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ABSTRACT
To address the unprecedented challenges of the global climate and housing crises, 
requires a radical change in the way we conceive, plan, and construct buildings, from 
static continuous objects to adaptive eco-systems of reconfigurable parts. Living systems 
in nature demonstrate extraordinary scalable efficiencies in adaptive construction with 
simple flexible parts made from sustainable materials. The interdisciplinary field of collec-
tive robotic construction (CRC) inspired by natural builders has begun to demonstrate 
potential for scalable, adaptive, resilient, and low-cost solutions for building construc-
tion with simple robots. Yet, to explore the opportunities inspired by natural systems, 
CRC systems must be developed utilizing artificial intelligence for collaborative and 
adaptive construction, which has yet to be explored. Autonomous Collaborative Robotic 
Reconfiguration (ACRR) is a robotic material system with an adaptive lifecycle trained 
with deep, multi-agent reinforcement learning (DMARL) for collaborative reconfigura-
tion. Autonomous Collaborative Robotic Reconfiguration is implemented through three 
interrelated components codesigned in relation to each other: 1) a reconfigurable robotic 
material system; 2) a cyber-physical simulation, sensing, and control system; and 3) a 
framework for collaborative robotic intelligence with DMARL. The integration of the CRC 
system with bidirectional cyber-physical control and collaborative intelligence enables 
ACRR to operate as a scalable and adaptive architectural eco-system. It has the potential 
not only to transform how we design and build architecture, but to fundamentally change 
our relationship to the built environment moving from automated toward autonomous 
construction.
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INTRODUCTION 
Our global population is estimated to increase to 11.2 
billion by the year 2100, requiring us to build 2 billion new 
homes over the next 80 years. The construction industry 
creates an estimated 33% of the world's waste, and at least 
40% of the world’s carbon dioxide emissions (Miller 2021). 
The construction industry remains one of the least digitized 
and slowest to adopt disruptive technologies (Agarwal 
et al. 2016, Loosemore 2015). We continue constructing 
buildings organized in sheering layers and designed with 
linear building life cycles eventually ending in demoli-
tion (GlobalData n.d. 2018, Ngwepe and Aigbavboa 2015, 
Brand 1995). To address the unprecedented challenges 
of the global climate and housing crises requires radi-
cally changing the way we conceive, plan, and construct 
buildings, from static continuous objects to adaptative 
eco-systems of reconfigurable parts. 

Living systems in nature demonstrate extraordinary 
scalable efficiencies in adaptive construction with simple, 
flexible parts made from sustainable materials. For 
example, nomadic ant colonies face extreme pressure 
to generate foraging routes, moving massive numbers 
of ants each day, yet through their simple parts and local 
rules they have shown rapid efficiency in constructing 
adaptive “living bridges” through the linkage of their bodies 
(Figure 4). Ants modulate their behavior in response to 
locally changing environments to adapt to dynamic traffic 
conditions, recover from damage, and dissemble when 
underused (Graham et al. 2017).

Inspired by robust natural construction systems, new 
approaches to construction with teams of robots have 
become active areas of interdisciplinary research high-
lighting opportunities for safe, sustainable, and efficient 
building construction. Collective robotic construction 
specifically concerns embodied, autonomous, multirobot 
systems that modify a shared environment according to 
high-level, user-specified goals integrating architectural 
design, the construction process, mechanisms, and control 
(Peterson et al. 2019). These systems typically involve 
machines that are codesigned with the architectural 
systems they construct, enabling them to be more adaptive, 
scalable, and reusable while operating in dynamic environ-
ments (Leder et al.  2022, Silver 2017, Lindsey et al. 2011, 
Kayser et al.  2018, Jenett et al. 2019, Terada and Murata 
2008, Napp et al. 2012). 

