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This paper develops power series expansions of a general class of moment functions, including 
transition densities and option prices, of continuous-time Markov processes, including jump–

diffusions. The proposed expansions extend the ones in Kristensen and Mele (2011) to cover 
general Markov processes, and nest transition density and option price expansions recently 
developed in the literature, thereby connecting seemingly different ideas in a unified framework. 
We show how the general expansion can be implemented for fully general jump–diffusion models. 
We provide a new theory for the validity of the expansions which shows that series expansions 
are not guaranteed to converge as more terms are added in general once the time span of interest 
gets larger than some model–specific threshold. Thus, these methods should be used with caution 
when applied to problems with a larger time span of interest, such as long-term options or data 
observed at a low frequency. At the same time, the numerical studies in this paper demonstrate 
good performance of the proposed implementation in practice when applied to pricing options 
with time to maturity below three months. Thus, our expansions are particularly well suited for 
pricing ultra-short-term (such as “zero–day”) options.

1. Introduction

Continuous-time jump-diffusion processes are used in economics and finance to model the dynamics of state variables (see, e.g., 
Björk, 2009). They lead to a simple and elegant analysis of problems such as the pricing of financial assets, portfolio management 
and other dynamic phenomena. This comes at a big computational cost though: Many relevant characteristics, such as moments 
and densities, of such processes cannot be expressed in closed-form except in a few special cases. This hampers their practical use 
and implementation. This has led researchers to develop numerical methods for the computation of these. Broadly speaking, these 
methods fall in three categories: Finite–difference methods (Ames, 1992), simulation–based methods (see, e.g., Elerian et al., 2001; 
Brandt and Santa-Clara, 2002; Durham and Gallant, 2002; Beskos et al., 2009; Kristensen and Shin, 2012; Sermaidis et al., 2013) and 
series expansions (see, e.g., Aït-Sahalia, 2002; Bakshi et al., 2006; Yu, 2007; Aït-Sahalia, 2008; Filipović et al., 2013; Li, 2013). This 
paper focuses on the latter category.
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Most existing expansions proposed in the literature are application specific: Depending on the particular features of the chosen 
moment and model of the underlying stochastic process, different methods have been developed. One exception is Kristensen and 
Mele (2011) who developed power series expansions that covered a general class of moment functions and the transition density of 
multivariate diffusion processes. Their focus was on applications to option pricing but the class of expansions applies more generally. 
The current paper makes four contributions:

First, we demonstrate that the class of series expansions of Kristensen and Mele (2011) are easily extended to cover fully general 
continuous–time Markov models, including any jump–diffusion process. Thus, the proposal of Kristensen and Mele (2011) can in 
principle be applied to any moment of any Markov process. As part of this extension, we present a novel derivation and representation 
of the series expansion of Kristensen and Mele (2011). This new representation highlights important features of the original expansion 
that was perhaps not obvious from the analysis of Kristensen and Mele (2011).

Second, we revisit the recent work of Yang et al. (2019) and Wan and Yang (2021) and demonstrate that in fact their proposed 
expansions of transition densities and option prices are special cases of Kristensen and Mele (2011). Thus, at a theoretical level the 
expansions in Yang et al. (2019) and Wan and Yang (2021) are not new. At the same time, it should be emphasized that Yang et al. 
(2019) and Wan and Yang (2021) make important contributions in terms of the practical implementation of the proposal in Kristensen 
and Mele (2011). They develop numerical algorithms that allow for fast implementation of the general method of Kristensen and Mele 
(2011) when applied to transition densities and option prices of diffusion processes and a limited set of jump–diffusion processes. As 
such, the current paper should hopefully clarify the relationship between these three existing papers and their relative contributions 
to the literature.

Third, we propose a novel numerical implementation of our series expansions when applied to general jump–diffusion models. 
The algorithms of Kristensen and Mele (2011) and Yang et al. (2019) are restricted to pure diffusions while the extension found in 
Wan and Yang (2021) requires the jump component to be fully independent of the diffusive component. That is, the jump intensity 
and the jump sizes are not allowed to be state–dependent. Our numerical implementation allows for both to be state–dependent. We 
demonstrate through a series of numerical studies that our numerical method works well in practice as long as the time to maturity 
is not too large.

Fourth, we provide a novel theory for the validity of power series expansions of moment functions of continuous–time Markov 
processes used here and elsewhere in the literature, including all above references to papers employing series–based approximations. 
Most existing theoretical results for these expansions only show that a given moment expansion converges as the time interval over 
which the conditional moment is defined shrinks to zero. As such existing results provide no guarantees that the approximation error 
will get smaller than more terms are added to expansion; in fact, nothing rules out that the approximation error may actually explode 
as more terms are added. For the power series expansion to be reliable, it is desirable with conditions under which the expansions 
converge not only over shrinking time intervals but also over a fixed time interval. We here provide guarantees for the approximations 
to be numerically stable as the order of the approximation grows. Our theoretical results rely on semi–group theory as also used by, 
e.g., Hansen and Scheinkman (1995) to analyze the properties of continuous–time Markov processes.

Our theoretical results demonstrate that power series expansions of Markov moments may very well not converge: The chosen 
moment and model has to satisfy certain regularity conditions for this to hold and the time span over which the moment is computed 
has to stay below a certain threshold. In particular, we demonstrate that the expansions of transition densities and option prices 
proposed by Kristensen and Mele (2011), Yang et al. (2019) and Wan and Yang (2021) do not converge for all values of 𝑡, where 𝑡
is the time span of interest. That is, these methods will eventually fail once t gets “too large”. As such, the expansions proposed in 
these papers and the extension to general jump–diffusions developed here should be used with care. At the same time, our numerical 
studies confirm good performance of our method when used to price options with time to maturity below three months. As such, our 
expansions are particularly well suited to approximate the price of ultra-short-term (such as “zero–day”) options.

The remains of the paper are organized as follows. Section 2 presents series expansions of a broad class of moments and densities 
of basically any continuous–time Markov process and shows that this nests existing proposals as special cases. Section 3 analyzes 
the theoretical properties of the power series expansion over both shrinking and fixed time distances. In section 4, we discuss the 
numerical implementation of the general method when applied to general jump–diffusion models. Section 5 examines the numerical 
performance of our numerical algorithm. Section 6 concludes. Appendix B gathers all proofs.

2. Expansions of semi–groups with application to moments of Markov processes

We here first introduce the concept of semi–groups and propose a method for approximating such using a generalised version of 
the well-known Taylor series expansion. Next, as a leading example of the general framework, we show how our proposal can be

used to obtain closed–form expansions of, potentially irregular, moments and densities of a broad class of continuous–time Markov 
processes.

Let 
( ,‖⋅‖) be a normed function space where a given function 𝑓 ∈  and 

{
𝐸𝑡 ∶ 𝑡 ≥ 0

}
be a semi–group with domain  . A 

semi–group is a family of linear operators indexed by 0 ≤ 𝑡 < ∞ from  onto 1 satisfying (i) 𝐸0𝑓 = 𝑓 and (ii) 𝐸𝑠+𝑡𝑓 = 𝐸𝑠𝐸𝑡𝑓 for 
all 𝑠, 𝑡 ≥ 0. For an overview of the general theory of semi–groups with applications to Markov processes we refer the reader to Ethier 
and Kurtz (1986); for applications of semi–group theory in econometrics and finance, see Aït-Sahalia et al. (2010).
2

1 For any given 𝑡 ≥ 0 and 𝑓, 𝑔 ∈  : 𝐸𝑡𝑓 ∈  and 𝐸𝑡 (𝑓 + 𝑔) =𝐸𝑡𝑓 +𝐸𝑡𝑔.
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Often we are interested in evaluating the function 𝐸𝑡𝑓 (𝑥) for a particular choice of 𝑓 ∈  . To economize on notation, we will in 
the following frequently use 𝑢𝑡 (𝑥) to denote 𝐸𝑡𝑓 (𝑥) in this case,

𝑢𝑡 (𝑥) ≡ 𝐸𝑡𝑓 (𝑥) . (2.1)

Suppose that 𝑢𝑡 (𝑥) is not available on closed form and so needs to be approximated using numerical methods; we here show how this 
can be approximated through a Taylor series expansion of 𝑢𝑡 (𝑥) w.r.t. 𝑡 around 𝑡 = 0 when either 𝑓 is sufficiently regular, where the 
notion of “regular” will be made clear below, or it can be expressed as the limit of a regular function. The proposal is a generalisation of 
the one of Kristensen and Mele (2011), but the derivation will be carried out using semi–group theory which simplifies the exposition 
substantially compared to Kristensen and Mele (2011) and provides new insights into the expansion.

In order for the Taylor series expansion to be valid, we require 𝐸𝑡𝑓 to be differentiable w.r.t. 𝑡 at 𝑡 = 0 and let 𝐵𝑓 =
lim𝑡→0+

(
𝐸𝑡𝑓 (𝑥) − 𝑓 (𝑥)

)
∕𝑡 denote this derivative. The operator 𝐵, usually referred to as the generator of 𝐸𝑡 , is generally only 

well-defined on a subset of  which we denote  (𝐵). Below we state the formal definitions, where we choose to work with the 
so–called extended generator which is defined as follows (see, e.g., Meyn and Tweedie (1993)):

Definition 2.1. We denote by  (𝐵) the set of functions 𝑓 ∈  for which there exists 𝑔 ∈  such that, for each 𝑡 ≥ 0,

𝐸𝑡𝑓 = 𝑓 +

𝑡

∫
0

𝐸𝑠𝑔𝑑𝑠, ‖‖𝐸𝑡 |𝑔|‖‖ < ∞, (2.2)

and we write 𝐵𝑓 ∶= 𝑔 and call 𝐵 the (extended) generator of 𝐸𝑡.

Taking derivatives w.r.t. 𝑡 on both sides of eq. (2.2), we obtain the following equivalent representation of 𝐸𝑡 for any 𝑓 ∈ (𝐵),

𝜕𝑡𝐸𝑡𝑓 = 𝐵𝐸𝑡𝑓 , 𝑡 > 0. (2.3)

This can also informally be written as

𝐸𝑡𝑓 = 𝑒𝐵𝑡𝑓 . (2.4)

Thus, the generator 𝐵 fully characterizes the properties of 𝐸𝑡 when restricted to  (𝐵).
If the chosen 𝑓 is regular in the sense that it satisfies 𝑓 ∈ 

(
𝐵𝑀
)

then (2.3) implies that 𝜕𝑚
𝑡
𝐸𝑡𝑓 (𝑥) = 𝐵𝑚𝐸𝑡𝑓 and so the following 

Taylor series expansion of 𝑢𝑡(𝑥) w.r.t. 𝑡 around 𝑡 = 0 is valid,

𝑢̂𝑡 (𝑥) ≡
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
𝜕𝑚
𝑡
𝑢𝑡 (𝑥)||𝑡=0+ =

𝑀∑
𝑚=0

𝑡𝑚

𝑚!
𝐵𝑚𝑓 (𝑥) , (2.5)

where under weak conditions 𝑢̂𝑡 = 𝑢𝑡 +𝑂
(
𝑡𝑀
)
.

If the chosen 𝑓 is irregular in the sense that 𝑓 ∉ 
(
𝐵𝑀
)

then above approximation is not well–defined/applicable; examples of 
such are provided below in the case of jump–diffusions. In order to still obtain a closed–form approximation to 𝐸𝑡𝑓 in such cases, 
we propose to replace 𝑓 by a regularised version of it, denoted 𝑢0,𝑠, 𝑠 ≥ 0, that does belong to  

(
𝐵𝑀
)
. We require 𝑢0,𝑠 to satisfy the 

following two conditions:

A.0 (i) lim𝑠→0+ 𝑢0,𝑠 = 𝑓 and (ii) 𝑢0,𝑠 ∈ 
((

𝜕𝑠

)𝑀1
)
∩ 
(
𝐵𝑀2

)
for some 𝑠 ≥ 0 and 𝑀1, 𝑀2 ≥ 1.

The function 𝑢0,𝑠 is chosen by the researcher and needs to be available on closed form for the subsequent approximation to be 
operational. The choice of 𝑢0,𝑠 is application specific in the sense that Assumption A.0 has to be satisfied for a given choice of 𝑓 and 
𝐸𝑡: Part (i) requires 𝑢0,𝑠 to converge towards the irregular function of interest 𝑓 ∉ (𝐵) as 𝑠 → 0+. Part (ii) says that, for some 𝑠 > 0, 
𝑢0,𝑠 (𝑥) is sufficiently regular in the sense that it is 𝑀 times continuously differentiable in 𝑠 and each of these derivatives belongs to 
 
(
𝐵𝑀
)
.

Assumption A.0 allows for a broad range of regularisers/smoothers. One choice of 𝑢0,𝑠 (𝑥) which under great generality will satisfy 
A.0 is 𝑢0,𝑠 = 𝐸0,𝑠𝑓 where 𝐸0 is another semi–group chosen such that 𝑢0,𝑠 is available on closed form. This choice clearly satisfies part 
(i) and if 𝐸0 has similar properties as the one of interest, 𝐸, so that their respective generators have shared domain, then part (ii) 
will also hold.

Under A.0, the following identity holds:

𝑓 = 𝑢0,0 = 𝑒
(
−𝜕𝑠

)
𝑠𝑢0,𝑠,

where the second equality simply states that 𝑢0,0 = 𝑢0,𝑠 + ∫ 𝑠

0
(
−𝜕𝜏

)
𝑢0,𝜏𝑑𝜏 . Substituting this into (2.4) yields

( ) ( )

3

𝑢𝑡 = 𝑒𝐵𝑡𝑒 −𝜕𝑠 𝑠𝑢0,𝑠 = 𝑒 −𝜕𝑠 𝑠𝑒𝐵𝑡𝑢0,𝑠, (2.6)
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where the last equality uses the following fundamental result: If two infinitesimal operators, say, 𝐵1 and 𝐵2, commute in the sense 
that 𝐵1𝐵2𝑓 = 𝐵2𝐵1𝑓 then 𝑒𝐵1𝑠𝑒𝐵2𝑡𝑓 = 𝑒𝐵1𝑠+𝐵2𝑡𝑓 = 𝑒𝐵2𝑡𝑒𝐵1𝑠𝑓 . This applies to the case of 𝐵 and 𝜕𝑠, 𝜕𝑠𝐵 = 𝐵𝜕𝑠, since 𝐵 acts on 𝑥
while 𝜕𝑠 acts on 𝑠. Finally, carry out a Taylor series expansion w.r.t. (𝑠, 𝑡) to obtain

𝑢̂𝑡 (𝑥) =
𝑀1∑

𝑚1=0

𝑀2∑
𝑚2=0

(−𝑠)𝑚1 𝑡𝑚2

𝑚1!𝑚2!
𝐵𝑚2𝜕

𝑚1
𝑠 𝑢0,𝑠 (𝑥) , (2.7)

where the order of 𝜕𝑠 and 𝐵 can be exchanged since 𝜕𝑚1
𝑠 𝐵𝑚2𝑢0,𝑠 = 𝐵𝑚2𝜕

𝑚1
𝑠 𝑢0,𝑠. Above approximation generalises the one in (2.5): By 

setting 𝑀1 = 0 and 𝑠 = 0, we obtain (2.5).

The resulting approximation error is of order 𝑂
(
𝑠𝑀1
)
+𝑂
(
𝑡𝑀2
)
. In particular, the above expansion will generally become more 

precise as 𝑠 gets smaller. Thus, we ideally want to choose 𝑠 as small as possible to reduce the approximation error. However, for the 
chosen value of 𝑠 ≥ 0, A.0(ii) has to be satisfied. This rules out, for example, 𝑠 = 0 when 𝑓 is irregular since 𝑢0,0 (𝑥) = 𝑓 (𝑥).

If the approximation error is not a major concern (which is, for example, the case if the order of approximation can be chosen 
sufficiently large) then one can choose 𝑠 = 𝑡 in which case 𝐸𝑡𝑓 = 𝑒

(
𝐵−𝜕𝑡

)
𝑡𝑢0,𝑡 and the following special case of (2.7) can be employed,

𝑢̂𝑡 (𝑥) =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
(
𝐵 − 𝜕𝑡

)𝑚
𝑢0,𝑡 (𝑥) . (2.8)

We will in the following focus on this last version.

