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Abstract

Simulation studies are widely used for evaluating the performance of statistical methods in

psychology. However, the quality of simulation studies can vary widely in terms of their

design, execution, and reporting. In order to assess the quality of typical simulation studies in

psychology, we reviewed 321 articles published in Psychological Methods, Behavior Research

Methods, and Multivariate Behavioral Research in 2021 and 2022, among which 100/321 =

31.2% report a simulation study. We find that many articles do not provide complete and

transparent information about key aspects of the study, such as justifications for the number of

simulation repetitions, Monte Carlo uncertainty estimates, or code and data to reproduce the

simulation studies. To address this problem, we provide a summary of the ADEMP (Aims,

Data-generating mechanism, Estimands and other targets, Methods, Performance measures)

design and reporting framework from Morris, White, and Crowther (2019) adapted to

simulation studies in psychology. Based on this framework, we provide ADEMP-PreReg, a

step-by-step template for researchers to use when designing, potentially preregistering, and

reporting their simulation studies. We give formulae for estimating common performance

measures, their Monte Carlo standard errors, and for calculating the number of simulation

repetitions to achieve a desired Monte Carlo standard error. Finally, we give a detailed tutorial

on how to apply the ADEMP framework in practice using an example simulation study on the

evaluation of methods for the analysis of pre–post measurement experiments.

Keywords: experimental design, Monte Carlo experiments, meta-research,

preregistration, reporting
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Simulation studies are experiments and should be treated as such by authors and editors.

Hauck and Anderson (1984, p. 215)

Introduction

Simulation studies are an experimental method for evaluating the properties of

statistical methods. They allow researchers to study the statistical properties of methods under

complex conditions which would be difficult or impossible to study theoretically, for instance,

with formal analyses or mathematical proofs. The idea is to simulate data with known

characteristics, analyze these data using the methods under investigation, and then (ideally)

compare the results with the known truth. By repeating this procedure under various

conditions, the performance and robustness of a method can be assessed and compared to that

of other methods. Simulation studies thus represent the “controlled experiment” in the toolbox

of methodologists, whereas benchmarking of methods on a real data set would be analogous

to a case study. Both are important, but simulation studies in particular allow us to understand

when a method works well and when it does not, and ultimately to make recommendations on

when to use a particular method in practice. We note that simulation can also be used for other

purposes, such as experimental design (e.g., sample size planning or power analysis for

complex statistical analyses where no closed-form solutions exist as in Heck & Erdfelder,

2019; Lakens & Caldwell, 2021), statistical inference (e.g., permutation testing or

bootstrapping), or numerical integration (e.g., Markov chain Monte Carlo methods for

computing posterior distributions in Bayesian statistics), but this use of simulation is typically

not called “simulation study” in methodological research and is not the focus of the present

paper.

As with any experiment, the quality of evidence from a simulation study depends on

how the study is designed, conducted, analysed, and reported. However, unlike many other

types of experiments, simulation studies offer much greater flexibility, as it is usually easy and

financially inexpensive to change the design of the study and generate new results. This can be

seen both as a strength but also as a reason for caution, since there are considerably more

researcher degrees of freedom than in other types of experiments (Simmons, Nelson, &

Simonsohn, 2011). For instance, researchers often have a high degree of flexibility in selecting
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certain methods and data-generating mechanisms, and in deciding which results are reported.

Issues with the conduct and reporting of simulation studies were described almost half a

century ago (Hoaglin & Andrews, 1975). However, the attention afforded to researcher

degrees of freedom in psychology and other empirical sciences has recently led to more

critical reflection on the state of methodological research (Boulesteix, Binder, Abrahamowicz,

& Sauerbrei, 2018; Boulesteix, Hoffmann, Charlton, & Seibold, 2020; Boulesteix, Hoffmann,

et al., 2020; Friedrich & Friede, 2023; Heinze et al., 2024; Luijken et al., 2023; Pawel, Kook,

& Reeve, 2024; Strobl & Leisch, 2022).

Some may argue that simulation studies are often conducted at a more exploratory

stage of research and therefore do not require as much rigor and transparency (including

measures such as sample size planning, preparation and preregistration of a study protocol, or

code and data sharing) as other types of studies. However, many simulation studies are not

conducted and reported as exploratory, but rather with the explicit goal of deriving

recommendations for the use of methods. It is important to realize that such simulation studies

often have a large impact. For example, the simulation study by Hu and Bentler (1999) on

cut-off criteria for structural equation models has been cited over 100,000 times, presumably

justifying thousands of choices in structural equation modeling. It would be detrimental if the

results of such a study were flawed or reported suboptimally. Another example is the

simulation study that recommended the “1 variable per 10 events” heuristic as a sample size

criterion for logistic regression (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996). This

heuristic has been cited over 8,000 times and was widely adopted as a minimum sample size

criterion, but the influential simulation study advocating it was later found to be

non-replicable (van Smeden et al., 2016).

In non-methodological research, it has been repeatedly emphasized that research

results should be accompanied by measures of statistical uncertainty, such as p-values,

standard errors, or confidence intervals (Cumming, Fidler, Kalinowski, & Lai, 2012; van der

Bles et al., 2019). Clear guidelines are now available in most fields, for example, the APA

guidelines require that “when point estimates [...] are provided, always include an associated

measure of variability” (American Psychological Association, 2020, p. 88). It is perhaps
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surprising, therefore, that methodological researchers rarely report measures of uncertainty

associated with the results of simulation studies, even though these researchers tend to be

more familiar with statistical reasoning than non-methodological researchers (see the literature

reviews by Burton, Altman, Royston, & Holder, 2006; Harwell, Kohli, & Peralta-Torres,

2018; Hauck & Anderson, 1984; Koehler, Brown, & Haneuse, 2009; Morris et al., 2019).

To help navigate the complexities of conducting simulation and benchmarking studies,

various guidelines, recommendations and tutorials have been published over the years—both

in statistics (e.g., Boulesteix, Groenwold, et al., 2020; Burton et al., 2006; Chipman &

Bingham, 2022; Hoaglin & Andrews, 1975; Kelter, 2023; Koehler et al., 2009; Lange, 2022;

Morris et al., 2019; White, Pham, Quartagno, & Morris, 2023) and in psychology (e.g.,

Boomsma, 2013; Carsey & Harden, 2014; Chalmers & Adkins, 2020; Feinberg & Rubright,

2016; Giordano & Waller, 2020; McNeish, Lane, & Curran, 2018; Paxton, Curran, Bollen,

Kirby, & Chen, 2001; Psychometric Society, 1979; Skrondal, 2000). A recent tutorial from

the statistical literature is provided by Morris et al. (2019), which we recommend as a first

read on the state-of-the-art methodology of simulation studies.

A general and accessible introduction to simulation studies that builds on recent

guidelines from the statistics literature is currently lacking in psychology. We therefore

provide an introduction to the ADEMP (Aims, Data-generating mechanisms, Estimands and

other targets, Methods, Performance measure) design and reporting structure of Morris et al.

(2019), aimed at researchers in psychology. Based on ADEMP’s structure, we provide a

literature review of simulation studies published in the journals Psychological Methods (PM),

Behavior Research Methods (BRM), and Multivariate Behavioral Research (MBR), which

represent three prominent journals for methodological research in psychology. To help

researchers conduct rigorous simulation studies, we provide the ADEMP preregistration

(ADEMP-PreReg) template (https://github.com/bsiepe/ADEMP-PreReg) that

methodological researchers can use to preregister their simulation studies, clarifying important

aspects of their study in advance and helping them to avoid common pitfalls. For simulation

studies that are not preregistered, the template can still be used as a blueprint for structured

planning and reporting of their study. We also give formulae for the most commonly used

https://github.com/bsiepe/ADEMP-PreReg
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performance measures, their Monte Carlo standard errors, and for calculating the number of

repetitions to achieve a desired Monte Carlo standard error. Finally, we illustrate ADEMP and

the template with an example simulation study on a typical application from psychological

research—a comparison of methods for the analysis of pre–post measurements.

The ADEMP structure

Morris et al. (2019) introduced ADEMP as a structured approach to planning and

reporting of simulation studies. Despite its young age, ADEMP has quickly gained traction

and is now widely used in (bio)statistics, making it a proof-tested framework. It is important

to emphasize that ADEMP is not a legalistic checklist, but a framework for describing the

structure of a simulation study. Table 1 provides an overview of ADEMP. We will now

summarize the approach in more detail in the context of methodological research in

psychology with concrete examples from the field. Readers already familiar with the ADEMP

structure may choose to read this section in less detail or to skip it entirely, while readers who

want to know more about ADEMP in the context of biostatistics may additionally read

Section 3 in Morris et al. (2019). Finally, this section also provides additional

recommendations and formulas for planning the number of simulation repetitions based on

certain performance measures, and additional recommendations on computational aspects,

preregistration, and reporting, that were not discussed in the original article from Morris et al.

