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Abstract
Background  Neighbourhood exposure to takeaways can contribute negatively to diet and diet-related health 
outcomes. Urban planners within local authorities (LAs) in England can modify takeaway exposure through denying 
planning permission to new outlets in management zones around schools. LAs sometimes refer to these as takeaway 
“exclusion zones”. Understanding the long-term impacts of this intervention on the takeaway retail environment 
and health, an important policy question, requires methods to forecast future takeaway growth and subsequent 
population-level exposure to takeaways. In this paper we describe a novel two-stage method to achieve this.

Methods  We used historic data on locations of takeaways and a time-series auto-regressive integrated moving 
average (ARIMA) model, to forecast numbers of outlets within management zones to 2031, based on historical trends, 
in six LAs with different urban/rural characteristics across England. Forecast performance was evaluated based on 
root mean squared error (RMSE) and mean absolute scaled error (MASE) scores in time-series cross-validation. Using 
travel-to-work data from the 2011 UK census, we then translated these forecasts of the number of takeaways within 
management zones into population-level exposures across home, work and commuting domains.

Results  Our ARIMA models outperformed exponential smoothing equivalents according to RMSE and MASE. The 
model was able to forecast growth in the count of takeaways up to 2031 across all six LAs, with variable growth rates 
by RUC (min–max: 39.4-79.3%). Manchester (classified as a non-London urban with major conurbation LA) exhibited 
the highest forecast growth rate (79.3%, 95% CI 61.6, 96.9) and estimated population-level takeaway exposure within 
management zones, increasing by 65.5 outlets per capita to 148.2 (95% CI 133.6, 162.7) outlets. Overall, urban (vs. 
rural) LAs were forecast stronger growth and higher population exposures.

Conclusions  Our two-stage forecasting approach provides a novel way to estimate long-term future takeaway 
growth and population-level takeaway exposure. While Manchester exhibited the strongest growth, all six LAs were 
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Background
Neighbourhood food environments have the potential 
to shape dietary behaviours, body weight and health 
[1]. Neighbourhoods with an abundance of takeaway 
food outlets (“takeaways”), which sell hot food prepared 
away from the home and designed for consumption off 
premises, have been identified as contributing nega-
tively to health outcomes [2–5]. As a result, takeaways 
have become the focus of public health intervention. For 
example, the urban planning system can be used to shape 
the spatial distribution of takeaways, which is a retail sec-
tor that has experienced consistently strong growth over 
recent decades [6]. Specifically, urban planners within 
local authorities (LAs) in England can modify future 
takeaway exposure through denying planning permis-
sion for new takeaways. In England, the most common 
form of takeaway planning intervention is takeaway man-
agement zones around schools. LAs sometimes refer to 
these as takeaway “exclusion zones”. Within these zones 
(e.g. within 400 m of a school boundary) new takeaways 
can be prevented from opening. In addition to limiting 
future exposure to takeaways around schools for children 
and young people, these management zones also have 
significant potential to shape adult population exposure 
to takeaways because of their broad geographic coverage. 
Where adopted, takeaway management zones around 
schools cover an average of around 17% of any given LA 
[7].

The impacts of these takeaway management zones on 
retail process outcomes have recently been evaluated. 
Their adoption in 35 LAs in England was associated with 
an overall reduction in the number of planning applica-
tions received for new takeaways, and an increase in the 
proportion of those applications being rejected [7]. These 
impacts were observed at two years post-implementation. 
Early evidence of medium-term impact is also emerging 
at up to six years post-implementation [8]. However, for 
a policy like this, which does not and cannot change the 
current food environment but can only change how the 
environment will evolve in future, it is necessary to look 
over a much longer period to understand the extent of its 
potential impact.

As policies have not been in place for long, it is not fea-
sible to directly observe the long-term retail impacts of 
management zones. Instead, times-series modelling can 
be used to estimate potential longer-term effects. For 
example, we can use current growth trends in takeaways 
in absence of the intervention to forecast future growth. 

Such estimates could then be used to understand the 
long-term impact of the actual intervention, informed by 
empirical data. Elsewhere, for example in public health 
research, time-series methods have been extensively 
used to forecast disease incidence [9, 10] and demand for 
hospital services [11, 12], to aid effective planning and 
management. However, studies specifically projecting 
future growth in the number of takeaways do not cur-
rently exist. One study attempted to forecast the number 
of restaurants in US zip code areas based on sociode-
mographic projections [13]. However, the applicability 
of this approach to forecasting takeaway growth is con-
strained by geographically limited data availability and 
the forecast range of future demographic trends. A more 
effective method would involve forecasting based on his-
toric trends and other local factors, such as urban/rural 
status, which influence retail trajectories.

Long-term estimates of intervention impact on take-
away retail numbers are also necessary in the estima-
tion of associated health impacts. An understanding of 
these health impacts could play a critical role in support-
ing LA decision-making and the effective implementa-
tion of planning policies to address takeaways. However, 
to facilitate this, any forecast of future takeaway retail 
would need to be transformed into a measure of popu-
lation exposure to takeaways. Research suggests that 
comprehensive exposures considering where people live, 
work and travel on a day-to-day basis, determines health 
outcomes [3]. Therefore, a robust measure of popula-
tion exposure needs to consider these different domains. 
There is currently no such population model available in 
the UK to facilitate this.

