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Abstract
Objective. Deep learning is increasingly permeating neuroscience, leading to a rise in
signal-processing applications for extracellular recordings. These signals capture the activity of
small neuronal populations, necessitating ‘spike sorting’ to assign action potentials (spikes) to their
underlying neurons. With the rise in publications delving into new methodologies and techniques
for deep learning-based spike sorting, it is crucial to synthesise these findings critically. This survey
provides an in-depth evaluation of the approaches, methodologies and outcomes presented in
recent articles, shedding light on the current state-of-the-art. Approach. Twenty-four articles
published until December 2023 on deep learning-based spike sorting have been examined. The
proposed methods are divided into three sub-problems of spike sorting: spike detection, feature
extraction and classification. Moreover, integrated systems, i.e. models that detect spikes and
extract features or do classification within a single network, are included.Main results. Although
most algorithms have been developed for single-channel recordings, models utilising multi-channel
data have already shown promising results, with efficient hardware implementations running
quantised models on application-specific integrated circuits and field programmable gate arrays.
Convolutional neural networks have been used extensively for spike detection and classification as
the data can be processed spatiotemporally while maintaining low-parameter models and
increasing generalisation and efficiency. Autoencoders have been mainly utilised for dimensionality
reduction, enabling subsequent clustering with standard methods. Also, integrated systems have
shown great potential in solving the spike sorting problem from end to end. Significance. This
survey explores recent articles on deep learning-based spike sorting and highlights the capabilities
of deep neural networks in overcoming associated challenges, but also highlights potential biases of
certain models. Serving as a resource for both newcomers and seasoned researchers in the field, this
work provides insights into the latest advancements and may inspire future model development.

1. Introduction

Neurons communicate through the exchange of elec-
trical impulses, more precisely, through the release of
neurotransmitters, which results in the propagation
of action potentials [1]. Signals of individual neur-
ons and the signal exchange with their neighbours
are usually investigated with extracellular recordings.
Extracellular electrodes typically capture the activity
of a small group of neurons. According to an approx-
imation by Pedreira et al [2], which is based on the

assumption that there are 300 000 neurons mm3 (as
in the rat hippocampus [3]), followingCoulomb’s law
for amplitude decay as v∼1/r2, and assuming that
action potentials of ∼60 µV are generated at a dis-
tance of 50 µm [4] (maximum distance and min-
imum amplitude to identify single spikes), more than
thirty neurons would generate spikes with an amp-
litude ranging from 60 µV to 70 µV, and around ten
neurons would generate amplitudes between 100 µV
and 110 µV. However, the measured signals are con-
taminated by noise originating from neurons not

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ad8b6c
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ad8b6c&domain=pdf&date_stamp=2024-11-14
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5332-2463
https://orcid.org/0009-0007-0844-473X
https://orcid.org/0000-0001-8606-298X
https://orcid.org/0000-0003-0623-963X
mailto:a.demosthenous@ucl.ac.uk
mailto:lucamaximilianmeyer@icloud.com
mailto:m.zamani@soton.ac.uk
mailto:rokai.janos@ttk.hu


J. Neural Eng. 21 (2024) 061003 L MMeyer et al

close to the electrode. Additionally, artefacts origin-
ating from the recording equipment influence the
recorded signal, resulting in fewer spikes reaching the
above voltage levels. Neuronal waveforms exhibit dis-
tinct characteristics, primarily determined by the cell
type, ion channel distribution, dendritic tree mor-
phology, and the orientation and distance to the
recording electrode [5, 6]. These features enable spike
sorting, i.e. extracting spikes from neural record-
ings and assigning them to their underlying neur-
ons. Multi-electrode arrays (MEA), such as tetrodes
or polytrodes, enable the utilisation of spatial spike
features, e.g. by triangulation [4]. High-density MEA
(HD-MEA) recordings with hundreds of channels are
already in use [7] and with the growing number of
neurons being measured, it has become imperative
to employ automatic, high-bandwidth spike sorting
algorithms to analyse single neuron activity at scale.
Advancements in spike sorting andHD-MEA techno-
logies are essential for neuroscience research, clinical
applications, and brain–computer interfaces (BCIs).
In fundamental neuroscience, spike sorting offers
valuable insights into the functioning of neuronal
circuits, advancing our understanding of the inter-
actions between cerebral regions and behaviours.
Clinically, the analysis of extracellular recordings is
vital for studying neurological conditions, includ-
ing epilepsy [8], paralysis [8, 9], and cognitive loss
[10]. Spike sorting is also crucial for neural signal
decoding and their translation into commands for
external device control in BCIs and neuroprosthetics
[5]. It has been shown that single-neuron activity can
help to decode movement [8], intentions [11], and
memory [10].

Deep neural networks (DNNs) are becoming
increasingly important in neuroscience. In neuroima-
ging, deep learning is used to detect and analyse
Alzheimer’s disease [12], brain strokes [13], autism
[14], and other neurological and psychiatric disorders
[15]. Deep learning models enhance neuroimaging
techniques by automating the segmentation of brain
images, for example, to detect brain tumors [16]
or improve signal extraction from noisy data [17].
Also, deep learning is used to model neurodegenerat-
ive diseases and analyse their underlying mechanisms
[18]. Other deep learning applications in neuros-
cience research include decoding brain activity on a
macro level, e.g. by analysing functionalmagnetic res-
onance images [19] or electroencephalogram (EEG)
[20], and on a micro level, by analysing intracra-
nial micro-electrode recordings, e.g. for spike sorting
[21]. For the latter, deep learning offers the potential
to handle high-dimensional data, perform automatic
feature learning, and improve system scalability and
noise robustness. For decades, attempts have been
made to solve the spike sorting problem, and many
reviews have tried to provide insights on the state-
of-the-art [4, 22–25]. Recent reviews on spike sorting

methods [26–29] do not consider DNN-based mod-
els in detail. To address this gap, this survey provides
a comprehensive evaluation of current approaches on
deep learning-based spike sorting.

The first section of this paper provides a brief
overview of conventional spike sorting methods and
different types of data commonly used for their eval-
uation. Also, the challenges of spike sorting and
requirements for modern spike sorting algorithms
are outlined. Section 2 focuses on state-of-the-art
spike sorting methods that are not based on neural
networks (NNs), followed by brief historical devel-
opments related to the application of NNs in spike
sorting. Subsequently, two innovative studies are
examined to demonstrate that NNs with a single hid-
den layer can be used in various spike sorting scen-
arios, showcasing both the limits and advantages of
such shallow models. The criteria for the selected
publications in this survey are also outlined. Section 3
focuses on spike detection, section 4 dealswith feature
extraction, section 5 covers classification models, and
section 6 focuses on integrated systems, i.e. DNNs
that detect spikes and perform feature extraction or
classification using a single model. Section 7 crit-
ically discusses how state-of-the-art deep learning-
based spike sorting models address the challenges
and requirements described in section 1.3, identi-
fies future directions and outlines hardware imple-
mentations of certain models. Concluding remarks
are drawn in section 8.

1.1. Conventional spike sorting
Traditionally, the spike sorting procedure is sep-
arated into several steps, as shown in figure 1.
Using a band-pass filter on the raw data, the sig-
nal of interest consisting of neural activities can be
isolated. Single spikes can be detected with tech-
niques like adaptive amplitude or power threshold-
ing. As these methods may lead to inclusions of
non-neural activity (false-positives) and spikes still
can be missed (false-negatives), other techniques,
such as the non-linear energy operator [30] or the
continuous wavelet transformation [31], have been
applied extensively to detect spikes. Once detec-
ted, spikes are typically aligned to their amplitude
peaks for subsequent analysis [24], and features are
extracted in order to reduce dimensions. Standard
feature extraction methods include principal com-
ponent analysis (PCA) [32], independent compon-
ent analysis [33], t-distributed stochastic neigh-
bour embedding (t-SNE) [34], and discrete wavelet
transform [35]. Subsequently, the extracted spike fea-
tures are clustered, often using the k-means algorithm
[36], where each centroid represents a template for
a particular neuron. While k-means requires k as a
parameter for the number of clusters in the data,
density-based spatial clustering of applications with
noise (DBSCAN) [37] does not require information
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Figure 1. Conventional pipeline for unsupervised spike
sorting. (a) Four electrodes capture changes in the electrical
activity of three neurons near to the electrode. The raw data
(b) typically are processed with a band-pass filter (c), which
enables spike detection (d). Subsequently, the spikes are
aligned (e) to extract features (f). Clustering can be applied
to the low level feature space to group the spiking events
(g), where the average of one cluster is called template (h).
Finally, the spike trains can be reconstructed with the
corresponding spike times (i). With permission from [23].
Reprinted from [23], Copyright (2011), with permission
from Elsevier.

about the number of clusters but often fails to identify
clusters of varying density and requires careful hyper-
parameter tuning. Hierarchical [38] and Bayesian
clustering [39] are also frequently used to cluster
neural data. Spike trains, i.e. binary signals that indic-
ate the temporal firings of a single neuron, are the
desired outcome of spike sorting and are gener-
ated with the obtained spike times for each cluster.
The explained pipeline represents unsupervised spike
sorting, where data patterns and similarities within
the data are identified to group similar spike wave-
forms. However, supervised learning is increasingly
being used in machine learning-based spike sorting,
where support vector machines [40] and NNs [41,
42] trained with labelled data can be used for both
spike detection and classification, effectivelymapping
spikes to their underlying neurons.

1.2. Datasets
Three types of datasets are commonly used to evaluate
spike sorting algorithms: (i) real extracellular record-
ings, (ii) synthetic datasets, and iii) hybrid data-
sets. Among these datasets, real extracellular record-
ings are the most challenging, as they encapsulate a
myriad of real-world challenges, such as artefacts or
multi-component noise, rendering them intricate but
invaluable for advanced analyses. A significant limit-
ation of real data is the absence of ground truth (GT).
Patch clamp recordings [43] are frequently employed
in this particular setting due to their capability to offer
a precise and direct assessment of neuronal activ-
ity, thus serving as a dependable reference point.
However, they require a significantly greater effort in
recording. Thus, synthetic datasets have ascended as
a standard for evaluation. Synthetic data are metic-
ulously constructed and typically mimic a local field

potential (LFP), often generated by numerous over-
lapping spike templates, upon which various spike
templates are subsequently superimposed at a larger
scale to emulate the activity of a small number of
neurons in the vicinity of the electrode [44]. Despite
their utility, synthetic datasets have inherent limita-
tions, as they often lack the incorporation of practical
scenarios such as bursting neurons, electrode drift, or
transient noise. To address these gaps, hybrid data-
sets have been employed frequently, combining the
strengths of real and synthetic data for more accur-
ate analysis and interpretation. Various platforms,
such as Collaborative Research in Computational
Neuroscience [45], SpikeForest [46], or individual
labs with public data repositories [47, 48] provide
access to large data from several species and brain
regions acquired with various electrode types.

1.3. Challenges and requirements
Transient signals are one of the biggest challenges
in spike sorting, as the recorded noise level may
fluctuate [49], and spikewaveforms often vary in their
expression [5, 6]. Since the neuron-electrode distance
and orientation can change during a recording, the
measured voltages may vary over time, resulting in
electrode drift [24]. Moreover, neurons exhibit burst
firing patterns, leading to an amplitude decrease of
up to 80% [4]. In 2012, Pedreira et al discussed sev-
eral reasons why the amount of identified neurons
per channel appeared lower than expected with exist-
ing spike sorters, pointing to sparsely firing neurons
as one possible reason [2]. Such neurons pose a sig-
nificant challenge, especially for template-matching
approaches, as they require a specific template for
each firing neuron. This, along with transient wave-
forms, makes adaptive algorithms necessary. Since
each channel in an extracellular recording captures
the activity of several neurons, two or more neurons
may fire simultaneously, leading to overlapping wave-
forms in the recording. Spike overlaps have been stud-
ied for decades and yet have not been fully resolved
[50–52]. Moreover, spike sorting models are usually
subject to the missing ground-truth problem, as the
number of firing neurons during a recording is typic-
ally unknown in real-world situations. Furthermore,
modern spike sorting models must be scalable to
handle HD-MEA recordings. Resource-efficient data
processing methods are therefore required for hard-
ware implementation without jeopardising online
processing. Implantable on-chip processors for spike
sorting are particularly advantageous because they
can massively reduce the data rate to be transferred,
which directly impacts the power consumption of
resource-limited brain chips. On-chip compression
models are an alternative approach to reduce the data
that needs to be transferred. Apart from that, robust
spike sorting algorithms must be transferable for use
on different subjects, brain areas, and electrode types.
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Given the practical limitations, the capacity to gen-
eralise across various setups is not just convenient
but essential. Reproducibility is another requirement
of modern algorithms. Spike sorting models often
involve many hyperparameters that require careful
tuning for optimal performance. In order to accel-
erate collaborative progress, it is therefore important
that newmodels (code and data repositories) are pub-
lished open access.