(2019).

Aims

The aim of a simulation study refers to the goal of the methodological research project

and shapes subsequent choices. Aims are typically related to evaluating the properties of a

method (or multiple methods) with respect to a particular statistical task. In psychological

simulation studies, common statistical tasks and exemplary aims (taken from the literature

review) can include:

• Estimation, e.g., assessing the effect of different parametrizations of covariance

structures in mixed-effect models when estimating an intervention effect (McNeish &

Bauer, 2022).
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Table 1

Summary of the ADEMP Planning and Reporting Structure for Simulation Studies.

Step Explanation Example

Aims What is the aim of the study? To evaluate the hypothesis testing and es-

timation characteristics of different meth-

ods for analyzing pre–post measurements

Data-generating

mechanism

How are data sets generated? Pre–post measurements are simulated

from a bivariate normal distribution for

two groups, with varying treatment ef-

fects and pre–post correlations

Estimands and

other targets

What are the estimands and/or other

targets of the study?

The null hypothesis of no effect between

groups is the primary target, the treatment

effect is the secondary estimand of inter-

est

Methods Which methods are evaluated? ANCOVA, change-score analysis, and

post-score analysis

Performance

measures

Which performance measures are

used?

Type I error rate, power, and bias

• Hypothesis testing, e.g., comparing different tests of publication bias (Rodgers &

Pustejovsky, 2021).

• Model selection, e.g., comparing different fit indices for selecting the best structural

equation model (Shi, DiStefano, Maydeu-Olivares, & Lee, 2022).

• Design, e.g., comparing different methods for determining sample size in mixed-effect

modeling (Murayama, Usami, & Sakaki, 2022).

• Prediction, e.g., comparing different algorithms for predicting participants’

problem-solving strategies (Moss, Wong, Durriseau, & Bradshaw, 2022).

• Other aims, e.g., assessing tools for quantifying complexity (Moulder, Daniel,

Teachman, & Boker, 2022), clustering data sets into equivalent parts (Papenberg &
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Klau, 2021), or comparing implementations of principal component analysis rotations

across software packages (Grieder & Steiner, 2021).

These statistical tasks are often closely related, for example, hypothesis testing and model

selection may be seen as the same task; the duality of p-values and confidence intervals

enables both to be used for estimation and hypothesis testing from a frequentist perspective;

model selection may be used for the purpose of description, prediction or estimation.

Data-generating mechanism

The data-generating mechanism (often also called data-generating process)

corresponds to the process of simulating data sets for assessing the performance of the

compared methods in accordance with the aims of the simulation study. In general, the data

sets can be simulated from a known parametric model or by resampling an existing real data

set. Sometimes part of the simulation uses real data and part simulates data, which is the basis

of “plasmode simulation” (Franklin, Schneeweiss, Polinski, & Rassen, 2014; Schreck, Slynko,

Saadati, & Benner, 2024; Stolte et al., 2024). For example, data imperfections can be

generated in a real-world data set to assess their impact while still preserving part of the

structure of the underlying data. (Abrahamowicz et al., 2024).

When simulating from a parametric model, researchers need to specify the

data-generating mechanism. For example, the data sets can be generated from a normal

distribution with varying values of the underlying true parameters. These can be determined

either based on theory and previous research (e.g., depression scores in clinically depressed or

healthy populations), estimated from an existing data set, specified according to conventional

thresholds (e.g., small, medium, and large effect sizes), or set to arbitrary values to test

performance across a wide variety of conditions. A common feature is, however, that the true

values of the data-generating mechanism are known by the researcher and can be used to

evaluate the performance of the compared methods. Especially when data generation is not

based on a real-data model, the choice of data-generating parameters should be explained and

justified to enable an understanding of the choice for readers, as well as for researchers

wishing to perform similar simulation studies. In some cases this may be “extreme” to see

when and how methods break, or not, as the case may be.
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If multiple factors are varied, there are different possible ways to combine them: fully

factorial (all possible combinations), partially factorial (considering some combinations but

not all possible ones), one-at-a-time (varying one factor while holding the other/s constant), or

scattershot (creating a set of distinct conditions). The fully factorial approach is typically

preferred because it allows us to disentangle the individual effects of the factors and their

interactions, but it may not always be feasible computationally or because some combinations

of factors make no sense. For example, in a simulation study involving missing data, we may

wish to vary the proportion of missing data and the missing data mechanism. When the

proportion is zero, the mechanism is not applicable. Complex simulation designs can also

make the reporting and interpretation of results more difficult. To reduce the complexity of the

design, a partially factorial design may then be chosen (Morris et al., 2019, see, for example,

Skrondal (2000) for recommendations on “fractional factorial designs”).

Figure 1

Example of Different Ways to Combine Factors in the Design of a Simulation Study.

Figure 1 gives an example of how two factors, sample size and the number of

variables, could be combined for a simulation study comparing different regression methods:

The fully factorial approach would include all possible combinations (left panel). However,

this may not be possible because, for example, the regression methods under study may not be

able to handle situations where the number of variables is greater than the sample size. In this

case, these conditions may be excluded and a partially factorial design adopted (middle left
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panel). With the one-at-a-time approach, one may fix the sample size to a value of 40 and then

vary the number of variables across all levels, and vice versa, fix the number of variables to 15

and vary the sample size across all levels (middle right panel). Finally, with the scattershot

approach, one may create distinct conditions of sample size and number of variables, for

example, inspired by actual data sets that feature these combinations (right panel). Depending

on the setup of this approach, higher-order interaction effects between simulation factors may

not be identifiable.

When resampling an existing data set, researchers rely on a (usually large) existing

data set to sample smaller data sets for the simulation. Alternatively, one may sample equally

large data sets with replacement from the existing data set. The data-generating mechanism is

thus implicitly determined by the data set while researchers only need to specify the

resampling mechanism.

Estimands and other targets

Estimands and other targets jointly refer to the practical aims of the compared

methods, Table 2 provides an overview of common targets of simulation studies. For example,

if a simulation study aims to compare different methods for estimating the effect of an

intervention versus the absence of that intervention, the estimand of interest is a contrast of

these groups rather than, say, a group mean. An estimand is a target quantity of a statistical

analysis (see ICH, 2019; Keene, Lynggaard, Englert, Lanius, & Wright, 2023; Lundberg,

Johnson, & Stewart, 2021, for accessible introductions to estimands). In simulation studies, an

estimand is typically, but not always, a parameter of the underlying data-generating model.

When it is not, care is needed to define and compute the true or ideal value of an estimand. If

the simulation study aims to compare different methods for hypothesis testing rather than

estimation, the true hypothesis is the target of interest.1 Again, care is needed to distinguish

between different ways of translating substantive hypotheses into statistical hypotheses (e.g.,

whether a null hypothesis of no effect is specified as a point null hypothesis or an average null

hypothesis in random-effects meta-analysis). Similarly, the targets appropriate for the

1 This may initially sound confusing to the reader, as some might expect the target of the simulation would be the
outcome—Type I error rate of the hypothesis test. However, this would be the performance measure that
indicates the methods’ performance for the given target—the null hypothesis.
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statistical tasks of other simulation studies include the true model (when the statistical task is

model selection), the design characteristics (when the statistical task is design), or new data

(when the statistical task is prediction).

Methods

The term “methods” corresponds to the different procedures evaluated in the

simulation study for estimating parameters, testing hypotheses, predicting new data, etc.

There is some ambiguity about what exactly constitutes a method in simulation studies. Often,

different methods correspond to different statistical procedures, e.g., different tests for

assessing publication bias such as the Egger regression or selection-model tests. Methods can

also encompass different specifications or settings of a single statistical procedure, e.g.,

different parameterizations of covariance structures in mixed-effect models, different metrics

of a statistical procedure, e.g., fit indices, or different software implementations of the same

procedure, or the performance of different variance estimators for a given point estimator, e.g.

model-based, robust, and bootstrap based standard errors. Less often, a simulation study

evaluates only a single method, for instance, to verify that the method can recover the targeted

estimands in the first place or to study robustness when its assumptions are violated. Of

course, it may also be the case that no competing method is available.

If only a single method is evaluated and there is no clear benchmark for what

constitutes “good” performance (e.g., the successful control of the Type I error rate at 5% in

the case of a statistical test), the lack of a comparator method can introduce ambiguity into a

simulation study. If multiple methods are compared, caution is required along various steps of

planning and conducting a simulation study to ensure that comparisons are both neutral and

meaningful. As in research on new drugs or treatments, methodological researchers have

warned against over-optimism in the evaluation of new statistical methods for some time (e.g.,

Boulesteix, 2015). Such over-optimism can occur, among other reasons, when researchers are

not neutral with respect to the evaluation of a method but rather choose data-generating

mechanisms that favor a certain method (Nießl, Hoffmann, Ullmann, & Boulesteix, 2023).

