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Abstract
A class S of soluble groups is D-bounded when there exists a uniform upper bound for the
lengths d(Γ ) of the derived series for Γ ∈ S. A theorem of Zassenhaus (Abh. Math. Semin.
Hansisch. Univ. 12, 289–312, 1938) states that for each n the class of soluble subgroups of
GL(n, C) is D-bounded. Although Zassenhaus’s theorem is fundamental to the study infinite
discrete linear groups the proof given here is located within the theory of continuous groups
and the only discrete groups which appear are finite.
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1 Introduction

If Γ is a soluble group with derived series {Dr (Γ )}1≤r its derived length d(Γ ) is

d(Γ ) = min{n | Dn(Γ ) = {1}}.
A class S of soluble groups is said to be D-bounded when there exists an integer n such

that d(Γ ) ≤ n for all Γ ∈ S. The theorem of Zassenhaus [13] is of fundamental importance
in studying infinite discrete subgroups of Lie groups. It states that for any given positive
integer n the class of soluble subgroups of GL(n, C) is D-bounded. Despite its fundamental
importance, its coverage in the literature has been rather neglected. In this paper, we shall
re-prove Zassenhaus’s theorem in the form:

Theorem 1.1 If Γ is a soluble subgroup of GL(n, C) then d(Γ ) ≤ (2n2 − 3) log2(n) + 6.

Zassenhaus’s proof is intricate. Its essential feature is the iterated use of the theorem
of A.H. Clifford [3]. Our proof follows the same strategy as that of Zassenhaus but with
different tactics. The inclusion Γ ⊂ GL(n, C) defines an n-dimensional representation of
Γ and Clifford’s theorem applies only in the special case where this representation and its
restrictions to subgroups are completely reducible.
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In Zassenhaus’ account, more work is required to reduce the general case to the above
special case. However, as we show, this aspect of Zassenhaus’s proof can be circumvented
by a straightforward application of the work of Borel on linear algebraic groups, [1], which
was not available when Zassenhaus wrote his paper. Using Borel’s work and a theorem of
Mostow [9] we can, in a single step, reduce the problem to the case where Γ is a compact Lie
subgroup of GL(n, C). Then by the Peter–Weyl theorem ([11, 12]) the finite dimensional
representations of Γ and its closed subgroups are all completely reducible and Clifford’s
theorem applies immediately.

As is implicit in the title of [13], Zassenhaus’s theorem was motivated by the study
subgroups of Lie groups which are infinite and discrete. It is perhaps paradoxical therefore
that the proof given here is located within the theory of continuous groups and that the only
discrete groups which appear are finite.

To describe our approach in detail we introduce the following notation:

S(n) : the class of soluble subgroups of GL(n, C),

C(n) : the class of compact soluble subgroups of GL(n, C),

Σn : the group of permutations of {1, . . . , n},
�(n) : the set of soluble subgroups of Σn .

As �(n) is finite it is D-bounded and we denote by π(n) its D bound:

π(n) = max{d(H) | H ∈ �(n)}.
The class C(1) consists of the 1-dimensional torus U (1){z ∈ C : |λ| = 1} together with

its finite subgroups. As these are all abelian then d(Γ ) = 1 for all nontrivial Γ ∈ C(1). The
essence of the proof is then to show inductively that:

Theorem 1.2 C(n) is D-bounded by c(n) ≤ max{c(n − 1) + π(n) + 1, π(n2) + 3}.
That being so, it follows from a theorem of Mostow [9] that:

Theorem 1.3 S(n) is D-bounded by s(n) ≤ c(n) + log2(n) + 2.

It remains to estimate the size of c(n), for which it is first necessary to do the same for
π(n) and π(n2). A straightforward, if crude, estimate shows that:{

π(n) ≤ log2(n!) ≤ (n − 2) log2(n) + 1,
π(n2) ≤ log2(n

2!) ≤ 2(n2 − 2) log2(n) + 1.

With these estimates Theorem 1.1 follows directly from Theorems 1.2 and 1.3.
Whilst these estimates are by no means best possible they are nevertheless better than

cubic in n. By contrast, in Zassenhaus’s paper the bounds are not stated explicitly although
one of the preliminary bounds is already beyond astronomical, for example (nn

2+1)! ([13,
p. 294]) which, for n = 3, already vastly exceeds the number of atoms in the Milky Way.
The best estimates are rather complicated but are essentially of first order in n. They depend
upon a far more detailed analysis of soluble subgroups of Σn ; for a detailed discussion on
this point we refer the reader to the paper of M.F. Newman [10].