2.1. Application to Markov jump–diffusions

We here apply above machinery to obtain closed–form approximations of, potentially, irregular moments and densities of a broad 
class of jump–diffusion processes. Consider a 𝑑-dimensional process, 𝑥𝑡 ∈  ⊆ℝ𝑑 that solves the following stochastic differential 
equation (SDE):

𝑑𝑥𝑡 = 𝜇
(
𝑥𝑡

)
𝑑𝑡+ 𝜎

(
𝑥𝑡

)
𝑑𝑊𝑡 + 𝐽𝑡𝑑𝑁𝑡, (2.9)

where 𝜇 (𝑥) and 𝜎 (𝑥) are the so-called drift and diffusion functions, respectively, 𝑊𝑡 is a 𝑑-dimensional standard Brownian motion, 
𝑁𝑡 is a Poisson process with jump intensity 𝜆 

(
𝑥𝑡

)
, and 𝐽𝑡 captures the jump-sizes and has conditional density 𝜈

(
⋅|𝑥𝑡

)
. The precise 

form of 𝜇 (𝑥), 𝜎 (𝑥), 𝜆 (𝑥) and 𝜈 (⋅|𝑥) are chosen by the researcher according to the dynamic problem that is being considered and so 
are known to us. To keep notation simple and allow for a formal theoretical analysis, we restrict ourselves to the time–homogenous 
case meaning that none of the functions entering the model depend on 𝑡; the extension to the time–inhomogenous case can be found 
in Appendix A.

We are interested in computing some conditional moment 𝑢𝑡 (𝑥) = 𝐸𝑡𝑓 (𝑥), where (𝑡, 𝑓 )↦𝐸𝑡𝑓 (𝑥) is a mapping that takes as input 
any given 𝑡 ∈ℝ+ and function 𝑓 (𝑥) and returns the following conditional moment,

𝐸𝑡𝑓 (𝑥) ≡ 𝔼

[
exp
(
−∫

𝑡

0
𝑟
(
𝑥𝑠

)
𝑑𝑠

)
𝑓
(
𝑥𝑡

)|||||𝑥0 = 𝑥

]
, (2.10)

where 𝑟 (𝑥) is a fixed function that discounts the future value 𝑓
(
𝑥𝑡

)
. This family of linear operators clearly constitutes a semi–

group and so we can employ our general theory to this setting.2 We here have to choose the function space 
( ,‖⋅‖) so that above 

conditional moment is well-defined for any 𝑓 ∈  ; this will be discussed in further detail in the theory section below. One could 
envision more complex conditional moment functions; as long as these are linear in 𝑓 , all subsequent ideas and results will still apply 
with obvious modifications. Above definition of 𝐸𝑡𝑓 (𝑥) is sufficiently general for the applications that we have in mind as described 
in the following two examples:

The functions 𝑟 (𝑥) and 𝑓 (𝑥) entering (2.10) are chosen by the researcher according to the problem of interest. For example, with 
𝑟 (𝑥) = 0 and 𝑓 (𝑥) = 𝛿 (𝑦− 𝑥) for some fixed 𝑦 ∈  , where 𝛿 (𝑥) is Dirac’s Delta function, 𝑢𝑡 (𝑥) = 𝑝𝑡 (𝑦|𝑥), where 𝑝𝑡 is the transition 
density of 𝑥𝑡,

Pr
(
𝑥𝑡 ∈|𝑥0 = 𝑥

)
= ∫


𝑝𝑡 (𝑦|𝑥)𝑑𝑦,  ⊆  .

If instead we choose 𝑟𝑡 (𝑥) = 𝑟 > 0 and 𝑓 (𝑥) =
(
exp
(
𝑥1
)
−𝐾
)+

then 𝑢𝑡 (𝑥) becomes the price of a European call option with time to 
maturity 𝑡 when the state variables 𝑥𝑡 satisfy (2.9) under the risk–neutral measure with the first component, 𝑥1,𝑡 , being the log-price 

2 Note that we here opt for the so–called Musiela parameterization where 𝑡 measures the time distance between the current and some future calendar time point. 
One could alternatively have defined the function of interest as, for some given 𝑇 <∞,

𝑢̃𝜏 (𝑥) = 𝔼

[
exp
(
−∫

𝑇

𝜏

𝑟
(
𝑥𝑠

)
𝑑𝑠

)
𝑓
(
𝑥𝑇

)|||||𝑥𝜏 = 𝑥

]
,

4

where now 𝜏 ≤ 𝑇 is a calendar time point. In the current time–homogenous case, it is easily seen that 𝑢̃𝜏 (𝑥) = 𝑢𝑇−𝜏 (𝑥), where 𝑢𝑡 was defined above.
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of the underlying asset and the short-term interest rate equals the constant 𝑟. When 𝑟 (𝑥) = 𝑥2, 𝑢𝑡 (𝑥) is the price of the same option 
but now allowing for a stochastic short–term interest rate, which is the second component of 𝑥𝑡 .

In most cases, an analytic expression of (2.10) is not available and 𝑢𝑡 (𝑥) has to be computed using some form of numerical 
approximation. The general class of Taylor series expansions developed above provides one such with small computational costs. 
In order to apply our proposal, we first need to obtain the infinitesimal generator of 𝐸𝑡 in (2.10). To this end, we first introduce 
the infinitesimal generator 𝐴 of the underlying Markov process 𝑥𝑡, which corresponds to the infinitesimal generator of the simpler 
semi–group 𝐸̃𝑡𝑓 (𝑥) ≡ 𝔼 

[
𝑓
(
𝑥𝑡

)|||𝑥0 = 𝑥

]
. One can show that its generator is given by, for any twice continuously differentiable and 

bounded function 𝑓 (𝑥),

𝐴𝑓 (𝑥) = 𝐴𝐷𝑓 (𝑥) +𝐴𝐽 𝑓 (𝑥) , (2.11)

where 𝐴𝐷𝑓 (𝑥) and 𝐴𝐽 𝑓 (𝑥) are the generators of the diffusive and jump component of 𝑥𝑡 , respectively. With 𝜎2 (𝑥) ∶= 𝜎 (𝑥)𝜎 (𝑥)⊤ ∈
ℝ𝑑×𝑑 , these are given by

𝐴𝐷𝑓 (𝑥) =
𝑑∑

𝑖=1
𝜇𝑖 (𝑥)𝜕𝑥𝑖

𝑓 (𝑥) + 1
2

𝑑∑
𝑖,𝑗=1

𝜎2
𝑖𝑗,𝑡

(𝑥)𝜕2
𝑥𝑖,𝑥𝑗

𝑓 (𝑥) , (2.12)

and

𝐴𝐽 𝑓 (𝑥) = 𝜆 (𝑥)∫
ℝ𝑑

[𝑓 (𝑥+ 𝑐) − 𝑓 (𝑥)] 𝜈 (𝑐|𝑥)𝑑𝑐, (2.13)

cf. Section 3.2. Here, 𝜕𝑥𝑖
𝑓 (𝑥) = 𝜕𝑓 (𝑥) ∕ 

(
𝜕𝑥𝑖

)
, 𝜕2

𝑥𝑖,𝑥𝑗
𝑓 (𝑥) = 𝜕2𝑓 (𝑥) ∕ 

(
𝜕𝑥𝑖𝜕𝑥𝑗

)
and similar for other partial derivatives. Importantly, 

the domain of 𝐴 is a subset of twice–differentiable functions and so rules out 𝑓 being chosen as the dirac delta function or the pay-off 
function of a European call option.

It can now be shown, cf. Section 3, that the generator of 𝐸𝑡𝑓 (𝑥) in (2.10) is 𝐵𝑓 (𝑥) = 𝐴𝑓 (𝑥) − 𝑟 (𝑥). In particular, 𝑢𝑡 (𝑥) solves the 
following partial integro-differential equation (PIDE):

𝜕𝑡𝑢𝑡 (𝑥) = [𝐴− 𝑟]𝑢𝑡 (𝑥) , 𝑡 ≥ 0, 𝑥 ∈  , (2.14)

with initial condition 𝑢0 (𝑥) = 𝑓 (𝑥) for all 𝑥 ∈  . In the case of pure diffusions (𝐴𝐽 = 0), the reader may recognise 𝑢𝑡 (𝑥) = 𝐸𝑡𝑓 (𝑥)
as the celebrated Feynman–Kac representation of the solution to (2.14) which is now a partial differential equation. As in (2.4), the 
solution to this PIDE can be represented in the following abstract manner: 𝑢𝑡 (𝑥) = 𝑒(𝐴−𝑟)𝑡𝑓 (𝑥), where 𝑒(𝐴−𝑟)𝑡 is the exponential of the 
operator 𝐴 − 𝑟 in the sense that

𝜕𝑒(𝐴−𝑟)𝑡

𝜕𝑡
= (𝐴− 𝑟) 𝑒(𝐴−𝑟)𝑡. (2.15)

We apply the general machinery to the problem of approximating the conditional moment function 𝑢𝑡 (𝑥) through a Taylor series 
expansion. When 𝑓 ∈ 

(
(𝐴− 𝑟)𝑀

)
, we can use (2.5) yielding

𝑢̂𝑡 (𝑥) ≡
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
𝜕𝑚
𝑡
𝑢𝑡 (𝑥)||𝑡=0 = 𝑀∑

𝑚=0

𝑡𝑚

𝑚!
(𝐴− 𝑟)𝑚 𝑓 (𝑥) , (2.16)

for some 𝑀 ≥ 1, where the second equality uses (2.15). This type of moment approximations has found widespread use in the 
literature; see, e.g., (see, e.g., Aït-Sahalia, 2002; Bakshi et al., 2006; Yu, 2007; Aït-Sahalia, 2008; Filipović et al., 2013; Li, 2013). 
However, this expansion is not valid (well-defined) when, for example, 𝑓 (𝑥) is not differentiable since the domain of the operator 
𝐴𝐷 is restricted to twice differentiable functions, cf. (2.12). The transition density and option pricing examples provided above fall 
in this category. In such cases, we can instead employ (2.8),

𝑢̂𝑡 (𝑥) =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
(
𝐴− 𝑟− 𝜕𝑡

)𝑚
𝑢0,𝑡 (𝑥) , (2.17)

where 𝑢0,𝑡 (𝑥) is chosen to satisfy Assumption A.0. A natural choice of 𝑢0,𝑡 (𝑥) in the application to moments of jump-diffusion processes, 
as proposed by Kristensen and Mele (2011), is

𝑢0,𝑡 (𝑥) = 𝐸0,𝑡𝑓 (𝑥) = 𝔼

[
exp
(
−∫

𝑡

0
𝑟
(
𝑥0,𝑠
)
𝑑𝑠

)
𝑓
(
𝑥0,𝑡
)|||||𝑥0,0 = 𝑥

]
, (2.18)

where 𝑥0,𝑡 is another jump–diffusion process for which above conditional moment is available on closed form, cf. next subsection and 
5

Section 4.
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2.2. Relationship to existing literature

As explained in the introduction, there is an existing literature on expansions of irregular moments of Markov processes. We here 
relate our proposal to these: We first extend the proposal of Kristensen and Mele (2011) to also cover jump–diffusions (their original 
proposal focused on pure diffusions) and show that it falls within above general framework. We then proceed to show that the class 
of series expansions of Kristensen and Mele (2011) contains as special cases the ones of Yang et al. (2019) and Wan and Yang (2021)

Recall the definition of 𝑢𝑡 (𝑥) = 𝐸𝑡𝑓 (𝑥) in the jump–diffusion example and suppose that 𝑓 is irregular. To approximate 𝑢𝑡 (𝑥) in 
this case, Kristensen and Mele (2011) first introduces an auxiliary model on the form

𝑑𝑥0,𝑡 = 𝜇0
(
𝑥0,𝑡
)
𝑑𝑡+ 𝜎0

(
𝑥0,𝑡
)
𝑑𝑊𝑡 + 𝐽0,𝑡𝑑𝑁0,𝑡, (2.19)

where 𝑁0,𝑡 is a Poisson process with jump intensity 𝜆0 (𝑥) and 𝐽0,𝑡 has density 𝜈0 (⋅|𝑥). We then choose 𝑢0,𝑡 as given in (2.18); this 
can be represented as the solution to the following PIDE,

−𝜕𝑡𝑢0,𝑡 (𝑥) =
[
𝐴0 − 𝑟

]
𝑢0,𝑡 (𝑥) , (2.20)

with initial condition 𝑢0,0 (𝑥) = 𝑓 (𝑥), where 𝐴 has been replaced by the auxiliary model’s generator, 𝐴0 = 𝐴0,𝐷+𝐴0,𝐽 . Above choice of 
𝑢0,𝑡 corresponds to one particular regulariser as introduced in Assumption A.0. Proceeding as in Kristensen and Mele (2011), we then 
subtract (2.20) from (2.14) and, after some straightforward manipulations, arrive at the following PIDE of Δ𝑢𝑡 (𝑥) ≡ 𝑢𝑡 (𝑥) − 𝑢0,𝑡 (𝑥):

𝜕𝑡Δ𝑢𝑡 (𝑥) = [𝐴− 𝑟]Δ𝑢𝑡 (𝑥) + 𝑑𝑡 (𝑥) , (2.21)

where

𝑑𝑡 ≡ (𝐴−𝐴0
)
𝑢0,𝑡. (2.22)

Since the initial conditions of (2.14) and (2.20) are the same, the initial condition of (2.21) becomes Δ𝑢0 (𝑥) = 0 which is now smooth 
and bounded. As with 𝑢𝑡 (𝑥), Δ𝑢𝑡 (𝑥) can be represented as a moment function using Feynman-Kac formula under weak regularity 
conditions,

𝑢𝑡 (𝑥) = 𝑢0,𝑡 (𝑥) +

𝑡

∫
0

𝐸𝑠𝑑𝑠 (𝑥)𝑑𝑠. (2.23)

The second term on the right-hand side of Eq. (2.23) delivers an exact expression of the difference between 𝑢𝑡 (𝑥) and 𝑢0,𝑡 (𝑥).
The next step utilizes the smoothness of 𝑑𝑡 to obtain a Taylor expansion w.r.t. time of this second term. We first develop a power 

series expansion of the integrand, 𝑤𝑠 (𝑥) ≡ 𝐸𝑠𝑑𝑠 (𝑥), 𝑠 ≥ 0, at 𝑠 = 𝑡 taking the form

𝑤̂𝑠 (𝑥) ≡
𝑀−1∑
𝑚=0

(𝑠− 𝑡)𝑚

𝑚!
𝜕𝑚
𝑠
𝑤𝑠 (𝑥)||𝑠=𝑡

=
𝑀−1∑
𝑚=0

(𝑠− 𝑡)𝑚

𝑚!
(
𝜕𝑡 +𝐴− 𝑟

)𝑚
𝑑𝑡 (𝑥) ,

for some 𝑀 ≥ 1. Combining these last two equations, substituting the resulting expression into (2.23) and evaluating the integral 
∫ 𝑡

0 𝑤̂𝑠 (𝑥)𝑑𝑠, we obtain the approximation originally proposed in Kristensen and Mele (2011), here extended to the general case of 
jump–diffusions:

𝑢̂𝑡 (𝑥) ≡ 𝑢0,𝑡 (𝑥) +
𝑀−1∑
𝑚=0

𝑡𝑚+1

(𝑚+ 1)!
(
𝐴− 𝑟− 𝜕𝑡

)𝑚
𝑑𝑡 (𝑥) , (2.24)

where 
(
−𝜕𝑡 +𝐴− 𝑟

)0
𝑑𝑡 (𝑥) = 𝑑𝑡 (𝑥). Finally, combine (2.20) and (2.22) to obtain

𝑑𝑡 = 𝐴𝑢0,𝑡 −𝐴0𝑢0,𝑡 = 𝐴𝑢0,𝑡 +
{
−𝜕𝑡𝑢0,𝑡 − 𝑟 (𝑥)𝑢0,𝑡

}
=
(
𝐴− 𝑟− 𝜕𝑡

)
𝑢0,𝑡.

Substituting this into (2.24), we recognise the resulting expression as being identical to (2.17), where 𝑢0,𝑡 has been chosen as the 
solution to (2.20). Thus, the expansion of Kristensen and Mele (2011) is identical to the one developed in Section 2, but was presented 
in a more convoluted manner as can be seen from above.

Next, we demonstrate that the above class of series expansions include as special cases the approximate transition densities and 
option prices proposed in Yang et al. (2019) and Wan and Yang (2021). With 𝑟 = 0 and 𝑓 (𝑥) = 𝛿 (𝑦− 𝑥), (2.17) with 𝑢0,𝑡 chosen as 
the solution to (2.20) for some auxiliary jump–diffusion model becomes

𝑝̂𝑡 (𝑦|𝑥) = 𝑀∑
𝑚=0

𝑡𝑚

𝑚!
(
𝐴− 𝜕𝑡

)𝑚
𝑝0,𝑡 (𝑦|𝑥) , (2.25)

where 𝑝0,𝑡 (𝑦|𝑥) is the transition density of the auxiliary model. Now, let us first consider the transition density expansion developed 
in Yang et al. (2019) for pure diffusions (𝐴𝐽 = 0). Inspecting the expansion presented in eq. (10) of their paper, we recognize it to be 
identical to above when the auxiliary model is chosen as a Brownian motion with drift, 𝑑𝑥0,𝑡 = 𝜇0𝑑𝑡 + 𝜎0𝑑𝑊𝑡, with 𝜎0 = 𝜎 (𝑥). Thus, 
6

Yang et al. (2019) is a special case of Kristensen and Mele (2011). This somehow went unnoticed by the authors and we here clarify 
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the connection between the two papers. Second, consider the expansion of the transition density in Wan and Yang (2021) in the pure 
diffusion case. As explained by the authors themselves, the preferred version of the expansion used in this paper is the same as the 
series expansion of Yang et al. (2019) when 𝜇0 = 0 in the auxiliary BM model. And so the pure diffusion version of Wan and Yang 
(2021) is also a special case of Kristensen and Mele (2011).

