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Abstract
The dependence of the synaptic responses on the history of activation and their large variability are both
distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly
focused on trial-averaged responses to characterize dynamic aspects of the transmission—thus disregarding
variability—or on the fluctuations of the responses in steady conditions to characterize variability—thus disre-
garding dynamics. We present a statistically principled framework to quantify the dynamics of the probability
distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a
generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity
present in the process. The underlying parameters are then selected via an expectation-maximization algorithm
that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed
responses. The method exploits the information contained in the correlation between responses to produce highly
accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides
important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repeti-
tion of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of
optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over
benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant
patterns of synaptic activation.

Key words: expectation-maximization; generative modeling; quantal analysis; repetitive transmission;
short-term plasticity

Significance Statement

Transmission at chemical synapses is transiently adjusted on a spike-by-spike basis, which has been
proposed to enhance information processing in neuronal networks. So far, however, the dynamic properties
of transmission have been characterized only for physiologically unrealistic patterns of activation. This is
because the current methods used to estimate the parameters describing repetitive transmission are unable
to deal with the fluctuations of the responses. These must either be averaged out or estimated directly from
the data, which requires a large number of repetitions of the same stimulation, severely constraining
experimental protocols. We developed a novel method that allows one to estimate the parameters from a
single, arbitrary pattern of activation. The method lays the groundwork for the characterization of trans-
mission with in vivo-like patterns of activation.
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Introduction
A distinctive feature of chemical transmission is the

rapid and transient modification of the postsynaptic re-
sponse as a result of repetitive presynaptic activation
(Zucker and Regehr, 2002; Fioravante and Regehr, 2011).
The ability of chemical synapses to quickly adjust their
transmission properties in an activity-dependent way has
been suggested to significantly enhance information pro-
cessing in neuronal networks. Important computations
are thought to rely, fully or partly, on “synaptic computa-
tions” (Abbott and Regehr, 2004; Wu et al., 2013). A
nonexhaustive list includes the following: rhythm genera-
tion (Senn et al., 1996; Tsodyks et al., 2000), gain control
(Abbott et al., 1997; Rothman et al., 2009), temporal
filtering (Fortune and Rose, 2001), temporary memory
maintenance (Hempel et al., 2000; Barak and Tsodyks,
2007; Mongillo et al., 2008), and the source of nonlinearity
in the balanced regime (Mongillo et al., 2012; Hansel and
Mato, 2013).

Quantitative investigation of repetitive synaptic trans-
mission largely relies on phenomenological descriptions
(Bertram et al., 1996; Tsodyks and Markram, 1997; Varela
et al., 1997; Markram et al., 1998; Dittman et al., 2000). In
their providing compact (i.e., with few parameters), low-
dimensional descriptions, phenomenological models
have been instrumental in effectively classifying patterns
of transmission at different synapses (Gupta et al., 2000;
Blackman et al., 2013), in uncovering their underlying
mechanisms (Dittman et al., 2000; Saviane and Silver,
2006; Hallermann et al., 2010b), and in exploring theoret-
ically their functional consequences. Phenomenological
models, however, only describe the average responses
or, where the model is stochastic, it is the average model
responses that are fitted to the trial-averaged experimen-
tal responses. In either case, the trial-to-trial variability
and the within-trial correlation of the responses are ne-
glected (but, see Costa et al., 2013). The variability of the
synaptic responses is, indeed, another distinctive feature
of chemical transmission. This variability is understood
and routinely quantified in terms of the quantal model of
synaptic release (Quastel, 1997; Stevens, 2003). Methods

to estimate quantal parameters are, however, tailored for
steady-state conditions, and their extension to dynamic
conditions has proven difficult (Scheuss et al., 2002; Sa-
viane and Silver, 2006; Loebel et al., 2009; Hallermann
et al., 2010a,b).

The trial-averaging procedure required to fit models to
data destroys the large amount of information contained
in the correlation between consecutive responses as well
as in their fluctuations. The accuracy of the parameters
estimate, achievable by least-squares fitting, is thus seri-
ously limited and steadily declines with increasing the
complexity of the model (i.e., with the number of param-
eters to be fitted). Trial averaging also severely constrains
experimental protocols. The need to have a suitable num-
ber of repetitions in identical conditions leads, essentially,
to protocols consisting of short, regular presynaptic trains
at relatively high rates, followed by quite long interstimu-
lation intervals (compared with stimulation periods). The
repetition of identical trains (regular or not) allows one to
extract very little information about the underlying synap-
tic dynamics. Moreover, the parameters are estimated
with patterns of synaptic activation that are arguably very
far from physiological patterns, raising the question of
how good a description are the current models and/or
parameters for repetitive synaptic transmission in in vivo-
like conditions (Dobrunz and Stevens, 1999; Kandas-
wamy et al., 2010).

Here, we provide a new methodology that integrates
information about the stochasticity of the synaptic re-
sponses in the estimation of the parameters describing
the dynamic properties of synaptic transmission. We in-
troduce a novel class of generative models that allows
one to compactly describe the statistical dependencies
among consecutive synaptic responses as well as their
variability. We show that both inference and learning are
tractable in this class of generative models. In particular,
we develop an exact expectation-maximization (EM) al-
gorithm that allows one to estimate the parameters for
arbitrary patterns of presynaptic stimulation. We demon-
strate two main advantages of our approach over con-
ventional techniques. First, we simultaneously estimate
both quantal and dynamic parameters from the same
experimental recordings. Second, and most importantly,
since the estimation procedure does not rely on trial-
averaged quantities, parameters can be estimated from
single traces. It is thus possible to devise alternative
stimulation protocols and analyze their impact on param-
eter estimation by the use of theoretical tools.

Materials and Methods
Electrophysiological recordings

We refer the reader to Wang et al. (2006) for a detailed
description. Briefly, acute slices were cut from the medial
prefrontal cortex of young ferrets (1.5–3 months old), and
whole-cell patch-clamp recordings were made from syn-
aptically connected layer 5 pyramidal neurons. Synaptic
transmission was probed by eliciting in the presynaptic
cell regular trains of five or eight spikes at varying frequen-
cies, followed by a recovery spike. Postsynaptic re-
sponses were recorded in current-clamp mode. The
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interspike interval of the train T ranged between 14.3 and
200 ms (5–70 Hz). The interval for the recovery spike was
correspondingly determined as Trec � T � 500 ms. This
stimulation protocol was repeated between 20 and 40
times.

Most of the connections were probed with a single
frequency of stimulation (20 Hz, i.e., T � 50 ms). For the
connections probed with several frequencies, we retained
only one for further analysis. The retained frequency was
chosen so as to have the largest possible number of
connections for each of the frequencies used in the
experiment.

Preprocessing
Postsynaptic voltage traces that exhibited drift or an

abrupt change in the baseline during recording were ex-
cluded from further analysis. The remaining voltage traces
were smoothed by using a rectangular window 2 ms in
size. From the smoothed traces, we extracted the single
peak responses using the method described by Richard-
son and Silberberg (2008). Briefly, from the trial-averaged
trace we estimated the membrane time constant �m by
fitting an exponential decay to the falling edge of the
recovery response and, where possible, also to the falling
edge of the first response, and averaged over these.
Each voltage trace V(t) was then deconvolved using the
following:

RI(t) � �m·
dV(t)

dt
� V(t) . (1)

From the RI(t) trace, which typically featured clearly
separated peaks, we cropped 12 ms windows centered
around the nominal time of the presynaptic stimulation.
These “crops” were then reconvolved, yielding fully sep-
arated excitatory postsynaptic potentials, from which we
finally extracted the peak responses. From the “crops” we
also estimated the baseline noise �n

2 by computing the
variance of the voltage trace over a 1 ms time window
before the onset of the response. The baseline noise was
estimated separately for each connection.

The stochastic Tsodyks-Markram model
The stochastic Tsodyks-Markram (TM) model (Fuhrmann

et al., 2002) describes the synapse as a collection of N
identical and independent release sites. Each site can be
in one of the two following states: competent (i.e., occu-
pied by one vesicle), or noncompetent (i.e., no vesicle is
docked to the site). Upon spike, a competent site can
probabilistically release the vesicle, and become noncom-
petent. The probability of release u(t) depends on the
history of synaptic activation according to the following:

u̇ �
U � u

�F
� U · (1 � u) �

k

�(t � tk) , (2)

where U is the initial release probability, �F is the time
constant of facilitation, and the sum over k is over all
presynaptic spike times, tk. In between spikes, vesicles
dock probabilistically to noncompetent sites. The proba-

bility of docking within a time interval � since the site first
became noncompetent, l(�), is given by the following:

l(�) � 1 � e��/�D , (3)

where �D is the average time a vesicle takes to dock to a
noncompetent site. The response R to one vesicle is a
random variable with mean q (quantal size) and variance
�q

2 (quantal variability). To account for the right-skewness
of unitary quantal responses (Bekkers et al., 1990; Bhum-
bra and Beato, 2013), we use an inverse Gaussian for the
probability distribution function of R, as follows:

P(R) �
q3/2

�2	�q
2R3

exp��
q(R � q)2

2�q
2R �. (4)

The response to more than one vesicle is the linear sum
of single quantal responses (see Eq. 11). The average
postsynaptic responses R� k elicited by presynaptic spikes
at times tk are given by the following:

R� k � A · uk · xk , (5)

where A � N·q is the so-called absolute synaptic efficacy,
uk is the probability of release immediately before spike at
time tk, and xk is the probability that a site is release
competent immediately before the spike at time tk. Both
uk and xk can be recursively evaluated as follows:

uk�1 � U � uk·(1 � U)·exp��
�k

�F
� (6)

xk�1 � 1 � 	1 � (1 � uk)·xk
·exp��
�k

�D
� , (7)

where �k � tk�1 � tk is the kth interspike interval, u1 � U
and x1 � 1.