2. Background and literature overview

2.1. State-of-the-art spike sorting
Superparamagnetic clustering (SPC) was introduced
to spike sorting by Quiroga et al in 2004 [44] and is
still used as a benchmark. In SPC, data are grouped
by evaluating spin–spin correlations derived from the
ferromagnetic model of the data. SPC sorts spikes in
an unsupervised fashion and provides high accuracy
at the expense of computation. Osort [53], one of
the first advanced spike sorting algorithms for online
processing, is another method that does not require
knowledge of the number of clusters in the data.
Other online sorting algorithms include GEMsort
[54], an on-implant sorter that is based on sali-
ent feature selection [55] and Geo-OSort [56] which
are mentioned here to increase the technical depth
of this survey. Recent advancements in HD-MEA
have increased the signal quality, leading to a rise in
detectable action potentials with more overlapping
spikes [57]. As a result, source separationmodels have
emerged as the preferred approach to process multi-
channel recordings. Kilosort [21], one such model,
processes neural data in several stages, including pre-
processing, clustering, template-matching and post-
processing. Kilosort employs a modified k-means
clustering technique that is robust to amplitude alter-
ations in spikes. This improves its robustness and
flexibility in handling different signal fluctuations,
thus enhancing its performance in spike sorting tasks.
In 2024, Pachitariu et al proposed Kilosort4, which
could improve the clustering stage using a graph-
based approach [58]. Kilosort4 is recognised for its
ability to accurately detect neurons with low amp-
litudes and small spatial extents, even under condi-
tions of high drift, which is essential to accurately
identify neuronal spikes in challenging recording
conditions [58]. Despite the advantages of Kilosort,
there are also limitations, which may be affected by
various factors, including electrode density, signal-
to-noise ratio (SNR) and computational resources,
potentially providing suboptimal results in specific
conditions. Furthermore, the Kilosort algorithm has
tuneable parameters. Although good results can be
achieved with the default settings, adjusting the para-
meters can introduce bias. In 2017, MountainSort
[59], another advanced spike sorting system for
HD-MEA data, was introduced by Chung et al.
MountainSort has also been iteratively improved

since its introduction, leading to the recent release
of MountainSort4 [60], an efficient spike sorting
algorithm that first over-clusters spikes based on the
geometric layout of the electrode array and then
merges clusters across adjacent channels to remove
redundancy. One of its main benefits is its model
independence, enabling it to efficiently manage vari-
ations in non-Gaussian waveforms under various
recording conditions [59]. Compared to Kilosort, this
algorithm is fully automatic at the expense of accur-
acy. Other popular algorithms reported in recent
years are KlustaKwik [61], SpyKING CIRCUS [62],
and IronClust [63]. Recently, Pachitariu et al repor-
ted that IronClust is the nearest competing algorithm
to Kilosort4, especially under electrode drift. At the
same time, SpyKING CIRCUS and MountainSort4
performed similarly to IronClust on non-drifting
recordings [64]. Although Kilosort4 is perhaps one of
the best contemporary solutions, there is still scope
for improvement; e.g. fast electrode drift still poses a
problem [64].

2.2. Spike sorting with NNs
NN-based spike sorting dates back to 1988, when
Bower et al used a Hopfield network to asso-
ciate memory with binary thresholds for spike
classification [65].While the 1990s saw advancements
with single-hidden-layer NNs (SHL-NNs) for spike
detection and classification [66–68], the field con-
tinued to evolve, leading to the exploration of self-
organising maps [69–71], known for their unsuper-
vised learning capabilities. The quest for computa-
tional efficiency in spike sorting led to the emer-
gence of spiking NNs (SNNs) [72–75], which mirror
the time-dependent nature of biological NNs more
closely. Running on neuromorphic hardware, SNNs
can exploit their full potential, offering benefits in
terms of energy efficiency due to sparse, event-driven
computations and the ability to recognise spatiotem-
poral data patterns [76], but often depend on precise
hyperparameter tuning [27].

Several SHL-NNs targeting specific tasks in the
spike-sorting pipeline have been proposed recently.
In the following, two such solutions are briefly
described. In 2020, Issar et al [41] proposed a multi-
layer perceptron (MLP) to separate spikes from noise
that impaired decoding. A supervised learning model
was developed to predict the probability that a given
waveform is a spike [41]. The model was trained with
24 810 795 labelled waveforms derived from extra-
cellular recordings from four monkeys, two brain
regions, two recording devices and different implant
ages [41]. Qualitatively, the network’s spike classi-
fications from two additional subjects were consist-
ent with human expert classifications; quantitatively,
the model improved the decoding accuracy com-
pared to traditional threshold-crossingmethods [41].
However, the model struggled with diverse spikes
from different brain regions and recording devices.
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Here, a deep model could be helpful to increase per-
formance. According to early theoretical findings by
Cybenko [77], a network equipped with a single hid-
den layer comprising sigmoid units can effectively
approximate any decision boundary if the layer is
large enough. However, to avoid an impractically
large hidden layer, it is advisable to use deep mod-
els. The hierarchical structure of DNNs enables cap-
turing both low-level and high-level features, making
them particularly adept at handling variable spikes,
superpositions and transient noise. In 2021, Valencia
and Alimohammad [42] developed a binarised NN
(BNN) for spike classification. In a BNN, weights
and activations are binarised to reduce the required
memory and computational load. In [42], the BNN
takes previously detected and aligned spikes and clas-
sifies them according to their underlying neuron.
With their SHL-BNN, Valencia and Alimohammad
reached an average classification accuracy of 90%
on the widely used synthetic dataset that was ini-
tially presented in [44]. In sections 4 and 5, it will
be seen that full-precision DNNs [78] can achieve
an accuracy of more than 99% on the same data,
by also using supervised learning schemes. However,
the model type and architecture always determine
a trade-off between efficiency and effectiveness. In
this paper, DNNs refer to models with more than
one hidden layer. MLPs, convolutional NNs (CNNs),
recurrent NNs (RNNs), especially long short-term
memory (LSTM) networks, autoencoders (AEs), and
generative adversarial networks (GANs) are the focus
of this work.

2.3. Literature overview
The literature was screened using the databases of
PubMed and Google Scholar. The following keywords
were used for the search: (‘Spike Sorting’ OR ‘Spike
Detection’OR ‘SpikeClassification’) AND (‘NN∗’ OR
‘Deep Learning’ OR ‘MLP’ OR ‘MLP’ OR ‘CNN∗’
OR ‘ConvNet∗’ OR ‘CNN’ OR ‘RNN∗’ OR ‘RNN’
OR ‘LSTM’ OR ‘LSTM’ OR ‘AE∗’). Due to the large
number of publications found, several criteria were
defined to narrow the focus this study. The core sub-
jects of this work are deep learning-based spike detec-
tion, feature extraction and classification for extracel-
lular recordings of the brain. Only articles that fulfil
the following criteria were considered:

• Published until December 2023.
• Peer-reviewed.
• The model presented in the respective article;

∗ has a deep architecture,
∗ was evaluated using extracellular recordings,
∗ is not a denoising or compression model,
∗ is not based on reinforcement learning,
∗ is not an SNN or neuromorphic model,
∗ is not a spike sorting post-processor.

After all relevant literature was gathered, the refer-
ences of all collected papers were screened to find
additional articles within the scope of this survey.
Table 1 provides an overview of twenty-four pub-
lications considered in this work. Entries in table 1
between two columns indicate that the respective
model was used for both tasks in the spike sorting
pipeline. As deep classification networks perform fea-
ture extraction in the hidden layers of the model,
these models are always situated between the ‘feature
extraction’ and ‘clussification/clustering’ column in
table 1. Figure 2 illustrates the breakdown of the dif-
ferent network types utilised in the examined studies.
For clarity, classification networks are not represen-
ted as feature extractors in figure 2.

3. Spike detection

In this section, the focus is on DNN-based spike
detection models. The models’ practical relevance
is elucidated, highlighting their strengths and weak-
nesses and comparing them when feasible. In 2017,
Lee et al [79] presented a CNN to detect neural spikes;
it is part of the well-known spike sorting algorithm
called YASS [79]. The first layers in CNNs are known
to capture basic features of the input, e.g., edges
in images, while deeper layers capture more com-
plex features, e.g. specific objects in images. A rel-
atively small number of kernels (filters, or weights
and biases) are applied to the input with a specified
stride, which reduces the chances of overfitting and
helps to concentrate on specific patterns, regardless
of their position in the input. The CNN in [79] takes
data from a single channel, propagates it through
two hidden layers and returns binary labels (‘spike’
or ‘no spike’). Lee et al used the rectified linear unit
(ReLU) activation function, σ (x) = x if x⩾ 0, else 0,
to add non-linearity to the system [79]. Moreover,
L2 regularisation, also known as weight decay, was
applied to prevent overfitting. Tested on various noise
levels, the proposed CNN outperformed several con-
temporary detection techniques [79]. In 2020, a fur-
ther developed model of YASS was published [118],
still using a CNN for spike detection, but processing
multi-channel data. Note that [118] has not been
peer-reviewed. As in [79], data augmentation was
utilised to create a training set based on pre-sorted
spikes with artificial overlaps at random scales and
shifts [118]. Temporal and spatial filters were segreg-
ated to enhance network speed, with the initial layer
focusing to extract temporal characteristics and the
subsequent layer capturing features from adjacent
spatial channels [118]. Lee et al tailored their model
to retina recordings, where overlapping spikes occur
frequently. 70%of the positive events in the generated
training data consisted of spike collisions [118]. YASS
[118] consists of the following sub-algorithms: spike
detection, denoising, de-duplication, spike division

5



J. Neural Eng. 21 (2024) 061003 L MMeyer et al

Ta
bl
e
1.
R
ec
en
tl
y
de
ve
lo
p
ed
sp
ik
e
so
rt
in
g
so
lu
ti
on
s
u
si
n
g
de
ep
le
ar
n
in
g-
ba
se
d
m
od
el
s
in
ch
ro
n
ol
og
ic
al
or
de
r.
M
od
el
s
th
at
ar
e
pu
bl
ic
ly
av
ai
la
bl
e
ar
e
h
ig
h
lig
h
te
d
in
bo
ld
.

R
ef
er
en
ce
s

A
u
th
or
s

D
at
as
et
s

C
h
an
n
el
ty
p
e

D
et
ec
ti
on

Fe
at
u
re
ex
tr
ac
ti
on

C
la
ss
if
ic
at
io
n
/
cl
u
st
er
in
g

Si
gn
if
ic
an
ce
of
th
e
de
ep
le
ar
n
in
g-
ba
se
d
ap
pr
oa
ch

[7
9]

Le
e
et

al
[8
0,
81
]

Si
n
gl
e

C
N
N

P
C
A

G
au
ss
ia
n
M
ix
tu
re
M
od
el

D
et
ec
ti
on
of
n
eu
ra
ls
pi
ke
s
w
it
h
im
pr
ov
ed
sp
at
io
te
m
po
ra
l

al
ig
n
m
en
t.

[8
2]

Ya
n
g
et
al

[4
4,
83
]

Si
n
gl
e

Pe
ak
de
te
ct
io
n

P
C
A
N
et

SV
M

Lo
w
co
m
pl
ex
it
y
so
rt
in
g
w
it
h
si
m
ila
r
ac
cu
ra
cy
to

co
nv
en
ti
on
al
m
et
h
od
s.

[8
4]

W
u
et
al

[4
4,
84
]

Si
n
gl
e

M
ed
ia
n
-b
as
ed

G
A
N

Fe
w
-s
h
ot
so
rt
in
g
en
ab
le
d
by
se
m
i-
su
p
er
vi
se
d
ad
ve
rs
ar
ia
l

re
pr
es
en
ta
ti
on
le
ar
n
in
g.

[8
5]

Sa
if
-u
r-
R
eh
m
an

et
al

[8
5–
87
]

Si
n
gl
e

C
N
N

—
—

U
n
iv
er
sa
ln
eu
ra
lc
h
an
n
el
tr
ac
ki
n
g
th
at
w
or
ks
ac
ro
ss

sp
ec
ie
s,
br
ai
n
re
gi
on
s
&
el
ec
tr
od
es
.

[8
8]

R
ác
z
et
al

[8
9]

M
u
lt
i

C
N
N
+
LS
T
M

C
N
N

Sp
at
io
te
m
po
ra
ls
pi
ke
cl
as
si
fi
ca
ti
on
u
si
n
g
H
D
-M
E
A
da
ta

(1
28
ch
an
n
el
s)
.

[7
8]

Pa
rk

et
al

[2
,4
4,
90
]

Si
n
gl
e

T
h
re
sh
ol
di
n
g

M
LP

Im
pr
ov
ed
ac
cu
ra
cy
an
d
ru
n
ti
m
e
co
m
pa
re
d
to
st
an
da
rd

m
et
h
od
s
lik
e
P
C
A
+
k-
m
ea
n
s.

[9
1]

W
ou
te
rs
et
al

[9
2]

M
u
lt
i

—
M
LP

k-
m
ea
n
s

R
es
ol
ve
d
ov
er
la
pp
in
g
sp
ik
es
in
th
e
fe
at
u
re
sp
ac
e
u
si
n
g
a

cu
st
om

co
st
fu
n
ct
io
n
.

[9
3]

M
ar
ka
n
d
ay

et
al

[9
3]

Si
n
gl
e

C
N
N

—
—

H
u
m
an
ex
p
er
t-
le
ve
ld
et
ec
ti
on
of
co
m
pl
ex
sp
ik
es
pr
od
u
ce
d

by
ce
re
be
lla
r
P
u
rk
in
je
ce
lls
.

