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Abstract
This is a sequel to our previous articles (Kwan in Algebra Number Theory.
arXiv:2112.08568v4; Kwan in Spectral moment formulae for GL(3) × GL(2) L-
functions II: Eisenstein case, 2023. arXiv:2310.09419). In this work, we apply recent
techniques that fall under the banner of ‘Period Reciprocity’ to study moments of
GL(3)×GL(2) L-functions in the non-archimedean aspects, with a view towards the
‘Twisted Moment Conjectures’ formulated by CFKRS.

Mathematics Subject Classification Primary 11F55; Secondary 11F72

1 Introduction

1.1 Reciprocity

This article is motivated by the important works of Young [59] and Blomer–
Humphries–Khan–Milinovic [9] regarding the spectral theory for the fourth moment
of the Dirichlet L-functions in the prime conductor aspect. Their works featured a
very curious reciprocity relation of the form

M4(p) :=
∑

χ ( mod p)
χ �=χ0

∫

|t |�1

∣∣∣∣L
(
1

2
+ i t, χ

)∣∣∣∣
4

dt

= p1/2
∑

f : level 1
cusp forms

L

(
1

2
, f

)3

λ f (p) + (∗ ∗ ∗), (1.1)

where p is a prime number.
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The formula above can be recognized as a non-archimedean generalization of the
celebrated spectral reciprocity formula due to Motohashi [52, 53]:

∞∫

−∞

∣∣∣∣ζ
(
1

2
+ i t

)∣∣∣∣
4

w(t) dt =
∑

f : level 1
cusp forms

L

(
1

2
, f

)3

qw(t f ) + (∗ ∗ ∗). (1.2)

Indeed, (1.1) incorporates an additional duality between the GL(1) twists of Dirich-
let characters and the GL(2) twists of Hecke eigenvalues when compared to (1.2).
Furthermore, the reciprocity (1.1) succinctly captures the essential inputs that lead to
a sharp asymptotic formula for M4(p)—it suffices to apply the spectral large sieve
and the best approximation towards the Ramanujan–Petersson conjecture for GL(2)
cuspidal Hecke eigenforms to the spectral side of (1.1).

The arguments culminating in (1.1), as presented by [59] and [9], have rendered the
elegant-looking non-archimedean reciprocity even more surprising. On the one hand,
Blomer et al. [9] devised a strategic compositum of spectral and harmonic summation
formulae which can be summarized as ‘Poisson-(Arithmetic) Reciprocity-Poisson–
Voronoi–Kuznetsov’.One arrived at the reciprocity formula (1.1) upon carefully tracing
through the delicate transformations of exponential/character sums in each step. On
the other hand, Young [59] applied the spectral method in conjunction with the delta
method to a generalized binary additive problem. His strategy was favourable in estab-
lishing the conjecture of [20] for the moment M4(p) and turned out to be useful in
many other instances, see [4, 5, 36, 37, 54, 57, 61]. An entirely different sequence of
transformations led to the same formula (1.1) once again. Regardless, both [59] and
[9] greatly enriched the Kuznetsov-based approach introduced by [52].

The first goal of this article is to understand the source of the non-archimedean
reciprocity discovered by [9, 59] using period integrals. In our previous work [45], we
focused on the archimedean aspects of our period identity and a number of technical
features of this article were thus not present in [45]. For the sake of elucidating the
key ideas and the other applications (our second goal, see Sect. 1.3), we establish
a higher-rank analogue of the reciprocity (1.1) involving GL(3) × GL(2) Rankin–
Selberg L-functions. In this case, it is more natural to describe the result in the spectral
direction. Nevertheless, it is important to note that the reciprocity of our interest stays
the same for both the spectral and the arithmetic directions.

1.2 Main results

In this article, we work with the same admissible class of test functions Cη (η > 40)
as in [45]. The class Cη consists of holomorphic functions H defined on the vertical
strip |Reμ| < 2η satisfying H(μ) = H(−μ) and H(μ) � e−2π |μ| on such a strip.

Let � be a fixed Hecke-normalized Maass cusp form of SL3(Z) with Langlands
parameters (α1, α2, α3) ∈ (iR)3, Hecke eigenvalues λ�(m) (m ≥ 1), and �̃ being
the dual form of �. We pick an orthogonal basis (φ j )

∞
j=1 of even Hecke-normalized

Maass cusp forms of SL2(Z) with 
φ j = (1/4 − μ2
j ) φ j and λ j (a) (a ≥ 1) being

the Hecke eigenvalues of φ j .
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Let L
(
s, φ j ⊗ �

)
and L (s,�) be the Rankin–Selberg L-function of the pair

(φ j ,�) and the standard L-function of � respectively. We use the notation �(· · · ) to
denote the completed L-functionof L(· · · ). TheHurwitz ζ -function and the additively-
twisted L-function of � are denoted by ζ(s, a) and L(s, a/c;�) respectively, and
define

L(a)
± (s0, s; �) :=

∑

dr |a

d2s0−1μ(r)

rs0
λ�

( a

dr

) ∑∗

� ( mod d)

ζ

(
2s − s0,

�

d

)
L

(
s0; ∓ r�

d
; �

)
. (1.3)

See Sect. 2.5 for details.

Theorem 1.1 For 1
4 + 1

200 < σ < 3
4 and H ∈ Cη, the following reciprocity formula

holds:

∞∑

j=1

H
(
μ j
) λ j (a)�(s, φ j ⊗ �̃)

〈φ j , φ j 〉

+
∫

(0)
H (μ)

σ−2μ(a)a−μ�(s + μ, �̃)� (1 − s + μ,�)

|�(1 + 2μ)|2
dμ

4π i

= a−s

2
L(2s,�)

∏

p|a

{
λ�

(
pop(a)

)
− λ�

(
pop(a)−1

)

p2s

}

·
∫

(0)

H(μ)

|�(μ)|2
∏

±

3∏

i=1

�R (s ± μ − αi )
dμ

2π i

+ as−1

2
L(2(1 − s), �̃)

∏

p|a

{
λ�

(
pop(a)

)
− λ�

(
pop(a)−1

)

p2(1−s)

}

·
∫

(0)

H(μ)

|�(μ)|2
∏

±

3∏

i=1

�R (1 − s ± μ + αi )
dμ

2π i

+ a−s

2

∑

±

∫

(1/2)
L(a)

± (s0, s;�) (F (±)
� H) (s0, s)

ds0
2π i

, (1.4)

where σ−2μ(a) :=∑d|a d−2μ, op(a) denotes the power of p in the prime factorization

of a, and (F (±)
� H) (s0, s) are certain explicit integral transforms to be defined in

Sect. 2.7.

Our theorem holds for general twists of GL(2) Hecke eigenvalues (i.e., a is not
necessarily prime). In this instance, we find it more convenient to describe the dual
moment of (1.4) in terms of additively-twisted L-functions and this actually explains
the origin of our reciprocity better (see Remark 5.1). In a number of previous works
on twisted moments, e.g., [1, 3, 18, 49, 60], one had to restrict to Hecke eigenvalue
twists at primes for various technical reasons.
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When a = p is prime, the dual moment can be expressed in terms of primitive
multiplicatively-twisted L-functions as in (1.1) (see Proposition 4.7). Furthermore,
if s = 1/2 and � is replaced by the (complete) minimal parabolic Eisenstein series
(E (3)

min)
∗
( ∗ ; (0, 0, 0)) of SL3(Z), then the dual moment of (1.4) is precisely the fourth

moments of the Dirichlet L-functions:

p
1
2

φ(p)

∑±

χ ( mod p)

∫

(1/2)
|L(s0, χ)|4 (F (+)

α H ± F (−)
α H) (s0, 1/2)

�R

(
1 + 1∓1

2 − s0
)

�R

(
s0 + 1∓1

2

) ds0
2π i

, (1.5)

which we will show in Sect. 5.1. As a matter of fact, the use of periods unveils that the
source of the arithmetic (or non-archimedean) reciprocity in (1.5) lies in a strikingly
simple matrix identity:

( ∗ ∗
a0 p

)(
y0

1

)
=
(
1 −a0/p

1

)
n(x)a(y)k(θ)

(
r

r

)
, (1.6)

where the first matrix of (1.6) belongs to SL2(Z), and the matrices n(x), a(y), k(θ),
( r

r

)
(as in the Iwasawa decomposition) are solely responsible for the analytic (or

archimedean) reciprocity. See Sect. 3 for the details.
When a is composite, the relevant conversion remains valid but this time (1.5)would

average over all Dirichlet characters (mod a)—both primitive and imprimitive ones.
Judging from the experiences of [9] and [57], this phenomenon should not be surprising
even to period integral approaches.

1.3 Twisting and the ‘Recipe’

Theorem 1.1 exhibits a number of interesting technical similarities with the asymptotic
formulae for the twisted moments of the Riemann ζ -function and the Dirich-
let L-functions. There is extensive literature on this classical topic: Levinson
[47], Deshouillers–Iwaniec [31], Balasubramanian–Conrey–Heath–Brown [6], Con-
rey [17], Watt [56] and Iwaniec–Sarnak [38]—just to name a few.

