscale ranges. In 2015 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 537–544. IEEE, 2015.

https://eurogoos.eu/tide-gauge-task-team/
https://eurogoos.eu/tide-gauge-task-team/
https://www.aoml.noaa.gov/phod/gdp/faq.php#drifter1
https://www.aoml.noaa.gov/phod/gdp/faq.php#drifter1

Bibliography 208

[42] KW Nicholls, EP Abrahamsen, JJH Buck, PA Dodd, C Goldblatt, G Griffiths, KJ Hey-

wood, NE Hughes, A Kaletzky, GF Lane-Serff, et al. Measurements beneath an Antarc-

tic ice shelf using an autonomous underwater vehicle. Geophysical Research Letters,

33(8), 2006.

[43] Gianluca Antonelli. A survey of fault detection/tolerance strategies for AUVs and

ROVs. In Fault diagnosis and fault tolerance for mechatronic systems: Recent ad-

vances, pages 109–127. Springer, 2003.

[44] Mouhacine Benosman and K-Y Lum. Passive actuators’ fault-tolerant control for affine

nonlinear systems. IEEE Transactions on Control Systems Technology, 18(1):152–163,

2009.

[45] Nick Bostrom. Superintelligence: Paths, dangers, strategies. Oxford University Press.,

2016.

[46] Brett A Halperin and Stephanie M Lukin. Artificial dreams: Surreal visual storytelling

as inquiry into AI ’hallucination’. In Proceedings of the 2024 ACM Designing Interac-

tive Systems Conference, pages 619–637, 2024.

[47] Gary Marcus. Alphaproof, Alphageometry, ChatGPT, and why the future of AI is

neurosymbolic. https://garymarcus.substack.com/p/alphaproof-a

lphageometry-chatgpt, (Accessed: 16/09/2024).

[48] Dean C Wardell. Deep Learning-Based, Passive Fault Tolerant Control Facilitated

by a Taxonomy of Cyber-Attack Effects. PhD thesis, AIR FORCE INSTITUTE OF

TECHNOLOGY, 2020.

[49] Deric P Jones. Biomedical sensors. Momentum press, 2010.

[50] Alan S Willsky. A survey of design methods for failure detection in dynamic systems.

Automatica, 12(6):601–611, 1976.

[51] Guillaume JJ Ducard. Fault-tolerant flight control and guidance systems: Practical

methods for small unmanned aerial vehicles. Springer Science & Business Media,

2009.

https://garymarcus.substack.com/p/alphaproof-alphageometry-chatgpt
https://garymarcus.substack.com/p/alphaproof-alphageometry-chatgpt

Bibliography 209

[52] Mogens Blanke, Michel Kinnaert, Jan Lunze, Marcel Staroswiecki, and Jochen

Schröder. Diagnosis and fault-tolerant control, volume 2. Springer, 2006.

[53] Ali Zolghadri, David Henry, Jérôme Cieslak, Denis Efimov, and Philippe Goupil. Fault

Diagnosis and Fault-tolerant Control and Guidance for Aerospace Vehicles, volume

236. Springer, 2014.

[54] Mogens Blanke, Michel Kinnaert, Jan Lunze, and Marcel Staroswiecki. Diagnosis and

fault-tolerant control, volume 3. Springer, 2015.

[55] Mario Brito, David Smeed, and Gwyn Griffiths. Underwater glider reliability and

implications for survey design. Journal of Atmospheric and Oceanic technology,

31(12):2858–2870, 2014.

[56] Koorosh Aslansefat, Gholamreza Latif-Shabgahi, and Mojtaba Kamarlouei. A strategy

for reliability evaluation and fault diagnosis of Autonomous Underwater Gliding Robot

based on its Fault Tree. International Journal of Advances in Science Engineering and

Technology, 2(4):83–89, 2014.

[57] Gwyn Griffiths, Mario Brito, Ian Robbins, and Mark Moline. Reliability of two

REMUS-100 AUVs based on fault log analysis and elicited expert judgment. 2009.

[58] Fuqiang Liu, Zuxing Ma, Bingxian Mu, Chaoqun Duan, Rui Chen, Yi Qin, Huayan Pu,

and Jun Luo. Review on fault-tolerant control of unmanned underwater vehicles. Ocean

Engineering, 285:115471, 2023.

[59] Takeshi Nakatani, Tamaki Ura, Yuzuru Ito, Junichi Kojima, Kenkichi Tamura, Takashi

Sakamaki, and Yoshiaki Nose. AUV TUNA-SAND and its exploration of hydrothermal

vents at Kagoshima Bay. In OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pages 1–5.

IEEE, 2008.

[60] Alfredo Martins, José Almeida, Carlos Almeida, Bruno Matias, Stef Kapusniak, and

Eduardo Silva. EVA a hybrid ROV/AUV for underwater mining operations support. In

2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pages 1–7. IEEE, 2018.

[61] Ramon A Suarez Fernandez, Zorana Milošević, Sergio Dominguez, and Claudio Rossi.

Motion control of underwater mine explorer robot UX-1: field trials. IEEE Access,

7:99782–99803, 2019.

Bibliography 210

[62] Woods Hole Oceanographic Institution. Pioneering deep-sea robot lost at sea. https:

//www.whoi.edu/press-room/news-release/pioneering-deep-s

ea-robot-lost-at-sea/, (Accessed: 16/09/2024).

[63] Stephen McPhail, Rob Templeton, Miles Pebody, Daniel Roper, and Richard Morrison.

Autosub long range AUV missions under the Filchner and Ronne ice shelves in the

Weddell sea, Antarctica-an engineering perspective. In OCEANS 2019-Marseille, pages

1–8. IEEE, 2019.

[64] Rixia Qin, Xiaohong Zhao, Wenbo Zhu, Qianqian Yang, Bo He, Guangliang Li, and

Tianhong Yan. Multiple receptive field network (mrf-net) for autonomous underwater

vehicle fishing net detection using forward-looking sonar images. Sensors, 21(6):1933,

2021.

[65] BBC News. Why are chinese fishermen finding so many ’submarine spies’? http

s://www.bbc.com/news/world-asia-china-51130644, (Accessed:

16/09/2024).

[66] BBC News. Fisherman catches underwater drone with chinese characteristics. https:

//www.maritime-executive.com/article/fisherman-catches

-underwater-drone-with-chinese-characteristics, (Accessed:

16/09/2024).

[67] Forbes. China discovers underwater spy drones in its waters. https://www.forb

es.com/sites/hisutton/2020/01/15/china-discovers-underwa

ter-spy-drones-in-its-waters/?sh\unhbox\voidb@x\bgroup\le

t\unhbox\voidb@x\setbox\@tempboxa\hbox{7\global\mathchard

ef\accent@spacefactor\spacefactor}\let\begingroup\let\typ

eout\protect\begingroup\def\MessageBreak{˙(Font)}\let\pr

otect\immediate\write\m@ne{LaTeXFontInfo:\def{}oninputli

ne336.}\endgroup\endgroup\relax\let\ignorespaces\relax\a

ccent97\egroup\spacefactor\accent@spacefactorbef482f6990,

(Accessed: 16/09/2024).

[68] Charitha Pattiaratchi, L Mun Woo, Paul G Thomson, Kah Kiat Hong, and Dennis Stan-

ley. Ocean glider observations around Australia. Oceanography, 30(2):90–91, 2017.

https://www.whoi.edu/press-room/news-release/pioneering-deep-sea-robot-lost-at-sea/
https://www.whoi.edu/press-room/news-release/pioneering-deep-sea-robot-lost-at-sea/
https://www.whoi.edu/press-room/news-release/pioneering-deep-sea-robot-lost-at-sea/
https://www.bbc.com/news/world-asia-china-51130644
https://www.bbc.com/news/world-asia-china-51130644
https://www.maritime-executive.com/article/fisherman-catches-underwater-drone-with-chinese-characteristics
https://www.maritime-executive.com/article/fisherman-catches-underwater-drone-with-chinese-characteristics
https://www.maritime-executive.com/article/fisherman-catches-underwater-drone-with-chinese-characteristics
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990
https://www.forbes.com/sites/hisutton/2020/01/15/china-discovers-underwater-spy-drones-in-its-waters/?sh\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {7\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: \def { } on input line 336.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 9 7\egroup \spacefactor \accent@spacefactor bef482f6990

Bibliography 211

[69] M Jordan Stanway, Brian Kieft, Thomas Hoover, Brett Hobson, Denis Klimov, Jon

Erickson, Ben Yair Raanan, David A Ebert, and James Bellingham. White shark strike

on a long-range AUV in Monterey Bay. In OCEANS 2015-Genova, pages 1–7. IEEE,

2015.

