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Abstract 

Oral squamous cell carcinoma (OSCC) is an oral cancer with high 

prevalence rates in many countries, especially ones with high rates of 

risk factors, such as tobacco use. As OSCC is typically diagnosed in later 

stages and is responsible for high mortality rates, identifying biomarkers 

associated with OSCC could be instrumental in improving OSCC 

diagnosis, prognosis, and treatment. A comprehensive literature review 

on the use of 16s rRNA gene next generation sequencing (NGS) in 

studying OSCC biomarkers found that few studies to date have used 

rigorous scientific or biostatistical approaches, and that the high-quality 

studies identified have inconsistent findings. This dissertation 

investigated the oral microbiome of OSCC patients along with patients 

with a condition known to be a precursor to OSCC called oral epithelial 

dysplasia (OED) in the United Kingdom (UK), London. First, in substudy 

1, which is a cross-sectional study, the oral microbiome of OSCC lesion 

tissue was compared to OED lesion tissue in terms of diversity and 

relative differential abundance. Next, in substudy 2, which is a case 

series study, the same metrics were used to compare OSCC and OED 

lesion tissue with healthy tissue in the same patient. Finally, in substudy 

3, which is also a case series study, data obtained from a Chinese study 

of similar design to substudy 2 was reanalysed using the same 

bioinformatics and statistical approaches as used in substudy 2, and the 

results compared. The overall results of all three studies showed 

evidence that OSCC lesion tissues have statistically significantly more 

diversity than OED or healthy tissue. However, no specific members of 
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the oral microbiome could be identified that appeared to be responsible 

for OSCC in any of the substudy analyses. Future research must tackle 

the challenge of using rigorous scientific methods that are replicable to 

identify OSCC biomarkers that have clinical utility.  
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Impact Statement 

There are three main areas where the results of the research from 

this dissertation could have a positive impact in terms of public benefit. 

First, a comprehensive review of the literature was done on the use of 

16s rRNA gene next generation sequencing (NGS) on biomarker 

research in oral squamous cell carcinoma (OSCC). The results showed 

that – to date – no members of the oral microbiome have been reliably 

implicated in the aetiology of OSCC. In addition, this review revealed two 

important findings. 

The first finding is that much of the research being done currently 

on the oral microbiome using 16s rRNA gene NGS for OSCC biomarker 

identification is not adhering to rigorous scientific standards. Second, the 

review revealed that there exists much guidance available in the 

scientific literature to improve the rigor of these studies, but this guidance 

is cross-disciplinary, and elaborated upon in a diversity of scientific 

journals. Raising the level of awareness of these two issues in the study 

of OSCC biomarkers is important, because it is necessary to conserve 

the public’s resources devoted to cancer research. In order to benefit the 

public the most, scientific research should be designed optimally so as 

to produce clear and replicable results. 

Secondly, in addition to the findings from the comprehensive 

review herein, this dissertation provides an example of methods that can 

be used in OSCC biomarker research that are both rigorous and 

replicable. Substudies 1 and 2 provide an example of OSCC microbiome 

study designs and biostatistical analyses that are scientifically valid, 
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although they possess features that could improved (such as expanding 

the sample size). Substudy 3 demonstrates a procedure for reanalysing 

publicly available OSCC microbiome data from a previously published 

study – that used similar design but different analysis method. By 

standardising the analysis protocol, a direct comparison of the results of 

studies of similar designs can be obtained. These examples also 

highlight the importance of maintaining high-quality online repositories of 

oral microbiome data, so scientists can improve their methods by 

learning from each other.  

Thirdly, if scientists studying OSCC biomarkers are able to 

conduct rigorous research that identifies reliable OSCC biomarkers, then 

the public may benefit by having expanded diagnostic and treatment 

options. First, OSCC microbiome biomarkers that signal OSCC can be 

used as a less invasive method to diagnose OSCC as compared to 

incisional biopsy – the gold standard diagnostic technique. Next, 

Microbiome biomarkers in OSCC can be used to guide treatment 

decisions. In an ideal situation, microbiome biomarkers, once 

established to induce or promote OSCC, can be targeted directly to 

enhance both treatment and prognosis of the disease.  

Gaining a better understanding of the oral microbiome in OSCC 

will lead to improved clinical care and outcomes. Raising the awareness 

for the need for collaborative multi-disciplinary efforts to build evidence - 

based on rigorous studies, can contribute to the positive impact of this 

research on public good. 
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Chapter 1: Introduction 

A dissertation is presented as part of doctoral degree program at 

University College London (UCL). It begins with this chapter, introducing 

the problem.  

Globally, rates of head and neck cancer (HNC) continue to rise, 

and oral cancer of particular concern is oral squamous cell carcinoma 

(OSCC) (Gormley et al., 2022; Salehiniya & Raei, 2020). OSCC is 

prevalent globally, but in countries with higher rates of risk factors, such 

as tobacco smoking and chewing of the betel nut, the rates are even 

higher (Sung et al., 2021). Regions in the United Kingdom (UK) have 

been identified as having high rates of OSCC; between 2010 and 2015, 

the OSCC death rate in the UK went from 2.92 to 3.26 per 100,000 in 

men (for an increase of 11.6%), and from 1.13 to 1.21 in women (for an 

increase of 7.1%) (Bosetti et al., 2020). OSCC is typically diagnosed in 

later stages, and is associated with high mortality rates and low five-year 

survival rates (Huber & Tantiwongkosi, 2014; Salehiniya & Raei, 2020). 

Epigenetic studies have provided candidate biomarkers of OSCC 

that can be targeted for further study, especially with regard to 

association of tobacco with  cancer induction (Ambatipudi et al., 2016; 

de la Iglesia et al., 2020). Biomarkers are biologic molecules, proteins, 

or metabolites derived from the analysis of body fluids or tissues for 

diagnostic purposes (Hu & Dignam, 2019). Although studies of 

biomarkers in OSCC began as early as 1998, more recently, the 

invention of 16s rRNA gene next-generation sequencing (NGS) has 

facilitated a vast expansion in the ability to identify members of the oral 
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microbiome (Hooper et al., 2006, 2007; Nagy et al., 1998; Pushalkar et 

al., 2011). 

Although 16s rRNA gene NGS provided a greater capacity for 

identifying members of the oral microbiome that may serve as biomarker 

targets in OSCC, to date, little foundation has been added to this 

potential evidence base, largely due to issues with study design and 

biostatistics (Goossens et al., 2015; Hu & Dignam, 2019; Kers & 

Saccenti, 2022; Ou et al., 2021). Although biomarker measurements 

such as α diversity, β diversity, and relative differential abundance have 

been operationalized, and study design and biostatistical guidance is 

available, it is generally not heeded in the studies published (Gloor et al., 

2017; Goossens et al., 2015; Hu & Dignam, 2019; Kers & Saccenti, 

2022; Ou et al., 2021). Hence, the general aim of this dissertation 

project, was to explore the oral microbiome of OSCC using 16s rRNA 

gene NGS sequencing. 

Rationale 

This dissertation seeks to add to the growing literature 

investigating the oral microbiome to support the identification of 

biomarkers of OSCC that can be useful for prevention, diagnosis, and/or 

treatment (Hu & Dignam, 2019). Existing literature is largely exploratory, 

and is not intended for clinical application (Gloor et al., 2017; Goossens 

et al., 2015; Hu & Dignam, 2019; Kers & Saccenti, 2022; Ou et al., 2021). 

The substudies conducted in this dissertation are aimed at applying 

evidence-based methods to studying the oral microbiome that could 

potentially lead to clinical applications (Hu & Dignam, 2019). 
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The following section will summarize the structure of this 

dissertation project. 

Literature Review 

Chapter 2 provides a background about OSCC followed by a 

comprehensive literature review with the following objectives: 1) To 

identify applicable scientific evidence from studies investigating high-

throughput, NGS targeting the 16s rRNA gene in studying the oral 

bacteriome of OSCC, and 2) to characterize findings related to the oral 

bacteriome in OSCC from these studies.  

Substudy 1: Diversity and Differential Relative Abundance in the 

Bacteriome of Oral Squamous Cell Carcinoma and Oral Epithelial 

Dysplasia Lesions: Results from the United Kingdom 

Chapter 3 presents substudy 1, which was aimed to compare the 

oral microbiome in swapped tissue from OSCC and OED lesions in a 

small, heterogeneous sample of patients in the UK diagnosed with either 

condition using 16S rRNA NGS sequencing.  

Substudy 2: Study to Characterize How the Oral Microbiome Differs in 

OSCC and OED from Healthy Tissue in the Same Individual 

Chapter 4 presents substudy 2, which sought to build on the 

findings from substudy 1. When the swabbed tissue samples were 

obtained from the OSCC and OED lesions of UK participants in substudy 

1, a swab sample of anatomically-matched non-lesional healthy tissue 

was also collected for 16s rRNA gene sequencing. Whether similar 

results would be seen when comparing lesional with healthy tissue in the 

same individual was the basis of inquiry for substudy 2.  
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Substudy 3: A Reanalysis of Oral Microbiome Repository Data Shows 

Consistent Results with Current Study Data 

Chapter 5 presents substudy 3, which is a reanalysis of publicly 

available OSCC microbiome sequence data of a previously published 

study (National Institutes of Health, n.d.; Zhang et al., 2020). The original 

study by Zhang et al. (2020) from China, had a similar study design 

(contributing both lesional and healthy tissue samples) as substudy 2 but 

was analysed differently. Hence, the aim of the reanalysis was to allow 

a direct comparison between the results generated in this chapter to that 

of substudy 2. 

Discussion and Conclusion 

Chapter 6 provides a final discussion and conclusion to the 

dissertation. It synthesizes the results from the three substudies, and 

reflects on their consistency with prior studies described in Chapter 2. 

This section also describes the strengths and limitations of the three 

substudies, and recommends future research directions. 

  



Page 21 

Chapter 2: Literature Review 

The ability to perform next-generation sequencing (NGS) 

targeting the 16s rRNA gene in the study of the oral bacteriome in 

squamous cell carcinoma (OSCC) became technologically possible 

within the past decade due to both scientific and technological advances 

(T. Chen et al., 2010; Pushalkar et al., 2011). My PhD project intended 

to study the OSCC bacteriome (bacterial members of the microbiome) 

using 16s rRNA gene NGS sequencing technology. Prior to designing 

novel studies using 16s rRNA gene sequencing for the bacteriome in 

OSCC, it is necessary to undertake a comprehensive review of the 

scientific literature arising from this innovation. It is important to 

recognise that exploratory or hypothesis-generating research is 

important, and that not every study needs to involve an a priori 

hypothesis. 

This chapter begins with a background section that is separated 

into two parts. In the first part, a background about OSCC is presented, 

including epidemiology, risk factors, and study design considerations 

behind cancer biomarker studies. In the second part, types of literature 

reviews are described. A comprehensive review is undertaken in this 

thesis that includes the background, the objectives of the review and the 

research question to be answered in the review. A section providing an 

overview of the methodologic approach selected and used for the 

comprehensive review, including details of article search and selection, 

and how articles were classified, and their results synthesized is 

included. Finally, the results of the comprehensive review are presented, 
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with a discussion synthesizing the findings from the articles included in 

the review. 

2.1. Background 

In this doctoral project, three substudies were conducted using 

16s rRNA gene NGS of the oral bacteriome in OSCC (presented in 

Chapters 3, 4 and 5). 16s rRNA gene NGS represents a method of 

measuring the oral bacteriome with greater clarity than was available 

previously (Pushalkar et al., 2011). As 16s rRNA gene NGS is a 

decades-old approach, in order to design and execute the most 

scientifically rigorous sub studies on the topic, it is necessary to first 

analyse the body of peer-reviewed scientific literature in the area. 

However, in order to obtain the information necessary for optimal study 

design and execution, the correct type of review must be selected. 

Therefore, this section begins by reviewing the literature on OSCC, and 

then proceeds to review the literature on how to do a comprehensive 

review to ensure standard recommendations are met. 

OSCC Background 

Why Head and Neck Cancer Must Be Described When Studying 

OSCC 

In order to understand the current status of the scientific literature 

that centring around using 16s rRNA gene sequencing to study the oral 

bacteriome in OSCC, it is first necessary to understand the epidemiology 

of OSCC. OSCC is epidemiologically classified as being a member of 

the category “squamous cell carcinoma (SCC) of the head and neck” 

(referred to as “head and neck cancer”, abbreviated HNC), which is a 
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non-homogenous group of cancers (Salehiniya & Raei, 2020). The 

anatomical locations of cancers in the HNC category include the oral 

cavity, tongue and lip, as well as nasal and other structures (Salehiniya 

& Raei, 2020). 

Although there is an attempt in this literature to focus squarely on 

OSCC, this focus cannot be so narrow. This is because many studies do 

not make clear distinctions between whether they are studying HNC, 

OSCC, or a group of HNCs (Gormley et al., 2022; Salehiniya & Raei, 

2020). Oral cancer is a type of HNC, and OSCC is a type of oral cancer 

(Gormley et al., 2022; Salehiniya & Raei, 2020). Studies focusing on 

clinical topics acknowledge that these cancers may have similar risk 

factors, and therefore, they are often discussed together (Gormley et al., 

2022; Salehiniya & Raei, 2020). 

Global Epidemiology of OSCC 

Each of the HNCs has been found to have different risk factor 

profiles and prognoses (Salehiniya & Raei, 2020). It is estimated that 

each year, globally, there will be more than 450,000 new HNC cases and 

350,000 HNC deaths will occur (Salehiniya & Raei, 2020). The oral 

cavity is the most common location for cancer in the head and neck 

region, although lip cancer is particularly challenging, as it is typically 

diagnosed at a malignant stage, and accounts for between 25 and 30% 

of all mouth cancers (Huber & Tantiwongkosi, 2014; Salehiniya & Raei, 

2020). HNC is a significant cause of mortality and morbidity worldwide, 

and represents a serious global public health issue (Gormley et al., 2022; 

Salehiniya & Raei, 2020). 
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Because of the lack of homogeneity within HNCs as diseases, the 

genetic diversity of underlying worldwide populations, and the differential 

exposures experienced by populations worldwide, it is not possible to 

generalize risk factors and prognoses for HNCs across global 

populations (Gormley et al., 2022; Salehiniya & Raei, 2020). Gormley 

and colleagues (2022) recently summarized global risk factors for HNCs, 

which are tobacco smoking, tobacco used in combination with alcohol, 

and low socio-economic status (SES), which confers added risk 

unaccounted for by tobacco or alcohol use. The authors also pointed out 

that human papillomavirus (HPV) is a major risk factor for oropharyngeal 

cancer (Gormley et al., 2022). 