[9
4]

C
ie
ci
er
sk
i

[9
5]

Si
n
gl
e

—
G
A
N

U
n
su
p
er
vi
se
d
sp
ik
e
so
rt
in
g
w
it
h
a
G
A
N
,u
si
n
g
a

‘s
pi
ke
-a
w
ar
e’
lo
ss
fu
n
ct
io
n
.

[9
6]

E
om

et
al

[2
,4
4,
90
,9
7]

M
u
lt
i

T
h
re
sh
ol
di
n
g

A
E

D
B
SC
A
N

U
n
su
p
er
vi
se
d
fe
at
u
re
ex
tr
ac
ti
on
by
co
m
bi
n
in
g
la
te
n
t
sp
ac
e

re
pr
es
en
ta
ti
on
s
of
th
re
e
A
E
s.

[9
8]

L
ie
ta

l
[4
4,
99
]

Si
n
gl
e

—
C
N
N

Im
pr
ov
ed
sp
ik
e
cl
as
si
fi
ca
ti
on
ac
cu
ra
cy
du
e
to
m
an
y

co
nv
ol
u
ti
on
al
la
ye
rs
.

[1
00
]

Sa
if
-u
r-
R
eh
m
an

et
al

[4
4,
85
–8
7]

Si
n
gl
e

C
N
N
+
C
N
N

P
C
A

k-
m
ea
n
s

B
ac
kg
ro
u
n
d
ac
ti
vi
ty
re
je
ct
io
n
re
du
ce
s
th
e
n
u
m
be
r
of

w
av
ef
or
m
s
fo
r
su
bs
eq
u
en
t
an
al
ys
is
.

[1
01
]

R
ok
ai

et
al

[4
6,
89
,1
02
]

M
u
lt
i

A
E

In
te
gr
at
ed
m
od
el
fo
r
on
lin
e
sp
ik
e
de
te
ct
io
n
an
d

cl
as
si
fi
ca
ti
on
u
si
n
g
H
D
-M
E
A
da
ta
.

[1
03
]

Se
on
g
et
al

[4
4,
10
4]

Si
n
gl
e

T
h
re
sh
ol
di
n
g

A
E

k-
m
ea
n
s

U
n
su
p
er
vi
se
d
fe
at
u
re
ex
tr
ac
ti
on
u
ti
lis
in
g
a
qu
an
ti
se
d

m
od
el
;i
m
pl
em
en
te
d
on
an
A
SI
C
.

[1
05
]

Y
ie

t
al

[2
,1
05
]

M
u
lt
i

M
ou
n
ta
in
So
rt

C
N
N

Sp
ik
e
cl
as
si
fi
ca
ti
on
w
it
h
a
qu
an
ti
se
d
m
od
el
,u
si
n
g

H
D
-M
E
A
da
ta
;F
P
G
A
im
pl
em
en
te
d.

[1
06
]

L
iu

et
al

[4
4,
99
]

Si
n
gl
e

—
C
N
N
+
LS
T
M

O
pt
im
is
ed
cl
as
si
fi
ca
ti
on
of
ov
er
la
pp
in
g
sp
ik
es
by

co
m
bi
n
in
g
C
N
N
an
d
LS
T
M
.

[1
07
]

R
ad
m
an
es
h
et
al

[4
3,
45
,1
08
]

Si
n
gl
e

—
A
E

SV
M

N
oi
se
-r
ob
u
st
u
n
su
p
er
vi
se
d
fe
at
u
re
ex
tr
ac
ti
on
u
si
n
g
a
de
ep

co
n
tr
ac
ti
ve
A
E
.

[1
09
]

O
kr
eg
h
e
et
al

[4
4,
86
,8
7,
11
0]

M
u
lt
i

C
N
N
+
C
N
N

P
C
A

k-
m
ea
n
s

Im
pr
ov
ed
ch
an
n
el
se
le
ct
io
n
an
d
ar
te
fa
ct
re
m
ov
al
u
si
n
g

sp
at
io
te
m
po
ra
ls
pi
ke
da
ta
.

[1
11
]

A
rd
el
ea
n

et
al

[2
,1
11
]

Si
n
gl
e

T
h
re
sh
ol
di
n
g

A
E

k-
m
ea
n
s

N
et
w
or
k
co
m
pl
ex
it
y
h
as
to
be
de
si
gn
ed
re
la
ti
ve
ly
to
th
e

co
m
pl
ex
it
y
in
th
e
n
eu
ra
ld
at
a.

[1
12
]

R
ok
ai

et
al

[4
3,
46
,6
2]

M
u
lt
i

C
N
N

Is
os
pl
it
5

In
pu
t-
so
u
rc
e
ag
n
os
ti
c
sp
ik
e
de
te
ct
io
n
an
d
fe
at
u
re

em
be
dd
in
g
u
si
n
g
ed
ge
T
P
U
h
ar
dw
ar
e.

[1
13
]

W
an
g
et
al

[4
4,
75
,9
9,
11
4]

Si
n
gl
e

C
N
N
+
C
N
N

C
N
N
+
LS
T
M

Sp
ik
e
de
te
ct
io
n
an
d
lo
ca
lis
at
io
n
w
it
h
2
C
N
N
s
an
d
so
rt
in
g

w
it
h
a
sl
id
in
g-
w
in
do
w
LS
T
M
.

[1
15
]

Z
h
an
g
et
al

[4
4]

Si
n
gl
e

—
C
N
N

C
N
N
ta
ki
n
g
Lo
g-
M
el
sp
ec
tr
og
ra
m
as
in
pu
t
to
cl
as
si
fy

ov
er
la
pp
in
g
sp
ik
es
.

[1
16
]

M
ey
er

et
al

[4
4,
99
]

Si
n
gl
e

M
LP

Li
gh
tw
ei
gh
t
de
te
ct
io
n
an
d
so
rt
in
g
w
it
h
do
w
n
st
re
am

va
lid
at
io
n
to
en
h
an
ce
p
er
fo
rm
an
ce
.

[1
17
]

Z
ac
h
ar
el
os

et
al

[1
08
]

Si
n
gl
e

M
LP

Li
gh
tw
ei
gh
t
de
te
ct
io
n
an
d
so
rt
in
g;
A
SI
C
im
pl
em
en
te
d,

u
si
n
g
ap
pr
ox
im
at
e
co
m
pu
ti
n
g.

6



J. Neural Eng. 21 (2024) 061003 L MMeyer et al

Fi
gu
re
2.
Tr
ee
m
ap
of
th
e
de
ep
le
ar
n
in
g
m
od
el
ty
p
es
u
se
d
in
al
lc
on
si
de
re
d
st
u
di
es
.N
ot
e
th
at
A
E
ar
ch
it
ec
tu
re
s
in
ta
bl
e
1
an
d
th
is
ill
u
st
ra
ti
on
of
te
n
co
n
ta
in
co
nv
ol
u
ti
on
al
or
LS
T
M
la
ye
rs
,a
n
d
C
N
N
s
u
su
al
ly
co
n
ta
in
de
n
se
la
ye
rs

at
th
e
ou
tp
u
t.

7



J. Neural Eng. 21 (2024) 061003 L MMeyer et al

Table 2.Model architecture of the CNN-LSTM in [88].

# Type Dim. Kernel Stride

0 Input 32× 4 — —
1 2D-Conv 16 @ 28× 3 5× 2 1× 1
2 2D-Conv 256 @ 24× 2 5× 2 1× 1
3 Pooling 256 @ 12 2× 2 2× 2
4 LSTM 512 — —
5 Dense 512 — —
6 Dense 256 — —
7 Dense 2 — —

for parallel processing, clustering by using iterat-
ive featurisation, triaging and deconvolution. A clear
advantage of such a procedural pipeline is that the
CNN could be easily replaced with other detection
models. The performance of YASS [118] was com-
pared with other state-of-the-art sorters like Kilosort
[21], SpyKINGCIRCUS [62] andMountainSort [59],
where Kilosort achieved the highest performance.
YASS was significantly better than Kilosort at restor-
ing spikes on retinal ganglion cell types, as the CNN
in [118] was trained especially on retinal recordings.
To avoid a potential bias in their evaluation, Lee et al
[118] tested their model using a second hybrid data-
set, where YASS performed best. The CNN contrib-
utes by finding many spikes missed by other sorters
and improving spatiotemporal alignment [79].

In 2019, Rácz et al [88] proposed a convolu-
tional LSTM network to detect spikes in HD-MEA
data. An LSTM network represents a form of RNN
that addresses the intricacies of sequence prediction
problems. During a forward pass, it takes a series of
inputs and processes each element by maintaining a
cell state and a hidden state throughout the sequence.
An integral part of its functionality lies in implement-
ing distinctive gating mechanisms, namely the for-
get, input, and output gates, acting as guardians gov-
erning the flow of information. LSTM networks have
the ability to capture long-term dependencies within
the data through the coordinated interplay of these
gates. In [88], recordings from 128 channels arranged
in a 32 × 4 grid were applied to an LSTM network.
Table 2 details the model architecture employed in
[88] including the type of each layer, data dimen-
sions (Dim.), kernel sizes, and strides. Convolutional
layer dimensions are denoted as ‘number of filters @
dimensions’. The network was trained using pseudo-
labels obtained by Kilosort [21]. For regularisation
[88], used an early stopping criterion that termin-
ates model training if the loss of the system does not
decrease for a specified number of epochs. Another
regularisation technique used in [88] that also speeds
up training is batch normalisation [119], which forces
the layer inputs to have a mean of zero and a stand-
ard deviation of one. Rácz et al utilised nine 45 min
recordings, using 90% of the data for training and the
remaining 10% for testing. Ten positive predictions

were considered as spikes for evaluation [88]. It
should be noted that the results of the model in [88]
were evaluated in relation to Kilosort’s performance,
which does not make the achieved results entirely
conclusive. However, this is often the case for models
that were evaluated using real-world data. The DNN
in [88] yielded a true positive rate (also called recall
or sensitivity) of around 70% and a precision (accur-
acy of the model in classifying a sample as positive)
of only 19%. In this regard, Rácz et al concluded that
low precision should not lead to trouble for sophist-
icated sorters as they may discard false positives [88].
Nevertheless, this leads to redundant data processing
of noisy segments. Furthermore, a recall of 70% still
implies a lot of false negatives, making the model
in [88] unsuitable for practical use despite extensive
training and a sophisticated architecture.

In 2023, Wang et al [113] proposed a method
for spike detection working with single-channel data
that is based on a two-stage procedure involving two
CNNs. Firstly, the continuous single-channel signal
was divided into sliding windows of 200 samples,
using an overlap of 20%. This segmented data was
then applied to a CNN that predicts the input as
neural or background activity. The architecture of
the CNN in [113] is described in table 3, where σ(x)
denotes the used activation functions. Note thatmiss-
ing entries for both dense layers do not necessarily
imply that no activation function was used but mean
that it was not mentioned in the respective paper.
As can be seen in table 3, the Softmax activation
function, σ (xi) = exi/

∑
j e

xj , where i represents the
index of the current class and j denotes the indices
over all classes, was utilised to determine probabilities
for both classes (‘spike’ or ‘no spike’). In the second
stage, spikes were localised within the 200 sample-
long signal snippets. The architecture of this model
is identical to the one described in table 3, but skips
the first convolutional layer. Moreover, this model’s
final layer predicts the spikes’ start and end positions
[113]. Both CNNswere trainedwith labelled data and
compared against different network architectures, e.g.
LSTM, with the proposed CNN showing the best
performance [113]. Experiments with varying noise
levels showed that this factor directly influenced the
detection quality. However, it is assumed that this is
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Table 3.Model architecture of the CNN in [113].

# Type Dim. σ(x) Kernel Stride

0 Input 200 — — —
1 1D-Conv 20 @ 200 ReLU 3 1
2 Pooling 20 @ 50 — 4 4
3 1D-Conv 50 @ 50 ReLU 3 1
4 Pooling 50 @ 12 — 4 4
5 Dense 550 — — —
6 Dense 200 — — —
7 Dense 2 Softmax — —

Table 4.Model architecture of Spikedeeptector [85].

# Type Dim. σ(x) Kernel Stride

0 Input 48× 20 — — —
1 2D-Conv 25 @ 48× 20 ReLU 3× 1 1× 1
2 2D-Conv 25 @ 46 ReLU 3× 20 1× 1
3 Pooling 25 @ 23 — 2× 1 1× 1
4 2D-Conv 50 @ 21 ReLU 3× 1 1× 1
5 Pooling 50 @ 11 — 2× 1 1× 1
6 2D-Conv 100 @ 9 ReLU 3× 1 1× 1
7 Pooling 100 @ 5 — 2× 1 1× 1
8 Dense 100 ReLU — —
9 Dense 2 Softmax — —

the case for most models presented in this survey, as
high noise aggravates distinguishing spikes from arte-
facts. Irrespective of this, using sliding windows for
spike detection ensures that any spike signal inter-
cepted by a window slice will still be captured within
the subsequent window, but also introduces redund-
ant data processing. The CNN in [113] is limited to
detecting one spike at a time. For practical applica-
tions, it is therefore essential to expand this model
into a multi-target detector.