Likelihood of a response sequence
The likelihood of observing a sequence of postsynaptic

responses R1→M � �R1, · · · , RM� elicited by a train of
presynaptic spikes occurring at times t1→M � �t1, · · · , tM� is
given by the following:

L(�
R1→M) � P(R1→M
�) � �
S1→M

� ,S1→M
�

P(R1→M, S1→M
� , S1→M

� 
�) ,

(8)

where S1→M
� and S1→M

� denote the sequences of a number
of release-competent sites immediately before and after
each spike, respectively. The model parameters are de-
noted by �. For concreteness, in the case of the stochas-
tic TM model they are as follows: the number of release
sites N, the quantal size q, the quantal noise �q

2, the initial
release probability U, and the time constants for docking
and facilitation �D and �F, respectively. To simplify the
notation, we omit hereafter the dependence on the pa-
rameters � assumed to be constant in what follows. The
joint probability of R1→M, S1→M

� and S1→M
� can be written as

follows:
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P(R1→M, S1→M
� , S1→M

� ) �

P(S1
�) 


k�1

M

P(Sk
�
Sk

�)P(Rk
Sk
�, Sk

�) 

k�1

M�1

P(Sk�1
� 
Sk

�) , (9)

where P�S1
�� is the probability that S1

� sites are competent
at the beginning of the spike train. For the stochastic TM
model, all sites are release competent in the absence of
stimulation. We have P�S1

�� � 1 if S1
� � N and P�S1

�� �
0 otherwise. The term P�Sk

�
Sk
�� describes the release

process (i.e., it is the probability that the number of
release-competent sites changes from Sk

� to Sk
� upon the

kth spike). Before the kth spike, there are Sk
� release-

competent sites that can independently release with
probability uk. The number of release-competent sites
cannot increase upon spike. Thus:

P(Sk
�
Sk

�) �

�� Sk
�

Sk
� � Sk

� �·uk
(Sk

�
�Sk

�)·(1 � uk)Sk
�

if Sk
� � Sk

�

0 otherwise
.

(10)

The term P�Rk
Sk
�, Sk

�� describes the postsynaptic re-
sponses (i.e., it is the probability of observing a response
between Rk and Rk � dR when the number of release-
competent sites changes from Sk

� to Sk
� upon the kth

spike). Note that Sk
� � Sk

� is the number of vesicles
released. Because of linear summation, Rk is also distrib-
uted according to an inverse Gaussian distribution with
mean �Sk

� � Sk
��·q and variance �Sk

� � Sk
��·�q

2, as follows:

P(Rk
Sk
�, Sk

�) �
q

3

2 ·(Sk
� � Sk

�)

�2	�q
2Rk

3

� exp��
q·	Rk � q·(Sk

� � Sk
�)
2

2�q
2Rk

�. (11)

Finally, the term P�Sk�1
� 
Sk

�� describes the docking pro-
cess, i.e., it is the probability that the number of release-
competent sites changes from Sk

� to Sk�1
� during the kth

interspike interval �k. After the kth spike, there are
N � Sk

� noncompetent sites that can independently be-
come release competent within the time interval �k with
the probability lk � l��k� (see Eq. 3). The number of
release-competent sites cannot decrease in between
spikes. Thus:

P(Sk�1
� 
Sk

�) �

�� N � Sk
�

Sk�1
� � Sk

� �·lk(Sk�1
�

�Sk
�)·(1 � lk)(N�Sk�1

� ) if Sk�1
� 
 Sk

�

0 otherwise

.

(12)

The sum over all possible realizations of S1→M
� and S1→M

�

in Equation 8 can be efficiently performed as described in
the Forward-backward formalism section.

Expectation-Maximization
The fact that the number of release-competent sites is

not directly observable makes the direct maximization of
the likelihood function in Equation 8 impractical. The EM
algorithm allows for maximum-likelihood estimation in the
presence of hidden variables (Dempster et al., 1977;
Dayan and Abbott, 2001). EM iteratively improves upon an
initial guess of the parameters by maximizing the so-
called auxiliary function with respect to �. The auxiliary
function is defined as follows:

Q(�, �old) � �
S1→M

�
�
S1→M

�

P(S1→M
� , S1→M

� 
R1→M, �old)

� log	P(R1→M, S1→M
� , S1→M

� 
�)
 , (13)

where �old is the initial guess for the parameters, and the
sum is over all possible sequences S1→M

� and S1→M
� . The EM

algorithm comprises two steps. The so-called E step
corresponds to the evaluation of the auxiliary function,
that is, the computation of the expectation of
log	P�R1→M, S1→M

� , S1→M
� 
��
 given the observed responses

and the current estimate. The so-called M step corre-
sponds to maximizing the auxiliary function with respect
to �, as follows:

�new � arg max
�

Q(�, �old) . (14)

Iteration of the E and M steps guarantees improvement
of the initial guess until eventually a fixed point is reached
(i.e., �new � �old), which corresponds to a (local) maximum
of the likelihood function.

Using Equations 9–12 in Equation 13, taking the deriv-
atives with respect to the continuous parameters, and
setting them to 0, we obtain the following re-estimation
formulas:

�
k�1

M

�Rk � qnew·(Sk
� � Sk

�)� � 0 [qnew] . (15)

�
k�1

M

�1 �
qnew

(�q
new)2Rk

·(Rk � qnew·(Sk
� � Sk

�))2� � 0 [�q
new]

(16)

�
k�1

M�1
� lk
��D

�� Sk�1
�

lk(1 � lk)� � �Sk
�

lk � �
N

1 � lk
� � 0 [�D

new]

(17)

�
k�1

M
�uk

�U ��Sk
�

uk
� � � Sk

�

uk(1 � uk)�� � 0 [Unew] (18)

�
k�1

M
�uk

��F
��Sk

�

uk
� � � Sk

�

uk(1 � uk)�� � 0. [�F
new] . (19)

Note that uk and lk depend on the new estimate Unew,
�F

new, and �D
new. The angular brackets denote average over
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the distribution P�S1→M
� , S1→M

� 
R1→M, �old� (see Eq. 13). This
average has the following convenient property:

�g(Sk
�, Sk

�)� � �
S1→M

�
�
S1→M

�

g(Sk
�, Sk

�)·P(S1→M
� , S1→M

� 
R1→M, �old)

� �
Sk

�,Sk
�

g(Sk
�, Sk

�)·P(Sk
�, Sk

�
R1→M, �old).

(20)

which holds for any function, g. The conditions for Unew

and �F
new involve uk and its derivatives, which in turn de-

pend on Unew and �F
new. These conditions thus have to be

evaluated simultaneously.
In the presence of Gaussian baseline noise (indepen-

dent of the number of released vesicles), Equation 11
becomes the following:

P(Rk
Sk
�, Sk

�)

� �
0

�� dy

�n�2	
P(y
Sk

�, Sk
�)·exp��

(Rk � y)2

2�n
2 �. (21)

where �n
2 is the estimated variance of the baseline noise

(see the Preprocessing section). When the above equa-
tion is used to derive the EM re-estimation formulas, the
equations for qnew and �q

new read as follows:

�
k�1

M � �
0

��

y·I(y)dy

�
0

��

I(y)dy

� qnew·(Sk
� � Sk

�)� � 0 [qnew]

(22)

�
k�1

M � �
0

��

�y � qnew·(Sk
� � Sk

�)�2·y�1·I(y)dy

�
0

��

I(y)dy

�
(�q

new)2

qnew � �

0 [�q
new] . (23)

with I(y) given by:

I(y) � y�
3

2 ·exp��
q·	y � q·(Sk

� � Sk
�)
2

2�q
2y

�
(Rk � y)2

2�n
2 �.

(24)

Re-estimation formulas have to be evaluated numeri-
cally. The EM algorithm was implemented in C��. For
multidimensional root finding, we used the Brent-Dekker
algorithm and a derivative-free version of Powell’s hybrid
algorithm, as provided by the GNU Scientific Library
(Galassi et al., 2009). The code is available from the
authors upon request.

