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A B S T R A C T

We provide a revelation principle for a class of single-agent dynamic mechanism design settings
in which the agent’s private information evolves stochastically over time and the designer can
only commit to short-term mechanisms. We restrict attention to Markov environments, in which
(i) the agent’s type in period 𝑡+1 depends only on her period-𝑡 type and the period-𝑡 allocation,
(ii) the designer’s and the agent’s payoffs are time-separable, and (iii) their period-t payoffs
depend only on period-𝑡 type and the period-𝑡 allocation. We show all equilibrium payoffs
can be attained with the designer using flow direct Blackwell mechanisms, which consist of
a mapping from the agent’s current type report to posterior beliefs about the current type,
and a mapping from these beliefs to allocations. Furthermore, all equilibrium payoffs can be
attained with strategies in which the agent participates and truthfully reports her type, and the
beliefs that result from the mechanism correspond to the designer’s equilibrium beliefs. This
result greatly simplifies the search of optimal dynamic and sequentially rational mechanisms
in dynamic mechanism design problems, which include dynamic Mirrlees and social insurance
models.

. Introduction

We provide a revelation principle for a class of single-agent dynamic mechanism design settings in which the agent’s private
nformation evolves stochastically over time and the designer can only commit to short-term mechanisms. Asymmetric information
nd misaligned incentives are pervasive in a wide range of repeated interactions in industrial organization, managerial economics,
olitical economy, and public finance. The recent literatures on dynamic mechanism design and dynamic public finance highlight the
mportance for applications of allowing for privately informed agents who learn their private information over time:1 buyers learn
bout their valuation of a good over time, sometimes as the result of consumption; managers’ productivity changes as they learn on
he job (Garrett and Pavan, 2012); individuals’ productivity evolves along their life cycle, which drives income uncertainty (Farhi
nd Werning, 2013). Recent contributions to these literatures study the implications of evolving — rather than persistent — private
nformation for the design of optimal policies.
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While considering a more flexible information environment, the literatures on dynamic mechanism design and dynamic public
inance retain the standard assumption that the designer fully commits to the sequence of mechanisms the agent is faced with.
nstead, assuming the designer can only commit to today’s mechanism, but not the sequence of mechanisms the agent faces later
n, is natural. As firms learn about consumers’ willingness to pay, they may renege on previous price commitments to engage in
rice discrimination; governments may wish to revise their tax policy as they learn the income distribution from current payments;
s a firm learns its manager productivity, they may wish to revise their assigned tasks. It is well-known that deviations from the
ommitment assumption introduce difficulties for mechanism design, as the revelation principle fails to hold. This paper fills this
ap: By identifying a suitable extension of the framework in Doval and Skreta (2022), we provide a revelation principle for dynamic
echanism design with evolving types and commitment to short-term mechanisms.

Formally, we study the following family of mechanism-selection games. A designer interacts with a privately informed agent
ver a possibly infinite time horizon. In every period 𝑡 ≥ 1, the agent privately learns her current period type 𝜃𝑡 ∈ 𝛩, after which
he designer offers the agent a mechanism, which determines the allocation 𝑎𝑡 for that period. As in Doval and Skreta (2022), a
echanism is defined as a tuple (𝑀,𝜑, 𝑆), where 𝑀 is a set of input messages, 𝑆 is a set of output messages, and 𝜑 is a mapping

associating to each input message 𝑚 ∈ 𝑀 , a distribution 𝜑(⋅|𝑚) over output messages, 𝑆, and allocations, 𝐴. Given her private
information (her sequence of types through period 𝑡, 𝜃𝑡 = (𝜃1,… , 𝜃𝑡) ∈ 𝛩𝑡) and faced with the mechanism (𝑀,𝜑, 𝑆), the agent
privately reports an input message, 𝑚 ∈ 𝑀 , to the mechanism, which then determines the distribution, 𝜑(⋅|𝑚), from which an
output message, 𝑠 ∈ 𝑆, and an allocation, 𝑎 ∈ 𝐴, are drawn. The output message and the allocation are publicly observable. Because
the designer can only commit to short-term mechanisms, we study the payoffs the designer and the agent can achieve under Perfect
Bayesian equilibrium.

Our previous work, Doval and Skreta (2022), provides a revelation principle for mechanism-selection games in which the designer
faces an agent with fully-persistent private information. In particular, we show that it is without loss of generality to restrict the
designer to choosing mechanisms in which the designer asks the agent to report her private information and together with the
allocation, the mechanism outputs a belief over the agent’s type. Furthermore, it is without loss to restrict attention to equilibrium
strategies in which the messages can be taken literally: the agent truthfully reports her private information and the output belief
corresponds to the principal’s equilibrium belief about the agent’s type.

Extending the logic of Doval and Skreta (2022) to the case in which the agent’s type evolves over time brings forth two challenges.
The first relates to the set of inputs into the mechanism. When the agent’s information evolves over time, the agent’s period-𝑡 private
information is given by her profile of types through period 𝑡, 𝜃𝑡 = (𝜃1,… , 𝜃𝑡). The result in Doval and Skreta (2022) would then
imply the designer needs to elicit the agent’s multidimensional type 𝜃𝑡, with the message space growing over time.2 To deal with this
challenge, we restrict attention to Markov environments, as in Pavan et al. (2014). These are environments in which (i) the agent’s
type in period 𝑡 + 1 depends on her period-𝑡 type 𝜃𝑡 and the period-𝑡 allocation 𝑎𝑡, and (ii) the principal and the agent’s payoffs are
time-separable, and their period-𝑡 payoffs depend only on (𝑎𝑡, 𝜃𝑡). The Markov assumption implies the agent’s incentives to report
only depend on her period-𝑡 type. As we discuss below, this property allows for a simpler version of the revelation principle, much
more suitable for applications. The second challenge relates to the set of outputs of the mechanism. After all, when the agent’s type
evolves over time two candidates for the output messages exist: the principal’s belief at the end of period 𝑡 about the agent’s type
𝜃𝑡 and the principal’s belief at the beginning of period 𝑡 + 1 about the agent’s type, 𝜃𝑡+1 = (𝜃𝑡, 𝜃𝑡+1).

Theorem 1 proves an analogue of the revelation principle in Doval and Skreta (2022) for Markov environments. Indeed,
heorem 1 identifies a set of mechanisms, and hence a mechanism-selection game, that is enough to replicate any equilibrium
ayoff of any mechanism-selection game in our family. In this game, which we denote the canonical game, the designer can only
ffer mechanisms in which input messages are current type reports and output messages are beliefs. Moreover, Theorem 1 shows
hat any equilibrium payoff of the canonical game can be replicated by a canonical equilibrium in which the agent always participates
n the mechanisms offered in equilibrium by the designer, and input and output messages have a literal meaning: the agent truthfully
eports her current type, and if the mechanism outputs a given posterior, this posterior coincides with the designer’s equilibrium
eliefs about the agent’s current type. Furthermore, in a canonical equilibrium, the designer only offers the agent flow direct Blackwell
echanisms, in which conditional on the output message, the allocation is drawn independently of the agent’s type report. Thus,
heorem 1 implies that to characterize the equilibrium payoffs that can be achieved in some equilibrium in some mechanism-
election game, it is without loss of generality to restrict attention to the analysis of the canonical equilibria of the canonical game.
s our companion paper (Doval and Skreta, 2023) illustrates, Theorem 1 reduces the search of the designer optimal mechanism to

he solution to a constrained optimization program.
Theorem 1 highlights two simplifications brought forth by the restriction to Markov environments. First, the designer only needs

o elicit the agent’s current type, 𝜃𝑡, as opposed to the agent’s type profile, 𝜃𝑡. Second, note Theorem 1 identifies the principal’s
eliefs at the end of period 𝑡 as the mechanism’s canonical output messages. Moreover, the Markov assumption on the environment
mplies the mechanism only needs to keep track of the principal’s belief about 𝜃𝑡–as opposed to the belief over the type profile 𝜃𝑡.
hese two simplifications are key for applications: Our companion paper (Doval and Skreta, 2023) showcases them in the context
f an industrial organization application.

2 Because the revelation principle in Doval and Skreta (2022) has the agent submit a type report in each period, the result resembles more that of Townsend
1988) than that of Myerson (1982, 1986). Indeed, the logic of Myerson (1982, 1986) implies that with fully persistent types, the agent only submits a type
eport once at the beginning. For that reason, Myerson’s revelation principle only ensures truthtelling and obedience along truthful histories. Instead, re-reporting
2

n Townsend (1988) restores truthtelling on and off the path of play.
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Related literature. The paper contributes to the literatures in dynamic mechanism design, dynamic public finance, and mechanism
esign with limited commitment. After the pioneering work of Baron and Besanko (1984), Courty and Li (2000), and Battaglini
2005) further the dynamic mechanism design literature. Battaglini (2005) highlights that without fully persistent types optimal
echanisms are ‘‘less’’ time-inconsistent and extends the no distortion at the top and distortion at the bottom properties of static
echanism design with single-crossing preferences. Armed with Theorem 1, our companion work (Doval and Skreta, 2023) echoes

he observation that optimal mechanisms under commitment can be implemented with limited commitment when types are not
ully persistent. However, in contrast to Battaglini (2005) and Doval and Skreta (2023) also show the designer may find it optimal
o distort the mechanism both at the top and at the bottom to soften ratcheting forces. Finally, Doval and Skreta (2023) shows how
heorem 1 can be used to obtain the analogue of the dynamic envelope condition in Pavan et al. (2014) for dynamic mechanism
esign with limited commitment.

Golosov et al. (2006) and Stantcheva (2020) review the dynamic public finance literature and the dynamic Mirrlees approach to
axation. Most papers in this literature assume time-separable payoffs and that the evolution of private information follows a first-
rder Markov process. Kapička (2013) uses the first-order approach to characterize efficient allocations in a dynamic economy where
gents’ types evolve over time. Assuming individual productivities evolve over time as is the case in the data, Farhi and Werning
2013) study optimal taxation over the life cycle, showing that optimal taxes are age-dependent. Stantcheva (2015) expands on the
ynamic Mirrlees model by allowing for human capital accumulation, i.e., last period choices affect this period’s productivity draw.
ome contributions to this literature assume away the designer’s ability to commit. In a two-period model with persistent types, Bisin
nd Rampini (2006) study how the market may discipline the fiscal authority when it cannot commit to long-term mechanisms.
ssuming fully non-persistent types, Sleet and Yeltekin (2008), Farhi et al. (2012), and Golosov and Iovino (2021) study the design
f optimal social insurance.3 Theorem 1 contributes to this literature by providing a tool that can be used to characterize optimal

policies without assuming the government can commit across periods.

Organization. The rest of the paper is organized as follows. Section 2 describes the model and notation. Section 3 introduces
Theorem 1. Omitted statements and all proofs are in the appendix. Appendices A and C provide necessary definitions. Assuming
the set of types is finite and mechanisms induce finite-support lotteries, Appendix B provides an easy-to-digest proof of Theorem 1.
Appendix D provides the necessary formalisms to adapt the proof in Appendix B to the case of a continuum type space building on
the results in Doval and Skreta (2022).

2. Model

To facilitate the comparison with Doval and Skreta (2022), we follow the model and the notation therein as much as possible
in what follows:

Primitives. Two players, a principal (he) and an agent (she), interact over 𝑇 ≤ ∞ periods.4 Each period, as a result of the interaction
between the principal and the agent, an allocation 𝑎 ∈ 𝐴 is determined. Let 𝐴𝑇 denote the set ×𝑇

𝑡=1𝐴. We allow for the possibility that
past allocations influence what the principal can offer the agent in the future. Thus, for each 𝑡 ≥ 1, a correspondence A𝑡 ∶ 𝐴𝑡−1 ⇉ 𝐴
xists such that for every sequence of allocations up to period 𝑡, 𝑎𝑡−1 = (𝑎1,… , 𝑎𝑡−1), A𝑡(𝑎𝑡−1) describes the set of allocations the
rincipal can offer in period 𝑡 (with the convention that when 𝑡 = 1, 𝑎0 = {∅}). Furthermore, we assume an allocation 𝑎∗ exists such
hat 𝑎∗ is always available. Below, allocation 𝑎∗ plays the role of the agent’s outside option.

In contrast to Doval and Skreta (2022), we consider a Markov environment, defined by two properties (c.f., Pavan et al., 2014).
irst, the agent’s private information is described by a non-homogeneous Markov process: In each period 𝑡 ≥ 1, the agent’s type 𝜃𝑡
s drawn from a set of types 𝛩 according to a distribution 𝐹𝑡(⋅|𝜃𝑡−1, 𝑎𝑡−1), where (𝜃𝑡−1, 𝑎𝑡−1) denotes the agent’s type and allocation
n period 𝑡 − 1 (with the convention that when 𝑡 = 1, 𝐹𝑡(⋅|𝜃𝑡−1, 𝑎𝑡−1) ≡ 𝐹1). Second, the principal’s and the agent’s payoffs are time
eparable and their period-𝑡 flow payoffs only depends on the current allocation and the agent’s period-𝑡 type. Formally, letting
𝑎𝑇 , 𝜃𝑇 ) ∈ (𝐴 × 𝛩)𝑇 denote the allocations and the agent’s private information through period 𝑇 , the principal and the agent’s
ayoffs are given by

𝑊 (𝑎𝑇 , 𝜃𝑇 ) =
𝑇
∑

𝑡=1
𝛿𝑡𝑤𝑡(𝑎𝑡, 𝜃𝑡), 𝑈 (𝑎𝑇 , 𝜃𝑇 ) =

𝑇
∑

𝑡=1
𝛿𝑡𝑢𝑡(𝑎𝑡, 𝜃𝑡).

e impose some technical restrictions on our model.5 The sets 𝛩 and 𝐴 are Polish, that is, completely metrizable, separable,
opological spaces. They are endowed with their Borel 𝜎-algebra. Throughout we assume that 𝛩 is at most countable and discuss the
ase in which 𝛩 is a continuum in Appendix D. We also assume 𝛩 is compact. Endowing product sets with their product 𝜎-algebra,
e assume the principal and the agent’s utility functions, 𝑊 and 𝑈 , are bounded measurable functions. Similarly, for each 𝑡 ≥ 1
nd for each 𝑎𝑡−1 ∈ 𝐴𝑡−1, the set A𝑡(𝑎𝑡−1) is a measurable set.

3 Persistent private information is not the only source of time-inconsistency of optimal mechanisms. For instance, once individuals make capital investments,
he government may prefer to tax capital because it does not distort contemporaneous incentives. Anticipating this, individuals’ incentives to invest in capital
n previous periods will be dampened.

