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Abstract

Biological systems are typically composed of cells heterogeneous for genotype
and phenotype, the latter being time-evolving in response to internal or ex-
ternal stimuli. In order to take these aspects into account, we here propose a
modeling framework in which a discrete structuring variable distuinguishes cells
according to their genotype while a specific mathematical representation (i.e.,
individual/pointwise vs. collective/density-based) is assigned to each individ-
ual on the basis of its phenotypic hallmarks. A coherent procedure is then set
to reproduce mechanisms of phenotypic plasticity: based on the definition of a
bubble function, which gives the spatial distribution of the mass of a single cell,
it possibly accounts the role played by stochasticity and environmental condi-
tions. The proposed modeling environment is then enriched with the inclusion
of further cell behavior, such as migratory dynamics and duplication/apoptotic
processes, as well as with chemical kinetics. The resulting multiscale hybrid
approach is finally applied to the scenario of a heterogeneous tumor aggregate
cultured in vitro.
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1. Introduction1

We here propose a theoretical/computational approach that allows to char-2

acterize cells both at the genotypic and at the phenotypic level. In particular,3

a discrete trait variable is used to structure a cell population with respect to4

individual genetic makeup. In other words, each value of this variable is set to5

correspond to a given sequence of genes. A distinct mathematical representa-6

tion, i.e., pointwise/discrete or density-based/continuous, is instead employed to7

distinguish cells with respect to their (possibly dicothomic) phenotype/effective8

behavior, which is established by gene transcription and therefore expression9

levels. In this respect, the subpopulation of cells with a given phenotype is10

represented by a set of particles, whereas the remaining group of individuals,11

characterized by the alternative phenotype, is represented by a continuous den-12

sity function.13

The association between a cell phenotype and a mathematical representation14

is here determined by reasonable biological arguments. A pointwise description15

is in fact more appropriate for specialized/activated/highly metabolic cells or for16

cells withmesenchymal determinants, i.e., with the ability to undergo individual17

directional movement in response to environmental cues. On the other hand, a18

density-based representation, characterized by a lower level of individual detail,19

is more suitable for non-specialized/quiescent/poorly metabolic cell ensembles or20

for cells with epithelial determinants, i.e., which undergo collective dynamics21

mainly guided by intercellular communication.22

In our model, the “discrete vs. continuous” dichotomy is indeed not re-23

ferred to the spatial scale at which the system is modeled (i.e., “microscopic24

vs. macroscopic”); rather it is employed to differentiate cell behavior. This as-25

pect distinguishes the mathematical environment proposed here from classical26

approaches presented in the literature, which typically rely on the idea that a27

density-based description is a good approximation of the discrete counterpart28

in the case of systems composed of substantially high amounts of particles with29

negligible mass. These mathematical frameworks are typically based on mean-30

field limits [1], heuristic laws of large numbers [2], or coarse-graining procedures31

[3]. Macroscopic formulations have been also derived by selected lattice-gas32

cellular automata (LGCA) in [4].33

By the definition of a bubble function that represents a plausible spatial34

distribution of the mass of a single individual, we then implement the passage35

between the two descriptive instances. This strategy, firstly proposed in [5, 6],36

allows to model the phenomenon of phenotypic plasticity, that is the ability of37

cells to switch back and forth among multiple phenotypes while maintaining38

unaltered their genotype [7]. In particular, we here assume that phenotypic39

conversions are triggered by environmental signals, dependent on cell genetic40

traits, and affected by randomness. The inclusion of the last aspect represents41

a significant novelty w.r.t. the previously-cited works [5, 6]. The possibility for42

cells to have an evolving phenotype has been taken into account in some other43

approaches. For instance, in individual-based/cellular automata models, each44

single cell is allowed to vary the label indicating its actual phenotype, as in the45
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case of the well-celebrated Cellular Potts Model, see [8] and reference therein.46

Also a hybrid approach allows the description of different phenotypes with differ-47

ent discrete populations, as done in [9]; differently from the modeling approach48

we present, in this context the discrete setting is used for all cell dynamics while49

the continuous description is adopted for microenvironmental dynamics, such as50

oxygen or extracellular matrix. Models based on a continuous cell description51

(also in the framework of the Theory of Mixtures) instead typically associate52

to each subpopulation a distinct density function: phenotypic conversions are53

then implemented by mass exchanging terms included in the evolution equa-54

tions for cell dynamics, as done for instance in [10, 11]. We refer to [12] for55

a comprehensive review of mathematical approaches to model cell plasticity in56

the framework of tumor growth. Finally, in approaches dealing with structured57

populations, where the trait variable is not referred to the genotype of cells but58

rather to their behavioral determinants, and therefore takes values in a con-59

tinuous interval, random phenotypic transitions are accounted by including a60

diffusion term on the trait domain, see, e.g., [13, 14, 15]. However, in all these61

cases phenotypic switches do not imply variations in the mathematical repre-62

sentation of cells, which is a novelty introduced in the above-cited works [5, 6]63

and here extended by the inclusion of genetic traits and probabilistic aspects.64

Our model is finally enriched with cell migratory and growth dynamics, that65

are assumed to depend on cell genotype and phenotype.66

Applicative potential of the proposed model. The proposed modeling approach67

is indeed able to capture and represent genetic and phenotypic heterogeneity68

among a given system of cells, as well as selected mechanisms underlying phe-69

notypic plasticity. Its possible applications therefore span a wide spectrum of70

phenomena since the evolution of aggregates of cells, from small clusters to large71

populations, is typically determined by cooperative dynamics and interactions72

between the component individuals differing both at the DNA and at the protein73

level.74

For instance, in most collective cell movement, few specialized individuals,75

able to sense environmental chemical signals, typically behave as a pattern-76

ing guidance for the rest of the system, which instead passively displaces only77

due to adhesion, see [16, 17] and references therein. It is the case of angio-78

genic processes, where a small number of endothelial cells forming the walls79

of pre-existing vessels acquire a leader/tip phenotype, representing migratory80

cues for the neighboring individuals with a follower/stalk behavior [18]. These81

mechanisms are triggered by a number of diffusing growth factors (e.g., vascu-82

lar endothelial growth factor - VEGF, hepatocyte growth factors - HGF) and83

mediated by the well-known Delta-Notch signaling pathways [19, 20].84

Similarly, during skin repair after injury, the cells located at the front of85

the epidermal monolayers that invade the wounded region are characterized by86

actin-rich lamellipodia and pseudopodia, that allow active movement, and are87

able to synthesize a new basement membrane, whereas individuals at the rear88

regions only passively displace dragged by cell–cell adhesive interactions.89

Cell heterogeneity is also observed in pathological situations, such as in tu-90
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mor growth. For instance, individuals exhibiting different sequences of genes91

and/or phenotypic determinants have been found in several types of disease, in-92

cluding breast cancer [21], colorectal cancer [22], brain cancer [23], and prostate93

cancer [24]. Interestingly, it has been shown that malignant cells within the94

same mass exhibit different behavior in spite of carrying the same genetic al-95

terations [25]. Cancer cells have been also demonstrated to be able to switch96

between alternative phenotypic states either spontaneously or in response to97

ecological inputs. For example, nutrient-deprived malignant individuals activate98

downstream pathways that result in a shift towards a more aggressive behavior.99

These cells in fact lose epithelial characteristics, such as high adhesiveness and100

high duplication capacity, and acquire mesenchymal features, such as enhanced101

motility, which allow them to more effectively invade surrounding tissue. This102

phenomenon, denoted as epithelial-to-mesenchimal transition (EMT), is also103

involved in physiological scenarios, such as morphogenesis and organogenesis.104

The inverse process may occur as well: tumor cell with mesenchymal deter-105

minants can lose their migratory freedom and re-acquire epithelial hallmarks,106

including expression of junctional proteins, when experiencing a sufficient level107

of environmental substrates [26]. Phenotypic differentiation and conversions108

of genetically identical tumor cells have been also shown to (i) facilitate sur-109

vival and adaptation of the entire disease, which can play “hide-and-seek” with110

multiple therapeutic regimes [27, 28], and (ii) fuel subsequent genetic evolution111