In this study, we describe the data sources and meth-
ods used to forecast future growth in the number of 
takeaways around schools from baseline (approximately 
2015) to 2031. We present these forecasts for future 
takeaway growth in six LAs across England with differ-
ent urban/rural characteristics. We also describe the 
approach for assessing population-level takeaway expo-
sure by LA. This study is part of a larger project aimed 
at evaluating the long-term health and societal impacts 
of takeaway management zones around schools in Eng-
land. The forecasting model and exposure computa-
tion approach developed here will be used to estimate 
“business-as-usual” scenarios in LAs with management 
zones and offer a framework that could extend to fore-
cast growth in other retail sectors and areas, supporting 

forecast marked growth that might be considered a risk to public health. Our methods can be used to model future 
growth in other types of retail outlets and in other areas.

Keywords  Takeaway food outlets (“takeaways”), Fast-food outlets, Takeaway management zones around schools, 
Exclusion zones, Time-series forecast, Population-level exposure, Public Health.
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research and policy-making. However, these broader 
applications are beyond the scope of the current paper.

Methods
We developed and validated a two-stage method to fore-
casting future takeaway growth and population exposure. 
First, we used a time-series model to forecast the future 
number of takeaways within management zones around 
schools within a small number of LAs. To maximise the 
accuracy of our forecasts, we learned from historic take-
away trend data in a national dataset of LAs that had not 
adopted takeaway management zones (hereafter referred 
to as non-adopter LAs). Second, we used these forecasts 
to estimate population exposure to takeaways within 
management zones in our small number of LAs by using 
census travel-to-work data (Fig. 1).

Study area
Study region selection
Recognising that variations exist in baseline counts and 
historic growth rates of takeaways, as well as the possi-
bility of contextually-specific influences on the impacts 
of intervention [7], we forecast future takeaway retail 
across a diverse range of LAs in England. We used the 

rural-urban classification (RUC) for LAs, which is based 
on the proportion of the total population living in urban 
settlements and conurbations [14]. The RUC describes 
LAs in England as belonging to one of five categories: 
“urban with major conurbation”, “urban with minor con-
urbation”, “urban with city and town”, “urban with sig-
nificant rural” and “largely or mainly rural”. Additionally, 
we differentiated between LAs described as “urban with 
major conurbation” according to their location inside or 
outside of Greater London. We did this because popula-
tion and travel behaviour characteristics, and the built 
environment including travel options, are likely to be 
different in Greater London compared to other major 
urban areas in England. Moreover, RUC with differentia-
tion between London and non-London is often used as 
a comparative benchmark by policymakers at local and 
national levels in England [15], thereby enhancing gener-
alisability of our findings.

One LA was purposively selected to represent each of 
the six RUC (Table 1), with consideration for maximizing 
geographical breadth across England (Fig. 2) and having 
similar years of policy adoption. Wandsworth, Manches-
ter, and Blackburn with Darwen LAs (hereafter referred 
to as adopter LAs) were selected as they adopted the 

Table 1  Classification of the six selected adopter local authorities across the rural/urban spectrum in England
Rural urban classification Local authority Adoption year Baseline year3

London urban with major conurbation Wandsworth 2015 2013
Non-London urban with major conurbation Manchester 2017 2015
Urban with minor conurbation Sheffield “as if” 20161,2 2014
Urban with city and town Blackburn with Darwen 2016 2014
Urban with significant rural North Somerset “as if” 20161,2 2014
Largely or mainly rural Fenland “as if” 20161,2 2014
Notes:

1. Hypothetical adopter local authorities were chosen because no actual adopter local authorities existed before 2019 in their respective rural urban classification 
categories

2. In line with actual adopters, hypothetical adopter local authorities were treated as if having adopted takeaway management zones in 2016

3. The baseline year is set as two years prior to adoption to mitigate potential effects from the intervention’s announcement before its formal implementation

Fig. 1  Key steps in the two-stage method to forecasting future takeaway growth and population exposure
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intervention around 2016. They had also applied manage-
ment zones consistently around both primary and sec-
ondary schools. Sheffield, North Somerset, and Fenland 
LAs were further selected as hypothetical adopter LAs. 
They were selected to maximise geographic breadth and 
because there were no adopter LAs within their respec-
tive RUC classes. It was important to forecast growth 
in these types of LAs to allow for health impact model-
ling in rural areas, which could benefit from, but are not 

currently the focus of takeaway management zone inter-
ventions. In line with adopter LAs, these hypothetical 
adopters (hereafter also referred to simply as “adopter 
LAs”) were treated as if having adopted takeaway man-
agement zones around both primary and secondary 
schools in 2016.

Fig. 2  Map of the six selected adopter local authorities in England. Note: The base map of the boundaries of England was sourced from EDINA at the 
University of Edinburgh. © Copyright UK Data Service
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Management zones around schools
The most common form of takeaway management zones 
around schools adopted across LAs in England was a 
400 m buffer extending from the boundary of school sites 
[7]. We defined management zones consistently in this 
way across all six LAs to permit a comparison of future 
forecast takeaway growth between LAs of different RUC. 
To recreate the boundaries of management zones in our 
six adopter LAs, and all other non-adopter LAs, polygons 
of school sites were obtained by querying primary and 
secondary schools from the OS MasterMap Sites Layer 
[16]. We eliminated double counting in overlapping areas 
among individual management zones and excluded take-
aways outside the LA administrative boundaries, apply-
ing this approach consistently across both adopter and 
non-adopter LAs.