4 To simultaneously analyze the cases of finite and infinite horizon, we abuse notation as follows. When 𝑇 = ∞, and notation of the form 𝑡 = 1,… , 𝑇 , ∑𝑇
𝑡=1,

r ×𝑇
𝑡=1, appears, we take this to mean 𝑡 = 1,… , ∑𝑡∈N, or ×𝑡∈N, respectively.

5 In what follows, we adopt the following notational conventions. First, all Polish spaces are endowed with their Borel 𝜎-algebra. Second, product spaces
re endowed with their product 𝜎-algebra. Third, for a Polish space, 𝑌 , we let 𝛥(𝑌 ) denote the set of all Borel probability measures over 𝑌 , endowed with the
eak∗ topology. Thus, 𝛥(𝑌 ) is also a Polish space (Aliprantis and Border, 2006). For any two measurable spaces, 𝑋 and 𝑌 , a transition probability from 𝑋 to

𝑌 is a measurable function 𝜁 ∶ 𝑋 ↦ 𝛥(𝑌 ). When integrating under the measure 𝜁 (𝑥), we use the notation 𝜁 (⋅|𝑥).
3
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Mechanisms. In each period, the allocation is determined by a mechanism 𝐌𝑡 = (𝑀𝐌𝑡 , 𝑆𝐌𝑡 , 𝜑𝐌𝑡 ), where 𝑀𝐌𝑡 and 𝑆𝐌𝑡 are the
echanism’s input and output messages and 𝜑𝐌𝑡 assigns to each 𝑚 ∈ 𝑀𝐌𝑡 a distribution over 𝑆𝐌𝑡 × 𝐴. We endow the principal

with a collection {(𝑀𝑖, 𝑆𝑖)}𝑖∈I of input and output message sets, such that (i) 𝑀𝑖, 𝑆𝑖 are Polish spaces, (ii) |𝛩| ≤ |𝑀𝑖|, 𝑀𝑖 is at
most countable, and (iii) |𝛥(𝛩)| ≤ |𝑆𝑖|. Moreover, we assume (𝛩, 𝛥(𝛩)) is an element in that collection. Let MI denote the set of all
mechanisms with message sets (𝑀𝑖, 𝑆𝑖)𝑖∈I that is, MI = ∪𝑖,𝑗∈I

{

𝜑 ∶ 𝑀𝑖 ↦ 𝛥(𝑆𝑗 × 𝐴) ∶ 𝜑 is measurable
}

.
Two remarks are in order. First, we restrict the principal to choosing mechanisms in MI . This restriction allows us to have a

well-defined strategy space for the principal, thereby avoiding set-theoretic issues related to self-referential sets. The analysis that
follows shows the choice of the collection plays no further role in the analysis. Second, because each 𝑀𝑖 is at most countable, the set
of mechanisms MI is a Polish space. As we discuss in Appendix D, this property is key to being able to define a mechanism-selection
ame for a given collection I (see also Section 2).

echanism-selection game(s). Each collection I induces a mechanism-selection game, which we denote by 𝐺I , and is defined as
follows. At the beginning of each period, both players observe the realization of a public randomization device, 𝜔 ∼ 𝑈 [0, 1].
The agent also privately observes her type 𝜃𝑡. The principal then offers the agent a mechanism, 𝐌𝑡, with the property that for
all 𝑚 ∈ 𝑀𝐌𝑡 , 𝜑𝐌𝑡 (𝑆𝐌𝑡 ×A𝑡(𝑎𝑡−1)|𝑚) = 1, where recall that 𝑎𝑡−1 describes the allocations implemented through period 𝑡−1. Observing
the mechanism, the agent decides whether to participate in the mechanism (𝜋 = 1) or not (𝜋 = 0). If she does not participate in the

echanism, 𝑎∗ is implemented and the game proceeds to period 𝑡 + 1. Instead, if she chooses to participate, she sends a message
∈ 𝑀𝐌𝑡 , which is unobserved by the principal. An output message and an allocation (𝑠𝑡, 𝑎𝑡) are drawn according to 𝜑𝐌𝑡 (⋅|𝑚). The

utput message and the allocation are observed by both the principal and the agent, and the game proceeds to period 𝑡 + 1.

istories. The game 𝐺I has two types of histories: public and private. Public histories capture what the principal knows through
eriod 𝑡: the past realizations of the public randomization device, his past choices of mechanisms, the agent’s participation decisions,
nd the realized output messages and allocations. We let ℎ𝑡 denote a public history through period 𝑡 and let 𝐻 𝑡 denote the set of all
uch histories. Instead, private histories capture what the agent knows through period 𝑡. First, the agent knows the public history
f the game, her past types, and her input messages into the mechanism (henceforth, the agent history). Second, the agent also
nows her current private information. We let ℎ𝑡𝐴 denote an agent’s history through period 𝑡 and let 𝐻 𝑡

𝐴(ℎ
𝑡) denote the set of agent

istories consistent with public history ℎ𝑡. Thus, 𝐻 𝑡
𝐴(ℎ

𝑡) × 𝛩 denotes the set of private histories consistent with public history ℎ𝑡.

elief system and strategies. In Markov environments, it is important to keep track of two beliefs for the principal. The first is the
elief he holds about the agent’s type 𝜃𝑡 at the end of period 𝑡; the second is the belief he holds about the agent’s type 𝜃𝑡+1 at the
eginning of period 𝑡 + 1, after applying 𝐹𝑡+1. We denote the former by 𝜇𝑡+1 and the latter by 𝜈𝑡+1. That is, 𝜇𝑡+1(ℎ𝑡+1𝐴 |ℎ𝑡+1) is the
robability the principal assigns to the agent being at information set ℎ𝑡+1𝐴 at the end of period 𝑡 when ℎ𝑡+1 is the publicly available
nformation, whereas

𝜈𝑡+1(ℎ𝑡+1𝐴 , 𝜃𝑡+1|ℎ
𝑡+1) = 𝜇𝑡+1(ℎ𝑡+1𝐴 |ℎ𝑡+1)𝐹𝑡+1(𝜃𝑡+1|𝜃𝑡, 𝑎𝑡),

s the probability the principal assigns to the agent being at information set ℎ𝑡+1𝐴 = (ℎ𝑡𝐴, 𝜃𝑡, ⋅) at the end of period 𝑡 and her type
eing 𝜃𝑡+1 in period 𝑡 + 1, where 𝜃𝑡 is the agent’s type in period 𝑡 and 𝑎𝑡 is the allocation in period 𝑡 consistent with ℎ𝑡+1𝐴 .

A behavioral strategypage-strategies for the principal is a collection of measurable mappings (𝜎𝑃 𝑡)𝑇𝑡=1, where for each period 𝑡 and
ach public history ℎ𝑡, 𝜎𝑃 𝑡(ℎ𝑡) describes the principal’s (possibly random) choice of mechanism at ℎ𝑡.6 Similarly, a behavioral strategy
or the agent is a collection of measurable mappings (𝜎𝐴𝑡)𝑇𝑡=1 ≡ (𝜋𝑡, 𝑟𝑡)𝑇𝑡=1, where for each period 𝑡, each private history (ℎ𝑡𝐴, 𝜃𝑡), and
ach mechanism, 𝐌𝑡, 𝜋𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) describes the agent’s participation decision, whereas 𝑟𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) describes the agent’s choice of
nput messages in the mechanism, conditional on participation. The tuple (𝜎𝑃 , 𝜎𝐴, 𝜇) ≡ (𝜎𝑃 𝑡, 𝜎𝐴𝑡, 𝜇𝑡)𝑇𝑡=1 defines an assessment.

quilibrium. For each collection I , we study the equilibria of the mechanism-selection game 𝐺I . By equilibrium, we mean Perfect
ayesian equilibrium (henceforth, PBE), informally defined as follows. An assessment (𝜎𝑃 , 𝜎𝐴, 𝜇) is a PBE if it is sequentially rational
nd the belief system satisfies Bayes’ rule where possible. The formal statement is in Appendix A. For now, we note that if the
rincipal’s strategy space is finite, 𝛩 is finite, and the mechanisms used by the principal have finite support, our definition of PBE
oincides with that in Fudenberg and Tirole (1991).

quilibrium outcomes and payoffs. The prior 𝜈1 ≡ 𝐹1 together with a strategy profile (𝜎𝑃 , 𝜎𝐴) determine a distribution over the
erminal nodes 𝐻𝑇+1

𝐴 . We are interested instead in the distribution they induce over the payoff-relevant outcomes, (𝛩×𝐴)𝑇 . We say
∈ 𝛥

(

(𝛩 × 𝐴)𝑇
)

is a PBE outcome if a PBE of the mechanism-selection game exists that induces 𝜂. Each PBE outcome 𝜂 induces a
ayoff tuple,

(

𝑤, (𝑢𝜃)𝜃∈𝛩
)

, where 𝑤 = E𝜂𝑊 and for each 𝜃 in 𝛩, 𝑢𝜃 = E𝜂|𝜃𝑈 . We denote by E∗
I the set of PBE payoffs of 𝐺I .

.1. Canonical mechanisms and assessments

Theorem 1 singles out one mechanism-selection game and a class of assessments that allows us to replicate any equilibrium
ayoff of 𝐺I , for any collection I of input and output messages. Following Doval and Skreta (2022), we dub this extensive form
he canonical game and the class of assessments, canonical assessments, which we formally define next.

6 Because the set MI is Polish, the sets of public and private histories are the (at most) countable product of Polish spaces. Thus, the sets of public and
4

private histories are Polish spaces.
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Canonical game. The canonical game is a mechanism selection game in which the principal can only select mechanisms that use
current type reports as input messages and distributions over the agent’s current type as output messages. That is, in the canonical
ame, the principal can only offer mechanisms in which 𝑀 = 𝛩 and 𝑆 = 𝛥(𝛩). We denote the set of equilibrium payoffs of the

canonical game by E∗.

Definition 1 (Flow Direct Blackwell Mechanisms). A mechanism (𝛩, 𝛥(𝛩), 𝜑) is a flow direct Blackwell mechanism (henceforth, f-DBM)
if the mapping 𝜑 ∶ 𝛩 ↦ 𝛥(𝛥(𝛩) × 𝐴) can be obtained as the composition of two mappings, 𝛽 ∶ 𝛩 ↦ 𝛥(𝛥(𝛩)) and 𝛼 ∶ 𝛥(𝛩) ↦ 𝛥(𝐴).
ormally, for each 𝜃 and each pair of measurable subsets, 𝑈 ⊂ 𝛥(𝛩) and 𝐴 ⊂ 𝐴, 𝜑(𝑈 × 𝐴|𝜃) = ∫𝑈 𝛼(𝐴|𝜇)𝛽(𝑑𝜇|𝜃).

In a f-DBM, conditional on the output message, the allocation is drawn independently of the agent’s type report. Interpreted as a
lackwell experiment, 𝛽 encodes how much information the principal learns about the agent’s type. Instead, the allocation rule 𝛼
escribes the mechanism’s (possibly randomized) allocation, given the information that the principal learns about the agent’s type.
e let M𝐶 denote the set of direct Blackwell mechanisms.

emark 1 (Comparison with Doval and Skreta (2022)). At first glance, the canonical game herein endows the principal with the
ame mechanisms as the canonical game in Doval and Skreta (2022). When the agent’s type is fully-persistent, a mechanism that
sks the agent to submit a type report is effectively allowing the agent to report all her payoff-relevant private information. Instead,
hen the agent’s type is not fully-persistent, a mechanism that elicits a report in 𝛩 does not necessarily allow the agent to submit
ll her payoff-relevant information. Indeed, the natural generalization of the canonical mechanisms in Doval and Skreta (2022) to
he case of non-fully persistent types would have 𝛩𝑡 as the set of input messages. For this reason, we refer to the analogue of DBMs
n Doval and Skreta (2022) as flow DBMs to stress the mechanism only attempts to elicit the agent’s current type. As we explain
fter Theorem 1, the restriction to Markov environments is responsible for the result that f-DBMs are without loss of generality.

anonical assessments. A canonical assessment specifies behavior for the principal and the agent that is, in a sense, simple. First,
he principal always chooses f-DBMs. Second, the agent best responds to the principal’s equilibrium choice of mechanisms by
articipating. Third, input and output messages have literal meaning: Conditional on participating, the agent truthfully reports her
ype, and if the mechanism outputs 𝜇 ∈ 𝛥(𝛩), 𝜇 coincides with the principal’s updated beliefs about the agent’s type. The notation

signifies the mechanism uses the principal’s beliefs at the end of period 𝑡 as the output messages. Formally:

efinition 2 (Canonical Assessments). An assessment (𝜎𝑃 , 𝜎𝐴, 𝜇) of mechanism-selection game 𝐺I is canonical if the following holds
or all 𝑡 ≥ 1 and all public histories ℎ𝑡:

1. The principal offers f-DBMs, that is, 𝜎𝑃 𝑡(ℎ𝑡)(M𝐶 ) = 1.
2. For all mechanisms 𝐌𝑡 in the support of the principal’s strategy at ℎ𝑡,

(a) For all types 𝜃𝑡 in the support of the principal’s beliefs in period 𝑡, 𝜈𝑡(ℎ𝑡), 𝜋𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) = 1,
(b) For all types 𝜃𝑡 in 𝛩, 𝑟𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) = 𝛿𝜃𝑡 , and
(c) The mechanism’s output belief 𝜇 coincides with the principal’s updated belief about the agent’s type at the end of period

𝑡. Formally, for ℎ𝑡+1 = (ℎ𝑡,𝐌𝑡, 𝜇, ⋅), the marginal of 𝜇𝑡+1(ℎ𝑡+1) on 𝜃𝑡, 𝜇𝑡+1𝛩𝑡
(ℎ𝑡+1), coincides with 𝜇.

3. The agent’s strategy depends only on her private type in period 𝑡 and the public history.7

We let E𝐶 denote the set of equilibrium payoffs of the canonical game that are induced by canonical PBE assessments (henceforth,
anonical PBE).

. Revelation principle for Markov environments

Section 3 presents the paper’s main result: To characterize the set of equilibrium outcomes that can arise in some mechanism-
election game, it is enough to characterize the canonical PBE outcomes of the canonical game. Formally,

heorem 1 (Revelation Principle for Markov Environments). For any PBE assessment of any mechanism-selection game 𝐺I , a payoff-
quivalent canonical PBE of the canonical game exists. That is,

⋃

I
E∗
I = E∗ = E𝐶 .

heorem 1 plays the same role in mechanism design with limited commitment as the revelation principle does in the commitment
ase. First, it identifies a well-defined set of mechanisms, M𝐶 , that, without loss of generality, the principal uses to implement any
quilibrium outcome. Second, it simplifies the analysis of the behavior of the agent in the game induced by the mechanisms chosen
y the principal: we can always restrict attention to assessments in which the agent participates and truthfully reports her type. As

7 Whereas items 2a and 2b of Definition 2 imply the agent’s strategy depends only on her current private type and the public history on the path of the
equilibrium strategy starting at ℎ𝑡, 3 implies this property also holds off the path of the equilibrium strategy starting at ℎ𝑡, e.g., when the principal deviates and

𝑡

5

ffers a mechanism not in the support of 𝜎𝑃 𝑡(ℎ ).
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Fig. 1. Private-history independence in Markov environments.

we illustrate in Doval and Skreta (2023), this restriction allows us to reduce the agent’s behavior to a set of constraints that the
mechanism must satisfy, as in the case of commitment.