For more basic applications (say [6, 38, 47, 58]) involving twisted moments of
lower degrees such as

∫ 2T

T

(
h

k

)i t

ζ(1/2 + α + i t)ζ(1/2 + β − i t) dt, (1.7)

or

1

φ(q)

∑∗

χ ( mod q)

χ(h)χ(k)L (1/2 + α, χ) L (1/2 + β, χ) , (1.8)

for any h, k ≥ 1 and α, β � (log qT )−1, the diagonals usually dominate the
asymptotic evaluations upon inserting the approximate functional equations (AFEs).
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However, the twisted variant of the Moment Conjecture (or ‘twisted recipe’) of [20]
does predict the existence of off-diagonal contributions which are non-negligible
for more refined applications, see Bettin–Chandee–Radziwiłł [7], Conrey–Iwaniec–
Soundararajan [23], Bui–Pratt–Robles–Zaharescu [12] and Conrey [18]. In these
works, the search for the essential off-diagonal terms turned out to be extremely subtle.
The ‘shifts’ (i.e., α, β in (1.7)–(1.8)) in the twisted moments are crucial in unraveling
the combinatorics behind the assembling of various distinct-looking terms.

A similar situation is encountered in the context of Theorem 1.1. In view of the
applications of Liu [49] and Khan [43] regarding the GL(3)×GL(2) L-values, it was
sufficient to extract only the diagonal as the main term. As in Li [48], their moments
were expanded as sums of geometric terms via the AFEs and Petersson/ Kuznetsov/
GL(3) Voronoi formulae. Unfortunately, it is not clear from their works the locations
of the off-diagonal main terms. A recurring theme in the area, as exemplified by [7,
18, 21, 23], involves the identification of specific polar divisors subsequent to the re-
packaging of the off-diagonal pieces. This procedure is usually delicate and depends
heavily on the arithmetic of the moment problem. In Sect. 4.4, we shall observe the
Motohashi-type structure depicted in Theorem 1.1 is indeed very suitable for a simple
extraction of the off-diagonal main term. In particular, the twisted sums of L-functions
(1.3) admit a clear polar divisor 2s − s0 = 1. Overall speaking, we seek the most
canonical and straightforward means to reveal the desired structure. It appears to us
that the use of period integrals is favourable in this regard.

In Theorem 1.1, we examine the case when � is a cusp form of SL3(Z). This is
nevertheless adequate to illustrate the intricacies of understanding the main terms for
twisted moments while keeping our exposition to a reasonable length. In fact, our
twisted moment is of degree 6 and its off-diagonal main term corresponds precisely to
the ‘3-swap term’, according to the set-up and terminology ofConrey–Keating [24–28]
and Conrey–Fazzari [19], of the twisted cubic moment of GL(2) L-functions:

∞∑

j=1

H(μ j )
λ j (a)�(1/2 − α1, φ j )�(1/2 − α2, φ j )�(1/2 − α3, φ j )

〈φ j , φ j 〉 + (cont.),

(1.9)

which is simply the Eisenstein case of Theorem 1.1, i.e., taking
� to be (E (3)

min)
∗
( ∗ ; (α1, α2, α3)).

Our current knowledge on the Dirichlet polynomial approximations of L-functions
enables us to extract the ‘0-swap’ and ‘1-swap’ terms across various moments and
families, see [13, 26, 36, 54], [19] and [29] for, respectively, the unitary, orthogonal
and symplectic examples. To go beyond the 0-swap and 1-swap terms, one would
require extra arithmetic structures, say the Motohashi-type structure present in our
case. Furthermore, since our method is based on period integrals, we are able to
sidestep the technical complications stemming from the use of AFEs and treating the
J - and K -Bessel pieces of the spectral Kuznetsov formula separately (see [45] for
further discussions).
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Given a twisted moment of L-functions, showing agreement with the relevant
twisted recipe often requires additional symmetries besides the functional equations
of the L-functions. For instance, certain finite Euler products, which account for the
ramifications coming from twisting, satisfy unexpected functional relations. Within
the unitary families, readers are referred to [37] (Section 6.2-6.3), [23] (Section 8)
and [13] (Section 9.3) (cf. [26] and [36] (Section 5–6)) for the examples. Established
in a prime-by-prime (or local) fashion with leverage on the delicate combinatorics of
divisors, these relations result in remarkable combinations and cancellations of terms,
ultimately leading to the desired prediction up to an acceptable error. In the case of
Theorem 1.1, one has to unravel the complicated expression (4.24) for the hidden
functional relations if one follows the standard approach in the literature.

In Sect. 4.4 of this article, we proceed globally instead by studying the triple Dirich-
let series:

∞∑

a=1

a−w
∑

d|a
d4s−3

∞∑

a1=1

B� (a/d, a1)

(a1)2s−1 · S(0, a1; d), (1.10)

where B�( · , · )’s are the GL(3) Fourier coefficients of � and S(0, a1; d) is the
Ramanujan sum.Wewill explain how (1.10) arises from our period integral method as
well as how it takes up the role of extra functional relations as in [13, 23, 36, 37]. The
(multiple) Dirichlet series of GL(3) will provide convenient packaging of the under-
lying combinatorics. From which, the recipe prediction is confirmed with an exact
reciprocity identity and for arbitrary twists of Hecke eigenvalues of GL(2). In many
ways, the content of Sect. 4.4 serves as a non-archimedean analogue of theBarnes-type
integral identities found in [46]. This kind of analogy was also investigated by Bump
[14] but in a different situation. Bump constructed an interesting double Dirichlet
series (see equation (9.2) of [14]) that mirrors the Vinogradov–Takhtadzhyan formula
(see equation (10.1) of [14]).

In a separate article [46], we tackled the analytic issues for the untwisted Eisenstein
case of Theorem 1.1, including explication of the integral transforms, regularization
and analytic continuation (with the Fourier expansion for the GL(3)Eisenstein series).
By combining the techniques of [46] with the non-archimedean ingredients of this
article, the twisted recipe for (1.9) (see Conjecture 5.2) should follow with some extra
book-keeping. It is noteworthy that the majority of our arguments work equally well
for the Eisenstein case.

Both Theorem 1.1 and Conjecture 5.2 express their main terms in a local fashion.
This better displays the symmetries—the finite part of each term now consists of
a product of L-values and a ‘modified’ Hecke eigenvalue of GL(3). As a matter
of fact, this is a somewhat intriguing phenomenon for the off-diagonal main terms
because the GL(3) Hecke combinatorics are exploited in rather non-trivial ways. In
a broader context, it might be of interest to study the twisted recipes for different
families (perhaps also revisiting some of the previous works) by searching for suitable
candidates of multiple Dirichlet series and their combinatorial relations.
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1.4 Related works

In contrast to the Motohashi-type reciprocities which relate two different-looking
moments of L-functions, there are also the recent ‘level reciprocities’ of Blomer–
Khan [10, 11] roughly taking the shape

∑

f : level p
cusp forms

λ f (q)L(1/2, � ⊗ f )L(1/2, f ) ←→
∑

f : level q
cusp forms

λ f (p)L(1/2, �̃ ⊗ f )L(1/2, f ) (1.11)

for p, q being primes. In the latter case, two similar-looking moments are connected,
akin to an earlier example due to Conrey [18] (see also [3, 32, 60]):

∑∗

χ ( mod p)

χ(q)|L(1/2, χ)|2 ←→
∑∗

χ ( mod q)

χ(−p)|L(1/2, χ)|2. (1.12)

The level reciprocity (1.11) features the switching of two distinct twists of GL(2)
Hecke eigenvalues that appeared on both sides of the formula. It is conceivable that a
certain invariant automorphic linear functional which incorporates two distinct GL(2)
Heckeoperators is responsible for suchkindof reciprocities. Thiswas nicely confirmed
by two different constructions of such functionals, see Zacharias [62, 63] (for the
‘4 = 2 + 2’ case) and Nunes [55] (for the ‘4 = 3 + 1’ case), and for Hecke twists at
two coprime square-free integral ideals.

While the interchange of harmonics
(
λ f (p)

) ↔ (χ mod p) described in (1.4)–
(1.5) and (1.1) is also of non-archimedean nature (and to some extent a hybrid of the
ones in (1.11) and (1.12)), its primary arithmetic cause has less to do with the actions
of the Hecke operators and is actually rather different from [55, 62, 63], see Remark
5.1.

Moreover, Theorem 1.1 is a higher-degree and higher-rank analogue of the famous
result of Iwaniec-Sarnak (Theorem 17 of [39]), Motohashi (Equation (2.33)–(2.36) of
[51]) and Bykovskii ([16]) which has found plenty of applications in the area, see [8,
33, 39–42, 50, 51].

2 Preliminary

In this section, we collect results and notions that are essential to our arguments. Some
of which have appeared in [45] (Sect. 2.2–2.3).

2.1 Notations and conventions

Throughout this article, �R(s) := π−s/2 �(s/2) (s ∈ C), e(x) := e2π i x (x ∈ R), and
�n := SLn(Z) (n ≥ 2). Our test function H lies in the class Cη and H := h# (see
Definition 2.2) unless otherwise specified. Denote by θ the best progress towards the
Ramanujan conjecture for the Maass cusp forms of SL3(Z). We have θ ≤ 1

2 − 1
10 , see
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Theorem 12.5.1 of [34]. We often use the same symbol to denote a function (in s) and
its analytic continuation. Also, we adopt the following sets of conventions:

(1) All Maass cusp forms will be simultaneous eigenfunctions of the Hecke operators
and will be either even or odd. Also, their first Fourier coefficients are equal to 1.
In this case, the forms are said to be Hecke-normalized. Note that there are no
odd form for SL3(Z), see Proposition 9.2.5 of [34].

(2) Our fixed Maass cusp form of SL3(Z) is assumed to be tempered at ∞, i.e., its
Langlands parameters are purely imaginary.

