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Abstract
Purpose Low-field	(LF)	MRI	scanners	are	common	in	many	Low-	and	middle-Income	countries,	but	they	provide	images	
with	worse	spatial	resolution	and	contrast	than	high-field	(HF)	scanners.	Image	Quality	Transfer	(IQT)	is	a	machine	learning	
framework	to	enhance	images	based	on	high-quality	references	that	has	recently	adapted	to	LF	MRI.	In	this	study	we	aim	to	
assess	if	it	can	improve	lesion	visualisation	compared	to	LF	MRI	scans	in	children	with	epilepsy.
Methods T1-weighted,	T2-weighted	and	FLAIR	were	acquired	from	12	patients	(5	to	18	years	old,	7	males)	with	clinical	
diagnosis	of	intractable	epilepsy	on	a	0.36T	(LF)	and	a	1.5T	scanner	(HF).	LF	images	were	enhanced	with	IQT.	Seven	radi-
ologists	blindly	evaluated	the	differentiation	between	normal	grey	matter	(GM)	and	white	matter	(WM)	and	the	extension	
and	definition	of	epileptogenic	lesions	in	LF,	HF	and	IQT-enhanced	images.
Results When	images	were	evaluated	independently,	GM-WM	differentiation	scores	of	IQT	outputs	were	26%	higher,	17%	
higher	and	12%	lower	than	LF	for	T1,	T2	and	FLAIR.	Lesion	definition	scores	were	8–34%	lower	than	LF,	but	became	3%	
higher	than	LF	for	FLAIR	and	T1	when	images	were	seen	side	by	side.	Radiologists	with	expertise	at	HF	scored	IQT	images	
higher	than	those	with	expertise	at	LF.
Conclusion IQT	generally	improved	the	image	quality	assessments.	Evaluation	of	pathology	on	IQT-enhanced	images	was	
affected	by	familiarity	with	HF/IQT	image	appearance.	These	preliminary	results	show	that	IQT	could	have	an	important	
impact	on	neuroradiology	practice	where	HF	MRI	is	not	available.
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Introduction

Low-field	(LF,	<	1T)	Magnetic	Resonance	Imaging	(MRI)	
scanners	 are	 common	 in	 most	 Low-	 and	 Middle-Income	
countries	(LMICs),	mainly	due	to	infrastructure	complexi-
ties	and	costs	that	prevent	the	use	of	standard	high-field	(HF,	
1.5	or	3T)	scanners.	Interest	in	low-field	MRI	is	also	grow-
ing	considerably	in	High-Income	Countries	(HICs),	due	to	
recent	 technical	 developments	 for	 portable	MRI	 scanners	
[1].

LF	MRI	has	inherently	lower	signal-to-noise	ratio	(SNR)	
compared	to	HF,	and	images	are	usually	acquired	at	lower	
resolution	to	partially	counteract	this	loss	in	signal	[2].	The	
contrast	to	noise	ratio	(CNR)	between	tissues,	in	particular,	
grey	matter	 (GM)	and	white	matter	 (WM)	in	 the	brain,	 is	
also	usually	 lower	 than	at	HF.	This	reduction	in	SNR	and	
CNR	or	resolution	impairs	the	diagnostic	value	of	LF	MRI,	
especially	 for	 the	 detection	 and	 characterisation	 of	 small	
and	subtle	lesions.

Image	 Quality	 Transfer	 (IQT)	 is	 a	 machine	 learning	
framework	that	aims	to	estimate,	from	a	low-quality	image,	
the	image	that	would	have	been	obtained	from	a	state-of-the-
art	scanner	on	the	same	subject	[3–5].	It	has	been	recently	
adapted	for	the	enhancement	of	low-field	MRI,	aiming	both	
to	 increase	 the	 spatial	 resolution	 in	 the	 slice	 direction	 of	
the	 input	LF	 images	 and	 to	 enhance	 the	 contrast	between	
tissues,	approaching	that	of	3T	MRI	[6–8].	Previous	work	
shows	preliminary	results	in	simulated	images	and	in	a	few	
real	cases,	but	has	not	investigated	the	implications	of	such	
quality	improvements	for	the	radiological	evaluation	of	MR	
images.

