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ABSTRACT

Motivated by the works of Erdös, Wirsing, Pomerance, Wolke and Harman on the sum-of-divisor function 
𝜎(n), we study the distribution of a special class of natural numbers closely related to (multiply) perfect num-
bers which we term ‘(ℓ; k)-within-perfect numbers’, where ℓ > 1 is a real number and k : [1,∞) → (0,∞) is 
an increasing and unbounded function.
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1 . I N T R O D U CT I O N
A natural number n is said to be perfect if 𝜎(n) = 2n, ℓ-perfect if 𝜎(n) = ℓn (with ℓ > 1 being rational) 
and multiply perfect if n | 𝜎(n), where 𝜎(n) represents the sum of all positive divisors of n. An outstand-
ing conjecture, originating from the ancient Greeks (300 BC), asserts that there are infinitely many 
even perfect numbers but no odd perfect numbers (see the studies by Euclid [12, Proposition IX.36], 
Dickson [7, Chapter I], Guy [13, Chapter B1]). This conjecture is well-supported by probabilistic 
heuristics due to Pomerance [27, pp. 249, 258–259]. For ℓ ∈ {2, 3,… , 11}, there are known exam-
ples of ℓ-perfect numbers (see [13, Chapter B1]); however, for other values of ℓ, the (non)existence 
of ℓ-perfect numbers remains entirely open.

Starting in the mid-20th century, considerable interest emerged in understanding the statistical dis-
tribution of perfect numbers. These numbers are particularly rare, as demonstrated by the works of 
Erdös [10], Volkmann [37], Kanold [20, 21], Hornfeck [17] and Hornfeck-Wirsing [18], culmi-
nating in the sharpest known upper bound for the number of perfect numbers up to x in the study by 
Wirsing [38]. The bound obtained in [38] is of the order exp(O( logx

log logx
) as x → ∞, which possesses 

the pleasant feature of uniform applicability to ℓ-perfect numbers for any rational ℓ. When restricting 
to the class of odd perfect numbers, there is the celebrated Dickson’s finiteness theorem [8] which asserts 
the following: given a natural number k, there are only finitely many odd perfect numbers with exactly 
k distinct prime divisors. This was later refined by Pomerance [26] and Heath-Brown [15].

Subsequently, it evolved into an active research area to investigate special classes of natural numbers 
closely linked to perfect numbers, see [13, Chapter B2-B3]. For instance, Sierpiński [34] introduced 
the notion of ‘pseudo-perfect numbers’. In a companion article [5], we studied a subclass of these 
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2 • C.-H. KWAN AND S. J. MILLER

numbers known as ‘near-perfect numbers’, proposed by Pollack-Shevelev [32]. In [5], we strengthened 
the results and analysis of [32] by employing recursive partitions and sieve-theoretic techniques.

In this article, we investigate another class of ‘approximate’ perfect numbers with a somewhat differ-
ent flavour, which we call the (ℓ; k)-within-perfect numbers, where ℓ > 1 is a real number and k = k(y)
is a certain threshold function. More precisely, a natural number n is said to be (ℓ; k)-within-perfect if 
the Diophantine inequality 

|𝜎(n) − ℓn| < k(n) (1.1)

holds. There are two distinct origins of these numbers. On one hand, Erdös ([13, p. 46]) and 
Makowski [22] were interested in the case when ℓ = 2 and k is a constant. On the other hand, the 
inequality (1.1) arises naturally in the field of Diophantine approximations for arithmetic functions. 
Wolke [39] studied (1.1) for any real ℓ > 1 and function k(y) of the form yc. His result was improved 
by Harman [14] and very recently by Järviniemi [19]. In [19], it was shown that for any real ℓ > 1
and any c ∈ (0.45, 1), there exist infinitely many (ℓ; yc)-within-perfect numbers. The range of c can be 
extended to (0.39, 1) under the Riemann Hypothesis as indicated in [14]. The results of [14, 19] rely 
on deep inputs from the distributions of primes in short intervals as well as that of the differences in 
consecutive primes, see [4, 16, 19, 35]. Interested readers are also referred to the studies by Alkan-
Ford-Zaharescu [1, 2] for settings more general than (1.1) and the related questions in Diophantine 
approximations.