[70] University of Western Australia. Shark tries to take chunk out of 250k underwater glider

off Perth coast. https://www.abc.net.au/news/2015-09-29/shark-t

ries-to-eat-uwa-underwater-glider-off-perth-yanchep-coast

/6813166, (Accessed: 16/09/2024).

[71] Woods Hole Oceanographic Institution. REMUS SharkCam: The hunter and the

hunted. https://www.youtube.com/watch?v=faZw3IFJOXs, (Accessed:

16/09/2024).

[72] Enrico Anderlini, Giles Thomas, Stephen CA Woodward, Daniel A Real-Arce, Tania

Morales, Carlos Barrera, and JJ Hernández-Brito. Identification of the dynamics of

biofouled underwater gliders. In 2020 IEEE/OES Autonomous Underwater Vehicles

Symposium (AUV), pages 1–6. IEEE, 2020.

[73] Rolf Isermann. Fault-diagnosis systems: an introduction from fault detection to fault

tolerance. Springer Science & Business Media, 2005.

[74] Krzysztof Patan. Robust and fault-tolerant control: neural-network-based solutions.

2019.

[75] Janos J Gertler. Survey of model-based failure detection and isolation in complex plants.

IEEE Control systems magazine, 8(6):3–11, 1988.

[76] Paul M Frank and Birgit Köppen-Seliger. New developments using AI in fault diagno-

sis. Engineering Applications of Artificial Intelligence, 10(1):3–14, 1997.

[77] Zhiwei Gao, Carlo Cecati, and Steven X Ding. A survey of fault diagnosis and fault-

tolerant techniques—Part i: Fault diagnosis with model-based and signal-based ap-

proaches. IEEE transactions on industrial electronics, 62(6):3757–3767, 2015.

[78] Alireza Abbaspour, Sohrab Mokhtari, Arman Sargolzaei, and Kang K Yen. A Survey

on Active Fault-Tolerant Control Systems. Electronics, 9(9):1513, 2020.

https://www.abc.net.au/news/2015-09-29/shark-tries-to-eat-uwa-underwater-glider-off-perth-yanchep-coast/6813166
https://www.abc.net.au/news/2015-09-29/shark-tries-to-eat-uwa-underwater-glider-off-perth-yanchep-coast/6813166
https://www.abc.net.au/news/2015-09-29/shark-tries-to-eat-uwa-underwater-glider-off-perth-yanchep-coast/6813166
https://www.youtube.com/watch?v=faZw3IFJOXs

Bibliography 212

[79] Younghwan An. A design of fault tolerant flight control systems for sensor and actuator

failures using on-line learning neural networks. PhD thesis, West Virginia University,

2001.

[80] Francesca Boem, Alexander J Gallo, Davide M Raimondo, and Thomas Parisini. Dis-

tributed fault-tolerant control of large-scale systems: An active fault diagnosis ap-

proach. IEEE Transactions on Control of Network Systems, 7(1):288–301, 2019.

[81] Afef Fekih. Fault-tolerant flight control design for effective and reliable aircraft sys-

tems. Journal of Control and Decision, 1(4):299–316, 2014.

[82] Kumpati S Narendra and Jeyendran Balakrishnan. Adaptive control using multiple

models. IEEE transactions on automatic control, 42(2):171–187, 1997.

[83] Thomas Steffen. Control reconfiguration of dynamical systems: linear approaches and

structural tests, volume 320. Springer Science & Business Media, 2005.

[84] Het Joshi and Nandan K Sinha. Adaptive fault tolerant control design for stratospheric

airship with actuator faults. IFAC-PapersOnLine, 55(1):819–825, 2022.

[85] X-J Li and G-H Yang. Robust adaptive fault-tolerant control for uncertain linear systems

with actuator failures. IET control theory & applications, 6(10):1544–1551, 2012.

[86] Basil Kouvaritakis and Mark Cannon. Model predictive control. Switzerland: Springer

International Publishing, 38, 2016.

[87] Lalo Magni and Riccardo Scattolini. Advanced and multivariable control. Società

Editrice Esculapio, 2023.

[88] Fang Nan, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. Nonlinear MPC for

quadrotor fault-tolerant control. IEEE Robotics and Automation Letters, 7(2):5047–

5054, 2022.

[89] Tarun Kanti Podder, Gianluca Antonelli, and Nilanjan Sarkar. Fault tolerant control of

an autonomous underwater vehicle under thruster redundancy: Simulations and exper-

iments. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Con-

ference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),

volume 2, pages 1251–1256. IEEE, 2000.

Bibliography 213

[90] Tor A Johansen and Thor I Fossen. Control allocation—a survey. Automatica,

49(5):1087–1103, 2013.

[91] Albert N Andry, Eliezer Y Shapiro, and JC Chung. Eigenstructure assignment for linear

systems. IEEE transactions on aerospace and electronic systems, (5):711–729, 1983.

[92] Jean-Jacques E Slotine et al. Applied nonlinear control. 1991.

[93] Sarah Spurgeon. Sliding mode control: a tutorial. In 2014 European Control Confer-

ence (ECC), pages 2272–2277. IEEE, 2014.

[94] Tao Wang, Wenfang Xie, and Youmin Zhang. Sliding mode fault tolerant control deal-

ing with modeling uncertainties and actuator faults. ISA transactions, 51(3):386–392,

2012.

[95] Vadim Utkin and Hoon Lee. Chattering problem in sliding mode control systems. In

International Workshop on Variable Structure Systems, 2006. VSS’06., pages 346–350.

IEEE, 2006.

[96] Serdar Soylu, Bradley J Buckham, and Ron P Podhorodeski. A chattering-free sliding-

mode controller for underwater vehicles with fault-tolerant infinity-norm thrust alloca-

tion. Ocean Engineering, 35(16):1647–1659, 2008.

[97] Jin Jiang and Xiang Yu. Fault-tolerant control systems: A comparative study between

active and passive approaches. Annual Reviews in control, 36(1):60–72, 2012.

[98] Youmin Zhang and Jin Jiang. Bibliographical review on reconfigurable fault-tolerant

control systems. Annual reviews in control, 32(2):229–252, 2008.

[99] Stoyan Kamenov Kanev. Robust fault-tolerant control. PhD thesis, University of

Twente, 2004.

[100] Shashikanth Suryanarayanan, Masayoshi Tomizuka, and Tatsuya Suzuki. Design of

simultaneously stabilizing controllers and its application to fault-tolerant lane-keeping

controller design for automated vehicles. IEEE Transactions on Control Systems Tech-

nology, 12(3):329–339, 2004.

[101] Pierre Apkarian and Dominikus Noll. Nonsmooth H∞ synthesis. IEEE Transactions on

Automatic Control, 51(1):71–86, 2006.

Bibliography 214

[102] Daniel Ankelhed. On design of low order H-infinity controllers. PhD thesis, Linköping

University Electronic Press, 2011.

[103] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-hill New

York, 1997.

[104] Mahbubul Alam, Manar D Samad, Lasitha Vidyaratne, Alexander Glandon, and

Khan M Iftekharuddin. Survey on deep neural networks in speech and vision systems.

Neurocomputing, 417:302–321, 2020.

[105] Amir Ramezani Dooraki and Deok-Jin Lee. Reinforcement learning based flight con-

troller capable of controlling a quadcopter with four, three and two working motors.

In 2020 20th International Conference on Control, Automation and Systems (ICCAS),

pages 161–166. IEEE, 2020.

[106] Melrose Roderick. Ensuring the Safety of Reinforcement Learning Algorithms at Train-

ing and Deployment. PhD thesis, Carnegie Mellon University, 2023.

[107] Gianluca Antonelli and Gianluca Antonelli. Modelling of underwater robots. Springer,

2014.

[108] Tarun Kanti Podder and Nilanjan Sarkar. Fault-tolerant control of an autonomous under-

water vehicle under thruster redundancy. Robotics and Autonomous Systems, 34(1):39–

52, 2001.

[109] Jin-Kyu Choi and Hayato Kondo. On fault-tolerant control of a hovering AUV with

four horizontal and two vertical thrusters. In OCEANS’10 IEEE SYDNEY, pages 1–6.

IEEE, 2010.

[110] Edin Omerdic and Geoff Roberts. Thruster fault diagnosis and accommodation for

open-frame underwater vehicles. Control engineering practice, 12(12):1575–1598,

2004.

[111] Nilanjan Sarkar, Tarun Kanti Podder, and Gianluca Antonelli. Fault-accommodating

thruster force allocation of an AUV considering thruster redundancy and saturation.

IEEE Transactions on Robotics and Automation, 18(2):223–233, 2002.