2.2 Whittaker functions and transforms

All of the Whittaker functions in this article are spherical. The Whittaker function of
GL2(R) is given by

Wμ(y) := 2
√

yKμ(2π y) (2.1)

forμ ∈ C and y > 0.Denote byWα

⎛

⎝
y0y1

y0
1

⎞

⎠ theWhittaker function ofGL3(R),

where

y0, y1 > 0 and α ∈ a
(3)
C

:=
{
(α1, α2, α3) ∈ C

3 : α1 + α2 + α3 = 0
}

. (2.2)

To define Wα , we first introduce the function

Iα

⎛

⎝
y0y1

y0
1

⎞

⎠ := y1−α3
0 y1+α1

1 (2.3)

whenever (2.2) holds. Then we define

Wα

( y0 y1
y0

1

)
:=

∏

1≤ j<k≤3

�R(1 + α j − αk)

·
∫

R3
Iα

[( 1−1
1

)( 1 u1,2 u1,3
1 u2,3

1

)( y0 y1
y0

1

)]
e(−u1,2 − u2,3)

×
∏

1≤ j<k≤3

du j,k, (2.4)

once again for (2.2). The last integral is known as the Jacquet integral. See Chapter
5.5 of [34] for details. We recall the explicit evaluation of the Rankin–Selberg integral
of GL3(R) × GL2(R).
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Proposition 2.1 Let Wμ and W−α be the Whittaker functions of GL2(R) and GL3(R)

respectively. For Re s � 0, we have

∫ ∞

0

∫ ∞

0
Wμ(y1) W−α

( y0 y1
y0

1

)
(y20 y1)

s− 1
2

dy0dy1
y0y21

= 1

4

∏

±

3∏

k=1

�R (s ± μ−αk) .

(2.5)

Proof See [15]. ��
As in [45, 46], the following pair of integral transforms plays an important role in

the description of the archimedean component of our main theorem.

Definition 2.2 Let h : (0,∞) → C and H : iR → C be measurable functions with
H(μ) = H(−μ). Then the Kontorovich–Lebedev transform of h is defined by

h#(μ) :=
∫ ∞

0
h(y) Wμ(y)

dy

y2
, (2.6)

whereas its inverse transform is defined by

H �(y) := 1

4π i

∫

(0)
H(μ) Wμ(y)

dμ

|�(μ)|2 , (2.7)

provided the integrals converge absolutely.

Definition 2.3 Let Cη be the class of holomorphic functions H on the vertical strip
|Reμ| < 2η such that

(1) H(μ) = H(−μ),
(2) H has rapid decay in the sense that

H(μ) � e−2π |μ| (|Reμ| < 2η). (2.8)

In this article, we take η > 40 without otherwise specifying.

Proposition 2.4 For any H ∈ Cη, the integral (2.7) defining H � converges absolutely.
Moreover, we have

H �(y) � min{y, y−1}η (y > 0). (2.9)

Proof See Lemma 2.10 of [53]. ��
Proposition 2.5 Under the same assumptions of Proposition 2.4, we have

(h#)�(g) = h(g) and (H �)#(μ) = H(μ). (2.10)

Proof See Lemma 2.10 of [53]. ��
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2.3 Automorphic forms of GL(2)

Let

h2 :=
{

g =
(
1 u
1

)(
y
1

)
: u ∈ R, y > 0

}

with its invariant measure given by dg := y−2du dy. We use 〈 · · 〉 to denote the
Petersson inner product on �2 \ h2, i.e.,

〈 φ1 , φ2 〉 :=
∫

�2\h2
φ1(g) φ2(g) dg.

Let 
 := −y2
(
∂2x + ∂2y

)
. An automorphic form φ : h2 → C of �2 = SL2(Z)

satisfies 
φ = ( 1
4 − μ2

)
φ for some μ = μ(φ) ∈ C. We often identify μ with the

pair (μ,−μ) ∈ a
(2)
C

. For a ∈ Z − {0}, the a-th Fourier coefficient of φ, denoted by
Bφ(a), is defined by

(φ̂)a(y) :=
∫ 1

0
φ

[(
1 u
1

)(
y
1

)]
e(−au) du = Bφ(a)√|a| Wμ(φ)(|a|y) (y > 0).

(2.11)
Let Iμ(y) := yμ+ 1

2 . The Eisenstein series of �2 is given by

E(z;μ) := 1

2

∑

γ∈U2(Z)\�2

Iμ(Im γ z) (z ∈ h2). (2.12)

It is well-known that the series (2.12) converges absolutely for Reμ > 1/2 and admits
a meromorphic continuation to the whole complex plane. Also, we have
E( ∗ ;μ) =( 1
4 − μ2

)
E( ∗ ;μ) and the Fourier coefficients of E(∗;μ) are given by

B(a;μ) = BE( ∗ ;μ)(a) = |a|μσ−2μ(|a|)
�(1 + 2μ)

, (2.13)

where

�(s) := π−s/2 �(s/2)ζ(s) and σ−2μ(|a|) :=
∑

d|a
d−2μ.

We also write E∗(∗;μ) := �(1 + 2μ) E(∗;μ) for the complete Eisenstein series of
�2 and BE∗

( ∗ ;μ)(a) for its Fourier coefficients.
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2.4 Automorphic forms of GL(3)

Next, let

h3 :=
⎧
⎨

⎩

⎛

⎝
1 u1,2 u1,3

1 u2,3
1

⎞

⎠

⎛

⎝
y0y1

y0
1

⎞

⎠ : ui, j ∈ R, yk > 0

⎫
⎬

⎭ .

Let � : h3 → C be a Maass cusp form of �3 as defined in Definition 5.1.3 of [34]. In
particular, there exists α = α(�) ∈ a

(3)
C

such that for any D ∈ Z(Ugl3(C)) (i.e., the
center of the universal enveloping algebra of the Lie algebra gl3(C)), we have

D� = λD� and DIα = λD Iα

for some λD ∈ C. The triple α(�) is said to be the Langlands parameters of �.

Definition 2.6 Let m = (m1, m2) ∈ (Z − {0})2 and � : h3 → C be a Maass cusp
form of SL3(Z). The integral defined by

(�̂)(m1,m2)(g) :=
∫ 1

0

∫ 1

0

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2 u1,3

1 u2,3
1

⎞

⎠ g

⎤

⎦ e
(−m1u2,3 − m2u1,2

)
du1,2 du1,3 du2,3,

(2.14)

for g ∈ GL3(R), is said to be the (m1, m2)-thFourier–Whittaker period of�.More-
over, the (m1, m2)-th Fourier coefficient of � is the complex number B�(m1, m2)

for which

(�̂)(m1,m2)

⎛

⎝
y0y1

y0
1

⎞

⎠ = B�(m1, m2)

|m1m2| W
sgn(m2)

α(�)

⎛

⎝
(|m1|y0)(|m2|y1)

|m1|y0
1

⎞

⎠

(2.15)

holds for any y0, y1 > 0.

Remark 2.7 (1) The archimedean multiplicity-one theorem of Shalika guarantees the
well-definedness of the Fourier coefficients for �. For a proof, see Theorem 6.1.6
of [34].

(2) We shall make use of the following simple observation frequently:

(�̂)(m1,m2)

⎡

⎣

⎛

⎝
1 u1,2 u1,3

1 u2,3
1

⎞

⎠ g

⎤

⎦ = e
(
m1u2,3 + m2u1,2

) · (�̂)(m1,m2)(g)

(2.16)

for any g ∈ GL3(R) and ui, j ∈ R (1 ≤ i < j ≤ 3).
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If � is Hecke-normalized (part of the convention of this article, see Sect. 2.1.(1)),
then B�(1, n) can be shown to be a Hecke eigenvalue of� and thus is a multiplicative
function. In this case, we write λ�(n) := B�(1, n). Furthermore, we have

B�(a, a1) =
∑

r |(a,a1)

μ(r)λ�(a/r)λ�(a1/r) (2.17)

for any a, a1 ∈ Z − {0}, where μ(·) denotes the Möbius μ-function. See Section 6.4
of [34] for details.

2.5 Automorphic L-functions

The Maass cusp forms � and φ of �3 and �2 are assumed to be Hecke-normalized.
Denote their Langlands parameters by α = α(�) ∈ a

(3)
C

and μ = μ(φ) ∈ a
(2)
C

respectively. If �̃(g) := �
(

t g−1
)
is the dual formof�, then the Langlands parameters

of �̃ are given by −α.

Definition 2.8 Suppose � (resp. φ) is a Maass cusp form or an Eisenstein series of �3
(resp. �2). For Re s � 1, the Rankin–Selberg L-function of � and φ is defined by

L (s, φ ⊗ �) :=
∞∑

m1=1

∞∑

m2=1

Bφ(m2)B�(m1, m2)(
m2

1m2
)s . (2.18)

Proposition 2.9 Suppose � and φ are Maass cusp forms of �3 and �2 respectively. In
addition, assume that φ is even. Then for any Re s � 1, we have

(
φ, P

3
2� · | det ∗|s− 1

2

)

�2\GL2(R)
:=

∫

�2\GL2(R)

φ(g)�̃

(
g
1

)
| det g|s− 1

2 dg

= 1

2
�(s, φ ⊗ �̃), (2.19)

where

�(s, φ ⊗ �̃) := L∞(s, φ ⊗ �̃) L(s, φ ⊗ �̃) (2.20)

and

L∞(s, φ ⊗ �̃) :=
3∏

k=1

�R (s ± μ − αk) . (2.21)

Proof See [34] and the relevant remarks in [45]. ��
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Definition 2.10 Let � : h3 → C be a Maass cusp form or Eisenstein series of �3. For
Re s � 1, the standard L-function of � is defined by

L (s,�) :=
∞∑

n=1

B�(1, n)

ns
. (2.22)

The standard L-function admits an entire continuation and satisfies a functional
equation:

Proposition 2.11 Let � : h3 → C be a Maass cusp form of �3. For any s ∈ C, we
have

�(s,�) = �(1 − s, �̃), (2.23)

where

�(s,�) := L∞ (s,�) L (s,�) (2.24)

and

L∞ (s,�) :=
3∏

k=1

�R (s + αk) . (2.25)

Proof See Chapter 6.5 of [34]. ��
Furthermore, the standard L-function L(s, φ) (resp. L(s,�)) forφ (resp.�), which

is either a Hecke-normalized Maass cusp form or a complete Eisenstein series of �2
(resp. �3), admits an Euler product of the form

L(s, φ) =
∏

p

2∏

j=1

(
1 − βφ, j (p)p−s)−1

, (2.26)

resp.