The main results of this article concern the class of threshold functions k = k(y) which are comple-
mentary to those considered in [14, 19, 39]. Moreover, we are also interested in estimating the size of 
the set 

W (ℓ; k; x) := {n ≤ x : |𝜎(n) − ℓn| < k(n)} .

Consequently, our work employs a different set of techniques compared to the earlier mentioned 
works.

Theorem 1.1 Let c ∈ (0, 1/3) be given. Suppose k : [1,∞) → (0,∞) is an increasing and 
unbound function satisfying k(y) ≤ yc for y ≥ 1. Let Σ be the set {𝜎(m)/m : m ≥ 1}. Then

(a) If ℓ = a/b ∈ (ℚ∩ (1,∞))\Σ with (a, b) = 1, then 

#W (ℓ; k; x) = O(ab3x2/3+c+o(1)) (1.3)

for 1 < ℓ ≤ xc and x ≥ 1, where the implicit constants are absolute.
(b) If ℓ = a/b ∈ Σ with (a, b) = 1 and there exists 𝛿 > 0 such that k(y) ≥ y𝛿 for y ≥ 1, then 

lim
x→∞

#W (ℓ; k; x)
x/ logx

= ∑
𝜎(m) =ℓm

1
m

. (1.4)

Remark 1.2 We also have an analogous result for c = 0 and its proof is actually simpler, see 
Proposition 2.7 and Remark 3.1.

Remark 1.3 Firstly, the infinite series of (1.4) converges by Wirsing’s Theorem ([38]), which 
will be applied in various ways throughout the course of proving Theorem 1.1.

Secondly, a key strength of our theorem is that all dependencies in (1.3) are made entirely 
explicit. Our bound remains non-trivial even if the numerator or denominator of ℓ grows 
with x at a controlled rate although this necessitates appropriately shrinking the admissible 
range for c.

Thirdly, while it is possible that the dependence on ℓ (that is, the factor ab3) in (1.3) can 
be improved, it does not appear that this dependence can be removed. This is in contrast to 
Wirsing’s Theorem.
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ON THE WITHIN-PERFECT NUMBERS • 3

1.1. Notations
We use the following notations throughout this article:

• f (x) ≍ g(x) if there exist constants c1, c2 > 0 such that c1g(x) < f (x) < c2g(x) for sufficiently large 
x,

• f (x) ∼ g(x) if limx→∞ f (x)/g(x) = 1,
• f (x) = O(g(x)) or f (x) ≪ g(x) if there exists a constant C > 0 such that f (x) < Cg(x) for suffi-

ciently large x,
• f (x) = o(g(x)) if limx→∞ f (x)/g(x) = 0,
• subscripts indicate the dependence of implied constants on other parameters,
• p always denotes a prime number,
• 𝜔(n) denotes the number of distinct prime factors of n.

2 . P R E L I M I N A RY D I S C U S S I O N S A N D P R E PA R AT I O N S
2.1. Distribution function and phase transition

We begin by briefly explaining why the sublinear regime for k = k(y) is of the greatest interest in the 
study of within-perfectness. For this, we recall the definition of a distribution function.

Definition 2.1 Let −∞ ≤ a < b ≤ ∞.

(1) A function F : (a, b) → ℝ is a distribution function if F is increasing, right 
continuous, F(a+) = 0 and F(b−) = 1.

(2) An arithmetic function f : ℕ → ℝ has a distribution function if there exists a 
distribution function F such that 

lim
x→∞

1
x

#{n ≤ x : f (n) ≤ u} = F(u)

at all points of continuity of F.

A celebrated theorem of Davenport [6], [27, Theorem 8.5] asserts that 𝜎(n)/n possesses a contin-
uous and strictly increasing distribution function on [1,∞). Let D( ⋅) be the distribution function of 
𝜎(n)/n. We have D(1) = 0 and D(∞) = 1, and for convenience, we extend the definition of D( ⋅) to 
ℝ by setting D(u) = 0 for u < 1. More generally, a necessary and sufficient criterion for the existence of 
distribution functions for additive functions was established by Erdös-Wintner [11], see [36, Chapter 
I.5, III.4] for further details.

