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Abstract
Purpose  Low-field (LF) MRI scanners are common in many Low- and middle-Income countries, but they provide images 
with worse spatial resolution and contrast than high-field (HF) scanners. Image Quality Transfer (IQT) is a machine learning 
framework to enhance images based on high-quality references that has recently adapted to LF MRI. In this study we aim to 
assess if it can improve lesion visualisation compared to LF MRI scans in children with epilepsy.
Methods  T1-weighted, T2-weighted and FLAIR were acquired from 12 patients (5 to 18 years old, 7 males) with clinical 
diagnosis of intractable epilepsy on a 0.36T (LF) and a 1.5T scanner (HF). LF images were enhanced with IQT. Seven radi-
ologists blindly evaluated the differentiation between normal grey matter (GM) and white matter (WM) and the extension 
and definition of epileptogenic lesions in LF, HF and IQT-enhanced images.
Results  When images were evaluated independently, GM-WM differentiation scores of IQT outputs were 26% higher, 17% 
higher and 12% lower than LF for T1, T2 and FLAIR. Lesion definition scores were 8–34% lower than LF, but became 3% 
higher than LF for FLAIR and T1 when images were seen side by side. Radiologists with expertise at HF scored IQT images 
higher than those with expertise at LF.
Conclusion  IQT generally improved the image quality assessments. Evaluation of pathology on IQT-enhanced images was 
affected by familiarity with HF/IQT image appearance. These preliminary results show that IQT could have an important 
impact on neuroradiology practice where HF MRI is not available.
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Introduction

Low-field (LF, < 1T) Magnetic Resonance Imaging (MRI) 
scanners are common in most Low- and Middle-Income 
countries (LMICs), mainly due to infrastructure complexi-
ties and costs that prevent the use of standard high-field (HF, 
1.5 or 3T) scanners. Interest in low-field MRI is also grow-
ing considerably in High-Income Countries (HICs), due to 
recent technical developments for portable MRI scanners 
[1].

LF MRI has inherently lower signal-to-noise ratio (SNR) 
compared to HF, and images are usually acquired at lower 
resolution to partially counteract this loss in signal [2]. The 
contrast to noise ratio (CNR) between tissues, in particular, 
grey matter (GM) and white matter (WM) in the brain, is 
also usually lower than at HF. This reduction in SNR and 
CNR or resolution impairs the diagnostic value of LF MRI, 
especially for the detection and characterisation of small 
and subtle lesions.

Image Quality Transfer (IQT) is a machine learning 
framework that aims to estimate, from a low-quality image, 
the image that would have been obtained from a state-of-the-
art scanner on the same subject [3–5]. It has been recently 
adapted for the enhancement of low-field MRI, aiming both 
to increase the spatial resolution in the slice direction of 
the input LF images and to enhance the contrast between 
tissues, approaching that of 3T MRI [6–8]. Previous work 
shows preliminary results in simulated images and in a few 
real cases, but has not investigated the implications of such 
quality improvements for the radiological evaluation of MR 
images.

Here we report the first results of a clinical evaluation by 
7 radiologists who blindly reviewed and rated the diagnos-
tic quality of LF, HF, and IQT-enhanced LF images from 
12 paediatric patients with epilepsy. We chose the applica-
tion to paediatric epilepsy for this proof-of-concept study 
because of its relevance in LMICs and because epilepsy 
often presents with subtle lesions, the characterisation of 
which is very challenging at LF but of great importance in 
the context of epilepsy surgery. The purpose is to assess if 
IQT can improve the quality and lesion evaluation of LF 
structural MRI, using HF scans from the same patients as 
references.

Methods

MRI scans

Twelve paediatric patients (5 to 18 years old, 7 males and 
5 females) with clinical diagnosis of intractable epilepsy 
were included in this study. They had MRI scans both on 

a LF 0.36T MRI scanner (MagSense 360, Mindray, China) 
and on a HF 1.5T scanner (Signa, GE Healthcare, Milwau-
kee, WI, USA) between June and October 2019. On both 
scanners, Fluid-Attenuated Inversion Recovery (FLAIR), 
T1-weighted (T1w) and T2-weighted (T2w) images were 
acquired in axial orientation with an in-plane resolution of 
0.5 mm, a slice thickness of 5 mm and a slice gap of 1 mm, 
to reflect the routine acquisition protocols on the LF scan-
ner; 3D T1w images were also acquired at 1.5T as anatomi-
cal reference.