The proof of Theorem 1 follows from similar steps to those in Doval and Skreta (2022), except for two features worth noting.
First, Theorem 1 features a separation between the beliefs the output message represents (𝜇𝑡+1) and the beliefs the principal uses
in the next period to select mechanisms (𝜈𝑡+1). This separation highlights that the principal in period 𝑡 attempts to design his prior
for period 𝑡 + 1 (which nature will then transform into 𝜈𝑡+1 through 𝐹𝑡+1.)8

Second, whereas the revelation principle in Doval and Skreta (2022) implies it is without loss of generality to restrict attention
o strategies in which the agent does not condition her strategy on her past input messages, the history independence of the agent’s
trategy in Theorem 1 is stronger: The agent conditions her strategy on neither her past communication nor her past payoff-relevant
ypes. This is where we more prominently employ the restriction to Markov environments. Assuming the environment is Markov
nd given a PBE in which the agent conditions her strategy either on her past input messages or her past types at some public
istory ℎ𝑡, we show another payoff-equivalent PBE exists in which she does not (see Proposition B.1).

Proposition B.1 then affords an important simplification: In each period 𝑡, the principal only needs to elicit the agent’s current
payoff-relevant type 𝜃𝑡, not the past realizations. We believe this simplification is important for applications. In more general
environments, a similar result would obtain, but the principal may need to elicit the whole realization (𝜃1,… , 𝜃𝑡).

The stronger form of history independence also implies that contrary to the main theorem in Doval and Skreta (2022), the
mechanism-selection and canonical games implement the same set of payoffs but not necessarily the same equilibrium outcomes.9
To understand why we can replicate the equilibrium payoffs, but not the equilibrium outcomes, consider the following two-period
illustration:10

Fig. 1 depicts two histories that may lead to the agent’s type being 𝜃2 in 𝑡 = 2. In the one depicted above, the agent’s type is 𝜃1,
she sends message 𝑚1 and obtains allocation 𝑎1 in period 1. In the one depicted below, the agent’s type is 𝜃′1, she sends message 𝑚1
and obtains the allocation 𝑎1 in period 1. In both cases, the agent is sending the same input message in 𝑡 = 1. Since both histories
are consistent with the same public history (in this case, ℎ1 = (𝑎1)), the agent faces the same mechanism in period 2. Finally, note
that the agent’s reporting strategy in period 2 depends on her type in period 1. If her period 1 type is 𝜃1, the agent sends message
2 and thus obtains allocation 𝑎2. Instead, if her period 1 type is 𝜃′1, the agent sends message 𝑚′

2 and obtains allocation 𝑎′2.
When we make the agent’s reporting strategy in 𝑡 = 2 independent of both her past input messages and her past types, we are

not able to preserve the outcome distribution in the original assessment. To see this, note that when we make the agent’s strategy
independent of the payoff-irrelevant part of her private history in the proof of Proposition B.1, we have the agent play a particular
randomized strategy. In Fig. 1, this corresponds to the agent sending both 𝑚2 and 𝑚′

2 when her type is 𝜃2 in period 2, independently
f whether her type is 𝜃1 or 𝜃′1 in period 1. It follows that we are not able to replicate the distribution over (𝜃1, 𝜃2, 𝑎̃1, 𝑎̃2) ∈ 𝛩2 ×𝐴2

mplied by the original assessment. For instance, the sequence (𝜃1, 𝜃2, 𝑎1, 𝑎′2) will now have positive probability.
However, since the agent’s payoffs are time separable and only depend on her current type, we are able to replicate the expected

ayoffs the agent obtains in the original assessment. In Fig. 1, it must be the case that 𝑢2(𝑎2, 𝜃2) = 𝑢2(𝑎′2, 𝜃2); otherwise, it would
not be optimal for the agent to send 𝑚2 and 𝑚′

2 with positive probability. This, in turn, implies that 𝑢1(𝑎1, 𝜃1) + 𝛿𝑢2(𝑎2, 𝜃2) =
1(𝑎1, 𝜃1) + 𝛿𝑢2(𝑎′2, 𝜃2) and similarly for 𝜃′1. Thus, when we have the agent mix over 𝑚2 and 𝑚′

2 in 𝑡 = 2 conditional on 𝜃2, we
o not affect the agent’s payoffs, even if we do change the outcome distribution.

. Concluding remarks

This paper provides a revelation principle for dynamic mechanism design in Markov environments in which a principal, who can
nly commit to short-term mechanisms, interacts with an agent whose private information evolves stochastically over time. Our tool
pens up the study of optimal mechanisms under limited commitment with evolving types, which is relevant for the study of optimal
axation, social insurance, managerial economics, among other applications. Our model has certain features worth discussing.

First, throughout the paper we assume the set of types 𝛩 is at most countable. In Appendix D, we provide the necessary
ormalisms to extend the revelation principle to the case of a continuum type space, a leading specification in mechanism design
see Theorem D.1). Our companion paper (Doval and Skreta, 2023) applies this extension to an industrial organization application.

8 See Ely (2017) for another model where the same choice is made: the information designer designs 𝜇𝑡+1 and then nature transitions this ‘‘prior’’ using the
Markov transition.

9 The revelation principle-style arguments in Peters (2001), Hart et al. (2017) and Ben-Porath et al. (2019) are also in terms of payoff equivalence.
10 For simplicity, Fig. 1 abstracts away from many details of our model. For instance, we omit the output message in the 𝑡 = 1 mechanism.
6
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Second, we assume the principal interacts with a single agent. Whereas the case of multiple agents is an extension worth pursuing,
t is outside of this paper’s scope. With multiple agents, the principal has discretion over what the agents observe about each others’
utput messages and allocations, which he nevertheless observes. Thus, the principal may become endogenously privately informed.
ittle is known about dynamic exogenously informed principal problems, even with commitment. We expect the limited commitment
ase in which information is endogenously obtained to bring forth additional challenges.

Third, we assume the principal can only commit to the mechanism for one period. By appropriately defining a period’s length,
his setting allows for the changing principal framework typically used to represent sequences of governments in the regulation and

public finance literatures (c.f. Laffont and Tirole (1988)). Instead, our mechanism-selection game does not cover the case in which
the principal loses his commitment power with some probability and this event is not observed by the agent. Such probabilistic
weakening of commitment is employed in the information design settings of Fréchette et al. (2022) and Lipnowski et al. (2022).
Understanding the implications of such weakenings of commitment for optimal mechanism design is left for future work.

Appendix A. Collected definitions and notation

Appendix A introduces the necessary notation to define the payoffs from an assessment and hence, the definition of Perfect
Bayesian equilibrium. It also collects notation that is used in the proofs. Throughout Appendices A and B, we assume 𝛩 is at most
countable and the mechanisms used by the principal have finite support. The proof that Theorem 1 holds when either 𝛩 is a
continuum or the support of the principal’s mechanism is not finite follows from the same steps as in Doval and Skreta (2022), so
we omit it for simplicity. Appendix C defines the main objects needed to extend the proof presented herein to the case in which
either 𝛩 is a continuum or the support of the principal’s mechanism is not finite.

Histories and strategies. Let M𝑖,𝑗 denote the set of transition probabilities from 𝑀𝑖 to 𝑆𝑗 × 𝐴; since 𝑀𝑖 is at most countable M𝑖,𝑗 is
Polish. With this notation, MI = ∪𝑖,𝑗∈IM𝑖,𝑗 . To simplify notation, we do not explicitly include the agent’s decision to participate
in the mechanism in the histories of the game. Instead, we follow the convention that if the agent does not participate, the input
message is ∅, the output message is ∅, and the allocation is 𝑎∗. Thus, when the principal offers a mechanism in M𝑖,𝑗 , the possible
private outcomes are 𝑀𝑖𝑆𝑗𝐴∅ ≡

(

𝑀𝑖 × 𝑆𝑗 × 𝐴
)

∪ {(∅, ∅, 𝑎∗)}, while the public outcomes are 𝑆𝑗𝐴∅ ≡
(

𝑆𝑗 × 𝐴
)

∪ {(∅, 𝑎∗)}. We endow
𝑀𝑖𝑆𝑗𝐴∅ and 𝑆𝑗𝐴∅ with the disjoint topology and we note that they are Polish sets under than topology.

With the above notation, an outcome at the end of period 𝑡 is an element of 𝖹𝐴,𝑡 ≡ 𝛩 × ∪𝑖,𝑗∈I
(

M𝑖,𝑗 ×𝑀𝑖𝑆𝑗𝐴∅
)

× 𝛺; the public
omponent of the outcome in period 𝑡 is an element of 𝖹 = ∪𝑖,𝑗∈I

(

M𝑖,𝑗 × 𝑆𝑗𝐴∅
)

× 𝛺. Since I is at most countable, 𝖹𝐴 and 𝖹 are
Polish when endowed with the disjoint topology. For 𝑡 ≥ 1, public histories at the beginning of period 𝑡 are 𝐻 𝑡 = 𝛺 × 𝖹𝑡−1, while
private histories are 𝐻 𝑡

𝐴 = 𝛺 × 𝖹𝑡−1
𝐴 , with the understanding that 𝖹0 = 𝖹0

𝐴 = {∅} and ∅ denotes the empty history.
We write the agent private histories so that ℎ𝑡𝐴 = (ℎ𝑡−1𝐴 , 𝜃𝑡−1,𝐌𝑡−1, 𝑚𝑡−1, 𝑠𝑡−1, 𝑎𝑡−1, 𝜔𝑡), with the convention that when 𝑡 = 1,

1
𝐴 = {𝜔1} for some 𝜔1 ∈ [0, 1]. Thus, an information set for the agent in period 𝑡 is given by (ℎ𝑡𝐴, 𝜃𝑡), where ℎ𝑡𝐴 is the agent history
hrough period 𝑡 and 𝜃𝑡 the agent’s realized type at the beginning of period 𝑡.

The principal’s behavioral strategy is a collection (𝜎𝑃 𝑡)𝑇𝑡=1 where 𝜎𝑃 𝑡 ∶ 𝐻 𝑡 ↦ 𝛥(MI ) is a measurable function. The agent’s
ehavioral strategy (𝜎𝐴𝑡)𝑇𝑡=1 is a collection 𝜎𝐴𝑡 ≡ (𝜋𝑡, 𝑟𝑡)𝑇𝑡=1 such that 𝜋𝑡 ∶ 𝐻 𝑡

𝐴 ×𝛩MI ↦ 𝛥({0, 1}) and 𝑟𝑡 ∶ 𝐻 𝑡
𝐴 ×𝛩 ×MI ↦ 𝛥(∪𝑖∈I𝑀𝑖)

re measurable and 𝑟𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡)(𝑀𝐌𝑡 ) = 1.

horthand notation. Given a mechanism 𝐌𝑡, let 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡) denote the tuple 𝐌𝑡, 𝑠𝑡, 𝑎𝑡, which summarizes the period-𝑡 outcomes
rom offering 𝐌𝑡, where (𝑠𝑡, 𝑎𝑡) ∈ 𝑆𝐌𝑡𝐴∅. Note that any public history at the beginning of period 𝑡 can be written as ℎ𝑡 =
ℎ𝑡−1, 𝑧(𝑠𝑡−1 ,𝑎𝑡−1)(𝐌𝑡−1), 𝜔𝑡), with the convention that when 𝑡 = 1, ℎ1 = {𝜔1} for some 𝜔1 ∈ [0, 1].

Finally, given an assessment, (𝜎𝑃 , 𝜎𝐴, 𝜇), it is useful to collapse the distribution on 𝑀𝐌𝑡𝑆𝐌𝑡𝐴∅, defined by

(1 − 𝜋𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡))1[(𝑚𝑡, 𝑠𝑡, 𝑎𝑡) = (∅, ∅, 𝑎∗)] + 𝜋𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡)𝑟𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡)(𝑚𝑡)𝜑𝐌𝑡 (𝑠𝑡, 𝑎𝑡|𝑚𝑡) (A.1)

nd we denote it by 𝜅𝜎𝐴
𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡).

eliefs and payoffs. To define Perfect Bayesian equilibrium, we need to define the principal and the agent’s payoff from a given
ssessment. To do so, fix an assessment, (𝜎𝑃 , 𝜎𝐴, 𝜇). The prior 𝐹1 and the strategy profile 𝜎 = (𝜎𝑃 , 𝜎𝐴) induce a probability distribution
ver the terminal histories 𝐻𝑇+1

𝐴 , 𝑃 𝜎 , via the Ionescu-Tulcea theorem (Pollard, 2002) (Appendix C formally defines this distribution).
oreover, fixing 𝑡 and (ℎ𝑡𝐴, 𝜃𝑡), the measure 𝑃 𝜎|ℎ𝑡𝐴 ,𝜃𝑡 corresponds to the measure induced by drawing with probability 1 (ℎ𝑡𝐴, 𝜃𝑡) and

hen using the continuation strategy profile to determine the distribution over the continuation histories. Fix a public history ℎ𝑡.
ecall that the principal’s prior belief at ℎ𝑡 𝜈𝑡(⋅|ℎ𝑡) ∈ 𝛥(𝐻 𝑡

𝐴(ℎ
𝑡) × 𝛩) is obtained from the belief assessment 𝜇 and the transition

robability in period 𝑡, 𝐹𝑡, as follows. Let ℎ𝑡 = (ℎ𝑡−1, 𝑧(𝑠𝑡−1 ,𝑎𝑡−1)(𝐌𝑡−1), 𝜔𝑡) and let ℎ𝑡𝐴 = (ℎ𝑡−1𝐴 , 𝜃𝑡−1, 𝑚𝑡−1, 𝑧(𝑠𝑡−1 ,𝑎𝑡−1)(𝐌𝑡−1), 𝜔𝑡). Then,

𝜈𝑡(ℎ𝑡𝐴, 𝜃𝑡|ℎ
𝑡) = 𝜇𝑡(ℎ𝑡𝐴|ℎ

𝑡)𝐹𝑡(𝜃𝑡|𝜃𝑡−1, 𝑎𝑡−1). (A.2)

he principal’s continuation payoff at ℎ𝑡 is then given by11

𝑊𝑡(𝜎, 𝜇|ℎ𝑡) =
∑

ℎ𝑡𝐴∈𝐻
𝑡
𝐴(ℎ

𝑡),𝜃𝑡

𝜈𝑡(ℎ𝑡𝐴, 𝜃𝑡|ℎ
𝑡)E𝜎𝑃 𝑡(ℎ𝑡)