[29, 30].112

Structure of the article. The remaining part of the article is organized as fol-113

lows. In Section 2, we introduce the main model ingredients and present a114

sample numerical realization that shows how the procedure for the phenotypic115

switch works. In Section 3, we apply our approach to the representative case116

of a heterogeneous tumor aggregate evolving in an oxygen-deprived domain. In117

Section 4, we finally give some conclusive remarks and hints for further model118

developments.119

2. Proposed approach and representative simulation120

We are interested in modeling the evolution of an aggregate of cells within121

a closed two-dimensional domain D ⊂ R2, whose dynamics are studied for the122

period T = [0, tF] ⊂ R+
0 , t being the time variable. The spatial domain D may123

reproduce, for instance, a planar section of an in vivo tissue or the surface of a124

Petri dish, usually employed in experimental studies.125

The cells composing the system are here differentiated according to two126

determinants, as sketched in Fig. 1 (A):127

• their genotype, by the use of a discrete trait variable u;128

• their phenotype, by the use of different mathematical representations.129

Our approach is indeed based on the assumption that there is not a deterministic130

and/or necessary relation between the genetic trait of a cell and its phenotype:131
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the latter is in fact determined at the protein level, i.e., by effective gene tran-132

scription and expression levels, which are eventually affected by stochasticity133

and extracellular/environmental stimuli and conditions (by the so-called sur-134

rounding ecology).135

The structuring variable u is set to assume a given number of values, say K,136

i.e., u ∈ U = {uk}Kk=1. In this respect, the generic state uk̂ defines the cell clone137

characterized by the k̂-th genetic makeup, i.e., by the k̂-th sequence of genes.138

We then consider two alternative cell phenotypes, say “A” and “B”, and
associate each of them to a distinct mathematical descriptive instance, as pro-
posed in [5, 6]. In particular, for a given cell variant with genotipic trait uk̂ ∈ U ,
the individuals that show phenotype A have a discrete representation: they are
reproduced with dimensionless points with concentrated unitary mass and iden-
tified by their actual position in space (see panel (A) in Fig. 1). Such subgroup
of agents can be indeed collected in the following set:

XA
uk̂
(t) =

{
x1,uk̂

(t), . . . ,xNA
u
k̂
(t),uk̂

(t)
}
, (1)

with xi,uk̂
(t) ∈ D, for i = 1, ..., NA

uk̂
(t), being NA

uk̂
(t) the number of cells with

phenotype A and genotype uk̂ at time t. The overall amount of individuals with
phenotype A within the entire aggregate can be therefore computed as

NA(t) =

K∑
k=1

NA
uk
(t). (2)

The remaining part of the clone of cells with the k̂-th genetic trait is instead
characterized by phenotype B and collectively described by the number density
function aB(t,y, uk̂) : T × D × U 7→ R+

0 (as shown in Fig. 1 (A)). The local
amount of individuals with phenotype B can be therefore evaluated as

ρB(t,y) =

K∑
k=1

aB(t,y, uk). (3)

In this respect, aB(t,y, ·) can be interpreted as the local distribution of cells
with phenotype B on the genotype space U . The overall number of agents
with phenotype B actually present within the entire domain D can be then
approximated by integrating ρB along the space variable and rounding down
the obtained value:

NB(t) =

⌊∫
D

ρB(t,y) dy

⌋
. (4)

The total number of cells composing the aggregate at any given time t is finally139

equal to N(t) = NA(t) +NB(t).140

Remarks. For the sake of completeness, we now give some comments on the141

above-proposed modeling framework:142
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• the association between the different cell genetic makeups and the corre-143

sponding values of the variable u is arbitrary;144

• the association between a cell phenotype and the corresponding mathe-145

matical representation is instead suggested by biological considerations,146

as explained in the Introduction of this article;147

• in principle, our approach could include more than two cell phenotypes.148

This would require the use of hybrid mathematical representations, i.e.,149

able to account for a proper amount of microscopic granularity within a150

macroscopic/continuous description of the system of interest, which would151

be possible, for instance, by employing tools of Measure Theory [31, 32];152

• the proposed modeling environment is hybrid but not, so far, multiscale,153

in the sense that different mathematical objects (i.e., material points and154

number densities) are used together but represent biological elements at155

the same spatial scale, i.e., different types of cells.156

Modeling cell phenotypic plasticity. In a wide range of biological phenomena,
cells are able to change phenotype while maintaining their genetic makeup,
i.e., to vary the expression level of one or more of their genes. To reproduce
this phenomenon in our modeling framework, we need to set up a procedure
to switch between the two cell descriptive instances. It is indeed necessary to
define a proper correspondence between the pointwise and the density-based
representation of a single cell. In this respect, let us proceed as in [5, 6] and
introduce a function φx(y) : D ×D 7→ R+

0 such that:∫
D

φx(y) dy = 1. (5)

φx approximates the spatial distribution of a cell whose center is located in
x ∈ D. In principle, there exist several possible options to explicit φx(y).
However, in accordance with the already-cited works [5, 6], we hereafter use the
following bubble function, which assumes a greater amount of cell mass around
x, as shown in Fig. 1 (B):

φx(y) =


4

πr8
(r2 − |y − x|2)3, if |y − x| ≤ r;

0, otherwise.
(6)