Image preprocessing

All images underwent brain extraction using the unified seg-
mentation algorithm [9] in Statistical Parametric Mapping 
12 (SPM12, Functional Imaging Laboratory, University 
College London, London, UK) and correction of bias field 
artifacts with the N4 algorithm [10] in Advanced Normal-
ization Tools (ANTs); T1w LF images were also corrected 
for cross-talk artifacts in Matlab R2023a (MathWorks, 
Natick, USA) by histogram equalisation of each slice with 
one central slice of the same volume. All the pre-processed 
images were carefully reviewed to make sure that no arti-
facts or unwanted changes were introduced.

Image quality transfer

An IQT model was trained on pairs of patches of high-
resolution HF images from either the WU-Minn Human 
Connectome Project [11] or the Leipzig Study for Mind-
Body-Emotion Interactions [12] and synthetic LF images 
obtained by blurring, downsampling and changing the con-
trast of the corresponding HF images to match the resolu-
tion and the typical contrast and SNR of real LF images. The 
backbone of the IQT model used the anisotropic (ANISO) 
U-Net [6], allowing super resolution in a single direction by 
anisotropic downsampling and deeper layers in the concat-
enation paths of the vanilla 3D U-Net. The loss function was 
the average voxel-wise mean square error over all training 
patch pairs; it used the ADAM optimiser, an initial learning 
rate of 10− 3 and a decay of 10− 6 and ran for 100 epochs. See 
[8] for more details; the python code is freely available at 
https://github.com/hongxiangharry/Stochastic-IQT.

The trained model was applied to the axial LF images to 
obtain IQT-enhanced images. The HF images acquired in 
this study were not used as input of the IQT algorithm but 
only as a reference of HF quality for evaluations the follow-
ing evaluations.
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Radiological evaluation

All the images were anonymized by removing both patient’s 
data and scanner information, so that readers were blinded 
to the field strength of the images they were viewing. The 
images were randomly assigned to 7 reviewers, 2 with spe-
cialist expertise in paediatric neuroimaging and more than 
5 years of experience, mainly working on high-field MR 
images, and 5 with general radiology training and experi-
ence mainly on low-field MR images.

We performed two experiments in which the reviewers 
were asked to evaluate both the differentiation between 
normal-appearing grey (GM) and white matter (WM) and 
the capability to evaluate the extension and definition of 
the epileptogenic lesions (when present) with a score of 1 
(not visible), 2 (subtle), 3 (clear) or 4 (very clear). In a first 
experiment, each reviewer was presented with one set of 
images (FLAIR, T1w and T2w) for each patient, randomly 
taken from the HF, LF or IQT-enhanced LF acquisition, to 
assess the diagnostic confidence in each image type pre-
sented individually. In a second experiment all the 3 sets of 
images (HF, LF and IQT-enhanced LF, each of them includ-
ing FLAIR, T1w and T2w images) were presented side by 
side in a random order for each patient, to directly com-
pare the contrast and lesion conspicuity in the images. For 
each image type and sequence, the scores were averaged 
across patients and reviewers, excluding any missing data 

(in particular lesion scores in lesion-negative scans). For 
lesions, the diagnosis by the most experienced neuroradi-
ologist on the HF scans was considered as the reference.

The Wilcoxon signed rank test was applied to assess the 
pairwise differences in each score between IQT and either 
LF or HF images, separately for T1w, T2w and FLAIR.

Results

Patients’ demographic information and the reference diag-
nosis from HF images is reported in Table 1. Three out of 
the 12 patients were considered non-lesional at HF, while 
the remaining 9 had lesions. As only one subtle lesion was 
found in this cohort and most abnormalities could be seen 
on all images by all reviewers, we did not perform an accu-
racy analysis on the number of detected lesions but only 
evaluated their extension and definition as described above, 
as well as the GM-WM differentiation.