Stage 1: Forecasting the growth of takeaway outlets over 
time
In the first stage, we developed a forecasting model to 
project the growth of takeaways within management 
zones. Our approach is based on the assumption that 
the business-as-usual growth trend in the six selected 
adopter LAs would mirror the projected trends of simi-
lar non-adopter LAs. To implement this, we used his-
toric data from non-adopter LAs to build the forecasting 
model, which then generates growth rates that can be 
applied to project the business-as-usual trends in the 
adopter LAs.

Takeaways data
In this study, takeaways are defined as food outlets sell-
ing hot food intended for consumption off the premises. 
This definition aligns with use class A5 within the urban 
planning system in England. Takeaway management 
zones are designed to target A5 hot food takeaway outlets 
[17]. Information on the geographic locations of take-
aways were sourced from Ordnance Survey (OS) Point 
of Interest (POI) data, which is an accurate, historic, 
and nationwide source of secondary information on the 
locations and types of food outlets in England [18]. Iden-
tification of takeaways was performed as described previ-
ously [8]. Briefly, takeaways were outlets within “fast food 
and takeaway outlets” (01020018), “fish and chip shops” 
(01020020) and “fast food delivery services” (01020019) 
OS POI categories [19]. Chain fast-food outlets, which 
commonly offer seating facilities, and those that primar-
ily sell cold food items (e.g., sandwich shops) are exempt 
from takeaway management zones as they are not use 
class A5 within the urban planning system in England. 
To ensure consistency with the intervention of interest, 
these outlets were removed from the analytical POI data-
set using string matching techniques [8].

Using OS POI data, we calculated the number of take-
aways within these management zones, per quarter of 
calendar year, by intersecting zone geometries with take-
away locations in PostGIS [20]. The OS POI data were 
available quarterly from June 2011 to June 2021, but was 
missing in September 2011, December 2013, and March 
2014. For these three quarters, the number of takeaways 
was imputed using linear interpolation.

Forecasting assumptions and approach
Our forecast of future takeaway counts within manage-
ment zones is based on two key assumptions (Fig.  3). 
First, the number of takeaways within these zones would 
continue to increase following historic pre-intervention 
growth patterns. However, the limited availability of past 
observations from within study LAs specifically, posed 
a challenge in developing a robust forecast model. Sec-
ond, to overcome this challenge, we further assumed that 
in the absence of the intervention, counts of takeaways 
within management zones in our six LAs would follow 
the forecast growth rates observed for the same areas 
around schools in all other LAs of the same RUC in Eng-
land (2011–2021), who had not adopted the intervention.

Based on these two key assumptions, we devised an 
approach to forecast counts of takeaways within manage-
ment zones. The first step involved forecasting the total 
annual number of takeaways within management zones 
to 2031 in all non-adopter LAs using separate models for 
the six RUC classes. The forecast total counts of take-
aways, along with their associated forecast intervals, are 
derived from a time-series model described in the next 
section.

The second step involved the conversion of fore-
cast counts into cumulative growth rates. This con-
version involves comparing the count of takeaways 
for any given future year to the count in the baseline 
year. We defined the baseline year as two years before 
the adoption of the intervention (i.e., 2013 for Wand-
sworth, 2015 for Manchester, and 2014 for other 
LAs) to exclude potential influences resulting from 
the announcement of the intervention before formal 
adoption.

Finally, the total number of takeaways within a man-
agement zone for a given future year is calculated by 
multiplying these two variables: the number of take-
aways present within the management zone in the 
baseline year and the forecast RUC-specific cumula-
tive growth rate corresponding to that future year.

Time-series forecasting using ARIMA model
Quarterly counts of takeaways within management 
zones were created to form a time series in which a 
sequence of observations are equally distributed in 
chronological order. The patterns within this series 
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can be modelled using Auto-Regressive Integrated 
Moving Average (ARIMA) models, which are widely 
used in epidemiological studies [10]. ARIMA mod-
els allow estimation of future values by considering a 
linear combination of past values (i.e., the autoregres-
sive (AR) process) and previous forecast errors (i.e., 
the moving average (MA) process). To apply ARIMA 
modelling may require differencing (i.e., the reverse of 
integration (I)) to eliminate any trend in the original 
time series [21]. For example, first-order differencing 
involves subtracting the previous observation (t-1) 
from the current observation (t) to create a new series. 
The full ARIMA model can be expressed as:

	

y′t = c + Φ1y
′
t−1 + . . .

+Φpy
′
t−p + θ1εt−1 . . . + θqεt−q + εt

where y′t  represents the differenced series, and the 
terms on the right-hand side include a constant, lagged 
values of y′t , lagged errors, and the error term at time 
point t . This is referred to as an ARIMA(p,d,q) model, 
where d is the degree of differencing involved, and p 
and q are the orders of the autoregressive and moving 
average parts, respectively.

We fitted ARIMA models following established mod-
elling procedures [21, 22], to takeaway count data from 
June 2011 to June 2021 in non-adopter LAs by RUC. 
The first step involved plotting the data to identify any 
unusual observations or signals of changing variance over 
time. In cases where variance exhibited temporal varia-
tion, we stabilized this using a Box-Cox transformation. 

In the second step, we administered the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test [23], which is a type 
of unit-root test used to identify whether a time series is 
stationary (i.e. where statistical properties do not depend 
on the time at which the series is observed). Parameter 
d was determined based on the degree of first-order dif-
ferencing required to achieve stationarity. The third step 
involved exploring combinations of p and q values (p, 
q = 0, 1, 2, 3, 4, 5) on the stationary time series, in order 
to find the best model based according to bias-corrected 
Akaike information criterion (AICc). This is a modified 
version of AIC suitable for small sample sizes [24]. In the 
fourth step, we checked for autocorrelation in the residu-
als of the chosen model using a Ljung-Box test and the 
ACF plot of residuals. Finally, we calculated forecasts 
using the selected ARIMA model. The ARIMA modelling 
was conducted using R packages forecast [25, 26] and 
urca [27].

