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Dissecting task-based fMRI activity using
normativemodelling: an application to the
Emotional Face Matching Task
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Hannah S. Savage 1,2 , Peter C. R. Mulders 1,3, Philip F. P. van Eijndhoven1,3, Jasper van Oort1,3,
Indira Tendolkar1,3, Janna N. Vrijsen1,3,4, Christian F. Beckmann1,2,5 & Andre F. Marquand 1,2

Functional neuroimaging has contributed substantially to understanding brain function but is
dominated by group analyses that index only a fraction of the variation in these data. It is increasingly
clear that parsing the underlying heterogeneity is crucial to understand individual differences and the
impact of different task manipulations. We estimate large-scale (N = 7728) normative models of task-
evoked activation during the Emotional FaceMatching Task, which enables us to bind heterogeneous
datasets to a common reference anddissect heterogeneity underlying group-level analyses.Weapply
this model to a heterogenous patient cohort, to map individual differences between patients with one
or more mental health diagnoses relative to the reference cohort and determine multivariate
associations with transdiagnostic symptom domains. For the face>shapes contrast, patients have a
higher frequency of extreme deviations which are spatially heterogeneous. In contrast, normative
models for faces>baseline have greater predictive value for individuals’ transdiagnostic functioning.
Taken together, we demonstrate that normative modelling of fMRI task-activation can be used to
illustrate the influence of different task choices and map replicable individual differences, and we
encourage its application to other neuroimaging tasks in future studies.

Task-based functional neuroimaging (functional magnetic resonance
imaging; fMRI) has been widely applied in foundational and clinical neu-
ropsychology to characterise neural processes that underpin a behaviour or
process of interest. The typical approach in such studies is based on com-
paring mean differences in the magnitude and location of activation
(measured by changes in BOLD signal), which has helped us to understand
how these processes may differ between groups defined by biological and
sociocultural factors, psychopathologies, or therapeutic interventions. The
majority of prior research has reported group-level summary statistics,
which inform us of those regions most consistently activated across parti-
cipants/groupsduring task conditions. Thismethod assumes that the neural
mechanisms facilitating the process of interest are consistent across indi-
viduals within and between groups. This assumption enables our under-
standing to reach only so far as ‘the average brain’ of an ‘average control’, or
‘average patient’.

In order to better understand how the brain relates to behaviour it is
essential to move our focus from the group-level to studying individual

differences and consider the neural activation of these processes within the
context of multiple sources of heterogeneity. For example: (i) natural var-
iationwithin the general population, including potentially heterogenous yet
functionally convergent processes, and (ii) heterogeneity within groups of
interest, such as within mental health diagnoses. Furthermore, when
comparing between independent studies, the influence of task design (i.e.
small modifications to an original task) and acquisition parameters should
also be considered but are seldom investigated.

One approach that can provide insight into individual differences is
normative modelling1,2. The normative modelling framework provides
statistical inference at the level of each subject with respect to an expected
pattern across the population, highlighting variation within populations in
terms of the mapping between biological variables and other measures of
interest. This framework has previously been employed by our group and
others to dissect structural variation within large healthy populations3 and
clinical psychiatric populations (e.g. in autism4–6, schizophrenia and bipolar
disorder7), and in relation to dimensions of psychopathology8.Applying this
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method to task-based fMRI data we will be able to characterize how func-
tional activity within each voxel or ROI in the brain differs between indi-
viduals, and hence show with greater nuance the range of task-evoked
activation within the general population2. Further, applying this model to
patients with a current diagnosis (mood and anxiety disorders, autism
spectrum disorders (ASD) and/or attention deficit hyperactivity disorder
(ADHD)) wewill be able tomap differences in these individual participants
with respect to the reference cohort. This may reveal unique clusters of
deviation patterns, within and/or across diagnostic categories.

In this study, we use the Emotional Face Matching Task (EFMT) to
demonstrate the potential of the normative modelling method to identify
individualdifferences in task-based fMRI.TheEFMT,alsocommonly referred
to as the ‘Hariri task’, has beenused in over 250 fMRI studies since it wasmost
notably introduced in 20029,10. This task asks participants tomatch one of two
images that are simultaneouslypresented at thebottomof the screen, to a third
target image displayed at the top of the screen; participants match images of
facial configurations consistent with the common view of prototypic facial
expressions,most frequentlyof fearor anger, or similarlypositionedgeometric
shapes.Matching faces, as compared tomatching shapes, evokes explicit and/
or implicit emotional face processing, which has previously been shown to
engage the amygdala, fusiform face area, anterior insula cortex, the pregenual
and dorsal anterior cingulate cortex, the dorsomedial and dorsolateral pre-
frontal cortex, and visual input areas. Previous work has related activity to
biological and demographic variables, and compared betweenmany different
clinical groups and developmental spectrums.

Due to its experimental simplicity and focus on subcortical circuitry
relevant to brain disorders, theEFMThas been implemented in anumber of
large-scale neuroimaging initiatives including the UK Biobank11, the
Human Connectome Project (HCP)12,13, HCP Development14, the
Amsterdam Open MRI Collection Population Imaging of Psychology
(AOMIC PIOP2)15, and the Duke Neurogenetics Study (DNS). We take
advantage of these large open-access/shared datasets to collate a large
representative sample of over 7500participants fromsix sites tofirst (i) build
reference normative models that highlight the natural variation of func-
tional activity evoked by the EFTM [as measured by the task contrasts
faces>shapes and faces>baseline], and (ii) determine how the model’s pre-
diction relates to age, sex, and variations in task design.We then apply these
models to over 200 participants with a current mental health condition or
who are neurodivergent from theMIND-Set cohort (Measuring Integrated
Novel Dimensions in neurodevelopmental and stress-related psychiatric
disorder)16, to (iii) map deviations in patients with a current diagnosis
(mood and anxiety disorders, ASD and/or ADHD) relative to the reference
cohort, both at the group level and at the level of the individual. We show
that despite the ostensible simplicity of this task and robust group effects,

there is considerable inter-individual heterogeneity in the nature of the
elicited activation patterns and that such differences are both highly inter-
pretable and predict cross-domain symptomatology in a naturalistic clinical
cohort.