L(s,�) =
∏

p

3∏

k=1

(
1 − α�,k(p)p−s)−1

(2.27)

for Re s � 1. One can show that

L(s, φ ⊗ �) =
∏

p

2∏

j=1

3∏

k=1

(
1 − βφ, j (p)α�,k(p)p−s)−1

, (2.28)

seeProposition7.4.12of [34]. Ifφ = E∗(∗;μ), then (2.26) holds for
{
βφ,1(p), βφ,2(p)

}

= {pμ, p−μ} and (2.26)–(2.28) imply the Dirichlet series L(s, φ ⊗�) is given by the
product of L-functions L(s + μ,�)L(s − μ,�).
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Proposition 2.12 Suppose � is a Hecke–Maass cusp form of �3. For any s, μ ∈ C,
we have

(
E∗( ∗ ; μ) ,

(
P
3
2�
)

· | det ∗|s̄− 1
2

)

�2\GL2(R)
= 1

2
�(s + μ, �̃)�(s − μ, �̃).

(2.29)

Proof Parallel to Proposition 2.9. ��
We will also need the basic analytic properties of certain ‘generalized’ zeta-

functions and automorphic L-functions which are stated as follows.

Proposition 2.13 1. For Re s > 1 and 0 < a ≤ 1, the Hurwitz ζ -function, which is
defined by

ζ(s, a) :=
∞∑

n=0

(n + a)−s, (2.30)

admits a holomorphic continuation to C except at s = 1. It has a simple pole at
s = 1 and the residue is equal to 1. Moreover, it has polynomial growth in every
vertical strip.

2. Let � be a Maass cusp form of �3. For Re s > 1+ θ and a/c ∈ Q, the additively-
twisted L-series of � by a/c, which is defined by

L
(

s,
a

c
;�
)

:=
∞∑

n=1

B�(1, n)

ns
e
(na

c

)
, (2.31)

admits an entire continuation and it has polynomial growth in every vertical strip.

Proof See Theorem 12.4 of [2] and Lemma 3.2 of [35]. ��
It is well-known that both (2.30) and (2.31) satisfy some forms of functional equa-

tions, see Theorem 12.6 of [2] and Theorem 3.1 of [35] respectively. However, we will
make no use of such formulae in the proof of Theorem 1.1. The polynomial growth
of (2.30) and (2.31) in vertical strips can be deduced from that of the Dirichlet L-
functions and the multiplicatively-twisted L-functions of �. Moreover, the regularity
of our class of test functions Cη is more than sufficient for all of our analytic purposes
provided η > 40.

2.6 Calculations on the spectral side

Definition 2.14 Let a ≥ 1 be an integer and h ∈ C∞(0,∞). The Poincaré series of
�2 is defined by

Pa(z; h) :=
∑

γ∈U2(Z)\�2

h(a Im γ z) · e (a Re γ z) (z ∈ h2) (2.32)
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provided it converges absolutely.

If the bounds

h(y) � y1+ε (as y → 0) and h(y) � y
1
2−ε (as y → ∞) (2.33)

are satisfied, then the Poincaré series Pa(z; h) converges absolutely and is an L2-
function on �2\h2. In this article, we take h := H � with H ∈ Cη and η > 40.
The conditions of (2.33) clearly hold because of Proposition 2.4. We often use the
shorthand Pa := Pa(∗; h).

Proposition 2.15 Let � be a Hecke–Maass cusp form of �3 and Pa be a Poincaré
series of �2. Then for s ∈ C, we have

2a−1/2
(

Pa, P
3
2� · | det ∗|s− 1

2

)

�2\GL2(R)

=
∞∑

j=1

h# (μ j
) B j (a)�(s, φ j ⊗ �̃)

〈φ j , φ j 〉

+
∫

(0)
h# (μ)

σ−2μ(a)a−μ�(s + μ, �̃)�(s − μ, �̃)

|�(1 + 2μ)|2
dμ

4π i
, (2.34)

where the sum is restricted to an orthogonal basis (φ j ) of even Hecke-normalized

Maass cusp forms for �2 with 
φ j =
(
1
4 − μ2

j

)
φ j and B j (a) := Bφ j (a).

Proof See [45]. ��

2.7 Archimedean analysis: properties of the integral transformsF (±)

8

Let H = h#. The integral transforms for this article as well as [45, 46] are given by

(F (±)
� H) (s0, s) =

∫ ∞

0

∫ ∞

0
h

⎛

⎝ y1√
1 + y20

⎞

⎠ y2s−s0
0

(1 + y20 )
s
2−s0+ 1

4

·
(∫ ∞

0
W−α(�)

( X y1
X
1

)
e(±X y0)Xs0−1 d× X

)
y

s− 1
2

1
dy0 dy1

y0y21
. (2.35)

Readers should consult [45] for various formulations of (2.35) in terms of Mellin–
Barnes integrals. For technical reasons, it is often convenient to work with the ‘per-
turbed’ version of (F (±)

� H) (s0, s), denoted by (F (±)
� H) (s0, s; φ) (for φ ∈ (0, π/2]),

see equation (7.6)–(7.7) of [45]. We have (F (±)
� H) (s0, s) = (F (±)

� H) (s0, s; π/2).
For the proof of (2.35), see Sect. 5.3.

As in [45, 46], we take ε := 1/100 throughout this article.

Proposition 2.16 Suppose H ∈ Cη, s := σ + i t and s0 := σ0 + i t0. Then
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(1) For any φ ∈ (0, π/2], the transform (s0, s) �→ (F (±)
� H)(s0, s; φ) is holomorphic

on the domain

D := {(σ0, σ ) : σ0 > ε, σ < 4, 2σ − σ0 − ε > 0} . (2.36)

(2) Whenever (σ0, σ ) ∈ D, |t | < T andφ ∈ (0, π/2), the transform (F (±)
� H) (s0, s; φ)

has exponential decay as |t0| → ∞.
(3) There exists a constant B = Bη such that whenever (σ0, σ ) ∈ D, |t | < T , and

|t0| � 1, we have the estimate

∣∣∣(F (±)
� H) (s0, s)

∣∣∣ � |t0|8− η
2 logB |t0|, (2.37)

where the implicit constants depend only on η, T , �.

Proof See Proposition 8.1 and Proposition 9.1 of [45]. ��
Proposition 2.17 Suppose 1/2 < σ < 1. Then

∑

±
(F (±)

� H) (2s − 1, s) = π
1
2−s ·

3∏

i=1

�
(
s − 1

2 + αi
2

)

�
(
1 − s − αi

2

)

·
∫

(0)

H(μ)

|�(μ)|2 ·
3∏

i=1

∏

±
�

(
1 − s + αi ± μ

2

)
dμ

2π i
. (2.38)

Proof See Theorem 1.2 of [45]. ��

3 Twisted key identity

In this section, we illustrate how the arithmetic (or non-archimedean) twists alluded
to Sect. 1 enter the picture of our period integral approach. We must include a couple
of technical adjustments to our argument in [45] in order to incorporate the desired
new features.

Proposition 3.1 Let a ∈ Z−{0} and � be a smooth automorphic function of �3. Then
for any g ∈ GL3(R), we have

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠ g

⎤

⎦ e(−au1,2) du1,2

=
∑

d|a

∑

a0∈Z
gcd(a0,d)=1

∞∑

a1=−∞

(
�̂
)
(a1, a/d)

⎡

⎣

⎛

⎝
1

α β

−a0 d

⎞

⎠ g

⎤

⎦ , (3.1)
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where (α, β) is any pair of integers satisfying

dα + a0β = 1. (3.2)

Proof Firstly, we perform a Fourier expansion along the abelian unipotent subgroup{(
1 ∗
1
1

)}
, which leads to

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠ g

⎤

⎦ e(−au1,2) du1,2

=
∞∑

a0=−∞

∫ 1

0

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2 u1,3

1
1

⎞

⎠ g

⎤

⎦ e(−au1,2 − a0u1,3) du1,2 du1,3.

(3.3)

Secondly, we consider a change of variables of the form (u1,2, u1,3) = (u′
1,2, u′

1,3)·(
α β
γ δ

)
for each a0 ∈ Z, where the matrix

(
α β
γ δ

)
satisfies

• γ = γ (a0) := −a0/ gcd (a0, a) and δ = δ(a0) := a/ gcd (a0, a);
• α = α(a0), β = β(a0) be any pair of integers that satisfy δα − γβ = 1.