The following result is an elementary consequence of Davenport’s theorem. It describes the phase 
transition of the asymptotic density of the set of all (ℓ; k)-within-perfect numbers, which we denote 
by W (ℓ; k).

Proposition 2.2 Let D(⋅) be the distribution function of 𝜎(n)/n. Then

(a) If k(n) = o(n), then W (ℓ; k) has asymptotic density 0.
(b) If k(n) ∼ cn for some c > 0, then W (ℓ; k) has asymptotic density equal to D(ℓ + c) − D(ℓ − c).
(c) If k(n) ≍ n, then W (ℓ; k) has positive lower density and upper density strictly less than 1.
(d) If n = o(k(n)), then W (ℓ; k) has asymptotic density 1.

 Sketch The proof is elementary, and we will only indicate the details for part (d). For any 
j ∈ ℕ, there exists nj ∈ ℕ such that n/k(n) < 1/j for any n ≥ nj. We have 

1
x

#{n ≤ x : |𝜎(n) − ℓn| <} ≤
nj

x
+ 1

x
#{n ≤ x : |𝜎(n) − ℓn| < k(n)} (2.1)
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4 • C.-H. KWAN AND S. J. MILLER

whenever x ≥ nj. If j > ℓ, the left-hand side of (2.1) converges to D(ℓ + j) as x → ∞, and 
hence 

liminf
x→∞

#W (ℓ; k; x)
x

≥ D(ℓ + j).

The desired result follows at once by taking j → ∞, using the fact that D(∞) = 1.

2.2. On congruences involving 𝜎(n)
Henceforth, our focus shifts to the sublinear thresholds, where we crucially make use of the techniques 
developed by Pomerance and his co-authors over the years. In 1975, Pomerance [23] initiated the 
study of the equation 

𝜎(n) = ℓn + k, (2.2)

with ℓ, k being integers and ℓ > 1. Central to [23] is the following important concept, which proves 
to be very useful in many Erdös-style problems (see [30]):

Definition 2.3 (Regular/Sporadic) The solutions to the congruence 𝜎(n) ≡ k (mod n) of 
the form 

n = pm, where p ∤ m, m ∣ 𝜎(m), 𝜎(m) = k,

are called regular. All other solutions are called sporadic.

The main observation is that sporadic solutions occur much less frequently than regular solutions. 
In a series of works [3, 23–25, 29, 32], this was quantified with various degrees of precision and 
uniformity. We summarize the progress made in this direction.

Let Spork(x) be the set of sporadic solutions of 𝜎(n) ≡ k (mod n) up to x. In [23], [32], [3] and 
[29], it was shown, respectively, that the following bounds hold as x → ∞:

• #Spork(x) = O𝛽,k(xexp(−𝛽√logx log logx)) for fixed k and fixed 𝛽 < 1/
√

2,
• #Spork(x) = O(x2/3+o(1)) uniformly in |k| < x2/3,
• #Spork(x) = O(x1/2+o(1)) uniformly in |k| < x1/4 and
• #Spork(x) ∩ {𝜎(n) is odd} = O(|k|x1/4+o(1)) uniformly in 0 < |k| ≤ x1/4.

When k = 0, we have a much stronger bound for (2.2) as in the study by Wirsing ([38]).
Unfortunately, the aforementioned results are not sufficient for our study of within-perfect num-

bers. We must consider a more general congruence 

b𝜎(n) ≡ k (mod n), (2.4)

where b and k are integers with b ≥ 1. Accordingly, the definitions of regular and sporadic solutions 
should be extended as follows:

Definition 2.4 Suppose b ∣ k. Then n is said to be a regular solution to (2.4) if 

n = pm, where p ∤ m, m ∣ b𝜎(m), 𝜎(m) = k
b

.

All other solutions are called sporadic. In the case when b ∤ k, all solutions to (2.4) are 
considered sporadic.