3.1. Neural channel selection and artefact removal
In 2019, Saif-ur-Rehman et al proposed
Spikedeeptector [85], a CNN designed to detect and
track channels containing neural data. This is helpful
in identifying useful channels for BCI applications
[85]. The proposed CNN is a supervised learning
model and relies, like the models described above,
on the quality of labelled training data. Saif-ur-
Rehman et al used a semi-automatic method to
acquire pseudo-labels, including visual inspections
[85]. The training data was taken from a single sub-
ject (1.56 million feature vectors that are batches
of waveforms from a single channel with a size of
48 × 20 samples). If at least one of these waveforms
represented a spike, the whole batch was classified as
neural. The CNN applied for this task is detailed
in table 4. While the first layer performs a con-
volution through time, the second layer convolves
over the entire batch. For training, the authors used
L2-regularisation, early stopping, batch normalisa-
tion and dropout [120] as regularisation techniques
to improve generalisation. Dropout is a simple yet

effective technique to prevent overfitting by ran-
domly ignoring selected units during training, pre-
venting certain co-adaptations on the training data.
As the CNN in [85] only assigns labels to a given
feature vector, Saif-ur-Rehman introduced a cri-
terion that calculates the mode of the predicted out-
puts to classify entire channels as ‘neural’ or ‘noisy’.
Overall, an accuracy of 97.2% could be achieved with
Spikedeeptector [85]. Notably, the model could gen-
eralise across different brain regions, subjects, species
and electrode types. Spikedeeptector may be used
to identify and exclude threshold-crossing artefacts
from subsequent analysis. However, complex arte-
facts can still affect the model as these events may
occasionally be classified as neural. In a follow-up
study published in 2021 [100], Saif-ur-Rehman et al
developed an additional CNN called ‘background
activity rejector’ (BAR) that takes signals selected by
Spikedeeptector and discards background activity
by classifying a given signal as spike or noise [100].
The architecture of BAR is detailed in table 5. This
model also utilises batch normalisation and L2 reg-
ularisation to prevent overfitting. Labelled data of
two species, five subjects, six brain areas, three dif-
ferent types of electrodes and two recording systems
were used for training to create a robust system [100].
Evaluated on data from three human subjects, BAR
could achieve an accuracy of 92.3%. Further consid-
erations regarding the scalability of this model can be
found in section 7.1.

In 2023, Okreghe et al [109] also worked on a
solution for improved channel selection and artefact
removal. The basic approaches of Saif-ur-Rehman
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Table 5.Model architecture of BAR [100].

# Type Dim. σ(x) Kernel Stride

0 Input 48 — — —
1 1D-Conv 25 @ 48 ReLU 3 1
2 1D-Conv 50 @ 44 ReLU 5 1
3 Pooling 50 @ 22 — 2 1
4 1D-Conv 50 @ 18 ReLU 5 1
5 Pooling 50 @ 9 — 2 1
6 Dense 50 ReLU — —
7 Dense 2 Softmax — —

Figure 3. Spike detection method from Saif-ur-Rehman
et al [100] and Okreghe et al [109]. The first CNN was
employed to detect neural channels. Okreghe et al used
multi-channel data as an input to their CNN while
Saif-ur-Rehman et al applied their model to single-channel
data. The next step involved applying a second CNN to the
chosen neural channels in order to identify neural events
and remove noise and artefacts. The identified neural
events were then used for further analysis.

et al [100] and Okreghe et al [109] are similar and
illustrated in figure 3. The method in [109], called
‘deep spike detection’ (DSD), also works with two
CNNs: one for the selection of channels and one
for artefact removal. Like the work above, DSD was
trained with many labelled feature vectors (1.61 mil-
lion) to create a robust network. Contrary to the
work of Saif-ur-Rehman et al [85], the authors of
[109] applied Kilosort [21] to obtain pseudo-labels.
Moreover, instead of taking twenty waveforms from
a single channel, they used waveforms from multiple
channels as an input for DSD to utilise spatiotem-
poral data dependencies, similar to [88, 118]. The first
CNN has the same architecture as Spikedeeptector
(table 4). As in [85], a batch (48 × 20) was labelled
as ‘neural’ if it contained at least one spike waveform
[109]. Naturally, a larger batch size increases infer-
ence time, which may affect online processing, but
also yields better results (99.62% for a batch size
of 100; 97.51% for a batch size of 20). Like BAR
[100], the second CNN (artefact removal network) is
provided with a single feature vector (48 × 1) and
discards non-neural events [109]. The architecture
of this CNN also resembles BAR, which was presen-
ted in [100] (table 5). Using the data in [109], the
artefact removal network could achieve an overall
accuracy of 92.3%. Using both simulated and exper-
imental datasets, integrating DSD into a traditional

spike sorting pipeline (PCA + k-means), as done
in [100], demonstrated a respectable level of sorting
[109]. In contrast to the work of Saif-ur-Rehman
et al [100], DSD was tailored to a specific class of
artefacts, making it less generic and more respons-
ive to deep temporal spikes [109]. Despite the sim-
ilarity of the models from Saif-ur-Rehman et al and
Okreghe et al, they serve slightly different purposes.
While Spikedeeptector and BAR were built to track
neural channels that contain useful data for BCI
applications and discard background activity in the
second step, the solution from Okreghe et al screens
multiple channels for neural activity and discards
artefacts.

3.2. Detection of complex spikes (CSs)
Ideally, spike detection models can detect spikes at
different scales and even under adverse conditions.
However, Purkinje cells produce ‘CSs’ that show high
misclassification rates with conventional algorithms
due to their polymorphic complexity [93]. The role
of CSs has been controversially discussed in the past.
While it has been hypothesised that CSs play a sig-
nificant role in motor timing [121] or performance-
based motor learning [122], not all experiments in
the past were conclusive in this regard [93]. Muller
et al recently found that CSs modulate the simple
spike output of Purkinje cells, which influences cer-
tain behaviour, such as eye saccades [123]. Since CSs
could only be reliably detected manually by experts
for many years, Markanday et al [93] developed a
CNN for this purpose. Compared to usual spikes, CSs
are rare events whosewaveforms exhibit specific char-
acteristics, as they are relatively long-lasting, poly-
phasic events, often showing inconsistency during a
single recording. In [93], a human expert labelled the
start and end points of CSs in 159 recorded Purkinje
cells with 24 segments per cell, each with a length of
25 0 ms [93]. The famous U-Net [124] inspired the
architecture of the utilised CNN. Given the reliability
with which human experts reach a consensus on the
presence of CSs, the input of the CNN was twofold:
(i) band-pass filtered spikes with a frequency range of
300 Hz to 3 kHz; (ii) LFP with a frequency band of
30 Hz to 400 Hz [93]. With a kernel size of nine, they
used by far the largest kernel of all CNNs described
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in this work, as CSs are longer events (∼10 ms)
than usual spikes (∼1–2 ms) [93]. The method in
[93] includes a three-step post-processing proced-
ure to improve the system’s overall performance. The
first step realigns the detected CSs. The second step
maps spikes and LFP waveforms occurring within
2 ms after the CS start into a two-dimensional feature
space using the uniformmanifold approximation and
projection algorithm [125]. Subsequently, DBSCAN
was employed to identify spike candidates. Using this
technique, usual spikes could be separated from CSs
[93]. Combined with downstream post-processing,
the model in [93] proved superior to a popular spike
sorter and a PCA-based algorithm for CS detection,
despite being trainedwith little data. Anothermethod
that was frequently applied in the past to detect CSs
is the template matching-based alpha omega engin-
eering multi spike detector (MSD) [126]. However,
its performance was limited due to the inconsist-
ent waveform characteristics of CSs [93]. According
to Markanday et al, their method outperformed
MSD [93].

4. Feature extraction

In 2017, Yang et al proposed an approach to extract
neural features with PCANet [82], a DNN that utilises
the basic principles from PCA. While PCA is a linear
dimensionality reduction technique, a deep learning-
based PCANet applies non-linearity across its layers.
Features can be learned hierarchically and extracted
locally in PCANet [82].Moreover, PCANet runs faster
than traditional PCA as it avoids the computationally
demanding eigen-decomposition by applying filters
directly to a given input. Yang et al considered these
advantages to build a faster model that utilises PCA
principles and overcomes the classical downsides
of PCA [82]. Using conventional PCA, the extrac-
ted spikes and their corresponding eigenvalues were
clustered by employing the k-means algorithm [82].
The cluster centres were then taken as spike templates
and were shifted to create a Toeplitz matrix where
the columns were used to train the PCANet [82].
In the subsequent stage, the resulting eigenvectors
of PCANet were utilised as inputs for an SVM to
classify spikes according to their underlying neuron.
Following Yang et al [82], the proposed method
had lower complexity than conventional methods,
like PCA and k-means, but indicated no superior
performance.

In 2020, Wouters et al [91] proposed a feature
extractionmethod to resolve overlapping spikes in the
feature space, a problem that often limits clustering
methods in separating spikes from distinct neurons.
In [91], an MLP was trained using the custom cost
function in equation (1),

∑
i,j∈T

g
∥∥(si)+ g

(
sj
)
− g

(
si ⊕ sj

)∥∥2
2
+

κ∥∥g(si)− g
(
sj
)∥∥2
2

(1)

where g corresponds to the non-linear feature map,
and si ⊕ sj denotes the superposition of spikes from
two different neurons i and j. The hyperparameter κ
was determined by a grid search and set to ten [91].
The first component of the cost function decreases
by treating features as a linear operator on a lin-
ear combination, while the second term enhances
the separation between spikes of distinct neurons in
the feature space, thereby avoiding convergence to
trivial solutions [91]. The MLP in [91] takes 300 fea-
tures (30 samples × 10 spikes) as input and pro-
cesses the data through two hidden layers with 600
and 60 units. The output layer has three units, and
all layers use the ReLU activation function. The train-
ing set consisted of 50 000 waveforms, where three
samples were created for each pair of neurons i
and j: si, sj, and si ⊕ sj [91]. To create si and sj,
random white noise was superimposed with arti-
ficial spikes, aligning them based on their highest
peak and adjusting the time dimension to a spe-
cified window size of 30 samples. Creating si ⊕ sj
involved randomly shifting the template of neuron
i in relation to the spike template of neuron j [91].
Wouters et al could demonstrate that the trainedMLP
in [91] reliably resolves spike overlaps in the fea-
ture space, thereby improving subsequent clustering
with k-means. This method and other models, which
were dedicated to overlapping spikes, are revisited in
section 7.3.

AEs are powerful tools for spike-denoising [127],
data compression [128], and feature extraction, as we
will see in this section. Basic architectures of AEs with
varying depths can be seen in figure 4. The input sig-
nal is processed by the encoder module (layers with
gradually decreasing size in figure 4) until it passes
the coding layer (also called bottleneck; layers with
three units in the middle of the AEs in figure 4) and
is propagated through the decoder module that tries
to reconstruct the input signal (bottom parts of the
AEs in figure 4). As the encoder drastically reduces
dimensions, the model creates a low-dimensional lat-
ent space that often facilitates clustering. In 2023,
Ardelean et al [111] analysed different AE architec-
tures, including shallow AEs, deep AEs, and LSTM
AEs. The authors of [111] used synthetic data [2]
(single-channel recordings with up to 20 active neur-
ons) and experimental recordings [111] in their
experiments. Among all architectures evaluated by
Ardelean et al, the shallow AE performed best on the
synthetic data, which can be attributed to the low data
complexity (high SNR and no spike overlaps) [111].
This finding is consistent with standard deep learning
principles, as the size (and layer complexity) of the
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Figure 4. Ensemble method proposed by Eom et al [96]. (a)
Shallow, intermediate and deep AE architectures. The
numbers indicate the number of units per layer. (b) The
bottleneck layers of each model consist of three units, and
together they create a nine-dimensional feature space.
Subsequently, this feature space is clustered using DBSCAN.

hidden space should always be adjusted to the com-
plexity of the problem [129]. Using the experimental
data, this could be supported as the AE with eight
hidden layers in the encoder and decoder achieved
better results than the shallow AE [111]. Ardelean
et al demonstrated that their model isolates 10 out
of 17 distinct spike clusters in a specific synthetic
recording [111]. However, other studies reveal that
spike data with such ‘low complexity’ can be sorted
precisely with other unsupervised machine learning-
basedmethods, as Nadian et al [130] utilised t-SNE in
combinationwithDBSCAN, achieving an accuracy of
>90%on the synthetic data in [2] with up to 20 active
neurons.

In 2020, Eom et al [96] presented a method to
extract features with an ensemble of AEs based on the
idea that models of different dimensions capture dif-
ferent spike characteristics. They detected spikes with
amplitude thresholding [44], followed by obtain-
ing the spikes’ gradient values, which is advantage-
ous in signal processing tasks [131]. Subsequently,
the spikes were temporally aligned to facilitate fea-
ture extraction. Eom et al found that shallow net-
works capture general spike attributes, while deeper
networks better represent details of a given spike
[96]. Hence, they applied the pre-processed signals
to three differently sized AEs, which are shown in
figure 4. The ReLU activation function was employed
to add non-linearity to the hidden layers. The hidden
codes of each model were concatenated to generate a
nine-dimensional feature space, which was clustered
using DBSCAN [96], as illustrated in figure 4. Eom
et al achieved an accuracy of 99.81% on the widely-
used synthetic data in [44] (overlapping spikes were
excluded for this evaluation). Furthermore, multi-
dimensional input (concatenated Tetrode-data) in a
one-dimensional input vector improved the sorting
accuracy from 96.58% to 98.27%, as the model could
extract more valuable features [96]. Further consider-
ations regarding the scalability of this and the follow-
ing model can be found in section 7.1.