Bibliography 215

[112] Dana R Yoerger, John G Cooke, and J-JE Slotine. The influence of thruster dynamics on

underwater vehicle behavior and their incorporation into control system design. IEEE

Journal of Oceanic Engineering, 15(3):167–178, 1990.

[113] Xing Liu, Mingjun Zhang, and Feng Yao. Adaptive fault tolerant control and thruster

fault reconstruction for autonomous underwater vehicle. Ocean Engineering, 155:10–

23, 2018.

[114] Xuelian Ding, Daqi Zhu, and Mingzhong Yan. Research on static fault-tolerant control

method of thruster based on MPC. Journal of Marine Science and Technology, 26:861–

871, 2021.

[115] Rafael Meireles Saback, Andre Gustavo Scolari Conceicao, Tito Luís Maia Santos, Jan

Albiez, and Marco Reis. Nonlinear model predictive control applied to an autonomous

underwater vehicle. IEEE Journal of Oceanic Engineering, 45(3):799–812, 2019.

[116] Tu Lv, Junliang Zhou, Yujia Wang, Wei Gong, and Mingjun Zhang. Sliding mode

based fault tolerant control for autonomous underwater vehicle. Ocean Engineering,

216:107855, 2020.

[117] MR Katebi and Michael J Grimble. Integrated control, guidance and diagnosis for re-

configurable autonomous underwater vehicle control. International Journal of Systems

Science, 30(9):1021–1032, 1999.

[118] Isaac Kaminer, Antonio M Pascoal, Carlos J Silvestre, and Pramod P Khargonekar.

Control of an underwater vehicle using H∞ synthesis. In [1991] Proceedings of the

30th IEEE Conference on Decision and Control, pages 2350–2355. IEEE, 1991.

[119] Cedric L Logan. A comparison between H-infinity/mu-synthesis control and sliding-

mode control for robust control of a small autonomous underwater vehicle. In Proceed-

ings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV’94),

pages 399–416. IEEE, 1994.

[120] P Varzandeh and Amir Hooshang Mazinan. Neural network-based fault-tolerant control

approach considering a submarine system. Evolving Systems, 12:913–922, 2021.

[121] Peng Wu. Decarbonising coastal shipping using fuel cells and batteries. PhD thesis,

UCL (University College London), 2020.

Bibliography 216

[122] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-

matics of control, signals and systems, 2(4):303–314, 1989.

[123] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257, 1991.

[124] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer

feedforward networks with a nonpolynomial activation function can approximate any

function. Neural networks, 6(6):861–867, 1993.

[125] Mark R Baker and Rajendra B Patil. Universal approximation theorem for interval

neural networks. Reliable Computing, 4(3):235–239, 1998.

[126] John J Hopfield. Neural networks and physical systems with emergent collective com-

putational abilities. Proceedings of the national academy of sciences, 79(8):2554–2558,

1982.

[127] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

[128] A Vaswani. Attention is all you need. Advances in Neural Information Processing

Systems, 2017.

[129] Prashant Bhopale, Faruk Kazi, and Navdeep Singh. Reinforcement learning based ob-

stacle avoidance for autonomous underwater vehicle. Journal of Marine Science and

Application, 18:228–238, 2019.

[130] Jianya Yuan, Hongjian Wang, Honghan Zhang, Changjian Lin, Dan Yu, and Chengfeng

Li. Auv obstacle avoidance planning based on deep reinforcement learning. Journal of

Marine Science and Engineering, 9(11):1166, 2021.

[131] Zhuo Wang, Shiwei Zhang, Xiaoning Feng, and Yancheng Sui. Autonomous underwa-

ter vehicle path planning based on actor-multi-critic reinforcement learning. Proceed-

ings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, 235(10):1787–1796, 2021.

Bibliography 217

[132] Enrico Anderlini, Gordon G Parker, and Giles Thomas. Docking control of an

autonomous underwater vehicle using reinforcement learning. Applied Sciences,

9(17):3456, 2019.

[133] Khalid Isa and Mohd Rizal Arshad. Neural networks control of hybrid-driven under-

water glider. In 2012 Oceans-Yeosu, pages 1–7. IEEE, 2012.

[134] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov Control. Advances in

Neural Information Processing Systems, 32, 2019.

[135] Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal syn-

thesis of Lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778,

2020.

[136] Alessandro Abate, Daniele Ahmed, Alec Edwards, Mirco Giacobbe, and Andrea Pe-

ruffo. FOSSIL: a software tool for the formal synthesis of lyapunov functions and

barrier certificates using neural networks. In Proceedings of the 24th International

Conference on Hybrid Systems: Computation and Control, pages 1–11, 2021.

[137] Rosana CB Rego and Fábio MU de Araújo. Learning-based robust neuro-control: A

method to compute control Lyapunov functions. International Journal of Robust and

Nonlinear Control, 32(5):2644–2661, 2022.

[138] Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. Lyapunov-

stable neural-network control. arXiv preprint arXiv:2109.14152, 2021.

[139] Junlin Wu, Andrew Clark, Yiannis Kantaros, and Yevgeniy Vorobeychik. Neural Lya-

punov Control for discrete-time systems. Advances in Neural Information Processing

Systems, 36, 2024.

[140] Andrea Caffaz, Andrea Caiti, Giuseppe Casalino, and Alessio Turetta. The hybrid glid-

er/AUV folaga. IEEE Robotics & Automation Magazine, 17(1):31–44, 2010.

[141] Surasak Phoemsapthawee, Marc Le Boulluec, Jean-Marc Laurens, and François

Deniset. An underwater glider flight simulator. 2010.

Bibliography 218

[142] Lei Kan, Yuwen Zhang, Hui Fan, Wugang Yang, and Zhikun Chen. MATLAB-based

simulation of buoyancy-driven underwater glider motion. Journal of Ocean University

of China, 7(1):113–118, 2008.

[143] Musa Morena Marcusso Manhães, Sebastian A Scherer, Martin Voss, Luiz Ricardo

Douat, and Thomas Rauschenbach. UUV simulator: A gazebo-based package for un-

derwater intervention and multi-robot simulation. In Oceans 2016 Mts/Ieee Monterey,

pages 1–8. Ieee, 2016.

[144] Manlio Oddone, Agostino Bruzzone, Emanuel Coelho, Daniele Cecchi, and Bartolome

Garau. An underwater buoyancy-driven glider simulator with Modelling & Simulation

as a Service architecture. In Proceedings of Defense and Homeland Security Simulation

Workshop, Barcelona, 2017.

[145] Mabel M Zhang, Woen-Sug Choi, Jessica Herman, Duane Davis, Carson Vogt, Michael

McCarrin, Yadunund Vijay, Dharini Dutia, William Lew, Steven Peters, et al. DAVE

aquatic virtual environment: Toward a general underwater robotics simulator. In 2022

IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), pages 1–8. IEEE,

2022.

[146] John Nicholas Newman. Marine hydrodynamics. MIT press, 1977.

[147] Thor I Fossen. Guidance and control of ocean vehicles. University of Trondheim,

Norway, Printed by John Wiley & Sons, Chichester, England, ISBN: 0 471 94113 1,

Doctors Thesis, 1999.

[148] Timothy Prestero. Verification of a six-degree of freedom simulation model for the

REMUS autonomous underwater vehicle. PhD thesis, Massachusetts institute of tech-

nology, 2001.

[149] Stephen Wood and AV Inzartsev. Autonomous underwater gliders. Citeseer, 2009.

[150] Ramon A Suarez Fernandez, Davide Grande, Alfredo Martins, Luca Bascetta, Sergio

Dominguez, and Claudio Rossi. Modeling and control of underwater mine explorer

robot UX-1. IEEE Access, 7:39432–39447, 2019.

Bibliography 219

[151] Douglas C Webb, Paul J Simonetti, and Clayton P Jones. SLOCUM: An underwa-

ter glider propelled by environmental energy. IEEE Journal of oceanic engineering,

26(4):447–452, 2001.

[152] Jeff Sherman, Russ E Davis, WB Owens, and J Valdes. The autonomous underwater

glider" spray". IEEE Journal of Oceanic Engineering, 26(4):437–446, 2001.

[153] Charles C Eriksen, T James Osse, Russell D Light, Timothy Wen, Thomas W Lehman,

Peter L Sabin, John W Ballard, and Andrew M Chiodi. Seaglider: A long-range au-

tonomous underwater vehicle for oceanographic research. IEEE Journal of oceanic

Engineering, 26(4):424–436, 2001.

[154] T James Osse and Charles C Eriksen. The Deepglider: A full ocean depth glider for

oceanographic research. In OCEANS 2007, pages 1–12. IEEE, 2007.