[

E𝑃 𝜎|(ℎ𝑡𝐴,𝜃𝑡 ,𝐌𝑡 )
[ 𝑇
∑

𝜏=𝑡
𝑤𝜏 (⋅, 𝜃𝑡)

]]

≡ E𝜎𝑃 𝑡(ℎ𝑡)
[

𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡)
]

. (A.3)

11 In a slight abuse of notation, we denote the principal’s continuation payoff by 𝑊𝑡 to signify that this is the expectation from period 𝑡 onwards of the
7

rincipal’s payoff 𝑊 defined in Section 2.
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The principal’s payoff from offering 𝐌𝑡 at ℎ𝑡, 𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡), depends on the belief system 𝜇 only through 𝐹𝑡(⋅)𝜇𝑡(⋅|ℎ𝑡) ≡ 𝜈𝑡(⋅|ℎ𝑡).
We now show 𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡) has a recursive representation. To do so, we first show the principal’s payoff from offering

echanism 𝐌𝑡 at ℎ𝑡 conditional on the agent being at node (ℎ𝑡𝐴,𝜃𝑡) can be written recursively:

𝑊𝑡(𝜎|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) = (A.4)
∑

(𝑚𝑡 ,𝑠𝑡 ,𝑎𝑡)∈𝑀𝐌𝑡𝑆𝐌𝑡𝐴∅

𝜅𝜎𝐴
𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡)

(

𝑤𝑡(𝑎𝑡, 𝜃𝑡) + 𝛿E𝜔

[

∑

𝜃𝑡+1

𝐹𝑡+1(𝜃𝑡+1|𝜃𝑡, 𝑎𝑡)E𝜎𝑃 𝑡(ℎ𝑡+1)𝑊𝑡+1(𝜎|ℎ𝑡+1𝐴 , 𝜃𝑡+1, ⋅)

])

.

sing Eq. (A.4), we can write the principal’s payoff at (ℎ𝑡,𝐌𝑡) as follows

𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡) =
∑

ℎ𝑡𝐴 ,𝜃𝑡

𝜈𝑡(ℎ𝑡𝐴, 𝜃𝑡|ℎ
𝑡)𝑊𝑡(𝜎|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡).

sing Eq. (C.1), define

Pr𝜈,𝜎𝐴𝑡+1 (ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡) =
∑

(ℎ𝑡𝐴 ,𝜃𝑡),𝑚𝑡∈𝑀
𝐌𝑡
∅

𝜈𝑡(ℎ𝑡𝐴, 𝜃𝑡|ℎ
𝑡)𝜅𝜎𝐴

𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ
𝑡
𝐴, 𝜃𝑡,𝐌𝑡). (A.5)

ith this notation at hand, we can express the principal’s payoff 𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡) as follows

𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡) = (A.6)
∑

(𝑠𝑡 ,𝑎𝑡)
Pr𝜈,𝜎𝐴𝑡+1 (ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)E𝜇𝑡+1(⋅|ℎ𝑡 ,𝑧(𝑠𝑡 ,𝑎𝑡 )(𝐌𝑡))

[

𝑤𝑡(𝑎𝑡, ⋅) + 𝛿E𝜔𝑡+1

∑

𝜃𝑡+1

𝐹𝑡+1(𝜃𝑡+1|⋅, 𝑎𝑡)E𝜎𝑃 𝑡+1𝑊𝑡+1(𝜎|ℎ𝑡+1𝐴 , 𝜃𝑡+1, ⋅)

]

=
∑

(𝑠𝑡 ,𝑎𝑡)∈𝑆𝐌𝑡𝐴∅

Pr𝜈,𝜎𝐴𝑡+1 (ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)
⎡

⎢

⎢

⎣

∑

(ℎ𝑡𝐴 ,𝜃𝑡),𝑚𝑡
𝜇𝑡+1(ℎ𝑡𝐴, 𝜃𝑡, 𝑚𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡))𝑤𝑡(𝑎𝑡, 𝜃𝑡)

+𝛿E𝜔𝑡+1
E𝜎𝑃 𝑡+1

[

𝑊𝑡+1(𝜎, 𝜇|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡), 𝜔𝑡+1,𝐌𝑡+1)
]

⎤

⎥

⎥

⎦

,

which completes the recursion. In more compact notation, Eq. (A.4) implies that

𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡) =

∑

ℎ𝑡+1∈𝐻 𝑡+1(ℎ𝑡 ,𝐌𝑡)

Pr𝜈,𝜎𝐴𝑡+1 (ℎ𝑡+1|ℎ𝑡)
⎡

⎢

⎢

⎣

∑

ℎ𝑡+1𝐴 ∈𝐻 𝑡+1
𝐴 (ℎ𝑡+1)

𝜇𝑡+1(ℎ𝑡+1𝐴 |ℎ𝑡+1)𝑤𝑡(⋅) + 𝛿E𝜔𝑡+1 ,𝜎𝑃 (ℎ𝑡+1)𝑊𝑡+1(𝜎, 𝜇|ℎ𝑡+1,𝐌𝑡+1)
⎤

⎥

⎥

⎦

.

Similarly, for the agent we have that in period 𝑡 at node (ℎ𝑡𝐴, 𝜃𝑡) when the principal offers her mechanism 𝐌𝑡, her payoff is given
by:

𝑈𝑡(𝜎|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) =
∑

(𝑚𝑡 ,𝑠𝑡 ,𝑎𝑡)
𝜅𝜎𝐴
𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡)

(

𝑢𝑡(𝑎𝑡, 𝜃𝑡) + 𝛿E𝑃 𝜎|ℎ𝑡𝐴,𝜃𝑡 ,⋅ ∑

𝜏≥𝑡
𝛿𝜏−1𝑢𝜏 (⋅)

)

(A.7)

=
∑

(𝑚𝑡 ,𝑠𝑡 ,𝑎𝑡)
𝜅𝜎𝐴
𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡)

(

𝑢𝑡(𝑎𝑡, 𝜃𝑡) + 𝛿E𝜔𝑡+1

[

∑

𝜃𝑡+1

𝐹𝑡+1(𝜃𝑡+1|𝜃𝑡, 𝑎𝑡)E𝜎𝑃 𝑡+1𝑈𝑡+1(𝜎|ℎ𝑡+1𝐴 , 𝜃𝑡+1,𝐌𝑡)

])

,

where in the above expression ℎ𝑡+1𝐴 = (ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡, 𝑚𝑡, 𝑠𝑡, 𝑎𝑡, 𝜔𝑡+1). The second line in Eq. (A.7) highlights that the agent’s payoff also
has a recursive structure. We use this frequently in the proof of Proposition B.1.

Perfect Bayesian equilibrium. Having defined the principal and the agent’s payoffs, we can formally define Perfect Bayesian
equilibrium.

Definition A.1. An assessment (𝜎𝑃 , 𝜎𝐴, 𝜇) is sequentially rational if for all 𝑡 ≥ 1 and public histories ℎ𝑡, the following hold:

1. If 𝐌𝑡 is in the support of 𝜎𝑃 𝑡(ℎ𝑡), then 𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌𝑡) ≥ 𝑊𝑡(𝜎, 𝜇|ℎ𝑡,𝐌′
𝑡) for all 𝐌′

𝑡 ∈ MI ,
2. For all (ℎ𝑡𝐴, 𝜃𝑡) ∈ 𝐻 𝑡

𝐴(ℎ
𝑡) × 𝛩, and 𝐌𝑡 in MI , 𝑈𝑡(𝜎|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) ≥ 𝑈𝑡(𝜎𝑃 , 𝜎′𝐴|ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡) for all 𝜎′𝐴.

Definition A.2. An assessment (𝜎𝑃 , 𝜎𝐴, 𝜇) satisfies Bayes’ rule where possible if for all public histories ℎ𝑡 and mechanisms 𝐌𝑡 the
following holds:

𝜇𝑡+1(ℎ𝑡𝐴, 𝜃𝑡, 𝑚𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡), 𝜔𝑡+1|ℎ
𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡), 𝜔𝑡+1)Pr

𝜈,𝜎𝐴
𝑡+1 (ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡,𝐌𝑡) (A.8)

= 𝜈𝑡(ℎ𝑡𝐴, 𝜃𝑡|ℎ
𝑡)𝜅𝜎𝐴

𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ
𝑡
𝐴, 𝜃𝑡,𝐌𝑡),

where 𝜈𝑡(ℎ𝑡𝐴, 𝜃𝑡|ℎ
𝑡) is defined as in Eq. (A.2).

Definition A.3. An assessment (𝜎𝑃 , 𝜎𝐴, 𝜇) is a Perfect Bayesian equilibrium if it is sequentially rational and satisfies Bayes’ rule where
8

possible.
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The only difference between Bayes’ rule where possible (Definition A.2) and consistency in sequential equilibrium is that under
BE, the principal can assign zero probability to a type and then, after the agent deviates, can assign positive probability to that
ame type.

running. Given a mechanism 𝐌𝑡, let (𝑆𝐌𝑡 × 𝐴)+ = {(𝑠𝑡, 𝑎𝑡) ∶ (∃𝑚 ∈ 𝑀𝐌𝑡 )𝜑𝐌𝑡 (𝑠𝑡, 𝑎𝑡|𝑚) > 0}. The set 𝑆𝐌𝑡 × 𝐴 ⧵ (𝑆𝐌𝑡 × 𝐴)+ has zero
robability regardless of the agent’s strategy. Hence, if we remove from the tree those paths that are consistent with mechanism 𝐌𝑡

and (𝑠, 𝑎) ∉ (𝑆𝐌𝑡 ×𝐴)+, this does not change the set of equilibrium outcomes. Hereafter, these histories are removed from the tree.

rincipal pure strategies: Lemma D.1 in Doval and Skreta (2022) shows it is without loss of generality to focus on PBE assessments
f 𝐺I in which the principal plays a pure strategy. In what follows, we thus focus on PBE assessments with this property.

ppendix B. Proof of Theorem 1

The proof of Theorem 1 follows from the proof of Propositions B.1–B.2 below.

roposition B.1. For every PBE assessment (𝜎𝑃 , 𝜎𝐴, 𝜇) of 𝐺I , a payoff-equivalent PBE assessment (𝜎′𝑃 , 𝜎
′
𝐴, 𝜇

′) exists such that for every
≥ 1 and every public history ℎ𝑡, the agent’s strategy only depends on her current type, 𝜃𝑡, and the public history ℎ𝑡.

We relegate the proof of Proposition B.1 to Appendix B.1. In what follows, we focus on PBE of the mechanism-selection game
hat satisfy the properties of Proposition B.1 and abuse notation in the following two ways: First, we write the agent’s strategy as a
unction of her private type and the public history alone, with the understanding that 𝜎𝐴𝑡(ℎ𝑡𝐴, 𝜃𝑡) = 𝜎𝐴𝑡(ℎ𝑡, 𝜃𝑡) whenever ℎ𝑡𝐴 ∈ 𝐻 𝑡

𝐴(ℎ
𝑡).

imilarly, we write the belief system at history ℎ𝑡 as inducing distributions over 𝛩 and not over 𝛩 ×𝐻 𝑡
𝐴(ℎ

𝑡).

roposition B.2. Fix I and let (𝜎𝑃 , 𝜎𝐴, 𝜇) be a PBE assessment of 𝐺I that satisfies Proposition B.1. Then, an outcome-equivalent canonical
BE assessment (𝜎′𝑃 , 𝜎

′
𝐴, 𝜇

′) of 𝐺I exists.

roof of Proposition B.2. Let (𝜎𝑃 , 𝜎𝐴, 𝜇) be as in the statement of Proposition B.2. Let ℎ𝑡 be a public history and let 𝐌𝑡 denote the
echanism that the principal offers at ℎ𝑡 under 𝜎𝑃 𝑡. Let 𝛩+ denote the support of the principal’s beliefs at ℎ𝑡, 𝜈𝑡(ℎ𝑡).

For types in 𝛩+, use Eq. (C.1) to define an auxiliary mapping 𝜑′ ∶ 𝛩+ ↦ 𝛥
(

𝑆𝐌𝑡𝐴∅
)

, as follows:

𝜑′(𝑠𝑡, 𝑎𝑡|𝜃𝑡) =
∑

𝑚∈𝑀𝐌𝑡
∅

𝜅𝜎𝐴
𝑡 (𝑚𝑡, 𝑠𝑡, 𝑎𝑡|ℎ

𝑡, 𝜃𝑡,𝐌𝑡). (B.1)

hat is, 𝜑′ corresponds to the direct version of 𝜑𝐌𝑡 for 𝜃𝑡 ∈ 𝛩+; we use it in what follows to construct an alternative mechanism for
he principal, 𝐌′

𝑡, that uses message sets (𝛩, 𝛥(𝛩)).
Omitting the dependence on (𝜎𝐴, 𝜈), recall that Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡,𝐌𝑡) denotes the probability of history (ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)) under

he equilibrium strategy when the principal offers 𝐌𝑡 at ℎ𝑡 (Eq. (A.5)). Eq. (A.5) implies we can write Pr𝑡+1 using 𝜑′ as follows:

Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡,𝐌𝑡) =
∑

𝜃𝑡∈𝛩+
𝜈𝑡(𝜃𝑡|ℎ𝑡)𝜑′(𝑠𝑡, 𝑎𝑡|𝜃𝑡).

n what follows, to simplify notation we omit the dependence of Pr𝑡+1(⋅|ℎ𝑡,𝐌𝑡) on 𝐌𝑡.
The first step is to show the distribution over continuation histories Pr𝑡+1 can be seen as inducing a distribution over posterior

eliefs, allocations, and realizations of a public randomization device. To see this, for 𝜇 ∈ 𝛥(𝛩), let 𝐵(𝜇) denote the set

𝐵(𝜇) =
{

(𝑠𝑡, 𝑎𝑡) ∈ 𝑆𝐌𝑡𝐴∅ ∶ 𝜇𝑡+1(⋅|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)) = 𝜇
}

,

and let 𝐵𝑎𝑡 (𝜇) denote the projection of 𝐵(𝜇) onto {𝑎𝑡}. In what follows, for any subset 𝐵 ⊆ 𝑆𝐌𝑡𝐴∅, we abuse notation and write
Pr𝑡+1(𝐵|ℎ𝑡) instead of ∑(𝑠𝑡 ,𝑎𝑡)∈𝐵 Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡).