In 2021, Seong et al [103] also proposed an AE
for feature extraction. Their method includes the

following steps: detection, alignment, initial template
generation, feature extraction, and clustering. To
detect spikes, the dual vertex threshold method [132]
was employed. Then, the initial spike templates were
generated by using the first 100 aligned spikes in
the data, and the number of centroids for clus-
tering was determined [103]. The AE in [103] is
detailed in table 6. The decoder network has a
mirrored architecture to the encoder. Notably, L2-
normalisation was applied to the last layer of the
encoder as this facilitated clustering. Moreover, a
‘spike aware’ loss function was designed to assign
more importance to the middle of spikes (peak and
valley samples). For clustering, a k-means algorithm
based on cosine similarity that is robust against
false positives was utilised [103]. Using the syn-
thetic data in [44], Seong et al reached an accur-
acy of 95.54%. It has to be considered that Seong
et al evaluated their model using 5-bit weights and
7-bit activations, as the goal in [103] was to build
an efficient hardware solution, which is described in
section 7.2. As already observed in some detection
models, performance in high-noise environments
remains challenging [103], as a low SNR leads to
stronger signal corruption, which increases the intra-
class variance of spike features and thus complicates
clustering.

To address this problem, Radmanesh et al [107]
built contractive AEs (CAEs), which include a con-
tractive penalty term in the loss function, that penal-
ises the Frobenius norm of the Jacobian matrix of the
encoder activations, forcing the learned representa-
tions to exhibit invariance to minor variations in the
input. The model architectures in [107] were optim-
ised on each recording individually by using a grid-
search algorithm. The smallest model applied to the
data in [44] had a dense architecture with 72, 45, 20
and 3 units in each layer, while the biggest model,
used for the data in [45] was equipped with 90, 70, 35
and 10 units, respectively [107]. Although this tech-
nique yields optimal results, it may also lead to mod-
els that are overly adapted. In contrast to [96] and
[103], the authors of [107] utilised labels derived from
a k-means algorithm to train an SVM for classifica-
tion. Radmanesh et al outperformed several state-of-
the-art methods, such as SPC [44], IronClust [63],
and MountainSort4 [60] by achieving accuracies of
97% and 96% on two specific recordings from [44],
91% on the data in [108], and 87% on a recording
from [45]—all while maintaining a faster processing
speed [107].Notably, theCAEs showedminimal sens-
itivity to the size of the training set, making them
good candidates for even small datasets and online
inference [107]. The benefit of using contractive loss
could be further demonstrated, as simple AEswithout
contractiveness could not compete with the used
CAEs [107].

12



J. Neural Eng. 21 (2024) 061003 L MMeyer et al

Table 6.Model architecture of the encoder network in [103].

# Type Dim. σ(x) Kernel Stride

0 Input 50 — — —
1 1D-Conv 32 @ 25 ReLU 3 2
2 1D-Conv 64 @ 13 ReLU 3 2
3 1D-Conv 96 @ 7 ReLU 3 2
4 Dense 4 — — —

Figure 5. Spike sorting strategy proposed by Park et al [78].
Offline training: after band-pass filtering of the signal,
spikes get detected and aligned. PCA and k-means are used
for feature extraction and clustering. Subsequently the MLP
is trained with the spikes that are closest to the centroids in
the feature space to minimise labelling errors. Online mode:
after being trained, the MLP can classify detected and
aligned spikes.

5. Spike classification

This section presents straightforward classification
models and more advanced solutions developed to
address some of the mentioned challenges in spike
sorting, such as overlapping spikes or limited prior
information about the data. Supervised NNs require
input (spike) and output (label) combinations to
learn underlying data patterns but usually achieve
higher accuracy than unsupervised models. Both
methods can be combined, where unsupervisedmod-
els are used during an initialisation phase to label
a training set for the supervised model that can be
trained subsequently to perform online spike sort-
ing. This was also done for the spike detection mod-
els in [109] and [88], with Kilosort [21] as the util-
ised tool to generate binary pseudo-labels (‘spike’ or
‘no spike’). However, to sort spikes according to their
underlying neuron, the spike IDs, e.g. ‘spike A’, ‘spike
B’ and ‘spike C’, must be obtained. In 2019, Park
et al [78] utilised an MLP for spike classification. The
strategy in [78] is illustrated in figure 5. Park et al
[78] used PCA and k-means to create pseudo-labels,
using only the spikes in the data that were located
closest to the centroids in the feature space to min-
imise labelling errors [78]. After training, the MLP
assigns each spike with a label by using a Softmax
layer with n units for n possible classes. The MLP
in [78] has four hidden layers with 256 units each

that use the hyperbolic tangent activation function,
σ (x) = 2/[

(
1+ e−2x

)
− 1]. The results demonstrate

that unsupervised pseudo-labelling with PCA and k-
means combined with subsequent supervised classi-
fication yields better performance than only applying
PCA and k-means or SPC [78]. However, the unsu-
pervised training strategy limits the model’s classific-
ation performance. Accuracy increased from 51.55%
to 99.55% on a specific recording when trained with
the actual labels [78]. Thus, a change towards a more
advanced unsupervised labelling strategy may res-
ult in fewer erroneous labels and therefore could
improve performance. The scalability of this and
some of the following approaches are discussed in
section 7.1.

In 2020, Li et al [98] also worked on the classi-
fication of spike waveforms. For the synthetic data
[44], Li et al used the true labels available with the
dataset to train their model, varying the size of the
training set between 5% and 50%. However, they did
not mention spike alignment, even though this step
is of big importance as the spikes have cluster-specific
shifts with respect to the given ground-truth inform-
ation. If these shifts are not corrected by an align-
ment procedure, there is a risk that the respective deep
learning model learns these characteristic peak posi-
tions, which are not present in real scenarios. Hence,
the model in [98] could be biased in this regard. The
architecture of the CNN in [98] is summarised in
table 7. Li et al regularised their model using batch
normalisation and dropout. Evaluated on the data in
[44], the CNN [98] achieved high accuracy, perform-
ing slightly better than the MLP in [78] (even when
trained with the true labels), at the expense of higher
computation. However, depending on whether the
spikes were aligned before model training or not,
the possible bias mentioned above may have led to
falsely promising results. Naturally, more training
data increased performance. Nevertheless, even with
170 labelled spikes (5% of the available data), the
CNN achieved >99% accuracy for most synthetic
signals [98]. Using real extracellular data [98], the
average accuracy of this CNN dropped to 96.53%,
which may be due to inherent challenges of real
data, such as class imbalance and more realistic
noise. Moreover, some recordings in [98] do not con-
tain enough data from a single neuron to train the
model [98]. Using the experimental data, the CNN
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Table 7. Architecture of the CNN in [98].

# Type Dim. σ(x) Kernel Stride

0 Input 64 — — —
1 1D-Conv 32 @ 64 ReLU 3 1
2 1D-Conv 64 @ 64 ReLU 3 1
3 Pooling 64 @ 32 — 2 2
4 1D-Conv 128 @ 32 ReLU 3 1
5 Pooling 128 @ 16 — 2 2
6 1D-Conv 128 @ 16 ReLU 3 1
7 Dense 300 ReLU — —
8 Dense 100 ReLU — —
9 Dense n Softmax — —

Table 8.Model architecture of the LSTM-CNN in [113].

# Type Dim. σ(x) Kernel Stride

0 Input 10× 7 — — —
1 LSTM 7 — — —
2 2D-Conv 25 @ 7× 7 ReLU 3× 3 1× 1
3 2D-Conv 50 @ 7× 7 ReLU 1× 1 1× 1
4 Dense 50 — — —
5 Dense 25 — — —
6 Dense n Softmax — —

in [74] was trained with spikes that were pre-sorted
using SPC and manual re-sorting [44]. Therefore,
the proposed method resembles the one in [78], as
an unsupervised method was used to create pseudo-
labels. Note that for the data in [98], spikes were
aligned before pre-sorting with SPC.

In 2023, Wang et al [113] proposed a convo-
lutional LSTM for spike classification. The detec-
tion unit, consisting of two CNNs, was explained in
section 3. The output of the second CNN defines the
start and end points of a potential spike with a length
of 40 samples. The authors of [113] split each pre-
dicted waveform (40 × 1) into seven sliding win-
dows (10 × 7) with an overlap of five samples for
each window. This was then applied to an LSTM
layer that created seven time-series features. These
features were spliced into a 2D-feature matrix (7× 7)
to construct the input for the subsequent convolu-
tional layers [113]. The architecture of the model
in [113] is shown in table 8. Comparing the res-
ults from Li et al [98] and Wang et al [113] on the
synthetic data [44] reveals that both models per-
formed similarly. Li et al [98] reached 99.08% accur-
acy using 5% of the data for training, while Wang
et al [113] achieved 98.85%; using 40% of the data
for training, they reached an accuracy of 99.58% and
99.55%, respectively. By processing ten individual
channels of the experimental data in [99] contain-
ing the activity of three, four and five neurons, Wang
et al reached an average accuracy of 94.77%with 50%
of the available data used for training, whereas the
CNN from Li et al [98] reached 95.66% on the same
channels.

5.1. Classification of overlapping spikes
Recent studies, like the one by Liu et al [106] in 2022,
or the one by Zhang et al [115] in 2023, focused expli-
citly on the problem of overlapping spikes. Both of
these studies also did not mention spike alignment,
which may introduce the same bias as mentioned
above. The model used in [106] offers a combination
of CNN and LSTM, which is detailed in table 9. Batch
normalisation was utilised for the convolutional lay-
ers to regularise the model. Notably, a Softmax layer
with m units was utilised to classify the input: one
class for each spike group and additional units for
all possible overlapping combinations of spikes from
two neurons. The model in [106] could distinguish
between these classes as it was trained with augmen-
ted data consisting of single spikes and artificial over-
laps. Compared with the study in [98], results could
be improved, especially on spike collisions [106]. The
proposed technique to address overlapping spikes is
discussed in section 7.3.

Zhang et al [115] addressed the spike classifica-
tion problem using the Log-Mel spectrogram and a
CNN. Spectrograms are widely used in signal pro-
cessing, particularly for speech recognition andmusic
analysis. Furthermore, logarithmic scaling in the
spectrogram enhances its informativeness and adapt-
ability for various signal-processing applications. The
procedure in Zhang et al [115] has two parts. The first
part utilises the short-time Fourier transformation to
acquire the signal’s spectrogram, which was conver-
ted into a Log-Mel spectrogram to reduce the amount
of data while extracting advantageous features [115].
In the second part, a CNN is utilised to process the
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Table 9.Model architecture of the LSTM-CNN in [106].

# Type Dim. σ(x) Kernel Stride

0 Input 64 — — —
1 1D-Conv 32 @ 64 ReLU 3 1
2 1D-Conv 32 @ 64 ReLU 3 1
3 Pooling 32 @ 32 — 2 2
4 LSTM n/s — — —
5 Dense 300 ReLU — —
6 Dense 100 ReLU — —
7 Dense m Softmax — —

Table 10.Model architecture of the CNN in [88].

# Type Dim. σ(x) Kernel Stride

0 Input 32× 4× 6 — — —
1 2D-Conv n @ 32× 4 Linear 4× 2× 6 1× 1× 1
2 Dense n Linear — —
3 Dense n Softmax — —

spectrogram. This CNN contains four convolutional
layers with 2 × 64 and 2 × 128 filters, two average
pooling layers, and two dense layers. As in [106], a
Softmax layer predicts one of m classes [115]. This
was also achieved by training the model on both
single-spike waveforms and artificial overlaps. The
size of the training set is not specified in this work.
Using the data in [44], Zhang et al reached an accur-
acy of 95.74% [115], whereas Liu et al [106] reached
more than 99.5%, suggesting that the use of spectro-
grams may not provide additional benefits for deep
learning-based spike sorting. A similar finding comes
fromArdelean et al, who also demonstrated that spec-
tral analysis does not offer an advantage in capturing
distinct spike features [111].

5.2. Spatiotemporal classificationmodels
Rácz et al [88] proposed CNNs using 2D- and 3D-
input to sort spikes obtained with a 128-channel HD-
MEA. Figure 6(a) illustrates how spikes of different
neurons may appear spatially on a 32 × 4 electrode
grid at their negative amplitude peak. Figure 6(b)
shows how a spike evolves in a spatiotemporal way
and how these patterns can be used for signal ana-
lysis. The model in [88] that utilises 2D input only
took spatial data as input, with spikes at their amp-
litude peak (cf figure 6(a)). More precisely, frames
with an offset of 1–2 samples were used, as these
frames yielded the best results [88]. A model with
3D input was also created, using six frames per spike,
where each adjacent frame was five samples apart
to keep the training time low [88]. The architec-
ture of the CNN in [88], using 3D input and assum-
ing there are n actively firing neurons in the record-
ing, is displayed in table 10. For the data used [89],
n ranged from 23 to 46, determined with Kilosort
[21], which was also utilised to generate pseudo-
labels for the supervised models. The results indicate
that the 3D-model provides higher accuracy than the

2D-model, as unique temporal spike characteristics
provide crucial information [88]. As for the synthetic
data mentioned above, pre-sorting with Kilosort also
resulted in cluster-specific shifts, that should have
been corrected by alignment before network train-
ing. However, this was not taken into account in this
study either, which also potentially skewed the res-
ults. Nevertheless, the method of Rácz et al shows sig-
nificant advantages over the aforementioned classi-
fication models, as the CNN in [88] processes many
channels at a time by using a compact network archi-
tecture. Another issue was identified in this study:
even though classes are imbalanced, the examples
per class were not rebalanced for training, which can
lead to a deep learning model that weights frequently
occurring classes more heavily than examples of rare
classes. This was also neglected by the studies men-
tioned above that were using experimental data [98,
106, 113]. Rácz et al also investigated the feasibil-
ity of spike predictions before they appear in the
signal. This would be useful for BCIs as the delay
between sorting and actuation could be reduced. It
was shown that the initial waveform (not contain-
ing the peak voltage) enabled spike classification to a
certain extent, indicating that the initial spike frames
contain essential information of a unit’s identity.
However, predictions before the firing of a neuron
were not possible [88].More reflections on the scalab-
ility of this and the following model can be found in
section 7.1.