To demonstrate the opportunities inspired by natural 
systems, CRC systems must be developed with artificial 
intelligence for collaborative and adaptive construction, 
which has yet to be explored. Autonomous collaborative 
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robotic reconfiguration is a robotic material system with 
an adaptive lifecycle trained with DMARL for collaborative 
reconfiguration (Figure 1 through 3). Autonomous collab-
orative robotic reconfiguration is implemented through 
three interrelated components codesigned in relation to 
each other: 1) a reconfigurable robotic material system; 2) 
a cyber-physical simulation, sensing, and control system; 
and 3) a framework for collaborative robotic intelligence 
with DMARL. The integration of the CRC system with 
bidirectional cyber-physical control and collaborative intel-
ligence enables us to project operating as a scalable and 
adaptive architectural eco-system.

STATE OF THE ART
Automation and Autonomy
Automation comes from the Greek word "automaton", 
meaning “self-movement,” whereas autonomy comes from 
autonomos meaning “self-law.” Autonomous construction 
in nature is far more rapid, adaptive, and efficient than 
our built environment. Despite radical advancements 
in artificial intelligence (AI) and robotics, automation 
in architecture tends to focus on making incremental 
improvements to conventional unidirectional processes, 
while robotic buildings should consider not only design to 
production, but design-to-production-to-operation chains 
from a lifecycle perspective relating to the socio-economic 
and ecological impacts (Bier and Mostafavi 2018; Bier et 
al. 2018). To move from procedural automation toward 
autonomy requires developing architecture with the 
properties of facilitated variation, situated and embodied 
agency, as well as intelligence (Hosmer and Tigas 2019). 

Tibbitts defines self-assembly as a process by which disor-
dered parts build an ordered structure without humans or 
machines (Tibbits 2017, 2012), while Gershenfeld develops 
principles for self-assembly around the concept of “digital 
materials”, enabling reversibility and reconfigurability 
through computational models structuring the combina-
torics of discrete parts (Popescu, Mahale and Gershenfeld 
2006, Retsin 2019, Retsin and Garcia 2016). Furthermore, 
we consider the theory of “facilitated variation” in biology 
suggesting that the intrinsic construction of an organism 
directly affects its “evolvability (Parter, Kashtan, and Alon 
2008, Gerhart and Kirschner 2007, Kirschner 2009).” 
We extend principles of digital materials and facilitated 
variation in the design of reconfigurable architecture by 
embedding effective degrees of freedom and constraint 
in a cyber-physical simulation model which is assembly 
aware (Figure 6).

Construction in Nature
Natural builders, such as social insects, exhibit extraor-
dinary levels of efficiency, scalability, adaptability, and 
robustness in developing complex habitats through forms 
of collective intelligence and collaborative construction 
for building nests and living quarters, protection barriers, 
traps, and mobility scaffolds. This often occurs through the 
interactions of individuals with little or no global knowledge 
(Peterson and Nagpal 2017, Peterson et al. 2019, Hansell 
2007). 

Termites build complex living environments communicating 
via pheromone deposition with no centralized control, 

4 Photograph: Ant Bridge (Lutz 2015). 4 5 Figure: Robotic Construction Configurations. 5
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building stigmergy where individuals demonstrate specific 
building behaviors in response to existing structures 
with “stimulating configurations” (Hansell 2007). Termites 
construct intricate networks of channels for a variety 
of interrelated functions utilizing soil, saliva, and other 
organic materials reaching depths of more than 10 meters. 
Collective construction in nature is adaptive to changing 
conditions and resilient to localized damage, failure, or the 
loss of workers (Figure 4). Army ants build “living bridges” 
by linking their own bodies together to dynamically create 
adaptive physical structures to improve the efficiency of 
their foraging paths (Graham et al. 2017, Anderson et al. 
2002; Garnier et al. 2013; Reid et al., 2015; Rettenmeyer, 
1963; Schneirla, 1972). Researchers have found that 
efficiency in ant bridges is quantifiable, with costs and 
benefits not measured in single elements or perfor-
mances, but revealed in degrees and rates of adaptation 
to changing environments and shifting goals (Graham et al. 
2017).

It is common for natural builders to dynamically create 
the environment they use to navigate. This strategy can be 
extended to robotic material systems where active robotic 
agents and passive material components are codesigned 
to maximize scalability and adaptability.