Time-series cross validation and accuracy metrics
In assessing the performance of these models, we imple-
mented a time-series cross-validation procedure [22]. 
For this process, the time series was bifurcated into a 
sequenced collection of training and testing sets. Every 
individual observation was treated as a distinct test set, 
with the corresponding training set consisting of ante-
cedent observations. The observations comprising the 
test sets are regarded as “forecasts”, and hence, the cross-
validation does not involve any projected values. The ini-
tial two years of observations (n = 8) were excluded from 
test sets due to the limitations of acquiring a reliable 

Fig. 3  Illustration of our approach to forecasting counts of takeaways within management zones in adopter local authorities, including key assumptions 
made
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forecast from a small amount of training data. Cross-val-
idation was executed for horizons reaching up to 8 time 
points, which was equivalent to two years.

Forecast accuracy was captured as an average over all 
test sets. The metrics used for comparing accuracy were 
Root Mean Squared Error (RMSE) and Mean Absolute 
Scaled Error (MASE). MASE compares the mean abso-
lute error of the forecast values using the current model 
to that of a one-step naïve forecast, in which forecasts 
are simply equal to the last observed value [28]. It avoids 
problems seen in other scale-free error metrics (e.g., 
undefined results of Mean Absolute Percentage Error 
(MAPE)) when one or more data point equals zero [10]. 
Smaller RMSE and MASE values indicate better model 
forecasting performance. The formulae are as follows:

	
RMSE =

√√√√1

n

n∑

i=1

(yi − ŷi)
2

	

MASE =
1

n

n∑

i=1

|yi − ŷi|
1

T−1

T∑
t=2

|yt − yt−1|

where in both, n represents the number of forecasts, T 
represents the total number of observations in the time 
series, yi  and ŷi  denote the observed and predicted value 
of the ith forecast, and yt  denotes the observed value at 
time point t.

Exponential smoothing (ETS), a well-established and 
widely used time-series forecasting method, was cho-
sen for a sensitivity analysis (see Additional file 1). ETS 
is known for its simplicity and robustness in handling 
various types of time-series data, especially when dealing 
with trends and noise, as seen in the observed growth of 
takeaways over time in our data. As a widely recognized 
and accessible method, ETS provides a reliable bench-
mark for comparison against more complex ARIMA 
models [22]. However, ETS did not perform as well as 
ARIMA according to RMSE and MASE accuracy metrics 
in this study (see Additional files 1 and 2).

Stage 2: Estimating population exposure to takeaways in 
management zones
We used forecast counts for six LAs to characterise 
population-level takeaway exposure by LA. We defined 
population exposure to takeaways as the total number of 
takeaways within management zones (i.e. the areas where 
takeaway exposure was liable to change in response to 
the policy) and in close proximity to the home, work, 
and commuting routes of the LA population. This mea-
sure of exposure across these three domains is consis-
tent with previous UK work linking takeaway access to 

takeaway-type food consumption and body weight [3, 
29].

Travel to work data
To model population exposure to takeaways, we acquired 
aggregated data on the adult population in employment 
aged 16 years and over, including commuting flows 
and modes from the 2011 UK Census. Specifically, we 
used population-level data on the number of commut-
ers between residential and workplace output area (OA) 
pairs [30]. OAs are the lowest level of census geography, 
typically containing between 100 and 625 people [31]. In 
this context, a workplace is defined as the location where 
respondents reported typically working the most hours. 
We also obtained information on usual commuting mode 
(i.e., travel mode used for the longest part, by distance, 
of usual journey to work), which was reported as: car 
or van, motorcycle, tram/underground, bus, bicycle, or 
on foot [32]. Commute mode data was available at the 
lower super output area (LSOA) level, which is a spatial 
unit created by aggregating smaller OAs. Consequently, 
we assumed that the distribution of commuting modes in 
LSOAs is shared by OAs nested within, when estimating 
the number of commuters using a specific travel mode.

Creating home, workplace and commuting route exposure 
domains
Following previous research [3, 29], we used a 1-mile 
radius buffer to define home and work neighbourhoods. 
These buffers were centred on the population-weighted 
centroids of residential and workplace OAs [33]. Travel 
routes between home and work for those who reported 
using automobiles (i.e. car, motorcycle) and active trans-
portation modes (i.e. cycling, walking) were modelled 
as the shortest connecting street network routes, using 
the Integrated Transport Network (ITN) provided by 
Ordnance Survey. For those who reported using public 
transport (i.e. bus, train), we assumed that no exposure 
occurred while on board [34]. However, shortest street 
network routes connecting homes and workplaces to 
their nearest bus stop or tram/underground entrance 
(i.e. ingress and egress trips) were modelled using trans-
port network access point data from the National Public 
Transport Data Repository (NPTDR) [35].

Buffers of 500 m were applied along commuting routes 
for automobile travel, and 100 m for active transportation 
modes, in order to account for differing levels of acces-
sibility to takeaways by travel mode. Ingress and egress 
trips were buffered by 100 m, as walking (i.e. active trans-
port) to transit stops is common [36]. Home, work and 
commute route exposures were summed as overall expo-
sure to takeaways across these three domains. Where 
individuals reported living and working within the same 
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OA, or reported working from home, exposure within 
the home buffer was double-counted.