[155] Khalid Isa, MR Arshad, and Syafizal Ishak. A hybrid-driven underwater glider model,

hydrodynamics estimation, and an analysis of the motion control. Ocean Engineering,

81:111–129, 2014.

[156] Yan Huang, Jianan Qiao, Jiancheng Yu, Zhenyu Wang, Zongbo Xie, and Kai Liu. Sea-

Whale 2000: A long-range hybrid autonomous underwater vehicle for ocean observa-

tion. In Oceans 2019-Marseille, pages 1–6. IEEE, 2019.

[157] Aa Alvarez, Ab Caffaz, Andrea Caiti, Giuseppe Casalino, Lavinio Gualdesi, Alessio

Turetta, and R Viviani. Folaga: A low-cost autonomous underwater vehicle combining

glider and AUV capabilities. Ocean engineering, 36(1):24–38, 2009.

[158] J Kofránek, M Mateják, P Privitzer, and M Tribula. Causal or acausal modeling: labour

for humans or labour for machines. Technical computing prague, pages 1–16, 2008.

[159] Gianni Ferretti, GianAntonio Magnani, and Paolo Rocco. Virtual prototyping of mecha-

tronic systems in Modelica. IFAC Proceedings Volumes, 35(2):791–796, 2002.

[160] Ezril Hisham Mat Saat, Rosbi Mamat, and O Yaakob. Design and implementation of

electronic control system for UTM-AUV. In 2000 TENCON Proceedings. Intelligent

Systems and Technologies for the New Millennium (Cat. No. 00CH37119), volume 2,

pages 332–337. IEEE, 2000.

Bibliography 220

[161] João Lucas Dozzi Dantas and Ettore Apolonio de Barros. A real-time simulator for

AUV development. In ABCM symposium series in mechatronics, volume 4, pages 538–

549, 2010.

[162] Simon A Watson and Peter N Green. Depth control for micro-autonomous underwater

vehicles (µAUVs): Simulation and experimentation. International Journal of Advanced

Robotic Systems, 11(3):31, 2014.

[163] Mohammad Hedayati Khodayari and Saeed Balochian. Modeling and control of au-

tonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive

fuzzy pid controller. Journal of Marine Science and Technology, 20(3):559–578, 2015.

[164] Sriharsha Bhat, Chariklia Panteli, Ivan Stenius, and Dimos V Dimarogonas. Nonlinear

model predictive control for hydrobatics: Experiments with an underactuated AUV.

Journal of Field Robotics, 40(7):1840–1859, 2023.

[165] Tom Egel. Real time simulation using non-causal physical models. Technical report,

SAE Technical Paper, 2009.

[166] Michael M. Tiller. Modelica by example. https://mbe.modelica.universit

y/components/components/component_models/#acausal-modelin

g, (Accessed: 16/09/2024).

[167] Francesco Casella et al. Simulation of large-scale models in modelica: State of the art

and future perspectives. In Linköping electronic conference proceedings, pages 459–

468, 2015.

[168] Hilding Elmqvist. A structured model language for large continuous systems. PhD

thesis, Department of Automatic Control, Lund Institute of Technology (LTH), 1978.

[169] Günther Zauner, Daniel Leitner, and Felix Breitenecker. Modeling Structural-Dynamics

Systems in MODELICA/Dymola, MODELICA/Mosilab and AnyLogic. In EOOLT,

pages 99–110, 2007.

[170] Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard Bachmann, Willi Braun, Robert

Braun, Lena Buffoni, Francesco Casella, Rodrigo Castro, Alejandro Danós, et al. The

https://mbe.modelica.university/components/components/component_models/#acausal-modeling
https://mbe.modelica.university/components/components/component_models/#acausal-modeling
https://mbe.modelica.university/components/components/component_models/#acausal-modeling

Bibliography 221

OpenModelica integrated modeling, simulation and optimization environment. In Pro-

ceedings of the 1st American Modelica Conference, pages 8–10. Modelica Association,

2018.

[171] The Functional Mock-up Interface beginners’ tutorial. https://github.com/m

odelica/fmi-beginners-tutorial-2023/blob/main/part1/Intr

oduction-to-FMI.pdf, (Accessed: 16/09/2024).

[172] Stefano Farì, Marco Sagliano, José Alfredo Macés Hernández, Anton Schneider, Ans-

gar Heidecker, Markus Schlotterer, and Svenja Woicke. Physical Modeling and Simu-

lation of Reusable Rockets for GNC Verification and Validation. Aerospace, 11(5):337,

2024.

[173] Johan Andreasson. VehicleDynamics library. In Proceedings of the 3rd International

Modelica Conference, Linköping, 2003.

[174] Gertjan Looye, Simon Hecker, Thiemo Kier, and Christian Reschke. FlightDynLib:

An object-oriented model component library for constructing multi-disciplinary aircraft

dynamics models. 2005.

[175] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control. John

Wiley & Sons, 2011.

[176] Millard F Beatty and Millard F Beatty. Kinematics of rigid body motion. Principles of

Engineering Mechanics: Kinematics—The Geometry of Motion, pages 85–149, 1986.

[177] Thor Inge Fossen. Nonlinear modelling and control of underwater vehicles. PhD thesis,

Universitetet i Trondheim (Norway), 1991.

[178] Naomi Ehrich Leonard and Joshua G Graver. Model-based feedback control of au-

tonomous underwater gliders. IEEE Journal of oceanic engineering, 26(4):633–645,

2001.

[179] Shaowei Zhang, Jiancheng Yu, Aiqun Zhang, and Fumin Zhang. Spiraling motion of

underwater gliders: Modeling, analysis, and experimental results. Ocean Engineering,

60:1–13, 2013.

https://github.com/modelica/fmi-beginners-tutorial-2023/blob/main/part1/Introduction-to-FMI.pdf
https://github.com/modelica/fmi-beginners-tutorial-2023/blob/main/part1/Introduction-to-FMI.pdf
https://github.com/modelica/fmi-beginners-tutorial-2023/blob/main/part1/Introduction-to-FMI.pdf

Bibliography 222

[180] Slocum G2 - technical specification. http://gliderfs.coas.oregonstate.

edu/gliderweb/docs/slocum_manuals/Slocum_G2_Glider_Opera

tors_Manual.pdf, (Accessed: 16/09/2024).

[181] Slocum G3 - technical specification. http://gliderfs.coas.oregonstate.

edu/gliderweb/docs/slocum_manuals/Slocum_G3_Operator_Man

ual_20171219.pdf, (Accessed: 16/09/2024).

[182] Society of Naval Architects, Marine Engineers (U.S.). Technical, and Research Com-

mittee. Hydrodynamics Subcommittee. Nomenclature for treating the motion of a sub-

merged body through a fluid. T&R Bulletin, pages 1–5, 1950.

[183] Sighard F Hoerner. Fluid Dynamic Drag, published by the author. Midland Park, NJ,

pages 16–35, 1965.

[184] Roy Burcher and Louis J Rydill. Concepts in submarine design, volume 2. Cambridge

university press, 1995.

[185] Edoardo I Sarda, Huajin Qu, Ivan R Bertaska, and Karl D von Ellenrieder. Station-

keeping control of an unmanned surface vehicle exposed to current and wind distur-

bances. Ocean Engineering, 127(3):305–324, 2016.

[186] Frederick H Imlay. The complete expressions for" added mass" of a rigid body moving

in an ideal fluid. Technical report, United States Department of the Navy, David Taylor

Model Basin, 1961.

[187] James S Bennett, Frederick R Stahr, Charles C Eriksen, Martin C Renken, Wendy E

Snyder, and Lora J Van Uffelen. Assessing seaglider model-based position accu-

racy on an acoustic tracking range. Journal of Atmospheric and Oceanic Technology,

38(6):1111–1123, 2021.

[188] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Force control.

Springer, 2009.

[189] Feitian Zhang, Jianxun Wang, John Thon, Cody Thon, Elena Litchman, and Xiaobo

Tan. Gliding robotic fish for mobile sampling of aquatic environments. In Proceedings

of the 11th IEEE International Conference on Networking, Sensing and Control, pages

167–172. IEEE, 2014.

http://gliderfs.coas.oregonstate.edu/gliderweb/docs/slocum_manuals/Slocum_G2_Glider_Operators_Manual.pdf
http://gliderfs.coas.oregonstate.edu/gliderweb/docs/slocum_manuals/Slocum_G2_Glider_Operators_Manual.pdf
http://gliderfs.coas.oregonstate.edu/gliderweb/docs/slocum_manuals/Slocum_G2_Glider_Operators_Manual.pdf
http://gliderfs.coas.oregonstate.edu/gliderweb/docs/slocum_manuals/Slocum_G3_Operator_Manual_20171219.pdf
http://gliderfs.coas.oregonstate.edu/gliderweb/docs/slocum_manuals/Slocum_G3_Operator_Manual_20171219.pdf
http://gliderfs.coas.oregonstate.edu/gliderweb/docs/slocum_manuals/Slocum_G3_Operator_Manual_20171219.pdf

Bibliography 223

[190] Peter Ridley, Julien Fontan, and Peter Corke. Submarine dynamic modeling. In Pro-

ceedings of the Australian Conference on Robotics and Automation, pages 1–8. Aus-

tralian Robotics and Automation Association, 2003.