Sung and colleagues (Sung et al., 2021) analysed data from the 

Global Cancer Observatory (GCO) to compare global rates of 36 groups 

of cancers, including cancers of the lip and oral cavity. Among those 36 

cancer groups, lip and oral cavity cancer ranked 18th in terms of new 

cases in 2020 (377,713, 2% of cancers analysed), and were responsible 

for 177,757 deaths in 2020 (1.8% of cancers analysed) (Sung et al., 

2021). Among men in 2020, of the 36 cancer groups analysed, lip and 

oral cavity cancers had the highest incidence in four countries, including 

India and Pakistan (Sung et al., 2021). In this analysis, countries were 

classified into a four-tier Human Development Index (HDI) (Sung et al., 

2021). Among the low HDI countries, oral and lip cancer ranked as the 

third highest incidence (which was 10.2 per 100,000 in 2020) - largely 

due to India’s influence (Sung et al., 2021). 
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Ferlay et al. (2021) conducted their own analysis of the same 

GCO data. In their analysis, they developed estimates of aged 

standardized rates per 100,000 of 38 different cancer groups (Ferlay et 

al., 2021). Like the previous authors, these authors grouped lip and oral 

cavity cancer together in one category (Ferlay et al., 2021; Sung et al., 

2021). They estimated that among both sexes, the number of new cases 

in both sexes would be 377.7 (95% confidence interval [CI] 362.4 to 

393.7) per 100,000, with the male-specific estimate being 264.2 (95% CI 

251.2 to 277.9) per 100,000, and the female-specific estimate being 

much lower, at 113.5 (95% CI 105.6 to 122.0) per 100,000 (Ferlay et al., 

2021). This analysis was consistent with the previous one in finding a 

high incidence of lip and oral cavity cancer among males in south-central 

Asia (Ferlay et al., 2021; Sung et al., 2021). In another analysis of the 

2018 GCO data focusing on cancers of the lip, tongue, and mouth, 

researchers found that the highest rates of lip cancer were in Australia, 

the highest rates of mouth and oral tongue cancer incidence were in 

India (Miranda-Filho & Bray, 2020). 

United Kingdom Epidemiology of Oral and Pharyngeal Cancer 

In a large study of global trends in the incidence and mortality of 

oral and pharyngeal cancer, Bosetti and colleagues (2020) calculated 

estimates for several countries and regions, including the entire United 

Kingdom (UK). For comparison, they also calculated these rates in three 

different ways: 1) England, and Wales (compared to the rest of the UK); 

2) for Northern Ireland (compared to the rest of the UK), and 3) for 

Scotland (compared to the rest of the UK) (Bosetti et al., 2020). For the 
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UK overall, they estimated the death rate from oral and pharyngeal 

cancer in men in 2010 to be 2.92 per 100,000, which went up to 3.26 per 

100,000 in 2015, with a percent change of 11% (Bosetti et al., 2020). For 

women in the UK, the overall death rate was 1.13 per 100,000 in 2010, 

and 1.21 per 100,000 in 2015, a percentage change of 7.1% (Bosetti et 

al., 2020). Regionally, for England and Wales (compared to the rest of 

the UK), the male estimate was lower, but the percent change higher 

(2010: 2.79 per 100,000, 2015: 3.13 per 100,000, percent change 

12.2%), which was a pattern also seen in females (2010: 1.07 per 

100,000, 2015: 1.16 per 100,000, percent change 8.4%) (Bosetti et al., 

2020). The trend was when comparing Northern Ireland to the rest of the 

UK, both estimates increased to 5.31 and 1.50 per 100,000 in men and 

women respectively in 2015, and when comparing Scotland with the rest 

of the UK, both estimates were the highest, with 3.97 and 1.59 per 

100,000 in 2015 for men and women respectively (Bosetti et al., 2020). 

Aetiology of Head and Neck Cancer 

Noting the risk for HNC was 10 times higher in smokers than 

others, Jethwa and Khariwala (2017) speculated on tobacco-related 

carcinogenesis of HNC. They provided a history of tobacco promotion 

and use globally starting in the early 1900s, and summarized the 

carcinogenic compounds identified in tobacco since the US Surgeon 

General’s report in 1964, which provided a new, expansive effort to 

understand the carcinogenic pathways initiated by tobacco use (Jethwa 

& Khariwala, 2017). In Table 3 of their paper, they listed the components 

that have been evaluated in either laboratory animals or humans by the 
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International Agency for Research on Cancer (IARC), which included 

polycyclic aromatic hydrocarbons (n=19), nitrosamines (n=8), aromatic 

amines (n=13), aldehydes (n=2), and various hydrocarbons (n=6) 

(Jethwa & Khariwala, 2017). They found a total of 70 tobacco-related 

compounds that are carcinogenic, including tobacco-specific 

nitrosamines (TSNA) and polycyclic aromatic hydrocarbons (PAH), 

which have been the most intensely studied to date (Jethwa & Khariwala, 

2017). These findings are consistent with a study of 47 histologically 

proven OSCC cases, where researchers found a high level of mutations 

and a heterogenous mutational spectrum among OSCC, and multiple 

mutational events (Batta & Pandey, 2019). However, without showing a 

causal link between exposure to tobacco and OSCC cases, a causal 

association cannot be claimed. 

Bugshan and Farooq (2020) reviewed the state of the literature 

with respect to OSCC on the topics of metastasis, potentially associated 

malignant disorders, aetiology, and recent diagnostic advancements. In 

their review, they found that OSCC can be responsible for both regional 

and distant metastases, and other malignant diseases can transform into 

OSCC depending upon the aetiologic factors present (Bugshan & 

Farooq, 2020). Ernani and Saba (2015) noted in their paper on oral 

cavity cancer risk factors, pathology and management that the possibility 

of a second primary malignancy should be considered in diagnosing all 

HNCs, but especially OSCC. Generally, the prognoses for HNCs are not 

good, and the goals of treatment are to improve survival and organ 

function (Ernani & Saba, 2015). Treatments include a combination of 
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surgery, radiation therapy, and chemotherapy, and patients are 

supervised by a multidisciplinary team (Ernani & Saba, 2015). Currently, 

there is no straightforward aetiologic pathway discerned for OSCC to 

develop, although as early as 2013, there were calls to standardize the 

case definition of oral cavity cancer to support such an investigation 

(Radoï & Luce, 2013). 

Specific Risk Factors for Head and Neck Cancers 

In their review, Gormley and colleagues (2022) included a map 

indicating the relative age-standardized incidence rates of HNC globally. 

According to the map, the highest rates were seen in Australia, India and 

surrounding countries in Southeast Asia, and the across all countries in 

northern Europe (Gormley et al., 2022). This reflects diversity in both 

genetic and environmental exposures to risk factors for HNCs globally 

(Gormley et al., 2022; Salehiniya & Raei, 2020; Toporcov et al., 2015). 

This section will summarize proposed causes for widely varying HNC 

rates country to country by examining evidence behind risk factors for 

HNCs. 

Table 2.1 presents a very high-level summary of the known risk 

factors for HNCs (Gormley et al., 2022; Salehiniya & Raei, 2020). 
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Table 2.1 Summary of known risk factors for head and neck 

cancer. 

Risk Factor Oral Cavity 
Cancer Lip Cancer Other Head 

and Neck 

Tobacco 

Smoked 
tobacco has a 

positive 
relationship 
impacted 
mostly by 
strength of 

tobacco. Both 
smoke-free 
tobacco and 

tobacco smoke 
in environment 
are shown to 

be risk factors. 
Environmental 
risk factor is 

reversable after 
15 years of 

clean 
environment 

(Gormley et al., 
2022; 

Salehiniya & 
Raei, 2020). 

Smoked 
tobacco 

increases 
principal risk 

factor for both 
lips, and occurs 

in the region 
where the 
smoking 

implement is 
placed 

(Gormley et al., 
2022; 

Salehiniya & 
Raei, 2020). 

Tobacco 
smoking 
confers a 

greater risk 
for laryngeal 

cancer 
(Gormley et 
al., 2022; 

Salehiniya & 
Raei, 2020). 

Paan (betel quid 
chewing) 

In Asia, paan 
with or without 

tobacco 
increases oral 
cavity cancer 
risk between 

1.5 and 3 times 
that of tobacco 
use (Gormley 
et al., 2022; 
Salehiniya & 
Raei, 2020). 

  

Human 
papillomavirus 

(HPV) and other 
viral infections 

HPV is a 
principal cause 
of squamous 

cell carcinoma 
of the head and 
neck, making it 

important to 
prevent sexual 

HPV and 
herpes simplex 
type I are risk 

factors 
(Gormley et al., 

2022; 
Salehiniya & 
Raei, 2020). 

HPV 
infection is 

thought to be 
an 

increasingly 
important 

risk factor for 
head and 
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Risk Factor Oral Cavity 
Cancer Lip Cancer Other Head 

and Neck 
transmission 

(Gormley et al., 
2022; 

Salehiniya & 
Raei, 2020). 

neck cancer 
(Gormley et 
al., 2022; 

Salehiniya & 
Raei, 2020). 

Family history of 
cancer 

Family history 
studies 

suggests that 
genetic risk 
factors are 

amplified by 
exposure to 

tobacco, 
alcohol, and 

diet, suggesting 
that genetic 

instability is a 
risk factor for 

oral cell 
carcinoma 

(Gormley et al., 
2022; 

Salehiniya & 
Raei, 2020). 

Those with 
family history of 
lip cancer have 
a higher risk of 
developing it 

compared to the 
background 

population, and 
this risk is 
increased 
through 

environmental 
exposures 

(Gormley et al., 
2022; 

Salehiniya & 
Raei, 2020). 

 

Social inequity 

Globally, head 
and neck 

cancers are 
more prevalent 

among low 
socio-economic 

statuses 
(Gormley et al., 

2022; 
Salehiniya & 
Raei, 2020). 

  

Alcohol 
consumption 

Higher 
consumption 

patterns linked 
to risk, but 

unclear if this is 
confounded by 

tobacco use 
(Gormley et al., 

2022; 
Salehiniya & 
Raei, 2020). 

 

Greater risk 
for oral cavity 

and 
oropharyn-
geal cancer 
(Gormley et 
al., 2022; 

Salehiniya & 
Raei, 2020).. 
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Risk Factor Oral Cavity 
Cancer Lip Cancer Other Head 

and Neck 

Marijuana smoke 

Increases risk 
for oral and lip 

cancer, but 
may be 

confounded by 
association with 

tobacco and 
alcohol use 

(Gormley et al., 
2022; 

Salehiniya & 
Raei, 2020). 

  

Oral mucus 
disease 

Potentially 
malignant oral 
disorders such 
as leukoplakia 
may increase 

the risk of SCC 
(Salehiniya & 
Raei, 2020). 

  

Occupational 
exposure 

Increased risk 
due to 

occupational 
exposures 
(such as to 
perchloroe-
thylene) has 

been 
demonstrated 
(Salehiniya & 
Raei, 2020). 

Increased risk 
due to 

occupational 
exposures 
(such as to 

sunlight, 
agriculture, and 

greenhouse 
work) has been 
demonstrated 
(Salehiniya & 
Raei, 2020). 

 

Exposure to 
sunlight 

 

Exposure to 
sunlight (from 

living or working 
outside) 

increases the 
incidence of lip 

cancer 
(Salehiniya & 
Raei, 2020). 

Those living in 
rural areas are 
at higher risk 
likely due to 
increased 
sunlight 

exposure 
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Risk Factor Oral Cavity 
Cancer Lip Cancer Other Head 

and Neck 
(Gormley et al., 

2022). 

Light skin colour  

Almost half of 
all lip cancers 

occur in 
Northern 
European 

countries, and 
lip cancer is 

almost 
negligible 

among those 
with darker skin 
due to natural 
melanin in skin 
pigmentation 

that is 
protective 

(Salehiniya & 
Raei, 2020). 

 

Immunos-
uppression and 

immune-
deficiency 

 

Studies in the 
transplant 

population show 
that the risk of 

lip cancer 
increases the 

longer the 
patient is 

immunosuppres
sed (Salehiniya 
& Raei, 2020). 

 

Diet 

Low vegetable 
consumption, 

high meat 
consumption, 
and hot tea 

increase risk 
(Salehiniya & 
Raei, 2020). 

Diet considered 
a minor risk 

factor for head 
and neck 

 

Diet 
considered a 

minor risk 
factor for 
head and 

neck cancers 
(Gormley et 
al., 2022). 
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Risk Factor Oral Cavity 
Cancer Lip Cancer Other Head 

and Neck 
cancers 

(Gormley et al., 
2022). 

Body mass index 
(BMI) and 

physical activity 
status 

Studies 
suggest weight 

gain is a 
protective 
factor and 

weight loss is a 
risk factor 

(Salehiniya & 
Raei, 2020). 

Physical activity 
status 

considered a 
minor risk 

factor for head 
and neck 
cancers 

(Gormley et al., 
2022). 

 

Physical 
activity 
status 

considered a 
minor risk 
factor for 
head and 

neck cancers 
(Gormley et 
al., 2022). 

Oral and dental 
health 

Lack of oral 
health 

behaviours is a 
risk factor. 

Some studies 
have shown 

mouthwash as 
a risk factor for 
malignancy but 

this remains 
debated 

(Salehiniya & 
Raei, 2020). 
Oral hygiene 
considered a 

minor risk 
factor for head 

and neck 
cancers 

(Gormley et al., 
2022). 

 

Oral hygiene 
considered a 

minor risk 
factor for 
head and 

neck cancers 
(Gormley et 
al., 2022).. 

As shown in Table 2.1, although there is some debate as to the 

relative importance of each of the risk factors to different specific HNCs, 
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a particularly dominating causal exposure is tobacco (Gormley et al., 

2022; Huber & Tantiwongkosi, 2014; Salehiniya & Raei, 2020). Tobacco 

can play the role of risk factor for HNC through the patient smoking it (in 

various ways) or chewing it, or from being environmentally exposed to 

tobacco smoke occupationally or within the residence (Gormley et al., 

2022; Salehiniya & Raei, 2020). 