Here	we	report	the	first	results	of	a	clinical	evaluation	by	
7	radiologists	who	blindly	reviewed	and	rated	the	diagnos-
tic	 quality	of	LF,	HF,	 and	 IQT-enhanced	LF	 images	 from	
12	paediatric	patients	with	epilepsy.	We	chose	the	applica-
tion	 to	 paediatric	 epilepsy	 for	 this	 proof-of-concept	 study	
because	 of	 its	 relevance	 in	 LMICs	 and	 because	 epilepsy	
often	 presents	 with	 subtle	 lesions,	 the	 characterisation	 of	
which	is	very	challenging	at	LF	but	of	great	importance	in	
the	context	of	epilepsy	surgery.	The	purpose	is	to	assess	if	
IQT	 can	 improve	 the	 quality	 and	 lesion	 evaluation	 of	LF	
structural	MRI,	using	HF	scans	from	the	same	patients	as	
references.

Methods

MRI scans

Twelve	paediatric	patients	(5	to	18	years	old,	7	males	and	
5	 females)	 with	 clinical	 diagnosis	 of	 intractable	 epilepsy	
were	 included	 in	 this	study.	They	had	MRI	scans	both	on	

a	LF	0.36T	MRI	scanner	(MagSense	360,	Mindray,	China)	
and	on	a	HF	1.5T	scanner	(Signa,	GE	Healthcare,	Milwau-
kee,	WI,	USA)	between	June	and	October	2019.	On	both	
scanners,	 Fluid-Attenuated	 Inversion	 Recovery	 (FLAIR),	
T1-weighted	 (T1w)	 and	T2-weighted	 (T2w)	 images	were	
acquired	in	axial	orientation	with	an	in-plane	resolution	of	
0.5	mm,	a	slice	thickness	of	5	mm	and	a	slice	gap	of	1	mm,	
to	reflect	the	routine	acquisition	protocols	on	the	LF	scan-
ner;	3D	T1w	images	were	also	acquired	at	1.5T	as	anatomi-
cal	reference.

Image preprocessing

All	images	underwent	brain	extraction	using	the	unified	seg-
mentation	algorithm	[9]	 in	Statistical	Parametric	Mapping	
12	 (SPM12,	 Functional	 Imaging	 Laboratory,	 University	
College	London,	London,	UK)	and	correction	of	bias	field	
artifacts	with	the	N4	algorithm	[10]	in	Advanced	Normal-
ization	Tools	(ANTs);	T1w	LF	images	were	also	corrected	
for	 cross-talk	 artifacts	 in	 Matlab	 R2023a	 (MathWorks,	
Natick,	USA)	by	histogram	equalisation	of	each	slice	with	
one	central	slice	of	the	same	volume.	All	the	pre-processed	
images	were	carefully	reviewed	to	make	sure	that	no	arti-
facts	or	unwanted	changes	were	introduced.

Image quality transfer

An	 IQT	 model	 was	 trained	 on	 pairs	 of	 patches	 of	 high-
resolution	 HF	 images	 from	 either	 the	WU-Minn	 Human	
Connectome	 Project	 [11]	 or	 the	 Leipzig	 Study	 for	Mind-
Body-Emotion	 Interactions	 [12]	 and	 synthetic	 LF	 images	
obtained	by	blurring,	downsampling	and	changing	the	con-
trast	of	the	corresponding	HF	images	to	match	the	resolu-
tion	and	the	typical	contrast	and	SNR	of	real	LF	images.	The	
backbone	of	the	IQT	model	used	the	anisotropic	(ANISO)	
U-Net	[6],	allowing	super	resolution	in	a	single	direction	by	
anisotropic	downsampling	and	deeper	layers	in	the	concat-
enation	paths	of	the	vanilla	3D	U-Net.	The	loss	function	was	
the	average	voxel-wise	mean	square	error	over	all	training	
patch	pairs;	it	used	the	ADAM	optimiser,	an	initial	learning	
rate	of	10− 3	and	a	decay	of	10−	6	and	ran	for	100	epochs.	See	
[8]	for	more	details;	the	python	code	is	freely	available	at	
https://github.com/hongxiangharry/Stochastic-IQT.