[191] Feitian Zhang and Xiaobo Tan. Passivity-based stabilization of underwater gliders

with a control surface. Journal of Dynamic Systems, Measurement, and Control,

137(6):061006, 2015.

[192] Hexiong Zhou, Zhaoyu Wei, Zheng Zeng, Caoyang Yu, Baoheng Yao, and Lian Lian.

Adaptive robust sliding mode control of autonomous underwater glider with input con-

straints for persistent virtual mooring. Applied Ocean Research, 95:102027, 2020.

[193] Jun-liang Cao, Bao-heng Yao, and Lian Lian. Nonlinear pitch control of an under-

water glider based on adaptive backstepping approach. Journal of Shanghai Jiaotong

University (Science), 20:729–734, 2015.

[194] Davide Grande. Modelling and simulation of a spherical vehicle for underwater surveil-

lance. Master’s thesis, Politecnico di Milano, 2018.

[195] Davide Grande, Luca Bascetta, and Alfredo Martins. Modeling and simulation of a

spherical vehicle for underwater surveillance. In OCEANS 2018 MTS/IEEE Charleston,

pages 1–7. IEEE, 2018.

[196] JG Graver, Jonathan Liu, Craig Woolsey, and Naomi Ehrich Leonard. Design and

analysis of an underwater vehicle for controlled gliding. In Proc. 32nd Conference

on Information Sciences and Systems, pages 801–806, 1998.

[197] Hassan K Khalil. Nonlinear control, volume 406. Pearson New York, 2015.

[198] Fabio Dercole, Sergio Rinaldi, et al. Dynamical systems and their bifurcations. Ad-

vanced methods of biomedical signal processing, pages 291–325, 2011.

[199] Navid Noroozi, Paknoosh Karimaghaee, Fatemeh Safaei, and Hamed Javadi. Genera-

tion of Lyapunov functions by neural networks. In Proceedings of the World Congress

on Engineering, volume 2008, 2008.

Bibliography 224

[200] Jean Mawhin. Alexandr Mikhailovich Lyapunov, thesis on the stability of motion

(1892). In Landmark Writings in Western Mathematics 1640-1940, pages 664–676.

Elsevier, 2005.

[201] Eduardo D Sontag. Mathematical control theory: deterministic finite dimensional sys-

tems, volume 6. Springer Science & Business Media, 2013.

[202] Russ Tedrake. Underactuated Robotics. 2023.

[203] James Anderson and Antonis Papachristodoulou. Advances in computational lya-

punov analysis using sum-of-squares programming. Discrete & Continuous Dynamical

Systems-Series B, 20(8), 2015.

[204] Antonis Papachristodoulou and Stephen Prajna. On the construction of lyapunov func-

tions using the sum of squares decomposition. In Proceedings of the 41st IEEE Confer-

ence on Decision and Control, 2002., volume 3, pages 3482–3487. IEEE, 2002.

[205] Mohammad Sabouri, Peyman Setoodeh, and Mohammad Hassan Asemani. Construc-

tion of Lyapunov functions using multi-objective genetic algorithm. In 2020 28th Ira-

nian Conference on Electrical Engineering (ICEE), pages 1–5. IEEE, 2020.

[206] CF Verdier and M Mazo Jr. Formal controller synthesis via genetic programming. IFAC-

PapersOnLine, 50(1):7205–7210, 2017.

[207] Danil V Prokhorov. A lyapunov machine for stability analysis of nonlinear systems. In

Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94),

volume 2, pages 1028–1031. IEEE, 1994.

[208] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe Control With Learned Certificates:

A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Con-

trol. IEEE Transactions on Robotics, 2023.

[209] Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation, 3(3-4):141–224, 2007.

[210] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2016.

Bibliography 225

[211] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. Combinatorial sketching for finite programs. In Proceedings of the 12th

international conference on Architectural support for programming languages and op-

erating systems, pages 404–415, 2006.

[212] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Pol-

green. Counterexample guided inductive synthesis modulo theories. In International

Conference on Computer Aided Verification, pages 270–288. Springer, 2018.

[213] Hongkai Dai, Benoit Landry, Marco Pavone, and Russ Tedrake. Counter-example

guided synthesis of neural network Lyapunov functions for piecewise linear systems.

In 2020 59th IEEE Conference on Decision and Control (CDC), pages 1274–1281.

IEEE, 2020.

[214] Daniele Masti, Filippo Fabiani, Giorgio Gnecco, and Alberto Bemporad. Counter-

example guided inductive synthesis of control Lyapunov functions for uncertain sys-

tems. IEEE Control Systems Letters, 2023.

[215] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. δ -complete decision procedures for

satisfiability over the reals. In International Joint Conference on Automated Reasoning,

pages 286–300. Springer, 2012.

[216] Sicun Gao, Soonho Kong, and Edmund M Clarke. dReal: An SMT solver for nonlinear

theories over the reals. In International conference on automated deduction, pages

208–214. Springer, 2013.

[217] Soonho Kong, Armando Solar-Lezama, and Sicun Gao. Delta-decision procedures for

exists-forall problems over the reals. In International Conference on Computer Aided

Verification, pages 219–235. Springer, 2018.

[218] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages

337–340. Springer, 2008.

[219] Aaron Stump, Clark W Barrett, and David L Dill. CVC: A cooperating validity checker.

In Computer Aided Verification: 14th International Conference, CAV 2002 Copen-

hagen, Denmark, July 27–31, 2002 Proceedings 14, pages 500–504. Springer, 2002.

Bibliography 226

[220] Sicun Gao, James Kapinski, Jyotirmoy Deshmukh, Nima Roohi, Armando Solar-

Lezama, Nikos Aréchiga, and Soonho Kong. Numerically-robust inductive proof rules

for continuous dynamical systems. In Computer Aided Verification: 31st International

Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II

31, pages 137–154. Springer, 2019.

[221] Joseph La Salle and Solomon Lefschetz. Stability by Liapunov’s Direct Method with

Applications. Academic Press, RIAS, 1961.

[222] Lars Grüne. Computing Lyapunov functions using deep neural networks. arXiv preprint

arXiv:2005.08965, 2020.

[223] Shunichi Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Elec-

tronic Computers, (3):299–307, 1967.

[224] Michael Sipser. Introduction to the Theory of Computation. ACM Sigact News,

27(1):27–29, 1996.

[225] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-

bridge University Press, 2009.

[226] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[227] Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller. Neural networks: tricks

of the trade, volume 7700. springer, 2012.

[228] Ðord̄e Žikelić, Mathias Lechner, Krishnendu Chatterjee, and Thomas A Hen-

zinger. Learning stabilizing policies in stochastic control systems. arXiv preprint

arXiv:2205.11991, 2022.

[229] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983, 2016.

[230] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences,

20(2):130–141, 1963.

[231] R Choroszucha. Control of the Lorenz equations. Department of Naval and Marine

Engineering, University of Michigan, 2000.

Bibliography 227

[232] Pedro Pablo Cardenas Alzate, German Correa Velez, and Fernando Mesa. Chaos control

for the Lorenz system. Advanced Studies in Theoretical Physics, 12(4):181–188, 2018.

[233] Xiang-qin Cheng, Jing-yuan Qu, Zhe-ping Yan, and Xin-qian Bian. H∞ robust fault-

tolerant controller design for an autonomous underwater vehicle’s navigation control

system. Journal of Marine science and Application, 9(1):87–92, 2010.

[234] Daniele Ahmed, Andrea Peruffo, and Alessandro Abate. Automated and sound synthe-

sis of Lyapunov functions with SMT solvers. In Tools and Algorithms for the Construc-

tion and Analysis of Systems: 26th International Conference, TACAS 2020, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,

Dublin, Ireland, April 25–30, 2020, Proceedings, Part I 26, pages 97–114. Springer,

2020.

[235] Alec Edwards, Andrea Peruffo, and Alessandro Abate. A General Verification

Framework for Dynamical and Control Models via Certificate Synthesis, 2023.

arXiv:2309.06090.

[236] Rudolf E Kalman. On the general theory of control systems. In Proceedings First

International Conference on Automatic Control, Moscow, USSR, pages 481–492, 1960.