Then au1,2 + a0u1,3 = a′u′
1,2 with a′ = a′(a0) := aα + a0β, and one can easily

verify that

⎛

⎝
1 u1,2 u1,3

1
1

⎞

⎠ =
⎛

⎝
1

δ −β

−γ α

⎞

⎠

⎛

⎝
1 u′

1,2 u′
1,3

1
1

⎞

⎠

⎛

⎝
1

α β

γ δ

⎞

⎠ .

The automorphy of � with respect to �3 gives

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠ g

⎤

⎦ e(−au1,2) du1,2

=
∞∑

a0=−∞

∫ 1

0

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u′

1,2 u′
1,3

1
1

⎞

⎠

⎛

⎝
1

α β

γ δ

⎞

⎠ g

⎤

⎦ e(−a′u′
1,2) du′

1,2 du′
1,3.

(3.4)

Thirdly, we perform a Fourier expansion along another abelian unipotent subgroup{(
1
1 ∗
1

)}
. From this, we obtain

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠ g

⎤

⎦ e(−au1,2) du1,2 =
∞∑

a0,a1=−∞

(
�̂
)
(a1,a′)

⎡

⎣

⎛

⎝
1

α β

γ δ

⎞

⎠ g

⎤

⎦ .

(3.5)
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Upon breaking up the a0-sum according to the value of d := (a0, a) and noticing that
a′ = d, we have

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠ g

⎤

⎦ e(−au1,2) du1,2

=
∑

d|a

∑

a0∈Z
(a0,a)=d

∑

a1∈Z

(
�̂
)
(a1,d)

⎡

⎣

⎛

⎝
1

α β

−a0/d a/d

⎞

⎠ g

⎤

⎦ , (3.6)

where (α, β) is any pair of integers satisfying aα + a0β = d. The conclusion (3.1)
now follows from the successive replacements a0 → da0 and d → a/d. ��

The next step concerns the explication of the pair (α, β) in (3.1) in which condition
(3.2) will naturally come into play. To some extent, this may be compared to the
step of applying ‘additive reciprocity’ in [9], where its usage (and actually the full
compositum of the transformations) was guided by the lengths of summations instead,
see the sketch1 in Sect. 1.4 therein.

Corollary 3.2 Suppose � : h3 → C is an automorphic form of �3. Then for any
y0, y1 > 0, we have

∫ 1

0
�

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠

⎛

⎝
y0y1

y0
1

⎞

⎠

⎤

⎦ e(−au1,2) du1,2

=
∑

d|a

∑

a1∈Z

(
�̂
)
(a1, a/d)

⎛

⎝
y0y1

y0
1

⎞

⎠

+
∑

d|a

∑

a0∈Z−{0}
gcd(a0,d)=1

(
�̂
)
(0, a/d)

⎛

⎜⎝

y0 y1√
(a0 y0)2+d2

y0
(a0 y0)2+d2

1

⎞

⎟⎠

+
∑

d|a

∑

a0∈Z−{0}
gcd(a0,d)=1

∑

a1∈Z−{0}
e

(
a1a0

d

)

· (�̂)
(a1, a/d)

⎡

⎢⎣

⎛

⎜⎝
1

1 − 1
da0

(a0 y0)2

d2+(a0 y0)2

1

⎞

⎟⎠

⎛

⎜⎝

y0 y1√
(a0 y0)2+d2

y0
(a0 y0)2+d2

1

⎞

⎟⎠

⎤

⎥⎦ , (3.7)

where a0a0 ≡ 1 (mod d) for gcd(a0, d) = 1.

1 Justifying (or motivating) the insertion of various auxiliary additive factors in the main argument of [9]
in which the method of continuation was used.
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Remark 3.3 (1) Corollary 3.2 can be understood as follows: the exponential factor
e (a1a0/d) in (3.7) is our desired ‘arithmetic twist’, whereas the last line of (3.7)
will be regarded as the ‘analytic component’.

(2) The mentioned ‘analytic component’ is more-or-less the same as the one for the
untwisted case of [45, 46]. This is anticipated and is a reflection of the local–global
nature of our method.

(3) The expression (3.7) will be simplified considerably in (4.6) upon plugging into

the period integral
(

Pa, P3
2� · | det ∗|s− 1

2

)

�2\GL2(R)
.

(4) Corollary 3.2 was stated in a slightly more general form as it has further appli-
cations in verifying Conjecture 5.2, i.e., the twisted version of the main theorem
of [46], which requires us to take � = (Emin)

∗
( ∗ ; (α1, α2, α3)). When � is

cuspidal, we have (�̂)(0, a/d) ≡ 0, so the second summand on the right side of
(3.7) vanishes.

Proof of Corollary 3.2 When a0 = 0, we have d = α = 1 and we may choose β = 0
in Proposition 3.1. This results in the first term on the right side of (3.7).

Suppose now a0 �= 0 (with gcd(a0, d) = 1). Let w� :=
(

1
1

1

)
and gι := t g−1.

To reveal the non-archimedean component behind our calculations, we must deviate
from [45] by first considering the product of matrices:

w�

⎡

⎣

⎛

⎝
1

α β

−a0 d

⎞

⎠

⎛

⎝
y0y1

y0
1

⎞

⎠

⎤

⎦
ι

w�,

which can be seen to be

⎛

⎝y1

(
α −β

a0 d

)(
y0

1

)

1

⎞

⎠ (mod R
×).

Thus, we are left with a simple 2-by-2 Iwasawa computation:

(
α −β

a0 d

)(
y0

1

)
≡
√

d2 + (a0y0)2

(
1 α

a0
− d/a0

d2+(a0 y0)2

1

)( y0
d2+(a0 y0)2

1

)
(mod SO(2)).

(3.8)
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From(3.8), the Iwasawadecompositionof

(
1

α β
−a0 d

)( y0 y1
y0

1

)
( mod O3(R)R×)

can be readily obtained and it follows that

(
�̂
)
(a1, a/d)

⎡

⎣

⎛

⎝
1

α β

−a0 d

⎞

⎠

⎛

⎝
y0y1

y0
1

⎞

⎠

⎤

⎦

= (�̂)
(a1, a/d)

⎡

⎢⎣

⎛

⎝
1
1 d/a0

d2+(a0 y0)2
− α

a0
1

⎞

⎠

⎛

⎜⎝

y0 y1√
(a0 y0)2+d2

y0
(a0 y0)2+d2

1

⎞

⎟⎠

⎤

⎥⎦ . (3.9)

When a1 = 0, we have

(
�̂
)
(a1, a/d)

⎡

⎣

⎛

⎝
1

α β

−a0 d

⎞

⎠

⎛

⎝
y0y1

y0
1

⎞

⎠

⎤

⎦ = (
�̂
)
(0, a/d)

⎛

⎜⎝

y0 y1√
(a0 y0)2+d2

y0
(a0 y0)2+d2

1

⎞

⎟⎠

(3.10)

from (3.9) and (2.16). This results in the second term on the right side of (3.7).
When a1 ∈ Z − {0}, observe from (3.2) that

d/a0
d2 + (a0y0)2

− α

a0
≡ a0

d
+ d/a0

d2 + (a0y0)2
− 1

a0d

= a0
d

− 1

da0

(a0y0)2

d2 + (a0y0)2
(mod 1),

and (3.9) can be rewritten as

(
�̂
)
(a1, a/d)

⎡

⎢⎣

⎛

⎝
1
1 a0/d

1

⎞

⎠ ·
⎛

⎜⎝
1

1 − 1
da0

(a0 y0)2

d2+(a0 y0)2

1

⎞

⎟⎠

⎛

⎜⎝

y0 y1√
(a0 y0)2+d2

y0
(a0 y0)2+d2

1

⎞

⎟⎠

⎤

⎥⎦ .

We thus obtain the third term on the right side of (3.7) by invoking (2.16). This
concludes the proof of Corollary 3.2. ��

4 Proof of Theorem 1.1

4.1 Unfolding and clean-up

Let ε := 1/100. On the vertical strip 1 + θ/2 + ε < σ < 4, we begin by replacing
the Poincaré series Pa by its definition in the pairing

2a−1/2
(

Pa, P
3
2� · | det ∗|s− 1

2

)

�2\GL2(R)
. (4.1)
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An unfolding shows that (4.1) is equal to

2a−1/2
∫ ∞
0

∫ ∞
0

h(ay1) (y20 y1)
s− 1

2

∫ 1

0
�̃

⎡

⎣

⎛

⎝
1 u1,2

1
1

⎞

⎠

⎛

⎝
y0y1

y0
1

⎞

⎠

⎤

⎦ e(au1,2) du1,2
dy0 dy1

y0y21
.