Forward-backward formalism
To efficiently compute the averages over P

�S1→M
� , S1→M

� 
R1→M, �old�, we developed a forward-backward
scheme (Rabiner, 1989). We define two forward variables
as follows:

�k
�(S) � P(Sk

� � S, R1→k�1) (25)

�k
�(S) � P(Sk

� � S, R1→k) , (26)

where we have dropped the dependence of the parame-
ters to simplify the notation. These variables can be eval-
uated recursively as follows:

�1
�(S) � P(S1

� � S) (27)

�k
�(S) � �

Sk
�

�0

N

�k
�(S)P(Sk

� � S
Sk
�)P(Rk
Sk

� � S, Sk
�)

(28)

�k�1
� (S) � �

Sk
�

�0

N

�k
�(S)P(Sk�1

� � S
Sk
�). (29)

Note that �M
��S� � P�SM

� � S, R1→M� and thus

�
S�0

N

�M
��S� � P�R1→M�. Similarly, we can define two back-

ward variables as follows:

�k
�(S) � P(Rk→M
Sk

� � S) (30)

�k
�(S) � P(Rk�1→M
Sk

� � S) , (31)

which can be evaluated recursively as follows:

�1
�(S) � 1 (32)

�k
�(S) � �

Sk
�

�0

N

�k
�(S)P(Sk

�
Sk
� � S)P(Rk
Sk

�, Sk
� � S)

(33)

�k�1
� (S) � �

Sk
�

�0

N

�k
�(S)P(Sk

�
Sk�1
� � S) , (34)

and �
S�0

N

�1
��S�P�S1

� � S� � P�R1→M�. From this, it follows

that the conditional distribution appearing in Equation 20
can be easily computed from the following:

P�Sk
�, Sk

�
R1→M, ��

�
�k

�(Sk
�)·P(Rk
Sk

�, Sk
�)·P(Sk

�
Sk
�)·�k

�(Sk
�)

P(R1→M)
. (35)

Fisher information matrix
To quantify the amount of information about a specific

parameter that a stimulation protocol allows one to ex-
tract, we can compute the Fisher Information Matrix (FIM)
of the generative model

I(�)j,k � E�� �
��j

log�P(R1→M
t1→M, �)��
� � �

��k
log�P(R1→M
t1→M, �)��
�� , (36)
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where we have introduced explicitly the dependence on
t1→M, E	·
 that denotes the expectation value over the
responses sequences, and j and k denote (continuous)
model parameters. The diagonal elements of the inverse
FIM are lower bounds on the variances of the correspond-
ing parameters estimate. Hence, a lower bound on the
relative error � of the estimate of �j can be written as
follows:

�(�j) 

�[I(�)�1]jj

�j
, (37)

which is just a normalized version of the Cramér-Rao
bound (Dayan and Abbott, 2001).

The calculation of the derivatives in Equation 36 can be
performed efficiently using the forward variables �k

� �S�.
We can write the following:

�
��j

log	P�R1→M
t1→M, ��
 �
1

P�R1→M
t1→M, ��
· �

S�0

N
��M

�(S)
��j

.

(38)

Since �k
��S� depends on �k

��S� and vice versa, we ob-
tain recursive formulas for their respective derivatives, as
follows:

�
��j

�k
�(S) � �

Sk
�

�0

N

�k
�(Sk

�)·P(Sk
� � S
Sk

�)·

��P(Rk
Sk
�, Sk

� � S)
��j

� � �
Sk

�
�0

N

�k
�(Sk

�)·

�P(Sk
� � S
Sk

�)
��j

�·P(Rk
Sk
�, Sk

� � S) � �
Sk

�
�0

N

���k
�(Sk

�)
��j

�·P(Sk
� � S
Sk

�)·P(Rk
Sk
�, Sk

� � S), (39)

�
��j

�k
�(S) � �

Sk�1
�

�0

N

�k�1
� (Sk�1

� )·��P(Sk
� � S
Sk�1

� )
��j

�
� �

Sk�1
�

�0

N ���k�1
� (Sk�1

� )
��j

�·P(Sk
� � S
Sk�1

� ).

(40)

Least-squares fitting
To fit the average model response R� 1→M to the average

experimental responses �R�1→M, we used a standard least-
squares procedure (see, e.g., Tsodyks and Markram,
1997; Markram et al., 1998), as follows:

�̂LS � arg min
�LS �

i�1

M (�R�i � R� i)2

si
2

. (41)

where the R� i values depends on the parameters
�LS � �A, U, �D, �F� (see Eqs. 5–7), and si

2 denotes the
variance of the ith response.

Least-squares condition number
The least-squares fitting is a mapping from the average

experimental responses �R�1→M to the four parameters
�LS � �A, U, �D, �F�, as follows:

�LS � F(�R�1→M) . (42)

The condition number (Trefethen and Bau, 1997) of this
mapping is given by the following:

c �
�D� ·�R� 1→M�

��LS�
, (43)

where �·� denotes the 2-norm and D is a 4 � M matrix
whose elements are as follows:

Dij �
�Fi

� �R�j
�

��LS
(i)

� �R�j
. (44)

The Dij can be straightforwardly evaluated numerically.
The condition number measures the sensitivity of the
estimates to small changes in the average responses. If
c � 1, small perturbations in the average responses will
tend to cause disproportionately large changes in the
estimates of the parameters. In that case, the estimation
procedure is ill posed.

Results
Generative model description of repetitive synaptic
transmission: overview

We provide here a compact presentation of our method
omitting unnecessary technical details. The full presenta-
tion can be found in Materials and Methods.

Synaptic transmission is, at least in the experimental
conditions in which it is routinely probed, stochastic so
that recorded postsynaptic responses will vary across
repetitions of the same presynaptic stimulation. This vari-
ability is not just noise, but rather it carries important
information about the synaptic dynamics. Accordingly,
our approach seeks to select synaptic parameters so as
to best describe the observed variability of the responses,
instead of their averages. This is done by constructing a
generative model of repetitive synaptic transmission, i.e. a
parametric probability distribution function for the trains
of postsynaptic responses given the times of presynaptic
activation, and then determining the corresponding pa-
rameters by the maximum-likelihood principle.

We build a stochastic generative model of synaptic
transmission by following a standard procedure which
consists in augmenting the quantal model with dynamic
processes that modulate the total release probability. Ac-
cording to the quantal model, a synaptic connection is a
collection of N independent release sites. Upon the spike,
a site can either release neurotransmitter or fail to do so.
The probability of such an event (i.e., the total release
probability) is decomposed into the product of the prob-
ability that the site is release competent and the proba-
bility that the release actually occurs, given that the site is
release competent (Quastel, 1997). Hereafter, we refer to
this latter simply as the release probability. A large class
of stochastic models of synaptic transmission can be
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formulated in this framework (indeed, all the models we
are aware of), by appropriately selecting the dynamics of
the release site and of the release probability (Fig. 1A). In
the following, we chose the specific instantiations of those
dynamics that correspond to the stochastic TM model
(Fuhrmann et al., 2002).

In the stochastic TM model, the dynamics of the release
site are described by the following simple docking pro-
cess: a noncompetent site becomes competent with a
constant probability per unit time 1/�D. A competent site
becomes noncompetent by releasing upon spike. The
probability of release u(t) increases with each spike and
decays back to its baseline level U, with a time constant �F

in between spikes. The dynamics of u(t) are a minimal
phenomenological description of the effects of calcium
influx into the synaptic terminal on the probability of re-
lease (Bertram et al., 1996; Markram et al., 1998; Dittman
et al., 2000; Neher and Sakaba, 2008). The postsynaptic
response to a single vesicle (quantal response) is variable
with mean q (quantal size) and variance �q

2 (quantal noise).
The postsynaptic response to multiple vesicles is simply
the sum of the single quantal responses.

This model has two dynamic variables—the number of
release-competent sites S(t) and the release probability
u(t)—and six parameters—the number of release sites N,
the quantal size q, the quantal noise �q

2, the initial release
probability U, and the time constants for docking and
facilitation, �D and �F, respectively. It contains three
sources of variability since both release and docking are
stochastic processes, and the same number of released

vesicles can result in different postsynaptic responses
due to quantal noise. These sources of variability are all
well documented experimentally. In Figure 1, we show
sample synthetic traces generated by the model, together
with the trial-averaged trace, for a facilitating connection
(Fig. 1C) and a depressing connection (Fig. 1D).