Next, we show that the expansion of option prices developed in Wan and Yang (2021) is again a special case of Kristensen and 
Mele (2011). Setting 𝑟 (𝑥) = 0 and 𝑓 (𝑥) =

(
exp
(
𝑥1
)
−𝐾
)+

and again using as auxiliary model a Brownian motion with drift, 𝑢̂𝑡 (𝑥) as 
given in (2.17) delivers an expansion of the expected pay-off of a European option where 𝑢0,𝑡 (𝑥) is now the pay-off function under the 
Black–Scholes model. To connect this option price approximation with the corresponding proposal of Wan and Yang (2021), observe 
that 𝑢0,𝑡 (𝑥) = ∫ 𝑓 (𝑦)𝑝0,𝑡 (𝑦|𝑥)𝑑𝑦, where 𝑝0,𝑡 (𝑦|𝑥) is given in (4.4). Substituting this into (2.17) and changing the order of integration 
and differentiation yields

𝑢̂𝑡(𝑥) =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
(
𝐴− 𝜕𝑡

)𝑚
∫ 𝑓 (𝑦)𝑝0,𝑡 (𝑦|𝑥)𝑑𝑦 = ∫ 𝑓 (𝑦)

{
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
(
−𝜕𝑡 +𝐴

)𝑚
𝑝0,𝑡 (𝑦|𝑥)}𝑑𝑦

= ∫ 𝑓 (𝑦) 𝑝̂𝑡 (𝑦|𝑥)𝑑𝑦, (2.26)

where 𝑝̂𝑡 (𝑦|𝑥) is the density approximation we arrived at in (2.25). Thus, for simple moment functions, such as the ones appearing 
in European option prices with constant interest rates, the expansion of Kristensen and Mele (2011) is equivalent to first developing 
the corresponding expansion for the transition density and then using this to compute the relevant moment; this was already pointed 
out in Appendix B of Kristensen and Mele (2011). However, in practice, it is easier to directly employ (2.17) with 𝑢0,𝑡 chosen as 
the pay-off under the Black–Scholes model since this avoids having to compute the integral ∫ 𝑓 (𝑦) 𝑝̂𝑡 (𝑦|𝑥)𝑑𝑦 after developing the 
expansion of the transition density.

Finally, let us consider the proposal of Wan and Yang (2021) for option pricing approximation: They take as starting point that 
the pay-off can be written as 𝑢𝑡(𝑥) = ∫ 𝑓 (𝑦)𝑝𝑡 (𝑦|𝑥)𝑑𝑦, and then replace 𝑝𝑡 (𝑦|𝑥) by the approximation given in (2.25) with auxiliary 
model chosen as Brownian motion with drift. As we just demonstrated in (2.26), this is equivalent to the approximation developed in 
Kristensen and Mele (2011) when the auxiliary model is chosen as the Black–Scholes model since the log–price in this case follows a 
Brownian Motion with drift. Thus, the option price approximation of Wan and Yang (2021) is again a special case of Kristensen and 
Mele (2011).

3. Theoretical properties

We first present a general theory of series expansions on the form (2.5) when the function 𝑓 is regular in the sense that 𝑓 ∈ 𝐷 (𝐵). 
We provide two sets of results: First, we derive an error bound for any given value 𝑀 of the order of the expansion. Second, we provide 
conditions under which the error bound vanishes as 𝑀 →∞ at a given value of the time horizon 𝑡 > 0. The conditions for the second 
set of results come in two forms: We first provide conditions under which the proposed power series expansion converges globally, i.e., 
over the whole domain of 𝑥𝑡. These conditions are somewhat restrictive though and rule out certain models and functions of interest. 
We therefore proceed to examine how the approximation behaves on a given compact subset of the full domain, and show that the 
power series expansion is consistent over compact subsets under weak regularity conditions that most known models satisfy. We then 
apply the theory to moments of jump–diffusions on the form (2.9) and provide primitive conditions under which the expansion is 
valid. Some of the results presented here rely on the important insights found in the unpublished work of Schaumburg (2004) which 
we are indebted to.

Next, we then proceed to analyze the “smoothed” expansion (2.7). As in the regular case, we are able to derive an error bound for 
a given choice of 𝑀 . But at the same time, this expansion is generally not consistent in the sense that it will not converge as 𝑀 →∞
for a fixed value of 𝑡 > 0. This is an important result since this shows that the approximation error will eventually blow up as we 
increase 𝑀 . Thus, researchers should use the generalized version with caution.

3.1. Series expansions of “regular” moments

We take as given a semi–group 𝐸𝑡 ∶  ↦  as described in Section 2. As a first step in our analysis, we show that 𝑢𝑡 (𝑥) indeed 
solves (2.3) if 𝑓 ∈ (𝐵):

Theorem 3.1. For any 𝑓 ∈ (𝐵), 𝑢𝑡 (𝑥) = 𝐸𝑡𝑓 (𝑥) satisfies:

1. For any fixed 𝑡 ≥ 0, 𝑥 ↦ 𝑢𝑡 (𝑥) ∈ (𝐵) with 𝐵𝑢𝑡 (𝑥) = 𝐸𝑡 (𝐵𝑓 ) (𝑥).
2. If 𝑡 ↦ 𝐸𝑡 (𝐵𝑓 ) is right-continuous at 𝑡 = 0+ then 𝑢𝑡 (𝑥) solves

𝜕𝑡𝑢𝑡 (𝑥) = 𝐵𝑢𝑡 (𝑥) , 𝑡 > 0, 𝑢0 (𝑥) = 𝑓 (𝑥) . (3.1)

The continuity condition in the second part of the theorem is satisfied under great generality when 𝐸𝑡 is on the form (2.10). 
A sufficient condition is that the mapping 

{
𝑥𝑡 ∶ 𝑡 ≥ 0

}
is Borel measurable w.r.t. the product sigma algebra, cf. p. 771 in Hansen 
7

and Scheinkman (1995). The above result, and many subsequent ones, requires the function 𝑓 defining 𝑢𝑡 (𝑥) to satisfy 𝑓 ∈ (𝐵). 
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Unfortunately, it rarely easy to give an explicit characterization of  (𝐵). Instead, we will often work in a smaller subspace, say, 
0 (𝐵) ⊆  (𝐵) which is known to us; see Section 3.2 for an example. One says that 0 (𝐵) is a core of  (𝐵) if it is a dense subset of 
the latter.

We recognize (3.1) as a generalized version of the celebrated Kolmogorov’s backward equation for jump-diffusion models. In 
particular, it implies that lim𝑡→0+ 𝜕𝑡𝑢𝑡 (𝑥) = 𝐵𝑓 (𝑥). More generally, under suitable regularity conditions, 𝑡 ↦ 𝑢𝑡 (𝑥) will be 𝑀 ≥ 1
times differentiable with

lim
𝑡→0+

𝜕𝑚
𝑡
𝑢𝑡 (𝑥) = 𝐵𝑚𝑓 (𝑥) , 0 ≤ 𝑚 ≤ 𝑀, (3.2)

in which case the Taylor series approximation 𝑢̂𝑡 given in (2.5) is valid. In order for 𝑢̂𝑡 → 𝑢𝑡 as 𝑀 →∞, we need 𝑡 ↦ 𝑢𝑡 to be analytic:

Definition 3.2. 𝑡 ↦ 𝑢𝑡 is said to be analytic (at 𝑡 = 0+) with radius 𝑇0 > 0 if it is infinitely differentiable w.r.t. 𝑡 and satisfies

𝑢𝑡 = lim
𝑀→∞

𝑢̂𝑡, 𝑡 ≤ 𝑇0, (3.3)

where 𝑢̂𝑡 given in (2.5).

Recall that the definition of 𝐵 and the convergence result (3.3) are stated w.r.t. the chosen function norm ‖⋅‖ introduced earlier. 
As we shall see, different assumptions regarding the model and the chosen function 𝑓 defining 𝑢 motivate different spaces and norms. 
Ideally, we would like the convergence to take place uniformly over all values of 𝑥 ∈  , but this will only hold for a small set of 
functions 𝑓 and models, and so in some applications it is necessary to work with the weaker 𝐿2 norm.

In order for 𝑢𝑡 to be analytic, we need as a minimum that 𝑢𝑡 is infinitely differentiable so that (3.2) holds for all 𝑚 ≥ 1. This in 
turn requires 𝐵𝑚𝑓 (𝑥), 𝑚 ≥ 1, to be well–defined. That is, 𝑓 ∈ (𝐵𝑚), 𝑚 ≥ 1, where the domains are defined recursively as

 (𝐵𝑚) =
{
𝑓 ∈(𝐵𝑚−1) ∶ 𝐵𝑓 ∈ (𝐵)

}
⊆ (𝐵𝑚−1) , 𝑚 = 2,3, ...

The following result shows that the Taylor series 𝑢̂𝑡 (𝑥) is a valid approximation for any 𝑓 ∈  
(
𝐵𝑀+1) and also provide an error 

bound for it:

Theorem 3.3. For any 𝑓 ∈ 
(
𝐵𝑀+1) and 𝑡 ≥ 0, 𝑢̂𝑡 (𝑥) in (2.5) satisfies

||𝑢𝑡 (𝑥) − 𝑢̂𝑡 (𝑥)|| = |||||||
𝑡

∫
0

𝑡1

∫
0

⋯

𝑡𝑀

∫
0

𝐵𝑀+1𝑢𝑡𝑀+1
(𝑥)𝑑𝑡𝑀+1⋯𝑑𝑡1

|||||||
≤ 𝑡𝑀+1

(𝑀 + 1)!
sup
0≤𝑠≤𝑡

|||𝐵𝑀+1𝑢𝑠 (𝑥)
||| .

We recognize the error bound as a generalized version of the one that holds for a Taylor series approximation of a 𝑀 + 1 times 
differentiable function. The error bound can be used to show convergence of our expansion of the transition density with 𝑀 ≥ 1
fixed as the time distance between observations, corresponding to 𝑡, shrinks to zero. This is the standard result found in the existing 
literature on expansions of moments of continuous-time processes as cited in the introduction. But, based on this result alone, the 
corresponding approximate moment is then only guaranteed to converge towards the exact one when high-frequency data is available. 
That is, when 𝑡 shrinks to zero as the number of observations diverge. For a fixed 𝑡, there is guarantee for the error bound provided 
in the theorem not blowing up as 𝑀 →∞.

We will therefore now derive conditions under which convergence will hold for a given fixed 𝑡 > 0. From Theorem 3.3 we see that 
the following two conditions are necessary for convergence of 𝑢̂𝑡 (𝑥) to hold: 𝑓 ∈ (𝐵∞) and ‖‖‖ 𝑡𝑚

𝑚!𝐵
𝑚𝑓
‖‖‖ → 0 as 𝑚 →∞. The second 

condition will generally not hold for all 𝑡 > 0. Formally, the radius of convergence is given by

𝑇0 = 1∕ lim sup
𝑚→∞

{‖𝐵𝑚𝑓‖ ∕𝑚!
}1∕𝑚

. (3.4)

Often the exact value of 𝑇0 cannot be derived, but it may still be possible to identify a lower bound for it. Similarly, it is in many 
applications difficult to provide a precise characterization of  (𝐵∞) =

⋂∞
𝑚=1 (𝐵𝑚). One partial characterization is that it constitutes 

a core of  (𝐵), cf. Theorem 7.4.1 of Davies (2007), so that most functions in  (𝐵) also belong to  (𝐵∞). But this provides no 
guarantees for that a given function in  (𝐵) belongs to  (𝐵∞).

Instead one may seek to identify a subset 0 ⊆  so that (i) 0 ⊆  (𝐵) and (ii) the image 𝐵
(0
)
=
{
𝐵𝑓 |𝑓 ∈ 0

}
⊆ 0. For a given 

𝑓 ∈ 0, part (i) ensures that 𝐵𝑓 is well-defined while part (ii) implies that 𝐵𝑓 ∈ 0. In particular, (i)–(ii) guarantee that 0 ⊆  (𝐵𝑚)
for all 𝑚 ≥ 1. As a consequence, 0 ⊆  (𝐵∞) thereby providing us with a partial characterization of  (𝐵∞). In particular, for any 
8

given 𝑓 ∈ 0, we have that 𝑡 ↦ 𝑢𝑡 is infinitely differentiable. The following theorem states the formal result of the above analysis:
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Theorem 3.4. Suppose that 𝑓 ∈ (𝐵∞). Then 𝑢𝑡 is infinitely differentiable and, with the radius of convergence 𝑇0 ≥ 0 given in (3.4),

∀𝑡 ≤ 𝑇0 ∶ ‖‖𝑢𝑡 − 𝑢̂𝑡
‖‖ ≤

(
𝑡∕𝑇0
)𝑀+1

1 − 𝑡∕𝑇0
→ 0 as 𝑀 →∞.

The domain  (𝐵∞) is a core of  (𝐵). A sufficient condition for 𝑓 ∈ (𝐵∞), is that 𝑓 ∈ 0 for some 0 ⊆  (𝐵) satisfying 𝐵
(0
)

⊆ 0.

The last part of the theorem provides one sufficient condition for 𝑢𝑡 to be analytic. There are two tensions when seeking such 
a suitable set 0: First, we would like to choose 0 as large as possible in order to guarantee convergence of 𝑢̂𝑡 over a large set 
of functions. But at the same time we need to restrict 0 so that it satisfies 𝐵

(0
)

⊆ 0. Second, to ensure a strong convergence 
result, we would like to choose the norm ‖⋅‖ as “strong” as possible, e.g., as the sup norm. But establishing 𝑇0 > 0 then proves more 
difficult.

One way of designing the function class 0 is to build it from the so–called eigenfunctions of 𝐵. Eigenfunctions are defined in 
terms of the so–called spectrum of 𝐵,

𝜎 (𝐵) = {𝜉 ∈ℂ ∶ (𝜉𝐼 −𝐵) is not a bijection} ⊂ {𝜉 ∈ℂ ∶ Re (𝜉) < 0} ∪ {0} .

In particular, for any given eigenvalue 𝜉 ∈ 𝜎 (𝐵) there exists a corresponding eigenfunction 𝜙 ∈ (𝐵) so that (𝜉𝐼 −𝐵)𝜙 = 0 ⇔𝐵𝜙 =
𝜉𝜙. This in turn implies that 𝜙 ∈ (𝐵∞) with 𝐵𝑚𝜙 = 𝜉𝑚𝜙. Thus,

𝐸𝑡𝜙 (𝑥) = 𝑒𝜉𝑡𝜙 (𝑥) =
∞∑

𝑚=0

𝑡𝑚

𝑚!
𝐵𝑚𝜙 (𝑥) ,

which is clearly analytic and so our power series expansion will converge for any eigenfunction. The following corollary shows that 
in principle 0 can be chosen as the span of any given countable set of eigenfunctions:

Corollary 3.5. For any given sequence 
{(

𝜉𝑖,𝜙𝑖

)}∞
𝑖=1 of eigenpairs of 𝐵,

0 =

{
𝑓 =

∞∑
𝑖=1

𝛼𝑖𝜙𝑖 ∶
∞∑
𝑖=1

||𝛼𝑖
|| < ∞

}
⊆  (𝐵∞) .

This particular choice of 0 is in some cases somewhat restrictive in the sense that it may be only a small subset of  (𝐵∞). 
However, in the special case of a given semi–group’s spectrum being countable, we generally have that 0 = (𝐵∞). One example 
of this is so–called time reversible Markov processes whose spectra are countable with the corresponding eigenfunctions forming an 
orthnormal basis of  ; see, e.g., Hansen et al. (1998). But many Markov processes are irreversible and have an uncountable spectrum 
in which case 0 is a proper subset of  (𝐵∞).