(4.2)

From Corollary 3.2 (replacing � therein by �̃ and noticing that (�̂)(0,a/d) ≡ 0 as �

is a cusp form here), we obtain

2a−1/2
∑

d|a

∑

a1∈Z−{0}

∫ ∞

0

∫ ∞

0
h(ay1)

(
̂̃�
)

(a1,a/d)

⎛

⎝
y0y1

y0
1

⎞

⎠ (y20 y1)
s− 1

2
dy0 dy1

y0y21

+ 2a−1/2
∑

d|a

∑

a0∈Z−{0}
gcd(a0,d)=1

∑

a1∈Z−{0}

B� (a/d, a1)

|a0|2s−1|a1| e

(
−a1a0

d

)

·
∫ ∞

0

∫ ∞

0
h(ay1) W−α(�)

( |a1|y0
(a0y0)2 + d2 ,

ay1
d

√
(a0y0)2 + d2

)

· e

(
1

da0

(a0y0)2

d2 + (a0y0)2

)
(y20 y1)

s− 1
2

dy0 dy1
y0y21

(4.3)

and the absolute convergence of (4.3) follows from Proposition 6.5 of [45].
Denote by D(a)

� (s) the expression on the first line of (4.3) and O D(a)
� (s) the expres-

sion spanning the last three lines of (4.3). In other words,

2a−1/2
(

Pa, P
3
2� · | det ∗|s− 1

2

)

�2\GL2(R)
= D(a)

� (s) + O D(a)
� (s). (4.4)

By the changes of variables y0 → |a1|−1y0 and y1 → a−1y1, we have

D(a)
� (s) = 2a−s

∑

a1∈Z−{0}

B�(a, a1)

|a1|2s
·
∫ ∞
0

∫ ∞
0

h(y1) (y20 y1)
s− 1

2 W−α(�) (y0, y1)
dy0 dy1

y0y21
, (4.5)

where the double integral can be computed by (2.5) and (2.7). For O D(a)
� (s), we apply

another set of changes of variables y0 → (d|a0|−1)y0 and y1 → a−1y1, it follows at
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once

O D(a)
� (s) = 2a−s

∑

d|a
d2s

∑

a0∈Z−{0}
gcd(a0,d)=1

∑

a1∈Z−{0}

B� (a/d, a1)

|a0|2s−1|a1| e

(
−a1a0

d

)

·
∫ ∞

0

∫ ∞

0
h(y1) (y20 y1)

s− 1
2 e

(
a1

da0

y20
1 + y20

)

· W−α(�)

(∣∣∣∣
a1

da0

∣∣∣∣
y0

1 + y20
, y1

√
1 + y20

)
dy0 dy1

y0y21
. (4.6)

Following the same argument presented in Proposition 7.2 of [45], i.e., applying
the Mellin inversion formulae for e(· · · ) and W−α(�)(· · · ) for separation of variables,
we obtain

O D(a)
� (s; φ) = 2a−s · 1

8
·
∫

(1+θ+2ε)

∑

±

∑

d|a
d2s+s0−1

∑

a0,a1∈Z−{0}
gcd(a0,d)=1
sgn(a0a1)=±

B� (a/d, a1)

|a0|2s−s0 |a1|s0 e

(
−a1a0

d

)

· (F (±)
� H) (s0, s; φ)

ds0
2π i

, (4.7)

where the integral transform F (±)
� H was defined in Sect. 2.7, and

lim
φ→π/2

O D(a)
� (s; φ) = O D(a)

� (s) (4.8)

holds on the domain (3+θ)/2 < σ < 4 (see Proposition 7.3 of [45]). For the readers’
convenience, more details will be indicated in Sect. 5.3. Note: the constant 1/8 in (4.7)
comes from the constants 1/4 and 1/2 from Vinogradov–Takhtadzhyan’s formula and
Euler’s beta integral formula respectively.

However, one must beware of the signs of a0a1 due to the extra factor e(−a1a0/d)

present in this article (but not in [45, 46]), which will in turn influence the shapes of
the dual moments, see (4.34) and (5.6). Consider the double Dirichlet series

L(a)
± (s0, s;�) :=

∑

d|a
d2s+s0−1

∑

a0≥1
gcd(a0,d)=1

∑

a1≥1

B� (a/d, a1)

(a0)2s−s0(a1)s0
e

(
∓a1a0

d

)
,

(4.9)
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which converges absolutely on the region

Re(2s − s0) > 1 and Re s0 > 1 + θ. (4.10)

Using the fact that � is an even form, we readily observe that

O D(a)
� (s; φ) = a−s

2

∑

±

∫

(1+θ+2ε)
L(a)

± (s0, s;�) (F (±)
� H) (s0, s; φ)

ds0
2π i

.

(4.11)

for 1 + θ/2 + ε < σ < 4 and φ ∈ (0, π/2).

4.2 Analytic continuation

Wewillmakeuse ofProposition2.13 to obtain the analytic properties ofL(a)
± (s0, s;�).

Proposition 4.1 The double Dirichlet series L(a)
± (s0, s;�) admits a holomorphic con-

tinuation to C
2 except on the polar divisor 2s − s0 = 1.

Proof Suppose Re(2 s − s0) > 1 and Re s0 > 1+ θ . The double Dirichlet series (4.9)
converges absolutely and can be written as

L(a)
± (s0, s; �) =

∑

d|a
d2s+s0−1

∑∗

� ( mod d)

∑

a0≥1
a0 ≡ � ( mod d)

∑

a1≥1

B� (a/d, a1)

(a0)2s−s0 (a1)s0
e

⎛

⎝∓ a1�

d

⎞

⎠

(4.12)

upon splitting the a0-sum into residue classes (mod d). Since

∑

a0≥1
a0 ≡ � ( mod d)

1

a2s−s0
0

= d−(2s−s0) · ζ

(
2s − s0,

�

d

)
, (4.13)

we have

L(a)
± (s0, s; �) =

∑

d|a
d2s0−1

∑∗

� ( mod d)

ζ

(
2s − s0,

�

d

)⎛

⎝
∞∑

a1=1

B� (a/d, a1)

a
s0
1

e

⎛

⎝∓ a1�

d

⎞

⎠

⎞

⎠ .

(4.14)

The Hecke relation (2.17) implies that

L(a)
± (s0, s; �) =

∑

dr |a

d2s0−1μ(r)

rs0
λ�

( a

dr

) ∑∗

� ( mod d)

ζ

(
2s − s0,

�

d

)
L

(
s0; ∓ r�

d
; �

)
(4.15)
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and its analytic continuation now follows from Proposition 2.13. Also,

− Ress0=2s−1 L(a)
± (s0, s; �) =

∑

dr |a

d4s−3μ(r)

r2s−1 λ�

( a

dr

) ∑∗

� ( mod d)

L

(
2s − 1;∓ r�

d
; �

)

(4.16)

which clearly admits an entire continuation. This finishes the proof. ��
Denote by R(a)

± (s;�) the expression on the right side of (4.16). By Corollary 4.1
and repeating the argument described in Section 9 of [45] (with the exact same analysis
at the archimedean place, see Sect. 2.7), we arrive at

Proposition 4.2 On 1/4 + ε/2 < σ < 3/4, we have

O D(a)
� (s) = a−s

2

∑

±

∫

(1/2)
L(a)

± (s0, s;�) (F (±)
� H) (s0, s)

ds0
2π i

+ a−s

2

∑

±
R(a)

± (s;�)(F (±)
� H) (2s − 1, s) . (4.17)

4.3 The diagonal main term

Lemma 4.3 For Re s � 1, we have

1

2

∑

a1∈Z−{0}

B�(a, a1)

|a1|2s
= L(2s,�)

∑

r |a

μ(r)λ�(a/r)

r2s

= L(2s,�)
∏

p|a

{
λ�

(
pop(a)

)
− λ�

(
pop(a)−1

)

p2s

}
,

(4.18)

where op(a) denotes the power of p in the prime factorization of a. Thus, the Dirichlet
series above admits an entire continuation.

Proof The first equality follows from (2.17) and the second equality follows from the
multiplicativity of λ�( · ), μ( · ), and their multiplicative convolution. ��
Proposition 4.4 On the domain 1 + θ/2 + ε < σ < 4, we have

D(a)
� (s) = a−s

2
L(2s,�)

∏

p|a

{
λ�

(
pop(a)

)
− λ�

(
pop(a)−1

)

p2s

}

·
∫

(0)

H(μ)

|�(μ)|2 ·
∏

±

3∏

i=1

�R (s ± μ − αi )
dμ

2π i
. (4.19)

As a result, D(a)
� (s) admits a holomorphic continuation to 0 < σ < 4.
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Proof Follows from (4.5), (2.7), (2.5) and Lemma 4.3. ��

4.4 The off-diagonal main term

If� is aMaass cusp form of SL3(Z), the twisted recipe of [20] for the spectral moment
of (1.4) is implied by the functional equation

�(s, φ ⊗ �̃) = �(1 − s, φ ⊗ �) (4.20)

with φ being an even Maass form of SL2(Z), see Theorem 12.2.5 of [34]. Indeed, the
spectral side of (1.4) is invariant under the replacements s → 1− s and � → �̃. This
observation together with the diagonal evaluation (4.19) predicts the existence of an
off-diagonal main term:

as−1

2
L
(
2 (1 − s), �̃

) ∏

p|a

{
λ�

(
pop(a)

)
− λ�

(
pop(a)−1

)

p2(1−s)

}

·
∫

(0)

H(μ)

|�(μ)|2 ·
∏

±

3∏

i=1

�R (1 − s ± μ + αi )
dμ

2π i
. (4.21)

In other words, we must show that

Proposition 4.5 For 1/4 + ε/2 < σ < 3/4, the expression

a−s

2

∑

±
R(a)

± (s;�) (F (±)
� H) (2s − 1, s) (4.22)

is equal to (4.21).

The archimedean functional relation for
∑

± (F (±)
� H) (2 s − 1, s) has been estab-

lished in [45] before, see Proposition 2.17. Hence, the conclusion for Proposition 4.5
would follow from the functional equation of GL(3) (Proposition 2.11), as well as:

Proposition 4.6 For any s ∈ C, we have

R(a)
± (s;�) = a2s−1 · L(2s − 1,�) ·

∏

p|a

{
λ�(pop(a)) − λ�(pop(a)−1)

p2(1−s)

}
.