In 2022, Yi et al [105] also proposed a multi-
channel spike sorting model. The data were captured
using 64 channels, 49 of which were processed in
[105]. The utilised recording shows the activity of 27
neurons. MountainSort [59] was used for labelling,
which produced data batches of 49× 180 samples for
all relevant events (180 samples= 6ms). Yi et al [105]
reduced the size of spike snippets to 49 channels x 30
timesteps, as this duration was sufficient to capture

15



J. Neural Eng. 21 (2024) 061003 L MMeyer et al

Figure 6. Simulated HD-MEA recording. (a) Five distinct neurons in an extracellular recording at their negative amplitude peak,
captured with an HD-MEA (32× 4 electrodes). Each neuron produces a characteristic voltage pattern. (b) Spatiotemporal spike
data of Neuron 1 over five consecutive time-steps. Peak negative amplitude at t= 0.

Table 11.Model architecture of the CNN in [105].

# Type Dim. σ(x) Kernel Stride

0 Input 49× 6× 5 — — —
1 2D-Conv 2 @ 46× 2 ReLU 4× 4× 5 1× 2× 1
2 1D-Conv 2 @ 45 ReLU 4 2
3 Dense 27 Softmax — —

Table 12.Model architecture of the encoder in [84].

# Type Dim. Kernel Stride

0 Input 64 — —
1 1D-Conv 64 @ 64 1 1
2 Residual block 256 @ 64 3 1
3 Residual block 256 @ 64 3 1
4 Dense 512 — —
5 Dense 512 — —
6.1 Dense (y) n — —
6.2 Dense (z) d — —

relevant spike features [105]. Naturally, a smaller
input leads to faster processing of the DNN.However,
instead of using every fifth sample from each spike
waveform, as Rácz et al did in [88], Yi et al processed
the entire waveform to avoid losing important spike
features. The input waveform was divided into five
sub-snippets, leading to an input size of 49 × 6 × 5
per spike. According to Yi et al, this approach pre-
vents themodel from overfitting to certain noises and
guides it to better focus on learning spatial features
[105]. The CNN used in [105] is detailed in table 11.
The authors in [105] could attain a testing accuracy
of 93.1% employing full-precision weights and 86.1%
using quantised weights with 4-bit precision [105].
The hardware implementation of this approach is
briefly discussed in section 7.2.

5.3. Spike classification with GANs
In a GAN, adversarial representation learning can
be utilised by employing a generator to produce
realistic data samples and a discriminator to dis-
tinguish between genuine and generated samples.
This approach helps in acquiring meaningful data
representations and can improve spike sorting
quality by extracting robust features from limited
labelled data. In 2019, Wu et al [84] developed a

semi-supervised spike classification method called
few-shot spike sorting (FSSS). They presented a
semi-automatic threshold-based labelling technique
called DidacticSort to create cluster candidates for the
spikes in the utilised data. Experiments were obtained
with 50, 100 and 200 labelled spikes from the syn-
thetic data in [44]. The encoder (generator network)
of FSSS is detailed in table 12. Two residual blocks,
which can be seen as skip connections that add the
input directly to the output, were employed to avoid
vanishing gradients. The encoder has two outputs: (i)
an encoded vector y to predict one of n cluster labels;
(ii) a hidden code z (low-level feature representation).
As the output of the encoder q is twofold,Wu et al [84]
used two discriminator networks called Dy and Dz,
which are two-layer MLPs with 512 units. The GAN
was trained following a three-step algorithm, which is
illustrated in figure 7. The authors of [84] successfully
categorised spikes within the utilised synthetic data:
using 50 labelled spikes from a recording with noise a
standard deviation of 5%, an accuracy of 97.7% was
reached; by increasing the number of labelled spikes
to 200, the accuracy improved to 98.2%. In the pres-
ence of noise with a standard deviation of 20%, they
reached accuracy levels of 66.4% (50 labelled spikes)
and 85.5% (200 labelled spikes) [84]. Also tested on
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Figure 7. Training procedure of the model in [84]. (1) The
encoder q and the decoder p are trained to reconstruct
given spikes by minimising the reconstruction loss Lrecon,
where x and x′ are the unlabelled spikes and their
reconstructed versions, respectively. (2) The discriminators
Dy and Dz are trained to distinguish the generated y and z
from samplings of the categorical distribution yc and
d-dimensional Gaussian distribution zg by adjusting the
model weights according to Lcat and Lgauss. Furthermore, q
is trained to better fool Dy and Dz by minimising the
regularisation loss Lreg. (3) The supervised part comes last,
when q is updated by minimising the cross-entropy loss LCE
on a mini-batch of labelled spikes x̂, where the labels ŷ were
obtained by DidacticSort.

experimental data, it was demonstrated that train-
ing the GAN on a particular waveform with only a
‘few shots’ was sufficient to recognise similar spikes
in inference mode. In the following, it is discussed
that a GAN approach can also be carried out in a fully
unsupervised way.

In 2020, Ciecierski [94] proposed a similar
method for spike sorting that also relies on the inter-
play between a generator network and two discrimin-
ators. Similar to [84], pre-processing in [94] involved
spike detection and alignment to facilitate sorting
with the used model. The encoder in [94] processes
the input through two dense layers with 100 units
each, before the model splits into a categorical out-
put and a Gaussian output. Ten units were used for
the categorical output, as it was assumed that no
more than ten distinct neurons were firing in the
respective recording. Notably, this number represents
an upper limit and does not determine the num-
ber of active neurons in the recording [94]. Three
units were chosen for the Gaussian output. For the
first two hidden layers, the author in [94] applied the
exponential linear unit activation function, σ (x) =
x if x⩾ 0, else α(ex − 1), with α as a hyperpara-
meter. The decoder was designed the same way as the
encoder butwith an additional hidden layer after both
inputs. Furthermore, Ciecierski used a ‘spike aware’
loss function, similar to [103]. The ability to enforce
both desired distributions (categorical and Gaussian)
in the latent space was achieved by using discrimin-
ator networks during training, similar to the work of
Wu et al [84]. Both the categorical and the Gaussian
discriminators were designed as 3-layer MLPs with
100 units in the hidden layers [94]. The training
setup for the proposed GAN is similar to the work in
[84], but has no supervised part. The model in [94]
could identify nine distinct spike waveforms during
training, validation and testing, using experimentally
obtained recordings [95]. Unfortunately, this model

was not evaluated on the widely-used synthetic data
in [44], and thus the performance of FSSS [84] cannot
be compared with Ciecierski’s model.

6. Integrated systems

Recently, Meyer et al [116] and Zacharelos et al
[117] proposed lightweight MLPs for simultan-
eous spike detection and spike classification using
single-channel recordings and supervised learning.
Also, Rokai et al [101, 112] presented a mix-
ture of supervised and unsupervised, computation-
ally more intensive solutions, for integrated multi-
channel spike sorting by employing more complex
network configurations.

6.1. Integrated systems for single-channel
recordings
In 2023, Meyer et al [116] proposed DualSort, which
was trained using synthetic and real extracellular
recordings, labelled with the spikes’ IDs and timings.
Data augmentationwith noisewas employed to create
an extensive training set, similar to the work in [118].
Furthermore, the spikes were extended by shifting
them along the time axis in order to train themodel to
become shift invariant. This enabled classifying spikes
at multiple adjacent time steps [116]. The architec-
ture of this model is detailed in table 13. The first
output layer was used for spike detection and localisa-
tion at twenty different positions in the input, indic-
ating the exact spike timing, while the second output
layer predicts one of n spike classes [116]. Both out-
put layers contain an additional unit to indicate when
no spike is present [116]. Dropout, batch normalisa-
tion and early stopping were utilised to regularise the
model. Meyer et al also designed a post-processing
algorithm that verifies the output of the MLP by val-
idating whether the refractory period of individual
neurons was violated, and by calculating the mode
of the last 20 predictions to only keep the most fre-
quent classification [116]. DualSort offers high accur-
acy (98.04%with post-processing; 97.34% as a single-
shotmodel) on the widely-used synthetic dataset [44]
outperforming other advanced spike sorting models
like WMsorting [133]. The spike times could be pre-
dicted precisely aswell (84.07%of all predictionswere
exact; wrong predictions had a mean deviation of 1.1
samples @ 24 kHz). Misses in this regard were mainly
caused by overlapping spikes. Using the experimental
recordings in [98], it was even possible to outperform
the CNN from Li et al [98], especially when trained
with little data. The post-processing algorithmhelped
to increase the robustness against misclassifications,
as these often stood out as outliers in larger predic-
tion sequences [116]. The scalability of this and other
integrated systems is discussed in section 7.1.

Later in 2023, Zacharelos et al [117] also presen-
ted an MLP for integrated spike detection and clas-
sification, which has many similarities with DualSort
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Table 13.Model architecture of the MLP in [116].

# Type Units σ(x)

0 Input 25 —
1 Dense 100 ReLU
2 Dense 100 ReLU
3.1 Dense 21 Softmax
3.2 Dense n+ 1 Softmax

[116]. However, the authors of [117] also proposed a
hardware implementation, which is briefly described
in section 7.2. Neurocube [108] was utilised in [117]
to generate synthetic extracellular recordings with
three active neurons. Different MLP architectures
were investigated in [117], where the optimal solution
had two hidden layers with 24 and 16 units. The out-
put layer of the model in [117] resembles the second
output layer of DualSort [116], as three units were
used to indicate activity from the three firing neur-
ons and one unit was utilised to indicate pure noise
activity. Both hidden layers apply the ReLU activ-
ation function, and the Hardmax activation func-
tion was applied to the output layer [117]. Hardmax,
also known as the argmax function, identifies the
unit with the highest value, which saves resources
compared to Softmax. For regularisation, the authors
in [117] used early stopping and L2-regularisation.
Tested on the synthesised recordings, Zacharelos et al
reached an accuracy of 96%. Themodel in [117] has a
leaner architecture than DualSort but was optimised
and tested on a single dataset, which does not allow
any conclusions on the generalisation of the model in
[117]. Additionally, the model in [117] cannot gain
exact information regarding the spike timing. Hence,
if the spike trains need to be reconstructed by the net-
work outputs,DualSort has a slight advantage in spike
time accuracy.

6.2. Integrated systems for multi-channel
recordings
In 2021, Rokai et al [101] presented ELVISort, an
integrated multi-channel spike sorting system based
on a variational AE (VAE). In VAEs, loss is augmented
to force the hidden code to have a normal distribu-
tion, which regularises the model and leads to more
consistent latent representations. The encoder con-
tains two branches of Bi-LSTMand 2D-convolutional
layers with dense layers at the end [101]. A Bi-LSTM
operates by processing inputs in forward and back-
ward directions through the hidden layers before the
outputs get combined at each time step. The dense
layers in ELVISort are followed by three branches.
The first branch reconstructs the input and con-
sists of LSTM and attention layers, as this improved
the generalisibility of ELVISort [101]. Attention lay-
ers allow to selectively focus on specific segments
of the input data dynamically, rather than treating
all inputs the same way. The second branch is for

classification, which is used to fine-tune the model
for spike detection using a Softmax layer with two
units (‘spike’ or ‘no spike’), while it was tuned to
the number of clusters n in the respective recording
for sorting (this is the only supervised part of the
network). The third branch is for clustering, where
Student’s t-distribution was utilised to assign soft
labels during training and k-means for centroid ini-
tialisation. During training, the reconstruction cap-
ability of ELVISort was given the highest priority.
ELVISort [101] was evaluated on three experimental
datasets using the F1-Score, a statistical measure used
to evaluate the performance of a classification model
that calculates the harmonic mean of precision and
recall and ranges from zero (minimum) to one (max-
imum). Using the data in [102], ELVISort achieved
an F1-Score of 0.964, which is competitive to several
state-of-the-art models, such as Kilosort (F1: 0.98)
and IronClust (F1: 0.97) [101]. Using the hybrid data-
set in [46], ELVISort reached an F1-Score of 0.81, a
comparable result to SpyKING CIRCUS, Kilosort2,
and IronClust, all achieving an F1-Score of 0.83 [101].
Although the unsupervised part of ELVISort exhib-
ited a commendable capacity for detection and sort-
ing, the cluster-specific accuracies were loosely correl-
ating with the average SNR of the cluster, suggesting
that the performance bottleneck could be in the fea-
ture extraction part of the algorithm [101].