Let 𝛥(𝛩)+ denote the smallest subset of 𝛥(𝛩) such that Pr𝑡+1(𝐵(𝛥(𝛩)+)|ℎ𝑡) = 1. That is, 𝛥(𝛩)+ is the set of principal posterior
beliefs that are pinned down via Bayes’ rule. Using Eq. (B.2), define the principal’s payoff conditional on (ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)) as follows:

𝑊𝑡(𝜎, 𝜇𝑡+1(⋅|ℎ𝑡+1)|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)) =

E𝜇𝑡+1(⋅|ℎ𝑡 ,𝑧(𝑠𝑡 ,𝑎𝑡 )(𝐌𝑡))

[

𝑤𝑡(𝑎𝑡, ⋅) + 𝛿E𝜔𝑡+1

∑

𝜃𝑡+1

𝐹𝑡+1(𝜃𝑡+1|⋅, 𝑎𝑡)E𝜎𝑃 𝑡+1𝑊𝑡+1(𝜎|ℎ𝑡+1𝐴 , 𝜃𝑡+1, ⋅)

]

.

Then, we can write the principal’s payoff at history ℎ𝑡 when he offers 𝐌𝑡 as follows:
∑

(𝑠𝑡 ,𝑎𝑡)
Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)𝑊𝑡(𝜎, 𝜇𝑡+1(⋅|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡))|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)) (B.2)

=
∑

𝜇∈𝛥(𝛩)+
Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)

∑

𝑎𝑡∈𝐴

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

allocation rule

∑

𝑠𝑡∈𝐵𝑎𝑡 (𝜇)

Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)
Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ

𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

public randomization

𝑊𝑡(𝜎, 𝜇|ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)).
9
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The above equation shows two ways in which we can think of the distribution over continuation histories starting from ℎ𝑡. The first
s standard: we draw history (ℎ𝑡,𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)) using the distribution induced by the equilibrium strategy, Pr𝑡+1(⋅|ℎ𝑡). The second is the
ne that delivers the direct Blackwell mechanisms: we first draw a belief 𝜇 using the distribution over continuation equilibrium
eliefs induced by Pr𝑡+1(⋅|ℎ𝑡) and then we draw an allocation 𝑎𝑡, conditional on the continuation equilibrium belief coinciding with
. The principal’s posterior belief 𝜇 and the allocation 𝑎𝑡 may still not be enough to pin down the continuation history, so we draw
he output message 𝑠𝑡 conditional on 𝑠𝑡 being consistent with 𝑎𝑡 and 𝜇.

Conditional on the induced posterior belief 𝜇, the second step shows (i) the probability that the allocation is 𝑎𝑡 is independent of
𝑡, and (ii) the probability that the output message is 𝑠𝑡 ∈ 𝐵𝑎𝑡 (𝜇) is independent of 𝜃𝑡. To see this, note that for any belief 𝜇 ∈ 𝛥(𝛩)+,
or any (𝑠𝑡, 𝑎𝑡) ∈ 𝐵(𝜇) and for any 𝜃𝑡 such that 𝜇(𝜃𝑡) > 0, we have12

𝜇(𝜃𝑡) =
𝜈𝑡(𝜃𝑡|ℎ𝑡)𝜑′(𝑠𝑡, 𝑎𝑡|𝜃𝑡)

Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)
=

𝜈𝑡(𝜃𝑡|ℎ𝑡)
∑

𝑠′𝑡∈𝐵𝑎𝑡 (𝜇)
𝜑′(𝑠′𝑡 , 𝑎𝑡|𝜃𝑡)

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

=
𝜈𝑡(𝜃𝑡|ℎ𝑡)

∑

(𝑠′𝑡 ,𝑎
′
𝑡 )∈𝐵(𝜇)

𝜑′(𝑠′𝑡 , 𝑎
′
𝑡|𝜃𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
. (B.3)

hat is, the principal updates to 𝜇 either when (i) he observes (𝑠𝑡, 𝑎𝑡) ∈ 𝐵(𝜇), (ii) he learns that 𝑎𝑡 is the realized allocation, that is,
e learns that 𝑠𝑡 ∈ 𝐵𝑎𝑡 (𝜇), or (iii) he learns that the output message and the allocation belong to 𝐵(𝜇). Thus, for all 𝜃𝑡 in the support
f 𝜇, we have

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
=

∑

𝑠′𝑡∈𝐵𝑎𝑡 (𝜇)
𝜑′(𝑠′𝑡 , 𝑎𝑡|𝜃𝑡)

∑

(𝑠′𝑡 ,𝑎
′
𝑡 )∈𝐵(𝜇)

𝜑′(𝑠′𝑡 , 𝑎
′
𝑡|𝜃𝑡)

(B.4)

Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)
Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ

𝑡)
=

𝜑′(𝑠𝑡, 𝑎𝑡|𝜃𝑡)
∑

𝑠′𝑡∈𝐵𝑎𝑡 (𝜇)
𝜑′(𝑠′𝑡 , 𝑎𝑡|𝜃𝑡)

,

where each of the equalities follows from applying Eq. (B.3). Eq. (B.4) shows (i) the probability that the allocation is 𝑎𝑡 conditional
on the induced belief being 𝜇 is independent of 𝜃𝑡, and (ii) the probability that the output message is 𝑠𝑡 ∈ 𝐵𝑎𝑡 (𝜇) conditional on the
allocation being 𝑎𝑡 and the induced belief 𝜇 is independent of 𝜃𝑡. It follows that for all 𝜇 ∈ 𝛥(𝛩)+, (𝑠𝑡, 𝑎𝑡) ∈ 𝐵(𝜇) and for all 𝜃𝑡 in the
upport of 𝜇, we can split the auxiliary mapping as follows:

𝜑′(𝑠𝑡, 𝑎𝑡|𝜃𝑡) =
⎛

⎜

⎜

⎝

∑

(𝑠′𝑡 ,𝑎
′
𝑡 )∈𝐵(𝜇)

𝜑′(𝑠′𝑡 , 𝑎
′
𝑡|𝜃𝑡)

⎞

⎟

⎟

⎠

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

=
𝜇(𝜃𝑡)

𝜈𝑡(𝜃𝑡|ℎ𝑡)
Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

,

here the last equality follows from the last equality in Eq. (B.3).
Thus, the agent’s payoff at history ℎ𝑡, when the principal offers mechanism 𝐌𝑡 and her type is 𝜃𝑡 ∈ 𝛩+, can be written as follows:

∑

(𝑠𝑡 ,𝑎𝑡)∈𝑆𝐌𝑡𝐴∅

𝜑′(𝑠𝑡, 𝑎𝑡|𝜃𝑡)

[

𝑢𝑡(𝑎𝑡, 𝜃𝑡) + 𝛿E𝑃 𝜎|ℎ𝑡𝐴,𝜃𝑡 ,𝑧(𝑠𝑡 ,𝑎𝑡 ) (𝐌𝑡 ) ∑

𝜏≥𝑡+1
𝑢𝜏 (⋅)

]

=

∑

𝜇∈𝛥(𝛩)

𝜇(𝜃𝑡)
𝜈𝑡(𝜃𝑡|ℎ𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
∑

𝑎𝑡∈𝐴

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
∑

𝑠𝑡∈𝐵𝑎𝑡 (𝜇)

Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)
Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ

𝑡)
[𝑢𝑡(𝑎𝑡, 𝜃𝑡)

+𝛿E𝑃 𝜎|ℎ𝑡𝐴,𝜃𝑡 ,𝑧(𝑠𝑡 ,𝑎𝑡 ) (𝐌𝑡 ) ∑

𝜏≥𝑡+1
𝑢𝜏 (⋅)]. (B.5)

he difference between the principal and the agent’s payoff in Eqs. (B.2) and (B.5) is that the agent cares only about the distribution
ver (𝜇, 𝑠𝑡, 𝑎𝑡) conditional on 𝜃𝑡, whereas the principal’s payoff is expressed in terms of the unconditional distribution. For this reason
he agent’s payoff features the term 𝜇(𝜃𝑡)∕𝜈𝑡(𝜃𝑡|ℎ𝑡).

We now define the direct Blackwell mechanism 𝐌𝐶
𝑡 = (𝛩, 𝛥(𝛩), 𝜑𝐌𝐶

𝑡 ): First, for 𝜃𝑡 ∈ 𝛩+,

𝜑𝐌𝐶
𝑡 (𝜇, 𝑎𝑡|𝜃𝑡) =

𝜇(𝜃𝑡)
𝜈𝑡(𝜃𝑡|ℎ𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛽𝐌
𝐶
𝑡 (𝜇|𝜃𝑡)

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

Pr𝑡+1(𝐵(𝜇)|ℎ𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛼𝐌
𝐶
𝑡 (𝑎𝑡|𝜇)

,

where the decomposition in terms of 𝛽𝐌𝐶
𝑡 , 𝛼𝐌

𝐶
𝑡 is well-defined because of the independence properties highlighted after Eq. (B.4).

Second, if 𝜃𝑡 ∉ 𝛩+, let 𝜃∗𝑡 (𝜃𝑡) denote a maximizer of

∑

(𝜇,𝑎𝑡)∈𝛥(𝛩)×𝐴
𝜑𝐌𝐶

𝑡 (𝜇, 𝑎𝑡|𝜃𝑡)
∑

𝑠𝑡∈𝐵𝑎𝑡 (𝜇)

Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)
Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ

𝑡)
E𝑃 𝜎|(ℎ𝑡,𝜃𝑡 ,𝑧(𝑠𝑡 ,𝑎𝑡 ) (𝐌𝑡 ))

[𝑢𝑡(𝑎𝑡, 𝜃𝑡)

+𝛿E𝑃 𝜎|ℎ𝑡𝐴,𝜃𝑡 ,𝑧(𝑠𝑡 ,𝑎𝑡 ) (𝐌𝑡 ) ∑

𝜏≥𝑡+1
𝑢𝜏 (⋅)], (B.6)

12 Note that if 𝜇 ∈ 𝛥(𝛩)+ and 𝜃 is such that 𝜇(𝜃 ) > 0, then 𝜃 ∈ 𝛩+.
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where 𝜃𝑡 ∈ 𝛩+. Let 𝜑𝐌𝐶
𝑡 (⋅|𝜃𝑡) = 𝜑𝐌𝐶

𝑡 (⋅|𝜃∗𝑡 (𝜃𝑡)). Change the principal’s strategy at ℎ𝑡 so that he offers 𝐌𝐶
𝑡 instead of 𝐌𝑡. Change the

agent’s strategy so that, conditional on participating, the agent truthfully reports her type, 𝑟′𝑡(ℎ𝑡, 𝜃𝑡,𝐌
𝐶
𝑡 ) = 𝛿𝜃𝑡 .

For 𝜇 ∈ 𝛥(𝛩)+ and allocation 𝑎𝑡, enumerate the output messages in 𝐵𝑎𝑡 (𝜇) as 𝑠1𝑡 ,… , 𝑠𝐾𝑡 . (We omit the dependence of 𝐾 on 𝜇 and
𝑎𝑡 to simplify notation.) Define the sequence {𝜔𝑘}𝐾𝑘=0 such that 𝜔0 = 0, 𝜔𝐾 = 1 and for 𝑘 = 1,… , 𝐾 − 1,

𝜔𝑘 − 𝜔𝑘−1 =
Pr𝑡+1(ℎ𝑡, 𝑧(𝑠𝑘𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝑡)

Pr𝑡+1(𝐵𝑎𝑡 (𝜇)|ℎ
𝑡)

.

Modify the continuation strategies as follows: for 𝑘=1,… , 𝐾 and 𝜔 ∈ [𝜔𝑘−1, 𝜔𝑘], let 𝜎|(ℎ𝑡 ,𝑧(𝜇,𝑎𝑡 )(𝐌𝐶
𝑡 ),𝜔)

coincide with 𝜎|(ℎ𝑡 ,𝑧(𝑠𝑘𝑡 ,𝑎𝑡 )
(𝐌𝑡),

𝜔−𝜔𝑘−1
𝜔𝑘−𝜔𝑘−1

Note these strategies imply the principal and the agent’s payoffs remain the same as in the original equilibrium whenever 𝜃𝑡 ∈ 𝛩+.
Furthermore, modify the continuation strategies so that 𝜎|(ℎ𝑡 ,𝑧(∅,𝑎∗)(𝐌𝐶

𝑡 ))
= 𝜎|(ℎ𝑡 ,𝑧(∅,𝑎∗)(𝐌𝑡)).

For 𝜃𝑡 in 𝛩+, set 𝜋′
𝑡 (ℎ

𝑡, 𝜃𝑡,𝐌𝐶
𝑡 ) = 1. For types not in 𝛩+, use Eq. (B.6) to compute 𝜋′

𝑡 (ℎ
𝑡, 𝜃𝑡,𝐌𝐶

𝑡 ) accordingly. Conditional on
participating, the agent can guarantee at most the payoff from imitating the strategy followed by 𝜃′𝑡 for some 𝜃′𝑡 ∈ 𝛩+. This strategy
was already feasible in the original PBE, so the agent has no new deviations. It follows that the new assessment is a PBE of the
auxiliary game. □

B.1. Proof of Proposition B.1

Proof of Proposition B.1. Fix a PBE assessment and let ℎ𝑡 denote a public history such that there exists a mechanism 𝐌𝑡, a type
𝜃𝑡, and two private histories ℎ𝑡𝐴, ℎ

𝑡
𝐴 ∈ 𝐻 𝑡

𝐴(ℎ
𝑡) such that 𝜎𝐴𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) ≠ 𝜎𝐴𝑡(ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡).

We make the following observations about the agent’s payoff at node (ℎ𝑡𝐴, 𝜃𝑡), which are also true about (ℎ
𝑡
𝐴, 𝜃𝑡). Fix 𝑛 ≥ 𝑡. Note

hat for any node (ℎ𝑛𝐴, 𝜃𝑛) that weakly succeeds (ℎ𝑡𝐴, 𝜃𝑡), there exists an equivalent node (ℎ
𝑛
𝐴, 𝜃𝑛) that weakly succeeds (ℎ

𝑡
𝐴, 𝜃𝑡).13 Let

𝜎′𝐴 denote the strategy that coincides with 𝜎𝐴 everywhere except that 𝜎′𝐴(ℎ
𝑛
𝐴, 𝜃𝑛) = 𝜎𝐴(ℎ

𝑛
𝐴, 𝜃𝑛) for each (ℎ𝑛𝐴, 𝜃𝑛) that weakly succeeds

ℎ𝑡𝐴, 𝜃𝑡). Then, it must be the case that 𝑈𝑡(𝜎|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) ≥ 𝑈𝑡(𝜎𝑃 , 𝜎′𝐴|ℎ
𝑡
𝐴, 𝜃𝑡,𝐌𝑡). Otherwise, the agent would have a deviation at (ℎ𝑡𝐴, 𝜃𝑡)

to 𝜎′𝐴). Note that 𝑈𝑡(𝜎𝑃 , 𝜎′𝐴|ℎ
𝑡
𝐴, 𝜃𝑡,𝐌𝑡) = 𝑈𝑡(𝜎|ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡). Swapping the roles of ℎ𝑡𝐴, ℎ

𝑡
𝐴, we conclude that

𝑈𝑡(𝜎|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡) = 𝑈𝑡(𝜎𝑃 , 𝜎′𝐴|ℎ
𝑡
𝐴, 𝜃𝑡,𝐌𝑡), (B.7)

and a similar indifference holds for the agent at information set (ℎ
𝑡
𝐴, 𝜃𝑡).