[237] Poh Wong and Michael Athans. Closed-loop structural stability for linear-quadratic

optimal systems. IEEE Transactions on Automatic Control, 22(1):94–99, 1977.

[238] Michael Safonov and Michael Athans. Gain and phase margin for multiloop LQG

regulators. IEEE Transactions on Automatic Control, 22(2):173–179, 1977.

[239] Arthur E Bryson. Applied optimal control: Optimization. Estimization and Control, 2,

1975.

[240] Alexander B Phillips, Matthew Kingsland, Nick Linton, Will Baker, Leon Bowring,

Scott Soper, Daniel T Roper, Alexis Johnson, Richard Morrison, Konrad Ciaramella,

Daniel Matterson, Miles Pebody, Rachel Marlow, Alberto Consensi, Val Williams,

Francesco Fanelli, Davide Fenucci, Achille Martin, and Eoin Ó hÓbáin. Autosub

2000 under ice: Design of a new work class AUV for under ice exploration. In 2020

IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), pages 1–8. IEEE,

2020.

Bibliography 228

[241] Alessandro Baldini, Antonio Fasano, Riccardo Felicetti, Alessandro Freddi, Sauro

Longhi, and Andrea Monteriù. A model-based active fault tolerant control scheme

for a remotely operated vehicle. IFAC-PapersOnLine, 51(24):798–805, 2018.

[242] Josué González-García, Néstor Alejandro Narcizo-Nuci, Luis Govinda García-

Valdovinos, Tomás Salgado-Jiménez, Alfonso Gómez-Espinosa, Enrique Cuan-

Urquizo, and Jesús Arturo Escobedo Cabello. Model-free high order sliding mode

control with finite-time tracking for unmanned underwater vehicles. Applied Sciences,

11(4):1836, 2021.

[243] Jianguang Shi and Mingxi Zhou. A data-driven intermittent online coverage path plan-

ning method for auv-based bathymetric mapping. Applied Sciences, 10(19):6688, 2020.

Appendix A

OpenMAUVe class implementation

example

The implementation of the elevator control surface class, defined within Open-

MAUVe.Actuators.Elevator, is reported with the code snippet presented hereby.

1 within OpenMAUVe.Actuators;

2 model Elevator "Force and moment generated by one elevator."

3 Modelica.Mechanics.MultiBody.Interfaces.Frame_b frame_b

annotation (...);

4

5 parameter Real K_F_delta(unit="kg/(m.rad)") = 0.0 "control

surface coupling factor";

6 parameter Real K_u_delta = 0.0 "adimensional scaling constant";

7 parameter Real K_M_delta(unit="kg/rad") = 0.0 "control surface

moment coefficient";

8 Real flowspeed(unit="m/s");

9 Modelica.Mechanics.MultiBody.Sensors.AbsoluteVelocity

absoluteVelocity(resolveInFrame =

Modelica.Mechanics.MultiBody.Types.ResolveInFrameA.frame_a)

annotation(...);

10 Modelica.Blocks.Interfaces.RealInput delta_in annotation(...);

11 Modelica.Mechanics.MultiBody.Forces.WorldForce force_stern_plane(

resolveInFrame =

Modelica.Mechanics.MultiBody.Types.ResolveInFrameB.frame_b)

annotation(...);

230

12 Modelica.Mechanics.MultiBody.Forces.WorldTorque

torque_stern_plane(resolveInFrame =

Modelica.Mechanics.MultiBody.Types.ResolveInFrameB.frame_b)

annotation(...);

13 equation

14 flowspeed = Modelica.Math.Vectors.norm(absoluteVelocity.v, 2);

15 force_stern_plane.force = {0.0, 0.0, K_F_delta * K_u_delta *

delta_in * flowspeed ^ 2};

16 torque_stern_plane.torque = {0.0, -K_M_delta * delta_in *

flowspeed ^ 2, 0.0};

17 connect(absoluteVelocity.frame_a, frame_b) annotation(...);

18 connect(absoluteVelocity.frame_a, frame_b) annotation(...);

19 connect(force_stern_plane.frame_b, frame_b) annotation(...);

20 connect(torque_stern_plane.frame_b, frame_b) annotation(...);

21 end Elevator;

Listing A.1: OpenMAUVe.Actuators.Elevator class code snippet.

Lines 1 and 2 of the code snippet define the structure of the package and the overall

class description.

With the keyword parameter, the three scalar coefficients involved in Eq. (4.22a)

and Eq. (4.22b) are defined, namely KFδ
, Kuδ

and KM. The associated units and default

values are provided (in this case arbitrarily set to 0.0).

The expression of the flowspeed from Eq. (4.3), of the lift force from Eq. (4.22a)

and lift moment from Eq. (4.22b) are implemented in the equation section (lines 14-

16).

The keyword annotation provides detail as regards the graphic elements used and

the position of the connectors.

The resulting class OpenMAUVe.Actuators.Elevator exhibits one real scalar input,

namely the deflection angle (δ1), and a set of forces and moments as outputs. The final

icon view is reported in Fig. A.1a1.

The class OpenMAUVe.Actuators.Elevator can now be imported by dragging-

and-dropping the corresponding icon. The parameters of the instantiated object can

1The images used for the icons are AI-generated: https://deepai.org/machine-learning-
model/text2img

https://deepai.org/machine-learning-model/text2img
https://deepai.org/machine-learning-model/text2img

231

be modified by selecting the icon view and updating the values in the corresponding

interface, as illustrated in Fig. A.1b.

(a) Drag and drop icon. (b) Parameters interface.

Figure A.1: Elevator component interfaces.

Appendix B

Example of a CLF synthesised with

the ANLC method

Example of the synthesised CLF associated to Fig. 5.11 for the inverted pendulum

case, as returned by dReal:

V (xxx) = (−0.1951 ∗ pow((−0.173523 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) +

0.0572846 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.0733083 ∗ (−0.163165 ∗ x1 −

0.536536 ∗ x2) + 0.0905027 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.267289 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2)− 0.0372416 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2)−

0.175913 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2)− 0.306655 ∗ (0.189229 ∗ x1− 0.212302 ∗

x2) + 0.310249 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2)− 0.0936387 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)),2) + 0.150784 ∗ pow((−0.157337 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) + 0.150808 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.206556 ∗ (−0.163165 ∗

x1 − 0.536536 ∗ x2) − 0.176699 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.125142 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.00291987 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) +

0.0495719∗ (0.178242∗x1+0.147661∗x2)−0.331928∗ (0.189229∗x1−0.212302∗

x2)− 0.445404 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2)− 0.0962845 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)),2) + 0.237683 ∗ pow((−0.148784 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) − 0.0132134 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.228939 ∗ (−0.163165 ∗

x1 − 0.536536 ∗ x2) + 0.0529093 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2)− 0.185947 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2)− 0.0333771 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2)−

233

0.0496193∗ (0.178242∗x1+0.147661∗x2)−0.337578∗ (0.189229∗x1−0.212302∗

x2) − 0.206439 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.191168 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)),2) − 0.0845882 ∗ pow((−0.141529 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) − 0.00379008 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.050696 ∗ (−0.163165 ∗

x1 − 0.536536 ∗ x2) − 0.107278 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.164167 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.112903 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) −

0.28331 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.251034 ∗ (0.189229 ∗ x1− 0.212302 ∗

x2)− 0.0055419 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2)− 0.221779 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)),2) + 0.204022 ∗ pow((−0.102796 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) − 0.245426 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.0271749 ∗ (−0.163165 ∗

x1 − 0.536536 ∗ x2) + 0.149373 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.20195 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.187741 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) +

0.18074 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2)− 0.0441101 ∗ (0.189229 ∗ x1− 0.212302 ∗

x2) − 0.237967 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.216235 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)),2) − 0.149335 ∗ pow((−0.0391913 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) + 0.123921 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.17003 ∗ (−0.163165 ∗ x1 −

0.536536 ∗ x2) + 0.0757615 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.201078 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.252316 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) −

0.326691∗(0.178242∗x1+0.147661∗x2)+0.00698547∗(0.189229∗x1−0.212302∗

x2)− 0.00301863 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2)− 0.194609 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)),2) − 0.147767 ∗ pow((−0.0107183 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) + 0.0956865 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.162321 ∗ (−0.163165 ∗

x1 − 0.536536 ∗ x2) + 0.108168 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2)− 0.0291888 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.100121 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) +