2 Soluble Groups

If G is a group we denote by (Dr (G))1≤r its derived series; that is

D0(G) = G, Dr+1(G) = [Dr (G), Dr (G)].
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G is soluble when Dm(G) = {1} for some m; the derived length d(G) is then

d(G) = min{m | Dm(G) = {1}}.
We note the following:

(2.1) Let H be a subgroup of G. If G is soluble then so is H and d(H) ≤ d(G).
(2.2) Let ϕ : G → Q be a surjective group homomorphism. If G is soluble then so is Q and

d(Q) ≤ d(G).

If 1 → K → G → Q → 1 is an exact sequence of groups then G is soluble if and only
if K and Q are both soluble, in which case:

d(G) ≤ d(K ) + d(Q). (2.3)

In the special case where the extension is a direct product we have:

d(K × Q) = max{d(K ), d(Q)}. (2.4)

We denote by (Lr (G))1≤r the lower central series of G, that is

L1(G) = G, Lr+1(G) = [G, Lr (G)].
G is nilpotent when Lμ(G) = {1} for some μ; the nilpotent length l(G) is then

l(G) = min{m | Lm+1(G) = {1}}.
The basic relation between the derived series and the lower central series is that Dn(G) ⊂

L2n (G) (cf. [5, p. 15]). It follows easily that

(2.5) If G is nilpotent then G is soluble and d(G) ≤ log2(l(G) + 1) + 1.

3 Soluble Groups of Restricted Type

If G is a group we denote its centre by Z(G). Let n be an integer ≥ 1. By anR(n) structure
we mean a triple (H , Z , A), where

(I) H is a finite soluble group and Z = Z(H) is isomorphic to Cm for some m;
(II) if N is an abelian normal subgroup of H then N ⊂ Z ;
(III) H/Z has a maximal abelian normal subgroup A such that |A| = n.

We say that the soluble group H is restricted of type n when it admits such an R(n)

structure and we denote byR(n) the class of such groups. Given anR(n) structure (H , Z , A)

we denote by π : H → H/Z the canonical homomorphism. We define

(IV) Γ = π−1(A);
(V) C = {c ∈ H | cγ = γ c for all γ ∈ Γ }

and denote by

(VI) Z1(A, Z) the group of 1-cocycles of A with values in Z .

We now suppose given an R(n) structure (H , Z , A).

Proposition 3.1 C = Z.
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Proof We first show that C is normal in H ; thus let h ∈ H , c ∈ C and γ ∈ Γ . As Γ is
normal in G then (h−1γ h) ∈ Γ and so c(h−1γ h) = (h−1γ h)c} and hence

(hch−1)γ = h{c(h−1γ g}h−1 = h{(h−1γ h)c}h−1 = γ (hch−1).

As this is true for all γ ∈ Γ then hch−1 ∈ C and C is normal as claimed.
As H is soluble then so is C so define k = d(C) and put Cr = Dr (C) for 1 ≤ r ≤ k. We

claim that C is abelian. Thus suppose not so that k ≥ 2 and Ck−2 is nonabelian. As Cr is
a characteristic subgroup of C each Cr is normal in H . As each Cr commutes with Γ then
Cr ∩ Γ is an abelian normal subgroup. Observe that Γ ⊂ Γ · Ck−2. If Γ = Γ · Ck−2 then
Ck−2 ⊂ Γ and hence Ck−2 ⊂ Ck−2 ∩ Γ . This is a contradiction as Ck−2 is nonabelian and
Ck−2 ∩ Γ is abelian.

Thus Γ �= Γ · Ck−2 and we may choose x ∈ Γ · Ck−2 such that x /∈ Γ . We claim that
π(x) /∈ p(Γ ). Otherwise, if π(x) = π(γ ) for some γ ∈ Γ then xγ −1 ∈ Ker(π) = Z ⊂ Γ

yielding the contradiction that x ∈ Γ . Thus π(Γ ) is a proper subgroup of π(Γ · Ck−2). As
A is abelian it follows from the exact sequence 1 → Z → Γ → A → 1 that [Γ, Γ ] ⊂ Z .
Also [Ck−2,Ck−2] = Ck−1 is an abelian normal subgroup of H so that by (II), we see that
[Ck−2,Ck−2] ⊂ Z . Let x1, x2 ∈ Ck−2 and γ1, γ2 ∈ Γ . As Ck−2 commutes with Γ then

[γ1x1, γ2x2] = [γ1, γ2][x1, x2] ∈ Z .

Hence [Γ · Ck−2, Γ · Ck−2] = {1} and so also [π(Γ · Ck−2), π(Γ · Ck−2)] = {1}. Thus
π(Γ · Ck−2) is an abelian normal subgroup of H/Z which properly contains A = π(Γ )

thereby contradicting (III). Hence, C is abelian as claimed. It now follows from (II) that
C ⊂ Z . Evidently Z ⊂ C so that C = Z . 	