Comparisons aimed at identifying data characteristics that determine the performance of the

investigated methods (and their contextualized relative advantages) are often more informative
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than searching for specific conditions under which a method appears to be the “best” (Strobl

& Leisch, 2022).

Comparative simulation studies can benefit from approaches that decrease

over-optimism and allegiance bias used in other scientific fields such as experimental

psychology or clinical trials. These include blinding the data analysts to the method (Pawel et

al., 2024) or using separate research teams for data simulation and analysis (Kreutz et al.,

2020). Further, “adversarial collaboration”, the collaboration of researchers with different

theoretical or methodological views (Cowan et al., 2020; for an example see Binder,

Sauerbrei, & Royston, 2012), could be introduced to simulation studies to achieve useful

comparisons between different methods. Researchers can also build on previous research by

combining the conditions and methods of previous simulation studies into a single, large

simulation study, extending previous simulation designs when necessary, to assess the

robustness of their results to different experimental settings that have already been

investigated in isolation by others (see Bartoš, Maier, Wagenmakers, Doucouliagos, &

Stanley, 2023; Hong & Reed, 2021, for an example).

Performance measures

Performance measures are the summary statistics used for quantifying how well

methods can achieve their task for a given data-generating mechanism. For instance, a

performance measure may quantify how well a method can estimate an estimand. As such, the

estimated performance corresponds to the “inferences” of a simulation study that allow

researchers to draw conclusions about the methods. The selection of appropriate performance

measures depends on the aims of the simulation study, but also the estimands and other

targets. For example, bias, (root) mean square error, and confidence interval coverage can be

used to evaluate methods for estimating intervention effects, while power and Type I error rate

might be used to evaluate methods for testing hypotheses about publication bias. Table 2

shows typical performance measures for different simulation study aims.

The same statistical method may be applied for different statistical tasks and in

different contexts, such as estimation and prediction, for which different performance

measures can be used. Typically, multiple performance measures for a method should be
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Table 2

Different Types of Statistical Tasks, their Target(s), and Typical Performance Measures.

Statistical Task Target(s) Typical performance measures

Estimation Estimand(s) (True

effects/parameters)

Bias, variance, mean square error, coverage,

CI width

Hypothesis testing True hypothesis(es) Type I error rate, power

Model selection True model(s) Model-recovery rate, sensitivity, specificity

Prediction New data Prediction error, calibration, discrimination

Clustering True cluster(s) Fidelity to the true cluster structure

Design Design characteris-

tics

Expected sample size, minimum/maximum sample

size, power, precision (for a fixed sample size)

Note. Table adapted from Morris et al. (2019, Table 3).

interpreted together (Morris et al., 2019). For example, one may only consider comparing the

statistical power of different hypothesis testing methods if these methods have appropriate

Type I error rates (e.g., are below 5%). When evaluating estimation performance, it is often

desirable to interpret the bias and variance of an estimator together, as there is typically a

trade-off between the two. In general, providing a rationale for the choice of performance

measure as well as defining it clearly (ideally, with a formula-based representation) avoids

ambiguity. This is especially important when less familiar performance measures are used,

and when performance is estimated conditional on some sample statistic (e.g., bias of a study

given that it converged in a given simulated data set).

Performance measures used in simulation studies are typically aggregated across all

simulation repetitions. For example, the bias is estimated as the mean deviation between

parameter estimates and the true parameter across all repetitions. It can often be informative,

especially when building and reviewing a simulation study, to also look at other quantities

than the mean, for example, the median or other quantiles, or to visualize the distribution, for

example, with violin or box plots of parameter estimates, p-values, or Bayes factors. This

strategy may be useful for two reasons. First, it can help uncover errors in the simulation

design if the distribution of performance estimates violates expectations from theoretical work
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or other simulation studies. Second, properties such as large variability, skewness, or

multimodality of the distribution of performance estimates can provide important information

about the performance of a statistical method that is not captured by the mean.

An important aspect that affects the estimation and interpretation of performance

measures is the convergence of methods. By “convergence”, we mean broadly that a method

successfully produces the outcomes of interest (e.g., an estimate, a prediction, a p-value, a

sample size, etc.) required for estimation of performance. Although convergence may not

always be the main interest of a simulation study, it should be reported whether or not

non-convergence occurred, and if so, under what conditions and for which methods.

Non-convergent repetitions are the “missing values” of a simulation study, and they impact the

interpretation of other measures, since these can only be estimated when a method converged.

This is complicated because one method may converge more often than others, and so the

comparison conditional on convergence is delicate. The way non-convergent repetitions are

handled can have a major impact on results and conclusions, especially if repetitions are not

missing at random. For example, if a method fails to converge under the most challenging

conditions (e.g., small sample sizes), excluding such repetitions only for the problematic

method while keeping the results for all other methods that did converge may bias

performance measure estimates in favor of the excluded method. In such a case, researchers

should explicitly report and investigate patterns of non-convergence (Chalmers & Adkins,

2020; Giordano & Waller, 2020).

Table 3 provides definitions of the performance measures that were most commonly

used in our literature review of simulation studies in psychology (which will be presented in

the next section). We refer to Table 6 in Morris et al. (2019) for a definition and Monte Carlo

standard errors (MCSEs) of various other performance measures, such as bias-eliminated

coverage or average model standard error, that are less frequently used in psychology.

Performance measures estimated from simulated data are subject to sampling variability,

similarly to any other quantity estimated from a finite set of data (Koehler et al., 2009). Much

like the sample size in other empirical studies, the number of simulation repetitions nsim

determines the precision of these estimates. Table 3 therefore provides formulae for
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Table 3

Definitions of Common Performance Measures, their Estimates, Monte Carlo Standard Errors (MCSE), and Number of Simulation Repetitions

nsim to Achieve a Desired MCSE∗.

Performance measure Definition Estimate MCSE nsim

Bias E(θ̂) − θ (
∑nsim

i=1 θ̂i/nsim) − θ
√

S2
θ̂
/nsim S2

θ̂
/ MCSE2

∗

Relative bias {E(θ̂) − θ}/θ {(
∑nsim

i=1 θ̂i/nsim) − θ}/θ
√

S2
θ̂
/(θ2nsim) S2

θ̂
/(MCSE2

∗ θ2)

Mean square error (MSE) E{(θ̂ − θ)2}
∑nsim

i=1 (θ̂i − θ)2/nsim
√

S2
(θ̂−θ)2/nsim S2

(θ̂−θ)2/ MCSE2
∗

Root mean square error (RMSE)
√

E{(θ̂ − θ)2}
√∑nsim

i=1 (θ̂i − θ)2/nsim

√
S2

(θ̂−θ)2/(4nsimM̂SE) S2
(θ̂−θ)2/(4M̂SE MCSE2

∗)

Empirical variance Var(θ̂) S2
θ̂

S2
θ̂

√
2/(nsim − 1) 1 + 2(S2

θ̂
)2/ MCSE2

∗

Empirical standard error
√

Var(θ̂)
√

S2
θ̂

√
S2

θ̂
/{2(nsim − 1)} 1 + S2

θ̂
/(2MCSE2

∗)

Coverage Pr(CI includes θ)
∑nsim

i=1 1(CIi includes θ)/nsim

√
Ĉov(1 − Ĉov)/nsim Ĉov(1 − Ĉov)/MCSE2

∗

Power (or Type I error rate) Pr(Test rejects H0)
∑nsim

i=1 1(Testi rejects H0)/nsim

√
P̂ow(1 − P̂ow)/nsim P̂ow(1 − P̂ow)/MCSE2

∗

Mean CI width E(CIupper − CIlower)
∑nsim

i=1 (CIi,upper − CIi,lower)/nsim
√

S2
W /nsim S2

W /MCSE2
∗

Mean of generic statistic G E(G)
∑nsim

i=1 Gi/nsim
√

S2
G/nsim S2

G/ MCSE2
∗

Note. Table adapted from Table 6 in Morris et al. (2019)

E(X) and Var(X) are the expected value and variance of a random variable X , respectively. Summation is denoted by
∑n

i=1 xi = x1 + x2 + · · · + xn−1 + xn.

θ̂ is an estimator of the estimand θ, and θ̂i is the estimate obtained from simulation i

1(CIi includes θ) and 1(Testi rejects H0) are 1 if the respective event occurred in simulation i and 0 otherwise

M̂SE, Ĉov, and P̂ow denote the estimated MSE, coverage, and power, respectively. MCSE∗ denotes the desired MCSE when calculating the number of repetitions nsim.