Consider now Eq. (A.7) at 𝑡 − 1 and (ℎ𝑡−1𝐴 , 𝜃𝑡−1) such that (ℎ𝑡𝐴, 𝜃𝑡) weakly succeeds (ℎ𝑡−1𝐴 , 𝜃𝑡−1). Note that Eq. (B.7) implies that
𝑡−1(𝜎|ℎ𝑡−1𝐴 , 𝜃𝑡−1,𝐌𝑡−1) = 𝑈𝑡−1(𝜎𝑃 , 𝜎′𝐴|ℎ

𝑡−1
𝐴 , 𝜃𝑡−1,𝐌𝑡−1), where 𝜎′𝐴 is the strategy we constructed before. Working backwards from

= 𝑡 − 1 to 𝑛 = 1 one can see that if at node (ℎ𝑡𝐴, 𝜃𝑡) the agent is indifferent between 𝜎′𝐴 and 𝜎𝐴, so is the agent at any (ℎ𝑛𝐴, 𝜃𝑛) that
recedes (ℎ𝑡𝐴, 𝜃𝑡).

Finally, take now Eq. (A.7). The above argument implies that if at a node (ℎ𝑡+1𝐴 , 𝜃𝑡+1) that succeeds (ℎ𝑡𝐴, 𝜃𝑡), the agent is indifferent
etween two continuation strategies, then so is the agent at (ℎ𝑡𝐴, 𝜃𝑡). Working forward from 𝑛 = 𝑡+1 to any 𝑛 = 𝜏 > 𝑡+1, one concludes
hat if the agent is indifferent between two (continuation) strategies at (ℎ𝜏𝐴, 𝜃𝜏 ), then so is the agent at (ℎ𝑡𝐴, 𝜃𝑡).

Summing up, we have established that (a) for the same public history ℎ𝑡, if the continuation strategy at (ℎ𝑡𝐴, 𝜃𝑡) differs from
he continuation strategy at (ℎ

𝑡
𝐴, 𝜃𝑡), then the agent is indifferent between both continuation strategies (and any mixture between

hem), (b) this indifference carries through to the nodes that precede both (ℎ𝑡𝐴, 𝜃𝑡) and (ℎ
𝑡
𝐴, 𝜃𝑡), and (c) any indifference at nodes

hat succeed (ℎ𝑡𝐴, 𝜃𝑡) and (ℎ
𝑡
𝐴, 𝜃𝑡) also holds at these nodes (and hence its predecessors by (b)).

Consider the following strategy which, by the above arguments, is payoff equivalent to 𝜎𝐴. For 𝜏 ≥ 𝑡, let ℎ𝜏 denote a strategy on
he path of ℎ𝑡 and let 𝐌𝜏 denote a mechanism chosen by the principal at ℎ𝜏 . For all ℎ𝜏𝐴 ∈ 𝐻𝜏

𝐴(ℎ
𝜏 ) and all 𝜃𝜏 ∈ 𝛩𝜏 , the following is

lso an optimal strategy at (ℎ𝜏𝐴, 𝜃𝜏 ,𝐌𝜏 )

𝜋′
𝜏 (ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ) =

∑

ℎ
𝜏
𝐴∈𝐻

𝜏
𝐴(ℎ

𝜏 )

𝜈𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )
∑

ℎ̃𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜈𝜏 (ℎ̃
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )
𝜋𝜏 (ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ),

henever ∑

ℎ̃𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜈𝜏 (ℎ̃
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 ) > 0 and

𝑟′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ) =

∑

ℎ
𝜏
𝐴∈𝐻

𝜏
𝐴(ℎ

𝜏 )

𝜈𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )𝜋𝜏 (ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

∑

ℎ̃𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜈𝜏 (ℎ̃
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )𝜋𝜏 (ℎ̃𝜏𝐴, 𝜃𝜏 ,𝐌𝜏 )
𝑟𝜏 (ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ),

whenever ∑

ℎ̃𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜈𝜏 (ℎ̃
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )𝜋𝜏 (ℎ̃𝜏𝐴, 𝜃𝜏 ,𝐌𝜏 ) > 0. Let 𝜏 ≥ 𝑡 and fix ℎ𝜏 on the path of ℎ𝑡. Consider now types 𝜃𝜏 such that
∑

ℎ𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜈𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 ) = 0. Then, for any ℎ𝜏𝐴 ∈ 𝐻𝜏
𝐴(ℎ

𝜏 ), they participate with probability

𝜋′
𝜏 (ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ) =

∑

ℎ
𝑡
𝐴∈𝐻

𝜏
𝐴(ℎ

𝜏 )

𝜋𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

|𝐻𝜏
𝐴(ℎ

𝜏 )|
.

13 Formally, if 𝑛 ≥ 𝑡 + 1 and (ℎ𝑛
𝐴 , 𝜃𝑛) succeeds (ℎ𝑡

𝐴 , 𝜃𝑡), then ℎ𝑛
𝐴 = (ℎ𝑡

𝐴 , 𝜃𝑡 , 𝑧⋅(𝐌𝑡),… , 𝑧⋅(𝐌𝑛)). Then, ℎ
𝑛
𝐴 = (ℎ

𝑡
𝐴 , 𝜃𝑡 , 𝑧⋅(𝐌𝑡),… , 𝑧⋅(𝐌𝑛)). For 𝑛 = 𝑡, (ℎ𝑛

𝐴 , 𝜃𝑛) = (ℎ𝑡
𝐴 , 𝜃𝑡), so

hat (ℎ
𝑛
, 𝜃 ) = (ℎ

𝑡
, 𝜃 ).
11
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A

T

T
s

If public history (ℎ𝜏 ,𝐌𝜏 , 1) in on the path of ℎ𝑡, then modify the agent’s reporting strategy so that she reports according to

𝑟′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ) =

∑

ℎ
𝜏
𝐴∈𝐻

𝜏
𝐴(ℎ

𝜏 )

𝜋𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

∑

ℎ̃𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜋𝜏 (ℎ̃
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

𝑟𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ),

whenever ∑

ℎ̃𝜏𝐴∈𝐻
𝜏
𝐴(ℎ

𝜏 ) 𝜋𝜏 (ℎ̃
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ) > 0 and with probability

𝑟′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 ) =

∑

ℎ
𝑡
𝐴∈𝐻

𝜏
𝐴(ℎ

𝜏 )

𝑟𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

|𝐻𝜏
𝐴(ℎ

𝜏 )|
,

otherwise. Fix 𝜏 ≥ 𝑡 and a public history ℎ𝜏 on the path of the strategy (𝜎𝑃 , 𝜎′𝐴) starting from ℎ𝑡. Under the new strategy, Bayes’
rule implies that beliefs at the end of period 𝜏, when the public history is (ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )) that the agent’s private history is
(ℎ𝜏𝐴, 𝜃𝜏 , 𝑚, 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )) are given by

𝜇′
𝜏+1(ℎ

𝜏
𝐴, 𝜃𝜏 , 𝑚, 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 ))|(ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )) =

𝜈′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )𝜅
𝜎′𝐴
𝜏 (𝑚𝜏 , 𝑠𝜏 , 𝑎𝜏 |ℎ𝜏𝐴, 𝜃𝜏 ,𝐌𝜏 )

∑

(ℎ
𝜏
𝐴 ,𝜃𝜏 ,𝑚𝜏 )

𝜈′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ𝜏 )𝜌

𝜎′𝐴 (𝑚𝜏 , 𝑠𝜏 , 𝑎𝜏 |ℎ
𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

.

We show recursively that for each 𝜏 ≥ 𝑡 and each 𝜃𝜏 , the following holds
∑

ℎ
𝜏
𝐴 ,𝑚𝜏

𝜇′
𝜏+1(ℎ

𝜏
𝐴, 𝜃𝜏 , 𝑚𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )) =

∑

ℎ
𝜏
𝐴 ,𝑚𝜏

𝜇𝜏+1(ℎ
𝜏
𝐴, 𝜃𝜏 , 𝑚𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )). (B.8)

corollary of this is that
∑

ℎ
𝜏
𝐴 ,𝑚𝜏

𝜈′𝜏+1(ℎ
𝜏
𝐴, 𝜃𝜏 , 𝑚𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )) =

∑

ℎ
𝜏
𝐴 ,𝑚𝜏

𝜈𝜏+1(ℎ
𝜏
𝐴, 𝜃𝜏 , 𝑚𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )). (B.9)

To see that Eq. (B.8) implies Eq. (B.9), notice that

𝜈′𝜏+1(ℎ
𝜏+1
𝐴 , 𝜃𝜏+1|ℎ

𝜏+1) = 𝜇′
𝜏+1(ℎ

𝜏+1
𝐴 |ℎ𝜏+1)𝐹𝜏+1(𝜃𝜏+1|𝜃𝜏 (ℎ𝜏+1𝐴 ), 𝑎(ℎ𝜏+1)),

where 𝜃𝜏 (ℎ𝜏+1𝐴 ) is the agent’s private type at the end of period 𝜏, when the history is ℎ𝜏+1𝐴 , while 𝑎(ℎ𝜏+1) is the allocation at the end
of period 𝜏, when the public history is ℎ𝜏+1. Then, Eq. (B.8) implies that

∑

ℎ𝜏𝐴

𝜈′𝜏+1(ℎ
𝜏+1
𝐴 , 𝜃𝜏+1|ℎ

𝜏+1) =
∑

ℎ𝜏𝐴

𝜇′
𝜏+1(ℎ

𝜏+1
𝐴 |ℎ𝜏+1)𝐹𝜏+1(𝜃𝜏+1|𝜃𝜏 (ℎ𝜏+1𝐴 ), 𝑎∗)

=
∑

ℎ𝜏𝐴

𝜇′
𝜏+1(ℎ

𝜏
𝐴, 𝜃𝜏 (ℎ

𝜏+1
𝐴 ), 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝜏+1)𝐹𝜏+1(𝜃𝜏+1|𝜃𝜏 (ℎ𝜏+1𝐴 ), 𝑎(ℎ𝜏+1))

=
∑

ℎ𝜏𝐴

𝜇𝜏+1(ℎ𝜏𝐴, 𝜃𝜏 (ℎ
𝜏+1
𝐴 ), 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝜏+1)𝐹𝜏+1(𝜃𝜏+1|𝜃𝜏 (ℎ𝜏+1𝐴 ), 𝑎(ℎ𝜏+1))

=
∑

ℎ𝜏𝐴

𝜈𝜏+1(ℎ𝜏𝐴, 𝜃𝜏 (ℎ
𝜏+1
𝐴 ), 𝑧(𝑠𝑡 ,𝑎𝑡)(𝐌𝑡)|ℎ𝜏+1).

o show Eq. (B.8) holds, we proceed by induction. Suppose that we have established that Eq. (B.8) holds for 𝑡 ≤ 𝑛 < 𝜏. We now
show it holds for 𝑛 = 𝜏. To see this, consider ℎ𝜏+1𝐴 = (ℎ𝜏𝐴, 𝜃𝜏 , 𝑚, 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )) and note that the denominator on the RHS in the first

line of Eq. (B.8) is simply Pr
𝜈′ ,𝜎′𝐴
𝜏+1 (ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 ). Moreover,

Pr
𝜈′ ,𝜎′𝐴
𝜏+1 (ℎ𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 ) =

∑

(ℎ
𝜏
𝐴 ,𝜃𝜏 ,𝑚𝜏 )

𝜈′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )𝜌𝜎
′
𝐴 (𝑚𝜏 , 𝑠𝜏 , 𝑎𝜏 |ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

=
∑

(𝜃𝜏 ,𝑚𝜏 )

𝜅
𝜎′𝐴
𝜏 (𝑚𝜏 , 𝑠𝜏 , 𝑎𝜏 |ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

∑

ℎ
𝜏
𝐴

𝜈′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 )

=
∑

(𝜃𝜏 ,𝑚𝜏 )

𝜅
𝜎′𝐴
𝜏 (𝑚𝜏 , 𝑠𝜏 , 𝑎𝜏 |ℎ

𝜏
𝐴, 𝜃𝜏 ,𝐌𝜏 )

∑

ℎ
𝜏
𝐴

𝜈𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 ) = Pr𝜈,𝜎𝐴𝜏+1 (ℎ
𝜏 , 𝑧(𝑠𝜏 ,𝑎𝜏 )(𝐌𝜏 )|ℎ𝜏 ). (B.10)

he last equality follows from the definition of 𝜎′𝐴. The key equality is the third one which employs the inductive hypothesis.14 To
ee that it holds, consider the case in which ℎ𝜏 = (ℎ𝜏−1, 𝑧𝑠𝜏−1 ,𝑎𝜏−1 (𝐌𝜏−1)). Then

∑

ℎ
𝜏
𝐴∈𝐻

𝜏
𝐴(ℎ

𝜏 )

𝜈′𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 ) =
∑

(ℎ
𝜏−1
𝐴 ,𝜃𝜏−1 ,𝑚𝜏−1)

𝜈′𝜏 (ℎ
𝜏−1
𝐴 , 𝜃𝜏−1, 𝑚𝜏−1, 𝑧(𝑠𝜏−1 ,𝑎𝜏−1)(𝐌𝜏−1), 𝜃𝜏 |ℎ𝜏 )

14 Note that it trivially holds for 𝜏 = 𝑡.
12
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A

d
d
a

𝐻

w
o
f

𝜅
m

D

D

f

t
t

=
∑

𝜃𝜏−1

∑

ℎ
𝜏−1
𝐴 ,𝑚𝜏−1

𝜈′𝜏 (ℎ
𝜏−1
𝐴 , 𝜃𝜏−1, 𝑚𝜏−1, 𝑧(𝑠𝜏−1 ,𝑎𝜏−1)(𝐌𝜏−1), 𝜃𝜏 |ℎ𝜏 )

=
∑

𝜃𝜏−1

∑

ℎ
𝜏−1
𝐴 ,𝑚𝜏−1

𝜇′
𝜏 (ℎ

𝜏−1
𝐴 , 𝜃𝜏−1, 𝑚𝜏−1, 𝑧(𝑠𝜏−1 ,𝑎𝜏−1)(𝐌𝜏−1)|ℎ𝜏 )𝐹𝜏 (𝜃𝜏 |𝜃𝜏−1, 𝑎𝜏−1)

=
∑

𝜃𝜏−1

∑

ℎ
𝜏−1
𝐴 ,𝑚𝜏−1

𝜇𝜏 (ℎ
𝜏−1
𝐴 , 𝜃𝜏−1, 𝑚𝜏−1, 𝑧(𝑠𝜏−1 ,𝑎𝜏−1)(𝐌𝜏−1)|ℎ𝜏 )𝐹𝜏 (𝜃𝜏 |𝜃𝜏−1, 𝑎𝜏−1)

=
∑

𝜃𝜏−1

∑

ℎ
𝜏−1
𝐴 ,𝑚𝜏−1

𝜈𝜏 (ℎ
𝜏−1
𝐴 , 𝜃𝜏−1, 𝑚𝜏−1, 𝑧(𝑠𝜏−1 ,𝑎𝜏−1)(𝐌𝜏−1), 𝜃𝜏 |ℎ𝜏 ) =

∑

ℎ
𝜏
𝐴

𝜈𝜏 (ℎ
𝜏
𝐴, 𝜃𝜏 |ℎ

𝜏 ),

here the first three equalities are definitional, the fourth uses the inductive hypothesis that Eq. (B.8) holds at 𝜏 − 1 and the rest
re definitional.