Though much evidence exists to show that tobacco is a strong 

risk factor for HNCs, the Asian behaviour of paan (betel quid chewing) 

has been found to increase the risk of oral cavity cancer between one-

and-a-half and three times the risk seen with tobacco (Hernandez et al., 

2017; Huber & Tantiwongkosi, 2014; Salehiniya & Raei, 2020). Betel nut 

comes from the areca catechu palm tree, and betel chewing is practiced 

by between 10% and 20% of the world’s population, mainly concentrated 

in South and Southeastern Asia and the Pacific (Hernandez et al., 2017). 

Although chewing betel nut has been linked to oral carcinogenesis, the 

underlying mechanisms are not well understood (Hernandez et al., 

2017). A review of betel chewing without tobacco found that betel 

chewing is an independent risk factor for cancer from tobacco (Liu et al., 

2015). In China, public health officials face unique challenges, because 

betel chewing, tobacco smoking (in the form of cigarette smoking), and 

alcohol consumption is a common triple exposure (Liu et al., 2015). One 

group conducted a case-control study of OSCC cases compared to 

controls with oral submucous fibrosis (OSF), and found that there was a 

positive dose-response association between OSCC case status and 
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odds of betel use, and the odds were higher among those who also used 

cigarettes (Liu et al., 2015). 

As described in Table 2.1, attention has been paid more recently 

to viral origins of HNC (Gormley et al., 2022; Huber & Tantiwongkosi, 

2014; Jiang et al., 2019; Salehiniya & Raei, 2020). HPV has been 

implicated in OSCC, so public health measures to prevent sexual 

transmission of HPV are recommended as a preventive strategy (Marur 

& Forastiere, 2016; Salehiniya & Raei, 2020). Additionally, there is 

evidence that infection with herpes simplex virus (HSV) type I is a risk 

factor for lip cancer (Gormley et al., 2022). Interaction of tobacco with 

Epstein-Barr virus (EBV), which is also known as human herpes virus 4 

(HHV-4), has also been implicated as a potential cause of oral cancer 

(Jiang et al., 2019). 

As shown in Table 2.1, family history of cancer has been 

consistently found to be a risk factor for HNCs, but the exact mechanism 

is unclear (Salehiniya & Raei, 2020). The genetic predisposition to HNC 

is thought to be amplified by exposure to tobacco, alcohol, and diet, 

which suggests that genetic instability itself is a risk factor for oral cell 

carcinoma (Salehiniya & Raei, 2020). Alcohol consumption has been 

linked to HNCs, but there is some question as to the level of confounding 

with tobacco use, as these exposures are also often linked with each 

other (Gormley et al., 2022; Huber & Tantiwongkosi, 2014; Salehiniya & 

Raei, 2020). “Epigenetics” is a term used to refer to mechanisms that 

impact the expressed phenotype without changing the underlying DNA 

sequence being expressed (Ghantous et al., 2018). In their literature 
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review, Ghantous and colleagues (2018) found that many epigenetic 

alterations have been described in the progression of OSCC that are 

induced by alcohol or tobacco. These mechanisms include 

hypermethylation in genes that act to suppress tumours, genome-wide 

hypomethylation, changes in patterns of methylation throughout genes, 

modification in histones, and alterations in non-coding RNA (Ghantous 

et al., 2018). The findings from that review provide potential biomarkers 

for further study (Ghantous et al., 2018). These findings are also 

consistent with a systematic review and meta-analysis of the synergistic 

impact of exposure to both alcohol and tobacco as a risk factor for OSCC 

(Mello et al., 2019). Their meta-analysis results estimated that the 

synergistic consumption was associated with an odds ratio (OR) of 5.97 

(95% CI 3.54 to 8.14) compared to no consumption (Mello et al., 2019). 

When stratified by type of tobacco in the synergistic relationship, they 

found an OR of 4.74 (95% CI 3.51 to 6.40) for smoked tobacco, an OR 

of 7.78 (95% CI 2.18 to 21.14) for smokeless tobacco, and an OR of 

16.17 (95% CI 7.97 to 32.79) for alcohol, smoked tobacco, and 

smokeless tobacco combined compared to no consumption (Mello et al., 

2019). In their pooled analysis of case control studies from younger 

adults with HNC, Toporocov and colleagues (2015) found the same risk 

factors as for adults, although they noted that the proportion of never-

smokers and never-drinkers is higher in younger age groups, and the 

attributable fractions (AFs) are lower. 

The fact that globally, there is a strong association of HNCs with 

low SES even after adjusting for tobacco exposures suggests that the 
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impact of genetics is relatively minor, and there are many environmental 

causal parameters that are not yet identified (Salehiniya & Raei, 2020). 

Other risk factors that have been studied included oral and dental health, 

body mass index (BMI) and physical activity patterns, and marijuana 

smoke, all of which may impact the risk of HNCs, but none of these are 

thought to elevate risk much compared to the other exposures listed in 

Table 2.1 (Gormley et al., 2022). 

Epigenetic Studies 

Jiang and colleagues (2019) conducted a review of the tobacco-

induced carcinogenic pathways in OSCC. Overall, their findings were 

consistent with that of Ghantous et al. (2018), in that they found that 

tobacco can cause epigenetic alteration of oral epithelial cells. Generally, 

these changes inhibit several different systemic immune functions in the 

host which is believed to lead to tumour formation (Jiang et al., 2019). In 

addition, tobacco causes oxidative stress on tissues through toxic 

metabolites which induce OSCC (Jiang et al., 2019). Admittedly, it is not 

clear how exactly these changes result in tumour formation, nor is it clear 

how that process would be impacted by the presence of bacteria. 

Results of other epigenetic studies can be considered to search 

for candidate biomarkers for study, especially with respect to tobacco-

induced cancer (Ambatipudi et al., 2016; de la Iglesia et al., 2020). In 

one such study, analysts took samples from the European Prospective 

Investigation into Cancer and Nutrition (EPIC) study, which is a large 

epidemiologic observational study conducted across ten European 

countries (Ambatipudi et al., 2016). These researchers examined the 
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potential of DNA methylation changes as a marker of exposure to 

tobacco smoke using 910 peripheral blood samples from undiagnosed 

participants (Ambatipudi et al., 2016). They identified 748 CpG sites that 

differed between smokers and non-smokers in terms of methylation 

changes (Ambatipudi et al., 2016). Importantly, they found that some 

methylation changes were reversable after smoking cessation, although 

specific genes that were differentially-methylated remained that way 

even 22 years after cessation (Ambatipudi et al., 2016). 

Other epigenetic studies were designed differently to focus on 

various specific biomarkers. In one study, researchers studied tumour 

specimens from 177 patients with various tobacco-smoking histories 

with SCC of the head and neck (de la Iglesia et al., 2020). In their study, 

they analysed CD3, CD8, FOXP3, PD-1, PD-L1, and pancytokeratin, 

and found that current smokers have lower CD8+ cytotoxic T-cells and 

PD-L1+ cells in the tumour immune microenvironment (TIM) (de la 

Iglesia et al., 2020). 

Study Design Considerations in Cancer Biomarker Clinical Trials 

Hu and Dignam (2019) developed guidance for researchers 

looking to include biomarker studies in oncology clinical trials. In their 

guidance, they define the term “biomarker” to mean the characterization 

of biologic molecules (including deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA)), proteins, or metabolites from the analysis of 

body fluids or tissues for diagnostic purposes (Hu & Dignam, 2019). As 

per this definition, oral microbiome biomarkers – specifically molecules 

produced by the microbiome as well as microbes of the microbiome - in 
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OSCC should be included. Their paper was in response to the rise in 

“precision oncology”, referring to the ability to measure many biomarkers 

previously unmeasurable through the advent of various omics-based 

technologies, especially NGS (Hu & Dignam, 2019). As laboratory 

studies involving potential cancer biomarkers were increasingly being 

reported, those conducting clinical trials were increasingly pressured to 

include biomarker measurements in their study designs (Hu & Dignam, 

2019). Hu and Dignam (2019) provide a basic outline of epidemiologic 

study designs that can be utilized to study such biomarkers. 

Before presenting their study designs, the authors described 

important aspects that will need to be taken into account when doing 

epidemiology with cancer biomarkers (Hu & Dignam, 2019). First, they 

pointed out that even if a certain treatment is believed to be more 

effective in a patient who is positive for a particular biomarker, that does 

not necessarily mean that a biomarker-negative patient will not benefit 

(Hu & Dignam, 2019). This issue leads to the importance of identifying 

“companion biomarkers”, or other biomarkers that are correlated with the 

target biomarker, and can help establish a partition or cut-off value to 

make biomarker-positive vs. biomarker-negative determinations for the 

target biomarker (Hu & Dignam, 2019). 

The authors also pointed out that not all biomarkers may have 

enough evidence to support their inclusion in a clinical trial (Hu & 

Dignam, 2019). First, biomarkers selected for inclusion in a clinical trial 

will need to be shown to be able to be measured accurately, and 

measurements should be demonstrated to be replicable (Hu & Dignam, 
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2019). Next, a determination will need to be made as to whether the 

biomarker is “prognostic” (associated with disease prognosis, regardless 

of treatment) or “predictive” (meaning that its prognostic influence differs 

depending upon treatment) (Hu & Dignam, 2019). Another consideration 

will need to be made as to whether the biomarker will be “integral” to the 

study (meaning part of the inherent study design) or “integrated” in the 

study (meaning the subject of specific testable hypotheses) (Hu & 

Dignam, 2019). The authors also recommend several new, adaptive 

designs that can be used for such biomarker studies (Hu & Dignam, 

2019). 

Hu and Dignam (2019) also introduced new terminology in their 

paper. They define a “basket trial” as a trial of an agent tested among 

multiple disease types that share a common molecular feature or target 

that can be identified by the biomarker (Hu & Dignam, 2019). They 

contrast this to an “umbrella trial” design, where for a common disease 

entity, multiple agents are investigated along with specific molecular 

targets and biomarkers (Hu & Dignam, 2019). The article goes on to 

describe the features of these study designs, and how they will produce 

knowledge about cancer prognosis and treatment (Hu & Dignam, 2019). 

Study Design Considerations for Cancer Biomarker Laboratory 

Studies 

This guidance from Hu and Dignam (2019) provides insight into 

the design of research about therapeutic agents for cancer, in that it 

implies that certain features could be included in cancer biomarker 

laboratory study designs to provide more definitive information for those 
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who design clinical trials of potential therapeutic agents. For example, 

most study designs recommended in the guidance to only include one 

biomarker, and the authors recommend that this biomarker should be 

well-characterized in terms of its known companion biomarkers (Hu & 

Dignam, 2019). They also pointed out that the measurement for this 

biomarker should be shown to be accurate, reliable, and replicable (Hu 

& Dignam, 2019). Although this may seem obvious, experimental 

biomarkers might be measured using different methods, and these 

methods could introduce significant variability in the results (Hu & 

Dignam, 2019). Determining a specific measurement of a biomarker is 

accurate and replicable should take place before clinical research 

commences (Hu & Dignam, 2019). Biomarkers that are the subject of 

human trials should also have evidence-based cut points derived to 

determine positive vs. negative biomarker status (Hu & Dignam, 2019). 

The authors included a table describing different recommended 

biomarker study designs, including enrichment, biomarker-stratified, 

biomarker strategy, biomarker-directed, umbrella and basket (Hu & 

Dignam, 2019). In most study designs proposed in the table, the 

biomarker is integral to the study, underscoring why it would need to be 

able to be measured accurately using a reliable measurement approach 

that is easily replicated (Hu & Dignam, 2019). 

Also, most clinical trial designs recommended by the authors 

would be for confirmatory intent (Hu & Dignam, 2019). At this time, 

OSCC microbiome biomarkers would not be at this stage. A systematic 

review and meta-analysis of the OSCC microbiome indicated that the 
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current microbiome biomarker studies have important limitations in basic 

methods of data collection, processing, and reporting (Peter et al., 2022). 

Another articles proposed OSCC microbiome biomarkers that could be 

used for screening, but these are not able to be measured accurately, 

reliably and in a replicable manner at this time (Doddawad et al., 2022). 

This is partly because the study design proposed by Hu & Dignam (Hu 

& Dignam, 2019) must rely on a body of literature where appropriate 

statistical considerations were made, and currently, this does not apply 

to the OSCC microbiome biomarker literature (Gloor et al., 2017; 

Goossens et al., 2015; Ou et al., 2021).  

As described earlier, in a table presented in their paper, Hu and 

Dignam (Hu & Dignam, 2019) recommended different study designs for 

cancer biomarkers, and include a column stating the objective of 

“confirmatory intent”. This indicates that for the cancer biomarker 

laboratory literature to be most useful, it should encourage a transition 

from discovery designs early in the investigation of a biomarker to 

confirmatory designs as evidence accumulates. As an example, in their 

paper, Hu and Dignam (2019) cite the case of vemurafenib being 

approved for the treatment of BRAFV600 mutation-positive metastatic 

melanoma. Advancing to this point in translational medicine suggests 

that the laboratory evidence behind BRAFV600 mutation-positive 

metastatic melanoma and the ability to treat it with vemurafenib was 

rigorous enough for these elements to have been included in a clinical 

trial. 
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Also, since cancer has so many different risk factors, for 

laboratory biomarker studies to provide evidence useful for 

epidemiology, it is important that participants – especially in small 

studies – are subject to highly-specific and well-measured case 

definitions, and that studies utilize qualification criteria that filter in an 

extremely homogenous sample, especially with respect to known risk 

factors (e.g., tobacco use). As an example cited in the paper, the 

ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification 

and Sequencing Trial) was designed to study biomarker-specific cohorts 

of patients with resectable non-small-cell lung cancer (NSCLC) (Hu & 

Dignam, 2019). Without evidence from rigorous laboratory studies of 

biomarkers in well-characterized NSCLC patients, it would not be 

possible to design a study like ALCHEMIST, which emphasizes the 

importance of laboratory study design in the process of translational 

cancer research (Hu & Dignam, 2019). 

The Oral Bacteriome in OSCC 

This section will provide a history of the exploration of the oral 

bacteriome in OSCC. 

Early Studies 

The link between the oral bacteriome and OSCC was first 

explored to better understand the observed link between poor oral 

hygiene and morbidity associated with OSCC post-treatment infections 

(Nagy et al., 1998). Authors examined the microbial composition in 

specimen collected from patients with OSCC (Nagy et al., 1998). In their 

study, researchers swabbed the OSCC lesion surface and compared it 
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to an adjacent normal area using culture-based techniques in order to 

determine bacterial relevance to patient morbidity (Nagy et al., 1998). 