We record the following generalization of [32, Lemma 8], which will be used in the proof of The-
orem 1.1 and may also be of independent interest. For the convenience of the readers, we include a 
sketch of proof of this proposition here.
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ON THE WITHIN-PERFECT NUMBERS • 5

Proposition 2.5 The number of sporadic solutions n ≤ x to the congruence b𝜎(n) ≡ k (mod n)
is O(b2x2/3+o(1)) for any x ≥ 1 and integer k satisfying |k| < bx2/3. The implicit constants are 
absolute.

Our intended applications take into account the uniformity of the range and the strength of the 
upper bound in counting sporadic solutions. In light of Wirsing’s theorem ([38]) and Remark 1.3, 
it is also desirable to maintain all implicit constants absolute, but this can be somewhat subtle, see 
[3, Remark 1] and [29]. After a careful examination of existing strategies, the authors believe that 
the approach of [32] is the most suitable for attaining our desired generalization (for example, ℓ can 
be rational), incorporating all the favourable features mentioned earlier. Their method softly utilizes 
the unique factorization of a natural number into its square-free and square-full parts, the anatomy of 
unitary divisors (Note: m is a unitary divisor of n if n has a decomposition of the form n = mm′, where 
(m, m′) = 1), and the following result from [28, Theorem 1.3]: 

∑
x1/3<m≤x2/3

(m,𝜎(m))
m2 ≤ 3x−1/3+o(1), (2.6)

which turns out to be a nice application of Wirsing’s Theorem!

 Proof of Proposition 2.5 We can certainly assume that x ≥ b; otherwise the count is trivially 
bounded by b, which is acceptable in view of the bound claimed in Proposition 2.5. Let 
|k| < bx2/3. Suppose n ≤ x is a sporadic solution to the congruence b𝜎(n) ≡ k (mod n). 
One can simultaneously assume that n > x2/3 and the square-full part of n is bound by x2/3. 
Indeed, the contribution from the complement can be easily seen to be O(x2/3). We then 
consider the following two cases.

(1) Suppose p := P+(n) > x1/3. By the assumption made, we have n = pm with p ∤ m and  m < x2/3. 
The congruence can be written as b𝜎(n) = qn + k for some integer q ≥ 0. It follows that 

b(p + 1)𝜎(m) = b𝜎(n) = qpm + k

and 

p(b𝜎(m) − qm) = k − b𝜎(m).

If k − b𝜎(m) = 0, then n is a regular solution, which is a contradiction! So, k − b𝜎(m) ≠ 0. For 
each m, the number of such p is O(log |k − b𝜎(m)|) = O(log(bx2/3 log logx)) = O(logbx)
because of p ∣ (k − b𝜎(m)). Therefore, the number of such n is O(x2/3 logbx) = O(x2/3 logx), 
which is acceptable.

(2) Suppose p := P+(n) ≤ x1/3. Such n must have a unitary divisor m in the interval (x1/3, x2/3], see 
[32]. We have 𝜎(n) ≡ 0 (mod 𝜎(m)) and b𝜎(n) ≡ k (mod m). By the Chinese Remainder 
Theorem, we have b𝜎(n) ≡ an (mod [m,𝜎(m)]) for some unique 0 ≤ an < [m,𝜎(m)]. Given 
m ∈ (x1/3, x2/3], the number of possible values for b𝜎(n) is ≤ 1 + (2bx logx)/[m,𝜎(m)]. 
Summing over m ∈ (x1/3, x2/3], the total number of possible values of b𝜎(n) is 

≤ ∑
x1/3<m≤x2/3

(
2bx logx

[m,𝜎(m)]
+ 1)

≤ x2/3 + (2bx logx)(3x−1/3+o(1)) ≤ 7bx2/3+o(1)

from (2.6). Moreover, the size of q = (b𝜎(n) − k)/n is clearly 

≪ b log logx +
|k|
n

< b log logx + b ≪ b log logx
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6 • C.-H. KWAN AND S. J. MILLER

by the assumptions n > x2/3 and |k| < bx2/3. Since b𝜎(n) = qn + k, the number of possible values 
of n is at most 

(7bx2/3+o(1))(b log logx) ≤ 7b2x2/3+o(1).

The desired result follows by putting the conclusions of the two cases together.

