
1 Methods
This supplementary material expands on the details and explanations of the methods employed in this study. All methods are
based upon established practice in machine learning, and so were omitted from the main paper; however, for reproducibility
and the interested clinician, we include full explanations here.

1.1 Feature Sets
All features in the dataset were collected early during a patient’s episode, although there are time variations for when they
became available, for example, triage notes are typically available soon after arrival at hospital, while blood tests are not
available until they have been analysed. We therefore evaluated models with incrementally richer data, including combinations
of tabular and text features. We also experimented with using only freetext triage notes. This provided a better understanding
of which features contain relevant information to each task and allowed for a better analysis of how, and where, the resulting
models could be integrated into clinical practice. Table 1 lists the key feature combinations used. The Core Tabular feature set
includes only those features present in a previous baseline study, [1] and was used for comparison of our models with a baseline.
Core Tabular is designed to encapsulate features included in NEWS, with the addition of basic blood tests, demographic data,
and diagnoses and admission routes. The Extended Tabular feature set contains all tabular features that were available in this
study. All other features are grouped according to their type, i.e. text or tabular. In addition to these basic feature groups,
combinations of feature groups are also used, for example, the combined feature group Core Tabular + Triage Notes includes
the tabular features from Core Tabular, plus the freetext features from the Triage Notes group.

1.2 Data Augmentation and Feature Engineering
We engineered and/or augmented the following features:

• ICD-10 codes: we convert each originally recorded ICD-10 [2] three number code to its long-form English description,
such as converting A00.1 to “Cholera due to Vibrio cholerae 01, biovar eltor".

• Dates: we removed dates as they can introduce bias to models. However, time-based features, such as length of stay,
were kept.

• 30-day readmissions: a Boolean value indicating records which are preceded by a record bearing the same unique
patient ID and the two records’ admission dates are ≤ 30 days apart.

• Charlson Index: a patient’s Charlson Comorbidity Index Score, [3] calculated using comorbidities recorded in the coded
diagnoses of the electronic health record (Supplementary Table 1)

• Text embeddings: we extracted text embeddings for the freetext triage notes columns using a pretrained BioClinicalBERT
[4] model.

A lot of patient data is entered manually into the electronic health record, which can lead to transcription errors and
potentially introduce bias into the models. Therefore, each vital sign was checked against fixed ranges, for example 0-100% for
oxygen saturation, with acceptable thresholds determined by our clinical opinion (see Supplementary Table 2). Where data fell
out of this range, we set it to the mid-point of the reported NEWS sub-score for the same record when known, for example, a
record with a reported pulse of 460 and NEWS pulse sub-score of 1 would have their raw pulse value set to 45.

1.3 Machine Learning Pipeline
Both our tree-based and transformer-based models use the same training and evaluation pipeline:

1. Data pre-processing: the raw data is converted into vectors representing each clinical episode. The exact features included
are combinations of the feature sets listed in Table 1. Optional: When using transformer-based models, each episode
vector is converted to text, in the format Column name1: Value1, Column name2: Value2...Column
nameN: ValueN. For example: Waterlow Score: 2, Blood Creatinine
Admission: 100...

2. Data splitting: the pre-processed data is partitioned into two subsets, one for model training and the other for validation.
We opted for a temporal train-test split over standard random splitting [5] and partitioned the dataset such that the first
2/3 of records chronologically serve as the training set and the latter 1/3 as the validation set. For some experiments we
excluded any validation set records where the patient, as identified by their unique ID, had also appeared in the training
set in a previous admission.



3. Model training: the chosen model architecture is trained. The architectures and their training algorithms are outlined in
Supplementary Sections 1.3.1 and 1.3.2.

4. Model calibration: optional. Tree-based models benefit from a post-processing step called calibration. This maps the
numerical outputs of the trained model into well-calibrated probabilities such that the model’s output F(x) becomes an
estimate of P(y = 1|x). For this, we used isotonic calibration. [6]

5. Model evaluation: the trained model is evaluated on the unseen validation dataset specified in the second step of the
model pipeline, using a set of standard metrics. These metrics, and the reasoning for their inclusion, are explained in
Section 2.5 and Supplementary Section 1.4.