0.0900326∗(0.178242∗x1+0.147661∗x2)−0.0554088∗(0.189229∗x1−0.212302∗

x2)−0.3618∗(0.228434∗x1−0.0207164∗x2)+0.0837∗(0.327156∗x1−0.407098∗

x2)),2)− 0.24489 ∗ pow((0.141513 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2)− 0.0752214 ∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.00765232 ∗ (−0.163165 ∗ x1 − 0.536536 ∗

x2) − 0.0884482 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.256175 ∗ (0.0736858 ∗

x1 + 0.156368 ∗ x2) − 0.170602 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.166361 ∗

234

(0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.322339 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) −

0.197938∗(0.228434∗x1−0.0207164∗x2)+0.0139234∗(0.327156∗x1−0.407098∗

x2)),2)+ 0.206889 ∗ pow((0.159732 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2)+ 0.107909 ∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.306389 ∗ (−0.163165 ∗ x1 − 0.536536 ∗

x2) − 0.0325058 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.30328 ∗ (0.0736858 ∗

x1 + 0.156368 ∗ x2) + 0.276108 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) + 0.0709101 ∗

(0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.132233 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) −

0.410339∗ (0.228434∗x1−0.0207164∗x2)−0.112674∗ (0.327156∗x1−0.407098∗

x2)),2)+0.237191∗ pow((0.296381∗ (−0.293793∗x1 +0.62935∗x2)−0.0594621∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.176919 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) +

0.0108246 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.193618 ∗ (0.0736858 ∗ x1 +

0.156368∗x2)−0.0796573∗(0.115603∗x1−0.559943∗x2)+0.246453∗(0.178242∗

x1 + 0.147661 ∗ x2) + 0.179855 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) + 0.277703 ∗

(0.228434∗ x1−0.0207164∗ x2)+0.0339893∗ (0.327156∗ x1−0.407098∗ x2)),2))

Appendix C

Examples of a Lie derivative function

synthesised with the ANLC method

Example of the Lie derivative function associated to Fig. 5.12 for the inverted pendu-

lum system, as returned by dReal:

V̇ (xxx) = ((x2 ∗ (0.017088 ∗ (−0.173523 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) +

0.0572846 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.0733083 ∗ (−0.163165 ∗ x1 −

0.536536 ∗ x2) + 0.0905027 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.267289 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2)− 0.0372416 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2)−

0.175913 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2)− 0.306655 ∗ (0.189229 ∗ x1− 0.212302 ∗

x2) + 0.310249 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.0936387 ∗ (0.327156 ∗

x1 − 0.407098 ∗ x2)) − 0.0704116 ∗ (−0.157337 ∗ (−0.293793 ∗ x1 + 0.62935 ∗

x2) + 0.150808 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.206556 ∗ (−0.163165 ∗

x1 − 0.536536 ∗ x2) − 0.176699 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.125142 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.00291987 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) +

0.0495719∗ (0.178242∗x1+0.147661∗x2)−0.331928∗ (0.189229∗x1−0.212302∗

x2)− 0.445404 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2)− 0.0962845 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)) − 0.0889163 ∗ (−0.148784 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) −

0.0132134 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.228939 ∗ (−0.163165 ∗ x1 −

0.536536 ∗ x2) + 0.0529093 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.185947 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2)− 0.0333771 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2)−

0.0496193∗ (0.178242∗x1+0.147661∗x2)−0.337578∗ (0.189229∗x1−0.212302∗

236

x2) − 0.206439 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.191168 ∗ (0.327156 ∗ x1 −

0.407098 ∗ x2)) + 0.0040081 ∗ (−0.141529 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) −

0.00379008 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.050696 ∗ (−0.163165 ∗ x1 −

0.536536∗x2)−0.107278∗(0.0589481∗x1+0.0207023∗x2)+0.164167∗(0.0736858∗

x1 + 0.156368 ∗ x2) + 0.112903 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.28331 ∗

(0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.251034 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) −

0.0055419∗(0.228434∗x1−0.0207164∗x2)−0.221779∗(0.327156∗x1−0.407098∗

x2)) + 0.00180469 ∗ (−0.102796 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) − 0.245426 ∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.0271749 ∗ (−0.163165 ∗ x1 − 0.536536 ∗

x2) + 0.149373 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) − 0.20195 ∗ (0.0736858 ∗

x1 + 0.156368 ∗ x2) + 0.187741 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) + 0.18074 ∗

(0.178242 ∗ x1 + 0.147661 ∗ x2) − 0.0441101 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) −

0.237967∗ (0.228434∗x1−0.0207164∗x2)−0.216235∗ (0.327156∗x1−0.407098∗

x2)) + 0.0362855 ∗ (−0.0391913 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) + 0.123921 ∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.17003 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) +

0.0757615 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.201078 ∗ (0.0736858 ∗ x1 +

0.156368∗x2)+0.252316∗ (0.115603∗x1−0.559943∗x2)−0.326691∗ (0.178242∗

x1 + 0.147661 ∗ x2) + 0.00698547 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2)− 0.00301863 ∗

(0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.194609 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) +

0.0243201∗(−0.0107183∗(−0.293793∗x1+0.62935∗x2)+0.0956865∗(−0.261837∗

x1 + 0.474018 ∗ x2) + 0.162321 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) + 0.108168 ∗

(0.0589481 ∗ x1 + 0.0207023 ∗ x2)− 0.0291888 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2)+

0.100121∗ (0.115603∗x1−0.559943∗x2)+0.0900326∗ (0.178242∗x1+0.147661∗

x2) − 0.0554088 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) − 0.3618 ∗ (0.228434 ∗ x1 −

0.0207164∗x2)+0.0837∗(0.327156∗x1−0.407098∗x2))+0.0188589∗(0.141513∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2) − 0.0752214 ∗ (−0.261837 ∗ x1 + 0.474018 ∗

x2) + 0.00765232 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) − 0.0884482 ∗ (0.0589481 ∗

x1 + 0.0207023 ∗ x2) + 0.256175 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2) − 0.170602 ∗

(0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.166361 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) +

0.322339∗ (0.189229∗x1−0.212302∗x2)−0.197938∗ (0.228434∗x1−0.0207164∗

237

x2) + 0.0139234 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) − 0.0870816 ∗ (0.159732 ∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2) + 0.107909 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) +

0.306389 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) − 0.0325058 ∗ (0.0589481 ∗ x1 +

0.0207023∗x2)−0.30328∗(0.0736858∗x1+0.156368∗x2)+0.276108∗(0.115603∗

x1 − 0.559943 ∗ x2) + 0.0709101 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.132233 ∗

(0.189229 ∗ x1 − 0.212302 ∗ x2) − 0.410339 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) −

0.112674∗ (0.327156∗ x1−0.407098∗ x2))+0.0274396∗ (0.296381∗ (−0.293793∗

x1 + 0.62935 ∗ x2) − 0.0594621 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.176919 ∗

(−0.163165 ∗ x1 − 0.536536 ∗ x2) + 0.0108246 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗

x2) + 0.193618 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2) − 0.0796573 ∗ (0.115603 ∗

x1 − 0.559943 ∗ x2) + 0.246453 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.179855 ∗

(0.189229 ∗ x1 − 0.212302 ∗ x2) + 0.277703 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) +

0.0339893 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)))) + ((0.0271708 ∗ (−0.173523 ∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2) + 0.0572846 ∗ (−0.261837 ∗ x1 + 0.474018 ∗

x2) + 0.0733083 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) + 0.0905027 ∗ (0.0589481 ∗

x1 + 0.0207023 ∗ x2)− 0.267289 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2)− 0.0372416 ∗

(0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.175913 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) −

0.306655∗ (0.189229∗x1−0.212302∗x2)+0.310249∗ (0.228434∗x1−0.0207164∗

x2) − 0.0936387 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) − 0.01116 ∗ (−0.157337 ∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2) + 0.150808 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) +

0.206556 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) − 0.176699 ∗ (0.0589481 ∗ x1 +

0.0207023 ∗ x2) − 0.125142 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.00291987 ∗

(0.115603 ∗ x1 − 0.559943 ∗ x2) + 0.0495719 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) −

0.331928∗ (0.189229∗x1−0.212302∗x2)−0.445404∗ (0.228434∗x1−0.0207164∗

x2) − 0.0962845 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) − 0.0406836 ∗ (−0.148784 ∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2) − 0.0132134 ∗ (−0.261837 ∗ x1 + 0.474018 ∗

x2) + 0.228939 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) + 0.0529093 ∗ (0.0589481 ∗

x1 + 0.0207023 ∗ x2)− 0.185947 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2)− 0.0333771 ∗

(0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.0496193 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) −

0.337578∗ (0.189229∗x1−0.212302∗x2)−0.206439∗ (0.228434∗x1−0.0207164∗

238

x2) − 0.191168 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) + 0.0275022 ∗ (−0.141529 ∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2) − 0.00379008 ∗ (−0.261837 ∗ x1 + 0.474018 ∗

x2) + 0.050696 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) − 0.107278 ∗ (0.0589481 ∗

x1 + 0.0207023 ∗ x2) + 0.164167 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.112903 ∗