The corollary does not guarantee that for any 𝑓 ∈ 0 the corresponding 𝑢𝑡 (𝑥) is analytic – only that it is infinitely differentiable. 
To see the complications of ensuring analyticity, observe that, for any given 𝑓 ∈ 0 with 0 defined above, 𝐵𝑚𝑓 =

∑∞
𝑖=1 𝛼𝑖𝜉

𝑚
𝑖
𝜙𝑖, 

𝑚 ≥ 1, so that

𝑢̂𝑡 =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
𝐵𝑚𝑓 =

∞∑
𝑖=1

(
𝑀∑

𝑚=0

(
𝜉𝑖𝑡
)𝑚

𝑚!

)
𝛼𝑖𝜙𝑖.

Thus,

‖‖𝑢𝑡 − 𝑢̂𝑡
‖‖ ≤ sup

𝑖≥1

||||||
𝑀∑

𝑚=0

(
𝜉𝑖𝑡
)𝑚

𝑚!
− 𝑒−𝜉𝑖𝑡

||||||
∞∑
𝑖=1

||𝛼𝑖
|| ‖‖𝜙𝑖

‖‖ ,

and so we need at a minimum sup𝑖≥1
||||∑𝑀

𝑚=0

(
𝜉𝑖𝑡
)𝑚

𝑚! − 𝑒−𝜉𝑖𝑡
||||→ 0, 𝑀 → ∞. But this convergence result will generally not hold; for 

example, if 𝜉𝑖 ∈ℝ and 𝜉𝑖 →∞ as 𝑖 →∞ then convergence will fail.

In conclusion, to ensure convergence, we need to impose restrictions on the eigenvalues/the spectrum. We will now present such 
a set of conditions. These will involve the so–called resolvent of the generator defined as

𝑅 (𝜉) = (𝜉𝐼 −𝐵)−1 , 𝜉 ∉ 𝜎 (𝐵) .

Theorem 3.6. 𝑡 ↦ 𝐸𝑡𝑓 (𝑥) is analytic for all 𝑡 > 0 and all functions 𝑓 ∈  if and only if the following two conditions are satisfied: There 
exists 0 < 𝛿 < 𝜋∕2 and 𝐶𝐵 < ∞ so that

𝜎 (𝐵) ⊆ 𝜎̄𝛿 ∶= {𝜉 ∈ℂ ∶ |arg (𝜉)| > 𝜋∕2 + 𝛿} , (3.5)

and, for all 𝜀 > 0,

𝐶𝐵
9

‖𝑅 (𝜉)‖op ≤ |𝜉| for 𝜉 ∈ℂ∖𝜎̄𝛿 . (3.6)
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In particular, if 𝑓 ∈ 𝐸𝜏0
( ) for some 𝜏0 > 0 (that is, 𝑓 (𝑥) = 𝐸𝜏0

𝑔 (𝑥) for some 𝑔 ∈ ) then

∀𝑡 <
𝜏0

𝐶𝐵𝑒
∶ ‖‖𝑢𝑡 − 𝑢̂𝑡

‖‖ → 0, 𝑀 →∞.

The first part of the theorem states necessary and sufficient conditions for 𝐸𝑡𝑓 (𝑥) to be analytic at any given 𝑡 > 0 and for any

𝑓 ∈  . The conditions (3.5)–(3.6) ensure that the spectrum of 𝐵 is such that the convergence problem discussed before the theorem 
does not occur. This is a strong result but at the same time (3.5)–(3.6) are rather strong conditions. Moreover, they tend to be difficult 
to verify in practice since this requires knowledge of the spectrum 𝜎 (𝐵). Primitive sufficient conditions for them to hold are provided 
in the next section. Both the conditions and the results are relative to the chosen function space and norm 

( ,‖⋅‖). By choosing 
suitably small, we expect that (3.5)–(3.6) will hold in great generality. We give an example of this in Section 3.3.

The second part then shows that for the subclass of functions 𝑓 that satisfy 𝑓 (𝑥) = 𝐸𝜏0
𝑔 (𝑥), for some 𝜏0 > 0 and 𝑔, analyticity 

of 𝐸𝑡𝑓 (𝑥) extends to 𝑡 = 0. This part follows as a direct consequence of the first part since this implies that 𝐸𝑡𝑓 (𝑥) = 𝐸𝑡+𝜏0
𝑔 (𝑥) is 

analytic at 𝑡 = 0. The lower bound of the radius of convergence 𝑇0 depends on the degree of smoothness of 𝑓 , as measured by 𝜏0, and 
the properties of the model, specifically the bound 𝐶𝐴 on its resolvent.

The requirement 𝑓 ∈ 𝐸𝜏0
( ) is difficult to verify in a given application. In the leading case of 𝐸𝑡𝑓 (𝑥) = 𝔼 

[
𝑓
(
𝑥𝑡

) |𝑥0 = 𝑥
]
, the 

condition amounts to showing that there exists a solution 𝑔 (𝑥) to the following integral equation 𝑓 (𝑥) = ∫ 𝑔 (𝑦)𝑝𝜏0
(𝑦|𝑥)𝑑𝑦 for some 

𝜏0 > 0, assuming that 𝑥𝑡 has a transition density 𝑝𝑡 (𝑦|𝑥). This is a so–called Fredholm equation of the first kind; conditions for a 
solution to this to exist are available but not easily verified in a given application. However, it can be shown that, for any given 𝜏0 , 
𝐸𝜏0

( ) is dense in  , see, e.g., Theorem 7.4.4 in Davies (2007), and so the result will hold for “almost every” 𝑓 ∈  .

3.2. Application to jump-diffusions

We now apply the general theory to our jump–diffusion model. In the following, let 𝑥𝑡 be a weak solution to (2.9) for a given speci-

fication of 
(
𝜇,𝜎2, 𝜆, 𝜈

)
with generator 𝐴 given in (2.11)–(2.13) and 𝐸𝑡𝑓 (𝑥) = 𝔼 

[
𝑓
(
𝑥𝑡

) |𝑥0 = 𝑥
]
. Two standard choices of the function 

space 
( ,‖⋅‖) are the following: The first is the space of bounded functions equipped with a sup norm, ‖𝑓‖ = sup𝑥∈ |𝑓 (𝑥)|. The 

second is the space of functions with second moments equipped with the following 𝐿2 norm, ‖𝑓‖2 = ∫ ∞
 𝑓 2 (𝑥)𝜋 (𝑥)𝑑𝑥 for some 

weighting function 𝜋 (𝑥). In case of 𝑥𝑡 being stationary, a natural choice for 𝜋 is the stationary marginal distribution in which case ‖𝑓‖2 = 𝔼 
[
𝑓 2 (𝑥𝑡

)]
; this norm was, for example, used by Hansen and Scheinkman (1995).

We first need to get a handle on the generator of the process and its domain  (𝐴). A complete characterization of  (𝐴) is 
unfortunately not possible and we will instead only work with a subset of  (𝐴) where the generator takes the form (2.11). Let 
𝑚 = 𝑚 () denote the space of functions 𝑓 (𝑥) with domain  that are 𝑚 ≥ 0 times continuously differentiable w.r.t. 𝑥. If 𝑓 ∈ 2

then Ito’s Lemma for jump–diffusions (see, e.g., Cont and Tankov (2003), Proposition 8.14) yields

𝑓
(
𝑥𝑡

)
= 𝑓
(
𝑥0
)
+

𝑡

∫
0

𝐴𝐷𝑓
(
𝑥𝑠

)
𝑑𝑠+

∑
𝑖∶0≤𝜏𝑖≤𝑡

[
𝑓

(
𝑥𝜏−

𝑖
+Δ𝑥𝑖

)
− 𝑓

(
𝑥𝜏−

𝑖

)]

+
𝑑∑

𝑖=1

𝑡

∫
0

𝜕𝑓
(
𝑥𝑠

)
𝜕𝑥𝑖

𝜎𝑖

(
𝑥𝑠

)
𝑑𝑊𝑠,

where 𝐴𝐷 is defined in (2.12), 𝜎𝑖 (𝑥) =
[
𝜎𝑖1 (𝑥) , ..., 𝜎𝑖𝑑 (𝑥)

]
while 𝜏𝑖 and Δ𝑥𝑖 denote the time and the size, respectively, of the 𝑖th jump. 

Assuming 𝐸𝑡 |𝑓 | (𝑥) < ∞ and 𝐸𝑡(
𝜕𝑓

𝜕𝑥𝑖
𝜎𝑖)2 (𝑥) < ∞, 𝑖 = 1, ..., 𝑑, we can take conditional expectations w.r.t. the natural filtration on both 

sides of the above to obtain (2.2) with 𝐴 given in (2.11). Thus, the following is a subset of the domain of the generator,

0 (𝐴) ∶=
{

𝑓 ∈ 2 ∶ 𝐸𝑡 |𝑓 | and 𝐸𝑡

‖‖‖‖ 𝜕𝑓

𝜕𝑥
𝜎
‖‖‖‖2 exist for all 𝑡 > 0

}
⊆  (𝐴) .

In the following we will only consider functions situated in 0 (𝐴) and so not distinguish between the general generator and the 
one restricted to 0 (𝐴). Under the assumption that 𝜇, 𝜎2 and 𝜆 and 𝑓 all belong to 2𝑚, we can apply Ito’s Lemma repeatedly and 
it follows straightforwardly that

0 (𝐴𝑚) ∶=

{
𝑓 ∈ 2𝑚 ∶ 𝐸𝑡

|||𝐴𝑘𝑓
||| and 𝐸𝑡

‖‖‖‖‖ 𝜕𝐴𝑘𝑓

𝜕𝑥
𝜎
‖‖‖‖‖
2

exist for all𝑡 > 0, 0 ≤ 𝑘 ≤ 𝑚− 1

}
⊆  (𝐴𝑚) .

Implicit in this definition is the requirement that ∫ℝ𝑑
||𝐴𝑘𝑓 (𝑥+ 𝑐)|| 𝜈𝑡 (𝑐)𝑑𝑐 < ∞ for 𝑘 = 0, ..., 𝑚. Thus, a given 𝑓 ∈ 2𝑚 belongs to 

0 (𝐴𝑚) if relevant moments w.r.t. the jump measure 𝜈 and the probability measure of 𝑥𝑡 exist. For example, if 𝑓 and all its derivatives 
are bounded, 𝜇, 𝜎2 and 𝜆 and all their derivatives are bounded by some function 𝑉 (𝑥) ≥ 0 with 𝔼 

[
𝑉
(
𝑥𝑡

)]
< ∞, and 𝜈 has bounded 

support then 𝑓 ∈0 (𝐴∞). Similarly, if 𝑓 is a polynomial of order 𝑞, 𝜇, 𝜎2 and 𝜆 are linear w.r.t. 𝑥, 𝜈𝑡 has all polynomial moments, 
and 𝔼 

[‖‖𝑥𝑡
‖‖𝑞] < ∞, 0 ≤ 𝑡 ≤ 𝑇 , then 𝑓 ∈ (𝐴∞).
10

Since 𝑓 ∈0 (𝐴∞) is necessary for our expansion to work, we will maintain the following assumption on the model:
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A.1 (i) 𝜇, 𝜎2 and 𝜆 belong to ∞ and (ii) sup𝑥 𝜆 (𝑥) < ∞.

Part (i) ensures that, under suitable moment conditions as described above, if 𝑓 ∈ ∞ then 𝑓 ∈0 (𝐴∞). Part (ii) is imposed to 
simplify subsequent arguments since it entails the following result (see Pazy, 1983, Theorem 3.2.1):

Lemma 3.1. Suppose that 𝐴𝐽 is a bounded operator. If 𝐴𝐷 generates an analytic semi–group then 𝐴𝐷 + 𝐴𝐽 also generates an analytic 
semi–group. Under A.1(ii), 𝐴𝐽 is a bounded operator.

Thus, for a given jump–diffusion model satisfying A.1(ii), or any other conditions ensuring 𝐴𝐽 is bounded, we only need to ensure 
that the diffusive component is analytic. In the following, we will implicitly assume that indeed 𝐴𝐽 is bounded and derive conditions 
under which 𝐸𝑡 for pure diffusion processes (𝐴𝐽 = 0) is analytic.

Ideally we would now provide primitive conditions for general jump–diffusion processes to satisfy the high-level conditions found 
in the theorems and corollaries stated in the previous section. This is unfortunately not possible since the spectral properties of jump–

diffusions are still not fully understood. We will therefore only state results for special cases for which results do exist. At the same 
time we would like to emphasise that we expect the results to hold more broadly.

We first develop conditions under which polynomial moment functions are analytic. We start out with a few definitions: For a 
given multi-index 𝛼 =

(
𝛼1, ...𝛼𝑑

)
∈ℕ𝑑

0 and 𝑥 =
(
𝑥1, ..., 𝑥𝑑

)′ ∈ℝ𝑑 let |𝛼| = 𝛼1 +⋯ + 𝛼𝑑 and (𝑥)𝛼 = 𝑥
𝛼1
1 ⋯ 𝑥𝛼𝑑

𝑑
. We then let

𝑘 =

{
𝑝 (𝑥) =

∑
|𝛼|≤𝑘

𝑐𝛼 (𝑥)𝛼 ∶ 𝛼 ∈ ℕ𝑑
0 , 𝑐𝛼 ∈ℝ

}
denote the family of polynomials of order 𝑘 and 𝑘| be these polynomials restricted to the domain of 𝑥𝑡. Observe here that 𝑘| is 
a finite-dimensional function space. In particular, we can choose a set of basis functions 𝑒 =

(
𝑒1, ..., 𝑒𝑁

)
∈ 𝑘| , where 𝑁 = dim𝑘| , 

so for any 𝑝 ∈ 𝑘| there exists 𝑐 =
(
𝑐1, ...𝑐𝑁

)
so that

𝑝 (𝑥) =
𝑁∑
𝑖=1

𝑐𝑖𝑒 (𝑥) = 𝑐′𝑒 (𝑥) .

If 𝑘| satisfies the two conditions of Theorem 3.4 then analyticity follows automatically from the fact that when we restrict the 
domain of 𝐴 to 𝑘| then it becomes a finite–dimensional operator and therefore bounded:

Corollary 3.7. Suppose that 𝑥𝑡 is a polynomial process in the sense that, for all 𝑘 ≥ 1, 𝑘| ⊆  (𝐴) and 𝐴 
(𝑘|) ⊆ 𝑘| . Then, for any 

𝑘 ≥ 1 and any 𝑝 = 𝑐′𝑒 ∈ 𝑘| , 𝑢𝑡 (𝑥) = 𝐸𝑡𝑝 (𝑥) is analytic with radius +∞ and satisfies for all 𝑥 ∈ ,

𝑢𝑡 (𝑥) = 𝑐′ exp
(
𝑡𝐴̄
)
𝑒 (𝑥) = 𝑐′

∞∑
𝑚=0

𝑡𝑚

𝑚!
𝐴̄𝑚𝑒 (𝑥) ,

where 𝐴̄ =
[
𝑎̄𝑖𝑗

]
1≤𝑖,𝑗≤𝑁

∈ℝ𝑁×𝑁 is defined as the solution to

𝐴𝑒𝑖 =
𝑁∑
𝑖=1

𝑎̄𝑖𝑗𝑒𝑗 , 𝑖 = 1, ...,𝑁.

A sufficient condition for 𝑥𝑡 to be polynomial process is that 𝜇 ∈ 1| , 𝜎2 ∈ 2| and 𝜆 ∈ 2| .

The second result provides primitive conditions for the high–level assumptions (3.5)–(3.6) to hold in the context of jump diffusions, 
where 𝐸∗

𝑡
and 𝐴∗ denotes the so–called adjoint operators of 𝐸𝑡 and 𝐴, respectively:

Corollary 3.8. Suppose that 𝐸𝑡𝑓 (𝑥) = 𝔼 
[
𝑓
(
𝑥𝑡

) |𝑥0 = 𝑥
]

and that  is a Hilbert space with inner product ⟨⋅, ⋅⟩ so that ‖𝑓‖2 = ⟨𝑓,𝑓⟩. 
Suppose furthermore that 𝑥𝑡 is a time–reversible Markov process in the sense that its generator is self–adjoint, 𝐴 = 𝐴∗ (or, equivalently, 
𝐸𝑡 = 𝐸∗

𝑡
). Then (3.5)–(3.6) are satisfied and so 𝑡 ↦𝐸𝑡𝑓 (𝑥) is analytic for all 𝑡 > 0.

Suppose that 𝑥𝑡 is a stationary diffusion process which satisfies the conditions given in either Example 1, 2 or 3 in Hansen and Scheinkman 
(1995). Then 𝑥𝑡 is time–reversible.

The time–reversibility condition implies that 𝐴’s spectrum is discrete and contained in the negative half–line which suffices for 
(3.5)–(3.6) to hold. The three examples referred to in the second part of the last theorem are time–homogenous scalar diffusions, 
multivariate factor diffusion models, and a restricted class of multivariate diffusions; see Hansen and Scheinkman (1995) for the 
precise details.