Having an explicit description for the sources of sto-
chasticity, one can compute the probability that a given
train of postsynaptic responses, R1→M � �R�t1�, R
�t2�, · · · , R�tM��, is observed in correspondence with presyn-
aptic spikes occurring at times t1→M � �t1, t2, · · · , tM�. This
probability as a function of the model parameters, which we
collectively denote �, is by definition the likelihood function, i.e.,

L(�
R1→M) � P(R1→M
�) . (45)

The maximum-likelihood principle prescribes taking as
an estimate of the parameters the values �̂ML, which max-
imize L��
R1→M�. Although the likelihood function can be
efficiently evaluated numerically (as we show in Materials
and Methods), its direct maximization turns out to be
impractical because the different responses are corre-

lated, (i.e., P�R1→M
�� � 

k�1

M

P�Rk
��). The origin of these
correlations is easy to understand. Let us denote
S1→M

� � �S�t1
��, S�t2

��, · · · , S�tM
��� and S1→M

� � �S�t1
��, S

�t2
��, · · · , S�tM

��� the number of release-competent sites
immediately before and after the corresponding spikes,
respectively. The probability of observing a given re-
sponse, Rk, depends on the number of vesicles released

A B

C D

Figure 1. The generative model and sample synthetic traces. A, Schematics of the synaptic model. Upon spike (blue), only the docked
vesicles (yellow) can be released. The postsynaptic response (gray) is proportional on average to the number of vesicles released. In
between spikes, vesicles dock to noncompetent release sites (black arrow) with constant probability per unit time. B, Graphical model
of the statistical dependencies among the number of docked vesicles before spike (S�) and after spike (S�) and observable responses
(R). The number of docked vesicles is not observable. C, Sample synthetic traces and average trace for a facilitating connection:
N � 10, q � 0.15 mV, �q � 0.03 mV, U � 0.3, �D � 195 ms, �F � 570 ms. D, Same as C for a depressing connection: N � 10, q �
0.15 mV, �q � 0.03 mV, U � 0.25, �D � 670 ms, �F � 15 ms.
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upon the kth spike; that is, it depends on both Sk
� and Sk

�

(in fact, it depends on their difference). Similarly, the
probability of the next response being Rk�1 depends on
both Sk�1

� and Sk�1
� . However, the probability of having a

given number of release-competent sites Sk�1
� immedi-

ately before the (k � 1)-th spike depends on the number
of release-competent sites Sk

� immediately after the kth
spike (Fig. 1B). These probabilistic dependencies, which
are graphically illustrated in Figure 1B, are the source of
the correlations between the different synaptic responses.
Note that, if properly dealt with, these correlations are a
source of information about the underlying synaptic dy-
namics rather than a hindrance.

It should be clear from the above that the responses
R1¡k and Rk�1¡M are independent, conditionally on the
knowledge of Sk

� (Fig. 1B). Thus, the joint probability of the
observed responses and the underlying sequence of
the numbers of release-competent sites responsible for
their generation can be conveniently factorized in the
following way:

P(R1→M, S1→M
� , S1→M

� 
�) �

P(S1
�
�)


k�1

M

P(Sk
�
Sk

�, �)P(Rk
Sk
�, Sk

�, �) 

k�1

M�1

P(Sk�1
� 
Sk

�, �).

(46)

The conditional probabilities appearing in the above
equation have the following straightforward interpretation:
P�S1

�
�� is the initial distribution of the number of release-
competent sites; P�Sk

�
Sk
�, �� is the probability that the

number of release-competent sites changes from Sk
� to

Sk
� upon spike; P�Rk
Sk

�, Sk
�, �� is the probability of ob-

serving a postsynaptic response Rk when the number of
release-competent sites changes from Sk

� to Sk
�; and P

�Sk�1
� 
Sk

�, �� is the probability that the number of release-
competent sites changes from Sk

� to Sk�1
� during the time

interval tk�1 � tk in the absence of spikes. These condi-
tional probabilities are easily computed from the model.

Unlike synaptic responses, however, the number of
release-competent sites is not directly observable (i.e., is
a hidden variable). A very powerful algorithm, the EM
algorithm (Dempster et al., 1977; Dayan and Abbott,
2001), exists that allows a maximum-likelihood estimation
in the presence of hidden variables, as it is our case. In
Materials and Methods, we show how all the quantities
needed to carry out EM can be efficiently computed, and
we obtain explicit re-estimation formulas for the parame-
ters.

Application to experimental data
Response variability
We began by analyzing response variability, which was
not done in the study by Wang et al. (2006), and found that
the synaptic responses exhibited strong variability. For
the purpose of illustration, we show in Figure 2 sample
voltage traces for one facilitating connection (Fig. 2A) and
one depressing connection (Fig. 2B), together with the
corresponding trial-averaged traces. In both cases, the
large variability across the different repetitions is immedi-

ately evident. The variability is, indeed, so strong that the
facilitating/depressing nature of the transmission is largely
concealed in the single traces, while it becomes readily
apparent in the trial-averaged traces.

To quantify variability, for each connection we ex-
tracted from the corresponding single-trial voltage traces
the peak postsynaptic response corresponding to each
presynaptic spike, as explained in Materials and Methods.
For each connection, we then computed the coefficient of
variation (CV) of each response, which was defined as the
ratio between the SD of the response across the different
trials and its average. The results of this analysis are
shown in Figure 2C, where we report the histograms of
the CV across the population of synaptic connections,
separately for each response. The average of the initial
response ranged between 0.11 and 3.43 mV (0.67 � 0.58
mV; n � 69), while the associated CV ranged between
0.21 and 1.58 (0.59 � 0.27; n � 69). These values are fully
consistent with those from previous studies (Markram
et al., 1997; Brémaud et al., 2007; Loebel et al., 2009). We
took this as an indication of the reliability of the procedure
we used for isolating synaptic responses within the
single-trial voltage traces.

Synaptic unreliability remained high all along the stim-
ulation, and it even increased for late responses, as can
be seen in Figure 2C. This is a consequence of the
increasing probability of failure due to vesicle depletion
(Loebel et al., 2009). The population-averaged CV was
smallest for the second and the recovery response. This
is a consequence of the increasing probability of re-
lease occurring at facilitating synapses, while release-
competent sites are still abundant (i.e., before depression
builds up). The second and the recovery responses were,
in fact, the most facilitated responses on average. Note
that such high levels of variability are the rule, rather than
the exception, for central chemical synapses (Markram
et al., 1997; Brémaud et al., 2007; Loebel et al., 2009).

Two points are worth stressing. As we just discussed,
changes in the level of variability of the responses carry
information about the underlying synaptic dynamics. This
information, however, is destroyed by the trial-averaging
procedure needed to perform least-squares fitting. Sec-
ond, the precision of the least-squares estimates for the
parameters is fundamentally limited by the accuracy of
the (experimental) estimates of the average responses. A
straightforward application of the central limit theorem
shows that, for a true CV of 0.3, an estimate of the
average response within 10% relative precision would
require about 80 repetitions, while an estimate within 5%
relative precision would require �300 repetitions. Given
the CVs estimated from the data, these figures should be
considered as the minimal number of repetitions needed
to estimate the average response with reasonable accu-
racy. Unfortunately, least-squares estimates can be
grossly imprecise even when the empirical averages are
determined with high accuracy, as we show in the
Maximum-likelihood versus least-squares estimation sec-
tion.
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Maximum-likelihood estimation of the synaptic
parameters
The synaptic parameters � � �N, q, �q, U, �D, �F� for a
given connection were estimated as follows. For a fixed
value of N (note that N takes on only integer values, while
the other parameters are continuous), the maximum-
likelihood estimate of the remaining parameters is ob-
tained by using the EM algorithm (see Materials and
Methods). We varied N between 1 and 100, and the value
of N and of the corresponding continuous parameters for
which the likelihood was maximal was then selected as
the final estimate.

The procedure is illustrated in Figure 3A for a sample
connection. In Figure 3A, left, we plot the log-likelihood as
a function of N, while, in Figure 3A, right panels, we plot
the values of the parameters that maximize the log-
likelihood for the corresponding N. The log-likelihood ex-
hibits a clear maximum at N � 17. The values of the

remaining parameters can be read from the correspond-
ing curves on the right. They are as follows: q � 0.18 mV,
�q � 0.06 mV, U � 0.27, �D � 202 ms, and �F � 449 ms.
Using these parameters, we generated 500 synthetic ex-
periments in which the model was probed with the same
stimulation protocol, and for the same number of trials
(28), as in the real experiment. We then computed the
average responses and the associated CVs for each ex-
periment, and from these the corresponding grand aver-
ages together with 95% confidence intervals. The results
are shown in Figure 3B. In the top panel of Figure 3B, we
report the experimental (black curve) and the model av-
erage responses (red curve; error bars represent 95%
confidence intervals). In the bottom panel of Figure 3B, we
report the experimental (black curve) and the synthetic
CVs (red curve; error bars represent 95% confidence
interval). The model parameters were not selected to
reproduce the average responses or the CVs, but rather to

A B

C

Figure 2. Stimulation protocol and variability of synaptic responses (experimental data). A, Five sample single-trial trains of
experimentally measured postsynaptic responses (gray traces) illustrate the large trial-to-trial variability. The trial-averaged trace
(black trace) reveals facilitating transmission (compare first and second response). Stimulation consists of a regular train of eight
spikes followed by a recovery spike (top blue trace). B, Same as in A for a depressing connection (compare first and second
responses). C, Histograms of the CVs of the synaptic responses in the train and upon the recovery spike (gray-shaded panel) across
the dataset. The red numbers denote the respective average CVs. The size of the bins is 0.25, apart from the last one, which includes
all CVs �0.75.
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maximize the probability of the occurrence of the actual
trains of responses observed in the experiment. Never-
theless, as can be seen, the experimental data are well
reproduced by the model.