Proposition 3.2 H/Z is an extension 1 → K → H/Z → Q → 1, where K is a subgroup
of Z1(A, Z) and Q is a subgroup of Aut(Z) × Aut(A).

Proof Clearly Z ⊂ Z(Γ ). However, as Z(Γ ) centralizes Γ then Z(Γ ) ⊂ C . Thus Z =
Z(Γ ) by Proposition 3.1 and so Z is characteristic subgroup of Γ . Thus any automorphism
α ∈ Aut(Γ ) gives rise to an automorphism of exact sequences

1 −→ Z −→ Γ −→ A −→ 1⏐⏐�ρ1(α)

⏐⏐�α

⏐⏐�ρ2(α)

1 −→ Z −→ Γ −→ A → 1.

Putting ρ = (ρ1, ρ2) we have exact sequence (cf. [7, pp. 204–205]).

1 → Z1(A, Z) → Aut(Γ )
ρ−→ Aut(Z) × Aut(A).

Let c : H → Aut(Γ ) be the conjugation homomorphism c(h)(γ ) = hγ h−1. AsKer(c) =
C = Z , c induces an injective homomorphism c∗ : H/K → Aut(Γ ). Hence, we have
an exact sequence 1 → K → H/Z → Q → 1, where K = Z1(A, Z) ∩ Im(c∗) and
Q = Im(ρ ◦ c∗). 	


As in the Introduction we denote by �(n) the set of soluble subgroups of Σn . The degen-
erate case n = 1 has derived length zero. To avoid this we put

π(n) = max{1, d(H) | H ∈ �(n)}.
The first few values are π(1) = 1, π(2) = 1, π(3) = 2, π(4) = 3, after which matters
become progressively more complicated. We give a crude though effective upper bound for
π(n) in Section 7.
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Theorem 3.3 If H ∈ R(n) then d(H) ≤ π(n) + 2.

Proof From the exact sequence 1 → K → H/Z → Q → 1 it follows that d(H/Z) ≤
d(K ) + d(Q) and hence d(H) ≤ d(Z) + d(K ) + d(Q). As Z is abelian then d(Z) ≤ 1.
As K is a subgroup of the abelian group Z1(A, Z) then d(K ) ≤ 1. As Z ∼= Cm then
Aut(Z) is the cyclic group of order φ(m), where φ is Euler’s totient function, and so
d(Aut(Z)) ≤ 1. Thus d(H) ≤ d(Q) + 2. As Q is a subgroup of Aut(Z) × Aut(A) then
d(Q) ≤ max{d(Aut(Z)), d(Aut(A))}. As Aut(Z) is abelian then d(Aut(Z))1. If n = 1
then Aut(A) is trivial and d(Aut(A)) ≤ 1. If n �= 2 then Aut(A) is a subgroup of Σn and
d(Aut(A)) ≤ π(n). Either way, d(Q) ≤ π(n) and d(H) ≤ π(n) + 2. 	


The cases which arise in practice are groups of type R(n2) in which case one gets:

(3.4) If H ∈ R(n2) then d(H) ≤ π(n2) + 2.

4 Lie Groups and Algebraic Groups

We recall some standard facts about Lie groups; proofs of these can be found in many places,
for example [2, 6]. Thus, let G be a Lie group, then

(4.1) G admits a unique real analytic structure with respect to which any continuous homo-
morphism f : G → G ′ of Lie groups is real analytic;

(4.2) If K is a closed subgroup of G then K is a real analytic submanifold of G and hence
is a Lie group in its own right;

(4.3) The centre Z(G) of G is a closed subgroup;
(4.4) If G has only finitely many components then its identity component G0 is a closed

normal subgroup and G is an extension 1 → G0 → G → Φ → 1, where Φ is a finite
group; in general this extension is nonsplit.

One sees easily that a compact Lie group has only finitely many connected components.
We appeal to the following which in the connected case is due to E. Cartan but in this level
of generality is due to Mostow [9].

(4.5) If G has only finitely many connected components then G contains a maximal compact
subgroup K such that G/K is diffeomorphic to a Euclidean space. In particular, G/K
is connected.

When G is compact then (cf. [11, 12]) any continuous representation ρ : G → GL(n, C)

decomposes as a direct sum (G, ρ) ∼= ⊕e
i=1(G, ρi ), where each (G, ρi ) is an irreducible

representation. In particular,

(4.6) If G is a compact abelian Lie group then any continuous representation ρ : G →
GL(n, C) decomposes as a direct sum (G, ρ) ∼= ⊕e

i=1(G, ρi ), where each ρi : G →
C

∗ is a 1-dimensional representation.

We denote by U (1) = {z ∈ C : |z| = 1} is the 1-dimensional torus, then

(4.7) If G is compact and soluble then, G0 ∼= U (1) × · · · ×U (1)︸ ︷︷ ︸
m

for some m.