The	trained	model	was	applied	to	the	axial	LF	images	to	
obtain	 IQT-enhanced	 images.	The	HF	 images	 acquired	 in	
this	study	were	not	used	as	input	of	the	IQT	algorithm	but	
only	as	a	reference	of	HF	quality	for	evaluations	the	follow-
ing	evaluations.
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Radiological evaluation

All	the	images	were	anonymized	by	removing	both	patient’s	
data	and	scanner	information,	so	that	readers	were	blinded	
to	the	field	strength	of	the	images	they	were	viewing.	The	
images	were	randomly	assigned	to	7	reviewers,	2	with	spe-
cialist	expertise	in	paediatric	neuroimaging	and	more	than	
5	 years	 of	 experience,	mainly	working	 on	 high-field	MR	
images,	and	5	with	general	 radiology	 training	and	experi-
ence	mainly	on	low-field	MR	images.

We	performed	 two	experiments	 in	which	 the	 reviewers	
were	 asked	 to	 evaluate	 both	 the	 differentiation	 between	
normal-appearing	grey	 (GM)	and	white	matter	 (WM)	and	
the	 capability	 to	 evaluate	 the	 extension	 and	 definition	 of	
the	epileptogenic	lesions	(when	present)	with	a	score	of	1	
(not	visible),	2	(subtle),	3	(clear)	or	4	(very	clear).	In	a	first	
experiment,	 each	 reviewer	was	 presented	with	 one	 set	 of	
images	(FLAIR,	T1w	and	T2w)	for	each	patient,	randomly	
taken	from	the	HF,	LF	or	IQT-enhanced	LF	acquisition,	to	
assess	 the	 diagnostic	 confidence	 in	 each	 image	 type	 pre-
sented	individually.	In	a	second	experiment	all	the	3	sets	of	
images	(HF,	LF	and	IQT-enhanced	LF,	each	of	them	includ-
ing	FLAIR,	T1w	and	T2w	images)	were	presented	side	by	
side	 in	 a	 random	 order	 for	 each	 patient,	 to	 directly	 com-
pare	the	contrast	and	lesion	conspicuity	in	the	images.	For	
each	 image	 type	 and	 sequence,	 the	 scores	were	 averaged	
across	patients	and	reviewers,	excluding	any	missing	data	

(in	 particular	 lesion	 scores	 in	 lesion-negative	 scans).	 For	
lesions,	 the	diagnosis	 by	 the	most	 experienced	neuroradi-
ologist	on	the	HF	scans	was	considered	as	the	reference.

The	Wilcoxon	signed	rank	test	was	applied	to	assess	the	
pairwise	differences	in	each	score	between	IQT	and	either	
LF	or	HF	images,	separately	for	T1w,	T2w	and	FLAIR.

Results

Patients’	demographic	information	and	the	reference	diag-
nosis	from	HF	images	is	reported	in	Table	1.	Three	out	of	
the	12	patients	were	considered	non-lesional	at	HF,	while	
the	remaining	9	had	lesions.	As	only	one	subtle	lesion	was	
found	in	this	cohort	and	most	abnormalities	could	be	seen	
on	all	images	by	all	reviewers,	we	did	not	perform	an	accu-
racy	 analysis	 on	 the	 number	 of	 detected	 lesions	 but	 only	
evaluated	their	extension	and	definition	as	described	above,	
as	well	as	the	GM-WM	differentiation.

Visually,	IQT	substantially	improved	the	image	appear-
ance	 in	 non-axial	 planes,	 as	 shown	 by	 the	 representative	
examples	 of	 coronal	 and	 sagittal	 reformatted	 images	 in	
Fig. 1.	It	also	slightly	improved	the	contrast	between	healthy	
brain	tissues,	especially	in	T1w	images	(Fig.	2).	Most	of	the	
lesions	observed	 at	HF	were	more	 clearly	visible	 in	 IQT-
enhanced	images	than	in	the	corresponding	LF	images,	as	
shown	in	Fig.	3	for	a	patient	with	encephalomalacia	and	in	
Fig. 4	for	a	patient	with	tuberous	sclerosis.

In	experiment	1,	when	viewing	each	set	of	images	inde-
pendently,	reviewers	scored	the	GM-WM	differentiation	in	
IQT-enhanced	images	as	higher	than	LF	but	lower	than	HF	
for	T1w	and	T2w	images,	with	an	increase	of	26%	and	17%	
respectively	with	respect	to	LF.	However,	the	GM-WM	dif-
ferentiation	in	IQT-enhanced	FLAIR	images	was	12%	lower	
than	 LF	 and	 the	 lesion	 definition	 on	 all	 images	 received	
lower	average	scores	for	IQT	than	for	either	LF	or	HF,	with	
an	average	difference	with	 respect	 to	LF	of	8%,	34%	and	
19%	for	FLAIR,	T1w	and	T2w	images	respectively	(Fig.	5,	
panels	A	and	B).