Collective Robotic Construction
Industrial implementation of robotics in construction 
has focused primarily on the automation of conventional 
prefabrication processes in controlled environments. 
Recently, models of multi-robot collaboration in advanced 

research have begun to transition from automated 
prefabrication tasks (Wagner et al. 2020, Lloret-Fritschi 
et al.  2018, Chai, Zhang and Yuan 2020) to initial applica-
tions of robotics in onsite construction (Petersen, Nagpal, 
and Werfel 2011; Melenbrink, Werfel, and Menges 2020; 
Augugliaro et al.  2013; Dakhli et al.  2017; Mechtcherine 
et al. 2019). Full scale, collaborative, robotic assembly of 
timber structures has been demonstrated using industrial 
robotic arms hung in a mobile gantry system (Adel et al. 
2018). Complex prefabrication of components with robotic 
fiber winding has been implemented for construction 
(Dambrosio et al. 2019). While these systems exhibit high 
precision automation in controlled prefabrication, they are 
limited by the scale and degrees of freedom of the robotic 
arms and gantry systems.

Collective robotic construction systems offer opportunities 
for scalable adaptive on-site construction, leveraging a 
range of centralized or decentralized coordination strat-
egies across various codesigned robotic platforms and 
material systems (Peterson et al. 2019). Construction coor-
dination has been explored through centralized control 
(Augugliaro et al. 2013), local communication (Jokic et al. 
2017), templated control (Saboia et al. 2018), and emergent 
coordination (Andreen et al. 2016). Principals have been 
extracted from biological construction and translated into 
the field of robotics through various algorithmic strategies 
such as stigmergy (Theraulaz et al. 1995, Napp et al. 2014, 
Stewart et al. 2006, Soleymani et al. 2015, Allwright et al. 
2014, Grushin et al. 2006, Werfel et al. 2007, Martinoli et 
al. 1999), swarm flight (Zhang et al. 2022, Stuart-Smith 

66 Image: Motion Capture Cyber-Physical OptiTrack Sensor Feedback Setup. 
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2016), templating (Stewart and Russell 2006, Soleymani 
et al. 2015), blind bulldozing (Parker et al. 2003, Parker 
et al. 2006), reactive and interactive construction (Napp 
et al. 2014, Estévez and Lipson 2007, Werfel et al. 2007, 
Veenstra et al. 2015), task allocation (Yun et al. 2011, 
Meng and Gan 2008, Guo et al. 2009), and specialization 
(Nitschke et al. 2012). Building element strategies for CRC 
include predefined elements (Werfel and Nagpal 2006), 
amorphous materials (Rosman et al. 2018), and continuous 
elements (Braithwaite et al. 2018), which then translate 
into a range of mechanisms and material strategies such 
as robot/brick codesign (Hosmer et al. 2022, Jenett and 
Cheung 2017, Petersen et al. 2011, Moses et al. 2014, 
Rosman et al. 2018, Terada and Murata 2004), strut 
climber codesign (Detweiler et al. 2006, Melenbrink et al. 
2017, Melenbrink and Werfel 2019), compliant materials 
(Stewart and Russell 2006, Soleymani et al. 2015, Napp et 
al. 2012),  amorphous depositions (Napp et al. 2012), and 
fibers (Felbrich et al. 2017, van de Kamp et al. 2015, Tucker 
et al. 2022). 

Embodied swarm intelligence has been demonstrated 
through robot reconfiguration (Rubenstein et al. 2012; 
Petersen and Nagpal 2017) and for small scale CRC with 
robotic builders navigating over the simple blocks they 
stack (Petersen and Nagpal 2017, Petersen et al. 2011). 
The term “relative robot” relates to a codependency 
between a robotic system and material system for loco-
motion and assembly through its structured environment 
(Jenett and Cheung 2017). Examples include the BILL-E 
robotic robots climbing on the modular lattice structure 

they assemble, autonomous strut-climbing robots that 
climb over the trusses they construct, and simple distrib-
uted robotic joints leveraging passive timber elements for 
kinematic chaining and locomotion (Jenett and Cheung 
2017, Melenbrink et al. 2017, Melenbrink and Werfel 2019, 
Leder et al. 2022, Leder et al. 2019). These examples are 
adaptive and efficient, but face limitations in the scale, 
materials, and geometries they assemble. Alternatively, 
aerial additive manufacturing (Aerial-AM) employs high 
degrees of freedom through teams of aerial robots with 
coordinated 3D printing, but the resulting structures are 
not reversible or adaptable (Zhang et al. 2022).