Note here that the corollary imposes no smoothness conditions on 𝜇, 𝜎2 and 𝑓 . This is because that 𝐴𝑓 may still be well–defined 
even without smoothness, cf. above discussion of  (𝐴). However, its particular form in these cases is generally unknown to us. Thus, 
in order to compute 𝐴𝑓 in practice we restrict ourselves to smooth models, as in Assumption A.1(i), and smooth choices of 𝑓 , as in 
11

0 (𝐴).
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Our third result again uses Theorem 3.4 but focuses on a different class of “test functions” to obtain results for such models. We 
restrict the function set to

0 =

{
𝑓 ∈ ∞ ∶ sup|𝛼|≥0‖‖𝜕𝛼

𝑥
𝑓‖‖ < ∞

}
, (3.7)

where 𝜕𝛼
𝑥
𝑓 = 𝜕𝛼𝑓∕ (𝜕𝑥𝛼), which we equip with the norm ‖𝑓‖0

= sup|𝛼|≥0 ‖‖𝜕𝛼
𝑥
𝑓‖‖ . Importantly, if 𝑓 ∈ 0 then, for any 𝛼 ∈ ℕ∞

0 , 
𝜕𝛼
𝑥
𝑓 ∈ 0 with ‖‖𝜕𝛼

𝑥
𝑓‖‖0

≤ ‖𝑓‖0
. This property of 0 ensures that if 𝜇 and 𝜎 in 0 then 𝐴𝑓 ∈ 0 for all 𝑓 ∈ 0 and so 0 ⊆  (𝐴∞). 

Moreover, the generator, when restricted to 0, is bounded and so the radius of convergence is infinite:

Theorem 3.9. Suppose that 𝜇 and 𝜎2 lie in (0, ‖⋅‖0
) defined in (3.7). Then 0 ⊆  (𝐴) and 𝐴 ∶ 0 ↦ 0 is a bounded operator. In 

particular, there exists 𝐴̄ < ∞ so that for any 𝑓 ∈ 0 and any 𝑡 > 0,

‖‖𝑢𝑡 − 𝑢̂𝑡
‖‖0

≤
(
𝑡𝐴̄
)𝑀+1

(𝑀 + 1)!
‖𝑓‖0

→ 0 as 𝑀 →∞.

Note here that convergence holds for all 𝑡 > 0 and that the convergence rate is super-geometric. Moreover, the result allows for a 
broad class of non-linear multivariate diffusion models. On the other hand, it rules out unbounded drift and diffusion terms.

3.3. Convergence over bounded sets

The above results are strong in the sense that they guarantee convergence w.r.t. a function norm over the full state space  . But at 
the same time they are restrictive in that they do not apply to general multivariate jump–diffusion models. One way of allowing for 
a broader class of models and functions is to restrict attention to solutions defined on a bounded subset of  leading to the following 
class of so–called localized Cauchy problems. We here focus on the case of pure diffusions since for this class of models results exist 
on analytic solutions on bounded sets.

Let 0 ⊆  be a bounded open set and let 𝑢∗
𝑡
(𝑥) be a function chosen by the researcher which satisfies 𝑢∗0 (𝑥) = 𝑓 (𝑥). We then 

consider the following “trimmed” version of the Cauchy problem for diffusion models:

𝜕𝑡𝑤𝑡 (𝑥) = 𝐴𝐷𝑤𝑡 (𝑥) for (𝑡, 𝑥) ∈ (0,∞) ×0, (3.8)

𝑤𝑡 (𝑥) = 𝑢∗
𝑡
(𝑥) for (𝑡, 𝑥) ∈ (0,∞) ×∖0, (3.9)

with initial condition 𝑤0 (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 0. We now only require the solution 𝑤𝑡 (𝑥) to solve the Cauchy problem on a bounded 
open subset 0 of the full domain  and then pin down its behaviour outside of 0 through the pre-specified function 𝑢∗. The class 
of problems on the form (3.8)–(3.9) can be described by a semi–group 𝐸𝑡 so that 𝑤𝑡 = 𝐸𝑡𝑓 . By choosing 0 as a bounded set, the 
requirements for this semi–group to be analytic become a lot less restrictive and essentially amount to 𝜇 and 𝜎2 being sufficiently 
smooth; see, e.g., Chapter 3 in Lunardi (1995). The following theorem states the precise conditions:

Theorem 3.10. Suppose that 𝜇 (𝑥), 𝜎2 (𝑥) and 𝑢∗
𝑡
(𝑥) are analytic functions so that, for some 0 < 𝐶0, 𝐶1 < ∞,

‖‖𝜕𝛼
𝑥
𝜇 (𝑥)‖‖ ≤ 𝐶0𝐶

−1−|𝛼|
1 |𝛼|!, ‖‖‖𝜕𝛼

𝑥
𝜎2 (𝑥)‖‖‖ ≤ 𝐶0𝐶

−1−|𝛼|
1 |𝛼|!, 𝑥 ∈ 0; (3.10)

and, for some 𝑐 > 0 and for all 𝑥, 𝑦 ∈ 0, 𝑦′𝜎2 (𝑥)𝑦 ≥ 𝑐 ‖𝑦‖. Then the solution 𝑤𝑡 ∶ 0 ↦ ℝ to (3.8)–(3.9) is analytic at any 𝑡 > 0 w.r.t. 
the uniform norm, ‖‖𝑢𝑡

‖‖ ,0 = sup𝑥∈0
||𝑢𝑡 (𝑥)||.

Suppose furthermore that 𝑓 (𝑥) = 𝐸𝜏0
𝑔 (𝑥) for some continuous function 𝑔. Then, 𝑤𝑡 ∶ 0 ↦ ℝ is analytic at 𝑡 = 0 with radius of 

convergence 𝑇0 > 1∕ 
(
𝜌𝜏0
)

for some 𝜌 = 𝜌 (𝐵,𝑑) ∈ (0, 1].

This provides simple and relatively weak conditions under which a series expansion of 𝑤𝑡 will converge. But will such series 
expansion be a good approximation to 𝑢𝑡? By eq. (3.8) together with the initial condition, we see that

𝜕𝑚
𝑡
𝑤𝑡 (𝑥)||𝑡=0+ = 𝐴𝑚

𝐷
𝑓 (𝑥) , 𝑥 ∈ 0, 𝑚 ≥ 0.

Thus, under the conditions of the theorem, the power series approximation of 𝑤𝑡 shares derivatives with 𝑢𝑡 on 0. At the same time, 
the solution 𝑤𝑡 will generally differ from the global solution 𝑢𝑡. However, if we restrict 𝑓 ∈∞ (𝐴𝐷

)
then 𝜕𝑚

𝑡
𝑢𝑡 (𝑥)||𝑡=0+ = 𝐴𝑚

𝐷
𝑓 (𝑥)

and so 𝑤𝑡 (𝑥) = 𝑢𝑡 (𝑥), 𝑥 ∈ 0, and the power series will be consistent on 0. In particular, if we can show that 𝑤𝑡 (𝑥) is analytic on 
0 then the same will hold for 𝑢𝑡 (𝑥) when considered as a function with domain 0 . This result combined with Lemma 3.1 shows 
that our power series expansions converges for a very broad class of diffusion models over bounded subsets of their domains.

3.4. Expansion of “irregular” moments

Finally, we provide an analysis of smoothed expansions on the form (2.7). First, by following the same arguments as in Theorem 3.3, 
12

it is easily shown that if 𝑢0,𝑠 satisfies Assumption A.0 then 𝑢̂𝑡 (𝑥) given in (2.7) with 𝑀1 +𝑀2 = 𝑀 satisfies
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||𝑢𝑡 (𝑥) − 𝑢̂𝑡 (𝑥)|| ≤ ∑
𝑚1+𝑚2=𝑀

(−𝑠)𝑚1 𝑡𝑚2

𝑚1!𝑚2
sup

0≤𝑠,𝜏≤𝑡

|||𝐸𝜏

((
𝜕𝑠

)𝑚1 𝐵𝑚2𝑢0,𝑠
)
(𝑥)||| = 𝑂

(
𝑠𝑀
)
+𝑂
(
𝑡𝑀
)
.

One could now hope for that as long as 𝑢0,𝑠 (𝑥) is sufficiently regular then the expansion would converge under conditions similar to 
the ones in the “regular” case analyzed in the previous section as 𝑀 →∞. This is unfortunately not the case. To see this, observe 

that the expansion (2.7) proceeds in two steps: First, we approximate 𝑓 by 𝑓 (𝑥) =
𝑀1∑

𝑚1=0

(−𝑠)𝑚1

𝑚1!
𝜕

𝑚1
𝑠 𝑢0,𝑠 (𝑥); second, we plug 𝑓 (𝑥) into 

(2.5) to obtain 𝑢̂𝑡 (𝑥) =
∑𝑀2

𝑚2=0
𝑡𝑚2
𝑚2

𝐵𝑚2𝑓 (𝑥). Thus, in order for the resulting expansion to converge, we need at a minimum that (i) 
𝑓 (𝑥)→ 𝑓 (𝑥) and (ii) 𝑓 (𝑥) ∈ 

(
𝐵𝑀2

)
. Considering (i), note that

𝑓 (𝑥) =
∞∑

𝑚1=0

(−𝑠)𝑚1

𝑚1!
𝜕

𝑚1
𝑠 𝑢0,𝑠 (𝑥) =

𝑀1∑
𝑚1=0

(−𝑠)𝑚1

𝑚1!
𝜕

𝑚1
𝑠 𝑢0,𝑠 (𝑥) +

∞∑
𝑚1=𝑀+1

(−𝑠)𝑚1

𝑚1!
𝜕𝑚
𝑠
𝑢0,𝑠 (𝑥)

= ∶ 𝑓 (𝑥) + 𝑒 (𝑥) ,

where 𝑒 (𝑥) is the approximation error from using 𝑓 (𝑥) in place of 𝑓 (𝑥). If 𝑓 is irregular in the sense that 𝑓 ∉  
(
𝐵𝑀2

)
for all 

𝑀2 large enough while at the same time 𝑓 (𝑥) ∈ 
(
𝐵𝑀2

)
then obviously 𝑒 (𝑥) ∉ 

(
𝐵𝑀2

)
. Thus, as 𝑀1 grows, we must eventually 

have 𝑓 ∉  
(
𝐵𝑀2

)
in which case 𝑢̂𝑡 (𝑥) =

∑𝑀2
𝑚2=0

𝑡𝑚2
𝑚2

𝐵𝑚2𝑓 (𝑥) is not well-defined. In practice, we expect 𝑢̂𝑡 (𝑥) in (2.7) to become 
numerically unstable as 𝑀1, 𝑀2 →∞. That is, the numerical error 𝑒 (𝑥) will start blowing up.

This demonstrates that the proposed series expansions of irregular functions such as densities and option prices should be used with 
caution: As more terms are added to the expansions, they will most eventually become numerically unstable and produce unreliable 
estimates. However, as we shall see in the next section, the expansions still work well when a reasonably small number of terms are 
used.

4. Implementation of expansion for jump-diffusion models

This section provides details regarding the practical implementation of the proposed approximation in the jump–diffusion case. 
We here focus on the special case of 𝑟 (𝑥) = 0 and 𝑠 = 𝑡, in which case 𝑢𝑡 (𝑥) = 𝐸𝑡𝑓 (𝑥) = 𝔼 

[
𝑓
(
𝑥𝑡

) |𝑥0 = 𝑥
]

and

𝑢̂𝑡 (𝑥) =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
(
𝐴− 𝜕𝑡

)𝑚
𝑢0,𝑡 (𝑥) . (4.1)

This is done to avoid overly complicated notation. Most of the ideas and arguments extend to the general case.

4.1. Choice of smoothing function for irregular moments

Following Kristensen and Mele (2011), a simple choice of 𝑢0,𝑠 (𝑥) that satisfies A.0 is 𝑢0,𝑠 (𝑥) = 𝐸0,𝑠𝑓 (𝑥) = 𝔼 
[
𝑓
(
𝑥0,𝑠
) |𝑥0,0 = 𝑥

]
where 𝑥0,𝑠 is chosen as the solution to an auxiliary jump–diffusion model,

𝑑𝑥0,𝑡 = 𝜇0
(
𝑥0,𝑡
)
𝑑𝑡+ 𝜎0

(
𝑥0,𝑡
)
𝑑𝑊𝑡 + 𝐽0,𝑡𝑑𝑁0,𝑡, (4.2)

where 𝑁0,𝑡 is a Poisson process with jump intensity 𝜆0 (𝑥) and 𝐽0,𝑡 has density 𝜈0 (⋅|𝑥). The auxiliary model should be chosen so that 
𝑢0,𝑡 (𝑥) is available on closed form. One such model is the multivariate Brownian motion with drift model,

𝑑𝑥0,𝑡 = 𝜇0𝑑𝑡+ 𝜎0𝑑𝑊𝑡, (4.3)

where 𝜇0 ∈ℝ𝑑 and 𝜎0 ∈ℝ𝑑×𝑑 are constants, or the multivariate Vasicek (Ornstein–Uhlenbeck) model,

𝑑𝑥0,𝑡 =
(
𝜇0 +𝐴𝑥0𝑡

)
𝑑𝑡+ 𝜎0𝑑𝑊𝑡,

both of which have a Gaussian transition density on known form. In either case,

𝑢0,𝑠 (𝑥) = ∫ 𝑓 (𝑦)𝑝0,𝑠 (𝑦|𝑥)𝑑𝑦,

where 𝑝0,𝑠 (𝑦|𝑥) is the transition density of the auxiliary model. For example, in the case of (4.3),

𝑝0,𝑠 (𝑦|𝑥) = 1√
2𝜋𝑠
|||𝜎2

0
||| exp

(
−

(
𝑦− 𝑥− 𝑠𝜇0

)′
𝜎−2
0
(
𝑦− 𝑥− 𝑠𝜇0

)
2𝑠

)
. (4.4)

This choice satisfies of 𝑢0,𝑠 satisfies condition (i) of Assumption A.0; since 𝑝0,𝑡 (𝑦|𝑥) is differentiable w.r.t. 𝑡 of any order then the ( )

13

mapping 𝑠 ↦ 𝑢0,𝑠 (𝑥) has the same property. The final requirement, 𝑢0,𝑠 ∈ 𝐴𝑀2 , has to be checked on a case by case basis.
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Recall the two motivating examples of transition density and option price approximation. In the case of 𝑓 (𝑥) = 𝛿 (𝑦− 𝑥), we get 
𝑢0,𝑠 (𝑥) = 𝑝0,𝑠 (𝑦|𝑥). If 𝑓 (𝑥) =

(
exp
(
𝑥1
)
−𝐾
)+

, and we set 𝜇0,1 = 𝑟 − 𝜎2
0,11∕2 to ensure risk–neutrality in the auxiliary model, then 

𝑢0,𝑠 (𝑥) takes the form of the well-known formula for the risk–neutral expected pay-off of a call option in the Black–Scholes model,

𝑢0,𝑠 (𝑥) = 𝑠𝑒𝑟𝑠Φ
(
𝑑+ (𝑥, 𝑠)

)
−𝐾Φ

(
𝑑− (𝑥, 𝑠)

)
, (4.5)

where 𝑑± (𝑥, 𝑠) =
(
𝑥− log (𝐾) +

(
𝑟± 1

2𝜎2
0,11

)
𝑠

)
∕ 
(
𝜎0,11

√
𝑠

)
and Φ (⋅) denotes the cdf of the 𝑁 (0,1) distribution.

4.2. Pure diffusion case

In the pure diffusion case, where no jump component is present so that 𝐴𝐽 = 0, analytical expressions of 
(
𝐴𝐷 − 𝜕𝑡

)𝑚
𝑢0,𝑡 (𝑥) are in 

principal straightforward to obtain relying on symbolic software packages, such as Mathematica, since 𝐴𝐷 is a differential operator. 
We refer to Kristensen and Mele (2011), Yang et al. (2019) and Wan and Yang (2021) for more details on this for the two leading 
examples of density and option price approximations and with 𝑢0,𝑡 chosen as the corresponding solution under (4.3).

4.3. Jump-diffusion case

4.3.1. State–independent jump or diffusion component

Next, consider jump–diffusion models where either the diffusive component or the jump component of 𝑥𝑡 are state–independent; 
the latter case corresponds to the class of jump–diffusions considered in Wan and Yang (2021).