Deriving non-overlapping zones with distinct densities of 
takeaways
In densely populated areas, primary and secondary 
schools are often in close proximity, resulting in over-
lapping management zones. This overlap could lead to 
an overestimation in exposure since unique takeaways 
might be counted multiple times. Merging overlapping 
zones into a singular, unified feature could result in an 
excessively large polygon, which might mask the hetero-
geneous distribution of takeaways. Consequently, this 
approach might result in misclassification of takeaway 
exposure with management zones.

To address this, we devised an approach that sub-
divides merged zones into non-overlapping polygons 
according to takeaway density (Fig.  4). To subdivide 
zones, we created a kernel density surface of takeaways 
in 2015. Takeaways within neighbouring LAs, within 
2 km of the LA boundary, were considered when creating 
this density surface in order to minimise boundary dis-
tortion. We then classified the kernel density raster cell 
values into three distinct categories using natural breaks; 

a technique that pinpoints thresholds to maximize inter-
group variance (Fig.  4a). The calculated takeaway den-
sity values were assigned to centre points of school sites. 
Management zones around schools were dissolved where 
they belonged to the same category of takeaway density. 
Overlaps within the resulting zones were eliminated 
using the centre line method. The final non-overlapping 
management zones in Manchester LA are shown in 
Fig. 4b. These mutually exclusive, dissolved management 
zones exhibit heterogeneous counts of takeaways across 
this LA, which is crucial for avoiding exposure misclas-
sification in the subsequent spatial intersection analysis.

Exposure estimation within takeaway management zones
Having created non-overlapping management zones, we 
then intersected these with home, work and commuting 
route domains in order to calculate takeaways exposure. 
We presumed that the degree of this exposure corre-
sponds to the extent of this overlap, with the assumption 
of an even distribution of takeaways within non-overlap-
ping management zones (Fig. 5).

Thus, the exposure generated by takeaways in man-
agement zone k for a sub-population commuting from 
residential OA i to workplace OA j using travel mode m 

Fig. 4  An illustration of the two-step process of deriving non-overlapping management zones with distinct densities of takeaways. Kernel density sur-
face of takeaways in 2015 in Manchester LA (a). Non-overlapping management zones of high, middle, and low takeaway density (b)
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around their usual place p (including domains at home, 
at work, and along commuting route) is defined as the 
product of the number of the sub-population, the count 
of takeaways within management zone k, and the ratio 
of the area where this sub-population’s exposure space 
intersects management zone k to the total area of man-
agement zone k.

	

Exposureijmkp =

populationijm × countk × area_intersectedijmkp

areak

Put simply, if a home, work, commute polygon overlaps 
half of a management zone, then 50% of the number of 
takeaways within this zone would be incorporated into 
the calculation of exposure.

Fig. 5  An example intersection of home, work and commuting route domains for a car commuter, with non-overlapping takeaway management zones, 
in Manchester LA
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Total population-level exposure to takeaways within 
management zones in any given LA can therefore be 
expressed as the sum of Exposureijmkp :

	

Exposure_total =
∑

i

∑
j

∑
m

∑
k

∑
p
Exposureijmkp

Per capita exposure to takeaways refers to the mean 
count of takeaways within management zones to which 
an individual in a local authority is exposed across home, 
work and commuting route domains. It is derived by 
dividing total exposure by the population count:

	
Exposure_per capita =

Exposure_total

population_total

Spatial analyses for exposure computation were con-
ducted using ArcGIS Pro 3.0 [37].

Results
For brevity, here we present detailed results for Manches-
ter, an adopter LA of the non-London major urban con-
urbation RUC and summary findings for other LAs. We 
present detailed results for the other five LAs in Addi-
tional file 3.

Forecasts of the count of takeaways within management 
zones to 2031
The ARIMA model variant best suited to the non-
adopter, non-London urban with major conurbation 
RUC to which Manchester belongs, was ARIMA(0,1,0) 
with drift. Among the candidate models as described 
in the methods, it demonstrated the lowest AICc value 
(448.62) after applying first-order differencing, and an 
absence of autocorrelation (Ljung-Box test p value = 0.93). 
Furthermore, this ARIMA model variant exhibited supe-
rior forecasting accuracy compared to ETS, as evidenced 
by smaller RMSE (269.84 vs. 346.22 for ETS) and MASE 
(3.56 vs. 5.04 for ETS) values (Additional files 1 and 2).

For these non-adopter LAs, the estimated count of 
takeaways exhibited an upward trajectory (Fig.  6). The 
count of takeaways was estimated to be 6173.6 (95% CI: 
5925.6, 6421.6) in 2022 and was forecast to increase to 
7979.0 (95% CI: 7194.7, 8763.3) by 2031 (Table 2). These 
figures indicate a cumulative growth from the baseline 
year of 2015, of 38.7% (95% CI: 33.1%, 44.3%) by 2022 and 
79.3% (95% CI: 61.6%, 96.9%) by 2031 (Table 2). This was 
the strongest forecast growth across all non-adopter LAs 
by RUC (Fig. 6).

Takeaway counts within management zones in non-
adopter LAs across the five other RUC were also forecast 
to increase from 2022 to 2031, albeit at variable growth 
rates from 39.4 to 72.3% (Fig. 6). Among these, the urban 
with minor conurbation class exhibited the next strongest 

Fig. 6  Historic observations (2011–2021) and ten-year ARIMA model forecasts (2021–2031) of the count of takeaways within management zones for 
non-adopter local authorities across six rural urban classes in England. Blue ribbons are 95% forecast intervals
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growth to 2031, at 72.3% (95% CI: 64.1%, 80.5%), followed 
by urban with city and town at 59.7% (95% CI: 44.1%, 
75.3%). The London urban with major conurbation class 
was forecast the weakest growth to 2031 at 39.4% (95% 
CI: 27.2%, 51.6%). A detailed summary of changes in 
counts of takeaways and rates of change for these other 
RUC can be found in Additional file 3.