1.3.1 Tree-Based Architectures and Training
Hyperparameter optimisation for the LightGBM models used a Bayesian optimisation process that sweeps over the space of
possible hyperparameters and selects values which maximise average precision (AP). [7] The final model was constructed
using the best hyperparameters after 1000 iterations (see Supplementary Table 4 for full details of sweep parameters and
hyperparameters used).

Model calibration was combined with k-fold cross-validation, randomly splitting the training dataset into k = 5 equal-sized
partitions. Each subset was used as a validation set (for model calibration) exactly once; we trained a LightGBM model on four
subsets and use the remaining subset to fit the calibrator. This resulted in 5 independent models that form sub-models of a
final, calibrated ensemble of LightGBM models, such that the final predicted probability of the ensemble, C, is the arithmetic
mean of the sub-models’ output. As discussed in Section 2.3 and Section 1.3, when training LightGBMs on text data, we first
converted the freetext Triage Note and Presenting Complaints features to tabular features using text embeddings generated
from a BioClinicalBERT model. [4] This results in a 768-vector that represents the text for a given dataset record. This vector
was then appended to the structured data already extracted from the electronic health record.

1.3.2 Clinical Language Models and Training
Text-based transformer models are typically pre-trained on a large corpus of text data. While this training text is usually
general-purpose, [8] it can also be task specific, [9] for example, healthcare-related text corpora, because models pre-trained on
task-specific data will learn higher quality associations about the specific task at hand, thus performing better. To assess the
extent to which this domain-specific training affects our models, we experimented with two differently pretrained versions of
BERT [8]. Specifically, we considered:

• BERT: [8] The original BERT model, pretrained on a large corpus of English text

• BioClinicalBERT: [4] An instance of BioBERT [10] which has been further trained on clinical notes contained within
the MIMIC-III [11] dataset

These models contain a spread of knowledge, with one being more general while the other is equipped with specific clinical
information. We tokenised all textual features, converting their text into token sequences. For this we used WordPiece [8], a
model-based subword segmentation algorithm pre-trained on English corpora to recognise around 30,000 common sub-word
tokens. All transformer models were then finetuned on our training dataset for a total of 10 epochs, with a learning rate of
2×10−5 and weight decay of 0.01; the best model checkpoint was then chosen to maximise AP. Following current standard
practice, we did not calibrate the output of BERT-based models. [12]

1.4 Evaluation Metrics
Average precision (AP) is calculated by plotting the precision-recall curve (PR curve) and calculating the area under the curve.
Precision is the ratio T P

T P+FP and recall is T P
T P+FN where T P is the number of true positives, FP the number of false positives

and FN the number of false negatives. An unskilled model would present a horizontal line at y = P
P+N , where P,N are the

number of positive and negative, respectively, samples in the dataset. A theoretical perfect model would yield a single point at
(1,1). The PR curve further allowed the visual inspection of how quickly positive predictive value (PPV) deteriorated as model
sensitivity was increased, which is helpful in a task where it may be appropriate to value sensitivity over specificity.

The strong class imbalance in our task makes the PR curve a much better indicator of performance than the traditional
receiver operating characteristic (ROC) curve, [13] as the latter does not consider the ability of a classifier to accurately classify
the minority class(es). [14] However, we still included ROC curves and area under the ROC (AUROC) metrics in our analyses
to allow comparisons with other studies. To construct a ROC curve, the false positive rate (FPR) is plotted on the x-axis against
the sensitivity on the y-axis. A completely random classifier will plot the line y = x, with a corresponding AUROC of 0.5, with
an AUROC of ≥ 0.8 indicating a good classifier. [15] We also report the specificity of the model, which is the sensitivity of the
negative class.



To give an indication of possible model performance when a threshold is set and acknowledging standard reporting practices,
we also compute F2 scores under a decision threshold of 0.5, i.e., samples with a predicted probability ≥ 0.5 are predicted
as high risk. F2 is the harmonic mean of precision and recall, with recall weighted by a factor 2. We opted for the F2 score
over the commonly used F1 metric as, when predicting patients at risk of critical deterioration, reducing the number of false
negatives is more important than reducing the number of false positives.