2.3. A simple application
Let k, a, b be integers such that k ≠ 0, a > b ≥ 1, and (a, b) = 1. Denote by S(a, b; k) the set of 
all solutions to the Diophantine equation b𝜎(n) = an + k that generalizes (2.2). Let S(a, b; k; x) :=
S(a, b; k) ∩ [1, x]. The main result of [23] is stated as follows.

Theorem 2.6 As x → ∞, we have 

#S(a, 1; k; x) ≪k,a
x

logx
. (2.7)

Motivated by Pomerance’s theorem, Davis-Klyve-Kraght [9] recently performed an extensive 
numerical investigation on the true size of S(a, 1; k; x). As a first application of Proposition 2.5, we 
sharpen Pomerance’s theorem and confirm some of the observations and speculations made in [9]. 
This will also serve as the base case for Theorem 1.1, see Section 3.2.

Proposition 2.7

(a) If k ≥ 1, ab ∣ k and  𝜎(k/a) = k/b, then 

#S(a, b; k; x) ∼ a
k

x
log(ax/k)

(2.8)

as x → ∞.
(b) Otherwise, we have 

#S(a, b; k; x) = O(b2x2/3+o(1)) (2.9)

for any x ≥ 1, where the implicit constants are absolute. In particular, the bound (2.9) is
uniform in a.

 Proof. Suppose n ∈ S(a, b; k). Then b𝜎(n) ≡ k (mod n). If b ∤ k, then all solutions are 
sporadic by Definition 2.4 and (2.9) follows at once from Proposition 2.5.

Suppose b ∣ k and n is a regular solution. Then k(1 + p) = b(1 + p)𝜎(m) = apm + k. 
Hence, b𝜎(m) = k = am and in particular, we have 

a ∣ k and 𝜎(k/a) = k/b (= 𝜎(m)). (2.10)

In other words, if (2.10) is violated, then all solutions are sporadic and once again (2.9) 
holds. This proves part (b) of Proposition 2.7.

Suppose ab ∣ k and 𝜎(k/a) = k/b. Then the set {n ∈ ℕ : n = p(k/a), p ∤ (k/a)} consists 
of all regular solutions and is contained in S(a, b; k). Using Proposition 2.5, the Prime 
Number Theorem and the bound 𝜔(n) = O(logn), it follows that 

#S(a, b; k; x) = 𝜋(ax/k) + O(log |k|) + O(b2x2/3+o(1))

∼ a
k

x
log(ax/k)

as x → ∞. Hence, part (a) follows and this completes the proof of Proposition 2.7.
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ON THE WITHIN-PERFECT NUMBERS • 7

3 . P R O O F O F T H EO R E M 1 . 1
3.1. Upper bound

We begin by proving the harder part of Theorem 1.1, that is, the upper bounds for W (ℓ; k; x). Fix 
c ∈ (0, 1/3). Let kc(y) := yc and k(y) ≤ kc(y) for y ≥ 1. Given a function f, we write W̃ (ℓ; f ; x) :=
{n ≤ x : |𝜎(n) − ℓn| < f (x)}. The following inequality is apparent: 

#W (ℓ; k; x) ≤ #W̃ (ℓ; k; x) ≤ #W̃ (ℓ; kc; x). (3.1)

Let ℓ = a/b > 1 be in the lowest term. For n ∈ W̃ (ℓ; kc; x), we have b𝜎(n) − an = k  for some 
integer k such that |k| < bxc. In particular, we have 

b𝜎(n) ≡ k (mod n) for |k| < bxc. (3.2)

By Proposition 2.5, the number of n ∈ W̃ (ℓ; kc; x) which is a sporadic solution (see Definition 2.4) 
is O(bxc) ⋅ O(b2x2/3+o(1)) = O(b3x2/3+c+o(1)), which is acceptable in view of Theorem 1.1. On the 
other hand, the number of regular solutions n = pm ∈ W̃ (ℓ; kc; x) with p ≤ bxc is O(bxc+o(1)) by 
Wirsing’s Theorem ([38] or see Section 1). The contribution is clearly negligibly small.