Visually, IQT substantially improved the image appear-
ance in non-axial planes, as shown by the representative 
examples of coronal and sagittal reformatted images in 
Fig. 1. It also slightly improved the contrast between healthy 
brain tissues, especially in T1w images (Fig. 2). Most of the 
lesions observed at HF were more clearly visible in IQT-
enhanced images than in the corresponding LF images, as 
shown in Fig. 3 for a patient with encephalomalacia and in 
Fig. 4 for a patient with tuberous sclerosis.

In experiment 1, when viewing each set of images inde-
pendently, reviewers scored the GM-WM differentiation in 
IQT-enhanced images as higher than LF but lower than HF 
for T1w and T2w images, with an increase of 26% and 17% 
respectively with respect to LF. However, the GM-WM dif-
ferentiation in IQT-enhanced FLAIR images was 12% lower 
than LF and the lesion definition on all images received 
lower average scores for IQT than for either LF or HF, with 
an average difference with respect to LF of 8%, 34% and 
19% for FLAIR, T1w and T2w images respectively (Fig. 5, 
panels A and B).

When the 3 sets of images were evaluated side by side in 
experiment 2, however, all the lesion definition scores for 
IQT improved and became 3% higher than LF for FLAIR 
and T1w images (Fig. 5, panels C and D). The GM-WM 
differentiation scores had very similar trends to those in 
experiment 1.

None of the differences in GM-WM differentiation or 
lesion definition scores between IQT and LF or HF were 
statistically significant, probably due to the small sample 
analysed.

We also analysed the scores in experiment 2 separately 
for the reviewers with expertise in paediatric neuroimag-
ing at HF and those with experience in general radiology at 

Table 1  Study participants characteristics. For each patient the four 
columns include the progressive number, age at MRI (years), sex 
(F = Female, M = Male) and the diagnosis made by the most experi-
enced neuroradiologist from HF images
Patient 
number

Sex Age 
at LF 
MRI

Time 
between 
LF and HF 
MRI

Diagnosis on HF images

01 F 15 33 days Left MCA ischemia
02 M 18 33 days Non-lesional
03 M 10 43 days Tuberous sclerosis (sub 

ependymal nodules and 
tubers)

04 M 9 43 days Infarct
05 M 6 22 days Occipital cortico-sub-

cortical lesions (neona-
tal hypoglycemia)

06 F 7 22 days Non-lesional (possibly 
therapy-related atrophy)

07 M 6 1 day Callosal agenesis and 
ventriculomegaly

08 F 5 15 days Hypoxic ischemic injury
09 F 12 1 day Pilocytic astrocytoma
10 M 10 15 days Left temporal pole focal 

cortical dysplasia
11 M 13 15 days Left MCA ischemia
12 F 12 1 day Non-lesional (possibly 

therapy-related atrophy)
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The first paper introducing the IQT implementation for 
LF MRI showed, both qualitatively and through semi-quan-
titative radiological evaluations, that IQT can improve the 
contrast between healthy brain tissues and the spatial reso-
lution, especially in the slice direction, of anatomical MR 
images (T1w, T2w and FLAIR); in particular, the visuali-
sation of structures in non-axial orientations scored signifi-
cantly higher for IQT-enhanced than the original LF images 
[8]. Here we have extended this analysis to both normal and 
pathological brain tissue and involved a larger group of radi-
ologists with different expertise in paediatric neuroimaging.

Most of the scores given by radiologists to IQT-enhanced 
images were higher than those of LF images, even though 
lower than those of the corresponding HF images. This 
demonstrates that IQT can improve the clinical value of 
structural brain images acquired at LF, even though the 
implementation used here does not reach that of actual HF 
scans.