In Eq. (6), | · | identifies the Euclidean norm while r is set to approximate a157

mean cell radius: hereafter, it will have a value of 15 µm.158

Let us now assume that, at a certain time t, the i-th cell with phenotype A
and genotype uk̂ ∈ U undergoes a transition to phenotype B. From a biological
perspective, this may be the result of environmental stimuli (triggered by chem-
ical signals or by intercellular communication) or of the fact that the individual
i is able to maintain phenotype A only for a limited period of time (e.g., due
to high metabolic costs). The proposed A-to-B phenotypic switch can be then
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Figure 1: (A) In our modeling environment, each cell is differentiated for genotype, i.e.,
by the use of a discrete structuring variable u ∈ U , and for phenotype, i.e., by the use
of a specific mathematical representation. In particular, we only consider two alternative
individual phenotypes, which are set to correspond either to a pointwise or to a density-based
descriptive instance. (B) For representative purposes, bidimensional and threedimensional
plots of the bubble function centered in x = (0, 0), i.e., φ(0,0) (cf. Eq. (6)). We recall that the
radius r of the round support of φ is constantly taken equal to 15 µm. (C) We here set that cell
dynamics such as growth, migration, and phenotypic switches are affected both by individual
genetic trait and by variations in environmental (i.e., ecological) conditions. Stochasticity
plays a role as well. In particular, A-to-B phenotypic transition of the generic cell i with
genotype uk̂ is implemented by the removal of the material point located in xi,u

k̂
and the

simultaneous addition of the corresponding bubble function φxi,u
k̂

to the mass distribution

aB(·, ·, uk̂). Conversely, a B-to-A phenotypic switch, stimulated in the domain point xs and
involving the cell variant with genotype uk̂, amounts in the local creation of a new material
point xNA

u
k̂
(t)+1,u

k̂
and in the simultaneous removal of the bubble function φxs to the mass

distribution aB(·, ·, uk̂).

implemented in our modeling framework by removing the material point located
in xi,uk̂

(t) and by simultaneously adding the equivalent mass function φxi,u
k̂
(t)

to the density of the cell variant characterized by the same trait uk̂, as shown
in Fig. 1 (C). In mathematical terms, we indeed get the following relations:

XA
uk̂
(t+) = XA

uk̂
(t) \ {xi,uk̂

(t)};
XA

uk
(t+) = XA

uk
(t), for all k ̸= k̂;

aB(t+,y, uk̂) = aB(t,y, uk̂) + φxi,u
k̂
(t)(y), for all y ∈ D;

aB(t+,y, uk) = aB(t,y, uk), for all k ̸= k̂; and y ∈ D.

(7)
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Finally, the remaining particles with phenotype A and genotype uk̂ are renum-
bered according to the rule

xj,uk̂
(t+) =

{
xj,uk̂

(t), if j < i;

xj−1,uk̂
(t), if j > i.

(8)

In Eqs. (7) and (8), as well as in the following, the notation t+ is used to specify159

that, from a numerical point of view, phenotypic transitions are not simultane-160

ously implemented with the other processes, e.g., cell movement, duplication,161

death, that occur at the same time instant (see also [5, 6]). The generalization162

of the above procedure to more cells that actually switch from phenotype A to163

phenotype B, possibly with different genotypic traits, is straightforward.164

Let us then conversely assume that, at time t, an environmental stimulus,
that is in principle able to trigger a transition from phenotype B to phenotype
A in individuals with the generic genotype uk̂ ∈ U , is active in a given domain
location, say xs ∈ D. Such a switch can occur only if there is a sufficient
density of the cell variant of interest to have a localized agent placed in xs. In
mathematical terms, this amounts to satisfy the following local constraint:

aB(t,y, uk̂) ≥ φxs
(y), for all y ∈ D. (9)

In this case, the cell phenotypic transition from B to A (and the corresponding
representation switch) results from the removal of φxs

from the distribution
aB(t, ·, uk̂), accompanied by the addition of the corresponding new element to

the set XA
uk̂

(see panel (C) in Fig. 1):
XA

uk̂
(t+) = XA

uk̂
(t) ∪ {xNA

u
k̂
(t)+1,uk̂

(t) ≡ xs};

XA
uk
(t+) = XA

uk
(t), for all k ̸= k̂;

aB(t+,y, uk̂) = aB(t,y, uk̂)− φxs(t)(y), for all y ∈ D;

aB(t+,y, uk) = aB(t,y, uk), for all k ̸= k̂ and y ∈ D.

(10)

Furthermore, the following rules are set:165

• in the case of B-to-A phenotypic transitions involving the same cell clone,166

e..g, with genotype uk̂, and simultaneously stimulated in two distinct167

domain points xs1 and xs2 such that φxs1 and φxs2 overlap, two al-168

ternative options are accounted: (i) if aB(t,y, uk̂) ≥ φxs1(y) + φxs2(y)169

for any y ∈ D, then both behavioral switches occur; (ii) if, otherwise,170

aB(t,y, uk̂) ≥ φxs1
(y), φxs2

(y) but aB(t,y, uk̂) < φxs1
(y) + φxs2

(y) for171

at least one domain point, then only one transition takes place, which is172

randomly established. The same rule is extended in the case of more than173

two phenotypic transitions with analogous characteristics;174

• B-to-A phenotypic transitions are not allowed in any domain point effec-175

tively occupied by a pointwise agent (regardless its genotype). Coherently,176
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Figure 2: Initial condition of the representative simulation, as specified by Eq. (11). The
subpopulation with phenotype B has a radial symmetry: in particular, the cell variant with
genotype u1 is mainly located at the bulk of the cluster, the cell variant with u3 forms an
external ring, whereas the cell variant with u2 is distributed in the intermediate region. A
group of individuals with phenotype A is then dispersed around and within the distribution of
cells with phenotype B. In particular, we hereafter use light blue circles to indicate particles
with phenotype A and genotype u1, blue triangles to indicate particles with phenotype A and
genotype u2, and dark blue squares to indicate particles with phenotype A and genotype u3.
Such an initial cell configuration is maintained in the case of the model application proposed
in Section 3.

only one B-to-A phenotypic switch is allowed (and arbitrarily established)177

at the same time in the same domain point. These constraints are con-178

sistent with the observation that, in a wide range of phenomena, a cell179

that activates inhibits the surrounding individuals to undergo the same180

process. It is the case, for instance, of the tip cell selection and lat-181

eral inhibition mechanism controlled by the Delta-Notch pathways during182

physio-pathological angiogenesis;183

• simultaneous B-to-A phenotypic switches occurring at far enough spatial184

regions are instead always permitted.185

It is instead useful to remark that the above ones are tailored rules and therefore186

can be in principle neglected and/or replaced by other assumptions.187

Sample simulation. Before including in the proposed modeling framework more
realistic biological mechanisms and dynamics, let us propose and comment a
representative numerical realization. It deals with a colony of cells which do
not grow or move but only undergo arbitrarily selected phenotypic transitions.
In more details, in the spatial domain D = [−150 µm, 150 µm]2, we place an
aggregate whose component individuals can have three different genetic make-
ups, i.e., U = {u1, u2, u3}, while showing the usual dichotomy in the phenotype,
i.e., A and B. The initial system configuration is then given by the following
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distribution of cells:

XA
u1
(0) = { x1,u1

= (−45, 15) } ;
XA

u2
(0) = { x1,u2

= (75, 0); x2,u2
= (−45, 75) } ;

XA
u3
(0) = { x1,u3

= (60, 75); x2,u3
= (90,−105); x3,u3

= (−105,−45) } ;

aB(0,y, u1) = 3.1 mφ exp
(
−|y|2

325

)
;

aB(0,y, u2) = 2.4 mφ exp
(
−|y − 25|2

325

)
;

aB(0,y, u3) = 1.7 mφ exp
(
−|y − 50|2

325

)
,

(11)
for all y ∈ D, being mφ = 4/πr8 the maximum of the bubble function (cf. Eq.
(6)), see Fig. 2. The overall number of cells at the onset of the simulation, which
remains constant in time due to the absence of duplication/death mechanisms,
amounts to:

N(0) = NA(0) +NB(0)

= [XA
u1
(0)] + [XA

u2
(0)] + [XA

u3
(0)] +

⌊∫
D

ρB(0,y) dy

⌋
= 6 +

⌊∫
D

[aB(0,y, u1) + aB(0,y, u2) + aB(0,y, u3)] dy

⌋
= 6 + 188 = 194,

(12)

where [Q] indicates the cardinality of a generic set Q.188

At a given time t1, an external input able to stimulate a switch from phe-189

notype B to phenotype A for all cell clones, regardless their genetic trait, ac-190

tivates in an arbitrary set of domain points, radially disposed along the main191

axies: xs1 = (15, 0), xs2 = (50, 0), xs3 = (85, 0), xs4 = (0, 15), xs5 = (0, 50),192

xs6 = (0, 85), xs7 = (−15, 0), xs8 = (−50, 0), xs9 = (−85, 0), xs10 = (0,−15),193

xs11 = (0,−50), and xs12 = (0,−85), see top panels in Fig. 3. In this respect:194

• no transition takes place in xs3, xs6, xs9, and xs12 due to the lack of195

sufficient mass density of any cell genetic variant;196

• in xs2, xs5, xs8, xs11, only the subpolulation with genetic trait u3 is able197

to undergoes phenotypic switch, as aB(0,y, u3) ≥ φxsj
(y) for all y ∈ D198

and sj ∈ s2, s5, s8, s11, a condition that instead is not satisfied by the199

distributions of the other cell genotypes;200

• in xs1, xs4, xs7, xs10, both the cell clone with genotype u1 and the cell201

clone with genotype u2 have in principle enough mass to undergo a single-202

cell switch from phenotype B to phenotype A (i.e., aB(0,y, u1), a
B(0,y, u2) ≥203

φxsj(y) for all y ∈ D and sj ∈ s1, s4, s7, s10). However, as previously204

commented, only a single B-to-A phenptypic switch is allowed to occur205

at a given time in a given domain location: in this respect, we arbitrarily206

establish that in each of the four points, only the genetic variant u2 is207

subjected to phenotypic conversion.208
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Figure 3: Sample simulation showing how phenotypic switches are implemented in the pro-
posed modeling environment. In the left panels, we represent the evolution of the entire
aggregate of cells: in particular, we plot both the overall density of the subpopulation with
phenotype B, i.e., ρB (cf. Eq. (3)), and the set of particles with phenotype A. Within this
subgroup, the light blue circles identify cells with genotype u1, the blue triangles identify cells
with genotype u2, and the dark blue squares identify cells with genotype u3. The right panels
magnificate the dynamics of a representive section of the domain.

The above-described dynamics are schematically visualized, in the case of a
representative domain section, in the top-right graph of Fig. 3. The updated
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system configuration then reads as5

XA
u1
(t1) = XA

u1
(0);

XA
u2
(t1) = XA

u2
(0) ∪ { x3,u2

≡ xs1;x4,u2
≡ xs4;x5,u2

≡ xs7;x6,u2
≡ xs10 } ;

XA
u3
(t1) = XA

u3
(0) ∪ { x4,u3

≡ xs2;x5,u3
≡ xs5;x6,u3

≡ xs8;x7,u3
≡ xs11 } ;

aB(t1,y, u1) = aB(0,y, u1);

aB(t1,y, u2) = aB(0,y, u2)− φxs1(y)− φxs4(y)− φxs7(y)− φxs10(y);

aB(t1,y, u3) = aB(0,y, u3)− φxs2(y)− φxs5(y)− φxs8(y)− φxs11(y),

(13)
for all y ∈ D. We indeed have that N(t1) = NA(t1) + NB(t1) = 14 + 180 =209

194 = N(0).210

Successively, at t2, an analogous local signal is present in the following set211

of points: xs13 = (45, 0), xs14 = (0, 45), xs15 = (−45, 0), and xs16 = (0,−45),212

see the central panels in Fig. 3. In all cases, no phenotypic switch actually213

occurs. In fact, no cell genetic variant has a sufficient amount of mass over the214

support of φxsj
(with j=13, 14, 15, 16) despite the overall mass of individuals215

with phenotype B, measured by ρB would be in principle high enough. In this216

respect, the system does not vary with respect to (13).217

We finally set that at time t3, the cell x1,u2 , located in (75, 0) from the
beginning of the observation time, is triggered to turn back to phenotype B, as
shown in the bottom panels of Fig. 3. The pointwise particle is indeed replaced
by the corresponding bubble function, that is added to the mass of the proper
cell genetic variant, as

XA
u1
(t3) = XA

u1
(t2) = XA

u1
(t1) = XA

u1
(0);

XA
u2
(t3) = XA

u2
(t2) \ { x1,u2

} = XA
u2
(t1) \ { x1,u2

} ;
XA

u3
(t3) = XA

u3
(t2) = XA

u3
(t1);

aB(t3,y, u1) = aB(t2,y, u1) = aB(t1,y, u1) = aB(0,y, u1);

aB(t3,y, u2) = aB(t2,y, u2) + φx1,u2
(y) = aB(t1,y, u2) + φx1,u2

(y);

aB(t3,y, u3) = aB(t2,y, u3) = aB(t1,y, u3),

(14)

for all y ∈ D, so that N(t3) = NA(t3) +NB(t3) = 13 + 181 = 194 = N(0). For218

the sake of reader’s convenience, we recall that the element belonging to the set219

XA
u2

have to be renumbered according to (8).220

Remark. As already commented in the Introduction, and sketched in Fig. 1 (C),221

a cell is stimulated to undergo phenotyic plasticity by environmental signals,222

but the effective transition depends on its genetic makeup and on the intrinsic223

stochasticity of the mechanism. These aspects have not been accounted so far,224

as all the proposed cell phenotypic switches have been set to actually take place225

5Notation remark: since in this simulation setting cell dynamics only include phenotypic
plasticity, the differentation between ti and t+i (for i = 1, 2, 3) is not necessary, and therefore
avoided for the sake of simplicity.
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(provided a sufficient cell mass in the case of B-to-A conversions). Such a model226

shortcoming is tackled in the next section, where more realistic rules underlying227

variations in cell phenotype will be given.228

3. Model application: early dynamics of an in vitro tumor aggregate229

We then turn to apply the proposed model to one of the scenarios introduced230

in Section 1, i.e., the tumor growth. In particular, we hereafter show how our231

approach can be used to reproduce selected aspects of the early dynamics of a232

malignant aggregate cultured in vitro. In the context of our interest, the trait233

variable u is set to assume three values, i.e., U = {u1 = 0;u2 = 0.5;u3 = 1},234

each indicating a distinct sequence of genes. In this respect, the higher is the235

value of u the more the corresponding genotype is associated to cells that in236

principle have high migratory potential and low proliferation capacity, see Fig. 4237