The sample variance of the estimates is S2
θ̂

=
∑nsim

i=1 {θ̂i − (
∑nsim

i=1 θ̂i/nsim)}2/(nsim − 1)

The sample variance of the square errors is S2
(θ̂−θ)2 =

∑nsim
i=1 [(θ̂i − θ)2 − {

∑nsim
i=1 (θ̂i − θ)2/nsim}]2/(nsim − 1)

The sample variance of the CI widths is S2
W =

∑nsim
i=1 [(CIi,upper − CIi,lower) − {

∑nsim
i=1 (CIi,upper − CIi,lower)/nsim}]2/(nsim − 1)

The sample variance of a generic statistic G is S2
G =

∑nsim
i=1 {Gi − (

∑nsim
i=1 Gi/nsim)}2/(nsim − 1) with Gi the statistic obtained from simulation i. For example, G may be a measure of predictive performance.
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approximate MCSEs associated with the estimated performance measures. All MCSEs are

based on the assumptions of independent simulations and approximate normality of the

estimated performance measures. More accurate jackknife-based MCSEs are available

through various R packages such as rsimsum (Gasparini, 2018) and simhelpers (Joshi &

Pustejovsky, 2022). The SimDesign R package (Chalmers & Adkins, 2020) can compute

confidence intervals for performance measures via bootstrapping.

MCSEs (or other measures of uncertainty, including visual representations) should be

provided alongside the estimates of performance to indicate the associated uncertainty. Failing

to calculate and report Monte Carlo uncertainty can lead to erroneous interpretations of results

and unsupported claims about the performance of different methods (see, e.g., the illustration

by Koehler et al., 2009). In situations where MCSEs are tiny relative to the estimated

performance and may distract, one could, for example, provide the maximum MCSE across

all conditions to give the reader reassurance about the worst case.

When planning a simulation study, researchers should choose a number of simulation

repetitions that ensures a desired precision for estimating the chosen performance measures.

The last column of Table 3 gives simple formulae for this purpose. Many of these depend on

quantities that are not known but have to be estimated from the simulated data. For example,

the MCSE of the estimated coverage depends on the coverage itself. In this case, one can

either assume a certain value for which the desired MCSE should be achieved (e.g., 95%),

take a “worst-case value” in the sense that the MCSE is maximal for a given number of

repetitions (this would be 50% for coverage), or estimate it from a small pilot study (e.g.,

taking the estimated coverage closest to 50% across all conditions and methods obtained in

the pilot study). The latter approach may be especially advisable for performance measures

where there is no conventional benchmark, such as 95% is for coverage.

In practice, it can be challenging to define what it means for an MCSE to be

“sufficiently small”. A. S. Cohen, Kane, and Kim (2001) provide some guidelines on how to

decide on the desired precision based on the size of the effects under study. Essentially, the

number of repetitions must be chosen large enough such that the MCSE is sufficiently small

compared to the relevant effect of interest (e.g., if a change in coverage of 1% is a relevant
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effect, the MCSE for the estimated coverage should be less than that). However, what exactly

constitutes a relevant effect must be decided by researchers on a case-by-case basis, as to our

knowledge there are no standards. This parallels the challenges in traditional sample size

calculations, where researchers must also decide on a minimum effect size of interest.

Finally, during the design phase of a simulation study with clear expectations about the

performance of different methods, researchers may also wish to specify in advance what

constitutes a “relevant difference” in performance, or what constitutes “acceptable” and

“unacceptable” levels of performance, to avoid post-hoc interpretation of performance. Such

studies may be seen as “confirmatory” methodological research (Herrmann et al., 2024). For

example, it could be stated that a Type I error rate greater than 5% defines unacceptable

performance, or that a method X is considered to perform better than a method Y in a given

simulation condition if the estimated performance of method X minus its MCSE is greater

than the estimated performance of method Y plus its MCSE. Again, this is similar to

traditional sample size calculations where researchers need to decide on a minimum effect

size of interest they want to detect (Anvari & Lakens, 2021). While this can be difficult in

practice, it forces researchers to think thoroughly about the problem at hand, so investing this

time comes with the benefit of higher clarity of expectations and interpretation.

Reporting

As with any experiment, transparent reporting of study design, execution, and results is

essential to put the outcomes from a simulation study into context. The ADEMP structure is a

useful template for researchers to follow when reporting the design and results of their

simulation study. Furthermore, the results should be reported in a way that clearly answers the

main research questions and acknowledges the uncertainty associated with the estimated

performance. It is often difficult to find a balance between streamlining the results of

simulation studies for the reader and exhaustively reporting all conditions in detail. However,

it is important that researchers avoid selectively reporting only certain conditions that favor

their preferred method or are in line with their expectations, as this can lead to overoptimism

(Pawel et al., 2024).

Figures are often helpful for interpreting large quantities of results and identifying
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general trends. However, for most plot types, there is a limit to how many factors can be

communicated visually (see section 7.2 in Morris et al., 2019, for some recommendations, see

also Rücker & Schwarzer, 2014). On the other hand, presenting results only with figures can

hinder the accurate interpretation of results and also make it more difficult for researchers

replicating the simulation study to verify whether they have been successful (Luijken et al.,

2023). Figures should therefore ideally be combined with quantitative summaries of results,

such as tables or graphical tables containing both numerical and graphic elements.2 For

complex simulation designs with a large number of conditions, the communication of results

can be improved using interactive tools such as R Shiny applications (Chang et al., 2023, see

e.g., Carter, Schönbrodt, Gervais, & Hilgard, 2019; Gasparini, Morris, & Crowther, 2021).

Computational aspects

The computational implementation of simulation studies can often be complex.

Conclusions critically depend on the soundness of the underlying code for data-generation,

model fitting, and computations of performance measures, and even small mistakes can have a

big impact (Schwab & Held, 2021). Morris et al., 2019 and White et al., 2023 give detailed

advice on how to code a simulation study, here we want to focus more on the aspects of

reproducibility and code sharing. Code that is not openly available online prevents an

assessment of the computational reproducibility of simulation studies. It is also an obstacle for

reviewers and readers who want to understand, inspect, or replicate the implementation of a

simulation study, or for researchers who seek to build on the previous literature. It is therefore

recommended for researchers to make their code openly available, share all relevant

information about their computational environment, and strive to use a robust computational

workflow to ensure the reproducibility and replicability of their results (Chalmers & Adkins,

2020; Giordano & Waller, 2020; Luijken et al., 2023; Pawel et al., 2024).

Platforms such as the Open Science Framework and Zenodo can be used to

persistently store and share data and code, independently of specific journals and according to

the FAIR principles (Wilkinson et al., 2016). The computational reproducibility of simulation

studies can be further enhanced by sharing complete or intermediate results of simulation

2 See the documentation of the gtExtras R package (Mock, 2024) for examples.
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studies, such as the simulated data or parameter estimates of computed models. This enables

independent reproduction and evaluation of the results by other researchers without the full

computational effort that large simulation studies require.

Information on the computational environment and operating system is relevant to

reproduce simulation studies. Different software packages or package versions can lead to

different results, even when the apparently same method is used (Hodges et al., 2023).

Operating systems can differ in a variety of aspects that may subtly influence the results of

analyses (Glatard et al., 2015). There are several helpful tools that facilitate sharing

information on the computational environment and operating system. For example, when

using R, the output of the sessionInfo() command includes information about the

operating system, R package versions, and auxiliary dependencies (e.g., the installed linear

algebra programs such as BLAS/LAPACK). Furthermore, Peikert and Brandmaier (2021) and

Epskamp (2019) provide accessible tips for reproducible workflows in R, which can serve as a

starting guide for other statistical software as well. For instance, in advanced workflows, a

snapshot of the current version of all software required to reproduce the analysis is stored

(e.g., via Docker or the R package renv, Ushey & Wickham, 2023).

An important computational aspect of simulation studies is the use of pseudo-random

numbers. It is important to initialize the random number generator with a seed and to store

this seed so that the same sequence of pseudo-random numbers can be reproduced in the

future (assuming other dependencies, such as operating system and software versions, remain

the same). The primary purpose of the seed is to ensure computational reproducibility and to

facilitate debugging. At the same time, the seed should not matter for simulation studies with

a sufficient number of repetitions, because the seed should have a negligible effect on the

results (estimated performance measures, patterns, and conclusions). Things become more

complicated when multiple cores, clusters, or computers are used for running the simulation

study since the seed has to be set for each parallelized instance to ensure reproducibility. One

solution is to use “streams” rather than seeds, which fixes the random number generator to the

actual starting position in the deterministic sequence of generated numbers (Morris et al.,
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2019). Streams are available in Stata, SAS, and R3. However, when using streams, one needs

to know how many pseudo-random numbers are required per instance, so that the streams can

be set to avoid overlap. This can be challenging, especially when the methods evaluated in the

simulation study also use pseudo-random numbers (e.g., Markov Chain Monte Carlo sampling

or bootstrap methods).