We next recall some standard facts about linear algebraic groups for which the standard
reference is [1]. Thus, if N is a positive integer a subset X ⊂ C

N is algebraic when it is
defined by the vanishing of a finite set of polynomial equations in the variables (xi )1≤i≤N .
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Let Mn(C) be the ring of n × n matrices over C; we denote a typical element of Mn(C) by
X = (Xi j )1≤i, j≤n and a typical element ofMn(C)×C by ((Xi j ), y). We identifyMn(C)×C

with C
n2+1 by re-indexing coordinates as follows:

Xi j ←→ xn(i−1)+ j , y ←→ xn2+1.

Let ν : Mn(C) × C
�−→ C

n2+1 be the linear isomorphism so obtained. A subset A ⊂
Mn(C) × C is then said to be algebraic when ν(A) is an algebraic subset of C

n2+1. This
allows us to describe GL(n, C) as an algebraic set as follows:

GL(n, C) = {(X , y) ∈ Mn(C) × C | det(X)y = 1}.
A subgroup Γ ⊂ G is linear algebraic when Γ is an algebraic subset of Mn(C) × C. We

note:

(4.8) A linear algebraic subgroup of GL(n, C) is a Lie group with finitely many connected
components.

We likewise transfer the Zariski topology from C
n2+1 to Mn(C) × C by requiring A ⊂

Mn(C) × C to be Zariski closed when ν(A) ⊂ C
n2+1 is Zariski closed. We denote by Γ̂ the

Zariski closure of Γ ⊂ GL(n, C).

(4.9) IfΓ ⊂ GL(n, C) is a soluble subgroup then Γ̂ ⊂ GL(n, C) is a soluble linear algebraic
subgroup.

We denote by T(n, C) ⊂ GL(n, C) the subgroup of upper triangular matrices:

T(n, C) = {X ∈ GL(n, C)|Xi j = 0 if i > j},
and byN(n, C) the subgroup of T(n, C) consisting of unipotent matrices:

N(n, C) = {X ∈ T(n, C) |Xii = 1 for all i}.
N(n, C) is nilpotent with nilpotent length n − 1 (cf. [5, p. 16]); from (2.5) we see

(4.10) d(N(n, C)) ≤ log2(n) + 1.

Finally, letD(n, C) denote the subgroup of T(n, C) consisting of diagonal matrices:

D(n, C) = {X ∈ T(n, C)|Xi j = 0 whenever i �= j}.
(4.11) T(n, C) is the semidirect product T(n, C) = N(n, C) � D(n, C).

It follows from (2.3) that d(T(n, C)) ≤ d(N(n, C))+d(D(n, C)). AsD(n, C) is abelian
then by (4.10):

(3.12) d(T(n, C)) ≤ log2(n) + 2.

The following is essentially due to Lie but formally due to Kolchin [8]:

(4.13) If Γ is a connected soluble Lie subgroup of GL(n, C) then Γ is isomorphic to a
subgroup of T(n, C).

Hence, we see that

(4.14) If Γ is a connected soluble Lie subgroup of GL(n, C) then d(Γ ) ≤ log2(n) + 2.
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5 Clifford’s Theorem for Compact Lie Groups

Let Σk denote the group of permutations of {1, . . . , k}; we say that a homomorphism θ :
G → Σk is transitivewhen θ(G) acts transitively on {1, . . . , k}. In the context of continuous
representations of compact Lie groups Clifford’s theorem takes the form:

Proposition 5.1 Let i : H ↪→ G be the inclusion of a closed normal subgroup of the compact
Lie group G and let V = (Cn, ρ), where ρ : G → GL(n, C) is a continuous simple finite
dimensional representation of G; then are simple continuous C[H ] modules (Wr )1≤r≤k ,
where k ≤ n and positive integers m, e such that

i) k ≤ n;
ii) Wr � Ws when r �= s;
iii) dimC(Wr ) = m for all r;
iv) there are isotypicC[H ] submodules U1, . . . ,Uk of i∗(V) such that Ur ∼= W (e)

r and i∗(V)

is the internal direct sum i∗(V) = U1+̇ · · · +̇Uk;
v) there is a transitive homomorphism π : G → Σk such that g · Ur = Uπ(g)(r);
vi) n = e · m · k.
Proof As the category of finite dimensional continuous C[H ] modules is semisimple then
i∗(V) has an isotypic decomposition

i∗(V) ∼= W (e1)
1 ⊕ · · · ⊕ W (ek )

k ,

where (Wr )1≤r≤k are simple continuous C[H ] modules such that Wr � Ws when r �= s.
As each Wr �= 0 then k ≤ n. For each r , let Ur be a simple C[H ] submodule of i∗(V)

such that Ur ∼=C[H ] Wr . It follows that

a) if U is a simple C[H ] submodule of i∗(V) then U ∼= Ur for some integer r such that
1 ≤ r ≤ k;

b) Ur ∼= Us ⇐⇒ r = s;
c) i∗(V) is the internal direct sum i∗(V) ∼= U1+̇ · · · +̇Uk , where Ur is a C[H ] submodule

such that Ur ⊂ Ur and Ur ∼= W (er )
r

∼= U (er )
r .