(A). The definition of the structuring variable u is indeed coherent with the “Go238

or Grow” (GoG) assumption, which finds support from both the experimental239

[33, 34] and the theoretical literature [35]. Phenotype A, and therefore an240

individual pointwise representation, is then assigned to describe tumor cells241

with mesenchymal determinants (i.e., that show an effectively high invasiveness242

and a poor mitotic activity). Phenotype B, as long as a collective density-243

based representation, is instead assigned to malignant individuals with epithelial244

hallmarks (i.e., low migratory ability but high duplication rates). Such modeling245

assumptions are sketched in the already-cited panel (A) of Fig. 4.246

In agreement with the scheme shown in Fig. 1 (C), we then assume that247

phenotypic transitions are:248

• stimulated by variations in environmental conditions, in particular in the249

availability of oxygen, whose local concentration will be given by the field250

variable O(t,y) : T ×D 7→ R+
0 . In this respect, hypoxia has been widely251

shown to boost phenotypic instability, acting as a fuel of selective pres-252

sure that stimulates tumor cells to shift towards more aggressive (mes-253

enchymal) hallmarks [36]. For instance, tumor cells displaying high levels254

of hypoxia-inducible factors, such as HIF-1, have been demonstrated to255

overexpress genes relative to the migratory machinery and underexpress256

genes related to mitotic processes, see [37] and references therein. In the257

case of a sufficient amount of resources, malignant individuals have been258

instead shown to maintain or recover a less invasive (epithelial) behavior.259

In this respect, cells with low levels of HIF-1 have been shown to transcript260

mainly genes implicated in duplication activities [37];261

• affected by the cell genetic makeup: for instance, a variant characterized262

by a sequence of genes mainly relative to the migratory machinery more263

likely maintains or acquires a mesenchymal behavior (and vice versa) [38];264

• subjected to randomness, which is a critical aspect in most biological265

phenomena.266
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Figure 4: (A) In the proposed model application, the trait value u is set to qualitatively
evaluate the cell motility/proliferation potential. In particular, the higher is the value of u
the more a tumor individual is assigned a sequence of genes that, if expressed, enhances its
migratory ability while dropping its duplication capacity. The phenotype A, and therefore the
corresponding pointwise representation, is given to malignant cells with mesenchymal char-
acteristics; the phenotype B, and the corresponding density-based representation, is instead
assigned to tumor agents with epithelial hallmarks. The thickness of the vertical arrows gives
a qualitative indication of the probability that a cell with a given genotype has to undergo
one of the two phenotypic transitions. In particular, as also shown in the bottom graph of
the panel (B), cells with genotype u = u1 = 0 more likely acquire (or maintain) an epithelial
behavior. In contrast, cells with genotype u = u3 = 1 more likely acquire (or maintain)
mesenchymal hallmarks. (B) Top plot: influence of the genetic trait of a cell on the proba-
bility of phenotypic conversions (see Eqs. (17) and (20)). Bottom plot: genotypic-dependent
duplication rate of malignant epithelial cells (p1, see Eq. (23)) and speed of mesenchymal
individuals (v, see Eq. (27)).

In principle, transition probabilities have to be given as random variables de-
fined on spatio-temporal continuous domains. However, in the perspective of
numerical realizations of the proposed model, we here account only for their
discretized counterpart. According to these considerations, the probability of
a cell xi,uk̂

(t) with phenotype A and genotype uk̂ ∈ U to undergo phenotypic
transition in an interval of time (t − ∆t, t] ⊂ T , being ∆t the size of the time
grid (see below), is equal to:

PA→B(O(t,xi,uk̂
(t)), uk̂) = qA→B(O(t,xi,uk̂

(t))) pA→B(uk̂). (15)

In (15), the first factor evaluates the environmental conditions experienced by
the i-th individual, i.e.,

qA→B(O(t,xi,uk̂
(t))) = H(O(t,xi,uk̂

(t))−OM) (16)
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being

H(O(t,xi,uk̂
(t))−OM) =

{
1 , if O(t,xi,uk̂

(t)) ≥ OM; 0 , if O(t,xi,uk̂
(t)) < OM

}
the Heaviside function and OM the amount of molecular substance needed by
tumor cells to remain in a normoxic condition., i.e., to avoid hypoxia. With Eq.
(16), we are assuming that mesenchymal cells experiencing oxygen deprivation
do not undergo phenotypic transitions. The second factor in (15) instead reads
as:

pA→B(uk̂) = (pmax
A→B − pmin

A→B)(1− uk̂)
2 + pmin

A→B. (17)

It indeed sets a quadratic dependence between the genetic makeup of the cell267

and its possibility to switch phenotype. In this respect, in the case of normoxic268

conditions, mesenchymal individuals with genotype u1 = 0 acquire epithelial269

hallmarks with a probability equal to pmax
A→B whereas particles with genotype270

u3 = 1 with a probability equal to pmin
A→B where, according to the above-explained271

biological arguments, pmin
A→B < pmax

A→B, see Fig. 4 (B-top plot).272

Conversely, considering the same time and space discretization of the previ-
ous case, a cell clone with genotype uk̂ and phenotype B, i.e., whose distribution
is given by the density aB(t, ·, uk̂), is set to acquire mesenchymal determinants
at a certain point xs ∈ D of the discretized space and in an interval of time
(t−∆t, t] ⊂ T with a probability equal to

PB→A(O(t,xs), uk̂) = qB→A(O(t,xs)) pB→A(uk̂), (18)

where, recalling (16),

qB→A(O(t,xs)) = H(OM −O(t,xs)). (19)

The above formula implies that only hypoxic conditions can trigger epithelial-
to-mesenchymal transitions, whose probability to effectively occur depends also
in this case by the cell genotype:

pB→A(uk̂) = (pmax
B→A − pmin

B→A)u
2
k̂
+ pmin

B→A, (20)

where pmax
B→A characterizes the cell clone with trait u3 = 1 and pmin

B→A the cell273

variant with u1 = 0, being pmax
B→A > pmin

B→A, as plotted in the top graph of Fig.274

4 (B). Obviously, the B-to-A phenotypic transition actually takes place if the275

uk̂-th cell variant has enough mass over the support of φxs .276

Remarks. For the sake of completeness, we now give some comments on the277

above-proposed modeling framework:278

• as we will see in details in the section devoted to the simulation details,279

the sizes of the time and space discretization steps affect the estimate of280

the parameters pmax
A→B, p

max
A→B, p

max
B→A and pmin

B→A;281

• phenotypic transitions are actually employed according to the correspond-282

ing procedures explained in the previous section;283
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• in the case of simultaneously possible epithelial-to-mesenchymal switches284

occurring in the same domain point, it only takes place the one involving285

the cell variant with the highest value of u;286

• in Eqs. (17) and (20), we have assumed a quadratic relationship between287

the value of the structuring variable u and the transition probabilities.288

Different laws may of course be chosen: however, they have to maintain289

the same qualitative trends of those proposed here;290

• more sophisticated functions may be set also to describe the influence of291

oxygen on phenotypic variations. For instance, the probability of a cell to292

acquire mesenchymal determinants may increase upon decrements in the293

chemical concentration below the threshold OM. One could also consider294

two different oxygen thresholds OM1 < OM2 such that the phenotypic295

switch from A to B occurs for oxygen concentrations above OM1 and the296

phenotypic switch from B to A occurs for oxygen concentrations below297

OM2.298

Cell dynamics. Malignant cells with epithelial determinants are here assumed
to proliferate and undergo random movement. The evolution of the density
of the uk̂-th variant with phenotype B can be indeed described by means of
the following partial differential equation (PDE), whose boundary and initial
conditions will be specified later on:

∂aB

∂t
(t,y, uk̂) = DB∆aB(t,y, uk̂)︸ ︷︷ ︸

diffusive movement

+ p(uk̂, ρ(t,y)) a
B(t,y, uk̂)︸ ︷︷ ︸

proliferation

, (21)

where ρ(t,y) account for the local tumor mass (see below Eqs. (25) and (26)).
The diffusion term at the r.h.s. of Eq. (21), with constant coefficient DB > 0,
models Brownian cell displacements. The reaction term instead expresses local
variations in the mass of the uk̂-th epithelial cell variant. In particular, they are
assumed to depend on (i) individual genetic trait and (ii) physical limitations
determined by the available space. In this respect, p can be factorized as it
follows:

p(uk̂, ρ(t,y)) = p1(uk̂) p2(ρ(t,y)). (22)

The duplication law p1 accounts for the fact that higher proliferation rates
characterize cell variants with lower values of the trait variable u (that, as
previously seen, are associated to sequence of genes mainly implicated in the
mitotic machinery). In this respect, to avoid overcomplications, we assign to p1
a linear trend, see Fig. 4 (B-bottom plot):

p1(uk̂) = (γmax − γmin)(1− uk̂) + γmin, (23)

being γmax a maximal duplication rate, characteristic of cells with genotype
u = u1 = 0, and γmin the corresponding minimal value, that is instead assigned
to individuals with genotype u = u3 = 1. The factor p2 in Eq. (22) instead
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models the fact that the mitotic cycle is typically disrupted in overcompressed
cells, although abnormal proliferation is a relevant characteristic of malignant
masses. This phenomenon can be replicated by setting the following logistic
law:

p2(ρ(t,y)) = 1− ρ(t,y)

c
, (24)

where c > 0 is a carrying capacity while

ρ(t,y) = ρA(t,y) + ρB(t,y), (25)

being ρB defined as in Eq. (3), and

ρA(t,y) =
3∑

k=1

NA
uk∑

i=1

φxi,uk
(t)(y). (26)

In Eq. (24), we consider that the available space is reduced by the presence also299

of mesenchymal individuals, whose influence on the overall mass distribution can300

be accounted by the use of the corresponding set of bubble functions, as given301

in Eq. (26). Eq. (21) is then equipped by Neumann homogeneous boundary302

conditions on the spatial domain D, which are consistent with the fact that cells303

can not physically cross the border of an experimental Petri dish.304

The dynamics of tumor cells with mesenchymal determinants only include
a directional movement towards domain regions with higher oxygen concentra-
tions. In this respect, for the i-th individual with phenotype A and generic
genotype uk̂, we set:

dxi,uk̂

dt
(t) =

∇O(t,xi,uk̂
(t))

|∇O(t,xi,uk̂
(t))|

v(uk̂), (27)

with v(uk̂) = (vmax − vmin)uk̂ + vmin, see the bottom graph in Fig. 4 (B).305

In Eq. (27), cell speed and direction of movement are decoupled, given their306

distinct physical meaning. The former depends on the pattern of available307

resources, the latter, quantified by the scalar functions v : U 7→ [vmin, vmax], is308

instead affected by individual genetic makeup. In this respect, recalling that309

higher values of u imply higher motile potential, vmax is the speed of cells with310

genotype u = u3 = 1, whereas vmin of cells with genotype u = u1 = 0. It311

is finally useful to underline that Eq. (27) is based on the overdamped force-312

velocity assumption: it establishes that, in extremely viscous regimes such as313

biological environments, the velocity of moving agents and not their acceleration314

is proportional to the sensed forces (see [8] and references therein for a detailed315

comment). When a mesenchymal cancer cells reaches a point of the border of D,316

the component of its velocity locally normal to the boundary itself is arbitrarily317

set equal to zero.318

Summing up, it is possible to conclude that, in this sample model application,319

genetic trait and ecological/environmental conditions not only affect phenotypic320
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transitions of the cancer cells but also their effective growth and migratory321

dynamics, as sketched in panel (C) of Fig. 1.322

Chemical dynamics. We assume that oxygen diffuses within the domain and
is consumed equally by all tumor individuals, regardless their genotype and
phenotype. Its kinetics can be therefore described by the following reaction-
diffusion (RD) equation:

∂O

∂t
(t,y) = DO∆O(t,y)︸ ︷︷ ︸

diffusion

−λO ρ(t,y)O(t,y)︸ ︷︷ ︸
consumption by

tumor cells

−αOO(t,y)︸ ︷︷ ︸
decay

, (28)

whereDO, λO, and αO are constant coefficients, that quantify chemical diffusion,323

consumption by malignant cells and natural decay, respectively, being ρ defined324

as in Eq. (25). Eq. (28) is finally completed with Dirichlet conditions along the325

entire domain boundary ∂D, i.e., O(t, ∂D) = O, for all t ∈ T : we are indeed326

assuming a continuous and constant chemical supply within our virtual Petri327

dish. The oxygen initial pattern will be instead specified below. It is useful to328

remark that the inclusion of chemical dynamics gives to our model a multiscale329

aspect, as it now deals with elements characteristic of both the cellular and the330

subcellular levels.331

Numerical details. For the spatial domain D, we have employed a triangular332

mesh with radial simmetry with respect to the center point (0, 0). The charac-333

teristic diameter of each grid element has been taken equal to ∆x = 5µm. For334

the time domain T , we have used an uniform discretization with step equal to335

∆t = 1 h.336

Eqs. (21) and (28), describing the dynamics of the continuous population337

and of the oxygen, have been solved employing a time-explicit Euler method338

coupled with a Galerkin finite-element technique. An explicit Euler method has339

been also employed for the system of ODEs describing movement of pointwise340

cells (cf. Eq. (27)). At any discrete time-step, phenotypic switches are im-341

plemented (as explained in Section 2) just after the numerical solution of the342

above-cited equation for cell dynamics.343

Considering B-to-A switches, the following algorithmic rules are implemented344

for each numerical node of the domain:345

(i) the oxygen level is checked: if it is higher than OM, then no phenotypic346

transition occurs and we pass to another domain point;347

(ii) otherwise, we check the mass of the cell subpopulation with u = u3 = 1:348

if it satisfies condition (9) then a random number from the uniform distri-349

bution between 0 and 1 is drown. If this number is lower than the value of350

the probability given in (18) and evaluated in the case of our interest, then351

the phentoypic transition occurs and we pass to another domain point (re-352

call that a B-to-A phenotypic transition of a given subpopulation locally353

inhibits analogous processes involving other subpopulations);354

(iii) otherwise, the same evaluations described at point (ii) are performed for355

the other subpopulations in descending order with respect to u (to be356
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coherent with the fact that cells with higher genotypic traits u are more357

likely to switch phenotype).358

We keep into account that, when a B-to-A transition takes place in one point,359

it affects the possibility of transition in neighboring points, as some of the con-360

tinuous mass is removed. Thus, in order to avoid biases in spatial location of361