Literature review

In this section, we use the ADEMP structure to assess the current state of simulation

studies in psychology. For each ADEMP component, we summarize the findings, highlight

their relevance, and suggest improvements for future simulation studies. We compare some of

our results with the results of Morris et al. (2019) who reviewed 100 simulation studies

published in Statistics in Medicine. Visual summaries of the review are provided in Figure 2

and Figure 3. Table 4 summarizes the most common pitfalls we encountered during the

review. The preregistration, data, and code to reproduce the results are available at the Open

Science Framework (https://osf.io/dfgvu/).

We extracted 321 articles until we reached 100 articles containing at least one

simulation study. We extracted articles by going through the 2022 issues of the journals in

chronological order. After assessing the number of articles containing a simulation study from

each journal, we then continued chronologically in the 2021 issues, aiming for a roughly equal

split of simulation studies from the three journals.4 The proportion of articles containing a

simulation study (31.2%) was considerably lower than the 75.4% proportion reported by

Morris et al. (2019) for the 100 simulation studies published in Statistics in Medicine. The

lower proportion of simulation studies in our review is mainly due to articles in BRM, which

generally published the most articles, but only 15.6% of them contained a simulation study.

We extracted roughly equal numbers of articles containing a simulation study from the three

journals, with 32 from BRM and 35 each from PM and MBR. Of these articles, 63 contained

only a single simulation study, while the rest contained up to 6 simulation studies (see Panel A

3 Random number streams are available in R through different packages, e.g., parallel (R Core Team, 2023),
rstream (Leydold, 2022), or doRNG (Gaujoux, 2023).

4 Due to an oversight, we did not review the last issue of BRM in 2022 but rather continued with the first 2021
issues of the journals.

https://osf.io/dfgvu/
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Figure 2

Common Issues of Simulation Studies in Psychology as Identified in the Literature Review.

Note. 100 articles were reviewed that included simulation studies and were published in Psy-

chological Methods, Behavior Research Methods, and Multivariate Behavioral Research in

2021 and 2022.

of Figure 3).

Three authors (BS, FB, SP) each reviewed around one-third of all simulation studies

and assessed the overall confidence in their rating of each study as “low”, “medium”, or

“high”. To assess inter-rater agreement, each rater also reviewed six studies that were assigned

to the other raters and which had a “low” or “medium” confidence rating, thereby representing

the most challenging simulation studies that were reviewed. Nevertheless, an agreement larger

than 75% was achieved for the majority of questions (Median = 83.3%). The lowest

agreement was with respect to whether the estimands were stated and the number of estimands

(above 30%). All studies where we disagreed about the number of estimands were studies

about latent variable models, where it was often unclear which parameters were of interest and

how their number varied across conditions, with many studies even showing varying numbers
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Figure 3

Descriptive Results from Literature Review of Simulation Studies in Psychology.

Note. 100 articles were reviewed that included simulation studies and were published in Psy-

chological Methods, Behavioral Research Methods, and Multivariate Behavioral Research in

2021 and 2022. In Panel J, absolute and relative bias are combined in the bias category. In

Panel E, partially factorial and one-at-a-time are combined. Within-panel totals are greater

than 100 in panels H, J, K, L due to the possibility of more than one category.
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of parameters per condition. The results of the agreement analysis are shown in Figure 5 in the

Appendix.

Aims

In 94% of the reviewed articles, the aims of the study were defined in some form. We

did not quantify how specific or vague the aims were defined, although they were often

defined rather vaguely (“We conducted a simulation study to evaluate the performance of

method X”). By far most studies had estimation as one of their statistical tasks (68%),

followed by hypothesis testing (21%) and model selection (9%; Panel H in Figure 3). This

resembles the results of Morris et al., who also found these three tasks to be the most

prominent ones with similar frequencies.

Data-generating mechanism

In our review, the clear majority of simulation studies (83%) generated data based on

parametric models with parameters specified by researchers (‘parametric customized’), while

15% were directly based on parameter estimates from real data (Panel B of Figure 3). The

remaining 2% used resampling techniques. In almost all of the studies (95%), the

data-generating parameters were provided, which mirrors the results from Morris et al. (91%

studies). Nevertheless our view is that many of the reviewed papers could have benefited from

describing the data-generating mechanism in a more structured way to facilitate easy

comprehension and replication.

Researchers used between 1 and 6,000 simulation conditions (Median = 16; Panel C in

Figure 3). In these, they varied between 1 and 7 factors, with 1 and 3 being the most common

choices (Panel D in Figure 3). Of all designs, 58% were fully factorial, meaning that all

possible combinations of factor levels were investigated. Moreover, 37% of the studies were

either partially factorial or varied factors one-at-a-time (including studies with a single design

factor) and 5% used distinct scenarios in a scattershot design (Panel E in Figure 3). As in

experimental psychology, a fully factorial design enables the study of the main and interaction

effects of the varied factors. In our review, some studies made use of this fact by using analysis

of variance to assess the effects of simulation factors (see also Chipman & Bingham, 2022).

The number of repetitions per simulation condition ranged between 1 and 1,000,000
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Table 4

Summary of Common Pitfalls Identified in the Literature Review.

Step Pitfalls

Aims Not reporting specific aims

Not summarizing simulation conditions and data-generating mechanism in a structured way (e.g., bullet points, tables)
Data-generating mechanism

Not providing justification and Monte Carlo uncertainty coupled with a small number of simulation repetitions

Estimands and other targets Not defining estimands / targets clearly, especially in models with many parameters

Methods Not clearly listing all of the compared methods and their specifications

Not clearly defining performance measures

Not clearly defining how performance measures are aggregated

Not reporting Monte Carlo uncertainty
Performance measures

Not reporting convergence

Computational aspects

Not reporting computational environment (operating system, software, and package versions)

Not using persistent repositories for sharing code and data (e.g., publisher or university repositories)

Not sharing code and data

Note. Pitfalls were not all coded explicitly, but summarized from the quantitative results of the literature review and discussions between the reviewing authors.
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(Panel F in Figure 3). The median number was 900, whereas the most frequently selected

options were 1,000 repetitions followed by 500 repetitions, similar to the results from Morris

et al.. However, in 17% of studies, at least some of the performance results were aggregated

across multiple parameters (such as the average bias across factor loadings), leading to higher

precision. Only 8% of the studies provided a justification for the specific number of

repetitions used, while only 3% of these actually performed a calculation of the required

number of repetitions (Panel A in Figure 2). This is very similar to the results from Morris et

al., who also found only 4% of studies presenting a justification for their choice of the number

of repetitions. This lack of justification is, unfortunately, consistent with the findings from

similar surveys of the methodological literature (Harwell et al., 2018; Hauck & Anderson,

1984; Hoaglin & Andrews, 1975; Koehler et al., 2009). Of course, this does not rule out the

possibility that the study authors chose their number of repetitions in some informed way

(e.g., by visually assessing whether Monte Carlo uncertainty was sufficiently small) without

explicitly reporting their rationale.

Estimands and other targets

In 20% of the studies, the estimands or targets of the simulation were either not

reported or unclear to us. Of those that were clear, most studies focused only on a single

estimand, while the median number of estimands was 4. In at least 17% of the studies,

estimated performance measures related to different estimands were later aggregated to

calculate average performance, while this was unclear in 4% of studies. We noticed that

especially when evaluating models with many parameters, such as latent variable models or

certain time series models, it can easily become unclear which parameters are of interest.

Clear definition and reporting of estimands and (potentially aggregated) performance

measures is particularly important in these situations.

Methods

While the number of methods evaluated in the simulation studies ranged from 1 to

192, more than half (65%) evaluated 3 or fewer methods, and 24% evaluated only a single

method (Panel G in Figure 3).
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Performance measures

Reflecting the popularity of estimation as a statistical task, bias (used in 63% of

studies) and (root) mean square error ([R]MSE, in 39% of studies) were the most common

performance measures in our review (Panel J in Figure 3). Convergence was reported only in

19% of the studies. This is problematic because substantial non-convergence can greatly

affect the conclusions of simulation studies (van Smeden et al., 2016). In 10% of the studies,

performance measures were unclear, for example, how a certain performance measure was

defined mathematically. Many studies also included other performance measures not

explicitly listed here. For example, the correlation between true and estimated parameters was

sometimes used as a measure of performance. While there may be cases where this metric

provides valuable information, interpreting it without considering the bias and variance of the

estimates gives only a very limited insight into the performance of a statistical method. A

positive example of clear reporting of both model specifications and performance measures is

H. Liu, Yuan, and Wen (2022), who provided formulae for both their models and the

performance measures used.