We additionally assessed the clinical net benefit, [16] which is calculated by plotting the decision curve produced by a
model, threshold versus net benefit. Net benefit is defined as:

net benefit = sensitivity×prevalence− (1− specificity)× (1−prevalence)×odds

where ‘odds’ is the odds value at a given threshold probability, and sensitivity and specificity are also calculated at the same
threshold probability. Hence, the unit of net benefit is true positives; for example, a net benefit of 0.07 is 7 true positives per 100
interventions. Net benefit differs from other metrics as it incorporates the consequences of decisions that may be made because
of the model. The most basic interpretation of the decision curve produced by a net-benefit analysis is that the model with the
highest net benefit at a particular threshold has the highest clinical value. In our analysis we compared four scenarios, selecting
all patients for the intervention (treat all patients as high-risk), selecting no patients (treat none, i.e. no patients considered
high-risk), selecting patients based on NEWS, and selecting patients using our predictive model. Finally, we compared the
daily alert rate and numbers needed to evaluate (NNE) to detect one deteriorating/high-risk patient of our models to those of
NEWS across a range of sensitivities.

1.4.1 Model Explainability
For LightGBM-based models, we used the TreeSHAP approximation to calculate SHAP values, whereas for transformer-based
models we used GradientSHAP. [17] Both computational and methodological limitations inhibit our ability to calculate global
feature importance values for transformer architectures. [18, 19] Therefore, for models primarily based on freetext, we focused
on generating local, patient-individual explanations instead, using ParitionSHAP. [17] For transformer-based models that utilise
tabular features, we then produced a global view of their learned associations by averaging the absolute feature attribution
values of each sample in the validation set. As we used a different feature attribution calculation method for each model
architecture, it is not possible to directly compare attribution values between the two techniques.

1.4.2 Model Bias
Given a patient record xi with ground-truth yi, the benefit experienced by the patient due to model prediction M(xi) is defined as

bi = M(xi)− yi +1

Under this representation, a false-positive patient experiences a large benefit (b = 2), while a false-negative patient is given
the largest penalty (b = 0). Given a vector of benefit values b = (b1,b2, ...,bn) and their arithmetic mean µ , we then define the
generalised entropy index Iα as:

Iα(b) =
1

nα(α −1)

n

∑
i=1

(bi

µ

)α

−1

For Iα , the ideal value is 0, representing completely fair classifier, while higher values indicate worsening levels of bias.
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Figure 1. Inference flowchart of our final, best performing model. Best viewed in colour.



Figure 2. Distribution of patient age and sex across the entire dataset.



Figure 3. Explainability values for a random sample from the validation set. This patient was correctly predicted by a
finetuned BioClinicalBERT model as high risk for a critical deterioration. Words in red ‘push’ the model towards predicting
critical deterioration, and vice versa for blue words. The full text input and its associated explainability have been redacted for
patient anonymity.



Figure 4. Explainability values for a random sample from the validation set. This patient was correctly predicted by a
finetuned BioClinicalBERT model as high risk for a critical deterioration. Words in red ‘push’ the model towards predicting
critical deterioration, and vice versa for blue words. The full text input and its associated explainability have been redacted for
patient anonymity.



Figure 5. Explainability values for a random sample from the validation set. This patient was correctly predicted by a
finetuned BioClinicalBERT model as high risk for a critical deterioration. Words in red ‘push’ the model towards predicting
critical deterioration, and vice versa for blue words. The full text input and its associated explainability have been redacted for
patient anonymity.



Table 1. Features collected by the electronic health record system

Feature Description
Demographics and metadata age, gender, ethnicity, admission/discharge dates, discharge destination, 30-day

mortality
Unstructured freetext fields triage notes, presenting complaints
Clinical scales AVCPU score (Awake, Verbal, Confusion, Pain, Unresponsive; a measure of level

of consciousness included in NEWS), Waterlow Score, Clinical Frailty Score
Admission pathway admission route (e.g., ambulance, emergency department self-attender, emergency

GP referral) and their admitting specialty (e.g., acute internal medicine, emergency
medicine).