Suppose p > bxc and b𝜎(m) = rm for some integer r ≥ a + 1. Then 

|b𝜎(n) − an| = |b(1 + p)𝜎(m) − apm| = |(1 + p)rm − apm| = m|r + p(r − a)|
≥ m(r + p) > bxc.

This contradicts with (3.2)!
Suppose p > bxc and b𝜎(m) = rm for some integer r ≤ a − 1. Then

• If r + p(r − a) ≥ 0 (which implies p < a), then a contradiction with p > bxc arises whenever xc > ℓ.
• If r + p(r − a) < 0, then |b𝜎(n) − an| < bxc ⟺ m[(a − r)p − r] < bxc. By Merten’s theorem, the 

number of such n is at most 

∑
2≤r≤a−1

∑
bxc<p≤x

bxc

(a − r)p − r
≤ abxc ∑

bxc<p≤x

1
p − (a − 1)

≤ 2abxc ∑
p≤x

1
p

≪ abxc log logx

whenever xc ≥ 2ℓ. The contribution is once again negligible.

Hence, we are left to consider the case when r = a, that is, 

n = pm ∈ W̃ (ℓ; kc; x) such that p > bxc and 𝜎(m) = ℓm. (3.3)

If ℓ ∉ Σ, there is clearly no such n and thus #W (ℓ; k; x) = O(ab3x2/3+c+o(1)) by taking into account 
the paragraphs right above. This proves part (a) of Theorem 1.1.

Suppose ℓ ∈ Σ. Firstly, observe from partial summation and Wirsing’s theorem that 

∑
𝜎(m) =ℓm

logm
m

= ∫
∞

1

log t
t

dPℓ(t) = lim
t→∞

log t
t1−o(1)

+ ∫
∞

1

log t
t2−o(1)

dt ≪ 1, (3.4)

where Pℓ(t) := #{m ≤ t : 𝜎(m) = ℓm}. As a result, both the series 

∑
𝜎(m) =ℓm

logm
m

and ∑
𝜎(m) =ℓm

1
m

(3.5)

are readily seen to be convergent. Notice that bound (3.4) is uniform in  ℓ.
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8 • C.-H. KWAN AND S. J. MILLER

Secondly, we have m < x1−c  since x ≥ n = pm > xcm. Then 

0 <
logm
logx

≤ 1 − c < 1

and 

(1 −
logm
logx

)
−1

= 1 + Oc(
logm
logx

). (3.6)

Let 𝛽 > 1 be given. The Prime Number Theorem implies the existence of a constant X0 = X0(𝛽) > 0
such that 𝜋(x) < 𝛽x/ logx whenever x ≥ X0. For x ≥ X1/c

0 , the number of n satisfying (3.3) is at most 

∑
𝜎(m)=ℓm

m≤x1−c

𝜋(x/m) < 𝛽 ∑
𝜎(m)=ℓm

m≤x1−c

x/m
log(x/m)

<
𝛽x
logx

∑
𝜎(m)=ℓm

1
m

+ Oc(
𝛽x

(logx)2
∑

𝜎(m)=ℓm

logm
m

)

<
𝛽x
logx

∑
𝜎(m)=ℓm

1
m

+ Oc(
𝛽x

(logx)2
),

with the help of (3.6) and the convergence of the series in (3.5). Therefore, we have 

limsup
x→∞

#W (ℓ; k; x)
x/ logx

≤ 𝛽 ∑
𝜎(m)=ℓm

1
m

(3.7)

for any 𝛽 > 1. Let 𝛽 → 1+ in (3.7), it follows that 

limsup
x→∞

#W (ℓ; k; x)
x/ logx

≤ ∑
𝜎(m)=ℓm

1
m

.

This proves the upper bound of Theorem 1.1(b).

3.2. Lower bound
The proof of the lower bound for Theorem 1.1(b). is relatively straightforward. Suppose ℓ ∈ Σ. Based 
on the experience of Pomerance et al. (see Section 2.2), a lower bound for #W (ℓ; k; x) can be 
obtained by estimating the size of the set 

ℒℓ(𝛿) := {n ≤ x : n = pm, p ∤ m, 𝜎(m) = ℓm, ℓm < (pm)𝛿} ,

provided that k(y) ≥ y𝛿 for any y ≥ 1, where 𝛿 ∈ (0, 1). We have 

#ℒℓ(𝛿) = ∑
𝜎(m)=ℓm
m≤x𝛿/ℓ

∑
(ℓm)1/𝛿/m<p≤x/m

p∤m

1.