If g ∈ G then g · U1 is a simple C[H ] submodule of i∗(V). Thus, there is a mapping
θ : G → {1, . . . , k} such that g · U1 ∼= Uθ(g). Observe that

∑
g∈G g · U1 is a nonzero

C[G]-submodule of V . As V is simple then
∑
g∈G

g ·U1 = V

so that, as C[H ]-modules
∑

g∈G g ·U1 = U1+̇ · · · +̇Uk . As each g ·U1 is simple over C[H ]
then for each r , there exists g ∈ G such that g · U1 ⊂ Ur . Hence, g · U1 ∼= Ur and so
θ(g) = r and θ : G → {1, . . . , k} is surjective. Put m = dimC(U1) and for each r choose
g ∈ G such that θ(g) = r . As g induces a C linear mapping U1 → Uθ(g) = Ur with inverse
g−1 : Uθ(g) → U1 then dimC(Ur ) = m and hence

dimC(Wr ) = dimC(Ur ) = dimC(U1) = m.

IfU is a simple submodule of U1 then g ·U ∼= g ·U1 ∼= Ur ⊂ Ur . Hence, g ·U1 ⊂ Ur and g
induces a C-linear mapping U1 → Ur . Likewise g−1 induces a C-linear mapping Ur → U1.
As g · g−1 = g−1 ◦ g = Id then dimC(Ur ) = dimC(U1). However, dimC(Ur ) = er · m
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and dimC(U1) = e1 · m. Thus er = e1 for all i . Let e denote the common value of er , then
dimC(Ur ) = e · m and hence

n = dimC(V) =
k∑

r=1

dimC(Ur ) = e · m · k.

Finally, if g ∈ G then g ·Ur is C[H ]-simple. Hence g ·Ur ∼= Us for some s ∈ {1, . . . , k}.
We obtain a homomorphism π : G → Σk on writing g ·Ur ∼= Uπ(g)(r). It follows that

g · Ur ∼= Uπ(g)(r),

thereby giving an action of G on the isotypic components of i∗(V). To see this action is
transitive, given r , s ∈ {1, . . . , k} choose γ, δ ∈ G such that θ(γ ) = r and θ(δ) = s; then
π(δγ −1)(r) = s. 	


Let G be a compact Lie group and let ρ : G → GL(n, C) be a continuous representation.
We say that ρ is primitive when ResGN (ρ) is isotypic for every normal subgroup N of finite
index in G; otherwise, we say that ρ is imprimitive.

Proposition 5.2 Let ρ : G → GL(n, C) be a continuous faithful irreducible representation
of the compact Lie group G. If ρ is imprimitive there is a normal subgroup Γ of index ≤ n!
in G and a faithful representation σ : Γ → GL(ν, C), where ν < n.

Proof Put V = (Cn, ρ) and let i : N ↪→ H be the inclusion of a closed normal subgroup
such that i∗(V) is not isotypic. By iv) of Proposition 5.1 above i∗(V) decomposes as the
internal direct sum of k summands, 1 < k ≤ n,

i∗(V) = W1+̇ · · · +̇Wk,

where for each r there exists a simple C[N ]-module Wr such thatWr ∼= W (e)
r , the exponent

e being the same for each isotypic summand.Moreover, ifmr = dimC(Wr ) thenm1 = m2 =
· · · = mk . Put ν = e · m1 then dimC(Wi ) = ν and

n = ν · k.
As k > 1 then ν < n. Moreover, the right action of G permutes the isotypic summands Wr

transitively; in particular, there exists a homomorphism σ : G → Σk such that Wr · g =
Wσ(g)(r). Put Γ = Ker(σ ), then G is an extension

1 → Γ → G → G/Γ → 1,

where G/Γ is isomorphic to a subgroup of Σk ⊂ Σn . Put

Γ1 = {g ∈ G | W1 · g = W1}.
Then the action of Γ1 on W1 defines a representation τ : Γ1 → GL(ν, C). Put U =

(Cν, τ ). Then V = j∗(U) where j : Γ1 ↪→ G is the inclusion. Thus j∗(V) = j∗ j∗(U) =
U ⊕ · · · ⊕ U︸ ︷︷ ︸

k

so that, as V is faithful, so is U . As Γ ⊂ Γ1 then σ = ResΓ1
Γ (τ) : Γ →

GL(ν, C) is a faithful representation and G/Γ , being isomorphic to a subgroup of Σn , has
|G/Γ | ≤ n!. 	
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6 Compact Soluble Lie Groups

Let C(n) denote the class of compact soluble Lie groups G which admit a faithful continuous
representation ρ : G → GL(n, C). We shall prove

Theorem 6.1 The class C(n) is D-bounded; in particular, there exists a nondecreasing
sequence c(k)1≤k of positive integers such that for all G ∈ C(n),

d(G) ≤ max{c(n − 1) + π(n) + 1, π(n2) + 3}.