Consider now the principal’s payoff in Eq. (A.6). Working recursively using the identities established in Eqs. (B.8)–(B.10), it
ollows that the principal’s payoff from 𝜎𝑃 remains the same under the new assessment. Furthermore, Eq. (B.9) implies that 𝜎𝑃 is
till sequentially rational. Thus, (𝜎𝑃 , 𝜎′𝐴, 𝜇

′) constitute a payoff equivalent PBE assessment. □

ppendix C. Induced distributions

Appendix C formally defines the distributions over terminal nodes induced by the principal’s and the agent’s strategy. The
efinitions presented herein apply when 𝛩 is a continuum or the principal’s mechanism does not have finite support. The defined
istributions together with the steps in Appendix B allow us to extend the proof in Appendix B to the case of a continuum of types
nd without any restrictions in the support of the principal’s mechanism, along the lines of that in Doval and Skreta (2022).

Given a strategy profile 𝜎 = (𝜎𝑃 , 𝜎𝐴), the transition probabilities 𝐹𝑡+1, and a node (𝜃, ℎ𝑡𝐴), we define transition probabilities from
𝑡
𝐴 to 𝛩, from 𝐻 𝑡

𝐴 × 𝛩 to MI , from 𝐻 𝑡
𝐴 × 𝛩 ×MI to ∪𝑖,𝑗∈I𝑀𝑖𝑆𝑗𝐴∅ and from 𝐻 𝑡

𝐴 × 𝛩 ×MI × ∪𝑖,𝑗∈I𝑀𝑖𝑆𝑗𝐴∅ to 𝛺 as follows:

𝜅𝐹
𝑡 (𝛩|ℎ𝑡𝐴) = 𝐹𝑡(𝛩|𝜃𝑡−1(ℎ𝑡𝐴), 𝑎𝑡−1(ℎ

𝑡
𝐴)) (C.1)

𝜅𝜎𝑃
𝑡 (∪𝑖,𝑗∈IM̃𝑖,𝑗 |ℎ

𝑡
𝐴, 𝜃𝑡) =

∑

𝑖,𝑗∈I
𝜎𝑃 𝑡(M̃𝑖,𝑗 |ℎ

𝑡)

𝜅𝜎𝐴
𝑡 (𝑀𝑖𝑆𝑗𝐴∅|ℎ

𝑡
𝐴, 𝜃𝑡,𝐌𝑡) =

(

1 − 𝜋𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡)
)

1[(∅, ∅, 𝑎∗) ∈ 𝑀𝑖𝑆𝑗𝐴∅]

+ 𝜋𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡)∫𝑀𝑖𝑆𝑗𝐴∅

𝑟𝑡(ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡)⊗𝜑𝐌𝑡 (𝑑(𝑚𝑡, 𝑠𝑡, 𝑎𝑡))

𝜅𝜔
𝑡+1(𝛺|ℎ𝑡𝐴, 𝜃𝑡,𝐌𝑡, 𝑚𝑡, 𝑠𝑡, 𝑎𝑡) = ∫𝛺

𝑙(𝑑𝜔𝑡+1)

here (i) (𝜃𝑡−1(ℎ𝑡𝐴), 𝑎𝑡−1(ℎ
𝑡
𝐴)) denote the period-𝑡 − 1 type and allocation consistent with ℎ𝑡𝐴, (ii) ℎ𝑡 denotes the projection of (𝜃, ℎ𝑡𝐴)

nto 𝛺 ×𝖹𝑡−1, and (iii) the notation presumes that 𝐌𝑡 ∈ M𝑖,𝑗 . Note that 𝜅𝜎
𝑡 ≡ 𝜅𝐹

𝑡 ⊗𝜅𝜎𝑃𝑡 ⊗𝜅𝜎𝐴𝑡 ⊗𝜅𝜔𝑡+1 defines a transition probability
rom 𝐻 𝑡

𝐴 to 𝖹𝐴.15

The Ionescu-Tulcea extension theorem (Pollard, 2002) guarantees the existence of a sequence of probability measures 𝑃 𝜎
𝑡 =

𝜔
1 ⊗

⨂𝑡−1
𝜏=1 𝜅

𝜎
𝜏 defined on the product sets

(

𝐻 𝑡
𝐴
)𝑇+1
𝑡=1 and a probability measure 𝑃 𝜎 on (𝐻𝑇+1

𝐴 ,B𝐻𝑇+1
𝐴

) such that for each 𝑡 ≥ 1, the
arginal of 𝑃 𝜎 on 𝐻 𝑡

𝐴 is 𝑃 𝜎
𝑡 .

Note that 𝑃 𝜎 determines a distribution over 𝐻𝑇+1
𝐴 . The principal and the agent’s payoffs, however, are defined over (𝛩 × 𝐴)𝑇 .

efinition C.1 formally defines the distribution on (𝛩 × 𝐴)𝑇 induced by 𝑃 𝜎 .

efinition C.1. Fix an assessment (𝜎𝑃 , 𝜎𝐴, 𝜇). The distribution 𝜂𝜎 ∈ 𝛥
(

(𝛩 × 𝐴)𝑇
)

induced by the assessment is defined as follows:

𝜂𝜎 (𝛩𝑇 × 𝐴𝑇 ) = ∫𝐻𝑇+1
𝐴

1[𝗉𝗋𝗈𝗃(𝛩×𝐴)𝑇 (𝜃, ℎ
𝑇+1
𝐴 ) ∈ 𝛩𝑇 × 𝐴𝑇 ]𝑃 𝜎 (𝑑ℎ𝑇+1𝐴 ),

or any measurable subsets 𝛩𝑇 of 𝛩𝑇 and 𝐴𝑇 of 𝐴𝑇 .

Thus, the principal’s payoff under assessment (𝜎𝑃 , 𝜎𝐴, 𝜇), 𝑊 (𝜎, 𝜇), is given by

∫𝐻𝑇+1
𝐴

𝑊 (𝗉𝗋𝗈𝗃(𝛩×𝐴)𝑇 (ℎ
𝑇+1
𝐴 ))𝑃 𝜎 (𝑑ℎ𝑇+1𝐴 ) = ∫(𝛩×𝐴)𝑇

𝑊 (𝑎𝑇 , 𝜃𝑇 )𝜂𝜎 (𝑑(𝜃𝑇 , 𝑎𝑇 )), (C.2)

15 Given two Polish spaces, 𝑋 and 𝑌 , a transition probability from 𝑋 to 𝑌 is a measurable map 𝜅 ∶ 𝑋 ↦ 𝛥(𝑌 ). If 𝜅 is a transition probability from 𝑋 to 𝑌 ,
hen we denote by 𝜅(⋅|𝑥) the measure on 𝑌 induced by 𝜅 evaluated at 𝑥. If 𝜅 is a transition probability from 𝑋 to 𝑌 and 𝜅′ is a transition probability from 𝑌
o 𝑍, then their composition 𝜅 ⊗ 𝜅′ is the transition probability from 𝑋 to 𝑌 ×𝑍 such that

(

𝜅 ⊗ 𝜅′) (𝑌 ×𝑍|𝑥) = ∫𝑌
𝜅′(𝑍|𝑦)𝜅(𝑑𝑦|𝑥).
13
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while the agent’s payoff when her type is 𝜃, 𝑈 (𝜎, 𝜇, 𝜃1), is given by

∫𝐻𝑇+1
𝐴

𝑈 (𝗉𝗋𝗈𝗃(𝛩×𝐴)𝑇 ℎ
𝑇+1
𝐴 )𝑃 𝜎|𝜃1 (𝑑ℎ𝑇+1𝐴 ) = ∫(𝛩×𝐴)𝑇

𝑈 (𝑎𝑇 , 𝜃′𝑇 )𝜂𝜎𝜃1 (𝑑(𝜃
′𝑇 , 𝑎𝑇 )), (C.3)

where (i) 𝑃 𝜎|𝜃1 is the induced probability over 𝐻𝑇+1
𝐴 conditional on the agent’s period-1 type being 𝜃1, and (ii) 𝜂𝜎𝜃1 is the

𝗉𝗋𝗈𝗃𝛩-disintegration of 𝜂𝜎 .

Appendix D. Continuum type spaces

Appendix D extends Theorem 1 to the case in which 𝛩 is a continuum. As we explain in Doval and Skreta (2022), when 𝛩 is
a continuum, the issues pointed out in Aumann (1961, 1963, 1964) prevent us from relying on the game-theoretic formulation of
the mechanism-selection game to describe the set of outcomes, and hence, payoffs that can be achieved under limited commitment.
In Doval and Skreta (2022), we overcome these challenges by providing a recursive representation of the set of PBE-feasible outcomes,
that is, those outcome distributions that can be achieved under limited commitment. We extend the solution concept in Doval and
Skreta (2022) to the Markovian environments and provide a recursive formulation of the set of PBE-feasible payoffs.

(Continuation) payoffs and beliefs. Because the definition is recursive, it is useful to have explicit notation for (i) the principal and
the agent’s (continuation) payoffs starting at any period 𝑡, and (ii) belief transitions from period 𝑡 to period 𝑡 + 1. To that end,
we define two functions, 𝑈𝑡,𝑊𝑡 ∶ (𝐴 × 𝛩)𝑇−𝑡 ↦ R, that describe the principal and agent’s payoffs from the beginning of period 𝑡.
Formally,

𝑈𝑡
(

(𝑎𝜏 , 𝜃𝜏 )𝜏≥𝑡
)

=
𝑇
∑

𝜏=𝑡
𝛿𝜏−𝑡𝑢𝜏 (𝑎𝜏 , 𝜃𝜏 ),𝑊𝑡

(

(𝑎𝜏 , 𝜃𝜏 )𝜏≥𝑡
)

=
𝑇
∑

𝜏=𝑡
𝛿𝜏−𝑡𝑤𝜏 (𝑎𝜏 , 𝜃𝜏 ). (D.1)

Given a distribution over (continuation) outcomes, 𝜂 ∈ 𝛥
(

(𝛩 × 𝐴)𝑇−𝑡
)

, we can use the functions (𝑊𝑡, 𝑈𝑡) to define the principal and
the agent’s expected payoffs under 𝜂, 𝐕𝑡(𝜂) = (𝐖𝑡(𝜂),𝐔𝑡(𝜂, ⋅)). Formally,

𝐖𝑡(𝜂) = ∫(𝛩×𝐴)𝑇−𝑡
𝑊𝑡𝑑𝜂, 𝐔𝑡(𝜂, 𝜃𝑡) = ∫(𝛩×𝐴)𝑇−𝑡

𝑈𝑡𝑑𝜂𝜃𝑡 , (D.2)

where {𝜂𝜃𝑡 ∶ 𝜃𝑡 ∈ 𝛩} is the 𝗉𝗋𝗈𝗃𝛩-disintegration of 𝜂 (Kallenberg, 2017).
Finally, given a distribution 𝜇𝑡+1 ∈ 𝛥(𝛩) and a period-𝑡 allocation, 𝑎𝑡, define the linear map 𝑓𝑡+1,𝑎𝑡 (𝜇𝑡) ∈ 𝛥(𝛩) as follows: for all

measurable subsets 𝛩 of 𝛩,

𝑓𝑡+1,𝑎𝑡 (𝜇𝑡)(𝛩) = ∫𝛩
𝐹𝑡+1(𝛩|𝜃𝑡, 𝑎𝑡)𝜇𝑡+1(𝑑𝜃𝑡). (D.3)

That is, 𝑓𝑡+1,𝑎𝑡 ∶ 𝛥(𝛩) ↦ 𝛥(𝛩) describes the principal’s beliefs about the agent’s type in period 𝑡 + 1, when his beliefs at the end of
period 𝑡 are 𝜇𝑡+1 and the allocation is 𝑎𝑡.

PBE-feasible payoffs. We now formally define the set of PBE-feasible payoffs (Definition D.5). By analogy with the mechanism-
selection game, we keep the notation E∗

I to denote PBE-feasible payoffs. Contrary to the mechanism-selection game, E∗
I ,𝑡 is now a

collection of correspondences describing the set of PBE-feasible payoffs for each period 𝑡 ≥ 1, each principal’s belief 𝜈𝑡 and each
sequence of allocations up to period 𝑡, 𝑎𝑡−1, E∗

I ,𝑡(𝜈𝑡, 𝑎
𝑡−1). As mentioned above, the set of PBE-feasible payoffs is recursive: what

is PBE-feasible today depends on what is PBE-feasible from tomorrow onwards. Thus, we fix a period 𝑡 ≥ 1, and a pair (𝜇𝑡, 𝑎𝑡−1)
throughout.

Definition D.5 consists of three components, which we introduce first: (i) the sequence of mechanisms offered by the principal
(Definition D.1), (ii) optimal behavior by the agent within those mechanisms, and (iii) the payoffs the principal anticipates upon a
deviation (Definition D.3). For simplicity, we assume the principal has one set of input and output messages, 𝑀 and 𝑆, and we use
the shorthand notation 𝑆𝐴∅ to denote the set (𝑆 × 𝐴) ∪ {(∅, 𝑎∗)}.

Dynamic mechanisms. We describe the analogue of the principal’s strategy via a dynamic mechanism, defined as follows:

Definition D.1 (Dynamic Mechanisms). For 𝑡 ≥ 1 and 𝑎𝑡−1 ∈ 𝐴𝑡−1, a dynamic mechanism given 𝑎𝑡−1, (𝜑𝜏 )𝜏≥𝑡, is a sequence of
measurable mappings16 𝜑𝜏 ∶ (𝑆𝐴∅ ×𝛺)𝜏−𝑡 ×𝑀 ↦ 𝛥(𝑆 × 𝐴), such that for all 𝜏 ≥ 𝑡 and all (𝑠𝜏−𝑡, 𝑎𝜏−𝑡, 𝜔𝜏−𝑡),

1. 𝜑𝜏 (𝑠𝜏−𝑡, 𝑎𝜏−𝑡, 𝜔𝜏−𝑡, ⋅) ∶ 𝑀 ↦ 𝛥(𝑆 × 𝐴) is a measurable function, and
2. for all 𝑚 ∈ 𝑀 , 𝜑𝜏 (𝑠𝜏−𝑡, 𝑎𝜏−𝑡, 𝜔𝜏−𝑡)

(

A𝑡(𝑎𝑡−1, 𝑎𝜏−𝑡)|𝑚
)

= 1.