Using the bound 𝜔(m) = O(logm), Wirsing’s theorem and partial summation, it follows that 

#ℒℓ(𝛿) = ∑
𝜎(m)=ℓm
m≤x𝛿/ℓ

∑
(ℓm)1/𝛿/m<p≤x/m

1 + O𝛿(xo(1))
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and 

∑
𝜎(m)=ℓm
m≤x𝛿/ℓ

∑
p≤(ℓm)1/𝛿/m

1 ≪ ℓ1/𝛿 ∑
𝜎(m)=ℓm

m≤x𝛿

m1/𝛿−1 ≪ ℓ1/𝛿x1−𝛿+o(1).

Hence, 

#ℒℓ(𝛿) = ∑
𝜎(m)=ℓm
m≤x𝛿/ℓ

𝜋(x/m) + O𝛿 (ℓ1/𝛿x1−𝛿+o(1)) .

Let 𝛼 < 1. By the Prime Number Theorem, there exists x0 = x0(𝛼) > 0 such that 𝜋(x) > 𝛼x/ logx
whenever x ≥ x0. Thus, if x > (x0)1/(1−𝛿), then 

#ℒℓ(𝛿) > 𝛼x
logx

∑
𝜎(m)=ℓm
m≤x𝛿/ℓ

1
m

+ O𝛿 (ℓ1/𝛿x1−𝛿+o(1))

= 𝛼x
logx

( ∑
𝜎(m)=ℓm

1
m

+ O((ℓ/x𝛿)1+o(1))) + O𝛿 (ℓ1/𝛿x1−𝛿+o(1)) .

From this, we may deduce that 

liminf
x→∞

#W (ℓ; k; x)
x/ logx

> 𝛼 ∑
𝜎(m)=ℓm

1
m

.

Since this holds for any 𝛼 < 1, the lower bound for Theorem 1.1(b) follows.

Remark 3.1 Suppose ℓ ∈ Σ. Proposition 2.7 implies that when k ≡ k0 ≥ 1 is a constant
function, we have 

#W (ℓ; k0; x)
x/ logx

= ∑
|k|<bk0

#S(a, b; k; x)
x/ logx

∼ ∑
0<m<k0/ℓ

b∣m
𝜎(m)=ℓm

1
m

(3.11)

as x → ∞. The rightmost quantity of (3.11) converges to ∑
𝜎(m)=ℓm

b∣m

1/m as k0 → ∞. In 

particular, when ℓ ∈ ℤ and k is an increasing unbound function, one readily observes that 

#W (ℓ; k; x)
x/ logx

∼ lim
k0→∞

#W (ℓ; k0; x)
x/ logx

(3.12)

as x → ∞. However, the asymptotic (3.12) is not necessarily true when ℓ ∉ ℤ because of 
the restriction b ∣ m present in (3.11)!

4 . CO N C LU D I N G D I S C U S S I O N S, N U M E R I C S A N D F U RT H E R 
D I R ECT I O N S

Building upon the method of [3], Pollack–Pomerance–Thompson [31] recently proved a variant 
of the main result of [3], albeit with a weaker error term and uniformity. Specifically, they proved 
that if ℓ ∈ ℤ is kept fixed, the number of sporadic solutions to the equation 𝜎(n) = ℓn + k up to x is 
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O(x3/5+oℓ(1)) as x → ∞ and for any integer k. To the best of the authors’ knowledge, there seem to be 
a number of subtleties in generalizing the method of [31] to the equation b𝜎(n) = an + k. Addition-
ally, as noted in [3], it appears that obtaining an estimate that is fully uniform in all of a, b, k would 
require considerable effort. 