Learning from the above examples and inspiration from 
natural builders, ACRR is developed as an ecology of active 
modular robots and passive modular parts with a range 
of sizes and geometries (Figures 2 and 3). Robots climb 
on the structures they assemble or navigate on their own 
(off grid) while learning independent and collaborative 
behaviors leveraging combinations of multiple robots and 
differentiated passive parts configuring complex assem-
blies (Figure 5).

AI for Construction Robotics
Thus far, machine learning (ML) for architectural robotics 
has focused primarily on solving isolated problems related 
to fabrication, assembly, or construction engineering 
rather than holistic CRC strategies. Machine learning has 
been used for adaptive robotic carving (Brugnaro 2019), 
automation of scaffold lifting machines (Harichandran 
2019), learning robotic behaviors for material manipulation 

8 Figure: ACRR Material Unit System. 87 Diagram: ACRR Distributed Robot Design. 7
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(Zeng et al. 2019), robotic wire arc additive manufacturing 
(Dharmawan 2020), and large-scale 3D printing with tower 
cranes (Parisi et al. 2023). Deep Reinforcement  Learning 
(DRL) has been used with robotic arms in controlled envi-
ronments for high-precision assembly tasks (Apolinarska 
et al. 2021, Luo et al. 2019, Luo et al. 2020, Fan et al. 2019, 
Inoue 2017, Belousov 2022), for solving insertion tasks 
using Computer-Aided Design (CAD) models (Thomas 2018), 
and for autonomous block stacking with visual sensing 
(Felbrich et al. 2022, Zhang et al. 2019). Only a few exam-
ples exist for DRL applied to CRC, including a distributed 
robotic system with a single agent trained to leverage 
active bending in robotic construction behaviors for the 
assembly of bamboo structures, and for an autonomous 
robotic tensegrity system (Łochnicki et al. 2021, Hosmer 
and Tigas 2019). 

Developing autonomous construction through CRC 
requires the ability to learn intelligent behaviors that 
are adaptive to complex dynamic environments such as 
construction sites. Deep reinforcement learning is closely 
related to the field of optimal control, where one is seeking 
an optimal policy for controlling a system to optimize 
objectives (Sutton and Barto 1998). Deep reinforcement 
learning learns how to control an agent by interacting 
with the environment through trial and error, making it an 
optimal strategy for adaptive robotic construction. In this 
research, we develop a DMARL strategy for collaborative 
navigation and reconfigurable assembly to demonstrate 
the potential for adaptive CRC. 

METHODS 
Autonomous Collaborative Robotic Reconfiguration is 
implemented via three closely interrelated components: 
1) a reversible robotic material system; 2) a cyber-phys-
ical simulation, sensing, and control system; and 3) a 
framework for multi-agent robotic intelligence with deep 
reinforcement learning. They operate in a cyber-physical 
feedback loop allowing ACRR to adjust and account for the 
expected, yet undeterminable, occurrences of real physical 
environments with intelligent adaptive behaviors.

Reversible Robotic Material System 
Inspired by social insects, ACRR’s physical system consists 
of active parts (bespoke distributed robots) and passive 
parts (biased material units) codesigned to self-assemble 
and reassemble into complex architectural structures 
much larger than themselves.     

Active parts are simple, modular robots capable of indi-
vidual locomotion through free crawling or by climbing on 
the assemblies they manipulate. Each robot, measuring 
280x100x100mm and weighing 420g, is composed of three 
rigid bodies of 3D printed polylactic acid (PLA) and two 
custom magnetic interfaces. These five elements are artic-
ulated by four joints with one degree of angular freedom, 
actuated by one Dynamixel AX-12A motor each, powered 
via a U2D2 Power Hub, and controlled with a Raspberry Pi 
Zero (Figure 7). The simplicity of the robots allows for their 
easy fabrication and assembly.