Presentation of results

Simulation results were most commonly reported in the text of an article and

accompanied by tables and figures (Panel K in Figure 3). The vast majority of studies (77%)

did not report the uncertainty of performance measures (Panel B in Figure 2), despite our

liberal approach of including visualizations such as box plots as indicative of Monte Carlo

uncertainty. The proportion is comparable to the stricter approach of Morris et al. (2019) who

counted 93% of their studies not reporting Monte Carlo standard errors. To cite two positive

examples from our review, J. Liu and Perera (2022) ran a pilot simulation study to obtain the

empirical standard errors for parameter estimates, which they then used to calculate the

needed number of repetitions to keep the MCSE below a desired level. Rodgers and

Pustejovsky (2021) provided the upper bound of the MCSE of their performance measures to

indicate their precision.
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Computational aspects

R was the most commonly used statistical software to conduct simulation studies and

was used in 77% of the studies (Panel L in Figure 3). Notably, the software used was unclear

or not mentioned in 9% of the studies. In Morris et al. (2019), 38% of the studies did not

mention the software used for their simulation study. In around half of the studies we

reviewed, authors also indicated that they used some form of user-written commands, such as

custom model code, or packages for their simulations. To fully understand these simulations,

it would be crucial to share code alongside the manuscript. However, code was not available

for almost two-thirds of the simulation studies (64%; Panel C in 2). This also includes cases in

which code was supposed to be provided, but the repository was not available, and cases in

which code was supposedly available “upon (reasonable) request”. In multiple cases, authors

supposedly provided code on the journal website or on a university homepage, but the code

was not available at the designated location. Our results are similar to the findings of

Kucharskỳ, Houtkoop, and Visser (2020), who analyzed articles in three methodological

journals (including Psychological Methods and Behavior Research Methods) and found that

56% of studies that contained coded analyses did not share their code. Of the 36% of studies

in our review in which code was provided, 21% also provided a seed in their code. We did not

check if this seed and the supplied code would be sufficient to reproduce the reported results.

Beyond the code and software used, we reviewed whether articles contained

information on the computational environment and operating system used. We coded

information on the computational environment as “fully” when packages with versions and

auxiliary dependencies were provided, for example in a “sessionInfo” output from R or via a

Docker container. We rated the information as “partially” or “minimal” when the main

packages used were reported with or without versions, respectively. Full information on the

computational environment was only reported in 2% of the studies, while 24% did not report

on their computational environment at all (Panel D in Figure 2). Even more studies (93%) did

not provide any information whatsoever on their operating system. Full information (naming

the operating system and its version) was provided in 4% of the studies, while 3% at least

provided the operating system without stating its version. Papenberg and Klau (2021) are a



SIMULATION STUDIES IN PSYCHOLOGY 29

positive example that included full information on their computational environment and

operating system which they used, as well as code and data to reproduce the simulations.

The ADEMP-PreReg template

Our literature review highlights varying standards of reporting of simulation studies in

psychology. To promote more structured and detailed reporting and to simplify preregistration

of simulation studies, we developed the ADEMP-PreReg template. This template closely

follows the outlined ADEMP structure and provides a list of questions, their explanation, and

example answers. This prompts researchers to describe all relevant parts of their simulation

studies a priori. The template can additionally be used as a blueprint for reporting or as

guidance when reviewing simulation studies. As such, the ADEMP-PreReg template is not

only suited for experienced researchers who want to plan, preregister, or report their

simulation studies but also for (under)graduate students embarking on a first exploration of

simulation studies. Once a simulation study is conducted, the ADEMP-PreReg template can

be transformed into the method section of the simulation study with minimal effort. The

template is available at GitHub (https://github.com/bsiepe/ADEMP-PreReg) in

different versions (LATEX, Microsoft Word, Google Docs, Overleaf) and can be uploaded and

timestamped at OSF, AsPredicted, or Zenodo among others. The ADEMP-PreReg template is

intended as a “living document” and we welcome feedback and suggestions via opening an

issue or a pull request on the GitHub repository.5

It is worth emphasizing that preregistration of simulation studies has many parallels,

but also several differences to the preregistration of other studies. Traditionally, preregistration

is often used to distinguish between exploratory and confirmatory research. This distinction is

more blurry for simulation studies, as it is often not clear when “data collection” starts and

which part of the research process can be considered confirmatory. This parallels the

challenges with preregistrations of secondary analyses on observational data (den Akker et al.,

2021). At the same time, preregistration in the traditional sense may be more appropriate in

later stages of methodological research (Heinze et al., 2024) when researchers attempt to

5 We used version 0.1.0 of the template in this example as archived at
https://doi.org/10.5281/zenodo.10057884.

https://github.com/bsiepe/ADEMP-PreReg
https://doi.org/10.5281/zenodo.10057884
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neutrally compare already well-established methods. Beyond that, preregistration of

simulation studies can serve many other purposes. It can help to structure the planning of a

study, guard against cognitive biases in the interpretation of results, promote a minimum

degree of neutrality and transparency, and save work in the preparation of manuscripts. As in

other areas of empirical science, preregistration may also help to legitimize and publish

informative “null” results in methodological research. Even if researchers do not want to

preregister their simulation, the preregistration template can serve as a blueprint for planning

and reporting. Finally, for readers, particularly journal editors and peer reviewers, the

ADEMP protocol can serve as a guiding document (similar to McNeish et al., 2018). By

considering whether the questions in the protocol can be answered after reading a manuscript,

reviewers can assess whether all necessary information is included and communicated in an

accessible manner.

Example simulation study on methods for the analysis of pre–post measurements

To illustrate the application of the preregistration template, we conduct a simulation

study to evaluate different methods for analyzing data from pre–post measurement

experiments. The filled-out ADEMP-PreReg template is available at

https://osf.io/dfgvu/. We made a minor modification of the study design from the

preregistration, increasing the number of simulation repetitions to achieve a lower MCSE than

was originally planned since our preregistration did not guarantee a sufficiently small MCSE

for the worst-case power. Importantly, the sole purpose of this simulation study is to illustrate

both the template and the transparent reporting of results using easy-to-understand simulation

conditions, not to contribute new knowledge to the literature. See Clifton and Clifton (2019);

Lüdtke and Robitzsch (2023); Senn (2006); Van Breukelen (2013); Vickers (2001) for a

comprehensive treatment of the topic.

Aims

The aim of the simulation study is to evaluate the hypothesis testing and estimation

characteristics of different methods for estimating the treatment effect in pre–post

measurement experiments. We compare three different methods (ANCOVA, change score

analysis, and post score analysis) in terms of power and Type I error rate related to the

https://osf.io/dfgvu/


SIMULATION STUDIES IN PSYCHOLOGY 31

hypothesis test of no effect, and bias related to the treatment effect estimate. We vary the true

treatment effect and the correlation of pre- and post-measurements.

Data-generating mechanism

In each simulation repetition, we generate n = 50 pre–post measurements in the

control group (g = control) and n = 50 pre–post measurements in the experimental group

(g = exp) from a bivariate normal distribution

 Y1

Y2

 ∼ N


 0

µg,2

 ,

 1 ρ

ρ 1


 , (1)

where the first argument of the normal distribution in (1) is the mean vector and the second

argument the covariance matrix. The numerical subscript 1 indicates measurement time “pre”

and 2 indicates “post”. The parameter µg,2 denotes the post-treatment mean. It is fixed to zero

in the control group (µcontrol,2 = 0), whereas it is varied across simulation conditions in the

experimental group. The parameter ρ denotes the pre–post correlation and is also varied

across simulation conditions.

We use the following values for the manipulated parameters of the data-generating

mechanism:

• µexp,2 ∈ {0, 0.2, 0.5}

• ρ ∈ {0, 0.5, 0.7}

We vary the conditions in a fully factorial manner which results in 3 (post-treatment mean in

experimental group) × 3 (pre–post measurement correlation) = 9 simulation conditions. We

select the specific values as they correspond to the conventions for no, small, and medium

standardized mean difference effect sizes in psychology (J. Cohen, 2013). The pre–post

measurement correlations correspond to no, one quarter, and approximately one half of shared

variance that, based on our experience, are both realistic and also allow us to observe

differences between the examined methods.
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Estimands and other targets

Our primary target is the null hypothesis of no difference between the outcomes of the

control and treatment groups. Our secondary estimand is the treatment effect size defined as

the expected difference between the control and the experimental group measurements at

time-point two

E(Y2 | g = exp) − E(Y2 | g = control),

for which the true value is given by the parameter µexp,2 for the considered data-generating

mechanisms.

Methods

We compare the following methods:

1. ANCOVA (ANalysis of COVAriance): A regression of the post-treatment measurement

using the pre-treatment measurement and the treatment indicator as covariates, which is

specified in R as lm(post ~ pre + treatment)

2. Change score analysis: A regression of the difference between post-treatment and

pre-treatment measurement using the treatment indicator as covariate, which is specified

in R as lm(post ~ offset(pre) + treatment)6

3. Post score analysis: A regression of the post-treatment measurement using the

treatment indicator as covariate, which is specified in R as lm(post ~ treatment)

Both change score and post score analysis can be seen as special cases of ANCOVA. Change

score analysis fixes the pre coefficient to 1 (using the offset() function), and post score

analysis omits the pre variable from the model (effectively fixing its coefficient to 0).