Estimates of population-level exposure to takeaways 
within management zones
RUC-specific growth rates calculated for non-adopter 
LAs were used to estimate the annual count of takeaways 
within management zones in the six adopter LAs by RUC 

(see Additional file 4 for estimated counts of takeaways 
within individual management zones in Manchester). 
As described in the methods, these forecasts for each 
LA were used to characterise population-level takeaway 
exposure, with per capita estimates and forecast intervals 
shown for Manchester in Table 3. In 2022, mean popula-
tion exposure per person within management zones and 
combined home, work and commuting route domains 
was estimated at 114.6 (95% CI: 110.0, 119.2) takeaways. 
By 2031, this was forecast to rise to 148.2 (95% CI: 133.6, 
162.7) takeaways.

Exposure to takeaways within management zones in 
our other five adopter LAs also exhibited growth to 2031 

Table 2  Forecasts of counts in numbers of takeaways in management zones around schools, in non-adopter local authorities of 
the non-London urban with major conurbation rural urban class, to which Manchester belongs, in England. Corresponding rates of 
change also shown
Year Count of takeaways Cumulative rate of change

Estimate Lower bound 
of 95% forecast 
interval

Upper bound 
of 95% forecast 
interval

Estimate Lower bound 
of 95% forecast 
interval

Upper 
bound of 
95% fore-
cast interval

Baseline year (2015) 4451.0 -
Forecast
2022 6173.6 5925.6 6421.6 38.7% 33.1% 44.3%
2023 6374.2 6023.5 6725.0 43.2% 35.3% 51.1%
2024 6574.8 6145.2 7004.4 47.7% 38.1% 57.4%
2025 6775.4 6279.4 7271.4 52.2% 41.1% 63.4%
2026 6976.0 6421.4 7530.6 56.7% 44.3% 69.2%
2027 7176.6 6569.1 7784.1 61.2% 47.6% 74.9%
2028 7377.2 6721.0 8033.4 65.7% 51.0% 80.5%
2029 7577.8 6876.3 8279.3 70.2% 54.5% 86.0%
2030 7778.4 7034.4 8522.5 74.8% 58.0% 91.5%
2031 7979.0 7194.7 8763.3 79.3% 61.6% 96.9%
Note: All values correspond to the second quarter of each calendar year

Table 3  Forecast population-level per capita exposure to takeaways within management zones and combined home, work and 
commuting route domains in Manchester LA. Corresponding rates of change also shown
Year Exposure to takeaways per person Cumulative rate of change

Estimate Lower bound 
of 95% forecast 
interval

Upper bound 
of 95% forecast 
interval

Estimate Lower bound 
of 95% forecast 
interval

Upper 
bound of 
95% fore-
cast interval

Baseline year (2015) 82.65 -
Forecast
2022 114.63 110.03 119.24 38.7% 33.1% 44.3%
2023 118.36 111.84 124.87 43.2% 35.3% 51.1%
2024 122.08 114.10 130.06 47.7% 38.1% 57.4%
2025 125.81 116.59 135.02 52.2% 41.1% 63.4%
2026 129.53 119.23 139.83 56.7% 44.3% 69.2%
2027 133.25 121.97 144.54 61.2% 47.6% 74.9%
2028 136.98 124.80 149.16 65.7% 51.0% 80.5%
2029 140.70 127.68 153.73 70.2% 54.5% 86.0%
2030 144.43 130.61 158.24 74.8% 58.0% 91.5%
2031 148.15 133.59 162.72 79.3% 61.6% 96.9%
Note: All values correspond to the second quarter of each calendar year
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(Additional file 5), albeit less strong in absolute terms 
than in Manchester. Moreover, compared to rural LAs, 
urban LAs were also forecast stronger growth in absolute 
exposure. Among urban LAs, Sheffield ranked second to 
Manchester in estimated change in absolute population 
exposure, which was forecast to rise from 94.4 to 120.6 
(95% CI: 114.8, 126.3) takeaways by 2031. In contrast, the 
rural LAs of North Somerset and Fenland were forecast 
to have more modest increases in absolute population 
exposures, from 22.2 to 27.3 takeaways, and from 20.1 to 
24.6 takeaways, respectively.

The forecasts of exposure within management zones 
can be further analysed by examining separate domain-
specific exposures in home and work neighbourhoods, 
and along commuting routes. For Manchester, growth 
was forecast in each domain from 2022 to 2031 (Addi-
tional file 6), with growth in home and work neighbour-
hoods, and along commuting routes, contributing 49.7%, 
31.4% and 18.9% total forecast growth in exposure, 
respectively.