Results
Group levelcomparisonsshowconsistenteffectsacrosscohorts
First, we performed a classical group comparison to provide a reference
against which to understand the inter-individual differences in sub-
sequent analyses. To achieve this, we randomly selected 100 random
individuals’ FSL pre-processed data into fixed‐effects general linear
models to create group level maps for the faces>shapes (Fig. 1a) and
faces>baseline (Fig. 1b) contrasts (see methods). This also served as a
sanity check to ensure the data was comparable to past literature. Overall,
positive task effects (activations) for faces>shapes were found in the
bilateral inferior and middle occipital lobe and the calcarine cortex (V1)
extending anterior-ventrally to the bilateral lingual and fusiform gyrus,
and anterior-dorsally to the middle and inferior temporal gyrus; the
bilateral amygdala extending into thehippocampus; the bilateral temporal
pole; a dorsal region of the vmPFC; and the bilateral middle and inferior
frontal gyrus. Task-related deactivations were found across regions
comprising the default mode network, including the anterior and pos-
terior cingulate cortex and precuneus, the precentral gyrus and supple-
mentary motor area and the inferior temporal lobe.

Fitting reference normative models for emotional face
processing
Next,we estimatednormativemodels of EFMT-relatedBOLDactivation for
the face>shapes and faces>baseline contrast using data from 7728 indivi-
duals across the lifespan. To achieve this, we split the data into training and
test splits, stratified by site (face>shapes – train: 3885, test: 3843; faces>ba-
seline – train: 3778, test: 3950; see Supplementary Fig. 1), then fit a Bayesian
Linear Regressionmodel that predicted the single subject level activation for
each voxel of the brain, as a function of sex, age, and acquisition and task
parameters (see methods). Explained variance in the test set was good
(reaching 0.525), especially in regions that showed activation at the group
level (Fig. 2) including the occipital lobe/visual cortex and the bilateral
amygdala (faces>shapes: Fig. 2a; faces>baseline: Fig. 2d). As shown in
Supplementary Fig. 5a, c in most voxels the skew and kurtosis was accep-
table (i.e., −1 < skew < 1 and kurtosis around zero). For a very small
proportion of voxels this was not the case; the most ventral region of the
vmPFC (i.e. the bottomborderof the brain)was themost negatively skewed.
As these voxels spatially overlapwith those showing positive kurtosis, which
likely reflects the extended negative tails of the distributions in these voxels,

Fig. 1 | Task evoked activation. Two representative groups maps (from HCP Young Adult and UK Biobank), illustrating regions where participants show greater BOLD
signal (z-statisticmaps, thresholded at > ±2.6) to (a) faces, as compared to shapes (faces>shapes), and (b) faces, as compared to baseline (faces>baseline). x,y,z =−4,−6,−16.
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we interpret this to reflect the varying degrees of signal dropout, more so
than biological variation. Despite our efforts to ensure signal coverage
within these voxels and minimal motion artefacts in the data used to con-
struct the model, we do advise readers to interpret deviation scores within
this region with caution.

Voxel-wise deviations show considerable inter-individual
variability
We then used these normative models to quantify the degree of inter-
individual variability. To achieve this, for each participant we created a
thresholded normative probability map (NPM; deviation scores >± 2.6)

Fig. 2 | Evaluation and deviation scores from the faces>shapes (left) and
faces>baseline (right) normative models. Explained variance is high in the nor-
mative models, irrespective of whether they are built using the face>shapes contrast
(a), or the faces>baseline contrast (d). Histograms show the relative frequency of the

total number of deviations that a participant has for each model (b, e). Normative
ProbabilityMaps illustrate the percentage of participants of the total samplewho had
positive (hot colours) or negative deviations (cool colours) >± 2.6 within each voxel,
for the faces > shapes (c) and faces>baseline (f) models. x, y, z =−4, −6, −16.
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which indicates the difference between the predicted activation and true
activation scaled by the prediction variance, and therefore shows the voxels
where that participant had greater or less activation thanwould be expected
by the normative models. Figure 2b, e show the frequency of the total
number of deviations that individuals had from the faces>shapes, and
faces>baseline models, respectively. Within each voxel, we then counted
how many participants had positive or negative deviations (>± 2.6). The
resulting brainmaps illustrate the variability in themagnitude of functional
activation per voxel, across the population for the two task contrasts (Fig. 2c,
f). This shows that: (i) there is considerable inter-individual variability
underlying themean effects and (ii) that the spatial distributionof individual
deviations mostly occurs within the task network. Every voxel of the brain
had at least one subject with a deviation >± 2.6 (not shown), although, as
illustrated, there were regions including the medial occipital lobe extending
to the bilateral fusiform gyrus and inferior temporal lobe, the bilateral
inferior frontal gyrus extending to the precentral gyrus, and the posterior
regionof the vmPFC,whereindeviationsweremore frequently observed.As
there were minimal differences in the evaluation metrics between models
built using either contrast, and as the contrast faces>shapes is most com-
monly reported in prior literature, we use this as our primary contrast for
our further analysis of the reference model.

Voxel-wise deviations are reliable: Test-Retest
The aforementioned normative models were re-generated removing all
participants from the original HCP Young Adult sample for whom HCP
Retest data was available (n = 42). The original HCP Young Adult (Test)
data and the Retest data were then independently applied to generate voxel-
wise deviation scores per individual, per session (Fig. 3a, b). The intra-class
correlation coefficients were moderate to good (Fig. 3c), and themagnitude
of deviations fromTest and Retest sessions were highly positively correlated
(Fig. 3d) in regions including the medial occipital lobe extending to the
bilateral fusiform gyrus and inferior temporal lobe wherein large deviations
weremore frequently observed.Deviation scores in only 5.2%of voxelswere
significantly different between Test and Retest, with the largest differences
(>± 0.5) predominantly observedwithin the vmPFC region (Fig. 3e). This is
consistent with the notion that deviations within this region are particularly
sensitive to signal drop out which is likely session dependent; synony-
mously, deviations in this region were also not highly correlated. Qualita-
tively, the NPMs were replicated across Test-Retest sessions. This analysis
was also performed for the faces>baseline models; results lead to the same
conclusions as for the face>shapes models (Supplementary Fig. 6).