We estimated the synaptic parameters for all the con-
nections in our dataset. In 6 of 69 cases, the estimation
procedure returned values for one or more parameters
that were judged to be problematic. In four cases, the
estimation procedure returned values for one or both the
time constants (i.e., �D and �F) that were several orders of
magnitude larger than the longest timescale at which the
synaptic connections were probed. In the two remaining
cases, there was no maximum in the range of N values
probed. These connections were excluded from further
analysis.

We checked next whether the model was overfitting the
data by using a standard leave-one-out cross-validation
procedure (Stone, 1974). We estimated the parameters as
described above while leaving out one trial every time.

With the parameters obtained, we computed the proba-
bility that the model would generate a set of responses
with a log-likelihood equal or smaller than the log-
likelihood of the set of responses that was left out. Here-
after, we denote this probability by zout. This procedure is
illustrated in Figure 3C for the same connection as in
Figure 3A. In each subpanel, we show (1) the cumulative
distribution of the log-likelihood for a set of responses
generated from the model, where the parameters are
estimated by leaving out one trial (blue curve); (2) the
value of the log-likelihood of the set of responses left out
during the estimation procedure (on the x-axis); and (3)
the corresponding value of zout (on the y-axis). For sets of
responses generated by the model, one expects zout to be
uniformly distributed between 0 and 1. The distribution of
the average (over all trials) zout value across the dataset is
shown in Figure 3D. As can be seen, most of the values
are between 0.4 and 0.5. For only 5 of 63 connections, the
distribution of zout values obtained from the leave-one-out

A B

C D E

Figure 3. Maximum-likelihood estimation of the synaptic parameters from experimental data. A, Log-likelihood (left) and associated
model parameters (right) as a function of N for a sample connection. The maximum is attained at N � 17 with q � 0.18 mV, �q � 0.06
mV, U � 0.27, �D � 202 ms, �F � 449 ms. B, Top, Average experimental responses (black line) vs average model responses (red line)
for the same connection as in A. Bottom, Same as in the top panel for the coefficients of variation. Error bars indicate the 95%
confidence interval of the model prediction. C, Cumulative distribution function of the log-likelihood for four instances of the
leave-one-out procedure (blue curves). The red dots indicate the log-likelihood of the left-out trials. Same connection as in A. D,
Distribution over the dataset of the average zout. E, Distribution over the dataset of the average coefficients of variation of the
estimates obtained in the leave-one-out procedure.

Methods 10 of 21

March/April 2016, 3(2) e0113-15.2016 eNeuro.sfn.org



procedure was statistically different from the uniform dis-
tribution (Kolmogorov–Smirnov test, p � 0.01). For three
of these connections, 	25 trials were available. No con-
nection with 
30 trials (n � 10) showed a distribution of
zout values that was statistically different from the uniform
distribution.

The leave-one-out procedure also allowed us to evalu-
ate the stability of the estimation procedure, which we
quantified by computing the average coefficient of varia-
tion of the estimates. The distribution obtained is reported
in Figure 3E.

We concluded that, for the large majority of the con-
nections (58 of 63), there were no indications of overfit-
ting, while for the remaining connections it was likely that
we simply lacked statistical power to assess overfitting.
Also our estimation procedure exhibited an accuracy and
stability that tended to be better than the least-squares
fitting procedure (see the Maximum-likelihood versus
least-squares estimation section), while allowing us to
estimate two additional parameters.

Quantifying the uncertainty of the parameter
estimates
We used a standard re-sampling procedure (i.e., paramet-
ric bootstrap; Efron and Tibshirani, 1994) to quantify the
uncertainty of the parameter estimates. For each set of
parameters obtained from a synaptic connection in our
dataset, we generated 500 synthetic experiments with the
same settings as in the original experiment (i.e., same
stimulation protocol, number of repetitions, and baseline
noise). We then re-estimated the parameters for each
synthetic experiment and computed their relative errors
with respect to the original set of parameters. We show in
Figure 4A the resulting distributions of relative errors for
the same connection shown in Figure 3A. All the distribu-
tions peaked at 
0, with averages very close to 0 and
relative SDs 	0.3. This shows that, at least for this con-

nection, our method returns unbiased and accurate esti-
mates of the parameters.

We see in Figure 4B, where we plot the SD versus the
bias of the relative error for each parameter and each
connection, that this is, in fact, the case for the majority of
connections in our dataset. For some connections, how-
ever, the estimates of �q and/or �F are quite inaccurate.
Large relative errors in the estimates of �q are due to the
connections for which the baseline noise is comparable or
larger than the quantal noise. Large relative errors in the
estimates of �F are due to connections for which the
(experimentally) chosen interstimulus interval was ill
suited to resolve the facilitation time course. For instance,
in depression-dominated connections (i.e., �F 	 �D) the
facilitation time constant cannot be reliably estimated if
the interstimulus interval is much longer than �F. The high
uncertainty in the estimates of �q and �F (for some con-
nections) is responsible for the positive biases observed
in Figure 4B. This is because relative errors cannot be
smaller than �1, given that both parameters have to be
positive, while they can be quite large and positive (i.e.,
��1). It is important to stress that the large variability and
the accompanying bias in the estimates of �q and �F are
not due to the method itself but to the small amount of
information conveyed by the data (experimental or syn-
thetic). This can be remedied, especially for �F, by choos-
ing more informative stimulation protocols (see the
Estimating synaptic parameters from a single spike train
section).

Using the data generated in the synthetic experiments,
we also computed, for each connection, the (Pearson)
correlation coefficients between all pairs of parameter
estimates. The correlation coefficients were then Fisher
transformed (Efron and Tibshirani, 1994), averaged across
connections, and Fisher transformed back. The result is
shown in Figure 4C. Fluctuations in the parameter esti-
mates are all significantly correlated. This is to be ex-

A

B

C

Figure 4. Estimating uncertainty and correlations between parameter estimates with parametric bootstrap. A, Distributions of the
relative errors obtained by re-estimating the parameters of the sample connection in Fig. 3A from synthetically generated responses.
The dots on the x-axes indicate the corresponding averages. B, Standard error vs bias of the relative error for all the connections. C,
Pearson correlation coefficients between all pairs of parameter estimates averaged over all the connections.
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pected. An estimate that deviates from its true value
necessarily induces compensatory adjustments in one or
more of the other parameters. For instance, the overesti-
mation of N must be compensated by the underestima-
tion of q (or U or both) in order to reproduce the
empirically observed range of the responses. In fact, cor-
relations between N and q, N and U, and U and q were all
negative and quite substantial (R � �0.56, R � �0.44,
and R � �0.32, respectively). Similarly, the underestima-
tion of N must be compensated by the underestimation of
�D (i.e., faster recovery from depression) in order to main-
tain the empirically observed range of responses through-
out the train. Accordingly, N and �D are positively
correlated (R � 0.40).

Maximum-likelihood estimation versus least-squares
fitting
Standard least-squares fitting allows one to estimate the
initial release probability U, the two time constants �D and

�F, and the product N · q, which we denote by A (for
details, see Materials and Methods). We thus compared
the estimates obtained with our method with the ones
obtained by least-squares fitting. Note that the two meth-
ods would return asymptotically the same estimates for
these parameters. In Figure 5A, we plot the estimates
obtained with our method versus the estimates obtained
with the least-squares fitting procedure. As can be seen,
the two methods tend to return correlated estimates.
Nevertheless, for more than half of the connections, the
relative difference between the estimates with the two
methods was �30% for at least one of the parameters. In
several cases, the two estimates were dramatically differ-
ent. One such case is illustrated in Figure 5B. According
to maximum-likelihood estimation, this connection was
facilitating (�F � 279 ms, �D � 179 ms, �F/�D � 1.56), while
according to least-squares fitting the same connection
was depressing (�F � 28 ms, �D � 236 ms, �F/�D � 0.12).
Note that the estimates of �F differed by one order of

A

B

C

D

Figure 5. Maximum-likelihood estimation (MLE) vs least-squares fitting (LSF). A, Estimates obtained with MLE vs those obtained with
LSF for all the connections in the dataset. B, Average experimental responses (black line) for the connection corresponding to the
cyan dot in A together with the result of LSF (blue line) and the MLE prediction with 95% confidence interval (red line � bars). MLE
estimate: A � 0.91 mV, U � 0.38, �D � 179 ms, �F � 279 ms; LSF estimate: A � 1.48 mV, U � 0.27, �D � 236 ms, �F � 28 ms. C,
Cumulative distribution functions of the relative errors of MLE (red), MLE with shuffled responses (green) and LSF (blue) estimates
from synthetic experiments. D, Average and SD (bars) of relative errors for MLE (red), MLE with shuffled responses (green), and LSF
(blue) estimates as a function of the number of trials (synthetic experiments).
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magnitude. The large differences between the estimates
with the two methods thus suggest that, for most of the
connections, the number of repetitions is too small to
reach the asymptotic regime.