B-to-A phenotypic switches, at every iteration we randomize the order in which362

the points of the numerical lattice are visited.363

We then turn on considering possible A-to-B transitions, which take place364

in areas with oxygen concentration above OM with probability given by (15)365

(using the same drawing algorithm described above). We finally remark that366

the order in which cells with phenotype A are checked for possible transitions367

does not affect numerical outcomes, since A-to-B transitions are independent of368

each other.369

All numerical computations have been performed in Fenics, see [39, 40] and370

references therein.371

Parameter estimate. As previously commented, the probabilities of phenotypic
transitions introduced in Eqs. (15) and (18) are the discretized approximations
of the corresponding continuous-in-time (and in-space) laws. In more details,
the coefficient pmax

A→B (pmin
A→B, rsp.) defines the probability that the i-th cell with

genotype u = u1 = 0 (u = u3 = 1, rsp.) undergoes phenotypic transition at a
given time step, i.e., in the case of normoxic conditions. The estimation of these
values is based on the average time that a cell with mesenchymal characteristics
takes to re-acquire epithelial hallmarks; in our model we assume that it ranges
from Tmin

A→B = 50 h to Tmax
A→B = 200 h. Such quantities (poorly measured in the

empirical literature, see [41] for one of the few contributions in this respect) have
been fixed in order to have a reasonable number of phenotypic transitions in the
period of observation. By recalling that our model is based on the assumption
that cells with lower values of the trait variable more likely undergo A-to-B
transitions, we can indeed set

pmax
A→B =

∆t

Tmin
A→B

and pmin
A→B =

∆t

Tmax
A→B

,

so that pmax
A→B = 2 × 10−2, pmin

A→B = 5 × 10−3. The coefficients pmax,min
B→A instead

give the probability that a single-cell-fraction of mass with phenotype B and
centered in xs changes phenotype at a given time step when falls in hypoxic
conditions. A proper estimate can be obtained by taking into account three
aspects: (i) epithelial cells experiencing oxygen deprivation are here assumed to
acquire mesenchymal determinants in a time lapse that ranges from Tmin

B→A =
8.8 h to Tmax

B→A = 35.4 h; (ii) in our modeling framework higher values of the
genotypic variable imply more possibility to switch towards phenotype A; and
(iii) a finer spatial grid requires a smaller transition probability for each node
xs, otherwise a higher amount of possible nodes of the domain in principle could
allow a higher number of transitions. Taken together, the above considerations
lead to

pmax
B→A ∝ ∆t, (Tmin

B→A)
−1,∆x2 and pmin

B→A ∝ ∆t, (Tmax
B→A)

−1,∆x2.
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In particular, after preliminary simulations, we have fixed pmax
B→A = 4 × 10−3,372

and pmin
B→A = 10−3, which have allowed us to have a reasonable rate of B-to-A373

phenotypic conversions.374

The diffusion coefficient of epithelial cell movement, i.e., DB, has been taken375

equal to 1.29×103µm2/h, as in [42]. The coefficients γmin and γmax quantify the376

minimal and maximal mitotic rate of cells with phenotype B, in the case of fully377

available space. The chosen values γmin = ln(2)/48 h−1 and γmax = ln(2)/24378

h−1 fall within the range quantified for glioblastoma cell lines in either hypoxic or379

normoxic conditions, see again [42]. The carrying capacity c has been set equal380

to 1.69 cell/µm2, in order to maintain a quasi-monolayered cell configuration,381

in agreement with the bidimensional nature of experimental cultures in a Petri382

dish.383

Cells with phenotype A are allowed to freely move within the domain. In this384

respect, the maximal value of their speed vmax, which characterize mesenchymal385

individuals with trait u3 = 1 has been fixed to 10 µm/h, whereas the minimal386

threshold vmin, which characterizes mesenchymal individuals with trait u1 = 0,387

to 2.5 µm/h. These parameters have been taken from [43] and assure that the388

modulus of the overall cell velocity substantially falls within the range of the389

corresponding experimental counterparts evaluated for different malignancies.390

The chemical threshold that leads to hypoxia, i.e., OM, has been set equal to391

2.56× 10−15 µmol/µm2, as it is done in [42]. The diffusion coefficient of oxygen392

has been fixed to DO = 3.60×106 µm2/h, and taken again from [42]. The chem-393

ical consumption rate then amounts to λO = 1.67× 10−10 µm2/(cell ·h): it has394

been empirically measured taking into account of the proposed computational395

setup, in order to have a realistic time-evolution of the molecular pattern. The396

oxygen decay coefficient has been fixed to αO = 3.60× 10−4 h−1, according to397

[44]. The constant production of oxygen at the domain border, i.e., O, has been398

set equal to 2.8×10−15 µmol/µm2: for the reader’s convenience, we remark that399

this value is 1.1×OM. The final observation time tF has been instead set equal400

to 35 h.401

The employed parameter setting is listed in Table 1.402

Simulation results. The spatial domain D, as well as the initial configuration of403

the cell system, is exactly the same employed in the representative simulation404

given in Section 2, specified by Eqs. (11) and (12), and represented in Fig 2.405

At the onset of the forthcoming numerical realization, we indeed have a tumor406

aggregate with few mesenchymal cells (heterogenous for genotype) dispersed407

within and around a cluster of malignant epithelial individuals. In particular,408

the node of tumor cells with phenotype B has a radial distribution w.r.t. the409

center of the domain, with the bulk mainly constituted by the cell variant with410

u1 = 0 and the external region by the cell variant with u3 = 1. The initial411

oxygen concentration is instead given by the stationary solution of Eq. (28),412

evaluated in the absence of cancer cells (i.e., in the case only of chemical diffusion413

and decay): given the low value of the decay rate αO (see above and Table414

1), it consists of a spatially quasi-homogeneous pattern with a chemical level415

approximately equal to 2.8× 10−15 µmol/µm2. The initial oxygen level indeed416
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Parameter Value [Units] Reference

r 15 [µm] [45]

pmin
A→B 5 × 10−3 model estimate

pmax
A→B 2 × 10−2 model estimate

pmin
B→A 10−3 model estimate

pmax
B→A 4 × 10−3 model estimate

DB 1.29 × 103 [µm2/h] [42]

γmin ln(2)/48 [h−1] [42]

γmax ln(2)/24 [h−1] [42]
c 1.69 [cell/µm2] model estimate

vmin 2.5 [µm/h] [43]
vmax 10 [µm/h] [43]

DO 3.60 × 106 [µm2/h] [42]

λO 1.67 × 10−10 [µm2/(cell · h)] model estimate

αO 3.60 × 10−4 [h−1] [44]

OM 2.56 × 10−15 [µmol/µm2] [42]

Table 1: Simulation parameter setting.