Separable effects of input variables on model predictions
Next,we examined structure coefficients fromourmodels to disentangle the
effects of different input variables. Structure coefficients provide insight into
the bivariate relationship between the effect observed (in this case the pre-
dicted z-stat BOLD activation), and the predictor (or covariate of interest)
without the influence of other covariates in the model. As shown in Fig. 4,
the direction of the relationship between input variables and the predicted
BOLD activation, and the fraction of the explained variability can be
meaningfully separated for interpretation. Some input variables, namely
acquisition parameters, showed overlapping effects (with sensical direction
flips) likely due to their relatively high correlation and limited variability
across sites; thenumber of target blocks, volumesacquired, use ofmultiband
sequence, the length of the TR, and site all showed a similar relation to
predicted activity (available in supplementary data files).

Increased age (Fig. 4. Top row -Age)was related to decreasedpredicted
activity across the peripheral/surface of the brain, as well as regions sur-
rounding the ventricles, and increased activity in midline regions of the
default mode network, the bilateral insula, the fusiform face area extending
to the para-hippocampal gyrus and the superior temporal gyrus. Being
female (Fig. 4. Top row - Sex), was related to increased mid-to-anterior
insula and cingulate cortex activation. Predictions were only minimally
influenced by intra-cranial volume (supplementary data file).

We further illustrate the ability of this method to disentangle the
influence of task design choices, on predicted activation. For example,
task length, the influence of the matching rule and the stimuli presented.
The longer the task (Fig. 4. Middle row - Task length), the greater the
activation within the bilateral amygdala, bilateral insula and V2. Being
told to match the emotional expression, as compared to matching the
faces, related to increased predicted BOLD activity within subcortical
areas including the bilateral putamen, caudate body and medio-dorsal
thalamus (Fig. 4. Bottom row - Instructions). Attending to the emotional
expression also predicted increased activity within the mid-cingulate
and superior frontal gyrus extending to the supplementary motor area,
the posterior medial temporal gyrus the inferior temporal gyrus, and the
medial temporal pole. Conversely, when participants were asked to
match faces (Fig. 4. Bottom row - Instructions), the model predicted
greater activation within the bilateral fusiform gyrus, the middle tem-
poral gyrus, the superior temporal pole, the dorsolateral prefrontal
cortex, and a large area of the inferior parietal gyrus extending to the
supramarginal and angular gyrus. Additionally, when stimuli from the
Ekman series were used (Fig. 4. Middle row - Target stimuli) the model
predicted greater activation within the bilateral inferior occipital gyrus
and the calcarine cortex (V1), the bilateral lingual and fusiform gyrus
extending to the inferior temporal gyrus, as well as in the medial cin-
gulate cortex, an anterior region of the vmPFC, the superior medial
prefrontal cortex, and subcortical regions including the ventral posterior
thalamus, the posterior putamen, para-hippocampus, hippocampus and
amygdala. Conversely, the use of the Nim-Stim Set stimuli related to
greater activity within default mode regions, including a large area of the
ventromedial/medial prefrontal cortex, precuneus, cuneus, as well as the
supramarginal gyrus which extended medially to the anterior and pos-
terior insula, which in turn extended laterally to the superior andmedial
temporal gyri (Fig. 4. Middle row - Target stimuli).

A traditional case-control comparison identifies few differences
between patients and controls
Wethenperformedavoxel-wise case-control comparisonon the rawdata to
test for group level differences between a heterogeneous patient cohort and
matched unaffected controls from the naturalistic MIND-Set sample. As
evidenced in Table 1 (seeDiagnoses), the naturalisticMIND-Set sample has
manypatientswith co-occurring andheterogenousmental healthdiagnosis,
with or without neurodivergence, and is therefore representative of diverse
clinical populations. This analysis revealed very few differences between the
patient cohort, and unaffected controls for faces>shapes and faces>baseline
(Fig. 5). More specifically, comparing patients’ task activation (Fig. 5a – top
row) to controls (Fig. 5a–middle row) for the faces>shapes contrast showed
patients had greater activation in the left temporalmedial gyrus andbilateral
posterior cingulate cortex, as well as in small regions of the supplementary
motor area, and the genus of the anterior cingulate cortex (Fig. 5c –left).
There were negligible differences between patients and unaffected controls
for the faces>baseline contrast (Fig. 5b, c - right).

Application of normative model to a naturalistic clinical sample
Next, we aimed to relate the deviations from these normative models to
psychopathology. To achieve this, we evaluated the patient cohort with
respect to the normative models estimated from the large reference cohort.
For the faces>shapes and faces>baseline models, the explained variance of
the clinical test datawasquite low.Thiswas expected given that this cohort is
quite homogenous with respect to the covariates included in themodel (i.e.,
all subjects were scanned on the same scanner, using the same experimental
paradigm and had an age range considerably narrower than the reference
cohort). This suggests that the variance in BOLD signal was drivenmore by
individual differences, as opposed to the variables included in the model.
The skew and kurtosis of the models were centred around zero. See Sup-
plementary Fig. 8a–h for histograms of these evaluation metrics, and their
respective illustration on the brain.
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Frequency of deviations differentiates patients from reference
test cohort
Next, we compared the frequency of extreme deviations (NPMs thesholded
at > ± 2.6), at the level of each individual, between patients from theMIND-
Set cohort and the reference test cohort for each model type (faces>shapes:

Fig. 6b, c; faces>baseline: Fig. 6e, f). MIND-Set patients had a greater fre-
quencyof deviations relative to the reference test cohort for the faces>shapes
contrast (Mann-Whitney U test = 341806.5, p = 2.02910 ; Fig. 6b). These
deviations were most frequently identified in the lateral ventral prefrontal
cortex, and the bilateral medial and inferior temporal lobe (Fig. 6a). In

Fig. 3 | Test – Retest reliability of deviation scores for faces>shapes models.
Normative ProbabilityMaps illustrate the voxels wherein 2 ormore participants had
positive (a, hot colours) or negative deviations (b, cool colours) > ±2.6 for the
faces>shapes normative models in the Test (top rows) and Re-Test (bottom rows)
samples. Intra-class correlation coefficients unthresholded (left) and thresholded to

showonly regions that had amoderate ICC or higher ( > 0.5; c).Meanwithin-subject
difference per voxel (histogram) illustrated thresholded at > 0.5 (i.e., a change greater
than half a standard deviation between Test and Retest scans (d). The correlation
coefficients (rho) between Test and Retest deviation scores (histogram) illustrated
thresholded by the coefficients of determination (rho2 > 0.3, e). x, y, z =−4,−6,−16.
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contrast, for the faces>baseline contrast individuals there was no significant
difference in the frequency of deviations between the reference test cohort
relative to MIND-Set patients (Mann-Whitney U test = 487921.0, p = 0.22;
Fig. 6e). These comparisonswere repeated excluding the vmPFC region and
the main effects changed minimally for both contrasts.