Passive parts are building blocks for architectural spaces 

10 Photograph: Motion Capture Robotic Reconfiguration. 109 Photograph: Cyber-Physical Simulation and Control 
System.
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with reversible connections designed in direct relationship 
with their robotic counterparts. A kit of discrete modular 
units was developed with different biased geometries, 
sizes, and materials (Figure 8), serving various architec-
tural roles, and system-specific functions, such as robotic 
charging stations. The primary timber unit, which comes in 
three different sizes: 280x140x140mm, 420x140x140mm, 
and 560x140x140mm, is composed of six CNC-milled lami-
nated plywood surfaces with embedded custom magnetic 
interfaces and internal laminated plywood reinforcements.

All passive and active parts share a common magnetic 
interface with four neodymium magnets placed, with alter-
nating polarities, equidistantly along the circumference of 
a circle with a 4-cm radius. If two interfaces are in close 
proximity with aligned equivalent polarities (position 0), 
they repel, and, if aligned with opposite polarities (position 
1), they connect. Given that position 0 and position 1 differ 
by a rotation of 90°, the parts of the system can engage 
and disengage by rotating their interfaces 90°. Interfaces 
on passive parts are designed to periodically align along a 
virtual three-dimensional grid of 140x140x140mm voxels 
creating a structured environment for the robots to inhabit. 
Passive parts have between four and twelve of these 
biased interfaces enabling a plethora of diverse aggrega-
tions to be achieved. Simple dynamic interactions between 
parts enable an array of emergent collaborative behaviors, 
including robotic translations, material pick-ups, material 
transportation, temporary support structures, and tempo-
rary assemblies of robots and material units into joint body 
plans (Figure 12).

Cyber-Physical Simulation and Control System
The control system consists of four main elements: a 
control computer running ACRR’s simulation environ-
ment, one Raspberry Pi Zero computer per robot, one 
Dynamixel U2D2 per robot, and four Dynamixel AX-12A 
motors per robot. The simulator integrates with the 
bi-directional Dynamixel SDK control protocol to enable 
the effective communication between Unity, Raspberry 
Pi, and the Dynamixel hardware (Figure 9). Motor speed 
and position instructions are calculated within the simu-
lator and sequentially transmitted via WiFi from the 
control computer to each RaspberryPi, which dispatches 
the instructions through a USB connection to the U2D2s, 
converting the data and feeding it into the motors via 
direct 3Pin TTL and 4Pin RS-485 connectors. In turn, the 
Dynamixel AX-12A motors read their current positions, 
speeds, and loads, feeding the data back through the same 
hardware-software pipeline into the simulation.

ACRR’s custom simulation environment is developed in 

11

12

1311 Collaborative Behaviours: a.) Locomotion: Bridging, b.) Material Pick-
Up: Counterweight, c.) Material Translation: Off-grid Bipedal.

12 Photographs: Reversible Robotic Material System Behaviors.

13 Diagram: Deep Reinforcement Learning Setup Game #1 and # 2.
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The autonomous collaborative robotic reconfiguration's 
Simulation, Sensing and Control System allows for the 
execution of user-generated and semi-automated action 
sequences for agents to execute simple locomotion and 
assembly patterns with the reversible robotic material 
system. Larger, more complex, scenarios with biased parts, 
multi-robot collaboration, and reversibility have expo-
nentially larger solution spaces, making real-time human 
control or pre-coded sequences of individual motors 
insufficient and unmanageable. To tackle this, our frame-
work leverages DRL to train situated and embodied agents 
to learn adaptive locomotion and reconfigurable construc-
tion behaviors (Sutton and Barto 2018). Given the potential 
for highly complex sequences of emergent coordinated 
movement with multiple robots in dynamically changing 
environments, we extend this strategy to DMARL. Deep 
Multi-Agent Reinforcement Learning is a sub-field of DRL 
focused on the study of behavior of multiple agents that 
coexist in a shared environment. Each agent is motivated 
by its own rewards, taking actions based on its interests 
where those interests can be aligned or opposed to other 
agent’s interests, resulting in complex dynamics (Albrecht 
and Stone 2017). Our agents are trained to receive 
the same reward structure, learning when and how to 
collaborate. 