When 𝑡 = 1, a dynamic mechanism describes the mechanism the agent faces in period 1, 𝜑1, the mechanism the agent faces
in period 2 as a function of the agent’s participation decision (i.e., whether (𝑠1, 𝑎1) ≠ (∅, 𝑎∗)), and the realization of the public
randomization device, 𝜑2(𝑠1, 𝑎1, 𝜔2), and so on. Consider now 𝑡 > 1 and suppose the allocation so far is 𝑎𝑡−1. Then, we require that
only allocations that are feasible given 𝑎𝑡−1 are in the support of the mechanism 𝜑𝑡.

As we explain next, a dynamic mechanism defines an extensive-form game for the agent:

16 Below, 𝛺 denotes the set of possible realizations of the public randomization device.
14
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Agent-extensive form. Given (𝜈𝑡, 𝑎𝑡−1), a dynamic mechanism (𝜑𝜏 )𝜏≥𝑡 defines an extensive-form game for the agent, 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡),
as follows. First, nature draws the agent’s type according to 𝜈𝑡. Having observed her type, suppose that in stage 𝜏 − 𝑡, the public
history is ℎ𝜏𝑡 = (𝑠𝜏−𝑡, 𝑎𝜏−𝑡, 𝜔𝜏−𝑡). Then, faced with 𝜑𝜏 (ℎ𝜏𝑡 ), the agent decides whether to participate and, conditional on participating,
her reporting strategy. If the agent rejects 𝜑𝜏 , the ‘‘output message’’ is ∅ and the allocation is 𝑎∗. Instead, if she accepts 𝜑𝜏 (ℎ𝜏𝑡 ), she
chooses an input message 𝑚 ∈ 𝑀 that determines the distribution from which the output message and the allocation are drawn,
𝜑𝜏 (ℎ𝜏𝑡 )(⋅|𝑚). In both cases, we proceed to stage 𝜏+1−𝑡, where nature draws the agent’s type using the appropriate transition 𝐹𝜏+1(⋅|⋅).

In the agent-extensive form 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡), there are two types of histories. The public history ℎ𝜏𝑡 encodes the agent’s
participation in the mechanism, the realized output messages and allocations, and the realizations of the public randomization
device. The private histories encode everything the agent knows: her payoff-relevant type 𝜃𝑡, the public history ℎ𝜏𝑡 , and her past
ypes and input messages. In a slight abuse of notation, we denote by 𝐻𝜏

𝐴𝑡(ℎ
𝜏
𝑡 ) × 𝛩 the agent’s private histories consistent with ℎ𝜏𝑡 .

Finally, we note that the agent evaluates the payoffs of a strategy in 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡) using 𝑈𝑡. We are now ready to define
ptimal play by the agent in 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡):

gent-PBE. Together with the agent strategy 𝜎𝐴, we can also define a system of beliefs 𝜇 ≡ (𝜇𝜏+1)𝑇𝜏≥𝑡, which describes for each
eriod 𝜏 ≥ 𝑡 and for each public history ℎ𝜏+1𝑡 , the principal’s beliefs over the private histories, 𝜇𝜏+1(ℎ𝜏+1𝑡 ) ∈ 𝛥

(

𝐻𝜏+1
𝐴𝑡 (ℎ𝜏+1𝑡 )

)

.
We say that (𝜎𝐴, 𝜇) is an agent-PBE of the agent-extensive form 𝛤 (𝜈𝑡, 𝑎𝑡−1, (𝜑𝜏 )𝜏≥𝑡) if the agent’s strategy is sequentially rational

under payoffs 𝑈𝑡(⋅)) and the belief system satisfies Bayes’ rule where possible. Although the belief system is not needed to test
hether the agent’s strategy is optimal in the extensive-form game, it is needed to test the optimality of the principal’s choice of
echanism.

Proposition B.1 applies verbatim, allowing us to conclude that for every agent-PBE (𝜎𝐴, 𝜇) of 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡), a payoff-equivalent
𝜎′𝐴, 𝜇

′) exists, in which the agent’s strategy only conditions on her type and the public history. This property is responsible for the
ecursive nature of the set of PBE-feasible payoffs here and also in the mechanism-selection game. Hereafter, when we say agent-PBE,
e mean one that satisfies the above property.

Continuation) payoffs. An agent-PBE (𝜎𝐴, 𝜇) of 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡) defines a distribution over (𝛩 ×𝐴)𝑇−𝑡, 𝜂(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴 , that satisfies that
he marginal on 𝛩 is 𝜈𝑡.

efinition D.2 (Induced Payoffs). The payoff vector
(

𝑤𝑡, (𝑢𝜃𝑡 )𝜃𝑡∈𝛩
)

is implemented by ((𝜑𝜏 )𝜏≥𝑡, (𝜎𝐴, 𝜇)) at 𝜈𝑡 if the following hold:

1.
(

𝑤𝑡, (𝑢𝜃𝑡 )𝜃𝑡∈𝛩
)

are the payoffs the principal and the agent obtain under 𝜂(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴 , that is,
(

𝑤𝑡, (𝑢𝜃𝑡 )𝜃𝑡∈𝛩
)

= 𝐕𝑡(𝜂(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴 ).

2. (𝜎𝐴, 𝜇) is an agent-PBE of 𝛤 (𝜈𝑡, 𝑎𝑡−1, (𝜑𝜏 )𝜏≥𝑡).

Furthermore, at any 𝜏 ≥ 𝑡 and at any history ℎ𝜏+1𝑡 , the belief assessment together with the dynamic mechanisms and the agent’s
trategy, defines a continuation outcome, 𝜂(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴|ℎ𝜏+1𝑡 ∈ 𝛥

(

(𝛩 × 𝐴)𝑇−(𝜏+1)
)

, whose marginal on 𝛩 coincides with 𝜈𝜏+1(ℎ𝜏+1𝑡 ) ≡

𝜏+1,𝑎𝜏 (ℎ𝜏+1𝑡 )(𝜇𝜏+1(ℎ
𝜏+1
𝑡 )). We can similarly define a vector of continuation payoffs 𝐕𝜏+1(𝜂

(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴|ℎ𝜏+1𝑡 ).

rincipal’s sequential rationality. Fix a dynamic mechanism given 𝑎𝑡−1, (𝜑𝜏 )𝜏≥𝑡, and an agent-PBE (𝜎𝐴, 𝜇) of 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡). Suppose
hat the principal considers offering mechanism 𝜑′

𝑡 instead of 𝜑𝑡. In order to determine whether the principal wishes to deviate to
′
𝑡, we need to determine the payoffs that can follow 𝜑′

𝑡. We denote this set by 𝖣E∗
I
(𝜈𝑡, 𝑎𝑡−1, 𝜑′

𝑡) and is defined as follows:

efinition D.3 (Deviant Payoffs). The set 𝖣E∗
I
(𝜈𝑡, 𝑎𝑡−1, 𝜑′

𝑡) ⊂ R consists of the payoffs 𝑤′
𝑡 such that the following holds:

1. A dynamic mechanism (𝜑′
𝜏 )𝜏≥𝑡, where (𝜑′

𝜏 )𝜏≥𝑡 = (𝜑′
𝑡 , (𝜑

′
𝜏 )𝜏≥𝑡+1), and an agent-PBE (𝜎′𝐴, 𝜇

′) of 𝛤 (𝜈𝑡, (𝜑′
𝜏 )𝜏≥𝑡, 𝑎

𝑡−1) exist that
implement

(

𝑤′
𝑡 , (𝑢

′
𝜃𝑡
)𝜃𝑡∈𝛩

)

at 𝜈𝑡,

2. For all ℎ𝑡+1𝑡 ≡ (𝑠′, 𝑎′, 𝜔′) ∈ 𝑆𝐴∅ ×𝛺, 𝐕𝑡+1(𝜂
(𝜑′

𝜏 )𝜏≥𝑡 ,𝜎
′
𝐴|ℎ

𝑡+1
𝑡 ) ∈ E∗

I ,𝑡+1
(

𝑓𝑡+1,𝑎′ (𝜇𝑡+1,𝛩(ℎ𝑡+1𝑡 )), 𝑎𝑡−1, 𝑎′
)

.

In words, a principal’s payoff 𝑤′ is in 𝖣E∗
I ,⋅
(⋅, 𝜑′

𝑡) if it satisfies two properties. First, 𝑤′ = 𝐖𝑡(𝜂
(𝜑′

𝜏 )𝜏≥𝑡 ,𝜎
′
𝐴 ) for a dynamic mechanism

(𝜑′
𝜏 )𝜏≥𝑡 such that 𝜑′

𝑡 is the period 𝑡-mechanism and (𝜎′𝐴, 𝜇
′) is an agent-PBE given (𝜑′

𝜏 )𝜏≥𝑡. Second, continuation payoffs are PBE-feasible,
which means that the punishment for deviating to 𝜑′

𝑡 is credible. The reason that we are able to require that continuation payoffs
are PBE-feasible is that whenever the agent does not condition her strategy on the payoff-irrelevant part of the private history,
the following holds: If (𝜎′𝐴, 𝜇

′) is an agent-PBE of 𝛤 (𝜈𝑡, 𝑎𝑡−1, (𝜑′
𝜏 )𝜏≥𝑡), then for all ℎ𝑡+1𝑡 = (𝑠′, 𝑎′, 𝜔′), (𝜎′𝐴, 𝜇

′)|ℎ𝑡+1𝑡
is an agent-PBE of

𝛤 (𝑓𝑎′ (𝜇′
𝑡+1,𝛩(ℎ

𝑡+1
𝑡 )), (𝑎𝑡−1, 𝑎′), (𝜑′

𝜏 (ℎ
𝑡+1
𝑡 , ⋅))𝜏≥𝑡+1).

While we can use the set 𝖣E∗
I
(𝜈𝑡, 𝑎𝑡−1, ⋅) to test whether the principal has a deviation from (𝜑𝜏 )𝜏≥𝑡 at the root of 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡),

Definition D.4 also describes how we test for sequential rationality at later points in the agent-extensive form:

Definition D.4 (Sequential Rationality). Fix 𝑡 ≥ 1, (𝜈𝑡, 𝑎𝑡−1), a dynamic mechanism (𝜑𝜏 )𝜏≥𝑡 given 𝑎𝑡−1, and an agent-PBE (𝜎𝐴, 𝜇) of
𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡). (𝜑𝜏 )𝜏≥𝑡 is sequentially rational given (𝜎𝐴, 𝜇) if the following hold:

1. For all 𝜑′
𝑡 ∶ 𝑀 ↦ 𝛥(𝑆 × 𝐴), a payoff 𝑤′ ∈ 𝖣E∗

I
(⋅, 𝜑′

𝑡) exists such that 𝐖𝑡(𝜂(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴 ) ≥ 𝑤′,
𝑡+1 ′ ′ ′ (𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴|ℎ𝑡+1𝑡 ∗ 𝑡+1 𝑡−1 ′
15

2. For all ℎ𝑡 = (𝑠 , 𝑎 , 𝜔 ) ∈ (𝑆𝐴∅ ×𝛺), 𝐕𝑡+1(𝜂 ) ∈ EI ,𝑡+1(𝑓𝑡+1,𝑎′ (𝜇𝑡+1(ℎ𝑡 )), 𝑎 , 𝑎 ).
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The first part of Definition D.4 states that the principal has no deviations in period 𝑡. The second part says that the principal has
o deviations in periods 𝜏 ≥ 𝑡 + 1: the continuation payoffs induced by (𝜑𝜏 )𝜏≥𝑡 and (𝜎𝐴, 𝜇) are PBE - feasible continuation payoffs.

We are now ready to define the set of PBE feasible payoffs at (𝜈𝑡, 𝑎𝑡−1), E∗
I ,𝑡(𝜈𝑡, 𝑎

𝑡−1):

efinition D.5 (PBE-feasible Payoffs). Fix 𝑡 ≥ 1, (𝜈𝑡, 𝑎𝑡−1) ∈ 𝛥(𝛩) × 𝐴𝑡−1. The payoff vector
(

𝑤, (𝑢𝜃)𝜃∈𝛩
)

is PBE-feasible at (𝜈𝑡,𝑎𝑡−1) if
dynamic mechanism (𝜑𝜏 )𝜏≥𝑡 given 𝑎𝑡−1 and an agent-PBE (𝜎𝐴, 𝜇) of 𝛤 (𝜈𝑡,𝑎𝑡−1,(𝜑𝜏 )𝜏≥𝑡) exist such that

1.
(

𝑤, (𝑢𝜃)𝜃∈𝛩
)

= 𝐕𝑡(𝜂(𝜑𝜏 )𝜏≥𝑡 ,𝜎𝐴 )
2. (𝜑𝜏 )𝜏≥𝑡 is sequentially rational given (𝜎𝐴, 𝜇).

E∗
I ,𝑡(𝜈𝑡, 𝑎

𝑡−1) denotes the set of PBE-feasible payoffs at (𝜈𝑡, 𝑎𝑡−1).

By varying I , we can define the set of PBE-feasible outcomes when the principal can offer mechanisms whose input and output
essages are (𝛩, 𝛥(𝛩)). Like in Theorem 1, our interest is in the canonical-PBE-feasible payoffs, that is, those payoffs that are induced

y canonical dynamic mechanisms
(

𝜑𝐶
𝜏
)

𝜏≥𝑡 (Definition 1) and canonical-agent PBE of the extensive-form game 𝛤 (𝜈𝑡,𝑎𝑡−1,
(

𝜑𝐶
𝜏
)

𝜏≥𝑡).
In a slight abuse of notation, let E𝐶

𝑡 (⋅) denote the correspondence of canonical-PBE-feasible outcomes when I = {(𝛩, 𝛥(𝛩))}.

Theorem D.1. For all 𝑡 ≥ 1 and pairs (𝜈𝑡, 𝑎𝑡−1) ∈ 𝛥(𝛩) × 𝐴𝑡−1, E∗
I ,𝑡(𝜈𝑡, 𝑎

𝑡−1) = E𝐶
𝑡 (𝜈𝑡, 𝑎

𝑡−1).

We omit the proof of Theorem D.1, as it follows from adapting that of Doval and Skreta (2022) following the arguments in
Appendix B.
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