We proceed by induction on n; thus let P(n) be the following statement:

P(n): There exists a nondecreasing sequence c(k)1≤k≤n of positive integers such that

c(k) = min{d(G) | G ∈ C(k)}.
(6.2) P(n) is true for all n ≥ 1.

Observe that if G admits a faithful representation ρ : G → GL(1, C) then G is abelian
so that d(G) ≤ 1; in particular:

(6.3) P(1) is true.

Thus assume that n ≥ 2 and that P(n − 1) is true:

Proposition 6.4 Let ρ : H → GL(n, C) be a continuous faithful representation of the
compact soluble Lie group H. If ρ is not simple then d(H) ≤ c(n − 1).

Proof (H , ρ) decomposes into a direct sum of simple representations

(H , ρ) ∼=
k⊕

i=1

(H , ρi ),

where ρi : H → GL(mi , C) and n = ∑k
i=1 mi . As (H , ρ) is not simple then k > 1 and

eachmi ≤ n−1. Putting Hi = Im(ρi ) then Hi is a subgroup ofGL(mi , C) so, by hypothesis
P(n − 1), d(Hi ) ≤ c(mi ) ≤ c(n − 1). However H imbeds as a subgroup of H1 × · · · × Hk

so that d(H) ≤ max{d(Gi ) | 1 ≤ i ≤ k} ≤ c(n − 1). 	


Proposition 6.5 Let ρ : H → GL(n, C) be a continuous faithful simple representation of
the compact soluble Lie group H. If ρ is not primitive then

d(H) ≤ c(n − 1) + π(n).

Proof As ρ is not primitive then by (4.1) there exists a normal subgroup of H such that
H/Γ ∈ �(n) and a faithful representationσ : Γ → GL(m, C), wherem < n. Consequently
d(Γ ) ≤ c(m) ≤ c(n−1). As H/Γ ∈ �(n) then d(H/Γ ) ≤ π(n). From the exact sequence
1 → Γ → H → H/Γ → 1, we see that

d(H) ≤ d(Γ ) + d(H/Γ ) ≤ c(n − 1) + π(n).
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We denote by Z(H) the centre of H and by Cm the cyclic group of order m. Suppose
ρ : H → SL(n, C) is a simple faithful unimodular representation. By Schur’s lemma,
EndH (Cn, ρ) = Z(Mn(C)). If z ∈ Z(H) then ρ(z) ∈ EndH (Cn, ρ), so we can write

ρ(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ(z)
λ(z)

. . .

. . .

λ(z)

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Z(M(n, C)).

However, as ρ is unimodular then det(ρ(z)) = 1 and ρ(Z) ⊂ Z(SL(n, C)) ∼= Cn . As ρ

is faithful then Z ∼= ρ(Z) ∼= Cm where m|n; to summarize:

(6.6) Let ρ : H → SL(n, C) be a continuous faithful unimodular representation of the
compact soluble Lie group H ; if (Cn, ρ) is simple then Z(H) ∼= Cm , where m|n.

We define U(n) to be the class of pairs (H , ρ), where H is a soluble compact Lie group
and ρ : H → SL(n, C) is a faithful unimodular representation. We partition U(n) into three
classes according to the following properties:

Case I: (H , ρ) is not simple;
Case II: (H , ρ) is simple but not primitive;
Case III: (H , ρ) is simple and primitive.

By Proposition 6.4 it follows that:

(6.7) If (H , ρ) is in Case I then d(H) ≤ c(n − 1).

Likewise, it follows from Proposition 6.5 that

Proposition 6.8 If (H , ρ) is in Case II then d(H) ≤ c(n − 1) + π(n).

Let H0 be the identity component of H . We note that

Proposition 6.9 If (H , ρ) is in Case III then H is finite, Z(H) ∼= Cm, where m is a positive
integral divisor of n and H ∈ R(k2), where k ≤ n.

Proof We have already observed in (6.6) that Z = Z(H) ∼= Cm , wherem|n. We note that the
identity component H0 of H is an abelian normal subgroup of H . Thus let N be an abelian
normal subgroup of H which contains H0 and put W = j∗(V), where j : N ↪→ H is the
inclusion. As V is primitive then W is isotypic so write W = W (μ), where W is simple. As
N is abelian them dimC(W ) = 1 so that μ = n. Let σ : N → C

∗ be the representation
associated with W and let τ : N → SLn(C) be the representation associated with W . Then
τ has the form

τ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ(x)
σ (x)

. . .