These two cases correspond to (i) 𝜇 (𝑥) = 𝜇 and 𝜎2 (𝑥) = 𝜎2 are constant or (ii) 𝜆 (𝑥) = 𝜆 and 𝜈 (⋅|𝑥) = 𝜈 (⋅) are independent of 𝑥, 
respectively. In either case, we can write 𝑥𝑡 = 𝑥𝐷,𝑡 +𝑥𝐽,𝑡 where the diffusive component, 𝑥𝐷,𝑡, and the jump component, 𝑥𝐽,𝑡, are now 
mutually independent. As a consequence, the two generators 𝐴𝐷 and 𝐴𝐽 commute, 𝐴𝐷𝐴𝐽 = 𝐴𝐽 𝐴𝐷 , in which case

𝑢𝑡 (𝑥) = 𝑒
(
𝐴𝐷+𝐴𝐽

)
𝑡𝑓 (𝑥) = 𝑒𝐴𝐷𝑡𝐵𝐽,𝑡 (𝑥) = 𝑒𝐴𝐽 𝑡𝐵𝐷,𝑡 (𝑥) , (4.6)

where

𝐵𝐽,𝑡 (𝑥) = 𝔼
[
𝑓
(
𝑥𝐽,𝑡

)|||𝑥𝐽,0 = 𝑥

]
, 𝐵𝐷,𝑡 (𝑥) = 𝔼

[
𝑓
(
𝑥𝐷,𝑡

)|||𝑥𝐷,0 = 𝑥

]
.

Now, consider first the case where (ii) is satisfied. In this scenario, 𝑥𝐽,𝑡|𝑥𝐽,0 = 𝑥 has density

𝑝𝐽,𝑡 (𝑦|𝑥) = ∞∑
𝑘=0

𝑒−𝜆𝑡 (𝜆𝑡)𝑘

𝑘!
𝜈𝑘 (𝑦− 𝑥) , (4.7)

where 𝜈𝑘 (𝑦) is the density of the sum of 𝑘 independent jumps, 
∑𝑘

𝑖=1 𝐽𝑖, 𝐽𝑖 ∼ 𝜈 (⋅). Since 𝑝𝐽,𝑡 (𝑦|𝑥) is a smooth function then 𝑥 ↦
𝐵𝐽,𝑡

(
Δ𝑥𝐷,𝑇 + 𝑥

)
is also a smooth function even if 𝑓 (𝑥) is irregular. Thus, if 𝐵𝐽,𝑡 (𝑥) is available on closed form then the smoothing 

device is not needed and we can approximate 𝑢𝑡 by

𝑢̂𝑡 (𝑥) =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
𝐴𝑚

𝐷
𝐵𝐽,𝑡 (𝑥) . (4.8)

Similar, if (i) is satisfied then 𝑥𝐷,𝑡|𝑥𝐷,0 is a Brownian motion with drift and has Gaussian density as given in (4.4). Because of 
its simple dynamics, 𝐵𝐷,𝑡 (𝑥) is available on closed form in many cases and will again be a smooth function; if so, we propose to 
approximate 𝑢𝑡 by

𝑢̂𝑡 (𝑥) =
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
𝐴𝑚

𝐽
𝐵𝐷,𝑡 (𝑥) .

If closed form expressions of neither 𝐵𝐷,𝑡 nor 𝐵𝐽,𝑡 are available, it is still possible to simplify the computation using, for example,

𝑢̂𝑡 (𝑥) =

[
𝑀∑

𝑚=0

𝑡𝑚

𝑚!
𝑒𝐴𝐽 𝑡

(
𝐴𝐷 − 𝜕𝑡

)𝑚
𝑢0,𝑡 (𝑥)

]
, (4.9)

assuming that closed form expressions of 𝑒𝐴𝐽 𝑡
(
𝐴𝐷 − 𝜕𝑡

)𝑚
𝑢0,𝑡 (𝑥) can be computed. This last version is the one proposed by Wan and 

Yang (2021) for jump–diffusions with state–independent jumps.

4.3.2. State–dependent jump and diffusive component

Finally, consider the general case where 𝐴𝐽 ≠ 0 and both the diffusion and jump component are state–dependent. First observe that 
when the jumps are state–dependent, or have a complex distribution, 𝐴𝐽 𝑓 (𝑥) cannot be evaluated analytically for a given function 
𝑓 in general. We propose to resolve this issue by approximating the integral part of 𝐴𝐽 𝑓 (𝑥), 𝐴𝐽1𝑓 (𝑥) = 𝜆 (𝑥) ∫ℝ𝑑 𝑓 (𝑥+ 𝑐) 𝜈 (𝑐)𝑑𝑐, by

̂
𝑆∑ ( )
14

𝐴𝐽1𝑓 (𝑥) = 𝜆 (𝑥)
𝑠=1

𝜔𝑠𝑓 𝑥+ 𝑐𝑠 , (4.10)
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where 𝜔𝑠 and 𝑐𝑠, 𝑠 = 1, ..., 𝑆 , are integration weights and nodes, respectively. For example, in the case of Monte Carlo integration 
with 𝑆 random draws from 𝜈, 𝜔𝑠 = 1∕𝑆 and 𝑐𝑠 is the 𝑠th draw from 𝜈 (⋅). The resulting approximate operator 𝐴̂𝐽 𝑓 (𝑥) = 𝐴̂𝐽1𝑓 (𝑥) −
𝜆 (𝑥)𝑓 (𝑥) is on closed form and so we can now continue as in the pure diffusion case. Also note that 𝐴̂𝐽1𝑓 (𝑥)→ 𝐴𝐽1𝑓 (𝑥) as 𝑆 →∞
which ensures that the added numerical error can be controlled by choosing 𝑆 large enough.

In the case that 𝑣 (𝑐) belongs to the exponential family, the generator of jump component, 𝐴𝐽1, is well–approximated using Gauss-

Hermite or Gauss-Laguerre quadrature. For example, when 𝐽𝑡 is i.i.d. scalar with double exponential distribution with mean zero and 
standard deviation 𝜎𝐽 , it follows from a change of variables that

∞

∫
−∞

𝑓 (𝑥+ 𝑐) 1
2𝜎𝐽

𝑒
− |𝑐|

𝜎𝐽 𝑑𝑐 =

∞

∫
0

[𝑓 (𝑥+ 𝑐) + 𝑓 (𝑥− 𝑐)] 1
2𝜎𝐽

𝑒
− 𝑐

𝜎𝐽 𝑑𝑐

= 1
2

∞

∫
0

[
𝑓
(
𝑥+ 𝜎𝐽 𝑐

)
+ 𝑓
(
𝑥− 𝜎𝐽 𝑐

)]
𝑒−𝑐𝑑𝑐.

Then, given the nodes and weights, 𝑐𝐺𝐿
𝑠

and 𝜔𝐺𝐿
𝑠

, for the Gauss-Laguerre quadrature, the approximation takes the following form:

∞

∫
−∞

𝑓 (𝑥+ 𝑐) 1
2𝜎𝐽

𝑒
− |𝑐|

𝜎𝐽 𝑑𝑐 ≃ 1
2

𝑆𝐺𝐿−1∑
𝑠=0

𝑤𝐺𝐿
𝑠

[
𝑓
(
𝑥+ 𝜎𝐽 𝑐𝐺𝐿

𝑠

)
+ 𝑓
(
𝑥− 𝜎𝐽 𝑐𝐺𝐿

𝑠

)]
.

We use this approximation method in our numerical studies when we cannot obtain an exact expression of the integral since we found 
that Gaussian quadrature is more accurate, easier to implement than Monte Carlo methods, and with low computational cost.

With 𝐴̂𝐽1 replacing 𝐴𝐽1, we can now use a symbolic software package to obtain expressions of 
(
𝐴𝐷 + 𝐴̂𝐽 − 𝜕𝑡

)𝑚
𝑢0,𝑡, 𝑚 = 1, 2, …. 

For example,(
𝐴𝐷 + 𝐴̂𝐽 − 𝜕𝑡

)2
𝑢0,𝑡 =

(
𝐴𝐷 − 𝜆− 𝜕𝑡

)2
𝑢0,𝑡 + 𝐴̂𝐽1

(
𝐴𝐷 − 𝜆− 𝜕𝑡

)
𝑢0,𝑡 +

(
𝐴𝐷,𝑡 − 𝜆− 𝜕𝑡

)
𝐴̂𝐽1𝑢0,𝑡 + 𝐴̂2

𝐽1𝑢0,𝑡,

where the evaluation of 
(
𝐴𝐷 − 𝜆− 𝜕𝑡

)𝑖
𝑢0,𝑡, 𝑖 = 1, 2, can be done using symbolic methods while (here in the univariate case for 

simplicity)

(
𝐴𝐷 − 𝜆− 𝜕𝑡

)
𝐴̂𝐽1𝑢0,𝑡 = 𝜕𝑡

{
𝜆 (𝑥)

𝑆∑
𝑠=1

𝜔𝑠𝑢0,𝑡
(
𝑥+ 𝑐𝑠

)}
+ 𝜇 (𝑥)𝜕𝑥

{
𝜆 (𝑥)

𝑆∑
𝑠=1

𝜔𝑠𝑢0,𝑡
(
𝑥+ 𝑐𝑠

)}

+1
2
𝜎2 (𝑥)𝜕2

𝑥

{
𝜆 (𝑥)

𝑆∑
𝑠=1

𝜔𝑠𝑢0,𝑡
(
𝑥+ 𝑐𝑠

)}
− 𝜆2 (𝑥)

𝑆∑
𝑠=1

𝜔𝑠𝑢0,𝑡
(
𝑥+ 𝑐𝑠

)
,

and

𝐴̂2
𝐽1𝑢0,𝑡 (𝑥) = 𝜆 (𝑥)

𝑆∑
𝑠1=1

𝜔𝑠1
𝐴̂𝐽1𝑢0,𝑡

(
𝑥+ 𝑐𝑠1

)
= 𝜆 (𝑥)

𝑆∑
𝑠1=1

𝜔𝑠1

[
𝜆

(
𝑥+ 𝑐𝑠1

) 𝑆∑
𝑠2=1

𝜔𝑠2𝑢0,𝑡

(
𝑥+ 𝑐𝑠1

+ 𝑐𝑠2

)]
.

5. Numerical results

This section evaluates the approximation performance of our methods for various models. We first demonstrate that the closed–

form approximations of moments will eventually diverge for 𝑡 large enough in Section 5.1. We do this through expansions of a regular 
moment and a irregular one of Ornstein-Uhlenbeck (OU) process. Subsequently, we employ the machinery to obtain approximate 
option prices for different jump–diffusion models of different degrees of complexity, including both one and two-factor volatility 
models, as well as state-independent and state-dependent jumps. In this second part, we find that as long as 𝑡 is small/moderate, the 
approximations work well.

5.1. Approximations of moments of the Ornstein-Uhlenbeck process

One of the key findings of Section 3 is that the proposed Taylor expansions of 𝑢𝑡 (𝑥) = 𝔼 
[
𝑓
(
𝑥𝑡

) |𝑥0 = 𝑥
]

will in general break down 
as 𝑡 gets large enough, cf. Theorem 3.6, and this holds true even if 𝑓 is a regular function. We here demonstrate this numerically 
through a simple example, where 𝑥𝑡 is an OU process solving

𝑑𝑥𝑡 = −𝛼𝑥𝑡𝑑𝑡+ 𝜎𝑑𝑊𝑡 (5.1)

We here focus on this simple model because its eigenfunctions and spectrum are known and available on closed form; this allows us 
15

to obtain closed-form expressions of the conditional moments that we consider below and to provide exact conditions under which 
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Fig. 1. Maximum absolute error of 𝑀 th order approximation of 𝔼 [exp(−𝑥2
𝑡

) |𝑥0 = 𝑥
]

as a function of 𝑡, 𝑀 = 1, 4, 7, 10, where 𝑥𝑡 solves (5.1) with 𝛼 = 0.1 (left), 0.4 
(middle), 1.6 (right), and 𝜎 = 0.5 (top), 1 (bottom). The vertical line indicates the threshold value 𝜏0 below which the approximation is known to converge as 𝑀
diverges.

the corresponding approximation will break down. Specifically, it is well-known that the eigenvalues and eigenfunctions of the OU 
process’s generator are 𝜉𝑖 = 𝑖𝛼 and 𝜙𝑖 (𝑥) = 𝐻𝑖

(
𝑥
√

𝛼

)
∕ 
(
2𝑖∕2
√

𝑖!𝜋1∕4
)

, where 𝐻𝑖 denotes the 𝑖th Hermite polynomial. Now, recall 
that Theorem 3.6 shows convergence for 𝑡 < 𝜏0∕(𝐶𝐵𝑒), where 𝜏0 > 0 is such that 𝑓 ∈ 𝐸𝜏0

( ). For the OU example, this bound can be 
improved so that convergence is satisfied for all 𝑡 < 𝜏0.

Now, consider 𝑓 (𝑥) = exp(−𝑥2
𝑡
). This is a regular function and so we can employ the standard Taylor eseries approximation in 

eq. (2.16), where we set 𝑟 = 0. It can be verified that this choice of 𝑓 satisfies 𝑓 ∈ 𝐸𝜏0
( ) for all 𝜏0 ≤ log(1 + 𝛼∕𝜎2)∕(2𝛼). Thus, 

according to the theory, we expect the Taylor series approximation of 𝑢𝑡(𝑥) = 𝔼[exp(−𝑥2
𝑡
)|𝑥0 = 𝑥] to break down when 𝑡 > log(1 +

𝛼∕𝜎2)∕(2𝛼). We verify this numerically in Fig. 1, where the maximum absolute approximation error, max𝑥∈[−3.3,3.3]|𝑢̂𝑡 (𝑥) − 𝑢𝑡 (𝑥)|, is 
plotted for different choices of the parameter values and order of approximation 𝑀 . For any given set of parameters, the approximation 
error diverges when 𝑡 gets bigger than the aforementioned threshold, indicated by a vertical line in each sub figure. As such, this 
numerical example highlights that Taylor series approximations of moments should be used with caution for large values of 𝑡.

Next, we investigate the performance of our proposed approximation of irregular moments when applied to the OU model. Specifi-

cally, we apply (2.17) to approximate the transition density, 𝑝𝑡 (𝑦|𝑥) = 𝔼 
[
𝛿
(
𝑦− 𝑥𝑡

) |𝑥0 = 𝑥
]
, of the OU process. For its implementation, 

we need to choose a smoother. We here employ 𝑝0,𝑡 (𝑦|𝑥) = exp(− (𝑦− 𝑥)2 ∕(2𝜎2𝑡))∕
√
2𝜋𝑠2𝑡, which corresponds to the transition den-

sity of the process 𝑑𝑥0,𝑡 = 𝜎𝑑𝑊𝑡. Fig. 2 plots the maximum absolute approximation error, max𝑥∈[0,4],𝑦∈[−3.3,3.3]|𝑝̂𝑡 (𝑦|𝑥) − 𝑝𝑡 (𝑦|𝑥)|. 
Compared to the approximation performance for the earlier conditional expectation with 𝑓 (𝑥) = exp

(
𝑥2
)
, the effectiveness of the 

approximation diminishes more slowly with 𝑡 when 𝛼 is small (e.g., 0.1 and 0.4), but more rapidly when 𝛼 is relatively large (e.g., 
1.6). However, in all cases, the approximation eventually starts deteriorating as 𝑡 gets large enough. This is again in line with the 
theory.

5.2. Option pricing in one-factor stochastic volatility models with jumps

In this subsection, we assess the performance of our approximations in the context of option pricing when the underlying asset’s 
dynamics are described by a stochastic volatility model with jumps under the risk-neutral measure. Specifically, we consider a class 
of asset pricing models where the log-price 𝑠𝑡 of a given asset exhibits both stochastic volatility and jumps,

𝑑𝑠𝑡 =
(
𝑟− 𝛿 − 𝑣𝑡∕2 − 𝜆

(
𝑣𝑡

)
𝐽
)
𝑑𝑡+

√
𝑣𝑡𝑑𝑊1𝑡 + log

(
𝐽𝑡 + 1

)
𝑑𝑁𝑡, (5.2)
16

where the volatility process 𝑣𝑡 is solution to either
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Fig. 2. Maximum absolute error of 𝑀 th order approximation of 𝑝𝑡 (𝑦|𝑥) as a function of 𝑡, 𝑀 = 1, 4, 7, 10, where 𝑥𝑡 solves (5.1) with 𝛼 = 0.1 (left), 0.4 (middle), 1.6 
(right), 𝜎 = 1, and 𝑥 = 0 (top), 4 (bottom).