Although no inferential statistics were done, the total number of species 

within swabs (both aerobes and anaerobes) were found to be higher in 

cancer samples as compared to the normal controls (Nagy et al., 1998). 

They also found that Fusobacterium species, among others, were 

present in higher amounts in tumour as compared to non-tumour areas 

(Nagy et al., 1998). Despite the limitations of the culture methods, this 

study was the first to provide evidence of differences in bacterial 

composition between oral cancerous and healthy sites (Nagy et al., 

1998). 

About a decade later, Mager et al (2005) studied salivary 

microbiota as a diagnostic indicator of oral cancer in both OSCC and 

healthy patients using DNA-DNA hybridization. In that study, the 

methodology used to analyse the salivary bacterial community was 

restricted to 40 oral bacterial species, hence comprehensive knowledge 

of the tumour microbiota cannot be inferred from such design (Mager et 

al., 2005).  In their study, they reported that they found three oral bacteria 

(Prevotella malenginogenica, Streptococcus mitis and Capnocytophaga 

gingivalis) to be significantly increased in OSCC salivary samples (p < 

0.001) (Mager et al., 2005). However, upon careful reading, this p-value 

interpretation is likely inaccurate, because no a priori hypothesis was 

posed (Mager et al., 2005). Instead, the p-value is likely the result of a 

post hoc analysis that is interpreted without an adjustment to the p-value, 

hence the difference reported might be due to chance (Goossens et al., 
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2015; Mager et al., 2005). Even so, when interpreted as descriptive 

analysis, it is notable that these oral bacteria were the most prevalent 

(Mager et al., 2005). Author proposed that if reliable results could be 

obtained, oral bacteria could be used as biomarkers for the initiation of 

oral cancer (Mager et al., 2005). 

16s rRNA Gene NGS and the Oral Bacteriome in OSCC 

As described earlier, this comprehensive review is focused on the 

use of 16s rRNA gene NGS of the oral bacteriome in the study of OSCC. 

While OSCC is the specific topic of this inquiry, it is acknowledged that 

OSCC falls within the larger category of HNCs; therefore, biomarker 

studies including 16s rRNA gene NGS in the research of OSCC may 

also include other groups of participants (healthy comparisons, or those 

with other disease entities, including other HNCs) (Salehiniya & Raei, 

2020). Because of this, it might be difficult to compare results from study 

to study, because different populations will be sampled. Biomarkers may 

be measured in different types of sample – such as saliva vs. tissue – 

and this could produce results that might be difficult to compare from 

study to study (Hu & Dignam, 2019). 

Further, while biomarker studies of the oral bacteriome using 16s 

rRNA gene NGS in the investigation of OSCC will likely use similar 

measurement methods, they will likely use a variety of study designs, in 

that some will be designed to be exploratory (i.e., intended for 

discovery), and others will be confirmatory (i.e., based on a presupposed 

hypothesis) (Hu & Dignam, 2019). Results from well-designed 
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confirmatory studies could be used to inform an epidemiologic study 

design like the ones described by Hu and Dignam (2019). 

As a general rule, evidence-based medicine (EBM) follows a 

framework where the lowest level of evidence is reserved for case 

studies and expert opinion, with other observational designs (such as 

cross-sectional and case-control studies) in the middle, and randomized 

controlled trials (RCTs) as the highest-quality individual study design 

(Semrau et al., 2023). Systematic reviews and meta-analyses appear at 

the top of the pyramid as the highest quality of scientific evidence 

(Semrau et al., 2023). While it is unreasonable to expect that laboratory 

studies using 16s rRNA gene NGS in the investigation of the oral 

bacteriome in OSCC would use advanced or complex study designs, it 

is not unreasonable to expect them to take into account important 

aspects of basic study design (e.g., determining whether a control group 

is necessary, and if so, how to select one with the least bias) (Semrau 

et al., 2023; Zaura et al., 2021). 

In further consideration of oral bacteriome studies in OSCC, 

Hooper and colleagues (2006) conducted a similar study as Mager and 

colleagues (2005) with the aim of identifying viable bacteria present in 

OSCC tissue, but were able to use 16s rRNA gene (without the NGS 

technology – they sequence individual isolates using standard low 

throughput technology). These authors cultured the microbiota present 

within tissues of excised OSCC tumours (as well as corresponding 

superficial sections of these tissues) from male and female OSCC 

patients in South Wales and analysed them by 16s rRNA gene 
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sequencing (Hooper et al., 2006). Their study revealed the existence of 

heterogeneous viable species (mainly bacteria) within these tissues with 

a tendency for saccharolytic and acid tolerating species in tumours 

(Hooper et al., 2006). The same author group also analysed the 

bacteriome of OSCC tissue in a similar small sample by applying a non-

culture based approach using 16s rRNA sequencing (Hooper et al., 

2007). The authors interpreted both sets of results to support the 

conclusion that a higher affinity of saccharolytic and aciduric bacteria 

reside in tumour tissues (Hooper et al., 2006, 2007). 

Pushalkar et al (2011) were the first to utilize NGS technology to 

analyse the differences in bacterial composition between OSCC patients 

and normal controls. In this pilot study, which did not use inferential 

statistics (that apparently took place in the US, although it was not clearly 

stated), 67% of the total sequences were either from uncultivable 

bacteria or unassigned bacteria indicating a significant gap in the then 

existing knowledge that required further exploration (Pushalkar et al., 

2011). These authors were also able to identify fifteen bacteria that were 

exclusive to OSCC patients, among which two species were found to be 

in agreement with the previous finding by Mager et al (2005) (i.e., 

Prevotella melaninogenica and Porphyromonas gingivalis) (Pushalkar et 

al., 2011). The same author group used Sanger sequencing (16s rRNA 

gene) of bacteria residing in OSCC tissues in another study (Pushalkar 

et al., 2012). The results of this study, which again did not use inferential 

statistics, revealed a shift in the composition of the microbiota from 

Gram-negative to Gram-positive by 19% in cancer tissues as compared 



Page 48 

to the controls (Pushalkar et al., 2012). Also, apart from a few species, 

most of the bacteria identified were common between the two groups, 

with differences in their distribution in each group (Pushalkar et al., 

2012). These findings of altered bacterial composition within cancerous 

samples suggested a link that warrants additional exploration using more 

rigorous study designs and inferential statistics. 

Schmidt and colleagues (2014) studied samples of cancer and 

healthy tissue from five patients with oral cancer as well as samples from 

pre-cancer patients in the US, and did not use inferential statistics. In 

their analysis, the authors found that the abundance of the 

Streptococcus genus was decreased in both precancerous and 

cancerous samples and thus might indicate these as a transitional 

change in the microbiome (Schmidt et al., 2014). It was also observed 

that the genus Fusobacterium was increased in abundance in cancer 

samples as compared to the matching non-cancerous samples (Schmidt 

et al., 2014). The authors interpreted this finding to indicate its later 

association in the microbial shift as compared to Streptococcus (Schmidt 

et al., 2014). 

Al-Hebshi et al (2015) applied a new approach to analyse the 

sequencing data which they tried on three OSCC samples. The new 

algorithm used enabled the researchers to successfully assign almost all 

of the reads to species level (Al-Hebshi et al., 2015). This revealed the 

presence of thirty-five species in all the samples, some of which were 

present in high abundance (Al-Hebshi et al., 2015). Unfortunately, the 

relevance of this is unknown due to the lack of a normal reference - as 
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the detected bacteria are common oral microbiota (Al-Hebshi et al., 

2015). Of interest, Bacteroides fragilis was detected in two out of the 

three samples used, which is interesting due to the fact that this 

bacterium is a rare finding in the oral microbiome (Al-Hebshi et al., 2015).  

In a similar approach, Mok et al. (2017) studied the oral 

microbiome in normal (n=9), those with oral potentially malignant 

disorders (OPMD, n=9), and those with oral cancer (n=9) from the 

Malaysian population. The authors detected taxa that tend to cluster into 

three groups (normal, dysplasia and cancer) where taxa of dysplasia 

group overlapped between the other two (Mok et al., 2017). This 

provides more evidence for the transitional shift of the microbiome from 

healthy to disease. As with earlier studies, this study did not use 

inferential statistics, and quantified the overlap of taxa identified in the 

dysplasia group with the other groups (Mok et al., 2017). The authors 

contend that their results provide more evidence for the transitional shift 

of the microbiome from healthy to disease (Mok et al., 2017). 

Recently, Al-Hebshi et al. (2017) further applied their prioritised 

BLASTN-based algorithm, which previously enabled a species-level 

taxonomy assignment, to a larger study of 20 OSCC samples and 20 

normal controls. The samples came from anonymized leftover DNA 

extracts from fresh OSCC biopsies obtained from a previous study in 

Yemen, and the healthy controls were recruited using gender- and age-

matching from a Faculty of Dentistry in Jazan University in Saudi Arabia 

(Al-Hebshi et al., 2017). These authors found Fusobacterium nucleatum 

subspecies polymorphum and vincentii to be associated with OSCC 
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which was consistent with their previous study (Al-Hebshi et al., 2017). 

In addition to Fusobacterium nucleatum, Pseudomonas aeruginosa was 

found to be associated with OSCC, a finding that has not been reported 

before (although no inferential statistics were used) (Al-Hebshi et al., 

2017). The authors also examined the potential function of the bacteria 

present, and genes enriched in OSCC were predicted to be involved in 

pathways similar to that of bacterial genes in chronic periodontitis (e.g. 

bacterial motility, lipopolysaccharide (LPS) biosynthesis and flagellar 

assembly) (Al-Hebshi et al., 2017). Their predictions suggest that there 

is a bacterially-induced inflammatory background in OSCC (Al-Hebshi et 

al., 2017). 

In another pilot study, Wolf et al (2017) analysed the oral salivary 

microbiome in 11 patients with oral and oropharyngeal SCC compared 

to 11 healthy controls from a European country. These authors 

examined the microbiome of OSCC saliva using NGS, and found the 

genus-level abundance of bacteria associated with OSCC was similar to 

some previous studies, but different from other, as reported in their Table 

1.1 (Wolf et al., 2017). These differences in the findings are perhaps due 

to the lack of lower-level taxonomy assignment (i.e., species level), thus 

overlooking a true bacterial association with OSCC, but also likely 

suffered from a lack of inferential statistics (Goossens et al., 2015; Wolf 

et al., 2017). However, they were in overall agreement with the fact that 

the microbiome associated with the OSCC and healthy groups are 

distinct (Wolf et al., 2017). They also looked at the potential functional 

role of the microbiome in each group (Wolf et al., 2017). They postulated 
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that the OSCC microbiome would be potentially more involved in sugar 

and carbohydrate metabolism as well as stress response mechanism 

compared to the healthy group, while that of the healthy group would be 

more involved in antioxidant activity and metabolism of lipids compared 

to OSCC (Wolf et al., 2017). Interestingly, the microbiota of HPV-positive 

cancers in this study were found to be more closely related to the normal 

microbiota rather than that of the HPV-negative OSCC samples (Wolf et 

al., 2017). This led the authors to speculate that HPV-positive and HPV-

negative OSCCs are two distinct diseases (Wolf et al., 2017). 

In a similar study, Zhao et al (2017) conducted a case series study 

where they took 40 swabs of OSCC lesions and compared them to 

anatomically matched normal sites in Chinese patients, and analysed 

them using 16s rRNA gene sequencing. In their study design, they 

assigned detected taxa to species level (Zhao et al., 2017). The authors 

found different species of Fusobacterium, amongst other bacteria, to be 

increased in the OSCC samples as compared to the normal samples, 

although the authors did not use inferential statistics (Zhao et al., 2017). 

One aim of the study was to predict ecological relationships across the 

different bacterial communities detected (Zhao et al., 2017). Seven 

members of the Fusobacterium genus, which were shown to be 

ecologically connected in OSCC samples in this study, were used in a 

simulation to predict diagnosis (Zhao et al., 2017). Specifically, they were 

entered into a prediction model and graphed in terms of diagnostic power 

(Zhao et al., 2017). In addition, functional prediction of bacterial genes 

in OSCC samples suggested a decrease in amino acid and lipid 
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metabolism, membrane transport and signal transduction, bacterial 

functions that were also predicted to be reduced in periodontitis (Zhao 

et al., 2017). The authors speculate that common functional prediction 

findings might also indicate an inflammatory background in OSCC (Zhao 

et al., 2017). 

Measurement and Statistical Approaches in OSCC Gene-targeted 

Bacteriome Studies 

As described earlier, an important consideration in cancer 

biomarker studies is the quality of the measurement as biomarker 

measurements must be reliable, replicable, and interpretable to be 

utilized as an integral or integrated part of an cancer clinical trial (Hu & 

Dignam, 2019). This section will provide an overview of measurement, 

epidemiologic, and statistical approaches in cancer biomarker studies, 

and specifically studies of the human microbiome using 16s rRNA gene 

NGS. 

Early Measurement Approaches in Oral Microbiome Studies 

The earliest article in the review was published in 2011 (Pushalkar 

et al., 2011). Although these authors were not the first to try this, they 

used culture-dependent methodology previously, and followed up with a 

manuscript on 16s rRNA gene NGS because it is less biased (Pushalkar 

et al., 2011, 2012). Scientific writing on this topic in this early period 

provides a window into the measurement philosophies over a decade 

ago related to studying microbiota in OSSC, and how they might apply 

to hypotheses derived at the time. 
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Diversity in Oral Microbiome Studies 

In this early article, Pushalkar and colleagues (2011) made it clear 

that they were using the methods in their study to evaluate whether the 

application of “diversity” and “relative abundance” measures could be 

useful in the pursuit of trying to identify a member of the oral bacteriome 

in OSCC that might be responsible for most of the cancerous tumours 

(Pushalkar et al., 2011). Specifically, they pointed out the situation where 

Helicobacter pylori was found to be responsible for 60 to 90% of gastric 

cancers, and suggested that if the entire diversity of OSCC microbiota 

can be measured, perhaps it could be possible to identify a specific 

bacterial infection responsible for a large percentage of OSCC cases 

(Pushalkar et al., 2011). Their contention was that up until the availability 

of NGS, much of the oral bacteriome went unmeasured, so it would have 

been impossible to identify a bacterial infection responsible for a large 

proportion of OSCC cases if there was one (Pushalkar et al., 2011). The 

obvious counterargument is that biomarkers for either OSCC or healthy 

tissue or saliva need not to be diverse to be accurate. According to their 

contention, For example, if an OSCC lesion is quantitatively more 

diverse in terms of the oral bacteriome in diseased samples compared 

to healthy samples, it would suggest that there are members of the 

bacteriome worth identifying and studying further to see if they have a 

causal relationship with the tumour (Pushalkar et al., 2011). Hence, it is 

not the actual diversity of the members of the oral bacteriome which is 

the intention of the measurement; it is instead more of an approach to 

identifying the members of the oral bacteriome as biomarkers that may 
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have been unmeasured before, and might be revealed to be important 

targets for study (Pushalkar et al., 2011). 