When	the	3	sets	of	images	were	evaluated	side	by	side	in	
experiment	2,	however,	all	 the	 lesion	definition	scores	 for	
IQT	improved	and	became	3%	higher	than	LF	for	FLAIR	
and	T1w	 images	 (Fig.	5,	 panels	C	 and	D).	The	GM-WM	
differentiation	 scores	 had	 very	 similar	 trends	 to	 those	 in	
experiment	1.

None	 of	 the	 differences	 in	 GM-WM	 differentiation	 or	
lesion	 definition	 scores	 between	 IQT	 and	LF	 or	HF	were	
statistically	 significant,	 probably	 due	 to	 the	 small	 sample	
analysed.

We	also	analysed	the	scores	in	experiment	2	separately	
for	 the	 reviewers	with	 expertise	 in	 paediatric	 neuroimag-
ing	at	HF	and	those	with	experience	in	general	radiology	at	

Table 1	 Study	 participants	 characteristics.	 For	 each	 patient	 the	 four	
columns	 include	 the	 progressive	 number,	 age	 at	 MRI	 (years),	 sex	
(F	=	Female,	M	=	Male)	and	 the	diagnosis	made	by	 the	most	experi-
enced	neuroradiologist	from	HF	images
Patient 
number

Sex Age	
at LF 
MRI

Time	
between	
LF	and	HF	
MRI

Diagnosis	on	HF	images

01 F 15 33	days Left	MCA	ischemia
02 M 18 33	days Non-lesional
03 M 10 43	days Tuberous	sclerosis	(sub	

ependymal	nodules	and	
tubers)

04 M 9 43	days Infarct
05 M 6 22	days Occipital	cortico-sub-

cortical	lesions	(neona-
tal	hypoglycemia)

06 F 7 22	days Non-lesional	(possibly	
therapy-related	atrophy)

07 M 6 1	day Callosal	agenesis	and	
ventriculomegaly

08 F 5 15	days Hypoxic	ischemic	injury
09 F 12 1	day Pilocytic	astrocytoma
10 M 10 15	days Left	temporal	pole	focal	

cortical	dysplasia
11 M 13 15	days Left	MCA	ischemia
12 F 12 1	day Non-lesional	(possibly	

therapy-related	atrophy)
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The	first	paper	 introducing	 the	IQT	implementation	for	
LF	MRI	showed,	both	qualitatively	and	through	semi-quan-
titative	radiological	evaluations,	 that	IQT	can	improve	the	
contrast	between	healthy	brain	tissues	and	the	spatial	reso-
lution,	especially	 in	 the	slice	direction,	of	anatomical	MR	
images	 (T1w,	T2w	and	FLAIR);	 in	particular,	 the	visuali-
sation	of	structures	in	non-axial	orientations	scored	signifi-
cantly	higher	for	IQT-enhanced	than	the	original	LF	images	
[8].	Here	we	have	extended	this	analysis	to	both	normal	and	
pathological	brain	tissue	and	involved	a	larger	group	of	radi-
ologists	with	different	expertise	in	paediatric	neuroimaging.

Most	of	the	scores	given	by	radiologists	to	IQT-enhanced	
images	were	higher	than	those	of	LF	images,	even	though	
lower	 than	 those	 of	 the	 corresponding	 HF	 images.	 This	
demonstrates	 that	 IQT	 can	 improve	 the	 clinical	 value	 of	
structural	 brain	 images	 acquired	 at	 LF,	 even	 though	 the	
implementation	used	here	does	not	reach	that	of	actual	HF	
scans.