In 2023, Rokai et al presented a new solution
for integrated spike sorting [112], using tensor pro-
cessing units (TPUs) to accelerate sorting. They
developed a semi-automatic procedure where spikes
were averaged from a specific cluster to identify
the primary channel number, which was verified
by a human expert [112]. The model consists of
a self-supervised and a supervised model. The self-
supervisedmodel takes 105 features as input and pro-
cesses the data through three residual blocks, four
1D-convolutional layers and one dense layer at the
end, where it outputs 32 features (spike embedding).
Batch normalisation was used for regularisation, and
themodel utilised the leaky ReLU activation function,
σ (x) = x if x⩾ 0, elseαx, withα as a hyperparameter
that controls the slope for negative inputs. Nearest-
neighbour contrastive learning NNCLR [134] was
chosen as the self-supervised method in [112]. The
training procedure of the self-supervised method is
illustrated and explained in figure 8(a). The model
in [112] was trained with multiple recordings at once
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Figure 8. Training scheme of the model from Rokai et al
[112]. (a) The encoder of the self-supervised model takes
an instance spike and a cluster mean spike as input and
creates two different feature embeddings. These
embeddings are then processed by a projection head. By
applying NNCLR, the contrastive loss is calculated to pull
embeddings from positive input pairs closer together or
push them further apart for negative input pairs. Once
trained, the model creates similar embeddings for similar
spikes. (b) The supervised model is based on MobileNetV2
and splits into a classification and detection branch using
SSDLite. Following the classification branch, the model
predicts the feature embeddings of single samples. Based on
the cosine similarity loss between the predicted features and
the embeddings provided by the self-supervised model, the
weights of the model get adjusted. Furthermore, SSDLite
predicts the score and box, compares it with ground truth
(GT) by using focal loss, and adjusts the parameters
accordingly. The box refers to the localisation of a spike
within the sample, whereas the score prediction indicates
whether a spike is present in the box or not.

to increase generalisability. Furthermore, spikes were
augmented using scaling and jittering to extend the
training set with similar input pairs. Eachmeanwave-
form’s embedding is then used as a label for the super-
vised model, displayed in figure 8(b). MobileNetV2
[135] was the chosen architecture for the supervised
model, as it supports edgeTPU hardware, and is well
suited for applicationswith limited resources. The key
concepts in MobileNetV2 are depth-wise separable
convolutions, inverted residuals, and linear bottle-
necks. The initial convolutional layer is followed by a
series of bottleneck layers where the number of chan-
nels is expanded, depth-wise convolutions are carried
out, and the dimensions are reduced again. The last
convolutional layer is pooled, followed by a Softmax
layer for classification. A single-shot detector (SSD)
approach called SSDLite [135] was used to recognise
spikes in the signal. SSD utilises predefined anchor
boxes to predict class probabilities and box offsets
at various feature map locations, refining these pre-
dictions during training with localisation and classi-
fication losses and applying non-maximum suppres-
sion (NMS) to remove overlapping boxes. SSD rep-
resents an effective alternative to the spike localisa-
tion method presented in [113], where two CNNs
were utilised to detect and localise spikes in the sig-
nal, or DualSort [116], where spikes were detected,

localised and classified according to their underlying
neuron. However, in contrast to [116], the model in
[112] does not classify spikes directly but creates a
reduced feature space that is clustered subsequently.
This method has the advantage of increased gen-
eralisability because the model is not restricted
to certain cluster assignments or specific electrode
geometry [112]. PCA was applied to reduce the fea-
ture dimensions from 32 to 10 to enhance future
data adaptability and mitigate overfitting [112]. For
clustering, Rokai et al carried out experiments with
Isosplit5 [136], a time-efficient algorithm that does
not require hyperparameters, and agglomerative clus-
tering, which is a hierarchical method. It was demon-
strated in [112] that the proposed algorithm can
be used for spike detection, achieving an average
accuracy of 93% on the data in [43, 62], perform-
ing better than other state-of-the-art techniques like
Kilosort (77%), MountainSort4 (88%) or SpyKING
CIRCUS (88%). Using two recordings of [46], the
sorting accuracy of the model in [112] was 86% and
42%, whereas SpyKING CIRCUS reached 91% and
54%, respectively. As the self-supervised model pro-
cesses pre-selected spike waveforms, it can be seen as
input-source agnostic, which is a massive advantage
in terms of flexibility [112]. One limitation of this
model is the processing of overlapping spikes, as the
NMS post-processing was not optimised for separat-
ing such events [112].

7. Discussion

Deep learning models have been utilised to solve spe-
cific problems in the spike sorting pipeline, which
were explored in sections 3–5. Moreover, integrated
systems were covered in section 6. MLPs are the
simplest type of DNNs used in integrated spike
sorting [116, 117]. They require few resources but
have been optimised for single-channel data so far.
The authors of [88, 101, 105], among others, demon-
strated the advantages of convolutional layers in spike
sorting. While 1D-convolutional layers were utilised
to find temporal patterns in single-channel data [98,
103], 2D- convolutional layers could be used to pro-
cess HD-MEA data spatiotemporally [88, 101, 105].
LSTMs have not yet been promising in detecting
spikes, but could improve the temporal spike pat-
tern recognition in some classification models [106,
113]. AEs, on the other hand, have demonstrated their
effectiveness for unsupervised feature extraction [96,
103, 107], where they have been applied to reduce
data dimensions to facilitate clustering. Notably, cer-
tain layer types, such as convolutional or LSTM
layers, have been integrated into AEs to enhance
performance [101, 103]. Furthermore, GANs have
been proposed for spike classification with a semi-
supervised [84] and a fully unsupervised solution
[94]. GANs utilise adversarial representation learn-
ing, effectively categorising spikes withminimal or no
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Table 14. Key attributes of certain spike sorting algorithms: advantages, constraints and practical applications.

References Approach Advantage Drawback Application

[100] Two CNNs for
channel selection and
spike detection

Generalized solution
to the spike sorting
problem

Limited to single
channel recordings

Universal channel
tracking across
species, brain regions
and electrodes

[93] CNN for CS detection Accurately detects
complex spikes with
limited training data

Relies on several
post-processing steps

Could improve neural
decoding in BCIs

[96] AE-Ensemble for
feature extraction

Improved feature
extraction through
the use of multiple
AEs

Not evaluated on
overlapping spikes

Enhances spike
sorting accuracy,
especially with
multi-dimensional
inputs

[103] Convolutional AE for
feature extraction

Efficient model using
low-bit weights and
activations

Performance degrades
in high-noise
environments due to
low SNR

Suitable for spike
sorting in
resource-constrained
hardware systems

[78] MLP for classification Unsupervised
pseudo-labelling
enabled fully
automatic supervised
sorting

The labelling
technique
(PCA+ k-means)
limits the sorting
accuracy of the MLP

Real-time spike
classification

[105] CNN for classification Spatiotemporal
sorting

Only validated on one
HD-MEA dataset

On-chip sorting,
enabled through a
low-parameter model

[116] MLP for integrated
spike sorting

Bypasses several steps
in the spike sorting
pipeline

Sensitive to
overlapping spikes

Real-time spike
detection and sorting
using a lean model
architecture

[101] VAE for integrated
spike sorting

Various layer types
such as convolutional
and Bi-LSTM layers
improve accuracy

Computationally
heavy

Integrated spike
detection and
classification using
HD-MEA data

labelled data by disentangling label information from
extracted features. This approach further reduces the
need for manual intervention and is especially use-
ful on data with limited prior information. Generally,
model architectures have been optimised with regard
to specific recordings. This was often done analytic-
ally, by using grid search algorithms [107], but also
heuristically [78]. It must be noted that the ability of
the model to generalise to new data always depends
on the quality and complexity of the data on which it
has been optimised, even if it has been trained on the
new data.

Table 14 provides the reader with a concise
descriptive table that summarises the advantages, lim-
itations and real-world applicability of certain deep
learningmodels discussed in this work. Table 1 lists all
datasets used in the respective studies, giving an over-
view of which algorithms may be suitable for com-
parative analyses. However, comparisons between
models tested on the same dataset should be made
cautiously, considering that many research groups
tested their models on certain parts of the data-
sets. Moreover, algorithms were trained using differ-
ent approaches: (i) supervised; (ii) semi-supervised;
(iii) unsupervised, with differently sized training sets.
Depending on the technique used, this significantly

impacts the results. In this survey, the results are not
compared in tabular form to avoid erroneous con-
clusions. Instead, it discusses how the presented solu-
tions overcome several challenges and requirements
mentioned in section 1.3, points on possible future
directions and presents the first hardware implement-
ations of deep learning-based spike sorting models.

7.1. Scalability
For spike detection, models have been trained with
millions of labelledwaveforms and could be used uni-
versally. The authors of [85] presented a CNN for
neural channel selection that can be applied to differ-
ent subjects, species, brain areas and electrode types.
This is beneficial for BCI applications in order to
track useful channels. By using a second CNN [100],
it was possible to remove background activity from
the recorded channels which drastically reduced the
number of waveforms for subsequent analysis. To
gain insight into the computational complexity of the
models in [85] and [100], the authors of this work
reconstructed them using Python and TensorFlow
and derived the total number of model parameters
and the required floating-point operations (FLOPs).
Spikedeeptector [84] and BAR [100] use 110 735
and 42 302 parameters and require 4157 178 and
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Table 15. Deep learning models trained on single channels of the synthetic data in [44] and their resource consumption.

References Authors Parameters FLOPs

[78] Park et al 206 595 412 163
[96] Eom et al 2729 5353
[98] Li et al 611 631 5788 250
[106] Liu et al 52 414 501 060
[103] Seong et al 27 556 430 276
[113] Wang et al 125 957 395 968
[116] Meyer et al 16 025 31 950

Table 16. Deep learning models trained on HD-MEA data and their resource consumption.

References Authors Channels Parameters FLOPs

[88] Rácz et al 128 561 978 3132 783
[105] Yi et al 49 6876 36 176
[101] Rokai et al 128 5315 139 275 713 102

1069 612 FLOPs, respectively. Ideally, CSs should also
be detectable with BCIs, especially with implanted
electrodes at the cerebellum, where CSs occur fre-
quently. Hence, integrating CS detection into scal-
able multi-channel detection models, or integrated
systems, is desirable for real-world applications in the
future.

Certain feature extraction and classificationmod-
els were also reconstructed within this survey to
investigate their resource consumption. The results
are displayed in table 15. Thirty-two units were
assumed for the LSTM layer in [106], as this was not
specified in the respective paper. Notably, all mod-
els in table 15 reached an accuracy above 95% on the
utilised data. It is apparent that the ensemble learn-
ing model from Eom et al [96] requires the fewest
parameters and the lowest number of FLOPs, even
though Eom et al used three dense AEs. At this point,
it should be noted that only the encoder modules
of the AEs were reconstructed for this estimation,
as the decoders are not required during inference.
The resource consumption of the model in [96] is
higher overall, considering the whole spike sorting
pipeline, as the AE ensemble is employed only for
feature extraction and additional modules for spike
detection, temporal alignment, gradient determin-
ation and clustering are required. Table 15 reveals
that the classification models in [78, 98, 106, 113]
require significantly more parameters and FLOPs due
to more complex network configurations. Notably,
the size of the input vector plays a decisive role in
this regard. Using the data in [44], the CNN in [98]
classifies aligned spikes with a size of 64 samples,
resulting in the resource consumption displayed in
table 15. However, reducing the input spikes to the
more ‘important’ samples (peak and valley), like in
[116], where only twenty-five samples were used,
the required memory and computation of the model
in [98] shrink to 227 631 parameters (−63%) and
1552 698 FLOPs (−73%), respectively. Nevertheless,

the total resource consumptions of the above models
increases by the computational effort required for
spike detection and alignment. This is not the case for
the model in [116], as this is an integrated system.
However, since the same spike is processed several
times by the same network in [116], ultimately there
are more FLOPs per spike than those presented in
table 15. In practice, this results in a trade-off between
model robustness, gained through the described post-
processing, which also takes a small amount of com-
putation, and resource efficiency, calibrated based on
the model step size.