Our method makes use of more information (i.e., cor-
relations and variability) to estimate the parameters. One
would accordingly expect more accurate estimates com-
pared with least-squares fitting, and the often quite large
discrepancies would thus result from the different accu-
racies of the two methods. To test this hypothesis, we
generated 500 synthetic connections by randomly and
independently selecting their parameters from the corre-
sponding experimental distributions (as estimated with
our method; see Population analysis section). The syn-
thetic connections were probed with a regular train of
eight spikes at 20 Hz, followed by a recovery spike 550 ms
after the end of the train. We collected the responses over
20 trials for each connection, and re-estimated its synap-
tic parameters. To investigate the impact of the correla-
tions on the accuracy of the estimates, we also applied
our method to shuffled response trains. These were ob-
tained by randomly reassigning responses to trains while
preserving their position within the train (e.g., the second
response in the first train becomes the second response
in the fifth train). The distributions of the relative errors,
with respect to the true parameters, obtained with our
method, with shuffled trains and least-squares fitting, are
shown in Figure 5C. As expected, the estimates obtained
by least-squares fitting as well as those obtained from the
shuffled trains were more inaccurate than those obtained
with our method. Note that the shuffling procedure intro-
duces a systematic error in both the estimate of �D and the
estimate of �F. This is because consecutive responses are
negatively correlated when release can occur from a finite
number of sites. This correlation decays exponentially
over a timescale of the order of the docking time. The
shuffling procedure tends to reduce the correlation be-
tween consecutive responses, which results in the sys-
tematic underestimation of �D. This, in turn, leads to the
underestimation of �F, as the two estimates tend to be
positively correlated (Fig. 4C).

We next investigated how the accuracy of the estimates
increased with the number of trials. We repeated the
analysis described above when collecting responses over
50, 100, and 150 trials. We then computed the mean and
the SD of the corresponding distributions of the relative
errors (Fig. 5C). The results are plotted in Figure 5D (our
method, red curve; our method with shuffled trains, green
curve; least-squares fitting, blue curve). For the estimates
obtained with our method, the mean of the relative errors,
which is already very small for 20 trials, quickly converges
to 0. Likewise, the accuracy of the estimates, as mea-
sured by the SD of the relative errors (Fig. 5D, bars),
steadily increases with the number of trials. The estimates
obtained from shuffled trains and those obtained by least-
squares fitting exhibited the same overall trends. Their
accuracy, however, improved in a much slower way with
an increasing number of trials. Note that, even for 150
trials, the accuracy was significantly smaller than the
accuracy of the estimates obtained with our method.

This is particularly evident, and puzzling, for the esti-
mates obtained by least-squares fitting. The slow in-
crease in the accuracy of the estimates with the number
of trials could be a consequence of the fact that the
least-squares procedure is more prone than the
maximum-likelihood procedure to get stuck in local min-
ima (as suggested by Costa et al., 2013). Alternatively, it
could result from the fact that the least-squares proce-
dure is ill posed. To understand which of these two pos-
sibilities was the more likely explanation of the observed
phenomenology, we computed, for each connection in
our synthetic sample (see above), the condition number
(for details, see Materials and Methods) and estimated the
range of the relative errors obtained by the least-squares
procedure when adding a small amount of noise to the
true average responses. Concretely, for each connection
we added Gaussian noise with a relative SD of 0.01
independently to each true average response in the train,
and then re-estimated the parameters. We repeated this
procedure 15 times, and took the largest difference be-
tween relative errors (of the same parameter) as an esti-
mate of the corresponding range. In Figure 6A, we plot the
range of relative errors versus the condition number. As
can be seen, for a fraction of the connections the condi-
tion number, and correspondingly the range of relative
errors, is quite large. For these connections, we verified
that there was no global minimum in the neighborhood of
the true parameters, contrary to what one would expect
for a well posed least-squares procedure. Thus, large
relative errors were not a result of the minimization routine
getting stuck in local minima. For the purpose of illustra-
tion, we report in Figure 6, B and C, the samples least-
squares fit to two connections for which the condition
number was �100. As can be seen, the estimated param-
eters fluctuate substantially across the different noise
realizations.

Although we cannot rule out definitively the possibility
that the least-squares procedure returning local minima
contributes to the poor increase in the accuracy of the
estimates with the number of trials, we believe that that is
largely a result of the fact that, for some set of parameters,
the least-squares fitting is very sensitive to the specific
realizations of the synaptic responses. This could happen,
as we have just shown, even for experimentally unrealistic
large number of trials; to achieve a 1% relative error on the
average, one would need a number of trials on the order
of 104.

Population analysis
The average values and ranges of the six synaptic param-
eters (N, q, �q, U, �D, �F) obtained with our method are
reported in Table 1, along with the estimates obtained
with other methods in similar preparations and conditions
(Larkman et al., 1991, 1997; Markram et al., 1998; Silver
et al., 2003; Koester and Johnston, 2005; Wang et al.,
2006; Brémaud et al., 2007; Loebel et al., 2009; Harding-
ham et al., 2010). The corresponding distributions are
shown in Figure 7A. It is important to stress that our
method returned quantal parameters in excellent agree-
ment with published estimates, although the number of
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observed responses available for each connection was
several times smaller than the number of observed re-
sponses typically required for current state-of-the-art
methods (Silver, 2003).

The average first responses (i.e., the synaptic efficacies
as routinely estimated) varied over a 32-fold range (from
0.11 to 3.43 mV) across connections. Their distribution
was very well fitted by a log-normal distribution (one-
sample Kolmogorov–Smirnov test, p � 0.74; log location,
�0.65; log scale, 0.73), consistent with what was reported
for other cortical regions (Song et al., 2005; Loewenstein
et al., 2011; Buzsáki and Mizuseki, 2014). To investigate
the origin of such a large range, we searched for correla-
tions between the synaptic efficacy and the quantal pa-
rameters N, q, and U. We found a very strong correlation
with the number of release sites N (R � 0.76, p 	 10�13;
Fig. 7B), and a weaker but significant correlation with the
quantal amplitude q (R � 0.25, p 	 0.05). We found no
correlation with the initial release probability U. Also, we
did not find significant correlations among these three
parameters. We concluded that synaptic efficacy is pri-
marily determined by the number of release sites, which is
consistent with previous reports (Loebel et al., 2009; Cha-
brol et al., 2015). Correlation between synaptic efficacy
and quantal amplitude has also been reported previously
(Hardingham et al., 2010).

Next, we searched for correlations between synaptic
parameters. The initial release probability U was nega-
tively correlated with both the time constant of the dock-
ing process �D (R � �0.48, p 	 10�4; Fig. 7C) and the
time constant for facilitation �F (R � �0.34, p 	 10�3; Fig.
7D). It has been shown that the total number of vesicles
released during a train of action potentials increases with

the initial release probability (Dobrunz and Stevens, 1997).
This suggests that the larger the initial release probability,
the faster the docking process, which is consistent with
the negative correlation between U and �D that we found.
Similarly, large paired-pulse ratios (i.e., strong facilitation)
are typically observed in synaptic connections with a low
initial release probability (Magleby, 1979; Dobrunz and
Stevens, 1997; Oleskevich et al., 2000). Again, this is
consistent with the negative correlation between U and �F

that we found. The same trends were also found with the
estimates obtained with least-squares fitting. However,
the correlation coefficients were weaker, and less statis-
tically significant (R � �0.34, p � 0.007 for the correlation
between U and �D; R � �0.24, p � 0.06 for the correlation
between U and �F). We did not find other pairs of synaptic
parameters exhibiting statistically significant correlation.

Estimating synaptic parameters from a single spike
train
In this section, we demonstrate one of the main advan-
tages of our method over existing state-of-the-art meth-
ods. The least-squares fitting procedure requires the
stimulation to be broken into separate trials and these
trials to be repeated for putatively identical initial condi-
tions, which is typically obtained by introducing quite long
intervals (4–10 s) between consecutive trials. The method
we have developed is free from both of these constraints.
To illustrate the advantages this fact entails, we generated
a synthetic connection by setting the parameters to the
corresponding experimental population-averaged values,
apart from N, which we set to the mode of the experimen-
tal distribution (i.e., N � 8), and probed it with three
different stimulation protocols. The regular protocol is the

A B

C

Figure 6. The condition number and the accuracy of the least-squares estimates. A, The range of relative errors vs the condition
number of the estimates obtained by least-squares fitting (synthetic experiments). B, Sample synthetic average responses (black)
together with average model responses (blue) resulting from the least-squares fitting. The parameters reported in the panels are the
least-squares estimates. True parameters were as follows: A � 4.8 mV, U � 0.07, �D � 95 ms, �F � 28 ms. C, Same as in B but with
true parameters: A � 8.1 mV, U � 0.33, �D � 81 ms, �F � 100 ms.
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same as the experimental protocol used to collect the
data analyzed in this study (Fig. 2). The Poisson protocol
is obtained from the regular protocol, substituting in each
trial the regular train with a Poisson train with the same
average interspike interval. In other words, in the Poisson
protocol the spike train is different on each trial, thus
removing the constraint of the repetition of the same
stimulation across trials. In both the regular and Poisson
protocol consecutive trials are separated by a 4 s interval.