One exception was the GM-WM differentiation in FLAIR 
images, which was scored lower than LF on average. This 
non-ideal performance may be due to the difference in 
contrast between FLAIR images in the training set and the 
FLAIR scans used in the experiments. The HCP dataset, 
arguably the public MRI dataset with the highest quality 
available, from which we collected our training T1w and 
T2w images, unfortunately doesn’t include FLAIR. If large 

LF. The former group scored the GM-WM differentiation in 
the IQT-enhanced images as intermediate between LF and 
HF for FLAIR and even higher than both for T1w and T2w 
images, and lesion definition in IQT-enhanced images as 
intermediate between LF and HF for FLAIR and T2w, and 
slightly lower than both for T1w images. On the other hand, 
the group with experience in general radiology at LF scored 
the GM-WM differentiation in IQT-enhanced images as 
lower than LF and HF for FLAIR, intermediate for T1w and 
slightly higher than both for T2w images, and the lesion def-
inition on all images as lower than both LF and HF (Fig. 5, 
panels E-H). This second group of reviewers tended to give 
higher scores to LF images (7–59% increase on average) 
and comparatively lower scores to IQT-enhanced images 
than the first group. All the individual and averaged review-
ers scores are available as supplementary material (Supple-
mentary Tables 1 to 11).

Discussion

In this study we have investigated the enhancement of LF 
images by IQT from a radiological perspective and showed 
an increase in contrast and lesion visualisation compared to 
the original images.

Fig. 1  Representative coronal (left) and sagittal (right) reformatted images from a 13-year-old patient with lesion-negative brain MRI. The 3D T1w 
image acquired at HF is also reported in the last row as gold standard reference
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images were usually closer to LF than to HF, which means 
that only a modest, though consistent, improvement could 
be achieved. One possible explanation for this is that the 
training set included images of only healthy brains. As it 
is trained on relatively small patches, IQT learns the local 

collections of high-quality FLAIR images with a more suit-
able image contrast could be used for training in the future, 
we expect IQT performance on FLAIR to improve as well.

In contrast with the good performance for GW-WM dif-
ferentiation, the lesion definition scores of IQT-enhanced 

Fig. 2  Representative LF, IQT-enhanced and HF axial images for a 12-year-old patient with lesion-negative brain MRI and generalised seizures. 
On visual inspection, there is an improvement of the grey/white matter differentiation visible in T2w and T1w images
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set could be beneficial and it would be probably necessary 
for diseases that change brain appearance in more drastic 
ways, e.g. brain tumours. We plan to test this hypothesis 
in the future; however, it should be noted that introducing 

relationship between the intensity of neighbouring voxels 
in HF images and we assume that this is sufficiently gener-
alisable from healthy to pathological brains at least in the 
case of epilepsy. Including abnormalities in the training 

Fig. 3  LF, IQT-enhanced and HF images from a 15-year-old patient 
with long-standing encephalomalacic damage in the middle cere-
bral artery territory on the left from previous perinatal ischemia. The 
malacic area is better seen on T2w and FLAIR images, while the 
partial voluming in IQT on T1w images makes the brain cortex look 

thick. In this case, the 3D visualisation allowed by IQT, even though 
advantageous compared to the original 2D images, is not completely 
accurate and may have negative consequences on lesion identification, 
which stresses the importance of having multiple sequences
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IQT enhancement as suggested by studies comparing lesion 
detection scores at 1.5T and 3T [13]. In the current study 
on a limited dataset, we considered any type of epilepto-
genic lesion (including ischemic infarction, hypoglycaemia, 
post-traumatic scarring) and many of them may be evident 
at any field; this may have not allowed us to appreciate the 
IQT enhancement of subtle lesions. In a future study with a 
larger population, we aim to perform a focused analysis on 
focal cortical dysplasia. We also aim to assess the accuracy 

abnormalities to training data may increase the likelihood 
of hallucination of abnormality (introduction of false posi-
tives), which must be carefully evaluated and monitored. 
Extending IQT to different pathologies will thus require 
several experiments to properly design the training set.