Vital signs and their associated
NEWS scores

body temperature (◦C), heart rate (beats/min), systolic and diastolic blood pressure
(mmHg), and peripheral oxygen saturation (%). These data points are first recorded
within a target of 30 minutes from arrival at the hospital, and then periodically
throughout a patient’s stay.

Blood tests haemoglobin (mmol/L), urea (mmol/L), sodium (mmol/L), potassium (mmol/L),
creatinine (µmol/L), D-dimer (ng/mL FEU), CRP (mg/L), albumin (g/L), white
blood cells (cells ×109/L)

Diagnoses main ICD10 diagnosis, and up to 15 secondary ICD10 diagnoses
Procedures main OPCS-4 procedure and up to 15 secondary procedures
Ward utilisation each ward that the patient was sequentially admitted to during their in-patient

episode



Table 2. Valid ranges for manually recorded data features.

Variable Range Unit
SpO2 40-100 %
Systolic BP 40-300 mmHg
Diastolic BP 20-200 mmHg
Temperature 25-45 ◦C
Pulse 35-300 Beats/min
Respiration Rate 5-80 Breaths/min



Table 3. Full table of results for all LightGBM, BERT and BioClinicalBERT models tested on the validation set with repeat
attendees included in the training set removed. AUROC: Area Under Receiver Operating Characteristic Curve; AP: Average
Precision

Model Architecture Features Precision Recall AUROC F2 Specificity AP

LightGBM

Core Tabular 0.9361 0.7618 0.9742 0.7913 0.9961 0.8868
Extended Tabular 0.9345 0.7638 0.9774 0.7928 0.9960 0.8917

Core Tabular + Text Embeddings 0.9527 0.7490 0.9746 0.7824 0.9972 0.8895
Extended Tabular + Text Embeddings 0.9456 0.7490 0.9770 0.7815 0.9967 0.8937

Text Embeddings 0.7967 0.1203 0.8603 0.1449 0.9976 0.4008

BioClinicalBERT

Core Tabular 0.9035 0.9141 0.9850 0.9121 0.9939 0.99262
Extended Tabular 0.7191 0.8804 0.9812 0.8426 0.9739 0.90942

Triage Notes + Demographics 0.3723 0.9039 0.9472 0.7031 0.8847 0.6506
Core Tabular + Triage Notes 0.9960 0.9868 0.9964 0.9886 0.9997 0.9926

Extended Tabular + Triage Notes 0.9679 0.9564 0.9902 0.9584 0.9976 0.9691

BERT

Core Tabular 0.2203 0.8761 0.8630 0.7706 0.9389 0.2697
Extended Tabular 0.1268 0.9297 0.7774 0.4104 0.5164 0.1424

Triage Notes + Demographics 0.2524 0.5415 0.7579 0.4890 0.9247 0.2161
Core Tabular + Triage Notes 0.4796 0.8717 0.8597 0.7492 0.9285 0.4511

Extended Tabular + Triage Notes 0.5551 0.8687 0.8683 0.7805 0.9473 0.4720



Table 4. Hyperparameters used for the LightGBM models, chosen after 1000 iterations of Bayesian optimisation.

Parameter Core Tabular Extended Tabular Core Tabular +
Triage Notes

Extended Tabular +
Triage Notes Triage Notes Sweep Range

colsample_bytree 0.5039 0.7830 0.9384 0.9109 0.4202 [0.01,1]
is_unbalance True True True True True {True,False}

min_child_samples 100 90 83 104 154 [5,1000]
num_leaves 13 20 29 13 32 [2,50]
reg_alpha 0.3942 0.5835 1.840 0.5834 0.0583 [0,100]

reg_lambda 0.9894 0.0049 0.5930 0.0048 0.0384 [0,100]
subsample 0.7304 0.7583 0.4827 0.5839 0.9834 (0,1]

subsample_freq 4 4 4 4 4 [0,10]