(4.23)

This is the non-archimedean analogue of Proposition 2.17. In principle, it should
be a finite checking at the ‘ramified’ places upon expandingR(a)

± (s;�) into an Euler
product (as in [13, 23, 36, 37]). Unfortunately, our situation is even more complicated
than the aforementioned works—one has to match the right side of (4.6) with the
expression
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R(a)
± (s; �) =

∑

der |a

μ(r)μ(d)

d

(
d2e

r̃

)2s−1

λ�

( a

der

) ∑

a1≥1

λ�(̃ea1)

(a1)2s−1

= L(2s − 1,�)
∑

der |a

μ(r)μ(d)

d

(
d2e

r̃

)2s−1

λ�

( a

der

)

·
∏

p | ẽ

(
1 − λ�(p)p−(2s−1) + λ�(p)p−2(2s−1) − p−3(2s−1)

) ∞∑

m=0

λ�(pm+op (̃e))

(pm )2s−1 ,

(4.24)

where ẽ := e/(r , e) and r̃ := r/(r , e). Equation (4.24) follows from (4.16), the
multiplicativity of the GL(3) Hecke eigenvalues, and the Euler product identity

L(s,�) =
∏

p

(
1 − λ�(p)p−s + λ�(p)p−2s − p−3s

)−1
(Re s � 1) (4.25)

for L-functions of GL(3), see pp. 173–174 of [34]. When a is prime, one can indeed
show the desired agreement using (4.24). However, it is already unclear how to proceed
even if we assume a is square-free. Nevertheless, we have found a simple proof that
works for any integer a ≥ 1.

Proof of Proposition 4.6 Suppose Re s � 1. By Corollary 4.1, we may evaluate
R(a)

± (s;�) by taking the residue of (4.14) at s0 = 2s − 1. Switching the order of
summation, we find that the �-sum in (4.14) can be identified with the Ramanujan
sum S(0,∓a1; d). In other words,

R(a)
± (s;�) =

∑

d|a
d4s−3

∑

a1≥1

B� (a/d, a1)

(a1)2s−1 · S(0,∓a1; d), (4.26)

Note: the last expression is independent of the sign and we shall now drop ‘±’ sign in
our notation R(a)

± (s;�) from now on.
Suppose Rew � 1. We define the triple Dirichlet series:

C(w, s;�) :=
∞∑

a=1

R(a)(s;�)

aw
=

∞∑

a,d,a1=1

d4s−3B�(a, a1)S(0, a1; d)

(da)wa2s−1
1

,

(4.27)

where the last expression follows from the change of variables a → da. The d-sum
can be readily computed by the well-known identity:

∞∑

d=1

S(0, a1; d)

dw−4s+3 = σ−w+4s−2(a1)

ζ(w − 4s + 3)
. (4.28)
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From (2.13), observe that σ−w+4 s−2(|a1|) = |a1|μ ·BE∗(∗;μ)(a1) with μ := −w/2+
2s − 1. As a result, we recognize

C(w, s;�) = 1

ζ(w − 4s + 3)

∞∑

a,a1=1

BE∗(∗;μ)(a1)B�(a, a1)

(a2a1)w/2 (4.29)

as a double Dirichlet series of GL(3) × GL(2) type, see (2.18). Next, by considering
the Euler products (2.27)–(2.28) of GL(3) and GL(3) × GL(2) types, we obtain

C(w, s;�) = L(w
2 + μ,�)L(w

2 − μ,�)

ζ(w − 4s + 3)
= L(2s − 1,�)L(w + 1 − 2s,�)

ζ(w − 4s + 3)
.

(4.30)

Then we may rewrite (4.30) as a Dirichlet series in w using the GL(3) L-series (2.22)
with Möbius inversion:

C(w, s;�) = L(2s − 1,�)

∞∑

r=1

1

rw

∑

mn=r

λ�(m)μ(n)

m1−2sn3−4s
. (4.31)

Upon comparing coefficients, we readily conclude that

R(a)(s;�) = L(2s − 1,�) · a2s−1
∑

n|a

λ�(a/n)μ(n)

n2(1−s)
(4.32)

and this holds for any s ∈ C by analytic continuation. The convolution ofmultiplicative
functions in (4.32) can be computed as

∑

n|a

λ�(a/n)μ(n)

n2(1−s)
=
∏

p|a

{
λ�(pop(a)) − λ�(pop(a)−1)

p2(1−s)

}
. (4.33)

This completes the proof of Proposition 4.6. ��

4.5 Concluding Theorem 1.1

Theorem 1.1 follows from putting Proposition 2.15, Eq. (4.4), Propositions 4.2, 4.4,
4.5 and Eq. (4.15) together.

4.6 Shape of the dual moment

In this section, we assume that a = p is a prime as in [9, 59]. The connection between
the twisted spectral moment and the moment averages over Dirichlet characters is now
a straight-forward consequence of the orthogonality relation thanks to the structures
cast early on by our period integral construction (see Corollary 3.2).
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Proposition 4.7 For any (s0, s) ∈ C
2 except on the line 2s − s0 = 1, we have

L(p)
± (s0, s;�) = Pp(s0, s;�) ζ(2s − s0) L(s0,�)

+ ps0+2s−1

φ(p)

⎛

⎝
∑+

χ ( mod p)

∓
∑−

χ ( mod p)

⎞

⎠ τ(χ)L(2s − s0, χ)L (s0,� ⊗ χ) ,

(4.34)

where τ(χ) :=
∑∗

x ( mod p)

χ(x)e(x/p) is the Gauss sum of χ (mod p) and

Pp(s0, s; �) := p2s+s0−1

φ(p)
(1 − p−(2s−s0))

(
−1 + λ�(p)p1−s0 − λ�(p)p1−2s0 + p1−3s0

)

+λ�(p) − p−s0 . (4.35)

Proof The computations below will be first carried out on the region of absolute con-
vergence (4.10). Then our desired conclusion will follow from analytic continuation.
In (4.15) we either have d = 1 or d = p, and correspondingly r | p or r | 1.
Case (1): d = 1. We take � = 1 in this case and then

L(p)
± (s0, s;�)

∣∣∣∣
d=1

=
∑

r∈{1,p}

μ(r)

rs0
· λ�(p/r) · ζ(2s − s0)L (s0,∓r;�)

= ( λ�(p) − p−s0
)
ζ(2s − s0)L (s0,�) .

Case (2): d = p. We have

L(p)
± (s0, s;�)

∣∣∣∣
d=p

= p2s0−1
∑∗

� ( mod p)

ζ

(
2s − s0,

�

p

)
L

(
s0;∓ �

p
;�

)
. (4.36)

The Hurwitz zeta function in (4.36) can be rewritten as

ζ

(
2s − s0,

�

p

)
= p2s−s0

φ(p)

∑

χ ( mod p)

χ(�)L(2s − s0, χ)

with (4.13) and the orthogonality relation for Dirichlet characters. Hence, we have

L(p)
± (s0, s; �)

∣∣∣∣
d=p

= p2s+s0−1

φ(p)

∑

χ ( mod p)

L(2s − s0, χ)
∑∗

� ( mod p)

χ(�)L

(
s0; ∓ �

p
; �

)

= p2s+s0−1

φ(p)

∑

χ ( mod p)

L(2s − s0, χ)

∞∑

n=1

λ�(n)

ns0

∑∗

� ( mod p)

χ(�)e

(
∓ n�̄

p

)
.

(4.37)
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If (n, p) = 1, then the replacement � → ∓n�̄ (mod p) implies

∑∗

� ( mod p)

χ(�)e

(
∓n�̄

p

)
= χ(∓n)τ (χ). (4.38)

(When χ = χ0, Eq. (4.38) is equal to −1.) If p | n, then

∑∗

� ( mod p)

χ(�)e

(
∓n�̄

p

)
=

∑∗

� ( mod p)

χ(�) = φ(p) · 1χ=χ0 .

As a result, the contribution from χ = χ0 in (4.37) is equal to

L(p)
± (s0, s;�)

∣∣∣∣
d=p, χ=χ0

= p2s+s0−1

φ(p)
L(2s − s0, χ0)

⎧
⎨

⎩−
∑

(n,p)=1

λ�(n)

ns0
+ φ(p)

∑

p|n

λ�(n)

ns0

⎫
⎬

⎭

= p2s+s0−1

φ(p)
L(2s − s0, χ0)

⎧
⎨

⎩φ(p)L(s0,�) − p
∑

(n,p)=1

λ�(n)

ns0

⎫
⎬

⎭ .

It follows from (4.25) that

L(p)
± (s0, s;�)

∣∣∣∣
d=p, χ=χ0

= p2s+s0−1

φ(p)
L(2s − s0, χ0) L(s0,�)

·
{
φ(p) − p

(
1 − λ�(p)p−s0 + λ�(p)p−2s0 − p−3s0

)}

= p2s+s0−1

φ(p)
(1 − p−(2s−s0))

(
−1 + λ�(p)p1−s0 − λ�(p)p1−2s0 + p1−3s0

)

· ζ(2s − s0) L(s0,�).