Associations of patterns of deviation with cross-diagnostic
symptom domains
We then aimed to determine whether multivariate patterns of deviation
from the reference models were associated with cross-diagnostic sympto-
matology. To achieve this, we input whole-brain deviation maps (unthre-
sholded, such that any deviations, irrespective of their magnitude, could
potentially contribute to the observed correlations and removing any risk of
bias) and factor loadings for negative valence, cognitive function, social
processes and arousal/inhibition domains from prior work17 to an estab-
lished penalised canonical correlation analysis (CCA) framework that
enforces sparsity (sparce CCA, SCCA; functional domain loading scores
were available for 217patients)18,19. Significant out of sample associations (10
fold 70%–30% training- test split) were detected both for faces>shapes and
faces>baseline contrasts (mean r of test splits 0.224 and 0.180 respectively,
both p < 0.001 by permutation test; Fig. 6b, e) but with distinct patterns of
effects both in terms of symptom domains and associated brain regions.
More specifically, for the faces>shapes contrast, decreased functioning
predominantly in the negative valence and arousal/inhibition domains
(Fig. 7a) was associated with a pattern of deviations including the right
insula, the bilateral medial prefrontal cortex and pre- and post- central gyri,
the bilateral inferior temporal gyrus, lingual gyrus, bilateral hippocampus
and the right thalamus, as well as the regions in the medial and left lateral
cerebellum (Fig. 7c). By comparison, for the faces>baseline contrast factor
loadings for cognitive functioning and arousal/inhibition (Fig. 7d) were

most strongly related to a pattern comprising bilateral insula, the anterior-
to-medial cingulate cortex extending to the dorsal medial prefrontal cortex,
the pre- and post- central gyri, the rightmiddle frontal and bilateral inferior
frontal gyrus, and the bilateral hippocampus, caudate, putamen and
amygdala, and themedial and left lateral cerebellum(Fig. 7f). TheSCCAwas
repeated to relate participant’s diagnoses with their whole-brain (unthre-
sholded) deviation maps. In contrast to the cross-diagnostic symptom
domains, there was no association between diagnostic labels and deviation
scores.Mean canonical correlationswere small (mean r of test splits <0.1 for
both faces>shapes and faces>baseline models), and this was not statistically
significant as determined by 1000-fold permutation testing. The SCCAwas
also repeated using a grey matter mask, and using a mask of task positive
regions; the latter we chose to display for ease of interpretation. The results
changed minimally between these three analyses (see grey-matter con-
strained and whole-brain results in Supplementary Fig. 9).

Spatial extent of deviations highlights similarities across, and
differences between diagnoses
Finally, we were interested in mapping the spatial distribution of the
deviations within the clinical sample, and whether this varied according to
the participant’s mental health diagnosis or neurodivergence (note that
subjects can be inmultiple categories; Supplementary Figs. 10, 11). For each
diagnosis, the pattern of deviations was highly heterogeneous, providing
further support for high degree of inter-individual heterogeneity we have
reported previously for mental disorders4,5,7, and underlining the need to
move beyond case-control comparisons at the level of diagnostic groups.

Discussion
In this study we made use of six large publicly available datasets of parti-
cipants completing the fMRIEFMT tobuild a reference normativemodel of

Fig. 4 | The relationship between input variables and the predicted BOLD acti-
vation for faces>shapes. Maps show the correlation coefficients (rho) thresholded
by their respective coefficients of determination (rho2 > 0.3) of selected model input
variables. This can be interpreted as showing how predicted BOLD activation for the
faces>shapes contrast relates to the input variables of the normativemodels. Positive

correlations (warm colours) indicate greater activation for higher values of the input
variable and negative correlations (cool colours) greater activation for lower values
of the input variable (note that some variables are dummy coded, e.g., target stimuli,
instructions). x, y, z =−4, −6, −16.
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functional activation underlying emotional face processing. We collated
data from over 7500 participants and show that our voxel-wise models can
explain up to 50% of variance in observed BOLD signal, with the remaining
unexplained variance representative of individual differences in functional
activation (deviation scores). We unpacked the variance explained by the
models, to show how the predicted activation related to the models’ input
variables, namely demographics, variations in task design, and acquisition
parameters. Lastly,we tested our referencemodelwithdata froma sample of
patients with heterogenous and frequently co-occurring psychiatric con-
ditions (mood and anxiety disorders, and neurodevelopmental conditions).
Our analyses show that: (i) there is considerable inter-individual variation
superimposed on the group effects customarily reported in fMRI studies,
(ii) that such variation is predictive of psychiatric symptom domains in a
cross-diagnostic fashion and (iii) while an overall effect of diagnosis was
evident, this was highly individualised in that the overlap of deviations
amongst individuals with the same diagnosis was low. This implies that
there are brain regions wherein patients more frequently have deviations
irrespective of the type of diagnoses, and other regions wherein the fre-
quency of deviations appears specific to the mental-health condition or
neurodivergent diagnosis.