exceeds the hypoxic threshold OM in the entire domain.417

Oxygen consumption then starts to occur at the domain area occupied by418

the tumor aggregate, with the extent of local decrements obviously determined419

by the density of malignant individuals. The level of chemical at the inner part420

of the mass indeed drops to the critical value OM and an increasing number of421

epithelial tumor cells (characterized by negligible motility) experiences hypoxia.422

Some of them are then able to undergo phenotypic transition and to acquire423

mesenchymal determinants, see Fig. 5. This group is mainly composed of424

individuals with a trait value u3 = 1, which is associated to the sequence of425

genes that favors (from a probabilistic point of view) such a phenotypic switch.426

The just-differentiated mesenchymal cells, as long as those already present427

at the onset of the simulation, crawl towards oxygenated domain regions: in428

particular, each of them moves with a speed dictated by its genetic trait, as429

shown by the length of the arrows attached to the particles in Fig. 5. The430

remaining fraction of epithelial individuals is instead not able to escape harsh431

environmental conditions: in the case of long-term hypoxia (e.g., long-lasting432

oxygen deprivation), their fate would be an irreversible necrosis.433

As the simulation proceeds, the domain region with low chemical level en-434

larges: as a result, the above-described cell dynamics take place in more periph-435

eral areas of the tumor aggregate and involves an increasing amount of epithelial436

mass. In particular, at the end of the observation time (i.e., at t = tF = 35437

hours), the cell configuration consists of a hypoxic cluster of epithelial tissue,438

mainly formed by individuals with a trait variable equal to u1 = 0. It is sur-439

rounded by scattered mesenchymal cells, that have reached the external regions440

of the domain, i.e., those with higher oxygen availability. Interestingly, few441

of these agents have been able to undergo the inverse transition and reacquire442

epithelial hallmarks (see the bottom panels of Fig. 5). During the entire obser-443
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Figure 5: Representative time instants of the evolution of our virtual tumor aggregate. The
initial condition of the cell system is exactly the same as in Section 2, see Fig. 2. At the
onset of the numerical realization, the oxygen is quasi-homogenously present within the entire
domain with a level that is higher than the hypoxic threshold OM. Subsequent oxygen con-
sumption results in harsh conditions for malignant epithelial cells: some of them are then able
to acquire mesenchymal hallmarks (according to the genotype-dependent probabilistic rule
given in (18)) and move towards domain regions with more availability of resources (see top
and middle panels, i.e., those relative to t = 1 and 7 h). Arrived close to the border of our vir-
tual Petri dish, few of them experience normoxia and recover epithelial determinants (see the
bottom panels, i.e., those relative to t = tF = 35 h). We remark that light blue circles identify
mesenchymal cells with genotype u1, blue triangles identify mesenchymal cells with genotype
u2, and dark blue squares identify mesenchymal cells with genotype u3. The same empty
geometric labels instead identify mesenchymal cell variants that have undergone the inverse,
i.e., A-to-B, phenotypic transition. The arrow attached to each mesenchymal individual iden-
tify its velocity: its length is qualitatively proportional to the individual genotype-dependent
speed.
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vation time, the fraction of malignant epithelial mass goes on proliferating (cf.444

the variations in the values of the colorbar in Fig. 5).445

Our numerical results qualitatively agree with a wide range of experimen-446

tal evidence, which has shown that malignant cells with different phenotypic447

properties occupy tumor regions characterised by different oxygen levels. For448

instance, glioblastoma spheroids cultured in vitro have the core mainly pop-449

ulated by cells with a proliferative activity higher than those located at the450

invasive edges [46, 47, 48, 49]. Analogously, mesenchymal cancer stem cells451

have been found to be abundant near the tumor-stroma boundary (i.e., at the452

external region of the malignant mass) [19]. Similar phenotypic spatial hetero-453

geneity has been observed in malignant spheroids of ovarian [50, 51] or breast454

[52] carcinomas grown in spinner cultures.455

Similar growth of tumor masses, i.e., characterized by an inner region of456

poorly motile individuals unable to escape nutrient deprivation and by an ex-457

ternal possibly scattered ring of aggressive cells, has been also predicted by a458

wide spectrum of theoretical models, see the comprehensive books [53, 54] and459

the excellent reviews [55, 56, 57, 58, 59].460

4. Conclusions and future perspectives461

We have here proposed a modeling framework where cells are distinguished462

in terms of genotype by a discrete structuring variable and in terms of phenotype463

by the assigned mathematical representation (i.e., pointwise or density-based).464

A procedure to consistently switch between the two descriptive instances, which465

is based on the definition and the use of a bubble function, has then allowed to466

account for phenotypic plasticity.467

We have then presented a representative simulation to show how pheno-468

typic transitions actually take place within our theoretical environment, that469

has been finally applied to a more realistic scenario, i.e., the early evolution of a470

heterogeneous tumor aggregate hypothetically cultured in vitro. In particular,471

we have assumed that malignant cells can have one of three distinct genotypes472

and one of two alternative, i.e., mesenchymal vs. epithelial, behavior. Pheno-473

typic conversions have been set to depend on (i) oxygenation levels, (ii) intrinsic474

genotype, and (iii) randomness, which is a novelty of this work w.r.t. [5, 6]. The475

resulting numerical realization has captured the realistic emergence of a hypoxic476

core within the tumor cluster with the consequent cell tendency to acquire a477

more aggressive and invasive (i.e., mesenchymal) phenotype.478

Model improvements. The proposed mathematical environment may be im-479

proved at least in two direction.480

From a strictly modeling perspective, it would be relevant to account for ge-481

netic alterations, that may be induced by cell-cell communication and changes482

in environmental conditions but that are usually determined by random muta-483

tions. This last aspect can be included in the proposed modeling environment484

by stochastic variations of the value of the trait variable u assigned to one or485

more pointwise individuals and/or to one or more portions of the cell mass with486
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the density-based representation. Furthermore, one could consider a continuous487

trait u that takes values in a given interval (e.g., [0, 1]). This would amount488

in using a structuring variable to represent not only genetic heterogeneity (as489

in our model), but also epigenetic heterogeneity: each value of u in fact would490

represent the (normalized) expression of a gene or of a group of genes (or the491

level of one or more proteins). In this case, epigenetic variations in the cell pop-492

ulation could be accounted by including a diffusion term in the trait domain, as493

done in the already cited works [13, 14, 15].494

From an application perspective, our model could be extended to reproduce495

the evolution of a malignant mass in vivo, i.e., to shed lights on the effect of496

intratumoral heterogeity and phenotypic plasticity on the invasiveness of the497

disease. In this respect, one may include in the picture the presence of both the498

preexisting and the tumor-induced vasculature. As a natural extension of our499

model assumptions, we would in fact have to take into account that cancer cells500

in hypoxic conditions not only shift towards more aggressive phenotypes but also501

secrete proangiogenic factors which induce the formation of new blood vessels502

departing from existing ones [60]. In addition, our model could be developed to503

incorporate a more comprehensive description of the metabolism of the different504

cell variants. However, in order to provide consistent results of a such an in505

vivo scenario, model parametrization should be better calibrated, for instance506

by focusing on a specific tumor type and using proper sets of existing data.507
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