Performance measures

Our primary performance measures are the Type I error rate (in conditions where the

true effect is zero) and the power (in conditions where the true effect is non-zero) to reject the

6 An alternative way of writing this model is lm(I(post - pre) ~ treatment)
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null hypothesis of no difference between the control and treatment condition. The null

hypothesis is rejected if the two-sided t-test p-value for the null hypothesis of no effect is less

than or equal to the conventional threshold of 0.05. The rejection rate (the Type I error rate or

the power, depending on the data generating mechanism) is estimated by

R̂Rate =
∑nsim

i=1 1(pi ≤ 0.05)
nsim

where 1(pi ≤ 0.05) is the indicator of whether the p-value in simulation i is equal to or less

than 0.05. We use the following formula to compute the MCSE of the estimated rejection rate

MCSER̂Rate =

√√√√R̂Rate(1 − R̂Rate)
nsim

.

Our secondary performance measure is the bias of the treatment effect estimate. It is estimated

by

B̂ias =
∑nsim

i=1 θ̂i

nsim
− θ

where θ is the true treatment effect and θ̂i is the effect estimate from simulation i. We compute

the MCSE of the estimated bias with

MCSEB̂ias = Sθ̂√
nsim

where Sθ̂ =
√

1
nsim−1

∑nsim
i=1 {θ̂i − ( 1

nsim

∑nsim
i=1 θ̂i)}2 is the sample standard deviation of the

effect estimates.

Based on these performance measures, we perform 10,000 repetitions per condition.

This number is determined by using the formulae from Table 3 in Siepe et al. (2023) aiming

for 0.005 MCSE of Type I error rate and power under the worst case performance (50%

rejection rate: 0.50 × (1 − 0.50) / 0.0052 = 10,000), which we deem to be sufficiently

accurate for estimating power and Type I error rate for all practical purposes. Our simulation

protocol also illustrates how to determine the number of repetitions for bias based on a small
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pilot simulation study to estimate the unknown effect estimate variance.

Computational aspects

The simulation study is performed using R version 4.3.1 (R Core Team, 2023) and the

following R packages: the mvtnorm package (Version 1.2-3, Genz & Bretz, 2009) to

generate data, the lm() function included in the stats package (Version 4.3.1, R Core

Team, 2023) to fit the different models, the SimDesign package (Version 2.13, Chalmers &

Adkins, 2020) to set up and run the simulation study, and the ggplot2 package (Version

3.4.4, Wickham, 2016) to create visualizations. We executed the simulation study on a system

running Ubuntu 22.04.4 LTS. A sessionInfo output with more information on the

computational environment, a Dockerfile to reproduce it, and code and data to reproduce the

study and its analysis are available at the Open Science Framework

(https://osf.io/dfgvu/).

Results

Figure 4 shows the results of the simulation study visually, Table 6 in the Appendix

shows the same results numerically. No missing/non-convergent values were observed. We

see from the Effect = 0 panel/rows that all methods maintain a Type I error rate close to 5%

irrespective of the correlation between the pre–post measurements. For non-zero effects, when

the pre–post measurement correlation is zero, ANCOVA and post-score analysis exhibit

similar levels of power and both surpass change-score analysis. However, when the pre–post

measure correlation increases to 0.7, change-score analysis shows higher power than

post-score analysis, yet ANCOVA shows higher power than both other methods.

The lower panels in Figure 4 show the estimated bias of the methods. We see that all

methods had essentially equivalent bias across all simulation conditions. Furthermore, the bias

of all methods in all conditions was close to zero and, given the very small MCSEs, can be

considered as negligible.

In sum, under the investigated scenarios, all methods produced unbiased effect

estimates while ANCOVA consistently showed the highest power among the three methods.

In almost all conditions, the Type I error rate was within one MCSE of the nominal rate of 5%,

and all differences to the nominal rate were smaller than 0.5%. For this simple setting and the

https://osf.io/dfgvu/
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Figure 4

Estimated rejection rate (Power / Type I Error depending on DGM) and Bias of ANCOVA,

Change Score Analysis and Post Score Analysis.

Note. Error bars correspond to ±1 Monte Carlo standard error. The y-axis in the bias plot is

scaled only from −0.01 to 0.01, meaning that the bias can be considered negligible.

methods under study, there is a substantial amount of statistical theory that explains and

predicts our results (see, e.g., Senn, 2008), which is not often the case for simulation studies.

Our findings are also in line with previous simulation studies (Vickers, 2001).
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Discussion and recommendations

Our review of 100 articles published in prominent journals for methodological

research in psychology shows considerable room for improvement in the design and reporting

of simulation studies. The precision and uncertainty of estimated results are often neglected,

as evidenced by the lack of justification for the number of simulation repetitions and the

limited reporting of Monte Carlo uncertainty in most studies. The unavailability of openly

accessible code and detailed information on the computational environment in most studies is

a major barrier to critical evaluation, reproducibility, and incremental progress in

methodological research. At the same time, we have also highlighted several positive

examples from the literature that stood out for their transparent reporting or clear justification

of the number of repetitions. In our opinion, these positive examples illustrate how simulation

studies ought to be conducted and reported. Based on the insights from our literature review,

we provide recommendations for researchers to improve the quality of simulation studies in

the following (see Table 5, for an overview).

The quality of simulation studies can benefit from standardized design and reporting,

such as with the ADEMP structure (Morris et al., 2019) that we have reviewed in this article.

A standardized structure ensures that researchers think about important issues when designing

their study and that all important information is reported. However, comprehensive reporting

of what was done is not enough; researchers should also provide a rationale for the choices

made in the design and analysis of their simulation study (e.g., justifications for

data-generating mechanisms and analysis methods), as this is essential for readers and

reviewers to assess the quality of evidence provided by the study.

As with any empirical study, it is important to acknowledge the uncertainty of the

results within each simulation study, for example, by reporting Monte Carlo standard errors

for estimated performance measures. Any observed pattern should only be interpreted if the

associated Monte Carlo uncertainty (e.g., MCSE) is sufficiently small relative to the

magnitude of the performance measure of interest. In order for researchers to draw meaningful

conclusions, the uncertainty should already be taken into account in the design of the study,

for example, by choosing the number of repetitions such that a sufficiently small Monte Carlo
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Table 5

Recommendations for Methodological Research Using Simulation Studies.

Recommendation

1. Provide a rationale for all relevant choices in design and analysis (e.g., justifications for data-

generating mechanism conditions and analysis methods)

2. Use a standardized structure for planning and reporting of simulation studies (e.g., ADEMP)

3. Report Monte Carlo uncertainty (e.g., Monte Carlo standard errors, uncertainty visualizations)

4. Choose the number of simulation repetitions to achieve desired precision

5. Write (and possibly preregister) study protocol to guide simulation design and to disclose the

state of knowledge, prior expectations, and evaluation criteria before seeing the results (e.g.,

using the ADEMP-PreReg template)

6. Avoid selective reporting of results that lead to desired outcomes

7. Acknowledge the limited generalizability of a single simulation study

8. Report software versions and environment (e.g., using sessionInfo() in R)

9. Upload code, data, results, and other supplements to a FAIR research data repository (e.g., OSF

or Zenodo)

10. Journals/Editors/Reviewers: Promote higher reporting standards and open code/data (e.g., re-

quire code/data sharing)

standard error is achieved. The formulae in Table 3 can be used for this purpose. The choice of

the desired MCSE, and hence the number of repetitions required, is embedded in the trade-off

between the generalizability and the precision of a simulation study. Researchers aiming for

high precision in their performance measure estimates will usually be able to study fewer

conditions, restricting the scope of their investigation and limiting the external validity and

generalizability of their results. Therefore, setting the number of simulation repetitions too

high can also waste computational resources that could be better spent investigating additional

settings. Choosing the number of simulation repetitions to achieve desired precision, as

explained in our article, can help researchers to make informed choices in this trade-off.
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However, even when simulation studies are carefully designed in advance, their scope is often

narrow compared to all possible realistic settings. Researchers should avoid discrepancies

between the scope of their simulation and the generality with which their results are reported.

Preregistration of a study protocol helps to make a transparent distinction between

knowledge, decisions, and evaluation criteria that were present before or after the results were

observed. At the same time, preregistration does not mean that the researcher’s hands are tied

and that modifications to the study cannot be made, but rather that they should be

transparently disclosed through amendments to the protocol. Fortunately, the issue of

“double-dipping” on the same data to formulate and test hypotheses is less of a problem in

simulation studies as new data can typically be generated cheaply (with certain exceptions,

such as bootstrap or Monte Carlo methods). Rather, the purpose of preregistered protocols is

to guide the planning of rigorous simulation studies, to provide other researchers with a

transparent picture of the research process, and potentially receive peer feedback independent

of the results. This concerns especially the selection of methods, data-generating mechanisms,

conditions, and performance measures, which are often highly flexible in simulation studies.