Scaling the discussed single-channel models up
to HD-MEA recordings may significantly increase
computation, and is an important subject of future
research. Other classification models have already
proven scalable using HD-MEA data by utilising
spatiotemporal features for spike sorting. To better
understand the efficiency of multi-channel models,
the models from Rácz et al [88], Yi et al [105] and
Rokai et al [101], were also reconstructed to estim-
ate the required resources. The results are displayed in
table 16. For both classification networks [88, 105] in
table 16, it was assumed that there are twenty-seven
active neurons in the recording. Table 16 demon-
strates the effect of both a small number of filters
and dimensionality reduction, as Yi et al [105] used
only two filters and two convolutional layers, effect-
ively shrinking dimensions. In contrast, Rácz et al
[88] utilised one convolution, matched the number
of filters with clusters in the data, and kept dimen-
sions, resulting in a larger model. However, this does
not imply that the model in [105] is fundamentally
preferable, as the models were not tested on the same
data. It may well be that the narrow architecture of
the model in [105] would fail when processing the
data used in [88]. Nevertheless, table 16 shows that
spatiotemporal data processing can take less memory
and processing power than channel-wise analyses (cf
table 15).
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Heavy models require external processing to
ensure online sorting. Therefore, collected data must
be transmitted to an external processor. In general,
all described DNNs in this work can be run utilising
a conventional CPU/GPU setup. Notably, the single-
channel models presented in table 15 can also pro-
cess multi-channel data using modern deep learn-
ing frameworks and optimised hardware that sup-
ports parallel processing, e.g. withGPUs. CNNs bene-
fit most from parallel processing as filters can be
applied across the entire input at the same time.MLPs
benefit moderately from parallel computing, while
RNNs are restricted in this regard as they depend
on sequential processing. Irrespective of the model
type, the following must be considered: if parallel
processing is applied to a supervised single-channel
classification model in order to process several chan-
nels simultaneously, the model must be trained on
all spikes in all channels, and the model architecture
must be adjusted accordingly. ELVISort [101], is a
sophisticated integrated system that requires drastic-
ally more FLOPs and parameters than the single-
channel models described above. Running ELVISort
on a Windows PC using an i9-7920X with 64GB
RAM and NVIDIA GeForce RTX 2080 Ti GPU, it
was possible to sort spikes from 64 channels 15.71
times faster than the sampling rate [101]. Using the
same setup, other state-of-the-art solutions were not
that efficient: IronClust was 7.11 times faster than
the sampling rate, Kilosort2 was 6.94 times faster,
MountainSort4 was 2 times faster, and SpyKING
CIRCUS was even slower than the sampling rate
[101]. This shows that even heavy deep learningmod-
els can run faster than leading state-of-the-art solu-
tions in spike sorting. To accelerate the performance
of the model presented in [112], an edgeTPU chip
was used that requires a comparatively small amount
of energy (1 Watt/2 Tera Operations per second). An
edgeTPU is a specialised application-specific integ-
rated circuit (ASIC) that uses a TPU. As the post-
processing (NMS and clustering) is not supported by
TPU, processing can be divided into two parts: (i)
spike detection and feature extraction with TPU; (ii)
NMS and sorting on CPU. As the first part requires a
quantised model, the model parameters were quant-
ised from 32-bit floating values to 8-bit integers.
A quantisation-aware training method was used to
minimise the performance drop during this process
[112].Data-wise, the systempresented in [112] can be
trained onmultiple recordings simultaneously, which
highly improves generalisation. To summarise, the
presented setup [112] is a step towards the integration
of DNN-based spike sorting for BCIs.

7.2. Hardware implementations
On-chip processing can be done using field pro-
grammable gate arrays (FPGAs) [103, 132, 137, 138]
and ASICs [139–142]. Several constraints must be

considered regarding implantable brain chips: the
power utilisation should not exceed 10 mW, the
implant size should not be higher than 1 cm2, and
energy dissipation should not raise the temperature
of the surrounding cells by more than 1 ◦C [143,
144]. The BNN for single-channel classification by
Valencia and Mohammad [42] was implemented in a
180-nm TSMC CMOS technology occupying an area
of 0.33 mm2. The ASIC only consumed 2.36 µWwith
a power density of 7.15 µW mm−2, clearly showcas-
ing the benefits of BNNs. It should be emphasised
that BNNs mostly rely on bit-wise operations [140],
making these models highly suitable for resource-
constrained environments. This significant advant-
age underscores the importance of directing more
research and development efforts on BNNs in high-
bandwidth spike sorting. Other emerging hardware
trends for spike sorting, for example, event-driven
processors require only 2.53 µW in 28 nm techno-
logy with an area as low as 0.018 mm2 per channel
[145]. Event-driven computations activate the sys-
tem conditionally, thus reducing overall power con-
sumption. NeuSort [146], a recently published neur-
omorphic model, uses a receptive field encoder to
convert spike candidates into artificial event trains.
This layer is connected to a perception layer, where
firing units correspond to neural events in the data.
NeuSort’s efficient memorisation simplifies neural
signal processing into one pass, establishing an effi-
cient spike sorting technique [143]. The number of
neuromorphicmodels has steadily increased in recent
years and warrants a survey of its own.

Seong et al [103] proposed the first ASIC imple-
mentation of a deep learning-based feature extractor
for spike sorting exhibiting a power consumption
level below the permissible threshold for causing
damage to brain tissue [103]. This was achieved by
using 5-bit weights and 7-bit activations. Seong et al
implemented 16 encoders to process 16 channels sim-
ultaneously. This design can support up to 512 chan-
nels, where each encoder processes 32 channels with
time-multiplexing, all running on a 12mm2 chip. The
ASIC in [103] requires an area of 38.65 mm2 and
consumes 8.225 mW, leading to 212.82 µW mm−2.
In [105], a multi-channel spike classification model
was proposed using weights quantisation with 8 bits
for the convolutional layers and 4 bits for the dense
layers, enabling a lightweight FPGA implementa-
tion. Although the accuracy dropped from 93.1% to
86.1% using quantised weights, this reducedmemory
requirements by 93%, going from 55 kB to 3.5 kB.
Overall, the 49-channel processor required 78 mW.
In [117], Zacharelos et al developed the first ASIC
implementation of an integrated deep learning-based
spike sorting module in a 14 nm fin field-effect tran-
sistor. They further used approximation techniques
[147–149] to reduce the power consumption of their
model [117]. Applied on the data in [108], Zacharelos
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et al achieved an accuracy of 93.25%, with a power
and chip area of 0.434 µW and 4787 µm2, offering a
compatible, implantable design

7.3. Signal complexities
Many spike sorting algorithms struggle with varying
noise levels and have particular problems with pro-
cessing low SNR recordings. CAEs are known to be
noise-robust, which was demonstrated in [107] with
consistent results on the used datasets, but also by
comparing the latent space representations of inputs
with different noise levels, which showed only small
deviations. Non-stationary spike waveforms, as they
appear with drifting electrodes, often pose an even
bigger problem for sorting algorithms, a topic that
has been neglected by most research teams in deep
learning-based spike sorting so far. Rácz et al [88]
evaluated their supervised sorting models on rel-
atively long recordings (45 min). They carried out
experiments in which the training and test data
were selected randomly and in chronological order.
The chronological method (90.1% accuracy), resul-
ted in a slightly lower performance than the random
method (94.3% accuracy) [88], indicating that the
model had difficulties in identifying waveforms that
changed over time.Modelsmust becomemore adapt-
ive to cope with such complexities. Using resource-
efficient models for spike sorting allows for iterat-
ive re-training (fine-tuning) to better adapt to time-
related signal changes. Transfer learning approaches
have already been applied in applications such as EEG
processing [150] to accelerate real-time adaptation
and may also increase the real-world applicability of
DNN-based spike sorters in the future. For supervised
models, this strategy could also help to sort infre-
quently firing neurons. In a supervised framework,
the effective classification of such events hinges on
recognising a minimum quantity of a neuron’s spikes
and their integration into the training set. However,
this may lead to strongly imbalanced classes, resulting
in a biased deep learning model. Data augmentation
[116, 118] is useful with sparsely firing neurons, as
the number of these events can be extended to bal-
ance the data by superimposing the respective spike
template with noise segments that can be captured
from the recordings. However, this technique may
not capture the full intra-class variance of real spikes.
Unsupervised models, on the other hand, e.g. AEs
that can be used to extract features, cope better
with data imbalances. Nevertheless, care should be
taken when choosing a clustering algorithm, as many
algorithms tend to merge clusters that are easily sep-
arable but have few instances. Overlapping spikes can
be seen as sparse events as well. In [91], a feature
extraction method was proposed to resolve overlap-
ping spikes in the feature space by using a custom
cost function. One limitation of this method is that
the exact spike times of overlapping instances cannot

be determined, however, depending on the specific
application at hand, this issue may not necessarily
pose a concern [91]. In contrast to themethod in [91],
the authors of [106] and [115] did not try to separ-
ate colliding waveforms but taught their models how
overlaps of specific waveforms appear in the signal.
Even if this method yields high results, its usability
is limited to channels with few active neurons. For
channels containing spikes from up to 20 actively fir-
ing neurons, as in the synthetic data in [2], the train-
ing set would be impractically huge, as this model
would require 20 classes to indicate single spike firings
and another 190 classes to indicate all possible colli-
sions, considering that only two spikes can fire sim-
ultaneously. Scaling this approach up to HD-MEA
recordings is an even bigger challenge. Nevertheless,
the problem of overlapping spikes can be alleviated
to some extent by analysing HD-MEA recordings
spatiotemporally, as spatial data provides additional
information that can be used to assign spikes to their
neurons.

7.4. Limited prior information
Generally, unsupervised methods are preferred over
supervised methods as there is limited prior inform-
ation about the data distribution in neural record-
ings. However, with an increasing number of act-
ive neurons in the signals, the unsupervised methods
in [96, 103, 111] struggled to determine the num-
ber of firing neurons in the recording. In the con-
text of spike classification, supervised deep learn-
ing models require specific information about the
number of active neurons in the recording and need
labelled examples of spikes of each neuron. The
standard approach to tackle this problem is illus-
trated in figure 5, where an unsupervised method is
applied offline to obtain pseudo-labels that can be
utilised to train a supervised model. Using stand-
ard methods such as PCA and k-means, as done in
[78], often results in an accuracy drop of the super-
visedmodel when faced with highly correlated spikes.
Moreover, the k-means algorithm requires the num-
ber of clusters k, and therefore still relies on additional
techniques, such as gap statistics, to run automatic-
ally. Supervised multi-channel models [88, 105], on
the other side, were utilising more sophisticated soft-
ware to obtain pseudo-labels. By using Kilosort, 23–
46 neurons were isolated in the HD-MEA recordings
[89] used in [88] and [101]. However, recently, the
spikes of this data were re-sorted utilising Kilosort2,
which isolated 73–183 units for the same recordings.
Hence, themodels in [88] and [101] were presumably
trained and evaluated with merged clusters (similar
waveforms from different neurons), underscoring the
problem of obtaining GT in extracellular recordings.
Combining a supervised and self-supervised training
strategy [112], proved to be a practical method to
overcome the problemof limited prior information to
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some extent. This strategy enhances the model’s gen-
eralisability, allowing a more accurate processing of
new recordings. In contrast, using a solely supervised
strategy usually fails because experimental record-
ings, after sorting andmanual curation, provide labels
that typically include information about the specific
channel position,making it challenging to address the
entirety of the spike sorting pipeline with an only-
supervised training strategy.

8. Conclusion

In recent years, different types of DNNs have been
developed to address various spike sorting challenges.
Currently, no single solution solves all the difficulties
associated with spike sorting, but the methods dis-
cussed in this work build a solid base for futuremodel
development. By categorising all investigated studies
into spike detection, feature extraction, spike classi-
fication and integrated systems, this survey provides
a comprehensive overview of contemporary DNN-
based spike sorting models. As evident in table 1,
CNNs have been utilised extensively in spike detec-
tion. Training the model in [85] on a large dataset
of a single subject enabled neural channel tracking
across subjects, in different brain areas, species, and
even with varying electrode types, showcasing that
a supervised model trained on a large dataset can
be used universally. Moreover, multi-channel pro-
cessing CNNs for detecting spike waveforms already
exist and were embedded into established spike sort-
ing pipelines [107, 118]. However, certain cell types
in specific brain regions may generate CSs that can be
missed if the model has not been explicitly trained on
such events [93]. Inclusive models that can manage
all types of spikes reliably do not exist so far. Hence,
multiple computationally heavy models would be
required to detect spikes of all kind. AEs were mainly
utilised to extract features, with ensemblemodels [96]
emerging as a valuable technique to identify differ-
ent waveform characteristics [44]. Furthermore, con-
volutional layers within the AEs [101] and a con-
tractive loss term [107] have proven useful to cap-
ture spatiotemporal patterns and gain noise robust-
ness, respectively. An inherently compelling rationale
supporting the utilisation of AEs is their poten-
tial for unsupervised learning, offering a signific-
ant edge over supervised systems in situations with
limited prior information. This capability could be
used for dimensionality reduction [96, 101, 103],
which often turned clustering into a trivial problem,
and for spike classification, by using adversarial rep-
resentation learning [94]. Additionally, offline clus-
tering with unsupervised sorters has been applied
to generate pseudo-labels for supervised classifica-
tion models [78, 98, 106]. Although many of these
models could sort spikes at a high level, most are
computationally expensive and have not yet been

applied to HD-MEA data. However, the proposed
multi-channel classification model [105] consumed
even fewer resources than the single-channel mod-
els mentioned above, enabling efficient sorting with
an FPGA [105]. In this regard, model quantisation
plays a pivotal role in reducing the required memory
and computation. While most models to date have
been developed for specific tasks in spike sorting,
integrated systems have already shown promising res-
ults by addressing the spike sorting problem with
end-to-end models [101, 116]. In many studies ana-
lysed, deep learning-based spike sorting models out-
performed state-of-the-art solutions like SPC [44],
Kilosort [21] and MountainSort [59]. Remarkably,
even complex DNNs with several layer types and
many hidden layers [100] run faster in a CPU/GPU
environment than the state-of-the-art spike sorting
algorithmsmentioned above. Integrating thesemeth-
ods into more adaptive and scalable systems that can
handle a diverse range of signal complexities, ideally
by using implantable hardware and performing real-
time processing at scale will be crucial in meeting
the computational demands of future neuroscience
research and next-generation neurotechnology.
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