In the study of the human oral microbiome, as with study of other 

microbiomes, the concept of diversity was extended to define α (alpha) 

diversity vs. β (beta) diversity, which are ideas lifted directly from 

statistics and computation, and not evolutionary biology (Kers & 

Saccenti, 2022). Laboratory biostatisticians Kers and Saccenti (2022) 

provided guidance on choosing measures of α diversity and β diversity 

a priori when designing laboratory studies. This is because in order to 

reduce Type I error (false-positive results), it is necessary to state 

hypotheses a priori – before collecting the data in the study – and to 

operationalize those hypotheses to specific measurements (Kers & 

Saccenti, 2022). So if there is a hypothesis that there is statistically 

significant α diversity in samples from Group 1, or that there is a 

statistically significant difference between the β diversity of the samples 

in Group 1 vs. Group 2 compared to the samples in Group 2 vs. Group 

3, the selection of the diversity metric of record is necessary when 

formulating the hypothesis a priori to preserve statistical power (Kers & 

Saccenti, 2022). If the researcher fails to select their operationalized 

diversity metrics when stating their hypotheses a priori, and instead 

simply runs multiple a posteriori tests using different α and β diversity 

metrics hunting for statistical significance, it is considered “fishing” for a 

p-value, and not statistically legitimate (Kers & Saccenti, 2022). In 

addition to being seen as fraudulent (“p-hacking”), the practice does not 

provide guidance on how to interpret the results of the study, because 



Page 55 

certainly all measures of the same type of diversity on the same group 

of samples will be correlated, but may not produce identical 

interpretations (Kers & Saccenti, 2022). 

The intention of the paper was to provide guidance to laboratory 

researchers in the design of their hypotheses and the operationalization 

of diversity metrics when stating hypotheses a priori that will be used to 

analyse results of their microbiome studies after the samples are 

measured (Kers & Saccenti, 2022). As described by Kers and Saccenti 

(2022), theoretically, α diversity is intended to be a measure of “within-

sample diversity”, while β diversity represents “between sample” 

diversity (see Figure 2.1). 

 

Figure 2.1. Explanation of α vs. β diversity calculations in 

microbiome analysis.  

 

Note: Adapted from Kers and Saccenti (2022) 
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As shown in Figure 2.1 and described by Kers and Saccenti 

(2022), to statistically test if there is within-sample diversity (α diversity) 

in any group of samples, a particular metric can be selected for use, and 

subjected to a statistical test. The α diversity metrics described in the 

paper that may be chosen include richness (defined by the number of 

taxa identified), phylogenetic diversity (a phylogenetically weighted 

measure of richness), and the Chao1 index (an abundance-based non-

parametric estimator of taxa richness) (Kers & Saccenti, 2022). They 

also recommend two indices which are different estimators of taxa 

diversity that combine richness and evenness (also known as relative 

abundance), including the H estimator from Shannon’s Index, and the D 

estimator from Simpson’s Index (Kers & Saccenti, 2022). Abundance 

and relative abundance measures are discussed in the next section. 

As demonstrated by experimental case studies included in the 

paper by Kers and Saccenti (2022), these authors recommend selecting 

one α diversity metric, then using a non-parametric Kruskal-Wallis test, 

with the grouping variable (e.g., taxa labels) as the independent variable, 

and the calculated α diversity metric as the dependent variable. 

Interpreting the p-value derived from this test will determine whether or 

not the researcher rejects the null, and finds the sample or groups of 

samples statistically significantly positive for α diversity (Kers & Saccenti, 

2022). 

In terms of β diversity metrics, the authors describe the Bray-

Curtis Dissimilarity index (which measures the compositional 

dissimilarity between the microbial communities of two samples), and 
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the Jaccard index (another way of calculating dissimilarity), both of which 

are computations from statistics and not specific to microbiome studies 

(Kers & Saccenti, 2022). The authors also describe using UniFrac (UF) 

distances to compare β diversity, which in both their weighted and 

unweighted forms, take into account the phylogenetic tree, and 

distances between community members (Kers & Saccenti, 2022). 

For statistical testing of β diversity, the authors recommend a 

PERMANOVA approach, which is an analysis of variance- (ANOVA-) 

like test that uses random permutations to compare matrix similarities 

and dissimilarities (Kers & Saccenti, 2022). The null hypothesis for the 

PERMANOVA is the calculated space represented by each sample’s 

diversity is the same for all groups tested; hence, rejecting the null would 

be interpreted as statistically significant β diversity among groups in the 

test (Kers & Saccenti, 2022). It is important to emphasize here that since 

PERMANOVA is ANOVA-like, it only produces one p-value; therefore, if 

multiple participant groups are being tested in the PERMANOVA, if any 

one group in the analysis has statistically significantly different β diversity 

with respect to one other group, this statistic will be statistically 

significant, and will not be able to differentiate between the individual 

groups without further post hoc analysis. 

Abundance and Relative Abundance in Oral Microbiome Studies 

In the earliest article reviewed by Pushalkar and colleagues 

(2011), the authors go on to imply that not just diversity, but relative 

abundance of the bacteria in the oral microbiome might be an important 

clue as to which members of the oral bacteriome might be responsible 
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for tumour progression. As mentioned earlier, the term “relative 

abundance” is also called “evenness”, a theoretical estimate of the 

prevalence of the bacteria in the sample, which in practice only estimates 

the numerator (Mandal et al., 2015). Hence, reporting absolute 

abundance, or the measurement of the level of taxa detected in the 

sample, is not accurate, there is some debate over the best 

representation for a relative abundance metric (Mandal et al., 2015). 

Nevertheless, the point of comparing relative abundance in samples is 

to estimate if a sample is dominated by the presence of a particular taxa 

compared to another sample, which cannot be estimated with diversity 

measures, although some indices attempt to account for abundance to 

some degree (Kers & Saccenti, 2022; Mandal et al., 2015). 

Given this understanding, quantifying the relative abundance of 

different members of the oral bacteriome at different stages in the natural 

history of the OSCC tumour may shed light on whether there are certain 

members associated with progression, as those exerting a greater 

impact at any given time will be likely to also have a relative abundance 

that is higher than the other members of the bacteriome which are also 

measurable (Pushalkar et al., 2011). While this is reasonable, the 

unfortunate assumption underlying the hypothesis put forth by Pushalkar 

et al. (2011) in this early study is that is a member of the bacteriome that 

has the same relationship with OSSC that H. pylori has with gastric 

cancer, In other word, the underlying hypothesis is that there is a single 

biomarker that has an outsized role in promoting OSCC (Pushalkar et 

al., 2011). While this hypothesis may be true, the study designs that have 
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been used subsequently in this line of research were not designed to 

identify such a member, and did not claim to be designed around such a 

hypothesis (J.-W. Chen et al., 2021; Gaziano et al., 2021; Gopinath, 

Kunnath Menon, et al., 2021; Gopinath, Menon, et al., 2021). The 

authors also speculate that instead of a dominant member of the 

bacteriome, there may be multiple members that initiate inflammation 

that leads to OSCC (Pushalkar et al., 2011).  

The Human Microbiome Project and the Human Oral Microbiome 

Database 

In 2010, researchers from the Forsyth Institute in Boston 

announced in a published paper that they had been awarded a large 

grant from the National Institutes of Health (NIH) to amass a database 

about the human oral microbiome called Human Oral Microbiome 

Database (HOMD), which is part of the larger Human Microbiome 

Project (HMP) (T. Chen et al., 2010; NIH Human Microbiome Portfolio 

Analysis Team, 2019). The intention of the HMP was to leverage findings 

from studies of the human microbiome to facilitate the design of human 

health interventions as described earlier with immunotherapy 

approaches (Hu & Dignam, 2019; NIH Human Microbiome Portfolio 

Analysis Team, 2019). These anticipated human health interventions 

include the immunotherapy approaches described earlier (Hu & Dignam, 

2019), and may result from models, integrated datasets, and 

computational tools all provided under the HMP (NIH Human 

Microbiome Portfolio Analysis Team, 2019).  
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The NIH Human Microbiome Portfolio Analysis Team reported 

that in fiscal years 2012 to 2016, the project spent a total of $376 million 

on microbiome projects using human cohorts, and of that, $40 million 

focused specifically on the oral microbiome (NIH Human Microbiome 

Portfolio Analysis Team, 2019). It is likely that  this larger allocation 

supported the smaller grant to develop the HOMD (T. Chen et al., 2010; 

NIH Human Microbiome Portfolio Analysis Team, 2019). In their article, 

the researchers awarded the HOMD contract report that the primary 

goals of their contract with NIH is to establish a stable taxonomic 

structure for emerging taxa that will be identified as part of the project 

and are currently unnamed, and to provide tools for analysing 16s rRNA 

gene sequence data and other oral genomic data (T. Chen et al., 2010). 

Curiously, the article announcing the creation of the HOMD does 

not explain its philosophy on basic epidemiologic and biostatistical 

issues, even though it is essentially creating an epidemiologic registry 

(T. Chen et al., 2010; Hu & Dignam, 2019; Vogtmann et al., 2023). One 

foundational epidemiologic issue with the HOMD approach that is not 

discussed in the article is how the genomics of the underlying 

populations represented in the HOMD could potentially bias the function 

of the entire database (T. Chen et al., 2010; Hu & Dignam, 2019; 

Vogtmann et al., 2023). For example, if tumours from high SES countries 

(as in northern Europe) are overrepresented in the database, then 

scientific inferences about biomarkers will not be replicable across 

populations (e.g., with respect to lip cancer) (Hu & Dignam, 2019; 

Salehiniya & Raei, 2020; Vogtmann et al., 2023). Further, a fundamental 
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biostatistical consideration not addressed in the article is how the 

authors propose researchers should use the HOMD data to execute 

studies with large amounts of correlated biomarkers without 

encountering Type I error (T. Chen et al., 2010; Mandal et al., 2015). 

This statistical consideration is important regardless of the type of 

investigation being conducted; it is not just an issue with therapeutic 

studies (Gloor et al., 2017). The intention of the HOMD maybe to 

catalogue the existence of oral microbiomes, but it is not possible to 

apply epidemiologic or statistical inference to the data without the 

necessary metadata.  Further, the lack of quantification of bias makes 

utilizing such a database for training machine learning (ML) algorithms 

questionable. The article only describes the mechanical and operational 

function of their taxonomic and digital process, and does not address 

any epidemiologic or biostatistical issues (T. Chen et al., 2010). Of 

course, it is possible that providing such high quality of data was not the 

intention of this database. In that case, these data may be useful for 

other purposes, but might not be very accurate when used in ML 

algorithms (such as those run in QIIME 2) (Estaki et al., 2020). 

Today, the HOMD is a set of web-enabled tools that provide many 

online functions related to the analysis of these sequences, including a 

reference sequence lookup (HOMD :: Human Oral Microbiome 

Database, n.d.). However, even today, there is no clear documentation 

throughout this online set of tools related to the epidemiologic and 

biostatistical considerations behind this registry described above, 

especially with respect to the bias that could impact ML models trained 
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on the contents of the database (HOMD :: Human Oral Microbiome 

Database, n.d.). An argument can be made that this was not the purpose 

of the database. In their article, the authors stated that, “the goal of the 

contract [to set up the HOMD] was to create a stable taxonomic structure 

for the unnamed oral taxa and to provide tools for analysing 16S rRNA 

sequence data and oral genome data” (T. Chen et al., 2010). It is unclear 

how the goal of the HOMD relates to the overarching objectives of the 

HMD, which is aimed at understanding human disease through 

epidemiologic and biostatistical approaches. 

As described earlier, the HMD and the HOMD are funded by the 

NIH which stands for the National Institutes of Health in the US (T. Chen 

et al., 2010; NIH Human Microbiome Portfolio Analysis Team, 2019). 

NIH functions as a national medical research agency, and is part of the 

Department of Health and Human Services (DHHS), which functions as 

the US version of a ministry of health (Vogtmann et al., 2023). Other 

population-level epidemiologic initiatives are funded through the US 

government, including an annual surveillance effort called the National 

Health and Nutrition Examination Survey (NHANES) (Vogtmann et al., 

2023). Vogtmann and colleagues (2023) found they needed to create 

their own sample that was representative of the oral microbiome data for 

the US population utilizing stored samples from the US National Health 

and Nutrition Examination Survey (NHANES) (available from the authors 

on request). The lack of epidemiologic documentation precluded the use 

of data from the HOMD. Because the HOMD is being used as the 

reference database in many oral microbiome studies, and it has known 
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biases that to this date have been undiscussed and uncharacterized, 

results based on data from the HOMD must be interpreted with extreme 

caution, and not considered generalizable to the human condition (Hu & 

Dignam, 2019; Vogtmann et al., 2023). 

Using Operational Taxonomic Unit (OTU) Clustering in 16s rRNA 

Studies 

Although the advent of 16S rRNA NGS provided the ability to 

measure sequences previously unmeasurable, this issue brought about 

challenges in operationalizing results output from the sequencing 

approach that could be used functionally in biostatistics to answer 

presupposed hypotheses (Gopinath, Kunnath Menon, et al., 2021; 

Nguyen et al., 2016). For example, for the diversity metrics, what actual 

measures are being used to represent the values of the dependent 

variables, and how are they derived from the samples analysed? The 

most common way to solve this problem was to cluster the sequences 

output as “Operational Taxonomic Units” (OTUs) (Nguyen et al., 2016). 

Although the OTU approach has been used throughout 16s rRNA 

sequencing research, it has some important limitations that need to be 

considered (Nguyen et al., 2016). 