Researchers can also obtain feedback on their protocols from other researchers, especially if

the protocol is publicly available (see, e.g., Kipruto & Sauerbrei, 2022). Moreover, fixing the

criteria for the evaluation of the results a priori protects researchers from cognitive biases in

the interpretation of results, such as hindsight bias, confirmation bias, or allegiance bias, that

can blur their interpretation of simulation study results. Our ADEMP-PreReg template

(https://zenodo.org/doi/10.5281/zenodo.10057883, development version:

https://github.com/bsiepe/ADEMP-PreReg) can be used for preparing a

(possibly preregistered) simulation study protocol, as a blueprint for the structured reporting

of a simulation study, or as guidance document when reviewing a simulation study. In future

work, this may be extended to a standardized reporting checklist created by a panel of experts

on simulation studies, similar to risk-of-bias assessment tools for randomized controlled trials

(Sterne et al., 2019) or reporting guidelines for prediction models in health care (Collins,

Reitsma, Altman, & Moons, 2015).

To foster computational reproducibility and enable other researchers to build on a

https://zenodo.org/doi/10.5281/zenodo.10057883
https://github.com/bsiepe/ADEMP-PreReg
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simulation study, we strongly recommend to share code, data, and other supplementary

material. We recommend to upload files to a research data repository that accords with the

FAIR principles (Wilkinson et al., 2016), such as OSF or Zenodo, as we encountered various

dead links in our review, even from journals. Zenodo, in particular, offers great integration

with GitHub which facilitates developing simulation code on GitHub (using the git version

control system) and then archiving time-stamped versions or snapshots of the repository in a

FAIR way on Zenodo with one click. Moreover, we recommend to report software versions

and the computational environment used to run the study in detail. For example, for R users

(the vast majority of researchers based on our review), we recommend to at least report the

output of sessionInfo() in the supplementary material or code repository as a low-effort

step for reporting necessary software versions and the computational environment. Ideally,

data files containing the full output of a simulation study should be shared if possible.

Besides researchers conducting simulation studies themselves, other academic

stakeholders can help raise the standards of methodological research. For example, during the

peer-review process, reviewers and editors can encourage proper design and reporting of

simulation studies, for instance, by guiding authors to justify the number of repetitions or to

report Monte Carlo standard errors. Similarly, journals can promote higher standards for

simulation studies by requiring authors to share code and/or data for articles that include

simulation studies. This seems appropriate since conclusions from simulation studies heavily

depend on the validity of their underlying code, and since there are usually no ethical concerns

with publishing code and simulated data (with the exception of studies with data generating

mechanisms based on resampling, where sharing the resampled data could be problematic).

Mandatory code and data sharing, along with reproducibility checks and reproducibility

badges, have already been adopted by several journals, for example, Meta-Psychology or

Biometrical Journal which both have dedicated reproducibility teams that (partially) rerun

simulation studies of submitted articles (Hofner, Schmid, & Edler, 2015; Lindsay, 2023). In a

similar vein, journals could have specific calls for the replication and/or generalization of

influential simulation studies (Giordano & Waller, 2020; Lohmann, Astivia, Morris, &

Groenwold, 2022; Luijken et al., 2023).
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Conclusions

Simulation studies are a remarkably powerful tool. They allow methodologists to

study the behavior of methods in virtually any situation they can imagine, often less limited by

ethical, resource, or time constraints than most other types of research. At the same time,

large-scale simulation studies can involve a considerable amount of costly human labor and

energy-intensive computational resources. To reduce the waste of valuable resources,

simulation studies should thus be planned and executed with care. Even more important, with

the potentially long-lasting impact of simulation studies on scientific practice comes great

responsibility to recognize the inherent uncertainty and the limited generalizability of their

results. After all, simulation studies are experiments, and their success depends on the same

factors as any other type of experiment—careful experimental design, consideration of

sampling uncertainty, neutral evaluation of results, transparent reporting, and sharing of data

and code so that other researchers can build on them.

While a more standardized approach to planning and reporting simulation studies can

improve their overall quality, there are potential pitfalls. As with other types of empirical

research, methodological research exists on a spectrum from exploratory to confirmatory, and

different “phases” of research require different degrees of rigor and standardization but also

generate different degrees of evidence (Heinze et al., 2024). An overly legalistic approach to

standardization, such as requiring pre-registration even from exploratory early-stage studies,

may therefore be unreasonable and potentially slow the field’s progress. Furthermore, while

the ADEMP framework is broadly applicable to typical simulation studies in psychology, it is

not a “one-size-fits-all” solution and adaptation to specific settings may be required, providing

an opportunity for future research. Finally, while preregistration can help to control researcher

degrees of freedom and post hoc interpretation of results, verifying the preregistration date is

difficult, and researchers could potentially fake the date and gain unwarranted trust from

others in the scientific community. There are some potential solutions, such as adversarial

collaboration or time-stamping simulation runs on a cluster computer/server, but these need to

be explored in more depth in future research.

Over the past two decades, psychology has proven to be a remarkably adaptive
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discipline, as exemplified by the widespread adoption of preregistration as well as open data,

code, and materials (Munafò et al., 2017). We believe, therefore, that the time is ripe for a

similar shift in methodological research toward more rigor and transparency in simulation

studies.
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Appendix

A summary of inter-rater agreement for the studies that were most difficult to code is

provided in Figure 5. The wording of the questions and their answer options are available in

the preregistration of our review (https://osf.io/8cbfd). Overall, the agreement

between raters appears to be acceptable. Low agreement is especially pronounced in questions

about the estimands, where the ambiguity of reporting combined with the complexity of some

models often made the assessment of a specific number of estimands very difficult. As we

used studies that we identified as most difficult for our assessment of agreement, we consider

the proportions found here as a lower bound for the overall agreement across all studies. Also,

higher rates of disagreement in some questions here again indicate the need for more clarity in

the reporting of studies. In the case of disagreement, we kept the rating of the initial reviewer

for the analyses in the manuscript.

Numerical results of the example simulation study on methods for the analysis of

pre–post measurements are given in Table 6.

https://ggplot2.tidyverse.org
https://osf.io/8cbfd
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Figure 5

Agreement between Raters

Note. Proportion of agreement between the three raters for 15 papers with a low or medium

confidence rating. Two studies that were also rated for agreement were not assessed here, as

the raters chose different simulation studies therein.
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Table 6

Estimated Power / Type I Error Rate (MCSE) and Bias (MCSE) of ANCOVA, Change Score Analysis, and Post Score Analysis Across Simulation

Conditions

Condition Power / Type I Error Rate Bias

Correlation Effect ANCOVA Change score Post score ANCOVA Change score Post score

0.00 0.00 0.0447 (0.0021) 0.0508 (0.0022) 0.0464 (0.0021) −0.0003 (0.0020) 0.0006 (0.0028) −0.0005 (0.0020)

0.00 0.20 0.1655 (0.0037) 0.1111 (0.0031) 0.1671 (0.0037) −0.0023 (0.0020) −0.0010 (0.0029) −0.0024 (0.0020)

0.00 0.50 0.6907 (0.0046) 0.4137 (0.0049) 0.6940 (0.0046) −0.0009 (0.0020) −0.0004 (0.0028) −0.0009 (0.0020)

0.50 0.00 0.0496 (0.0022) 0.0474 (0.0021) 0.0500 (0.0022) −0.0008 (0.0017) −0.0013 (0.0020) −0.0008 (0.0020)

0.50 0.20 0.2108 (0.0041) 0.1715 (0.0038) 0.1646 (0.0037) 0.0015 (0.0017) 0.0004 (0.0020) 0.0022 (0.0020)

0.50 0.50 0.8130 (0.0039) 0.6978 (0.0046) 0.6973 (0.0046) 0.0021 (0.0018) 0.0020 (0.0020) 0.0018 (0.0020)

0.70 0.00 0.0487 (0.0022) 0.0503 (0.0022) 0.0500 (0.0022) −0.0021 (0.0014) −0.0032 (0.0015) −0.0001 (0.0020)

0.70 0.20 0.2782 (0.0045) 0.2459 (0.0043) 0.1641 (0.0037) −0.0023 (0.0014) −0.0027 (0.0016) −0.0008 (0.0020)

0.70 0.50 0.9296 (0.0026) 0.8913 (0.0031) 0.6944 (0.0046) 0.0013 (0.0014) 0.0012 (0.0016) 0.0011 (0.0020)
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