We develop DMARL with self-play through a series of 
games simulating navigation and reconfiguration tasks of 
increasing complexity. The games are “played” by humans, 
automated algorithms, and artificially intelligent agents. 
Each player, or agent, controls an individual robot seeking 

Unity3d with an agent-based framework that simulates 
interactions of robotic agents and passive parts. The 
simulator is directly linked to the robotic control system, 
sending instructions, and receiving sensor feedback with 
a wireless, bi-directional, communication protocol for 
simultaneous state alignment between the simulation envi-
ronment and the physical world (Figure 9). Agents trigger 
encoded actions and action sequences which send goal 
angle changes to the physical motors and then wait for the 
motor sensors to send position and load data back indi-
cating success, failure, or critical loads (Figure 10). If there 
is an obstacle in the real world, and a motor is blocked by it, 
the system recognizes the location of the obstacle, updates 
the simulation, and reacts.

For high precision and resilience, the control system 
was paired with Optitrack motion capture adding three 
elements into the pipeline: (1) a Motive motion capture 
session running in the same computer as the Unity 3D 
simulation; (2) at least four Optitrack cameras; and (3) 
reflective markers attached to the parts of the robotic 
material system. As the active and passive parts move 
in the physical space, the Optitrack cameras register a 
2D image of the markers and transmit it to the control 
computer. This is where Motive triangulates their location 
to obtain and transmit their 3D positioning to the Simulator 
via the Optitrack Unity 3D Plugin and the NatNet SDK 
protocol (Figure 6).

Collaborative Intelligence with Multi-Agent 
Reinforcement Learning

15 Simulation: Multi-Agent Deep Reinforcement Learning Training. 1514 Diagram: Deep Reinforcement Learning Setup Game #3 and #4. 14
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to complete the global task of the game. Regardless of 
player type, all agents have access to the same playable 
actions and receive analogous variable observations of 
relevant game data. The results of each game are then 
assessed by speed and energetic efficiency, identifying 
best performing behaviors and feeding them back into the 
next game as new playable action sequences. The games 
are set additively, from simple to complex: Open Navigation, 
Pathfinding, Single Agent Assembly, and Collaborative 
Reconfiguration (Figure 13 and 14).

Aritifical intelligence players were trained with the ML 
agents framework for DRL in Unity 3D (Juliani et al. 2018), 
using the ACRR simulation environment as a training 
arena. At each step, a Deep Neural Network (DNN) is given 
a series of observations (o) and executable actions (a), and 
depending on its performance towards a goal, it receives a 
reward (r). The simulation tracks time elapsed (t) and total 
absolute motor angular change (∑|Δa|), which serve in the 
reward function to promote speed and energetic efficiency, 
respectively. At the beginning of each game, element 
positions are randomized to ensure adaptive and scalable 
behaviors (Figure 13 through 15).

Once trained, the DNNs compete with humans and auto-
mated algorithms, developed specifically for each game, 
to generate ACRR’s datasets. High-performing behaviors 
are sequenced as playable actions in subsequent games, 
combining the best performing strategies developed by 
humans, automated algorithms, and AI, in an additive 

intelligence progression from simple to complex multi-
agent spatial reconfiguration.

RESULTS AND DISCUSSION
The ACRR methodology was tested through a case-
study project called Diffusive Habitats, which embraces 
the potential of continuous spatial reconfiguration and 
non-linear building life cycles, aligned with an innovative 
distributed ownership model for communal living. Each 
habitat undergoes constant spatial reconfiguration to 
adapt to the needs of its changing community and its situ-
ated social and environmental conditions. 