First, in the process of computing OTUs from sequences present 

in a laboratory sample, a similarity threshold is set for sequence similarity 

(typically at 97%) (Nguyen et al., 2016). Next, these sequences are 

clustered together into an OTU, and then from each OTU, a single 

sequence is selected and annotated, and this annotation is used 

throughout the rest of the remaining sequences (Nguyen et al., 2016). 
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These sets of operations are called “pipelines” which are operationally 

built into software to execute the pipeline; two commonly-used pipelines 

are QIIME and MOTHUR (Nguyen et al., 2016). Nguyen and colleagues 

(2016) speculated that OTUs have been popular because they reduce 

the output from millions of reads from 16s amplicon analysis into 

thousands, and this makes downstream analysis, such as multiple 

sequence alignment (MSA) analysis and phylogeny estimation, much 

easier because the dataset is smaller and representative. Using this 

smaller, more manageable data also speeds up the whole analysis 

(Nguyen et al., 2016). 

However, this ease and functionality comes with serious 

downsides (Nguyen et al., 2016). First, the “percent sequence similarity” 

calculation can overestimate evolutionary similarity between pairs, so 

using evolutionarily-corrected distances based upon a MSA is 

recommended (Nguyen et al., 2016). Next, it can be difficult to honestly 

interpret the results from this type of an analysis (Nguyen et al., 2016). 

As an example, two different species may have 99% similar 16s 

sequences, erroneously placing them in the same OTU (e.g., Bacillus 

globisporus and B. psychophilus), or the same strain may have multiple 

copies of the 16s rRNA gene that differ by as much as 5% in some 

regions that then are erroneously classified into multiple OTUs (e.g., 

Escherichia coli K12) (Nguyen et al., 2016). 

While the perspective of Nguyen and colleagues (2016) does not 

reject the utility of OTUs in 16s rRNA analysis, it does advocate for more 

responsible approaches to handling OTUs in analysis so as to minimize 
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the measurement error inherent in the method. The main point of their 

paper was to recommend dissimilarity metrics for quantifying the 

evolutionary distance between pairs of sequences that can be applied to 

help researchers more honestly interpret the results from the OTU 

analysis (Nguyen et al., 2016). Combining this advice with the advice 

from the Kers and Saccenti (2022) to carefully select diversity of metrics 

of record and operationalize them when defining research hypotheses a 

priori will lead to an optimally-designed, evidence-based study of the oral 

microbiome in OSCC using 16s rRNA NGS technology (Nguyen et al., 

2016). 

Oral Potentially Malignant Disorders and Oral Epithelial Dysplasia 

Oral potentially malignant disorders (OPMDs) represent a 

heterogeneous group of clinical disorders that carry an elevated risk of 

oral malignant development (Warnakulasuriya et al., 2021). Recently, 

the World Health Organization (WHO) Collaborating Centre for Oral 

Cancer in the UK updated the list of diseases based on the current 

evidence to include the following OPMDs: oral leukoplakia, oral 

erythroplakia, proliferative verrucous leukoplakia, oral submucous 

fibrosis, oral lichen planus, oral lichenoid lesion and oral graft versus 

host disease (Warnakulasuriya et al., 2021). Each disorder is associated 

with different risk of malignant transformation (Warnakulasuriya et al., 

2021). While risk of malignancy in OPMDs is associated with clinically 

abnormal mucosa, malignancy may also develop in clinically normal 

mucosa (Warnakulasuriya et al., 2021). 
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The risk of malignancy development in OPMDs is assessed by 

the histopathological alterations observed in the oral epithelium 

architecture/cytology as defined by the grade of epithelial dysplasia 

(Odell et al., 2021). These architectural alterations may include loss of 

either epithelial stratifications or/and epithelial cell cohesion; abnormal 

superficial mitosis; irregular stratification; drop-shaped rete ridges or/and 

the presence of keratin pearls within these ridges; and higher number of 

mitosis or/and single cell premature keratin formation (Odell et al., 2021). 

Alterations in cytology may include abnormal variations in cellular or 

nuclear size or/and shape, a higher nucleus to cytoplasm ratio, larger 

number and size of the nucleoli, mitotic figure atypia, and 

hyperchromasia (Odell et al., 2021). To date, the existence of oral 

epithelial dysplasia (OED) is associated with a three-tier grading system 

that has prognostic value for malignant transformation and is considered 

the gold standard (Sperandio et al., 2023). This system classifies OED 

into mild, moderate, and severe (Warnakulasuriya et al., 2021). Mild is 

characterized by dysplastic changes confined within the basal one third 

of the oral epithelium; moderate is where these changes are confined 

within the basal two thirds of the oral epithelium; and severe, where 

these changes extend beyond the basal two thirds of the oral epithelium 

(Warnakulasuriya et al., 2021). 

Comprehensive Literature Review Background 

Literature Review Types 

Sutton and colleagues (2019) recently summarized the types of 

reviews in the scientific literature in an effort to provide guidance to 
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scientific authors. The authors acknowledged that there are many terms 

for the different types of reviews in the scientific literature, and grouped 

these into review “families” (Sutton et al., 2019). They defined the 

systematic review family as determining whether studies would be 

included in the review by way of their study design (Sutton et al., 2019). 

This inclusion criterion could be defined through a broad category of 

study design (e.g., any observational studies), or a very specific one 

(e.g., case series) (Sutton et al., 2019). The term “systematic” implies 

that once these inclusion and exclusion criteria are set up to filter in only 

certain study designs, the literature is learned comprehensively for all 

studies meeting the study design criteria on the topic of the review 

(Sutton et al., 2019). 

Selection of Literature Review Approach 

Because the intention of all three substudies (presented in 

Chapters 3, 4, and 5) was to utilize NGS targeting the 16s rRNA gene in 

the study of OSCC, a systematic review should not be attempted, 

because all study designs on this topic should be included. In choosing 

to focus on studies of OSCC using the 16s rRNA approach, a narrative 

review was selected, and “purposive sampling” of the literature was 

applied (Sutton et al., 2019). The narrative review is a type of traditional 

review (Sutton et al., 2019). In the narrative review, purposive sampling 

can be used to – for example – focus on one particular topic, which is 

becoming more popular (Sutton et al., 2019). Purposive sampling was  

achieved through the application of inclusion and exclusion criteria to the 

articles selected for review (Sutton et al., 2019). It may be important to 
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point out that while narrative review with purposive sampling is part of 

the traditional review family, there are other families of reviews that were 

not employed in this dissertation, including the rapid review family, and 

the purpose-specific review family, which includes scoping reviews 

(Sutton et al., 2019). 

2.2. Research Question and Objectives 

Research Question 

The comprehensive review objectives were designed to answer 

the following research question: Based on evidence from current 

metagenomic studies utilizing the NGS technique to target 16s rRNA 

gene in OSCC, how should the oral bacteriome be characterised using 

descriptive analyses? 

Objectives 

This comprehensive literature review had the following objectives: 

1. To identify scientific evidence from studies investigating high-

throughput, NGS targeting the 16s rRNA gene in studying the 

oral bacteriome of OSCC, and 

2. To characterize findings related to the oral bacteriome in OSCC 

from these studies. 

2.3. Methods 

In the background to this comprehensive literature review, it was 

explained why a traditional review with purposive selection was chosen 

for the format of this comprehensive review (Sutton et al., 2019). This 

section will describe the methods used to identify studies included in this 

review, and how the results from the studies were synthesized. 



Page 69 

Approach to Article Selection 

This section will explain the search and article selection strategy 

for this comprehensive review. It will also describe the article inclusion 

and exclusion criteria. 

Search Strategy 

The objective of the article selection strategy was to identify all 

published peer-reviewed studies that met the inclusion and exclusion 

criteria listed below. Several landmark studies have demonstrated that 

Google Scholar (GS) is superior to all other scientific databases in the 

identification of published scientific works (Falagas et al., 2008; 

Gehanno et al., 2013). Gehanno and colleagues (2013) conducted a 

study using 29 systematic reviews published in the Cochrane Database 

of Systematic Reviews. GS was used to replicate each search, and it 

was found that GS was able to retrieve 100% of the original studies 

(n=738). (This article should not be confused with an article about the 

unreliability of the GS report of “number of citations” by Martin-Martin 

and colleagues  (2018).) The comprehensive coverage by GS was 

enabled because GS is “journal agnostic” in how it builds its search 

engine, enabling it to include a wider array of publications compared to 

database indexes, such as PubMed, Scopus, and Web of Science, 

which may place limitations on what content is included (Falagas et al., 

2008; Gehanno et al., 2013). In other words, the way GS works, 

keywords that would be entered into other databases to identify articles 

will also work in GS (even if they will not work in another database). As 

proof of this, all the articles identified by GS for this review were also the 
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only articles identified when the other databases were searched as well 

(including PubMed, Web of Knowledge, and EMBASE, as described in 

the next paragraph). 

Therefore, to design an evidence-based search strategy, first GS 

was searched to identify all potential articles. Next, article selection 

procedures were applied (see next section). Finally, after this took place, 

the results from the GS were confirmed through replicating the same in 

other independent scientific indexes, including PubMed, Web of 

Knowledge, and EMBASE (searched through the OVID interface). 

These additional searches failed to identify any additional articles not 

identified through the GS search.  

Search Terms Used 

Given that NGS is emerging technology, no limits on publication 

year were included in searches. In the search in GS and all the other 

scientific databases, the following search terms were used: OSCC, oral 

squamous cell carcinoma, oral cancer, cancer of the oral cavity, mouth 

cancer, cancer of the mouth, microbiome, microbiota, flora, bacteria. In 

GS, Boolean operators are assumed, but in the other databases, 

Boolean operators (AND) and (OR) were used to refine and produce 

more relevant results. Consistent with the scientific literature, even with 

this extensive search approach, no additional articles were identified in 

the other databases that were not identified using GS (Falagas et al., 

2008; Gehanno et al., 2013). Please note that the results of this search 

were confirmed in October of 2021 to allow for the review to be 

conducted. 
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Article Selection 

Results from the initial search were screened by their titles and 

abstracts. Duplicate abstracts were removed. Studies not on the topic of 

the oral microbiome using 16s rRNA gene analysis were excluded. The 

full text for all potentially relevant studies was identified and further 

assessed for eligibility criteria (described in the next section). Studies 

that did not fit eligibility criteria were excluded. 

Article Inclusion and Exclusion Criteria 

Articles returned in the search and later identified in full-text were 

considered eligible for inclusion if they met the following criteria: 

1. They reported on original studies. 

2. The authors reported using the NGS technique in the 

article. 

3. The NGS technique was used to target 16s rRNA gene. 

4. The article studied OSCC. 

5. The article was in English. 

6. Articles must include at least one participant group other 

than OSCC (e.g., control groups or other patient groups)  

Articles that fit the above criteria were excluded if they also fit 

these criteria: 

1. The article stated it was a review. 

2. The article studied the association of a specific member or 

members of the bacteriome and others (was hypothesis-

driven rather than exploratory). 

3. The article reported results of non-human studies. 
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4. The article did not study OSCC specifically. 

Assessment of Article Quality 

The methods that can be used to evaluate the quality of an article 

typically depend upon the study design (Moskalewicz & Oremus, 2020; 

Semrau et al., 2023). However, after identifying the articles, it was 

realized that all of them had very low quality study designs (Moskalewicz 

& Oremus, 2020; Semrau et al., 2023). For that reason, applying 

structured assessments to the articles identified would have to rely on a 

framework tailored for exploratory laboratory studies, which was the 

primary study design of the studies identified. 

Frameworks for evaluating other types of studies are available. A 

framework for this specific method of assessing study quality was not 

available. Quality assessment frameworks exist for synthesis reports 

(Bezerra et al., 2022), systematic reviews and mixed-methods studies 

(Harrison et al., 2021) prevalence studies (Migliavaca et al., 2020), as 

well as observational study designs in evidence-based medicine 

(Moskalewicz & Oremus, 2020). Because an appropriate framework 

could not be identified, articles were categorized by the type of evidence 

they provided based on the evidence-based medicine pyramid, which 

has case studies and case series as the lowest level of evidence, with 

cross-sectional studies being a higher level of evidence (Semrau et al., 

2023). 

Identifying Outcome Measures 

The studies reviewed were not treatment studies, so they did not 

have defined treatment outcomes. The primary outcomes identified for 
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each study was whether or not any members of the oral microbiome 

were identified to be associated with OSCC. The secondary outcomes 

identified were level of study quality, so that they could be classified and 

reviewed by class. 

Article Classification, Analysis, and Synthesis of Findings 

Once identified, articles were classified and grouped as to their 

study design. The results for each group were synthesized separately. 

Next, articles were considered in terms of their research aims (discovery 

or confirmatory), participant groups included, measurement and 

statistical approaches, and findings reported. As is typical in traditional 

reviews, the results are presented in subheadings thematically (Sutton 

et al., 2019). 

Data Synthesis Methods 

As described previously, articles were grouped by study design, 

with the lowest quality study design being synthesized and presented 

first. “Small sample studies” was considered the lowest quality study 

design, because these studies did not include enough sample to make 

statistical inferences. For these studies, the study aim and critical 

limitations were identified and synthesized. The second lowest quality 

study design was a classification titled “natural history studies”, which 

were also studies with too small of a sample to provide statistical 

inference, but with characteristics that may provide insight into the 

natural history of the oral microbiome in OSCC. As only two studies fell 

in this category, they were simply described, and their study designs and 

results compared. 
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The next highest level of quality was a case series study design, 

and several were included that compared healthy tissue to diseased 

tissue in the same individual. Therefore, these were titled “comparative 

case series” studies, and were synthesized in terms of their study aims, 

the metrics specified in the studies, whether or not they used the HOMD 

database as part of a machine learning step, and what was ultimately 

reported as findings. The next highest level of quality were cross-

sectional studies, but since all of them identified had serious study 

design issues, they were considered “low quality cross-sectional 

studies”. These were compared in terms of study aim, statistical 

approach, and findings. The most rigorous category of articles identified 

includes two “case-control” studies which also had serious study design 

issues. Since these there were only two, they were described and 

compared to each other. 

2.4. Results 

The article selection results are documented in Figure 2.2
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Figure 2.2. Article selection results 

 

 

As described in Figure 2.2, the initial search revealed 2,856 

results, 575 of which were eliminated because they were duplicates. Of 

the 2,281 unduplicated screened abstracts, 2,207 of them were excluded 

because according to their abstract, they did not meet eligibility criteria. 