A key feature of the normative modelling framework in the context of
multi-site fMRI data is that it allows us to aggregate data across multiple
samples by binding them to a common reference model. This provides
multiple benefits: it removes site effects from the data without requiring the
data to be harmonized20, which avoids the introduction of certain biases due
to harmonisation21 and allows meaningful comparisons to be drawn across
studies. For example, this allows aggregation of different studies to better
understandvariation across cohorts or across the lifespan and tounderstand
the effect of different task parameters on functional activity across cohorts.
Moreover, by placing each individual within the same reference model this
provides the ability to quantify, compare and ultimately parse heterogeneity
across studies.

Traditional group-level task contrasts, as shown in Fig. 1, inform us of
the regions most consistently activated across participants/groups during
task conditions. Their interpretation has reliedheavily on the assumption of

spatial homogeneity of activation between subjects; an assumption that the
deviation scores fromour referencemodel show to be largely untrue (Fig. 2).
We show that such group effects reflect a small proportion of the variation
amongst individuals andusing the normativemodelling frameworkwemap
the underlying heterogeneity, separating variation in the intensity and
spatial extent of task-evoked functional activation between-subjects attri-
butable to known factors such as site effects, demographics, acquisition
parameters, and differences in EFMT paradigm design. More importantly,
we show that residual differences in the neuronal effects elicited by the task
are highly meaningful in that they were predictive of psychiatric sympto-
matology and can be used to understand inter-individual differences in
functional anatomy and its relation to clinical variables. In our test reference
population, while every voxel of the brain had at least one participant with a
large deviation, some regions considered active during the faces condition
(as compared to shapes), such as the medial occipital lobe, fusiform gyrus
and inferior temporal lobe, were also regions in which positive deviations
were frequently observed.

When building our reference models, we chose to include and control
for multiple variables that we reasoned may influence the BOLD signal
observed. These included demographic factors such as age and sex, and task
design choices that could influence the BOLD signal generated, as well as
acquisition parameters that could influence the BOLD signal recorded.
Some effects, such as that of age and task instructions were relatively strong
and interpretable, for example, increased age predicted decreased activity in
surface areas of the brain and regions surrounding the ventricles likely
reflecting decreased signal due to age-related atrophy, and instructing
participants to match emotional expressions, as opposed to matching faces,
increased the predicted activity in the thalamus whichmay reflect increased
engagement of regions associated with affective processing. On the other
hand, other variables explained relatively little variance in the predictions
(e.g., sex). In our samplemany predictor variables were collinear across sites
which limited our ability to detect systematic differences resulting, for
example, from differences in the task paradigm or age. In this work we
decided to keep all variables in the model and used structure coefficients to
identify the importance of different variables,whichare relatively insensitive

Fig. 5 | General linear model results comparing patients to controls for the
faces>shapes and faces>baseline contrasts.Maps show regions activated (warm
colours) and deactivated (cool colours) for faces>shapes (a) and faces>baseline (b),

for patients (top row) and unaffected controls (middle row) from the MIND-Set
cohort. c Regions where patients have more activation than controls (bottom row)
(z-statistic maps, thresholded at > ±2.6). x, y, z =−14, −13, −9.
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to collinearity. This follows prior work to identify specific effects of input
variables on model predictions, for example the influence of specific
adversity types on predicted morphometric changes22. However future
researchers may consider reducing the dimensionality of their inputs prior
to model construction. Future studies with larger numbers of more diverse
samples (e.g., more variations on the basic task design) that include parti-
cipants across the entire lifespan, as is possible in consortium such as
ENIGMA, will allow for more fine grained analyses of the effect of task
parameters on inter-individual variationwithin the population. Despite our
efforts to collect a large representative sample of participants completing an

EFMT, participants inmid-adulthood (specifically aged between 37 and 46)
wereunder-represented inour sample.Whilewedonot expect our results to
change dramatically with the inclusion of additional participants, as pre-
vious studies suggest any age-related changes are best captured by gradual
linear or second order trends, future studies should aim to ensure a con-
tinuous and overlapping age distribution from samples to minimise the
conflation of predictor variables.

We demonstrated that distinct patterns of deviations, derived from
each model type (faces>shapes or faces>baseline), were associated with
unique profiles of functioning across four transdiagnostic domains. The

Fig. 6 | Testing the faces>shapes (left) and faces>baseline normative models with
the MIND-Set cohort. Normative Probability Maps illustrate the percentage of
participants of the clinical sample who had positive (hot colours) or negative
deviations (cool colours) > ±2.6 within each voxel, for the faces>shapes (a) and

faces>baseline (d) models. Histograms and box plots show the relative frequency
andmean number of the total deviations that a participant has for faces>shapes (b, c)
and faces>baseline (e, f) models. Box plot whiskers (error bars) show 1.5 times the
interquartile range from the lower or upper quartile. x, y, z =−4, −6, −16.
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distinct patterns of effects, in terms of the implicated symptomdomains and
associated brain regions, make sense in the context of relevant existing
literature. For example, negative affect, impulsivity and emotional liability
have previously been related to functional activitywithin the bilateral insula,
motor cortex andhippocampus23, and cognitive functioninghas been linked
to activity within the medial prefrontal cortex, anterior-to-medial cingulate
cortex, superior frontal gyrus. This not only validates the interpretability of
findings from these normative modelling analyse, but also illustrates the
potential for future researchers to use individualised deviation maps to
better understand the neural processes that underly cognitive and affective
functioning, within and across diagnostic boundaries. Furthermore,
approaching dysfunction through the normativemodelling framework and
transdiagnostic functional domains appears to more closely relate to
underlying biology. This reflects practitioners implementation of clinical
care and the use of overlapping treatments for differing disorders, which
often does not fit a binary classification paradigm. Using this modelling
approach may also better allow for the quantification of neurodivergence,
not as being ‘disordered’ but rather as varying phenotypic expressions along
a characterised spectrum.

It shouldbenoted, however, thatwithin anyonevoxel of the brain, only
~20%of the clinical sample (be that in the total sample, or within disorders)
had large deviations. This suggests that the exact location of deviations is
very variable between individuals, and could explainwhymanyprior studies
have not found significant differences when performing traditional case-

control analyses. In this study, we aimed to estimate the degree to which the
deviations fromthenormativemodelswere associatedwith cross-diagnostic
symptomatology, but other approaches may also be useful, as outlined in
Rutherford, et al. 24. For example, clustering algorithms could be applied to
derive a stratification of individuals4,5 or to identify heterogenous yet con-
vergent functional processes (many-to-one functional mappings)25, and
supervised learning methods may be useful to assess the degree to which
specific clinical variables can be predicted from the patterns of deviationswe
report.