On the other hand, the contributions from χ �= χ0 in (4.37) is equal to

L(p)
± (s0, s;�)

∣∣∣∣
d=p, χ �=χ0

= p2s+s0−1

φ(p)

∑∗

χ ( mod p)

χ(∓1)τ (χ)L(2s − s0, χ)

∑

(n,p)=1

λ�(n)χ(n)

ns0

= p2s+s0−1

φ(p)

∑∗

χ ( mod p)

χ(∓1)τ (χ)L(2s − s0, χ)L(s0,� ⊗ χ).
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The conclusion of Proposition 4.7 follows readily from

L(p)
± (s0, s;�) = L(p)

± (s0, s;�)

∣∣∣∣
d=1

+ L(p)
± (s0, s;�)

∣∣∣∣
d=p, χ=χ0

+ L(p)
± (s0, s;�)

∣∣∣∣
d=p, χ �=χ0

and analytic continuation. ��

It is certainly possible, but combinatorially involved, to obtain a version of (4.34)
when a is composite, i.e., rewrite L(a)

± (s0, s;�) in terms of automorphic L-functions
twisted by primitive Dirichlet characters. If � ∼= 1 � 1 � 1 or φ � 1 with φ being a
cusp form of GL(2), the key technicalities behind seem to have been worked out in
the recent work [30]. We will not pursue this task in order to maintain a reasonable
length for this article.

5 Concluding remarks

5.1 Relation to the 4thmoment of Dirichlet L-functions

We specialize to s = 1/2, Re s0 = 1/2 and � = (E (3)
min)

∗
( ∗ ; (0, 0, 0)) in (4.34).

Once again, we restrict ourselves to prime conductors only. In this case, we have

L(p)
± (s0, 1/2;�) = Pp(s0, s) ζ(1 − s0)ζ(s0)

3

+ ps0

φ(p)

⎛

⎝
∑+

χ ( mod p)

∓
∑−

χ ( mod p)

⎞

⎠ τ(χ)L(1 − s0, χ)L (s0, χ)3 . (5.1)

Recall the functional equation for the primitive Dirichlet L-functions:

L(s0, χ) = i−aχ
τ (χ)√

p
p

1
2−s0 �R(1 − s0 + aχ )

�R(s0 + aχ )
L(1 − s0, χ), (5.2)
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where aχ = 0 if χ(−1) = 1 and aχ = 1 if χ(−1) = −1. Using also the fact that
|τ(χ)| = √

p, it follows that

∑+

χ ( mod p)

τ (χ)L(1 − s0, χ)L (s0, χ)3

= p1−s0 �R(1 − s0)

�R(s0)

∑+

χ ( mod p)

L(1 − s0, χ)2L (s0, χ)2 ,

∑−

χ ( mod p)

τ (χ)L(1 − s0, χ)L (s0, χ)3

= −i p1−s0 �R(2 − s0)

�R(1 + s0)

∑−

χ ( mod p)

L(1 − s0, χ)2L (s0, χ)2 . (5.3)

The dual moment of

2
∞∑

j=1

H(μ j )
λ j (a)�(1/2, φ j )

3

〈φ j , φ j 〉 + 1

2π

∫

R

H(iμ)
σ−2μ(a)a−μ|�(1/2 + iμ)|6

|�(1 + 2iμ)|2 dμ

(5.4)

is given by

p−1/2
∑

±

∫

(1/2)
L(p)

± (s0, s;�) (F (±)
� H) (s0, s)

ds0
2π i

, (5.5)

which is readily observed to be a sum of the following three weighted moments of
GL(1) L-functions:

p−1/2
∫

(1/2)
Pp(s0, s) |ζ(s0)|4 �R(1 − s0)

�R(s0)
·
∑

±
(F (±)

� H) (s0, s)
ds0
2π i

,

p1/2

φ(p)

∑+

χ ( mod p)

∫

(1/2)
|L(s0, χ)|4 �R(1 − s0)

�R(s0)
·
∑

±
(F (±)

� H) (s0, s)
ds0
2π i

,

p1/2

φ(p)

∑−

χ ( mod p)

∫

(1/2)
|L(s0, χ)|4 �R(2 − s0)

�R(1 + s0)
· i
{
(F (+)

� H) (s0, s) − (F (−)
� H) (s0, s)

} ds0
2π i

.

(5.6)

Remark 5.1 While the twists appeared on each side of the reciprocity formula (1.1),
namely

{
λ f (p)

}
and {χ mod p}, are seemingly unrelated as discussed in Sect. 1.1,

the additive harmonics

Ep := {
e(∓a1�̄/p) : a1 ≥ 1, � (mod p), (�, p) = 1

}
(5.7)

obtained in our approach connects the mentioned multiplicative twistings. Indeed, Ep

naturally relates to {χ mod p} by the orthogonality relation (see Proposition 4.7),
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whereas Ep pertains to
{
λ f (p)

}
via our period integral construction, more precisely,

the arithmetic factor originating from the unipotent translate of the Whittaker function
(see Corollary 3.2).

Additive harmonics of various shapes are involved in the methods of [9, 59] as well,
but certainly in rather different ways, e.g., Kloosterman sums, Kuznetsov/ Poisson/
Voronoi formulae, δ-symbol expansion etc.

5.2 The twisted cubic moment conjecture

In [46], we stated and proved the untwisted version of the following conjecture:

Conjecture 5.2 For any integer a ≥ 1, the full set of the main terms for

∞∑

j=1

H(μ j )
λ j (a)�(1/2 − α1, φ j )�(1/2 − α2, φ j )�(1/2 − α3, φ j )

〈φ j , φ j 〉

+ 1

4π

∫

R

H(iμ)

σ−2μ(a)a−μ
3∏

i=1
�(1/2 + iμ − αi )�(1/2 + iμ + αi )

|�(1 + 2iμ)|2 dμ

(5.8)

is given by

1

2
·

∑

ε1,ε2,ε3=±1

ζ(1 − ε1α1 − ε2α2)ζ(1 − ε1α1 − ε3α3)ζ(1 − ε2α2 − ε3α3)

· a− 1
2
∏

p|a

{
τ−ε·α

(
pop(a)

)
− τ−ε·α

(
pop(a)−1

)

p

}

·
∫

(0)

H(μ)

|�(μ)|2 ·
3∏

i=1

∏

±
�R (1/2 ± μ − εiαi )

dμ

2π i
, (5.9)

whereα1+α2+α3 = 0, ε·α := (ε1α1, ε2α2, ε3α3), τα(n) :=∑d1d2d3=n d−α1
1 d−α2

2 d−α3
3 ,

and (φ j )
∞
j=1 is an orthogonal basis of even Hecke-normalized Maass cusp forms of

SL2(Z) which satisfy 
φ j = (1/4 − μ2
j ) φ j . Note: (ε1, ε2, ε3) = (+1,+1,+1)

corresponds to the 0-swap term.

In this article and [46], we have established all of the archimedean functional rela-
tions for showing agreement with the prediction (5.9), as well as the non-archimedean
counterparts for the 0- and 3-swap terms. The identities for the 1, 2-swap terms should
follow in a similar fashion using the method of this article. (In [46], this is very much
true for the archimedean case.) As indicated by (5.6) and the main theorem of [46], the
full set of main terms for the fourth moment of the Dirichlet L-functions à la CFKRS
should also be visible in the full spectral identity for (5.8). This offers an alternative
approach to assemble the main terms, distinct from the one of [59]. We shall leave
these to a future work.
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5.3 Supplementary details regarding the integral transform

Recall the double integral of Eq. (4.6):

∫ ∞

0

∫ ∞

0
h(y1) (y20 y1)

s− 1
2 e

(
a1

da0

y20
1 + y20

)
W−α(�)

(∣∣∣∣
a1

da0

∣∣∣∣
y0

1 + y20
, y1

√
1 + y20

)
dy0 dy1

y0y21
.

(5.10)

The Mellin inversion formula

f (y) =
∫

(σ0)

(∫ ∞

0
f (X)Xs0−1 d× X

)
y1−s0 ds0

2π i
(5.11)

together with rearrangement of integrals imply (5.10) is equal to

∫

(σ0)

∣∣∣∣
a1

da0

∣∣∣∣
1−s0 ∫ ∞

0

∫ ∞

0
h(y1) (y20 y1)

s− 1
2

·
∫ ∞

0
W−α(�)

(
X

y0
1+y20

, y1

√
1+y20

)
e

(
±X

y20
1+y20

)
Xs0−1 d× X

dy0 dy1
y0y21

ds0
2π i

.

(5.12)

Upon making the changes of variables X → X((1+ y20 )/y0) and y1 → y1/
√
1 + y20 ,

one can further rewrite the above as

∫

(σ0)

∣∣∣∣
a1

da0

∣∣∣∣
1−s0 ∫ ∞

0

∫ ∞

0
h

⎛

⎝ y1√
1 + y20

⎞

⎠
∫ ∞

0
W−α(�) (X , y1) e (±X y0) Xs0−1 d× X

· y2s−s0
0

(1 + y20 )
s
2+ 1

4−s0
y

s− 1
2

1
dy0 dy1

y0y21

ds0
2π i

. (5.13)

Plugging this into (4.6), the display (4.7) with (2.35) readily follow.
In a similar manner, the argument appeared in [45, Section 4] leads to

(5.10) =
∫

(σ0)

∣∣∣∣
a1

da0

∣∣∣∣
1−s0 ∫ ∞

0

∫ ∞

0
h(y−1

1 )(y20 y−1
1 )s− 1

2

·
∫ ∞

0
Wρ(w�)�

⎡

⎣

⎛

⎝
±X
1 1

1

⎞

⎠

⎛

⎝
y0y1

y1
1

⎞

⎠

⎤

⎦ Xs0−1 d× X d×y0 dy1
ds0
2π i

. (5.14)

This yields a slightlymore intrinsic form of the integral transform, for (5.14) also holds
for non-spherical test vector � and it does not appeal to any matrix decomposition
(say Iwasawa or Bruhat). Of course, when � is specialized to be the spherical vector,
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(5.14) is technically equivalent to the corresponding calculations in this article as well
as [45, 46].
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