The full-text was examined for the remaining 68. From this review, it was 

found that 46 did not meet eligibility criteria, leaving 22 articles for the 

analysis in this comprehensive review. 

Table 2.2 summarizes the basic study design considerations, 

including study quality and findings, for all 22 articles. For ease of 

interpretation, they were placed in chronological order of year of 
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publication. Please note that epidemiologic studies with an n < 30 are 

unlikely to detect even large effects, and when studying compositional 

data as in the oral microbiome, such small sample sizes are likely to 

have extremely unstable results (Kers & Saccenti, 2022; Serdar et al., 

2021).
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Table 2.2. Article summary 

Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Pushalkar, et al. 
(2011) 
"Microbial 
diversity…" 

Unclear, but 
it appears to 

be United 
States - New 
York. It was 
approved by 

the 
Institutional 

Review 
Board of New 

York 
University. 

Cases of OSCC (n=3 
over age 50 males 

smokers and drinkers) 
and "matched controls" 

(n=2) 

Stimulated saliva 

Low quality 
study due to 

extremely low 
sample size 
and unclear 
study aim. 

Findings: “Members of 8 phyla 
(divisions) of bacteria were 
detected. The majority of 
classified sequences belonged 
to phyla, Firmicutes (45%) and 
Bacteroidetes (25%).“ 

Zhao, et al. 
(2017) 
"Variations in 
oral 
microbiota…" 

China 

Case series of OSCC 
patients in Shanghai, 

China (n=40, each gave 
1 sample of lesion and 

1 sample of normal site, 
so total analysis n=80 

samples) 

Swabs of oral 
lesions and 
normal sites 

High quality 
comparative 
case series. 

The authors claim in their 
study, they found different taxa 
than in previous studies. 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Mukherjee, et al. 
(2017) 
"Bacteriome and 
mycobiome…" 

Unknown, but 
used a 

Cleveland 
IRB, so 

possibly Ohio 
in the US 

Case series - n= 40: 
"Fifty-three unrelated 
patients with mobile 

tongue cancer 
undergoing resection 
were prospectively 

enrolled (2003-2014). 
Of these 53, 40 had 

adequate fresh-frozen 
specimens (30-50 mg) 
of matched tumor and 

adjacent normal 
tissues…” 

Tongue cancer 
tissue vs. normal 

tissue 

High quality 
comparative 
case series - 

but 
applicable to 

tongue 
cancer only. 

Although many statistical 
analyses using multiple 
software packages are 
described, there are no 
hypotheses posed a priori, and 
all appear to be run as post 
hoc analyses. Nevertheless, 
the authors claim, "Our results 
demonstrate differences in 
bacteriome and mycobiome 
between oral (mobile) tongue 
squamous cell carcinoma, and 
their matched normal oral 
epithelium, and their 
association with T-stage." 

Al-hebshi, et al. 
(2017) 
"Inflammatory 
bacteriome…" 

Yemen/Saudi 
Arabia - but 
cases and 
controls 

collected at 
different 

times and 
sites 

Biopsies from cases of 
OSCC (n=20) and 

deep-epithelium swabs 
from matched controls 

(n=20) 

DNA extracts 
from previous 
tissue biopsies 

vs. deep-
epithelial swabs 

Low quality 
study due to 
low sample 

size and 
unclear study 

aim. 

The authors pose no statistical 
hypotheses, and conduct many 
descriptive analyses. On that 
basis, they conclude that 
genes involved in certain 
functions are enriched in 
tumours, while those 
responsible for other functions 
are "significantly associated 
with controls". 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Lee, et al. 
(2017) "Bacterial 
alterations…" 

Taiwan 

Cross-sectional study of 
Taiwanese individuals 

all evaluated for OSCC, 
and in 3 groups: Normal 

(n=127), epithelial 
precursor lesion 

(n=124), and cancer 
(n=125) 

Saliva only (no 
tissue) 

High quality 
cross-

sectional 
natural 

history study 

To evaluate statistical 
significance, they used multi-
response permutation 
procedures (MRPPs) on 
measurements of biodiversity, 
and used statistical tests to 
compare the three groups. 
They found that even if there 
was a statistically-significant 
difference between groups, the 
difference was small. 

Perera, et al. 
(2018) 
"Inflammatory 
bacteriome…" - 
based on 
reanalysis of 
data from 
Perera, et al. 
(2017) "A 
dysbiotic 
mycobiome…" 

Sri Lanka 

Case-control study, 
where cases were male 
Sri Lankan patients with 
histologically-confirmed 
OSCC (n=25) and the 

control group was male 
Sri Lankan patients with 

a clinical diagnosis of 
intra-oral fibro-epithelial 

polyps (FEP, n=27) 

Biopsy tissue in 
OSCC, and FEP 

tissue in FEP 

Medium 
quality case-
control study, 

as the 
sample size 
is low, and 

findings only 
applicable to 

OSCC vs 
FEP. 

This was a reanalysis of data 
from a previous article (Perera 
2017), which focused on the 
mycobiome, and found "a 
dysbiotic mycobiome 
dominated by C. albicans was 
found in association with 
OSCC". In this study, no 
hypotheses were posed a 
priori, and many analyses were 
conducted. On the basis of a 
largely descriptive analysis, the 
authors conclude that 
proinflammatory bacterial 
attributes were enriched in the 
OSCC tissues. 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Yang, et al. 
(2018) "Oral 
microbiota…" 

Taiwan 

Cross-sectional: 
Healthy individuals 

(n=51), OSCC patients 
(total n = 197, stage 1 

n=41, stage 2&3 n = 66, 
stage 4 n = 90) 

Oral rinse 

High quality 
cross-

sectional 
natural 

history study 

The authors speculate on how 
their findings may relate to the 
natural history of OSCC. 

Takahashi, et al. 
(2019) "Analysis 
of oral 
microbiota…" 

Japan 

Cross-sectional: OSCC 
patients (n=60), non-

cancer individuals 
(n=80). 

Salivary samples 

Cross-
sectional 
analysis 
lacking 

epidemiologic 
context 

Authors posed hypotheses 
about differences in α diversity, 
β diversity, and abundance 
between groups overall, but 
instead engaged in post hoc 
testing, and interpreted the 
results without correction. They 
summarize their findings as 
having observed increased 
bacterial diversity in OSCC and 
having found distributional 
changes for some bacteria. 

Chang, et al. 
(2019) "The 
prevalence 
rate…" 

China 

Cross-sectional study 
involving OSCC 

patients (n=61) and 
healthy controls (n=35) 

Tissue samples 

Cross-
sectional 
analysis 
lacking 

epidemiologic 
context 

Although authors describe their 
statistical approach, they do 
not pose any a priori 
hypotheses, and do not 
describe how they approached 
a post hoc analysis. Hence, 
any findings are likely due to 
Type I error. The authors 
conclude by saying there may 
be a close relationship 
between oral microorganisms 
and OSCC which might enrich 
its pathogenesis. 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Hashimoto, et 
in. (2019). 
"Changes in 
oral…" 

Japan 

Cross-sectional: OSCC 
patients (n=6), oral 
leukoplakia patients 
(n=6) and healthy 

controls (n=4). 

Unstimulated 
saliva 

Low quality 
study due to 

extremely low 
sample size 
and unclear 
study aim. 

Authors report differences in 
abundance of certain 
microbes, but they do not 
overinterpret their findings. 
They suggest that changes in 
the salivary microbiome may 
have a potential application as 
a novel diagnostic tool. 

Li, et al. (2020) 
"Composition 
and function of 
oral 
microbiota…" 

China 

Cross-sectional: 
Gingival squamous cell 

carcinoma (GSCC) 
patients (n=10), 

periodontitis patients 
(n=15), healthy (n=15) 

Subgingival 
plaque and 

saliva from all, 
and tongue 

dorsum, buccal 
mucosa, 

cancerous, and 
para-cancerous 

tissues from 
GSCC. 

Low quality 
study due to 

extremely low 
sample size 
and unclear 
study aim. 

The authors claim that 
because a high level of 
periodontal pathogens were 
found in GSCC, there is a 
need to explore a potential 
causal relationship.  
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Zhang, et al. 
(2020) "The oral 
microbiota…" 

China 

Case series of OSCC 
patients in Shanghai, 

China (n=50, each gave 
1  swab sample of 
lesion and 1 swab 

sample of normal site, 
so total analysis n=100 

samples) 

Bilateral buccal 
mucosal tissue 

swabs 

High quality 
comparative 
case series 

No a priori hypotheses were 
posed, and many statistical 
analyses were conducted, 
greatly increasing the risk of 
Type I error. Although the 
authors claim that oral 
bacterial profiles showed a 
"significant difference" 
between cancer sites and 
normal tissue, they likely do 
not mean it in the statistical 
sense due to the limitations of 
their analysis. They 
recommend further research 
on the oral bacterial profiles 
they found as potential 
diagnostic markers and 
treatment targets. 

Namburi, et al. 
(2020) "Low 
abundance of 
capnophiles…" 

India 
Cross-sectional: OSCC 

patients (n=5) and 
"healthy" patients (n=5) 

Unstimulated 
whole saliva 

Low quality 
study due to 

extremely low 
sample size 
and unclear 
study aim. 

The authors of this study with 
very low sample, no clear 
research aim, and no testable 
hypotheses claim that 
Capnophilic Capnocytophaga 
species were found in the 
healthy samples so they are 
suggested to be associated 
with health. 

Gopinath, et al. 
(2021) 
"Differences in 
the 
bacteriome…" 

India 

Case-control: OSCC 
patients (n=48), those 

evaluated and found not 
to have OSCC (n=46) 

Tissue, swabs, 
and saliva 

High quality 
case-control 

study 

Although the sampling was 
done correctly for this case-
control study, no hypotheses 
were posed a priori, and no 
statistical tests were described. 
Authors do not draw 
conclusions about the 
differences between the 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

groups, and instead comment 
on their methods and within-
group descriptive findings. 

Gopinath, et al. 
(2021) 
"Salvatory 
bacterial 
shifts…" 

India 

Cross-sectional with 3 
groups: Oral cancer 
(n=31), leukoplakia 

patients (n=20), healthy 
"molar removal" 
patients (n=23) 

Whole mouth 
fluid 

Low-quality 
cross-

sectional 
study due to 
lack of clear 
study aim 

and 
appropriate 
statistics. 

No hypotheses were posed a 
priori, and the statistical 
methods are unclear. Authors 
reported finding both 
overlapping and discriminative 
bacterial genera between 
leukoplakia and oral cancer, 
and suggest their findings have 
implications for cancer 
prevention strategies. 

Granato, et al. 
(2021) "Meta-
omics 
analysis…" 

Brazil 

Cross-sectional with 3 
groups: Healthy controls 

(n=8), OSCC patients 
w/o "active lesion" 

(n=8), OSCC patients 
w/"active lesion" (n=8) 

Saliva 

Low quality 
study due to 

extremely low 
sample size 
and unclear 
study aim. 

Findings are unclear: "In 
summary, the present study 
has characterized and 
compared the microbiome of 
control individuals and OSCC 
patients with and without active 
tumorus. Moreover, it was 
capable of showing that both 
OTUs and proteins, from 
bacteria and from hosts, are 
associated with clinical 
characteristics, highlighting 
once again the dynamics of 
microbiome and biological 
components in different 
conditions." 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Sarkar, et al. 
(2021) 
"Dysbiosis of 
oral 
microbiota…" 

India Case series: OSCC 
patients (n=50). 

Tissue sampled 
from lesion and 

uninvolved areas 
and compared 

High quality 
comparative 
case series 

No a priori hypotheses were 
posed, and many statistical 
analyses were conducted, 
greatly increasing the risk of 
Type I error. Although the 
authors report that in contrast 
to previous studies, there was 
significantly lower bacterial 
diversity observed in malignant 
vs. normal samples, they likely 
do not mean statistical 
significance due to their lack of 
formal statistical testing. 

Su, et al. (2021) 
"Oral microbial 
dysbiosis…" 

Taiwan 

Case series with two 
cohorts of OSCC 

patients - regular and 
(n=74) "validation" 

(n=42). 

Oral swabs of 
tumor lesions 

and their 
contralateral, 

normal regions 
were compared 

High quality 
comparative 
case series 

Authors report statistically 
significant results for bacterial 
diversity and relative 
abundance of specific oral 
microbiota. 

Rai, et al. (2021) 
"Dysbiosis of 
salivary 
microbiome…" 

India 

Cross-sectional: 
included OSCC patients 

(n=11) and "healthy 
controls" (n=10) for 

metagenomic analysis 

Unstimulated 
saliva 

Low-quality 
cross-

sectional 
study due to 

lack of 
homogeneity 
in the sample 

combined 
with small 
sample. 

Authors report significantly 
higher abundance of some oral 
microbiome signatures, and 
significant elevations of certain 
cytokines. However, the study 
likely suffers from Type I error 
due to interpreting these 
results as a post hoc analysis 
rather than stating hypotheses 
a priori. 
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Article 
Country 

Participants 
are From 

Study Design Samples Study 
Quality Findings 

Sawant, et al. 
(2021) 
"Identification 
and 
correlation…" 

India 

Although authors call 
this a case-control 
study, it is actually 
cross-sectional in 
design: Tobacco 

chewers without OSCC 
(n=10), OSCC patients 
(n=10), healthy controls 
without OSCC who do 

not chew tobacco 
(n=10) 

Oral rinse 
samples 

Low-quality 
cross-

sectional 
study due to 

lack of 
homogeneity 
in the sample 

combined 
with small 
sample. 

Authors claim that study 
results provide evidence of oral 
bacterial dysbiosis due to 
tobacco chewing habits, but 
the sample is too small to 
make a causal inference. 

Zhou, et al. 
(2021) "The 
clinical 
potential…" 

China 

Cross-sectional: OSCC 
patients (n=47) and 
"healthy controls" 

(n=48) 

Salivary 
samples, 

subgingival 
plaque samples, 

tumor surface 
samples, healthy 

mucosa 
samples, and 
tumor tissue 

samples. 

Low-quality 
cross-

sectional 
study due to 
lack of clear 
study aim 

and 
appropriate 
statistics. 

Author propose to use 
microbiota as a screening tool 
for OSCC, but do not propose 
a testable screening approach. 
No statistical tests are 
performed, and authors 
suggest that the high 
diagnostic accuracy rates 
found in their study could be 
replicated in practice. 