One	exception	was	the	GM-WM	differentiation	in	FLAIR	
images,	which	was	scored	lower	than	LF	on	average.	This	
non-ideal	 performance	 may	 be	 due	 to	 the	 difference	 in	
contrast	between	FLAIR	images	in	the	training	set	and	the	
FLAIR	 scans	 used	 in	 the	 experiments.	 The	 HCP	 dataset,	
arguably	 the	 public	MRI	 dataset	 with	 the	 highest	 quality	
available,	 from	which	we	 collected	 our	 training	T1w	 and	
T2w	images,	unfortunately	doesn’t	include	FLAIR.	If	large	

LF.	The	former	group	scored	the	GM-WM	differentiation	in	
the	IQT-enhanced	images	as	intermediate	between	LF	and	
HF	for	FLAIR	and	even	higher	than	both	for	T1w	and	T2w	
images,	 and	 lesion	 definition	 in	 IQT-enhanced	 images	 as	
intermediate	between	LF	and	HF	for	FLAIR	and	T2w,	and	
slightly	lower	than	both	for	T1w	images.	On	the	other	hand,	
the	group	with	experience	in	general	radiology	at	LF	scored	
the	 GM-WM	 differentiation	 in	 IQT-enhanced	 images	 as	
lower	than	LF	and	HF	for	FLAIR,	intermediate	for	T1w	and	
slightly	higher	than	both	for	T2w	images,	and	the	lesion	def-
inition	on	all	images	as	lower	than	both	LF	and	HF	(Fig.	5,	
panels	E-H).	This	second	group	of	reviewers	tended	to	give	
higher	 scores	 to	LF	 images	 (7–59%	 increase	 on	 average)	
and	 comparatively	 lower	 scores	 to	 IQT-enhanced	 images	
than	the	first	group.	All	the	individual	and	averaged	review-
ers	scores	are	available	as	supplementary	material	(Supple-
mentary	Tables	1	to	11).

Discussion

In	this	study	we	have	investigated	the	enhancement	of	LF	
images	by	IQT	from	a	radiological	perspective	and	showed	
an	increase	in	contrast	and	lesion	visualisation	compared	to	
the	original	images.

Fig. 1	 Representative	coronal	(left)	and	sagittal	(right)	reformatted	images	from	a	13-year-old	patient	with	lesion-negative	brain	MRI.	The	3D	T1w	
image	acquired	at	HF	is	also	reported	in	the	last	row	as	gold	standard	reference
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images	were	usually	closer	to	LF	than	to	HF,	which	means	
that	only	a	modest,	 though	consistent,	 improvement	could	
be	 achieved.	One	 possible	 explanation	 for	 this	 is	 that	 the	
training	 set	 included	 images	 of	 only	 healthy	 brains.	As	 it	
is	trained	on	relatively	small	patches,	IQT	learns	the	local	

collections	of	high-quality	FLAIR	images	with	a	more	suit-
able	image	contrast	could	be	used	for	training	in	the	future,	
we	expect	IQT	performance	on	FLAIR	to	improve	as	well.

In	contrast	with	the	good	performance	for	GW-WM	dif-
ferentiation,	 the	 lesion	 definition	 scores	 of	 IQT-enhanced	

Fig. 2	 Representative	LF,	IQT-enhanced	and	HF	axial	images	for	a	12-year-old	patient	with	lesion-negative	brain	MRI	and	generalised	seizures.	
On	visual	inspection,	there	is	an	improvement	of	the	grey/white	matter	differentiation	visible	in	T2w	and	T1w	images
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set	could	be	beneficial	and	it	would	be	probably	necessary	
for	 diseases	 that	 change	brain	 appearance	 in	more	drastic	
ways,	 e.g.	 brain	 tumours.	We	 plan	 to	 test	 this	 hypothesis	
in	the	future;	however,	it	should	be	noted	that	introducing	

relationship	 between	 the	 intensity	 of	 neighbouring	 voxels	
in	HF	images	and	we	assume	that	this	is	sufficiently	gener-
alisable	 from	healthy	 to	pathological	brains	at	 least	 in	 the	
case	 of	 epilepsy.	 Including	 abnormalities	 in	 the	 training	

Fig. 3	 LF,	 IQT-enhanced	and	HF	 images	 from	a	15-year-old	patient	
with	 long-standing	 encephalomalacic	 damage	 in	 the	 middle	 cere-
bral	artery	territory	on	the	left	from	previous	perinatal	ischemia.	The	
malacic	 area	 is	 better	 seen	 on	 T2w	 and	 FLAIR	 images,	 while	 the	
partial	voluming	in	IQT	on	T1w	images	makes	the	brain	cortex	look	

