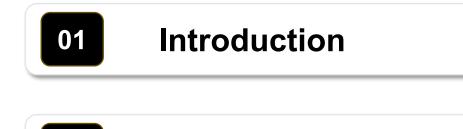
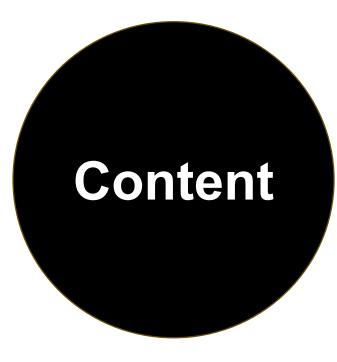
UCL

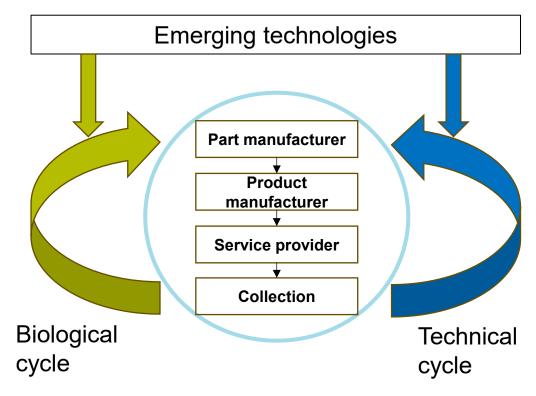


Prospective Life Cycle Assessment of The Emerging Technology in Circular Economy Context

Haodong Lin & Aiduan Borrion

Department of Civil, Environmental and Geomatic Engineering University College London (UCL) haodong.lin@ucl.ac.uk 21st October 2024





Introduction

- Circular economy (CE) benefits the environment, economy, and society¹
- Emerging technology contributes to circular economy transition²⁻³
 - Exploring and optimising early CE designs
 - Improving resource efficiency
 - Bettering life cycle management
- Yet, assessing environmental impact of such emerging technologies in CE context are still challenging
- 1. Ogunmakinde et al. (2021). https://doi.org/10.1007/s10098-020-02012-9
- 2. Gan et al. (2020). https://doi.org/10.1016/j.jclepro.2020.120012
- 3. Rosa et al. (2020). https://doi.org/10.1080/00207543.2019.1680896

Circular economy system

Fig 1. Emerging technologies in circular economy system.

Objectives Food waste Anaerobic digestion Raw Biogas digestate OLID/LIOU NUTRIENT SEPARATIO RECOVER Power **Digestate management unit** by NOMAD project (projectnomad.eu) **Biofertiliser** Recycled Food supply chain water

- ✤ A circular food system
 - An emerging digestate treatment technology incorporated with anaerobic digestion (AD) industry
 - Renewable power and resources recovered from food waste for food system
- Research question
 - What are the environmental impacts of consequence when the studied emerging technology is upscaled and introduced into the UK's AD industry in 2030?

Fig 2. Circular food system studied.

Methodology

- Consequential Life Cycle Assessment method is applied
 - Functional unit: processing 1 tonne digestate
 - System boundary
 - ✤ 4 impact categories assessed
 - Foreground: primary and secondary data collected for the emerging technology at pilot scale, while inventory of upscaled technology estimated by the design team
 - Background: Ecoinvent database (consequential data)

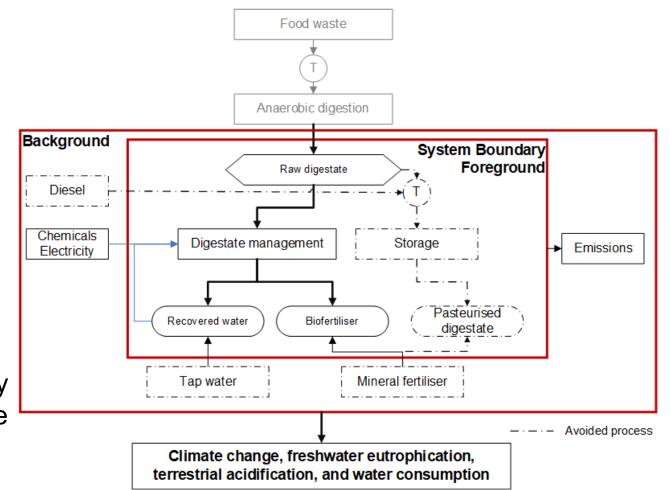


Fig 3. System boundary and 4 impact categories assessed.

Results

- Digestate management technology studied brings insignificant impacts when upscaled and introduced to UK anaerobic digestion (AD) industry
- ✤ Overall impact reductions achieved, due to
 - avoided mineral fertiliser production by recovered biofertiliser
 - avoided water production and use by recovered water
 - ✤ avoided digestate storage, and
 - ✤ avoided transportation

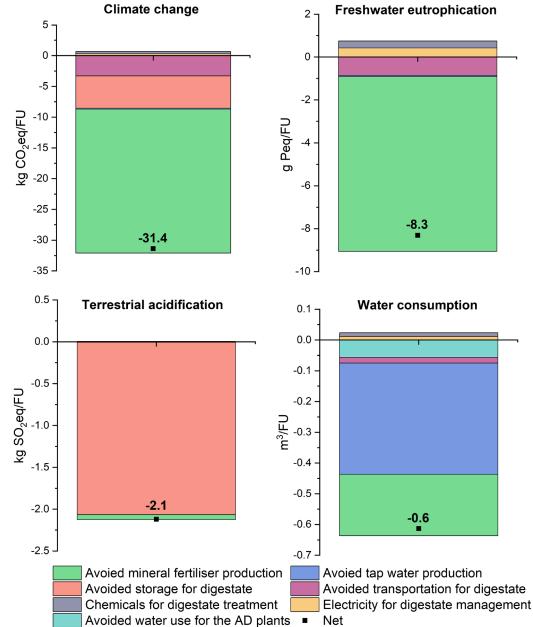


Fig 4. Results of the consequential life cycle assessment.

Conclusions

- Digestate management technology studied can be environmentally beneficial for UK anaerobic digestion (AD) industry in future
 - Recovered biofertiliser and water from digestate play a key role
 - Avoided digestate storage and transportation also benefit the environment
 - It can decarbonise the AD industry and contribute to national policy, e.g., Net-Zero GHG target in the UK
- Limitations and future studies
 - Low data availability and quality future data gap, e.g., food waste generation and capacity of the AD industry in 2030, and marginal background data
 - Scopes of the study e.g., limited to commercial AD plants and mineral fertiliser production
 - Uncertainty and scenario analysis will be conducted next

Many thanks for listening!

Q&A

Haodong Lin

Department of Civil, Environmental and Geomatic Engineering University College London (UCL) haodong.lin@ucl.ac.uk 21st October 2024