. . .

σ (x)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n

∈ Z(SL(n, C)),

from which it follows that N ⊂ Z ∼= Cm and so H0 ⊂ Cm . Thus dim(H0) = 0, H0 = {1}
and H is finite. Moreover, the argument also shows that Z is the unique maximal abelian
normal subgroup of H .
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Let A be a maximal abelian subgroup of G/Z . Let π : H → H/Z be the canonical
homomorphism, put Γ = π−1(A) and put U = ResGΓ (V). By hypothesis on V , U is isotypic;
that is, there exist a simple Γ module U and a positive integer e such that U ∼= U (e) and
n = e · k where k = dimC(U ). It follows from Burnside’s theorem ([4, (3.32) p. 51]) that
|A| = k2. Thus (H , Z , A) is an R(k2) structure on H . 	


It follows from (3.4) that for (H , ρ) in Case III, d(H) ≤ π(k2) + 2, where k ≤ n. As the
right-hand side of this inequality does not decrease with k we see that:

Corollary 6.10 If (H , ρ) is in Case III then d(H) ≤ π(n2) + 2.

If G ∈ C(n) and ρ : G → GL(n, C) is a faithful representation put

H = Ker(det ◦ρ : G → C
∗), ρ0 = ρ|H .

As G/H is abelian then d(G) ≤ d(H) + 1. Moreover, (H , ρ0) ∈ U(n) so that by (6.7),
Proposition 6.5 and Corollary 6.10, d(H) ≤ max{c(n − 1) + π(n), π(n2) + 2} and hence

d(G) ≤ max{c(n − 1) + π(n) + 1, π(n2) + 3} for all G ∈ C(n). (6.11)

In particular C(n) is D-bounded.We define c(n) = max{d(G) |G ∈ C(n)}. As C(n−1) ⊂
C(n) it follows that c(n−1) ≤ c(n). Thus we have shown thatP(n−1) ⇒ P(n), completing
the proof of (6.2).

We can represent the above argument by the flowchart in Fig. 1.

7 Estimating c(n)

Proposition 7.1 log2(n!) ≤ (n − 2) log2(n) + 1 for all n ≥ 1.

Proof The inequality is trivially true for n = 1, 2. For n ≥ 3, we have

log2(n!) =
n∑

r=1

log2(r) = 0 + 1 +
n∑

r=3

log2(r) ≤ 1 + (n − 2) log2(n).

	

Proposition 7.2 If Φ is a finite soluble group then d(Φ) ≤ log2(|Φ|).

Proof If d(Φ) = m then |Φ| = ∏m−1
r=0 |Dr (Φ)/Dr+1(Φ)|. As 2 ≤ |Dr (Φ)/Dr+1(Φ)| when

0 ≤ r ≤ m − 1 then 2m ≤ |Φ| and m ≤ log2(|Φ|). 	

It now follows directly from Propositions 7.1 and 7.2 that

(7.3) If Φ is a soluble subgroup of the symmetric group Σn then

d(Φ) ≤ (n − 2) log2(n) + 1.

As log2(n
2) = 2 log2(n) it follows that

(7.4) If Φ is a soluble subgroup of the symmetric group Σn2 then

d(Φ) ≤ 2(n2 − 2) log2(n) + 1.
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Fig. 1 Summary of argument

As in Section 3 we denote by π(n) the D-bound of the set �(n) of soluble subgroups of
Σn . It follows from (7.3) that

π(n) ≤ (n − 2) log2(n) + 1. (7.5)

Likewise from (7.4)
π(n2) ≤ 2(n2 − 2) log2(n) + 1. (7.6)

Define g(n) = 2(n2 − 2) log2(n) + 4, then g(1) = 0 + 4 = 4 and g(2) = 4 + 4 = 8.

Proposition 7.7 For n ≥ 2, g(n − 1) + (n − 2) log2(n) + 2 < g(n).

Proof Let P(n) be the inequality ‘g(n − 1) + (n − 2) log2(n) + 2 < g(n)’. Then P(2) is
true as g(1) + (1 − 2) log2(1) + 2 = 6 < 8 = g(2). Suppose P(n − 1) is true for n ≥ 3.
Noting that 0 < n2 − 2n − 1 we see that

g(n − 1) = 2{(n − 1)2 − 2} log2(n − 1) + 4

= 2(n2 − 2n − 1) log2(n − 1) + 4

≤ 2(n2 − 2n − 1) log2(n) + 4,
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so that as 3n log2(n) − 2 > 0

g(n − 1) + (n − 2) log2(n) + 2 ≤ 2(n2 − 2n − 1) log2(n) + 4 + (n − 2) log2(n) + 2

= 2(n2 − 2) log2(n) + 4 − {3n log2(n) − 2}
= g(n) − {3n log2(n) − 2}
< g(n)

and g(n − 1) + (n − 2) log2(n) + 2 < g(n) as claimed. 	