thick.	In	this	case,	the	3D	visualisation	allowed	by	IQT,	even	though	
advantageous	compared	to	the	original	2D	images,	is	not	completely	
accurate	and	may	have	negative	consequences	on	lesion	identification,	
which	stresses	the	importance	of	having	multiple	sequences
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IQT	enhancement	as	suggested	by	studies	comparing	lesion	
detection	scores	at	1.5T	and	3T	 [13].	 In	 the	current	 study	
on	 a	 limited	 dataset,	we	 considered	 any	 type	 of	 epilepto-
genic	lesion	(including	ischemic	infarction,	hypoglycaemia,	
post-traumatic	scarring)	and	many	of	them	may	be	evident	
at	any	field;	this	may	have	not	allowed	us	to	appreciate	the	
IQT	enhancement	of	subtle	lesions.	In	a	future	study	with	a	
larger	population,	we	aim	to	perform	a	focused	analysis	on	
focal	cortical	dysplasia.	We	also	aim	to	assess	the	accuracy	

abnormalities	 to	 training	data	may	 increase	 the	 likelihood	
of	hallucination	of	abnormality	(introduction	of	false	posi-
tives),	 which	must	 be	 carefully	 evaluated	 and	monitored.	
Extending	 IQT	 to	 different	 pathologies	 will	 thus	 require	
several	experiments	to	properly	design	the	training	set.

The	 current	 approach	 based	 on	 healthy	 data	 is	 more	
likely	to	work	better	on	subtle	lesions	(such	as	focal	cortical	
dysplasia),	where	there	is	more	need	for	IQT	enhancement,	
and	worse	on	more	evident	lesions,	which	benefit	little	from	

Fig. 4	 LF,	 IQT-enhanced	and	HF	 images	 from	a	10-year-old	patient	
with	tuberous	sclerosis.	Three	different	levels	are	shown	in	the	three	
rows,	with	tuberous	lesions	marked	by	arrows	(cortical	dysplasias	in	
the	upper	and	lower	rows,	sub-ependymal	nodule	in	the	middle	row).	
Please	note	that	HF	images	were	acquired	in	a	slightly	different	ori-

entation	than	LF	images,	so	the	HF	slices	shown	here	are	as	close	as	
possible	to	the	LF	and	IQT-enhanced	ones,	but	not	perfectly	matched.	
The	location	and	extension	of	the	tubers	are	better	appreciated	on	IQT	
than	on	the	LF	scan.	This	is	critical	in	epilepsy	lesion	identification	for	
surgical	workup
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Fig. 5	 First	row:	scores	from	all	the	reviewers	for	GM-WM	differen-
tiation	(A)	and	lesion	definition	(B)	when	seeing	the	images	indepen-
dently	(experiment	1).	Second	row:	scores	from	all	the	reviewers	for	
GM-WM	 differentiation	 (C)	 and	 lesion	 definition	 (D)	 when	 seeing	
all	 the	 images	 side	 by	 side	 (experiment	 2).	Third	 row:	 scores	 from	
the	 reviewers	 with	 specialist	 expertise	 in	 neuroimaging	 at	 HF,	 for	

GM-WM	 differentiation	 (E)	 and	 lesion	 definition	 (F),	 when	 seeing	
all	 the	 images	side	by	side	 (experiment	2).	Fourth	 row:	scores	 from	
the	 reviewers	 with	 general	 radiology	 experience	 mainly	 at	 LF,	 for	
GM-WM	differentiation	(G)	and	lesion	definition	(H),	when	seeing	all	
the	images	side	by	side	(experiment	2)
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different	 levels	 of	 expertise.	With	 a	 larger	 population	we	
expect	to	be	able	to	analyse	different	lesion	types	separately,	
and	to	better	understand	where	the	current	IQT	implemen-
tation	 for	 LF	 MRI	 can	 help	 most	 and	 how	 it	 should	 be	
improved.

Our	current	results	suggest	that	IQT	could	be	an	impor-
tant	tool	to	enhance	the	diagnostic	power	of	low-field	MRI	
and	have	an	impact	on	radiology	practice	in	low-	and	mid-
dle-income	countries,	where	LF	scanners	are	common	and	
portable	systems	have	recently	been	introduced	to	increase	
access	to	imaging	[14–16].	IQT	could	also	be	extended	to	
give	a	contribution	in	other	clinical	applications	than	those	
preliminarily	investigated	here.
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supplementary	 material	 available	 at	 https://doi.org/10.1007/s00234-
024-03448-2.
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in	 lesion	 detection	 by	 comparing	 the	 number	 of	 detected	
lesions	 in	 LF	 and	 IQT	 images	with	 the	 ground	 truth	HF,	
which	 is	probably	more	clinically	relevant	 in	LMICs	than	
evaluating	lesion	definition	and	extension.