The single-sweep protocol is obtained from the Poisson
protocol by removing the intertrial interval, i.e., the recov-
ery spike of the previous trial coincides with the first spike
of the next trial (Fig. 8A). The single-sweep protocol re-
moves the constraint of repeating the trials for putatively
identical initial conditions.

We collected responses for the same recording time
(
2 min) with the three protocols described above. This
corresponds to the same number of responses (on aver-

Table 1. Parameter estimates obtained with our method (in bold type) compared with published estimates obtained in similar
experimental preparations

Parameter
Average
� SD Range Preparation

Temperature
(°C) Method Reference

15 � 12 2–77 Ferret mPFC, L5 to L5 32–34 MLE
8.1 � 5.3 3–18 Rat HC, CA1 34 H, QMLE Larkman et al. (1997)
5.1 � 2.7 2.3–11.1 Rat SC, L4 spiny stellar to L2/3

pyramidal
35–37 MV Silver et al. (2003)

N 7.48 � 7.11 2–22 Rat VC and SC, various layers 35–36 MV, FA Brémaud et al. (2007)
12.21 � 7.9 2–32 Cat VC, various layers 35–36 MV, FA Brémaud et al. (2007)
53.3 � 42 7–170 Rat SC, L5 to L5 35 LS Loebel et al. (2009)
3.4 � 2.2 1–7 Rat VC, L5 to L5 23–26/36 MV, H Hardingham et al. (2010)

0.15 � 0.06 0.06–0.32 Ferret mPFC, L5 to L5 32–34 MLE
0.131 � 0.145 0.084–0.197 Rat HC, CA1 34 H, QMLE Larkman et al. (1991)
0.196 � 0.062 0.066–0.275 Rat HC, CA1 34 H, QMLE Larkman et al. (1997)

q [mV] 0.15 � 0.09 Rat SC, L4 spiny stellar to L2/3
pyramidal

35–37 MV Silver et al. (2003)

0.37 � 0.17 0.15–1 Rat VC and SC, various layers 35–36 MV, FA Brémaud et al. (2007)
0.22 � 0.19 0.07–1 Cat VC, various layers 35–36 MV, FA Brémaud et al. (2007)
0.13 � 0.04 0.06–0.25 Rat SC, L5 to L5 35 LS Loebel et al. (2009)
0.211 � 0.065 0.106–0.302 Rat VC, L5 to L5 23–26/36 MV, H Hardingham et al. (2010)

0.05 � 0.05 0.00–0.31 Ferret mPFC, L5 to L5 32–34 MLE
�q [mV] 0.052 � 0.085 0.030–0.10 Rat HC, CA1 34 H, QMLE Larkman et al. (1991)

0.065 � 0.15 Rat SC, L4 spiny stellar to L2/3
pyramidal

35–37 MV Silver et al. (2003)

0.33 � 0.13 0.05–0.73 Ferret mPFC, L5 to L5 32–34 MLE
0.53 � 0.17 0.14–0.81 Rat HC, CA1 34 H, QMLE Larkman et al. (1997)
0.59 � 0.16† Rat SC, L5 to L5 32–34 LS Markram et al. (1998)
0.05 � 0.04‡ Rat SC, L5 to L5 32–34 LS Markram et al. (1998)
0.79 � 0.12 Rat SC, L4 spiny stellar to L2/3

pyramidal
35–37 MV Silver et al. (2003)

U 0.46 � 0.26� 0.15–0.95 Rat SC, L2/3 to L2/3 35 OQA Koester and Johnston (2005)
0.27 � 0.15 0.03–0.6 Ferret mPFC, L5 to L5 32–34 LS Wang et al. (2006)
0.63 � 0.6 Rat VC and SC, various layers 35–36 MV, FA Brémaud et al. (2007)
0.69 � 0.18 Cat VC, various layers 35–36 MV, FA Brémaud et al. (2007)
0.46 � 0.1 0.25–0.65 Rat SC, L5 to L5 35 LS Loebel et al. (2009)
0.46 � 0.21 0.15–0.75 Rat VC, L5 to L5 23–26/36 MV, H Hardingham et al. (2010)
0.53 � 0.05 Rat VC, L5 to L5 32–34 Bayesian Costa et al. (2013)

335 � 306 16–1800 Ferret mPFC, L5 to L5 32–34 MLE
813 � 240† Rat SC, L5 to L5 32–34 LS Markram et al. (1998)

�D [ms] 399 � 295‡ Rat SC, L5 to L5 32–34 LS Markram et al. (1998)
396 � 163 0–1600 Ferret mPFC, L5 to L5 32–34 LS Wang et al. (2006)
525 � 134 380–900 Rat SC, L5 to L5 35 LS Loebel et al. (2009)

321 � 340 0–1900 Ferret mPFC, L5 to L5 32–34 MLE
�F [ms] 1797 � 1247‡ Rat SC, L5 to L5 32–34 LS Markram et al. (1998)

292 � 240 0–1600 Ferret mPFC, L5 to L5 32–34 LS Wang et al. (2006)

The last three columns display the temperature at which recordings were taken, the estimation methods, and the reference to the corresponding study, re-
spectively. All synaptic connection are pyramidal to pyramidal, unless stated otherwise. HC, Hippocampus; VC, visual cortex; SC, somato-sensory cortex; L,
layer; MV, mean-variance analysis; QMLE, quantal maximum likelihood; LS, least-squares fit; H, histogram; FA, failure analysis; OQA, optical quantal analysis.
�Release probability per connection; †dominantly depressing connections; ‡dominantly facilitating connections.
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D

Figure 7. Distributions and correlations of the parameters (experimental data). A, Distributions over the dataset of the different
synaptic parameters. B, Number of release sites N vs average first response in the train. Dashed line, Linear regression (R � 0.76,
p 	 10�13). C, Initial release probability U vs time constant of the docking process �D. Dashed line, Linear regression (R � �0.48,
p 	 10�4). D, Initial release probability U vs time constant of facilitation �F. Dashed line, Linear regression (R � �0.34, p 	 10�3).
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age) for the regular and the Poisson protocols (180 re-
sponses with the spike trains at 5 Hz), and, clearly, to a
larger number of responses for the single-sweep protocol
(440 responses on average, again with spike trains at 5
Hz). From the data so collected, we estimated the param-
eters of the synthetic connection with our method. The
resulting distributions of relative errors (over 500 synthetic
experiments) are shown in Figure 8B. Several points are
noteworthy. First, the regular protocol appears to be the

least effective one. Both the Poisson and the single-
sweep protocol (Fig. 8B, red and purple box plots, re-
spectively) led to estimates that are significantly more
accurate than the estimates obtained with the regular
protocol (blue box plots). Especially interesting is the fact
that the Poisson protocol outperforms the regular one at
parity of number of responses. This is because the trains
of responses generated by the Poisson protocol are more
variable, with the additional variability coming from the

A

B

C

Figure 8. Comparison of different stimulation protocols (synthetic experiments). A, Schematics of the protocols. B, Box plots of the
distributions of the relative errors of the estimates for all the parameters for sample synthetic connection. Stimulation frequency was
5 Hz. C, Cumulative distribution function of the minimal relative errors on the estimate of �F at varying stimulation frequencies for the
regular (blue lines), the Poisson (red lines) and the single-sweep (magenta lines) protocols. Cumulative distribution functions at the
same stimulation frequency are all statistically different (Kolmogorov–Smirnov test, p 	 0.01). This is true for all stimulation
frequencies.
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stochasticity of the presynaptic spike times. The stochas-
ticity of the stimulation forces the synapse to visit a larger
fraction of its possible hidden states and, consequently,
to produce more informative sequences of observable
responses (see below). Second, the single-sweep proto-
col outperforms the Poisson protocol. This is a conse-
quence of the larger number of responses collected. At
parity for the number of responses, the Poisson protocol
produced more accurate estimates than the single-sweep
estimate (data not shown). The reason is that, after a long
intertrial interval (i.e., much longer than for �D and �F), the
hidden state is known with very high probability. This,
clearly, facilitates the estimation of the synaptic parame-
ters. The increase in the number of responses collected
during the same recording period led to more accurate
estimates nonetheless.

The advantage of using the single-sweep protocol we
have just illustrated does not depend on the specific
parameters that were chosen for the synthetic connection
or on the specific stimulation frequency. To show this, we
calculated the FIM for randomly generated synthetic con-
nections (as described in the Maximum-likelihood estima-
tion versus least-squares fitting section) as a function of
the stimulation protocol (i.e., regular, Poisson, and single
sweep) and of the stimulation frequency. The FIM allows
one to lower bound the variance that an unbiased esti-
mator of the (continuous) synaptic parameters can
achieve for a given protocol of stimulation. In other words,
the FIM provides a precise measure of how informative
the responses collected with the given protocol are
about the parameters. The procedure followed to com-
pute the FIM is described in Materials and Methods.
Using the lower bound from the FIM, we computed the
minimal relative errors achievable for all (continuous) syn-
aptic parameters.