We note in preparation that

π(n2) + 3 ≤ g(n). (7.8)

We claim that

Theorem 7.9 c(n) ≤ 2(n2 − 2) log2(n) + 4.

Proof That is, we must show c(n) ≤ g(n) for all n ≥ 1. Observe that

c(1) = 1 < 4 = g(1)

so that the statement is true for n = 1. Also, from (6.11) and (7.8),

c(2) ≤ max{c(1) + 2, π(22) + 3} = 6 ≤ max{3, g(2)} = 8,

so the statement is also true for n = 2. Assume it is true for n− 1, then by (6.11), (7.5), (7.8)
and induction we see that

c(n) ≤ max{c(n − 1) + π(n) + 1, π(n2) + 3}
≤ max{c(n − 1) + (n − 2) log2(n) + 2, g(n)}
≤ max{g(n − 1) + (n − 2) log2(n) + 2, g(n)}.

However by Proposition 7.7, g(n − 1) + (n − 2) log2(n) + 2 < g(n)} so that, as claimed,

c(n) ≤ g(n) = 2(n2 − 2) log2(n) + 4.

	

8 Proof of Zassenhaus’s Theorem

(8.1) Let G ⊂ GL(n, C) be a soluble linear algebraic subgroup, then

d(G) ≤ (2n2 − 3) log2(n) + 6.

Proof Let G0 denote the identity component of G, then G0 is a normal subgroup of G so
that taking K to be a maximal compact subgroup of G we may form the semidirect product
G0 � K with multiplication

(γ1, k1) · (γ2, k2) = (γ1 · (k1 · γ2 · k−1
1 ), k1 · k2).

Moreover, we have a group homomorphism μ : G0 � K → G given by μ(γ, k)=γ · k.
We claim that μ is surjective. To see this, observe that we have an exact sequence

π0(K )
i∗→ π0(G)

π∗→ π0(G/K ). As G/K is connected then π0(G/K ) = {1} so giving a
surjection i∗ : π0(K ) � π0(G). Now let g∈G and denote by [g] the connected component
of G to which g belongs. As i∗ : π0(K ) → π0(G) is surjective we may choose k ∈ K
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such that i∗([k]) = [g]; that is, k belongs to the same connected component of G as g. Let
p : [0, 1] → G be a path such that p(0)=k and p(1)=g and let q : [0, 1] → G be the path

q(t) = p(t) · k−1.

Then q is a path from 1G to g · k−1. Hence g · k−1 ∈ G0. Writing γ = g · k−1 we see that
g ∈ G can be written in the form g = γ · k, where γ ∈ G0 and k ∈ K . That is, μ is surjective
as claimed. As G0 and K are subgroups of the soluble group G then both are soluble. Hence
d(G0 � K ) ≤ d(G0) + d(K ). By (4.14), d(G0) ≤ log2(n) + 2 whilst by Theorem 7.9,
d(K ) ≤ 2(n2 − 2) log2(n) + 4. Hence d(G0 � K ) ≤ (2n2 − 3) log2(n) + 6. However, as G

is the surjective image of G0 � K under μ then d(G) ≤ (2n2 − 3) log2(n) + 6. 	

In consequence we now have

Theorem 8.2 Let R be a subring of the field of complex numbers. If Γ is a soluble subgroup
of GL(n, R) then d(Γ ) ≤ (2n2 − 3) log2(n) + 6.

Proof As R ⊂ C then Γ ⊂ GL(n, C). Let Γ̂ denote the Zariski closure of Γ ; by (4.9) Γ̂ is
a linear algebraic subgroup of GL(n, C). Moreover, by (4.10), as Γ is soluble then so is Γ̂

and d(Γ ) ≤ d(Γ̂ ). The conclusion follows from (8.1). 	

Proposition 8.3 Let G be a connected Lie group of dimension n, then every soluble subgroup
Γ of G has derived length d(Γ ) ≤ (2n2 − 3) log2(n) + 7.

Proof G occurs in an extension 1 → Z π
↪→ G

π
� Ad(G) → 1, where Ad(G) is the

adjoint group of G and Z is central in G. If Γ is a soluble subgroup of G then d(Γ ) ≤
d(π(Γ )) + 1. However, Ad(G) imbeds in GL(n, C) so that, by Proposition 7.2, d(π(Γ )) ≤
(2n2 − 3) log2(n) + 6. Thus d(Γ ) ≤ (2n2 − 3) log2(n) + 7. 	
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