Interestingly, the normativemodels of functional activation built using
the faces>shapes have a different pattern of association with symptoma-
tology relative to the faces>baseline contrast. This suggests that the two
contrasts carry complementary information about psychopathology. The
frequency of deviation scores was significantly greater in the clinical cohort,
compared to the reference cohort, when using the faces>shapes contrast,
and theweights attributed to each of these deviations (at a voxel-level) in the
SCCA were associated with different symptom domains. Neither contrast
was significantly predictive of diagnosis. By comparison, the relationship
between the frequency of deviation scores and domains of function was
stronger when using models built using the faces>baseline contrast, which
was further supported by the stronger canonical correlation between factor
loadings for functional domains and deviations from the faces>baseline
models. Taken together, this could be interpreted to suggest thatwidespread
deviations, best captured by the faces>shapes contrast, are indicative of

Fig. 7 | Sparse canonical correlation analyses (SCCA) between functional
domains, and deviation scores from faces>shapes or faces>baseline normative
models within task positive regions.Weights per factor to latent variable of psycho-
social functioning (a, d). Canonical correlation between 4 functional domains and
deviation scores from (b) faces>shapes and (e) faces>baseline normative models
(regularisation 10%) within task positive regions (whole-brain maps masked by a

HCP Young Adult group level T-statistic map thresholded at t > 3.6). Box plot
whiskers (error bars) show 1.5 times the interquartile range from the lower or upper
quartile. Mean voxel-wise weights to latent variable of deviation scores from (c)
faces>shapes normative models and from (f) faces>baseline. All results are statis-
tically significant with 1000-fold permutation tests (*** = p < 0.001).
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global alterations in functioning which are broadly linked to different
clinical diagnoses. By comparison, fewer but more focal deviations and/or
the ability to detect abnormal baselines of activation26,27, best revealed using
the faces>baseline, have greater relation to specific functional domains.
Future researchers should carefully consider the task contrast used to
construct their normative models.

Concerns for thewithin-subject reliability of task-based fMRIdata28 are
not to be dismissed in the context of ourmodelswhich are currently built on
cross-sectional data. While we acknowledge the limitations imposed due to
the general limits of test-retest reliability of task fMRI, our results
encouragingly show that the deviation scores from a normative model
appear replicable over Test-Retest scans. We do note, however, they were
most consistent in visual regions including the medial occipital lobe
extending to the bilateral fusiform gyrus that have previously been shown to
be the most reliable over test-retest intervals28. Comparisons between
individuals’ voxel-wise deviations suggested that the magnitude of scores
remained relatively stable across ~95% of the brain, and further identified
regionswhere deviation scores weremost influenced by session (i.e. vmPFC
regions likely due to session specific signal drop out). The normative
modellingmethod further provides encouraging evidence for the use of task
fMRI readouts as individualised biomarkers as we show by their ability to
predict clinical variables in the context of SCCA. The normative modelling
framework is also ideally positioned to directly test the reproducibility of
fMRI within subjects. In follow-on work to the present manuscript, we are
currently developing an extension to explicitly include test-retest variability
in the model by testing reference models with repeat scans from partici-
pants, and compare individuals’ deviation scores between the two tests,
whilst explicitly quantifying within subject variance, such that it provides a
lower bound on the size of deviation that can be considered meaningful29.
Alternatively, where multiple repeats are available, hierarchical models can
be used to accommodate dependencies between subjects20 which would
provide more precise estimates of individual deviations. The application of
the normative modellingmethod to fMRI can easily be generalised to other
tasks (e.g. the monetary incentive delay incentive processing task or n-back
work memory task) and need not stop at predicting functional activation.
With the right data sets, this method could use fMRI data to predict many
other variables including psychophysiological responses or subjective rat-
ings of affect.

With this work, we show the potential for the normative modelling
framework to be applied to large task-based fMRI data sets to bind het-
erogeneous datasets to a common reference model and enable meaningful
comparisons between them. Using this approach, we illustrate the hetero-
geneous intensity and spatial location, the reliability of task-evoked acti-
vation within the general population2 using the EFMT in a sample of over
7500 participants. Further, we applied this model to patients with a current
diagnosis (mood and anxiety disorders, ASD and/or ADHD) and demon-
strated the transdiagnostic clinical relevance and further potential for
deviation scores derived from this method. The potential of this method is
clear; normative modelling of task-based functional activation can facilitate
a better understanding of individual differences in complex brain-behaviour
relationships, and further our understanding of how these differences relate
to mental health and neurodivergence.

Methods
Data sets
We collated a large reference sample from 6 independent sites for whom
high quality fMRI data for the EFMT are available: AOMIC PIOP2, Duke
Neurogenetics Study, HCP Development, HCP Young Adult (1200
release), UK Biobank, and the MIND-Set cohort which also includes a
clinical population. For sample details per site see Table 1. Informed
consent was obtained from all participants, and, for publicly available
datasets ethical approval was provided by the relevant local research
authorities for the studies contributing data. The MIND-Set study was
approved by the Commissie Mensgebonden Onderzoek Arnhem-
Nijmegen.

fMRI task paradigms
All sites collected a variant of the EFMT9. Although specific parameters
varied, the overall design was consistent: in each face trial participants were
presented with three images of human faces in a triangular formation.
Participants were instructed to identify which of two faces/expressions
presented at the bottom of the screen matched the one presented at the top
of the screen by pushing a button with the index finger of their left or right
hand. Multiple face trials were presented in one face block, and the task
includedmultiple face blocks (see Table 1 for the number of trials per block,
and number of blocks per site). As a somatomotor control, participants also
completed shape trials, wherein they were presented with three geometric
shapes (circles and ovals) and asked to indicate which of the two shapes
presented at the bottom of the screen matched the one at the top. Multiple
shape trials were concatenated to form one shape block, which were
interspersed between face blocks. For further information about the control
stimuli, see Supplementary Table 1).