Reversible Robotic Material System
The system successfully physically demonstrated a 
comprehensive range of bespoke single-agent and multi-
agent behaviors, or action sequences, involving both its 
active and passive parts (Figures 11 and 12). Collaborative 
behaviors extended the scope and effectiveness of the 
execution of essential reconfiguration tasks, including:

• (a) Locomotion: individual robots were able to navigate 
the structured environment, regardless of gravita-
tional orientation, and translate themselves beyond it 
by rolling on flat surfaces. Multiple robots effectively 
collaborated to translate across inclined planes, and 
over small obstacles. 

• (b) Material Pick-Up and Placement: single robots 
were capable of lifting and placing small and mid-size 
material units (~460g), while multiple robots effectively 
coordinated pick-up or counterweight sequences to lift 

16 Motion-Capture-Based Reconfiguration Studies with OptiTrack Sensors. 17 Deep Reinforcement Learning Gamified Studies (Human vs AI vs 
Algorithm).
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large material units (around 670g).
• (c) Material Translations: in collaboration, robots 

effectively passed and translated material ~300% times 
faster than individual robots, which were unable to 
move with the units and forced to repeat slow lift, place, 
and walk-around sequences.

Many of these behaviors involved the clustering of robots 
and material units into combined body plans, or hybrid 
material-robotic morphologies, which could surpass 
basic collaboration. Robots can operate as each other’s 
elevators, bridges, and cranes; robots can combine with 
material units to move in different clustered arrange-
ments for extra range or stability, such as bipedal or 
hexapedal clusters; and robots can place material units or 
themselves as temporary scaffolding for reconfiguration 
processes (Figure 11 and 12). This type of synergy, having 
successful analogs in nature (ant bridges), remains an 
uncharted research thread of great potential in the realm 
of architectural robotics.

Cyber-Physical Simulation and Control System
Autonomous collaborative robotic reconfiguration’s Cyber-
Physical Control System was calibrated by executing all the 
previous physical prototype behaviors from the simulator 
with motor sensor and Optitrack sensor feedback. The 
motion capture framework with Optitrack cameras was 
applied in a short series of experiments, which systemat-
ically evaluated different tracking setups, while activating 
specific sequences based on the positioning data of 4 
robots and 18 material units (Figure 16). With an average 
of ~350% increase in sequence activation, the results 
validated the value of motion capture as a source of feed-
back data, which enables higher precision simulations and 
adaptability to unpredictable physical environments.

Framework for Robotic Intelligence with Deep 
Reinforcement Learning
We sequentially implemented four training games with 
human, algorithmic, and AI agent players. Deep neural 
networks were trained to complete each of the gami-
fied reassembly tasks. Some tasks involved single-agent 
training, while others used multi-agent training to learn 
collaborative strategies. Each training session involved 
approximately five million runs on average, enabling the 
DNN to learn a series of strategies that maximize the 
reward and best achieve the objective. Success rate (r) and 
performance indicators, such as time elapsed (t) and total 
absolute motor angular change (∑ |Δa|), varied depending 
on player type and game, allowing for the identification and 
adoption of an array of effective strategies and behaviors 
(Figures 17 and 18).

19

18

18 Simulation: Game 4 Implementation of Multi-Agent Deep 
Reinforcement Learning for Collaborative Assembly.

20 Photographs: Collaborative Reconfiguration Sequences.

19 Simulation: Applied Collaborative RL in Skylight Reconfiguration.

20
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Game 1Game 1, Open Navigation, exhibited a perfect success rate 
(r = 100%) from all players in each of its 50 game runs. 
Two highly efficient walking styles were identified and 
established for subsequent games: the ‘straight flip’ of the 
G1-AA-B automated algorithm, with 360° of total absolute 
angular change (∑|Δa|) and 260 frames elapsed (t) per 
140mm of translation, and the ‘tilted turn’ of the G1-NN-K 
neural network, with 190° of total absolute angular 
change (∑|Δa|) and 290 frames elapsed (t) per 140mm of 
translation.