(0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.28331 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) +

0.251034∗(0.189229∗x1−0.212302∗x2)−0.0055419∗(0.228434∗x1−0.0207164∗

x2) − 0.221779 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) − 0.0816945 ∗ (−0.102796 ∗

(−0.293793 ∗ x1 + 0.62935 ∗ x2)− 0.245426 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) +

0.0271749 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) + 0.149373 ∗ (0.0589481 ∗ x1 +

0.0207023∗x2)−0.20195∗(0.0736858∗x1+0.156368∗x2)+0.187741∗(0.115603∗

x1 − 0.559943 ∗ x2) + 0.18074 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) − 0.0441101 ∗

(0.189229 ∗ x1 − 0.212302 ∗ x2) − 0.237967 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) −

0.216235∗(0.327156∗x1−0.407098∗x2))+0.0405768∗(−0.0391913∗(−0.293793∗

x1 + 0.62935 ∗ x2) + 0.123921 ∗ (−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.17003 ∗

(−0.163165 ∗ x1− 0.536536 ∗ x2)+ 0.0757615 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2)+

0.201078∗ (0.0736858∗x1+0.156368∗x2)+0.252316∗ (0.115603∗x1−0.559943∗

x2)− 0.326691 ∗ (0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.00698547 ∗ (0.189229 ∗ x1 −

0.212302 ∗ x2) − 0.00301863 ∗ (0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.194609 ∗

(0.327156 ∗ x1 − 0.407098 ∗ x2)) + 0.0320322 ∗ (−0.0107183 ∗ (−0.293793 ∗ x1 +

0.62935∗x2)+0.0956865∗(−0.261837∗x1+0.474018∗x2)+0.162321∗(−0.163165∗

x1 − 0.536536 ∗ x2) + 0.108168 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2)− 0.0291888 ∗

(0.0736858 ∗ x1 + 0.156368 ∗ x2) + 0.100121 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) +

0.0900326∗(0.178242∗x1+0.147661∗x2)−0.0554088∗(0.189229∗x1−0.212302∗

x2)−0.3618∗(0.228434∗x1−0.0207164∗x2)+0.0837∗(0.327156∗x1−0.407098∗

x2)) − 0.0433391 ∗ (0.141513 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) − 0.0752214 ∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.00765232 ∗ (−0.163165 ∗ x1 − 0.536536 ∗

x2) − 0.0884482 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.256175 ∗ (0.0736858 ∗

x1 + 0.156368 ∗ x2) − 0.170602 ∗ (0.115603 ∗ x1 − 0.559943 ∗ x2) − 0.166361 ∗

(0.178242 ∗ x1 + 0.147661 ∗ x2) + 0.322339 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) −

0.197938∗(0.228434∗x1−0.0207164∗x2)+0.0139234∗(0.327156∗x1−0.407098∗

239

x2)) − 0.0739191 ∗ (0.159732 ∗ (−0.293793 ∗ x1 + 0.62935 ∗ x2) + 0.107909 ∗

(−0.261837 ∗ x1 + 0.474018 ∗ x2) + 0.306389 ∗ (−0.163165 ∗ x1 − 0.536536 ∗

x2)− 0.0325058 ∗ (0.0589481 ∗ x1 + 0.0207023 ∗ x2)− 0.30328 ∗ (0.0736858 ∗ x1 +

0.156368∗x2)+0.276108∗(0.115603∗x1−0.559943∗x2)+0.0709101∗(0.178242∗

x1 + 0.147661 ∗ x2) + 0.132233 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) − 0.410339 ∗

(0.228434 ∗ x1 − 0.0207164 ∗ x2) − 0.112674 ∗ (0.327156 ∗ x1 − 0.407098 ∗ x2)) +

0.0555686∗ (0.296381∗ (−0.293793∗x1+0.62935∗x2)−0.0594621∗ (−0.261837∗

x1 + 0.474018 ∗ x2) + 0.176919 ∗ (−0.163165 ∗ x1 − 0.536536 ∗ x2) + 0.0108246 ∗

(0.0589481 ∗ x1 + 0.0207023 ∗ x2) + 0.193618 ∗ (0.0736858 ∗ x1 + 0.156368 ∗ x2)−

0.0796573∗ (0.115603∗x1−0.559943∗x2)+0.246453∗ (0.178242∗x1+0.147661∗

x2) + 0.179855 ∗ (0.189229 ∗ x1 − 0.212302 ∗ x2) + 0.277703 ∗ (0.228434 ∗ x1 −

0.0207164 ∗ x2)+ 0.0339893 ∗ (0.327156 ∗ x1− 0.407098 ∗ x2))) ∗ ((−4.65223 ∗ x1−

4.29965∗ x2 +0.73575∗ sin(x1))/0.037499999999999999)))

	Abstract
	Impact Statement
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Nomenclature
	Relevant publications
	Research Paper Declaration Form
	Introduction and motivation
	Problem definition
	Thesis outline

	Literature Review
	Introduction
	Preliminary concepts
	Causes of faults in AUVs
	The fault-tolerant control field: an overview
	Actuator Fault Accommodation: a taxonomy
	Multiple-Model aFTC
	Adaptive aFTC
	Model Predictive Control aFTC
	(Embedded) Control allocation aFTC
	Reconfigurable Eigenstructure Assignement aFTC
	Sliding Mode Controller aFTC
	Conclusions on aFTC methods
	H-.4 pFTC
	Lyapunov-based pFTC
	Machine Learning-based Passive pFTC
	Conclusions on pFTC methods

	Actuator Fault Accommodation in AUVs
	Recent trends in machine learning-based control for AUVs
	Dynamic model and simulation
	Conclusions

	Research Approach
	Research gap analysis
	Research vision
	Research questions
	Research approach

	OpenMAUVe: an open-source Modelica simulator for Autonomous Underwater Vehicles and Gliders
	Introduction
	Overall simulator design
	Autonomous Underwater Vehicles modelling
	Hydrodynamics
	Hydrostatics
	Actuators
	Control surfaces
	Variable ballast devices
	Thrusters
	Movable masses

	Modelling assumptions summarised

	Simulator architecture design
	Simulator verification and quasi-validation
	ROGUE glider
	Seawing glider
	Simulator utilisation example: hybrid AUV

	Conclusions

	Augmented Neural Lyapunov Control: a method to automatically synthesise nonlinear control functions for nonlinear dynamical systems
	Introduction
	Preliminaries
	Lyapunov's theory preliminaries
	Automatic synthesis of (Control) Lyapunov Functions
	Lyapunov Function synthesis via Neural Lyapunov Control
	Satisfiability Modulo Theories

	Declaration of aim

	Neural Lyapunov Control method: initial assessment
	Synthesis of Control Lyapunov Functions
	Learner
	Control architecture
	Loss functions

	Translator
	SMT Falsifier

	Augmented Neural Lyapunov Control: tailored improvements
	Augmented Falsifier
	Network-specific Learning Rate and Scheduler
	Counterexample Selection
	Algorithm and software
	ANLC upgrades summary

	Numerical Evaluation
	Control system without initialisation
	Controlled Lorenz system

	Conclusions

	Passive Fault-Tolerant Augmented Neural Lyapunov Control
	Introduction
	Preliminaries
	Design of a Passive Fault-Tolerant Control method based on the ANLC
	Fault-tolerant Learner
	Fault-tolerant Falsifier

	Algorithm and software
	Numerical Evaluation
	Case study 1: control of an inverted pendulum with actuator redundancy
	LQR control
	Augmented Neural Lyapunov Control
	Passive Fault-Tolerant ANLC

	Case study 2: Control of an Autonomous Underwater Vehicle
	Shifting the equilibrium state
	Results

	Case study 3: Underwater Glider with saturated control

	Control law selection
	Actuator loss of efficiency
	Case Study 4: Autonomous Underwater Vehicle with reduction in thruster efficiency

	Comparison with H-.4 control method
	Region of Attraction shaping and estimation

	Conclusions

	OpenMAUVe and pFT-ANLC: an AUV case study
	Introduction
	Simulator architecture definition
	Synthesis of the control law
	Numerical Evaluation
	Simulation A: simulation with four faults injected
	Simulation B: tracking a time-varying yaw angle reference

	Discussion on limitations
	Conclusions

	Concluding remarks
	Overview statements
	Recommendations for future research

	Bibliography
	Appendices
	OpenMAUVe class implementation example
	Example of a CLF synthesised with the ANLC method
	Examples of a Lie derivative function synthesised with the ANLC method