The current approach based on healthy data is more 
likely to work better on subtle lesions (such as focal cortical 
dysplasia), where there is more need for IQT enhancement, 
and worse on more evident lesions, which benefit little from 

Fig. 4  LF, IQT-enhanced and HF images from a 10-year-old patient 
with tuberous sclerosis. Three different levels are shown in the three 
rows, with tuberous lesions marked by arrows (cortical dysplasias in 
the upper and lower rows, sub-ependymal nodule in the middle row). 
Please note that HF images were acquired in a slightly different ori-

entation than LF images, so the HF slices shown here are as close as 
possible to the LF and IQT-enhanced ones, but not perfectly matched. 
The location and extension of the tubers are better appreciated on IQT 
than on the LF scan. This is critical in epilepsy lesion identification for 
surgical workup
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Fig. 5  First row: scores from all the reviewers for GM-WM differen-
tiation (A) and lesion definition (B) when seeing the images indepen-
dently (experiment 1). Second row: scores from all the reviewers for 
GM-WM differentiation (C) and lesion definition (D) when seeing 
all the images side by side (experiment 2). Third row: scores from 
the reviewers with specialist expertise in neuroimaging at HF, for 

GM-WM differentiation (E) and lesion definition (F), when seeing 
all the images side by side (experiment 2). Fourth row: scores from 
the reviewers with general radiology experience mainly at LF, for 
GM-WM differentiation (G) and lesion definition (H), when seeing all 
the images side by side (experiment 2)
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different levels of expertise. With a larger population we 
expect to be able to analyse different lesion types separately, 
and to better understand where the current IQT implemen-
tation for LF MRI can help most and how it should be 
improved.

Our current results suggest that IQT could be an impor-
tant tool to enhance the diagnostic power of low-field MRI 
and have an impact on radiology practice in low- and mid-
dle-income countries, where LF scanners are common and 
portable systems have recently been introduced to increase 
access to imaging [14–16]. IQT could also be extended to 
give a contribution in other clinical applications than those 
preliminarily investigated here.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s00234-
024-03448-2.
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in lesion detection by comparing the number of detected 
lesions in LF and IQT images with the ground truth HF, 
which is probably more clinically relevant in LMICs than 
evaluating lesion definition and extension.

There was an interesting difference in the assessment of 
the enhanced images when presented individually (where 
both GM-WM differentiation and lesion definition scores 
were lower than LH and HF) than when they were presented 
together (where they were between LH and HF). One pos-
sibility is that the IQT-enhanced images have a less familiar 
appearance than LF and HF images, so that, when presented 
individually, they are interpreted with less diagnostic confi-
dence leading to a lower score. When presented with the LF 
and HF equivalents, the relative quality for lesion visualisa-
tion is judged with this reduction in diagnostic confidence 
mitigated as a factor owing to the ability to cross compare. 
Similarly, we observed a difference between the scores pro-
vided by paediatric neuroradiologists with experience on 
HF and radiologists with experience mostly on LF MRI, 
with the latter giving higher scores to LF images and lower 
scores to IQT-enhanced images. This most likely reflects the 
different expertise in the two groups. Radiologists who are 
not used to looking at HF images may need some additional 
time and training to confidently extract information out 
of HF and HF-like IQT-enhanced images. In future clini-
cal applications of IQT in LMICs, we can envisage giving 
all radiologists specific training for this purpose, possibly 
as part of exchange programs between LMICs and HICs. 
To make our method easier to deploy in a clinical context, 
we may also investigate the possibility of augmenting the 
images in the training set to increase the generalisability of 
the IQT model and reduce the pre-processing steps needed, 
especially brain extraction. We will also work on improving 
the IQT algorithm or post-processing the enhanced images 
to correct artifacts and features that may look unnatural to 
radiologists.

Furthermore, in this study we worked on images with 
thick slices, as routinely acquired at LF, to be able to make 
meaningful comparisons with the current clinical standard. 
However, this scenario is particularly challenging for IQT 
or super-resolution algorithm; in future applications we will 
test different acquisition protocols to obtain images that may 
be more suitable as input to IQT even though possibly worse 
for human evaluation, e.g. with more isotropic spatial reso-
lution, different SNR or contrasts.

This proof-of-concept study focused on overt pathology 
in a limited number of subjects, with the aim to provide pre-
liminary evidence of the relevance and applicability of IQT 
for low-field MRI, which is critical in low-resource settings. 
Once this is assessed, we plan to work on a larger study with 
more subjects undergoing both LF and HF MRI and IQT-
enhanced images reviewed by a group of radiologists with 
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