Game 2, Pathfinding, also displayed a perfect success rate 
from all players across its 60 game runs. Unsurprisingly, 
the G2-AA-A automated algorithm, based on the A* 
pathfinding algorithm (Hart 1968), outperformed both 
its human and AI counterparts in all relevant metrics. 
Therefore, it was set for the subsequent games as the 
default playable action for robot pathfinding across the 
game environment.

Game 3, Simple Assembly, exhibited varying success rates 
for different player types across its 30 game runs. A series 
of highly efficient, robot-unit behaviors were identified 
and sequenced for future use, including material pick-up/
placement styles and strategies for single-robot transpor-
tation of material units, like the ‘side roll’ transportation 
strategy identified from the G3-NN-B neural network.

Game 4, Collaborative Reconfiguration, saw AI with the 
highest success rates across its 30 game runs. Dataset 
analysis revealed numerous high-performance unique 

behaviors, all of them collaborative, most of them emer-
gent, ranging from diverse collaborative material passing 
strategies to collaborative robot-unit translations, such 
as the emergent ‘carry-on’ pass exhibited by groups of 
G4-NN-G neural networks (Figure 18).

Implementation of ACRR with DMARL
Next, the fully trained agents were tested for a complex 
problem of collaborating to create a skylight within a 
closed aggregation (Figure 19). Six trained robotic agents 
successfully coordinated the accurate relocation of 23 
material units of diverse sizes, transforming a flat roof 
into a 1.5m skylight in 1min and 54sec. This simulation 
relied on the combination of AI-generated pass behaviors, 
pathfinding algorithm sequences, and human-crafted ‘turn’ 
coordination sequences, demonstrating the value of the 
mixed approach to building adaptive intelligence.

Finally, the integration of ACRR with Multi-Agent 
Reinforcement Learning was demonstrated through a 
series of cyber-physical reconfiguration tasks at 1:1 scale, 
involving 5 robotic prototypes and 30 to 50 material units 
(Figure 20). These studies demonstrate ACRR’s capacity 
to successfully calculate, control, and coordinate multiple 
robotic agents, in both physical and digital space. From 
walkable surfaces and arching assemblies (up to 3m tall), 
to furniture and partitions, these aggregations demon-
strate the ability of the system to efficiently adapt itself 
through autonomous collaborative construction (Figure 
21).

21 Photographes: Cyber-Physical Reconfiguration Studies. 21
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CONCLUSION
Autonomous collaborative robotic reconfiguration demon-
strates a potential for autonomous, reconfigurable, and 
scalable construction through the collaboration of simple 
robots. This research challenges the building industry’s 
traditionally linear integration of new technologies through 
incremental improvements to traditional processes of 
design, fabrication, and construction. As one of the first 
implementations of DMARL within CRC, the research 
demonstrates the potential for embedding adaptive intel-
ligence directly into dynamic construction environments 
(Figure 22 through 24).

Like natural builders, ACRR has several advantages over 
traditional processes of construction, as well as existing 
industrial robotic solutions. Like termites, these adaptive 
builders move freely without the limitations of gantry 
systems or wheel-based rovers, enabling scalable solu-
tions while efficiently processing construction tasks in 
parallel. By assembling reversible passive parts, assem-
blies can adapt over time, enabling new transformable 
building typologies. Simple robots with limited degrees 
of freedom are cheaper to build than large-scale, indus-
trial gantry solutions, while being resilient and adaptive 
to individual robotic failures. Autonomous collaborative 
robotic reconfiguration is a collaborative eco-system 
where active and passive parts form hybrid body plans and 
exhibit emergent collaborative behaviors that enable the 
construction of complex structures.

The next steps in our research involve scaling up our 

robotic system with robust building materials and revers-
ible locking joints, while expanding our incremental 
learning strategy with deep, multi-agent reinforcement 
learning to develop broader adaptive intelligence. 

There is massive potential for CRC systems to revolu-
tionize the way we build architecture with key challenges 
in autonomous assembly to overcome, including building 
performance, resilience, and engagement (Lu 2017). A 
shift toward autonomy is not just an incremental improve-
ment, but a disruptive technological and cultural change 
that raises new questions surrounding how we build and 
interact with an architecture that is self-adaptive (Figure 
21).
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