Discussion
In this study, we described and validated a novel two-
stage approach for forecasting future takeaway growth 
and population exposure to takeaways within manage-
ment zones, in six local authorities in England across 
the urban/rural spectrum. Our approach to calculating 
population exposure considered both anticipated future 
growth in the takeaway retail sector, as well as the home 
and work locations, and typical commuting patterns, 
of the populations of these areas. First, we forecast the 
number of takeaways within management zones of each 
LA to 2031, using time-series forecasting methods. These 
forecasts were based on and drew strength from national, 
RUC-specific, historic data on takeaway growth trends. 
Second, we translated forecasts in the number of take-
aways within management zones into population-level 
exposures. Across our six LAs, we forecast increasing 
numbers of takeaways within zones up to 2031, albeit 
with varying growth rates according to RUC (min–max: 
39.4-79.3%). Amongst the six exemplar LAs studied, 
Manchester, a major urban local authority outside of 
London, was forecast to have the highest mean popula-
tion exposure to takeaways within management zones in 
2031, with 148 takeaways per person on average across 
home, work and commuting domains.

Strengths and applicability of the proposed approach
To our knowledge, this is the first study to forecast 
nationwide future proliferation of takeaways, including 
within management zones around schools in England. 
While the spatial clustering of takeaways near schools 
has been extensively explored [38, 39], most of these 
studies have been cross-sectional, with none forecasting 

future growth. Recent longitudinal studies have started 
to evaluate the effects of planning policies designed to 
restrict the opening of new takeaways around schools, 
demonstrating a decrease in both the number of planning 
applications [7] and new takeaways [8] in these areas. 
However, focusing on observed changes over a relatively 
short period (e.g., up to maximum of six years post-
intervention) [7], these studies have not addressed long-
term growth of takeaways. This is a critical gap because 
short-term changes in the absolute number of takeaways 
in response to management zone interventions are rela-
tively modest. By forecasting long-term changes in take-
away retail within management zones, our study provides 
an approach to address this knowledge gap, ultimately 
laying the foundations for analyzing longer-term health 
impacts of the intervention.

By using a time-series ARIMA forecasting model, we 
proposed a method to extrapolate future takeaway counts 
and validated this approach over a ten-year time hori-
zon. Despite increasing uncertainty, this method could be 
used to forecast growth even further into the future. Fur-
thermore and importantly, this forecasting method has 
the potential to be adapted and used to forecast takeaway 
growth in other types of areas, as well as growth in other 
retail sectors that also demonstrate consistent historic 
trends that permit time-series modelling.

A crucial component of our proposed approach 
involved the translation of forecast counts of takeaways 
within management zones into population exposure to 
takeaways, which has been positively associated with 
consumption of takeaway-type food and body weight 
[3, 40, 41]. To maximise accuracy in these calculations 
of population-level exposure, our method accounted 
for important day-to-day geographic contexts experi-
enced by working adults i.e. home, work and commuting 
domains [42, 43]. This was enabled through the use of 
travel-to-work data from the UK census. Additionally, we 
considered ease of access to takeaways by transportation 
mode through applying buffer radii sensitive to commute 
mode. This approach enables us to measure exposure to 
takeaways more accurately within the spaces in which the 
working population regularly operate.

Our forecasts and associated exposures serve to illus-
trate how numbers of takeaways are likely to accrue in the 
long term in the absence of intervention. This informa-
tion could be used by LAs to enhance decision-making 
and strengthen the case for adoption and robust imple-
mentation of, for example, takeaway management zones 
around schools. Specifically, claims made by prospec-
tive takeaway owners, that the addition of a single new 
takeaway could not possibly make a measurable impact 
on population health, often prove compelling. Including 
at appeal, where those tasked with adjudicating planning 
disputes have not necessarily trained in public health. 
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However, the impacts of such decisions need to be appre-
ciated over the long term, in terms of how the open-
ing of just a single new takeaway can accrue repeatedly 
over time, ultimately resulting in a meaningful increase 
in population exposure. Our results forecast for the first 
time the expected trajectories of this long-term growth 
across a range of LAs.

We tested our forecasts in LAs across the urban/rural 
spectrum in England. This was important because those 
in policy and practice within LAs have reported using the 
RUC to identify and learn from other similar LAs [15]. 
Thereby we increase the generalisability and real-world 
applicability of our findings. Had we focussed only on 
urban LAs, the scope for learning among rural LAs might 
potentially have been deemed limited. Moreover, our use 
of identical management zones across our six LAs, whilst 
also matching the most frequently adopted zone speci-
fication nationwide (400  m buffers around school site 
boundaries), also ensured that it was possible to compare 
forecast population exposures across them. We observed 
heterogeneity in forecast growth rates and population 
exposures to takeaways, which to some extent are attrib-
utable to varying historic counts of takeaways across 
RUC. The forecast absolute growth in per person expo-
sure to takeaways to 2031 was strongest for Manches-
ter (114.6 to 148.2 outlets), followed by Sheffield (94.4 
to 120.6 outlets). However, all six LAs were forecast to 
experience changes in population exposure to takeaways 
that might be considered a risk to public health. In rela-
tive terms, these forecast growth rates far exceed official 
estimates of future population growth from 2022 to 2031, 
which, amongst our study LAs, are predicted to be stron-
gest for Fenland LA at just 6.3% [44]. There is no current 
or foreseeable mechanism by which new takeaways can 
be eliminated once established, which underscores the 
need for prevention.