There	was	an	interesting	difference	in	the	assessment	of	
the	 enhanced	 images	when	 presented	 individually	 (where	
both	GM-WM	 differentiation	 and	 lesion	 definition	 scores	
were	lower	than	LH	and	HF)	than	when	they	were	presented	
together	(where	they	were	between	LH	and	HF).	One	pos-
sibility	is	that	the	IQT-enhanced	images	have	a	less	familiar	
appearance	than	LF	and	HF	images,	so	that,	when	presented	
individually,	they	are	interpreted	with	less	diagnostic	confi-
dence	leading	to	a	lower	score.	When	presented	with	the	LF	
and	HF	equivalents,	the	relative	quality	for	lesion	visualisa-
tion	is	judged	with	this	reduction	in	diagnostic	confidence	
mitigated	as	a	factor	owing	to	the	ability	to	cross	compare.	
Similarly,	we	observed	a	difference	between	the	scores	pro-
vided	 by	 paediatric	 neuroradiologists	 with	 experience	 on	
HF	 and	 radiologists	 with	 experience	mostly	 on	 LF	MRI,	
with	the	latter	giving	higher	scores	to	LF	images	and	lower	
scores	to	IQT-enhanced	images.	This	most	likely	reflects	the	
different	expertise	in	the	two	groups.	Radiologists	who	are	
not	used	to	looking	at	HF	images	may	need	some	additional	
time	 and	 training	 to	 confidently	 extract	 information	 out	
of	HF	 and	HF-like	 IQT-enhanced	 images.	 In	 future	 clini-
cal	applications	of	IQT	in	LMICs,	we	can	envisage	giving	
all	 radiologists	 specific	 training	 for	 this	 purpose,	 possibly	
as	 part	 of	 exchange	programs	between	LMICs	 and	HICs.	
To	make	our	method	easier	to	deploy	in	a	clinical	context,	
we	may	also	 investigate	 the	possibility	of	augmenting	 the	
images	in	the	training	set	to	increase	the	generalisability	of	
the	IQT	model	and	reduce	the	pre-processing	steps	needed,	
especially	brain	extraction.	We	will	also	work	on	improving	
the	IQT	algorithm	or	post-processing	the	enhanced	images	
to	correct	artifacts	and	features	that	may	look	unnatural	to	
radiologists.

Furthermore,	 in	 this	 study	we	worked	 on	 images	with	
thick	slices,	as	routinely	acquired	at	LF,	to	be	able	to	make	
meaningful	comparisons	with	the	current	clinical	standard.	
However,	 this	scenario	 is	particularly	challenging	for	IQT	
or	super-resolution	algorithm;	in	future	applications	we	will	
test	different	acquisition	protocols	to	obtain	images	that	may	
be	more	suitable	as	input	to	IQT	even	though	possibly	worse	
for	human	evaluation,	e.g.	with	more	isotropic	spatial	reso-
lution,	different	SNR	or	contrasts.

This	proof-of-concept	study	focused	on	overt	pathology	
in	a	limited	number	of	subjects,	with	the	aim	to	provide	pre-
liminary	evidence	of	the	relevance	and	applicability	of	IQT	
for	low-field	MRI,	which	is	critical	in	low-resource	settings.	
Once	this	is	assessed,	we	plan	to	work	on	a	larger	study	with	
more	subjects	undergoing	both	LF	and	HF	MRI	and	IQT-
enhanced	images	reviewed	by	a	group	of	radiologists	with	

1 3

https://doi.org/10.1007/s00234-024-03448-2
https://doi.org/10.1007/s00234-024-03448-2
https://github.com/hongxiangharry/Stochastic-IQT
https://github.com/hongxiangharry/Stochastic-IQT
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Neuroradiology

10.	 Tustison	NJ,	Avants	BB,	Cook	PA	et	al	(2010)	N4ITK:	improved	
N3	bias	correction.	IEEE	Trans	Med	Imaging	29(6):1310–1320

11.	 Sotiropoulos	SN,	Jbabdi	S,	Xu	J	et	al	(2013)	Advances	in	diffu-
sion	MRI	acquisition	and	processing	in	the	human	Connectome	
Project.	NeuroImage	80:125–143