Two paradigms (HCPYoungAdult andHCPDevelopment) included
an inter-trial interval (white fixation cross on black screen), and three sites
(HCP Young Adult, HCP Development and AOMIC PIOP2) had an
instruction trial that preceded the start of each block. Tasks varied in their
duration from150 to290 s,which indirectly corresponded to the acquisition
of between 135 and 336 functional volumes.

fMRI data acquisition
Site specific acquisition parameters per site are detailed inTable 1, and in the
following site specific protocols: AOMIC PIOP215, HCP Young Adult13,
HCP Development30, UKBiobank31, Duke Neurogenetics Study (https://
www.haririlab.com/methods/amygdala.html) and MIND-Set32.

fMRI pre-processing
Data pre-processing was harmonised across all sites; a FSL-based pipeline33

was consistently applied to decrease the likelihood of introducing variance
due to pre-processing differences. Since the HCP young adult, HCP
development and UKB Biobank data were already processed relatively
consistently, we reused the processing pipelines provided by the respective
consortia (for HCP sites we used the minimal processing pipeline)31,34, with
additional steps taken as necessary (e.g. matching smoothing kernels across
studies). At a within-subject level, all functional data underwent gradient
unwarping, motion correction, fieldmap‐based EPI distortion correction
(where fieldmaps were available), boundary‐based registration of EPI to
structural T1‐weighted scan, denoising for secondary head motion‐related
artifacts using automatic noise selection, as implemented in ICA‐
AROMA35, non‐linear registration into MNI152 space, and grand‐mean
intensity normalization. Where applicable, datasets were resampled to
2mm3 resolution, and all data were spatially smoothed using a 5mm
FWHM Gaussian kernel.

Quality control
Participants were excluded if their mean relative RMS was greater than
0.5mm.Additional quality control was performed for signal coverage in the
prefrontal cortex for the UK Biobank sample (see supplementary methods
and Supplementary Figs. 2, 3).

Statistics and Reproducability
fMRI general linearmodelling (GLM) – single subject.Wematched the
methodological approach used to estimate the parameters within aGLM-
based analysis, given evidence to suggest this analytic step can sig-
nificantly contribute to the variability of reported results between sites36.
Therefore, for each site, the linear model parameter were estimated using
the FSL software package version 6.03 (HCP Young Adult, HCP Devel-
opment, MIND-Set, Duke Neurogenetics Study; http://fsl.fmrib.ox.ac.
uk/) or as downloadable form UK Biobank31. Two regressors were con-
structed from the faces and shapes blocks which were then convolved
with a canonical double‐gamma haemodynamic response function and
combined with the temporal derivatives of each main regressor. These
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were treated as nuisance regressors and served to accommodate slight
variations in slice timing or in the haemodynamic response. Data were
pre‐whitened using a version of FSL‐FILM customized to accommodate
surface data, the model and data were high‐pass filtered (200 s cut-off).
Fixed‐effects GLMs were estimated using FSL‐FLAME 1: first for inde-
pendent runs, then when necessary combining two runs into a single
model for each participant (HCP Young Adult). and the AOMIC, DNS
and MIND-Set maps were transformed into standard space using
FNIRT37. We created summary group level maps per site (for a random
sample of 100 participants; see Fig. 1 and Supplementary Fig. 4), as a
sanity check to ensure the data was otherwise comparable to past lit-
erature and performed a case-control comparison between patients with
a current diagnosis (mood and anxiety disorders, ASD and/or ADHD)
and unaffected controls in the MIND-Set cohort (see Fig. 5).

Normative models. The z-statistic maps from the contrast face>shapes
(contrast vector [1, -1]; 5 mm smoothed in standard space), for each
subject, were used as response variables for the normativemodels. That is,
we specified a functional relationship between a vector of covariates and
responses. We created normative models of EFMT-related BOLD acti-
vation maps, as a function of site, age, sex, intra-cranial volume, and
acquisition [TR, multiband sequence, number of volumes collected (per
run where applicable)] and task parameters [task length (in seconds, and
per run where applicable), number of target blocks, instructions for faces
condition, and the target stimuli (i.e. which stimulus set they came
from)], by training a Bayesian Linear Regression (BLR) model to predict
BOLD signal for the faces>shapes contrast. Generalisability was assessed
by using a half-split train-test sample (train: 3885, test: 3843). In pre-
liminary analyses, we compared a warped model which can model non-
Gaussianity with a vanilla Gaussian BLR model. Since the fit was com-
parable across most metrics and regions, we focus on the simpler
Gaussian model below.We included dummy coded site-related variables
as additional covariates of no-interest. We also created models to predict
BOLD signal for the faces condition alone (i.e. face>baseline contrast
vector [1, 0]; train: 3778, test: 3950 split). This contrast maps brain
activation to the faces stimuli, as compared to the implicit baseline (i.e.,
null-events or off-task activity). This was performed in the Predictive
Clinical Neuroscience toolkit (PCNtoolkit) software v0.26 (https://
pcntoolkit.readthedocs.io/en/latest) implemented in python 3.8.

Quantifying voxel-wise deviations from the reference
normative model. To estimate a pattern of regional deviations from
typical brain function for each participant, we derived a normative
probability map (NPM) that quantifies the voxel-wise deviation from
the normative model. The subject-specific Z-score indicates the dif-
ference between the predicted activation and true activation scaled by
the prediction variance. We thresholded participant’s NPM at
Z = ± 2.6 (i.e. p < .005) 7 using fslmaths and summed the number of
significantly deviating voxels for each participant, and then across the
total sample.

Test-Retest reliability of voxel-wise deviation scores. To determine
the Test-Retest reliability of the voxel-wise deviations, we utilised the
HCP Retest data (n = 42, mean age = 30.21 ± 3.43 years, 14 F). HCP
Retest datawas pre-processed as detailed above for theHCPYoungAdult
site.We re-generated the aforementioned normativemodels removing all
participants from the original HCPYoungAdult sample forwhomRetest
data was available. We then tested the new normative models with the
original HCPYoungAdult (Test) data and the Retest data; i.e. participant
1-n Test scans, and Participant 1-n Retest scans were independently
tested against the new normative models. We quantified Test-Retest
reliability in three ways: (i) determining the intra-class correlation
coefficient per voxel (3,1; pingouin.intraclass_corr), (ii) quantifying the
change in deviation score per voxel, both within- and across-subjects
(mean difference) using paired t-test (scipy.stats), and (iii) quantifying

the Pearson correlation coefficient between voxel-wise deviations from
the Test vs Retest data.