Limitations and future work
Our forecasts of growth in takeaways are subject to sev-
eral limitations. A critical assumption in our forecasts 
was that historic growth in numbers of takeaways would 
persist into the future. However, it is possible that this 
growth may not be sustainable and that the number of 
takeaways in some LAs could reach a “saturation point”, 
where the local market for takeaway businesses con-
strains growth and their numbers cease to grow. We were 
unable to predict when such a tipping point might occur, 
although the growth rates that were forecast were not lin-
ear, and instead showed a reducing rate of increase over 
time consistent with saturation being reached at a future 
point in time. Nonetheless, by 2031 it seems unlikely 
that this saturation point would be reached in any of our 
six LAs. The reported number of takeaways per 100,000 
population in the LAs we studied (ranging from 67 per 

100,000 in North Somerset to 148 per 100,000 in Black-
burn with Darwen) were, even in 2031, considerably 
lower than the maximum density reported in any LA in 
England (232 per 100,000 in Blackpool LA) in 2017 [45]. 
This suggests that there is potential for takeaways to con-
tinue proliferating in the future. However, to enhance the 
accuracy of longer-term forecasting, it would be valu-
able to identify when, and the market conditions under 
which this saturation point might be reached, consider-
ing changes in population, evolving takeaway business 
models, and socio-cultural factors that could influence 
shifts in dietary consumption. A promising direction for 
future research is to adopt a systems perspective (e.g., 
using system dynamics modelling), wherein researchers 
can explore how growth in takeaways is influenced by 
economic and societal factors over time [46].

Previous research underscores the proliferation of 
takeaways in new residential and retail areas [47, 48]. 
However, due to data limitations, our forecasts were 
not able to explicitly accommodate future developments 
that might introduce new takeaway retail units. Con-
sequently, our anticipated growth of takeaways in areas 
poised for commercial and retail development may have 
been underestimated. We also assumed that commut-
ing patterns would remain stable to 2031. However, the 
commuting behaviours of future working cohorts may 
differ from those recorded in the 2011 census, particu-
larly given the shift towards remote working in the post-
COVID-19 era [49]. This shift could potentially result in 
an overestimation of exposure based on the premise of 
an individual having distinct home and work locations, 
and a linked commuting exposure. Future studies can 
incorporate these changes once newer waves of OA-level 
commuting flow data become available, for example from 
the 2021 census, which were not available at the time 
of this study. We were also unable to account for expo-
sure to takeaways through online food delivery services, 
the use of which constitutes a growing trend among this 
population. That said, our forecasts are credible, reflect-
ing historic trends of remarkable consistency within 
RUC, which allowed ARIMA models to have good fit 
(evidenced by low AICc values). These models also out-
performed exponential smoothing in terms of forecast 
accuracy, as indicated by lower RMSE and MASE scores 
in time-series cross-validation. Additionally, we did not 
incorporate time spent at home, workplace or on com-
muting routes into the exposure computation, primar-
ily due to the lack of availability of such data. However, 
previous epidemiological research in UK populations has 
also used a simple sum of exposures across these three 
domains without applying time weights, in relation to 
diet and health [29].

Our forecasts show heterogeneity in growth rates 
across six LAs across the urban/rural spectrum. 



Page 14 of 16Liu et al. International Journal of Health Geographics           (2024) 23:24 

However, our model was not able to forecast within-LA 
heterogeneity in growth rates. Previous research has 
suggested that clustering of takeaways around cities and 
retail cores is evidence of the predominant influence of 
agglomeration on the locational dynamics of these out-
lets [47, 50]. Moreover, when the density of existing food 
outlets exceeds a given threshold, heightened competi-
tion can hinder the entry of new outlets [51, 52]. Despite 
this understanding, there remains a dearth of robust and 
location-specific evidence regarding the response of take-
away growth to existing outlet density, as well as other 
geographical factors (e.g. spatial relationships with other 
types of outlets) and socio-demographic variables (e.g. 
deprivation), which could enable more accurate forecast-
ing [13]. This presents an area where future studies can 
contribute valuable insights. One fruitful direction is to 
develop machine learning-based forecast model that can 
incorporate diverse predictors and accommodate non-
linear predictor-outcome relationships.

Our approach was unable to predict the precise loca-
tions of new takeaways, and consequently relied upon the 
assumption of an even distribution of takeaways within 
each management zone. This is unlikely to be a realistic 
assumption, which introduces a degree of uncertainty 
into our estimations of exposure, stemming from a pos-
sible disparity with the actual count of takeaways within 
the part of a management zone contributing to exposure. 
Nonetheless, by dividing merged management zones 
based on the density of existing takeaways, our analysis 
effectively captures the spatially varying distribution of 
takeaways at a refined spatial scale. Future studies could 
explore alternative approaches such as survival models to 
forecast the future landscape of takeaways, considering 
specific locations.

Conclusions
Until now, there were no forecasts of future takeaway 
growth within takeaway management zones around 
schools in England, and by extension, no future fore-
casts of population exposure to takeaways. We developed 
and validated a novel two-stage approach to address this 
evidence gap, which currently hinders both research 
and policymaking. First, we used a time-series model 
to forecast numbers of takeaways within management 
zones to 2031, in six local authorities across the urban/
rural spectrum. Second, we translated these forecasts of 
the number of takeaways within management zones into 
population-level exposures across home, work and com-
muting domains, which have been positively associated 
with takeaway-type food consumption and body weight. 
Across our six LAs, we forecast increasing numbers of 
takeaways within zones up to 2031, albeit with varying 
growth rates by RUC (min–max: 39.4-79.3%), and stron-
gest growth in Manchester (classified as a non-London 

urban with major conurbation LA). All six LAs were 
forecast changes in population exposure within manage-
ment zones to takeaways that might be considered a risk 
to public health, which suggests that planning restric-
tions to limit proliferation may be a helpful public health 
intervention over the long term. Our novel approach 
offers a promising avenue for understanding future 
trends in takeaway retail outlets within management 
zones and population-level exposure to them, with flex-
ibility to model other types of retail outlet trends and for 
other areas.
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