If ℓ is restricted to be an integer and is kept fixed, the same argument from Theorem 1.1 along with 
the main theorem of [31] should yield the slightly improved admissible range c ∈ (0, 2/5). However, 
the barrier of our method seems to be c ∈ (0, 1/2), see [31, Conjecture 4.3]. When ℓ is not an integer, 
it is unclear what the barrier should be and likely somewhat smaller than (0, 1/2).

Theorem 1.1 leads to several interesting consequences which are stated as follows. As usual, k :
[1,∞) → (0,∞) is an increasing function such that 

y𝛿 ≤ k(y) ≤ yc for y ≥ 1. (4.1)

Firstly, it is natural to consider the following quantity: 

𝒟c(ℓ) := lim
x→∞

#W (ℓ; yc; x)
x/ logx

=: lim
x→∞

𝒟c(ℓ; x)

for ℓ ∈ [1,∞) and c ∈ (0, 1). In view of Proposition 2.2, this new ‘distribution function’ is arguably 
well-suited to study the within-perfect numbers with respect to the sublinear threshold. However, this 
distribution function behaves quite differently from the ones described in Definition 2.1.

Proposition 4.1 The function ℓ ↦ 𝒟c(ℓ) is discontinuous on a dense subset of  [1,∞), for any 
c ∈ (0, 1/3).

Proof. It follows from a theorem of Anderson (see [27, p. 270]) that (ℚ∩ [1,∞))\Σ is dense 
in [1,∞). Observe that 𝒟c takes the value 0 on (ℚ∩ [1,∞))\Σ, but it takes positive values 
on Σ by Theorem 1.1. So, 𝒟c is discontinuous on Σ. It is a well-known theorem that Σ is 
again dense in [1,∞) (see [27, p. 275]). This completes the proof.

Secondly, a real number ℓ > 1 is said to be Σ-approximable if there exist a function f (x) → ∞ and a 
sequence of positive integers (mi)i≥1 such that |ℓ − 𝜎(mi)/mi| < 1/f (mi) for any i ≥ 1. It is clear that

Proposition 4.2 If ℓ > 1 is Σ-approximable, then #W (ℓ; k; x) ≫ x/ logx on an unbound set
of x.

In fact, for any function f (x) → ∞, there are irrational numbers ℓ > 1 that are Σ-approximable
by f. This follows from the standard nested interval argument and the theorems of Anderson used in 
the proof of Proposition 4.1.

We conclude this article with some numerics and open problems for further investigation.

Table 1. 𝒟c(2; x) for various values of x and c

k(y) x = 1, 000, 000 x = 10, 000, 000 x = 20, 000, 000

y0.9 3.661860 3.305180 3.196040
y0.8 1.141480 0.945623 0.908751
y0.7 0.494278 0.435395 0.426470
y0.6 0.311567 0.274586 0.267904
y0.5 0.276559 0.259482 0.255962
y0.4 0.264968 0.252956 0.250063
y0.3 0.225980 0.247837 0.247299
y0.2 0.151238 0.195911 0.197430
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Figure 1. This plot shows the quantity #W (2; k; x)/(x/ logx) with k(y) = y/ logy for x = 2 to 10, 000.

We calculate the quotient of Dc(2; x) for various values of c ∈ (0, 1) and at x = 1, 000, 000, x =
10, 000, 000 and x = 20, 000, 000. Note: ∑

𝜎(m)=2m

1
m

≈ 0.2045.

It is natural to ask the following.

Problem 4.3 When c ∈ (1/2, 1), does the correct order of magnitude for #W (ℓ; k; x), with 
ℓ ∈ Σ and k satisfying (4.1), continue to be x/ logx as x → ∞?

In between the sublinear and linear regime, for example, k(y) = y/ logy, Proposition 2.2 gives no 
conclusion. Consider the plot of x ↦ #W (2; k; x)/(x/ logx) for such k from x = 2 to x = 10, 000: 

Problem 4.4 What is the order of magnitude of #W (ℓ; k; x) if the function k satisfies 
yc = o(k(y)) for any c ∈ (0, 1)?

Problem 4.5 What is the order of magnitude for #W (ℓ; k; x) for irrational ℓ?

Problem 4.6 Determine the set of points of continuity for the distribution function 
ℓ ↦ 𝒟c(ℓ).
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