As an illustration, we plot in Figure 8C the cumulative
distributions of these minimal relative errors for the facil-
itation time constant, for varying stimulation protocols and
frequencies (recording time is 118 s). We chose to show
the relative errors of the facilitation time constant because
it is the parameter that is hardest to estimate, according
to the FIM analysis. As can be seen, the single-sweep
protocol (Fig. 8C, purple curves) outperforms the Poisson
protocol (Fig. 8C, red curves) which, in turn, outperforms
the regular protocol (Fig. 8C, blue curves) independent of
the stimulation frequency. It is worth noting that the ac-
curacy of the estimates is strongly dependent on the
stimulation frequency for the regular protocol. On the
other hand, this dependency is much weaker for both
the Poisson and the single-sweep protocol. This can be
intuitively understood by noticing that, with the regular
protocol, the synaptic connection is probed only on two
timescales (i.e., the interspike interval of the train and the
recovery interval). If these two timescales are much longer
than the synaptic dynamics timescales, these latter ones
can only be poorly resolved. By contrast, the other pro-
tocols probe the dynamics with widely different interspike
intervals (i.e., they are exponentially distributed).

Discussion
We have introduced a new framework to quantitatively
characterize patterns of transmission at chemical syn-
apses in a statistically principled way. By explicitly mod-
eling the sources of stochasticity present in the process,
we obtained a parametric description of the probability of
observing a sequence of postsynaptic responses upon a
given pattern of presynaptic activation. The estimate is
then obtained by selecting the parameters that maximize
the likelihood of the observed synaptic responses. The
uncertainty and the bias of the estimate are obtained by
parametric bootstrap. If prior knowledge about the syn-
aptic parameters is available, the whole procedure can be
straightforwardly transformed into maximum a posteriori
estimation. As one of the main sources of stochasticity
stems from the quantal release of the neurotransmitter,
our method naturally estimates the quantal parameters
along with the dynamic ones from the same set of syn-
aptic responses. Our method significantly outperforms
the standard least-squares fitting procedure in terms of
the accuracy of the estimates, irrespective of the available
number of trials. This is because, unlike least-squares
fitting, our method is able to extract information about the
parameters contained in the correlation between synaptic
responses and in their variability. When applied to exper-
imental data, our method returns estimates of the param-
eters that are in excellent agreement with the published
literature, despite the small number of synaptic responses
(
 100) used and the larger number of parameters being
estimated (Silver, 2003).

Generality and robustness of the method
In this study, we have chosen the stochastic TM model as
the underlying generative model (Fuhrmann et al., 2002).
Several considerations motivated this choice: (1) the TM
model has a small number of free parameters and yet is
able to describe very diverse patterns of transmission; (2)
The dataset we have analyzed was previously analyzed
with the TM model, which allows for direct comparison;
and (3) the stochastic TM model has been widely used in
theoretical investigations of functional/computational im-
plications of synaptic variability; thus, it appeared relevant
to asses to which extent the model captures variability in
real synapses. Our method, however, is general and can
be extended to accommodate more biophysical detail,
such as calcium-dependent docking rates (Dittman et al.,
2000) or the presence of multiple vesicle pools (Rizzoli
and Betz, 2005). Also, we emphasize that our method is
not restricted to electrophysiological recordings and
could be adapted to optical recordings (Yuste et al., 1999;
Oertner et al., 2002; Trigo et al., 2012).

The frequencies used to probe synaptic transmission in
our dataset were relatively low, and, accordingly, we have
neglected postsynaptic receptor desensitization. How-
ever, desensitization is known to significantly contribute
to short-term depression at higher stimulation frequencies
(Trigo et al., 2012). This is especially relevant when exper-
imentally probing synaptic connections with the Poisson
protocol where interstimulus intervals can be very short.
Our framework can be extended to include desensitiza-
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tion by making the quantal size dependent on spiking
history. Explicit re-estimation formulas can be obtained
and evaluated numerically in an efficient way also in this
case (A. Barri and D.A. DiGregorio, unpublished observa-
tions).

Similarly, we have neglected heterogeneities across the
release sites (Silver, 2003). Numerical experiments (data
not shown) suggest that weak-to-moderate heterogene-
ities (coefficient of variation between 0.25 and 0.5) in the
release site parameters are effectively absorbed in the
estimate of the quantal noise. The estimates of the other
parameters are very close to the averages of the corre-
sponding distributions. The estimate of the number of
release sites is unbiased.

Comparison with previous studies
Few methods have already been proposed to estimate
both quantal and dynamic parameters from the same set
of responses. Saviane and Silver (2006) applied multiple-
probability fluctuation analysis to the first response in the
train to obtain the quantal parameters. Using these esti-
mates, they subsequently extracted the release probabil-
ities (modified by short-term plasticity) and quantal sizes
(reduced by postsynaptic receptor desensitization) for
each of the subsequent responses in the train. In a third
step, the time constant of facilitation was extracted from
paired-pulse ratios. Finally, the time constant of the dock-
ing process was estimated by fitting the TM model to the
release probabilities for the different responses in the train
(while keeping �F fixed). Hallermann et al. (2010a,b) ad-
opted a similar approach to compare the explanatory
power of different models of repetitive transmission on the
same dataset. Loebel et al. (2009) devised a somehow
reversed procedure where, in a first step, least-squares
fitting returns an estimate of the dynamic parameters, and
of the product of the number of release sites and the
quantal size (the so-called absolute synaptic efficacy). In
the second step, another least-squares fitting returns the
number of release sites (and thus the quantal size) that
best reproduces the coefficient of variations of the syn-
aptic responses.

All these methods proceed in a stepwise (and more or
less laborious) manner using the estimates obtained in
one step as fixed parameters in the next step. In this way,
however, estimation errors in one step are propagated,
and potentially amplified, in the next step. This should be
of particular concern because the estimates in every step
are obtained by least-squares fitting. All these methods
are thus prone to the problems we have highlighted in the
Maximum likelihood versus least-squares fit section, es-
pecially as the synaptic model is made more complex (i.e.,
features more parameters). Likewise, being based on
least-squares fitting, all these methods require the repe-
tition of the stimulation in identical conditions.

We are aware of only one other study (Costa et al.,
2013) that has attempted to integrate the variability of the
responses in the estimation of the synaptic parameters.
There are, however, significant differences with our
method. The method of Costa et al. (2013) does not take
into account the correlation between different responses,

which, as we have shown, carries a significant amount of
information. Furthermore, Gaussian noise is assumed in
the underlying generative model, which prevents one from
resolving the quantal parameters. Importantly, the vari-
ance of the Gaussian noise has to be estimated from the
experimental responses, which requires one to repeat the
same stimulation protocols. Costa et al. (2013) also report
that least-squares fitting of TM-like models can result in
grossly inaccurate estimates of the parameters. This is
interpreted as a consequence of a shallow and rugged
error surface, which can be flattened and deepened
around the true minimum by using Poisson instead of
regular spike trains (consistent with previous suggestions
from the studies by Sen et al., 1996, and Varela et al.,
1997, and with our results). In contrast with this interpre-
tation, we have shown that for a certain combination of
parameters and regular spike trains the least-squares
fitting procedure is ill posed.

Advantages of the method
Our framework offers several advantages over existing
state-of-the-art techniques for the characterization and
quantification of synaptic transmission. The experimenter
has complete freedom in choosing the stimulation proto-
col. For instance, the protocol can be chosen so as to
elicit informative sequences of synaptic responses, thus
achieving highly accurate estimates of the relevant pa-
rameters. As we have shown, for a given model, the
asymptotic bounds on the accuracy of the estimates
obtained with different protocols can be compared, be-
fore running any actual experiment, by computing the
associated Fisher Information Matrices. Obviously, opti-
mal protocols can be designed by using the same tool.
Alternatively, and more interestingly, the stimulation pro-
tocol can be chosen so as to reproduce the statistical
features of the in vivo spike trains driving the synaptic
connections of interest. This would provide experimental-
ists as well as theoreticians with tools to develop effective
descriptions of the transmission in physiologically rele-
vant conditions. In fact, our method could already be
fruitfully applied to investigate in vivo synaptic transmis-
sion at thalamocortical connections (Kaplan and Shapley,
1984; Ganmor et al., 2010).

To conclude, we would like to point out one potential
application of our method that we deem especially inter-
esting. Different mechanisms, both presynaptic and post-
synaptic, have been proposed to be responsible for short-
term synaptic plasticity (Zucker and Regehr, 2002;
Fioravante and Regehr, 2011). It is presently unclear,
however, whether these mechanisms are exclusive or,
rather, they all cooperate to ensure the proper tuning of
synaptic transmission across the wide range of possible
patterns of presynaptic activity. Likelihood (once properly
corrected for the differing number of free parameters)
constitutes a theoretically principled metric to compare
both the descriptive and predictive powers of different
models over the same benchmark datasets. Our method,
thus, paves the way to factorial testing of models of
synaptic transmission, an approach that is increasingly
and fruitfully being used in neuroscience and cognitive
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science (Pinto et al., 2009; Daunizeau et al., 2011; van den
Berg et al., 2014).
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