Supplementary out of sample test of reference normative models.
We collated a new sample of 5000 participants from UK Biobank to test
against the reference models. These were the next 5000 participants from
the UK Biobank population (2325 F; mean age 63.42 ± 7.54 years), as
ranked by vmPFC coverage (i.e. decreasing data quality in this region).
Results of this analysis replicated the main findings and can be found in
the supplementary materials.

Effects of input variables on model predictions. In order to probe the
magnitude of the influence of task design parameters on the predicted
BOLD signal, we examined the structure coefficients (correlation coef-
ficients) of each input variable. This approach is preferable to regression
coefficients when variables are collinear38. Selected structure coefficient
maps are displayed.

Clinical application. We tested the normative models we created using
the reference data, with a heterogeneous patient sample from theMIND-
Set cohort (n = 236, mean age = 37. 1 ± 13.27; 41.94% female). This is a
naturalistic and highly co-morbid sample derived from out-patients of
the psychiatry department of Radboud University Medical Centre. This
included 150 patients diagnosed with a current mood disorder (unipolar
or bipolar depressive disorder), 12 with generalised anxiety disorder, 22
with social phobia, 14 with panic disorder, 71 with attention-deficit-
hyperactive-disorder, and 55 autistic individuals (see Table 1 for full
details and note that subjects can be in multiple diagnostic categories).
The clinical relevance of our models can also be tested in the context of
transdiagnostic symptom domains; a conceptualisation of mental func-
tioning that transcends diagnostic boundaries and allows for nuanced
brain-behaviour interpretations. As such, for 217 (of our 236) patients for
whom all required data was available, we repeated a previously validated
factor analysis method (performed in SPSS v24.0, oblique rotation)17 to
obtain individual factor loadings on 4 functional domains: (1) negative
valence, (2) cognitive function, (3) social processes and (4) arousal/
inhibition.

Quantifying patients’ voxel-wise deviations from the reference
normative model. As for the reference cohort, we generated NPMs to
estimate the pattern of regional deviations from typical brain function for
each participant, and summed across the sample. We then used aMann-
Whitney U test to compare the frequency of deviations (>±2.6) between
the reference controls and patients from the MIND-Set cohort.

Relating deviations to transdiagnostic functional domains. In order
to map the association of the deviation scores with cross-diagnostic
symptomatology, we performed sparse canonical correlation analyses
(SCCA) to relate participant’s scores in the four aforementioned func-
tional domains or their diagnoses, to their whole-brain (unthresholded)
deviation maps using an established penalised CCA framework that
enforces sparsity18,19. Specifically, we applied variable shrinkage by adding
an l1-norm penalty term to stabilise the CCA estimation and ensure the
weights for the deviation scores were more interpretable. We follow the
formulation outlined in Witten, et al.18., where we refer to for details. In
brief, given two data matrices X and Y with dimensions n× p and n× q
respectively (here, these are the cross-diagnostic factor loadings and
whole-brain deviations), and two weight vectors u and v this involves
maximising the quantity ρ ¼ uTX

T
Yv subject to the constraints jjujj221,

jjvjj221, jjujj1c1 and jjvjj1c2, where the penalties pðuÞ and pðvÞ are the
standard L1-norm. We set the regularisation parameters for each view
heuristically (c1 ¼ 0:9p corresponding to light regularisation for the
factor scores, c1 ¼ 0:1q, corresponding to heavy regularisation for the
deviation maps such that no more than 10% of voxels were selected).
While it is possible that better performance would be obtained by
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optimising the regularisation parameters across a grid, we did not pursue
that here due to the moderate sample size for the clinical dataset. We
assessed generalisability of SCCA by splitting the data in to 70% training
data and 30% test 10 times. Finally, we wrapped the entire procedure in a
permutation test where we randomly permuted the rows of the beha-
vioural matrices 1000 times to compute an empirical null distribution for
significance testing. We performed an additional set of sensitivity ana-
lyses to more carefully evaluate the sparse canonical correlation analyses
(SCCA). Specifically, we repeated the SCCA, first using a grey matter
mask (Harvard Oxford probability thresholded at 30% probability), and
then again using amask of task positive regions (HCPYoungAdult group
level T-statisticmap thresholded at t > 3.6). For ease of interpretation, the
results generated using themask of task positive regions is reported in the
main text, while the whole-brain and grey-mattermasked analyses can be
found in Supplementary Fig. 8.

Spatial patterns of deviations by primary and co-occurring diag-
noses. We illustrated the spatial heterogeneity in deviations between
different diagnoses (note that subjects can be in multiple categories), and
further, compared patients with a single diagnoses to those with two,
three, or more than three diagnoses, to determine whether and if so, how
the location of deviations related to the number of co-occurring diag-
noses a patient has.

Data availability
Alldatawas existingdata and readers can inquire for access on the following:
UK Biobank: https://www.ukbiobank.ac.uk/, HCP: https://www.
humanconnectome.org/, Duke Neurogenetics Study: https://www.
haririlab.com/projects/procedures.html, AOMIC PIOP2: https://nilab-
uva.github.io/AOMIC.github.io/, MIND-Set: Please contact Dr. Janna
Vrijsen to discuss the options (Janna.Vrijsen@radboudumc.nl). Group level
quality metrics (explained variance, skew, kurtosis, and SMSE) and group
level results (normative probability maps i.e. frequency of deviations, ICC
maps) are available as nifti files, and all numerical source data for graphs are
available on Zenodo (https://doi.org/10.5281/zenodo.12515479)39.

Code availability
Scripts for running all analysis and visualizations are available on GitHub
(https://github.com/predictive-clinical-neuroscience/EFMT_Norm_
Models; https://doi.org/10.5281/zenodo.12515866)40.
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