𝑑𝑣𝑡 = 𝜅𝑉

(
𝛼𝑉 − 𝑣𝑡

)
𝑑𝑡+ 𝜎𝑉 𝑣

𝛽

𝑡

(
𝜌𝑑𝑊1𝑡 +

√
1 − 𝜌2𝑑𝑊2𝑡

)
, (5.3)

or

𝑑 log𝑣𝑡 = 𝜅𝑉

(
𝛼𝑉 − log𝑣𝑡

)
𝑑𝑡+ 𝜎𝑉

(
𝜌𝑑𝑊1𝑡 +

√
1 − 𝜌2𝑑𝑊2𝑡

)
. (5.4)

Here, 𝑟 and 𝛿 are the risk-free rate and the constant dividend, respectively. To ensure that the model has a well-defined solution, 𝜅𝑉 , 
𝛼𝑉 , 𝜎𝑉 are restricted to be positive and 1∕2 ≤ 𝛽 ≤ 1.

The jump component consists of a Cox process 𝑁𝑡 with a jump intensity function given by 𝜆 (𝑣) = 𝜆0 +𝜆1𝑣, and a random variable 
𝐽𝑡 with support [−1, ∞), and expectation 𝐽 . We include −𝜆 

(
𝑣𝑡

)
𝐽 in the drift as a compensator such that the jump part is a martingale. 

For example, if 𝐽 +1 is chosen to be log-normally distributed with parameters 𝜇𝐽 and 𝜎𝐽 , then 𝐽 = exp
(
𝜇𝐽 + 𝜎2

𝐽
∕2
)
−1. Special cases 

of this model include Merton (1976), where both volatility and jump intensity are constant, 𝑣𝑡 = 𝜎0 and 𝜆 (𝑣) = 𝜆0. Eq. (5.2) together 
with either (5.3) or (5.4) is a special case of (2.9) with 𝑥𝑡 =

(
𝑠𝑡, 𝑣𝑡

)
.

This class of models encompasses those in Andersen et al. (2002) and Wan and Yang (2021), as well as several other special cases. 
Compared to Andersen et al. (2002), our specification allows the variance process to follow the non-affine continuous-time GARCH 
model (𝛽 = 1) and the CEV model (1∕2 < 𝛽 < 1). Additionally, unlike Wan and Yang (2021), we accommodate state-dependent jump 
intensity (𝜆1 ≠ 0), which they exclude.

We consider a European call option with payoff 𝑓
(
𝑥𝑡

)
= 𝑓
(
𝑠𝑡

) ≡ max
{
exp
(
𝑠𝑡

)
−𝐾,0

}
at maturity time 𝑡 > 0, where 𝐾 = 100

is the strike price. With the above model formulated under the risk-neutral measure, let 𝑢𝑡 (𝑠, 𝑣) = 𝐸
[
𝑓
(
𝑠𝑡

) |𝑠0 = 𝑠, 𝑣0 = 𝑣
]

represent 
the expected risk-neutral payoff when the option expires in 𝑡 time units, given the current log stock price 𝑠 and volatility 𝑣.

Within this class of models for 𝑠𝑡 , no closed-form formula for the option price exists. We implement our proposed series expansion 
of the unknown price, 𝑢̂𝑡 (𝑠, 𝑣), as given in (4.1), where we choose 𝑢0,𝑡 as the payoff under the Black-Scholes model as provided in 
(4.5).

In the case of state-dependent jumps, we need to compute the integration part of 𝐴𝐽 using numerical methods. Since log
(
𝐽𝑡 + 1

)
is i.i.d. with normal distribution with mean 𝑚𝐽 and standard deviation 𝜎𝐽 for all models in this section, we employ the Gauss-Hermite 
quadrature with varying numbers of nodes and weights, as detailed in Section 5.

To assess the numerical performance of our expansion, we will use as benchmark the option price obtained via Monte Carlo 
methods. Specifically, for a given choice of 𝑡, we simulated 10,000,000 trajectories of 𝑥𝑡 with a time-step of 10,000 per year, as 
described in Section 3 in Giesecke et al. (2018), and then compute the average pay-off across these trajectories. We measure the 
17

accuracy by the pointwise absolute percentage error and the maximum (over the stock price) absolute percentage errors defined 
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Fig. 3. Maximum absolute percentage error of the option price approximation for (5.2)–(5.3) as a function of number of quadrature nodes with 𝜆1 = 0, 𝛽 = 0.5, 𝑀 = 1, 
2, 3, 4, 𝑡 = 1∕52 (top left), 1/12 (top right), 1/4 (bottom left), 1/2 (bottom right), and current volatility 𝑣 = 𝛼𝑉 = 0.0416.

as 100 × |𝑢̂𝑡 (𝑠, 𝑣) − 𝑢𝑀𝐶
𝑡

(𝑠, 𝑣)|∕𝑢𝑀𝐶
𝑡

(𝑠, 𝑣), and 100 × max𝑠∈[90,110]|𝑢̂𝑡 (𝑠, 𝑣) − 𝑢𝑀𝐶
𝑡

(𝑠, 𝑣)|∕𝑢𝑀𝐶
𝑡

(𝑠, 𝑣), respectively, where 𝑢̂𝑡 (𝑠, 𝑣) and 
𝑢𝑀𝐶
𝑡

(𝑠, 𝑣) represent the series expansion and the Monte Carlo approximation of the option price, respectively.

We undertake increasingly challenging experiments to evaluate the resilience of our method in approximating option prices under 
progressively complex models.

Firstly, we explore the performance our method when jumps are state-independent (𝜆1 = 0) and a CIR specification of the volatil-

ity process (𝛽 = 0.5) in (5.2)–(5.3). Following Wan and Yang (2021), the remaining parameter values used in this experiment 
are the estimates reported in Eraker (2004), 

(
𝑟, 𝛿, 𝜅𝑉 , 𝛼𝑉 , 𝜎𝑉 , 𝜌, 𝛽

)
= (0.04, 0, 2.772, 0.0416, 0.203, −0.586, 0.5) and 

(
𝜆0, 𝜆1, 𝜇𝐽 , 𝜎𝐽

)
=

(0.504,0,−0.018,0.066).
We first examine how sensitive our proposed implementation is to the number of nodes used to approximate the jump component 

of the infinitesimal generator in Fig. 3. In this figure, the maximum (over 𝑥) absolute percentage approximation error is plotted as 
a function of number of nodes for different choices of the order of approximation 𝑀 . We see that the approximation is stable with 
only a relatively small number of nodes and weights being used in the quadrature approximation of the jump component. For a short 
time to maturity (𝑡 =1/52), the Gauss-Hermite quadrature with 10 nodes and weights are needed, but, for larger times to maturity 
(𝑡 =1/12, 1/4, 1/2), only 4–5 nodes and weights are necessary. This suggests that the error in computing the integration part of the 
jump component is small relative to the error of our Taylor series approximation, especially when 𝑡 is relative large. Similar findings 
were made for all other subsequent models that we implemented our method on: Once 10 or more nodes were used, the method 
showed very little sensitivity to the number of nodes. All subsequent reported results were obtained using 16 quadrature nodes.

Fig. 4 plots the maximum percentage absolute error as a function of the current stock price 𝑠 when 16 nodes are used to approximate 
the jump component. Each of the four panels correspond to a particular time to maturity 𝑡 = 1∕52, 1∕12, 1∕4 and 1∕2. We make the 
following observations: First, for maturities 𝑡 = 1∕52 and 1/12, the approximation error decreases as 𝑀 increases across all values of 
the stock price 𝑠. However, for 𝑡 = 1∕4 and 1/2, the approximation error tends to get larger as 𝑀 increases for 𝑠 < 𝐾 . This seems to 
indicate that, similar to the previous example with the OU-process, our method starts diverging as 𝑀 increases as 𝑡 gets larger than 
some threshold between 1/2 and 1/4. Second, for a given order of approximation 𝑀 , our method is more accurate as the time to 
maturity decreases. Both findings are consistent with our theoretical results.

Next, we investigate the numerical performance of our approximation for the call option under the stochastic volatility model 
(5.2)–(5.3) with a CEV (𝛽 = 0.8) and GARCH (𝛽 = 1) specification of the volatility process, respectively, while the jump compo-

nent remains state-independent (𝜆1 = 0). The parameters for the CEV and GARCH specification are from Aït-Sahalia and Kimmel 
(2007) and Yang and Kanniainen (2016), respectively, but we modified the parameters for the jump part to match those in Wan and 
Yang (2021). For the CEV specification, the parameter values used are 

(
𝑟, 𝛿, 𝜅𝑉 , 𝛼𝑉 , 𝜎𝑉 , 𝜌, 𝛽

)
= (0.04, 0.015, 4, 0.05, 0.75, −0.75, 0.8)( ) ( )
18

and 𝜆0, 𝜆1, 𝜇𝐽 , 𝜎𝐽 = (3,0,−0.07,0.07). For the GARCH specification, the parameter values were chosen as 𝑟, 𝛿, 𝜅𝑉 , 𝛼𝑉 , 𝜎𝑉 , 𝜌, 𝛽 =
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Fig. 4. Absolute percentage error of option price approximation for (5.2)–(5.3) as a function of current stock price 𝑠 with 𝜆1 = 0, 𝛽 = 0.5, 𝑀 = 1, 2, 3, 4, 𝑡 = 1∕52 (top 
left), 1/12 (top right), 1/4 (bottom left), 1/2 (bottom right) and current volatility 𝑣 = 𝛼𝑉 = 0.0416.

(0.04, 0, 3.7367, 0.023, 1.823, −0.8113, 1) and 
(
𝜆0, 𝜆1, 𝜇𝐽 , 𝜎𝐽

)
= (3,0,−0.07,0.07). Sixteen quadrature nodes were used to approximate 

the jump component.

Fig. 5 and 6 show the performance of our method for the CEV and GARCH specification, respectively. For 𝑡 = 1∕52 and 𝑡 =
1∕12, the performance of the approximation for both specifications generally shares the same patterns as the ones reported for 
the CIR specification in Fig. 4 for the however, for longer time-to-maturity (𝑡 = 1∕4 and 𝑡 = 1∕2), the performance of higher order 
approximations tends to get worse as 𝛽 increases. This seems to indicate that for larger values of 𝛽, closed-form approximations start 
to break down at a lower threshold for 𝑡. Over all, the performance of the approximation is good for shorter maturities and/or smaller 
values of 𝛽.

Next, we examine the performance of our method for the case where the option price is computed under models with state-

dependent jump intensities (𝜆1 ≠ 0).

In Figs. 7–9, respectively, we depict the relative error of the approximation for the same three models, the SV-CIR, the SV-CEV 
and the SV-GARCH, but now with state-dependent jumps for an option with time-to-maturity of one month (𝑡 = 1∕12). In each figure, 
from left to right, the state dependency of jump intensity ranges 𝜆1 = 1, 10, 30. For each of the three specifications, the remaining 
parameter values and the current value of volatility are kept at the same values as reported earlier.

Overall, the approximation errors for each of the three models are comparable to those of the same model with state-independent 
jumps (𝜆1 = 0). Furthermore, the absolute percentage error is smaller for all orders of approximation for larger 𝜆1 . This indicates 
that while the magnitude of 𝜆1 affects the level of option prices, it has little effect on the approximation error. If anything, the 
approximations seem to work better when there is high state dependence in the jump intensity.

Next, we consider the performance when 𝑣𝑡 solves the log-volatility model (5.4) with parameter values chosen as the es-

timates reported in Andersen et al. (2002), 
(
𝑟, 𝛿, 𝜅𝑉 , 𝛼𝑉 , 𝜎𝑉 , 𝜌

)
= (0.0304,0,0.0145,−0.8276,0.1153,−0.6125) and 

(
𝜆0, 𝜇𝐽 , 𝜎𝐽

)
=

(0.0137,−0.000125,0.015). Figs. 10 and 11 display the relative error of the approximation for the call option under this model 
for different values of 𝑡 and 𝜆1 with 𝑣 = 𝛼𝑉 = −0.8276. As before, 16 quadrature nodes were used throughout.

Even for the 2nd order approximation, the approximation error is quite small for all choices of time-to-maturity and 𝜆1. Thus, 
for the log-volatility specification, our method appears to first start breaking down for options relatively long time to maturity. The 
plotted errors are now more ragged, which we conjecture is due to bigger numerical errors in the Monte Carlo benchmark that we 
19

use for comparison.
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Fig. 5. Absolute percentage error of option price approximation for (5.2)–(5.3) as a function of current stock price 𝑠 with 𝜆1 = 0, 𝛽 = 0.8, 𝑀 = 1, 2, 3, 4, 𝑡 = 1∕52 (top 
left), 1/12 (top right), 1/4 (bottom left), 1/2 (bottom right) and current volatility 𝑣 = 𝛼𝑉 = 0.05.

Fig. 6. Absolute percentage error of option price approximation for (5.2)–(5.3) as a function of current stock price 𝑠 with 𝜆1 = 0, 𝛽 = 1.0, 𝑀 = 1, 2, 3, 4, 𝑡 = 1∕52 (top 
20

left), 1/12 (top right), 1/4 (bottom left), 1/2 (bottom right) and current volatility 𝑣 = 𝛼𝑉 = 0.023.
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Fig. 7. Absolute percentage error of option price approximation for (5.2)–(5.3) as a function of current stock price 𝑠 with 𝜆1 =1 (left), 10 (middle), and 30 (right), 
𝛽 = 0.5, 𝑀 = 1, 2, 3, 4, 𝑡 = 1∕12 and current volatility 𝑣 = 𝛼𝑉 = 0.0416.

Fig. 8. Absolute percentage error of option price approximation for (5.2)–(5.3) as a function of current stock price 𝑠 with 𝜆1 =1 (left), 10 (middle), and 30 (right), 
𝛽 = 0.8, 𝑀 = 1, 2, 3, 4, 𝑡 = 1∕12 and current volatility 𝑣 = 𝛼𝑉 = 0.05.

Fig. 9. Absolute percentage error of option price approximation for (5.2)–(5.3) as a function of current stock price 𝑠 with 𝜆1 =1 (left), 10 (middle), and 30 (right), 
𝛽 = 1.0, 𝑀 = 1, 2, 3, 4, 𝑡 = 1∕12 and current volatility 𝑣 = 𝛼𝑉 = 0.023.

5.3. Option pricing in a two-factor stochastic volatility model with jumps

We now examine the performance of our method when applied to more complex models that go beyond one-factor volatility. 
Specifically, we consider the stochastic volatility model with two volatility factors used in Filipović et al. (2016). In this specification, 
the dynamics of 𝑠𝑡 under the risk-neutral measure are given by

𝑑𝑠𝑡 =
(
𝑟− 𝛿 − 𝑣𝑡∕2 − 𝜆

(
𝑣𝑡,𝑚𝑡

)
𝐽
)
𝑑𝑡+

√
𝑣𝑡𝑑𝑊1𝑡 + log

(
𝐽𝑆

𝑡
+ 1
)
𝑑𝑁𝑡,

𝑑𝑣𝑡 = 𝜅𝑉

(
𝑚𝑡 − 𝑣𝑡

)
𝑑𝑡+ 𝜎𝑉

√
𝑣𝑡

(
𝜌𝑑𝑊1𝑡 +

√
1 − 𝜌2𝑑𝑊2𝑡

)
+ 𝐽𝑉

𝑡
𝑑𝑁𝑡,

𝑑𝑚𝑡 = 𝜅𝑚

(
𝛼𝑚 −𝑚𝑡

)
𝑑𝑡+ 𝜎𝑚

√
𝑚𝑡𝑊3𝑡,

(5.5)

where 𝑊1, 𝑊2, and 𝑊3 are mutually independent standard Brownian motions. Compared to the models of the previous subsection, 
there is a second variance factor 𝑚𝑡, which represents a stochastic level around which 𝑣𝑡 reverts. The jump component consists 
21

of: (i) 𝑁𝑡, a Cox process with a bounded intensity function given by 𝜆 (𝑣,𝑚) = 𝜆0 + 𝜆1𝑣 + 𝜆2𝑚, and the variance jump size 𝐽𝑉 is 
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Fig. 10. Absolute percentage error of option price approximation for (5.2) and (5.4) with 𝜆1 = 1.0, and 𝑡 =1/52 (top left), 1/12 (top right), 1/4 (bottom left), 1/2 
(bottom right) and current volatility log𝑣 = 𝛼𝑉 = −0.8276.

Fig. 11. Absolute percentage error of option price approximation for (5.2) and (5.4) with 𝜆1 =1 (left), 10 (centre), 30 (right), 𝑡 =1/12 and current volatility log𝑣 =
𝛼𝑉 = −0.8276.

exponentially distributed with parameter 𝜇𝑉
𝐽
= 𝔼 
[
𝐽𝑉

𝑡

]
. The parameter values were chosen as the estimates reported in Aït-Sahalia et 

al. (2020): 
(
𝑟, 𝛿, 𝜅𝑉 , 𝜅𝑚, 𝛼𝑚, 𝜎𝑉 , 𝜎𝑚, 𝜌

)
=(0.04,0.015,3.1206,3.3168,0.1125,0.394,0.0835,−0.688) and 

(
𝜆0, 𝜆1, 𝜆2

)
=(2.096,21.225,0)

and 
(
𝜇𝐽 , 𝜎𝐽 ,𝜇𝑉

𝐽

)
= (−0.012, 0.043, 0.002). Note that the option price is now a function of current stock price 𝑠0 = 𝑠, current volatility 

𝑣0 = 𝑣 and current mean volatility 𝑚0 = 𝑚.