12.	 Babayan	A,	Erbey	M,	Kumral	D	et	al	(2019)	A	mind-brain-body	
dataset	of	MRI,	EEG,	cognition,	emotion,	and	peripheral	physiol-
ogy	in	young	and	old	adults.	Sci	Data	6(1):1–21

13.	 Matea	R,	Brian	M,	Peter	B	et	al	(2022)	Diagnostic	value	of	MRI	
in	the	presurgical	evaluation	of	patients	with	epilepsy:	influence	
of	field	strength	and	sequence	selection:	a	systematic	review	and	
meta-analysis	 from	 the	E-PILEPSY	Consortium.	Epileptic	Dis-
ord	24(2):323–342.	https://doi.org/10.1684/epd.2021.1399

14.	 Anazodo	 UC,	 Ng	 JJ,	 Ehiogu	 B,	 Obungoloch	 J	 et	 al	 (2023)	A	
framework	for	advancing	sustainable	magnetic	resonance	imag-
ing	access	in	Africa.	NMR	Biomed	36(3):e4846

15.	 Obungoloch	J,	Muhumuza	 I,	Teeuwisse	W	et	al	 (2023)	On-site	
construction	of	a	point-of-care	 low-field	MRI	system	in	Africa.	
NMR	Biomed	e4917

16.	 Iglesias	JE,	Schleicher	R,	Laguna	S,	Billot	B	et	al	(2023)	Quantita-
tive	brain	morphometry	of	portable	low-field-strength	MRI	using	
Super-resolution	Machine	Learning.	Radiology	306(3):e220522

Publisher’s Note	 Springer	Nature	remains	neutral	with	regard	to	juris-
dictional	claims	in	published	maps	and	institutional	affiliations.	

References

1.	 Deoni	SC,	Medeiros	P,	Deoni	AT	et	al	(2022)	Development	of	a	
mobile	low-field	MRI	scanner.	Sci	Rep	12(1):5690

2.	 Marques	JP,	Simonis	FFJ,	Webb	AG	(2019)	Low-field	MRI:	an	
MR	physics	perspective.	J	Magn	Reson	Imaging	49(6):1528–1542

3.	 Alexander	DC,	Zikic	D,	Ghosh	A	et	al	(2017)	Image	quality	trans-
fer	and	applications	in	diffusion	mri.	NeuroImage	152:283–298

4.	 Blumberg	SB,	Tanno	R,	Kokkinos	I,	Alexander	DC	(2018)	Deeper	
image	quality	transfer:	Training	low-memory	neural	networks	for	
3D	images.	In	International	Conference	on	Medical	Image	Com-
puting	 and	 Computer-Assisted	 Intervention	 (MICCAI).	 2018:	
118–125

5.	 Tanno	R,	Worrall	DE,	Kaden	E	et	al	(2020)	Uncertainty	model-
ling	in	deep	learning	for	safer	neuroimage	enhancement:	demon-
stration	in	diffusion	MRI.	NeuroImage	225:117366

6.	 Lin	H,	Figini	M,	Tanno	R	et	al	(2019)	Deep	learning	for	low-field	
to	high-field	MR:	Image	quality	transfer	with	probabilistic	deci-
mation	simulator.	In	International	Workshop	on	Machine	Learn-
ing	for	Medical	Image	Reconstruction.	2019:	58–70

7.	 Figini	M,	Lin	H,	Ogbole	G	et	al	(2020)	Image	Quality	Transfer	
enhances	contrast	and	resolution	of	low-field	brain	MRI	in	afri-
can	paediatric	epilepsy	patients.	arXiv	preprint.	2003.07216

8.	 Lin	H,	Figini	M,	D’Arco	F,	Ogbole	G	et	al	(2023)	Low-field	mag-
netic	resonance	image	enhancement	via	stochastic	image	quality	
transfer.	Med	Image	Anal	87:102807

9.	 Ashburner	J,	Friston	KJ	(2005)	Unified	segmentation.	NeuroIm-
age	26(3):839–851

1 3

https://doi.org/10.1684/epd.2021.1399

	Evaluation of epilepsy lesion visualisation enhancement in low-field MRI using image quality transfer: a preliminary investigation of clinical potential for applications in developing countries
	Abstract
	Introduction
	Methods
	MRI scans
	Image preprocessing
	Image quality transfer
	Radiological evaluation

	Results
	Discussion
	References