Fig. 12 reports the performance of our approximation for different times to maturity. The performance of the approximation in 
this case shares the same patterns that we found for the one-factor volatility models: For 𝑡 = 1∕52 and 𝑡 = 1∕12, the error vanishes as 
𝑀 increases, but for 𝑡 = 1∕4 and 𝑡 = 1∕2, the opposite pattern emerges.

6. Conclusion

This paper provides a general framework for developing and analyzing series expansions of moments of continuous-time Markov 
processes, including jump-diffusions. The expansions come in two versions depending on the features of the moment. For “regular” 
moments, we provide conditions under which the corresponding expansion will converge towards the actual moments as more terms 
are added. For the “smoothed” expansion, no such theoretical guarantees exist: The expansion will eventually become imprecise as 
22

the number of terms grows. A numerical study shows that the smoothed expansions still work well in practice when time to maturity 
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Fig. 12. Absolute percentage error of option price approximation for (5.5) with 𝑀=1, 2, and 3, 𝑡=1/52 (top left), 1/12 (top right), 1/4 (bottom left), 1/2 (bottom 
right) and 𝑣 = 𝑚 = 0.1125.

𝑡 is relatively small and even if only a relatively small number of terms are used in its implementation. However, as time to maturity 
increases, the method will eventually start breaking down. Thus, it should be used with care in applications where 𝑡 is relatively 
large.

Appendix A. Extension to time-inhomogenous problems

We here present the extension of our method to handle time–inhomogenous models and problems where no closed-form solution 
is available to (2.20). As motivating example, consider the following extended version of the model in (2.9):

𝑑𝑥𝑡 = 𝜇𝑡

(
𝑥𝑡

)
𝑑𝑡+ 𝜎𝑡

(
𝑥𝑡

)
𝑑𝑊𝑡 + 𝐽𝑡

(
𝑥𝑡

)
𝑑𝑁𝑡, (A.1)

where now 𝜆𝑡 (𝑥), 𝜇𝑡 (𝑥), 𝜎𝑡 (𝑥) and 𝜈𝑡

(
𝑥𝑡

)
are now allowed to vary with 𝑡. This in turn implies that the corresponding generator is 

also time–varying, 𝐴𝑡𝑓 (𝑥) = 𝐴𝐷,𝑡𝑓 (𝑥) +𝐴𝐽,𝑡𝑓 (𝑥), where

𝐴𝐷,𝑡𝑓 (𝑥) =
𝑑∑

𝑖=1
𝜇𝑖,𝑡 (𝑥)𝜕𝑥𝑖

𝑓 (𝑥) + 1
2

𝑑∑
𝑖,𝑗=1

𝜎2
𝑖𝑗,𝑡

(𝑥)𝜕2
𝑥𝑖,𝑥𝑗

𝑓 (𝑥) ,

𝐴𝐽,𝑡𝑓 (𝑥) = 𝜆𝑡 (𝑥)∫
ℝ𝑑

[𝑓 (𝑥+ 𝑐) − 𝑓 (𝑥)] 𝜈𝑡 (𝑐)𝑑𝑐.

We are interested in computing 𝑢𝑠,𝑡 (𝑥) defined as

𝑢𝑠,𝑡 (𝑥) = 𝐸𝑠,𝑡𝑓 (𝑥) , 0 ≤ 𝑠 ≤ 𝑡, (A.2)

where

(𝑠, 𝑡, 𝑓 )↦ 𝐸𝑠,𝑡𝑓 (𝑥) ≡ 𝔼

[
exp
(
−∫

𝑡

𝑠

𝑟
(
𝑥𝑢

)
𝑑𝑢

)
𝑓
(
𝑥𝑡

)|||||𝑥𝑠 = 𝑥

]
. (A.3)

Due to the time–inhomogeneity, the operator 𝐸𝑠,𝑡𝑓 (𝑥) is now indexed by two time variables, 𝑠 and 𝑡. At the same time, for any fixed 
value of 𝑠 ≥ 0, (𝑡, 𝑓 )↦ 𝐸𝑠,𝑡𝑓 (𝑥) remains a semi–group when  is chosen suitably. Most of the ideas and results from Sections 2–3

therefore carry over to the time–inhomogenous case with only minor differences. Below, we present the series expansion and explain 
23

how the theory applies to this.
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We take as starting point a given (𝑠, 𝑡, 𝑓 )↦ 𝐸𝑠,𝑡𝑓 (𝑥) where, for any given 𝑠 ≥ 0, (𝑡, 𝑓 )↦ 𝐸𝑠,𝑡𝑓 (𝑥) is assumed to be semi–group 
on some function space 

( ,‖⋅‖). In the following, we keep 𝑠 ≥ 0 fixed. We denote by  
(
𝐵𝑠

)
the set of functions 𝑓 ∈  for which 

there exists 𝑔𝑠 ∈  such that, for each 𝑡 ≥ 0,

𝐸𝑠,𝑡𝑓 (𝑥) = 𝑓 (𝑥) +

𝑡

∫
𝑠

𝐸𝑠,𝑢𝑔𝑠 (𝑥)𝑑𝑢, (A.4)

and we write 𝐵𝑠𝑓 (𝑥) ∶= 𝑔𝑠 (𝑥) and call 𝐵𝑠 the (extended) generator of 𝐸𝑠,𝑡 . In the motivating example above, it is easily shown by 
Ito’s Lemma that 𝐵𝑡 = 𝐴𝑡 − 𝑟 on the space

0
(
𝐵𝑠

)
∶=
{

𝑓 ∈ 2 ∩ ∶ 𝐸𝑠,𝑡 |𝑓 | and 𝐸𝑠,𝑡

‖‖‖‖ 𝜕𝑓

𝜕𝑥
𝜎𝑠

‖‖‖‖2 exist for all 𝑡 > 0
}

⊆ (𝐵𝑠

)
.

For any regular function 𝑓 , regular in the sense that 𝑓 ∈ 
(
𝐵𝑀

𝑠

)
, we have

𝜕𝑡𝑢𝑠,𝑡 (𝑥) = 𝐵𝑚
𝑡
𝑢𝑠,𝑡 (𝑥) , 𝑡 > 0, (A.5)

cf. Rüschendorf et al. (2016), which corresponds to the so–called forward equation. Thus, in this case the following is a valid series 
expansion of 𝑢𝑠,𝑡 (𝑥):

𝑢̂𝑠,𝑡 (𝑥) =
𝑀∑

𝑚=0

(𝑡− 𝑠)𝑚

𝑚!
𝐵𝑚

𝑠
𝑓 (𝑥) . (A.6)

If 𝑓 is irregular, so that 𝑓 ∉ 
(
𝐵𝑠

)
, we introduce a smoothed version of it, 𝑢0,𝑠,𝑡 (𝑥) which is assumed to satisfy:

A.0’ (i) lim𝑡→𝑠+ 𝑢0,𝑠,𝑡 (𝑥) = 𝑓 (𝑥) and (ii) 𝑢0,𝑠,𝑡 ∈ 
((

𝜕𝑡

)𝑀1
)
∩ 
(
𝐵

𝑀2
𝑠

)
for some 𝑀1, 𝑀2 ≥ 1.

Following the same steps as in the time–homogenous case of Section 2, we obtain the following series expansion:

𝑢̂𝑠,𝑡 (𝑥) =
𝑀∑

𝑚=0

(𝑡− 𝑠)𝑚

𝑚!
(
𝐵𝑠 − 𝜕𝑡

)𝑚
𝑢0,𝑠,𝑡 (𝑥) . (A.7)

Appendix B. Proofs

Proof of Theorem 3.1. By Definition 2.1, for any 𝑓 ∈ (𝐵),

𝑢𝑠(𝑥) = 𝑓 (𝑥) +

𝑠

∫
0

𝐸𝑤 (𝐵𝑓 ) (𝑥)𝑑𝑤 (B.1)

Apply 𝐸𝑡 on both sides of this equation and then use that 𝐸𝑠𝐸𝑡 = 𝐸𝑠+𝑡 = 𝐸𝑡𝐸𝑠 to obtain

𝐸𝑡𝑢𝑠 (𝑥) = 𝑢𝑠 (𝑥) +

𝑡

∫
0

𝐸𝑠+𝑤 (𝐵𝑓 ) (𝑥)𝑑𝑤 =

𝑡

∫
0

𝐸𝑤

(
𝐸𝑠 (𝐵𝑓 )

)
(𝑥)𝑑𝑤.

The second part of the theorem is obtained by taking derivatives w.r.t. 𝑠 on both sides of (B.1) and using that the right-hand side 
derivative equals 𝐸𝑠 (𝐵𝑓 ) (𝑥) = 𝐵𝑢𝑠 (𝑥) if this function is continuous w.r.t. 𝑠 from the right. □

Proof of Theorem 3.3. We expand 𝑡 ↦𝐸𝑡𝑓 (𝑥) around 𝐸0𝑓 (𝑥) = 𝑓 (𝑥) recursively: First, by Definition 2.1,

𝐸𝑡𝑓 (𝑥) = 𝑓 (𝑥) +

𝑡

∫
0

𝐸𝑡1
(𝐵𝑓 ) (𝑥)𝑑𝑡1. (B.2)

Since 𝐵𝑓 ∈ (𝐵) by assumption, we can apply (B.2) again to 𝐸𝑡1
(𝐵𝑓 ) (𝑥) yielding

𝐸𝑡1
(𝐵𝑓 ) (𝑥) = 𝐵𝑓 (𝑥) +

𝑡1

∫
0

𝐸𝑡2

(
𝐵2𝑓
)
(𝑥)𝑑𝑡2.
24

Substitute the right-hand side of the last equation into (B.2) to obtain
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𝐸𝑡𝑓 (𝑥) = 𝑓 (𝑥) +

𝑡

∫
0

⎧⎪⎨⎪⎩𝐵𝑓 (𝑥) +

𝑡1

∫
0

𝐸𝑡2

(
𝐵2𝑓
)
(𝑥)𝑑𝑡2

⎫⎪⎬⎪⎭𝑑𝑡1

= 𝑓 (𝑥) + 𝑡𝐵𝑓 (𝑥) +

𝑡

∫
0

𝑡1

∫
0

𝐸𝑡2

(
𝐵2𝑓
)
(𝑥)𝑑𝑡2𝑑𝑡1.

Repeating this argument 𝑀 more times yields the claimed result. □

Proof of Theorem 3.4. By definition, ‖𝐵𝑚𝑓‖ ∕𝑚! ≤ 1∕𝑇 𝑚
0 . Thus,

‖‖𝑢𝑡 − 𝑢̂𝑡
‖‖ ≤

∞∑
𝑚=𝑀+1

𝑡𝑚

𝑚!
‖𝐵𝑚𝑓 (𝑥)‖ ≤

∞∑
𝑚=𝑀+1

(
𝑡

𝑇0

)𝑚

=
(
𝑡∕𝑇0
)𝑀+1

1 − 𝑡∕𝑇0
→ 0. □

Proof of Theorem 3.6. The first part follows from Theorem 2.5.2 of Pazy (1983). To show the second part, recall the definition of 
radius of convergence 𝑇0 in (3.4). To bound the right hand side of (3.4), first use that 𝑓 (𝑥) = 𝐸𝜏0

𝑔 (𝑥) and that 𝐵 and 𝐸𝜏0
commute 

to obtain ‖𝐵𝑚𝑓‖ =
‖‖‖‖(𝐵𝐸𝜏0∕𝑚

)𝑚

𝑔
‖‖‖‖ ≤ ‖‖‖𝐵𝐸𝜏0∕𝑚

‖‖‖𝑚op ‖𝑔‖ . Next, due to (3.5)–(3.6), we can apply part (d) of Theorem 2.5.2 of Pazy 

(1983) yielding ‖‖‖𝐵𝐸𝜏0∕𝑚
‖‖‖𝑚op ≤ (𝐶𝐵𝑚∕𝜏0

)𝑚
. In total,

‖𝐵𝑚𝑓‖ ∕𝑚! ≤
{(

𝐶𝐴

𝜏0

)𝑚

𝑚𝑚∕𝑚!
}1∕𝑚 ‖𝑔‖1∕𝑚 ≤

(
𝐶𝐵𝑒

𝜏0

)‖𝑔‖1∕𝑚 ,

and we conclude that 𝑇0 ≥ 𝜏0∕ 
(
𝐶𝐵𝑒
)
. □

Proof of Corollary 3.8. With the function space being a Hilbert space, we are able to introduce the adjoint 𝐴∗ of the operator 𝐴 with 
corresponding semigroup 𝐸∗

𝑡
= 𝑒𝐴∗𝑡. If 𝑥𝑡 indeed is reversible in the sense that 𝐴 = 𝐴∗ then 𝜎 (𝐴) ⊆ (−∞, 0] and so (3.5) is satisfied. 

(cf. eq. 5.8 in Hansen and Scheinkman (1995)). Moreover, by the Spectral Mapping Theorem (Rudin (1973), Theorem 10.28), the 
spectrum of the resolvent satisfies

𝜎 (𝑅 (𝜆)) ∖ {0} = (𝜆− 𝜎 (𝐴))−1 =
{ 1

𝜆−𝑤
∶ 𝑤 ∈ 𝜎 (𝐴)

}
Since 𝐴 is self-adjoint so is 𝑅 (𝜆) for any 𝜆 ∉ 𝜎 (𝐴). Thus,

‖𝑅 (𝜆)‖op = max
𝑤∈𝜎(𝑅(𝜆))

|𝑤| = max
𝑤∈𝜎(𝐴)

1|𝜆−𝑤| ≤max
𝑤≤0

1|𝜆−𝑤| = 1|𝜆| ,
and so (3.6) is satisfied. □

Proof of Theorem 3.9. For any 𝑓 ∈ 0,

‖‖𝐴𝐷𝑓‖‖0
≤

𝑑∑
𝑖=1

‖‖𝜇𝑖
‖‖ ‖‖‖‖ 𝜕𝑓

𝜕𝑥𝑖

‖‖‖‖ + 1
2

𝑑∑
𝑖,𝑗=1

‖‖‖𝜎2
𝑖𝑗

‖‖‖ ‖‖‖‖‖ 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

‖‖‖‖‖
≤
(

𝑑∑
𝑖=1

‖‖𝜇𝑖
‖‖0

+ 1
2

𝑑∑
𝑖,𝑗=1

‖‖‖𝜎2
𝑖𝑗

‖‖‖0

)‖𝑓‖0

= ∶ 𝐴̄‖𝑓‖0
,

where 𝐴̄ < ∞ under the assumptions of the theorem. Thus, ‖𝐴‖op = sup‖𝑓‖0≤1 ‖𝐴𝑓‖0
< ∞ and so 𝐴 ∶ 0 ↦ 0 is a bounded 

operator. This in turn implies that 
∑∞

𝑚=0
𝑡𝑚

𝑚!𝐴
𝑚𝑓 (𝑥) is a well-defined representation of 𝑤𝑡 (𝑥) for any 𝑓 ∈ 0 and so the power series 

approximation is consistent. In particular,

‖‖𝑢̂𝑡 − 𝑢𝑡
‖‖0

≤ 𝑡𝑀+1

(𝑀 + 1)!
‖‖‖𝐴𝑀+1𝑓

‖‖‖0
≤
(
𝑡𝐴̄
)𝑀+1

(𝑀 + 1)!
‖𝑓‖0

. □

Proof of Theorem 3.10. The first part follows from Theorem 1.1 in Escauriaza et al. (2017). For the second part, first note that 
𝑤0,𝑡 (𝑥) = 𝐸0,𝑡+𝜏0

𝑔 (𝑥). Now, by Theorem 1.1 in Escauriaza et al. (2017), ||| 𝜕𝑚
𝑡
𝑤0,𝑡||𝑡=0||| ≤ 𝐶

(
𝜌𝜏0
)−𝑚

𝑚!, for all 𝑥 ∈ 0, for some constant 
𝜌 = 𝜌 (𝐵,𝑑) ∈ (0, 1]. This in turn implies that the power series expansion will converge with radius of convergence bounded by

−1
{ 1 ‖ 𝑚 ‖ }1∕𝑚 1
25

𝑇0 = lim sup
𝑚→∞ 𝑚!

‖‖ 𝜕
𝑡
𝑤0,𝑡||𝑡=0‖‖ ,0

≤
𝜌𝜏0

. □
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