Chen, et al. 
(2021) 
"Taxonomic and 
functional…" 

Taiwan 

Cross-sectional (all 
male): "Healthy 

controls" (n=27), non-
recurrent oral verrucous 

hyperplasia (OVH) 
patients with no OSCC 
at follow-up (n=21), and 

OVH patients with 
OSCC at follow-up 

(n=27). 

Saliva samples 

Low-quality 
cross-

sectional 
study due to 
lack of clear 
study aim 

and 
appropriate 
statistics. 

Authors do not describe an 
approach to statistical testing 
that can be supported with 
such low sample. The authors 
promote the use of predicted 
functional profiles over using 
taxonomic data to make 
epidemiologic inferences with 
patient characteristics, but do 
not provide strong evidence for 
this. 
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As shown in Table 2.2, many of the studies reviewed had study 

quality issues. These will be discussed in detail later in this chapter. 

Studies were classified by quality levels, and will be reviewed in order. 

Eight of the studies had such a small sample size for each group that the 

study results could not be interpreted (Granato et al., 2021; Hashimoto 

et al., 2019; Li et al., 2020; Namburi et al., 2020; Pushalkar et al., 2011; 

Rai et al., 2021; Sawant et al., 2021). As described earlier, epidemiologic 

studies with n < 30 are unlikely to detect effects unless they are large, 

and when considering compositional data as with the oral microbiome, 

the sampling variability will be higher, and the likelihood of replicating 

findings with this amount of sample would be very low (Serdar et al., 

2021). These studies will be reviewed together. Next, two of the studies 

had designs that implied they were exploring the natural history of 

OSCC; these studies will be reviewed together (Lee et al., 2017; C.-Y. 

Yang et al., 2018). A third category containing five studies could be 

considered comparative case series studies, where healthy tissue is 

compared with diseased tissue in each participant in each group, and 

results interpreted (Mukherjee et al., 2017; Sarkar et al., 2021; Su et al., 

2021; Zhang et al., 2020; Zhao et al., 2017). The articles in this category 

will be examined together. 

A fourth category included five articles reporting the results of 

cross-sectional studies including OSCC and other groups (Chang et al., 

2019; J.-W. Chen et al., 2021; Gopinath, Kunnath Menon, et al., 2021; 

Takahashi et al., 2019; Zhou et al., 2021). These studies will be reviewed 

together and their findings compared. Finally, at the highest level of 
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study quality, two case-control studies were identified, and will be 

reviewed together (Gopinath, Menon, et al., 2021; Perera et al., 2018). 

Small Sample Studies 

As described in Table 2.2, of the 22 studies included in this 

review, eight were identified as having too low of a sample size to be 

able to provide conclusions about biomarkers (Al-Hebshi et al., 2017; 

Granato et al., 2021; Hashimoto et al., 2019; Li et al., 2020; Namburi et 

al., 2020; Pushalkar et al., 2011; Rai et al., 2021; Sawant et al., 2021). 

These studies were conducted between 2011 and 2021, and appear to 

have involved populations from the United States (US), Yemen and 

southern of Saudi Arabia, Japan, China, India and Brazil  (Al-Hebshi et 

al., 2017; Granato et al., 2021; Hashimoto et al., 2019; Li et al., 2020; 

Namburi et al., 2020; Pushalkar et al., 2011; Rai et al., 2021; Sawant et 

al., 2021). 

All of these studies included multiple groups, which unfortunately 

increased the participant-contributed variation in their sample, and 

limited their statistical power. When Considering the largest studies in 

this group, it is observed that there is one by Rai and colleagues (2021), 

which included 25 OSCC patients (where only 11 participants of this 

group were included for metagenomic analysis) and 24 “healthy controls” 

(where only 10 of the participants were included as controls for the 

metagenomic analysis) in India, and one by Al-hebshi et al. (2017), 

which included biopsies from 20 cases of OSCC in Yemen that were 

matched to 20 controls recruited from a different environment than the 

cases. Both of these studies included groups of non-homogenous 
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participants, and neither put forth a priori hypotheses before conducting 

biomarker analyses (Al-Hebshi et al., 2017; Rai et al., 2021). In Rai et al. 

(2021), “healthy controls” were not evaluated for OSCC to confirm their 

health, and Al-hebshi and colleagues (2017) described using “matched” 

controls, which would likely introduce bias from the matching process. 

Table 2.3 presents a summary of these small sample studies. 

Table 2.3. Summary of aims and critical limitations of small 

sample studies 

Article Study Aim Critical Limitation 

Pushalkar, et al. 
(2011) "Microbial 
diversity…" 

Evaluate 
diversity and 

relative 
abundance 

This study included a 
total n=5, which is not 

enough to make 
inferences about diversity 

or relative abundance 
measures. 

Al-hebshi, et al. 
(2017) 
"Inflammatory 
bacteriome…" 

Characterize the 
species 

composition and 
functional 

potential of 
bacteriome 

With only 20 samples in 
each group (OSCC and 

comparison), it would not 
be possible to accurately 
characterize the species 

composition and 
functional potential of 

bacteriome, as even the 
samples taken would be 
subject to sampling error 
within the tissue sampled. 

Hashimoto, et in. 
(2019). "Changes 
in oral…" 

Identify specific 
oral microbial 

profiles 
associated with 

OSCC 

With this sample size, it 
would be difficult to draw 
conclusions about one 
biomarker testing an a 
priori hypothesis. To 
determine an entire 

biomarker profile would 
require a large 

observational study. 
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Article Study Aim Critical Limitation 

Li, et al. (2020) 
"Composition and 
function of oral 
microbiota…" 

Exploratory 
study of 
microbial 

composition and 
functions in 

periodontitis and 
gingival 

squamous cell 
carcinoma 

Difficult to draw 
conclusions due to the 

diversity of disease 
processes operating in 

the participants included 
in the study 

Namburi, et al. 
(2020) "Low 
abundance of 
capnophiles…" 

Assess 
alterations in the 

microbiome 
linked to OSCC 

This study included a 
total of n=10 divided into 
two groups, those with 
OSCC (n=5) and so-

called "healthy patients". 
Due to utilizing this small 
of a sample and not using  
statistical hypotheses, it 
is likely these authors' 
conclusion is merely a 

reflection of Type I error. 

Granato, et al. 
(2021) "Meta-omics 
analysis…" 

Investigate the 
capability of 

using 
metagenomic 

and 
metaproteomic 

saliva profiles to 
distinguish 

between healthy 
patients and 

those at various 
OSCC stages 

While the study aim is 
reasonable, including 
only 8 participants in 

each of three groups will 
not provide a large 

enough sample to enable 
the researchers to draw 
conclusions without a 

presupposed statistical 
hypothesis. 

Rai, et al. (2021) 
"Dysbiosis of 
salivary 
microbiome…" 

Develop saliva-
based oral 

microbiome and 
cytokine 

biomarker panel 
for screening 

OSCC patients 

To develop a screening 
approach, each group 

would need much more 
than n=25 (so as to 
enable multivariate 
statistics), and each 

group would need to be 
more homogenous. 

Sawant, et al. 
(2021) 
"Identification and 
correlation…" 

Identify and 
correlate 
bacterial 

diversity in the 
oral cavity of 

tobacco 
chewers, 

patients with oral 
cancer, and 

To achieve this research 
aim, many more than 10 
participants are needed 

in each group, and a 
priori hypotheses need to 

be presupposed. 
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Article Study Aim Critical Limitation 
healthy subjects 

in the Indian 
population. 

 

As can be seen in Table 2.3, these eight studies had a variety of 

aims. Two studies had aims that were focused on evaluating measures 

of diversity and relative abundance specifically (Pushalkar et al., 2011; 

Sawant et al., 2021), while three studies proposed descriptive aims, such 

as characterizing microbial composition, functional potential, and 

alterations in the bacteriome (Al-Hebshi et al., 2017; Li et al., 2020; 

Namburi et al., 2020). The remaining three studies proposed identifying 

entire profiles of biomarkers related to the oral bacteriome that could be 

used for diagnostic purposes (Granato et al., 2021; Hashimoto et al., 

2019; Rai et al., 2021). These studies will be reviewed in terms of their 

aims, findings and critical limitations in study design as listed in Table 

2.3. 

Small Sample Studies Evaluating Diversity and Abundance 

Among the small sample studies, only two included the 

measurements of diversity and/or abundance in their research aims – 

the earliest article included in the review authored by Pushalkar and 

colleagues (2011), and a study by Sawant et al. (2021) published more 

recently. 

In the first article, which included only five participants (in two 

groups, see Table 2.3), the authors went on to describe how bacterial 



Page 91 

DNA extraction took place from the saliva samples, followed by all the 

steps they took to develop OTUs (Pushalkar et al., 2011). It was not clear 

from the methods section as to how the authors intended to 

operationalize the diversity and relative abundance measurements. The 

authors suggest that the abundance-based coverage estimators ACE 

and Chao1 were used, but this was not made explicit, and how 

differential abundance bacteria was measured was also not made 

explicit (Pushalkar et al., 2011). In the results and discussion section, it 

appears that the number of detectable bands identified through the 

denaturing gradient gel electrophoresis (DGGE) was used as a diversity 

measure (Pushalkar et al., 2011). The authors present visualizations and 

tables of their results as exploratory, and do not attempt to draw 

conclusions on a statistical basis (Pushalkar et al., 2011). They provide 

raw output from their analysis, identifying clusters by number (e.g., I and 

II) (Pushalkar et al., 2011). 

In the results and discussion sections, the authors claim to be 

pursuing an oral microbiome “profile” that would theoretically 

differentiate healthy patients from those with OSCC (Pushalkar et al., 

2011). To be clear, although mentioned in their research aims, 

measurements of diversity and abundance are not explicitly addressed 

in the analysis; instead, visualizations of their results are presented more 

as an argument to support the profiles they identified in their analysis 

(Pushalkar et al., 2011). To support their identification of profiles, they 

present a bar chart comparing the relative distribution of both phyla and 

genera in the OSCC samples compared to control (Pushalkar et al., 
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2011). The bars exhibit no more than 20% difference between the 

groups, , and no statistical tests were used (Pushalkar et al., 2011). 

Further, a Venn diagram of the profiles was presented, but it also lacks 

statistical rigor and does not visually illustrate the obvious emergence of 

two differentiated profiles (Pushalkar et al., 2011). Due to this study 

lacking enough sample and authors not using appropriate statistical 

approaches, the design of the study was insufficient to make such claims 

which were likely due to Type I error. (Gloor et al., 2017; Leung, 2011; 

Mandal et al., 2015; Pushalkar et al., 2011). 

The second small sample study included in this review aimed to 

research the diversity of the oral microbiome in patients with OSSC, 

long-term tobacco chewers, and non-tobacco-chewing healthy patients, 

but they only included samples from ten people in each group (Sawant 

et al., 2021). To the credit of the authors, they describe it accurately as 

a “pilot” study, but the only way such an underpowered study could ever 

show usable results on which to base the design of a larger study would 

be if a priori hypotheses were posed, and diversity and abundance 

metrics were clearly operationalized as part of the study design (Kers & 

Saccenti, 2022; Leung, 2011; Mandal et al., 2015; Sawant et al., 2021). 

Instead, the authors posed no hypotheses, and described running 

multiple α and β diversity indexes without choosing a metric of record – 

essentially admitting they were “fishing” for a significant p-value (Kers & 

Saccenti, 2022; Leung, 2011). The authors also fail to choose one metric 

for abundance or relative abundance, and choose to run both a Kruskal-
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Wallis and a Wilcoxon test on LDA effect size (Gloor et al., 2017; Kers & 

Saccenti, 2022; Leung, 2011; Sawant et al., 2021). 

The previous paragraphs described studies lacking a priori 

statistical testing that also exhibit challenges with sampling and issues 

with applying statistical approaches. This combination of these study 

design features, including the lack of selection of metrics and statistical 

tests a priori, lack of stated a priori hypotheses, multiple heterogeneous 

participant groups with extremely small sample, and the appearance of 

“fishing” make it so that results cannot be interpreted according to the 

scientific method (Gloor et al., 2017; Kers & Saccenti, 2022; Leung, 

2011; Sawant et al., 2021). As a result, the authors are forced to cherry-

pick and report certain particularly interesting results from their analyses, 

such as their finding that the genus Streptococcus dominated the control 

group, with less abundance in the tobacco and OSCC groups (Sawant 

et al., 2021). With lack of rigorous study design, it is not possible to tell 

if this is a real finding, or a chance finding (Gloor et al., 2017; Kers & 

Saccenti, 2022; Leung, 2011; Sawant et al., 2021). 

Small Sample Studies with Descriptive Aims 

Three of the small sample studies in this review included 

descriptive aims (Al-Hebshi et al., 2017; Li et al., 2020; Namburi et al., 

2020). The aim of the first of these studies was to characterize the 

species composition and functional potential of the bacteriome 

associated with OSCC, but to investigate this, the authors only included 

20 OSCC biopsies, and 20 deep-epithelium swabs from “matched 

controls” (Al-Hebshi et al., 2017). While the aim is reasonable, in order 
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to characterize the species composition and functional potential of the 

bacteriome associated with OSCC, all of the participants in the study 

should have been OSCC patients in order to reduce heterogeneity and 

increase the likelihood of seeing an effect (Hu & Dignam, 2019). Further, 

all of them should have had a well-characterized diagnostic entity – 

meaning all of them should have undergone a diagnostic evaluation for 

OSCC according to a research protocol.  Also, the data collected should 

be promoted as providing the basis for extrapolation about a particular 

population, the way the NHANES analysis can provide a characterization 

of the oral microbiome in US residents (Hu & Dignam, 2019; Vogtmann 

et al., 2023). That is because government agencies fund oncology 

studies for the purposes of improving the health of the population of their 

countries, so it is incumbent upon researchers receiving this funding 

should steward these funds for greater public health impact (NIH Human 

Microbiome Portfolio Analysis Team, 2019). 

While descriptive analyses present no obligations to engage in 

statistical testing, without a clear description of how the authors intended 

to characterize the species composition and functional potential of the 

oral bacteriome in patients in their study with OSCC, it is difficult to 

understand what the authors found (Al-Hebshi et al., 2017; Leung, 

2011). While the authors presented many visualizations of their results, 

these images do not tell a compelling story when presented together, 

and the authors are reduced to simply listing the abundant taxa found in 

their analysis as their findings (Al-Hebshi et al., 2017; Gloor et al., 2017; 

Leung, 2011). This lack of scientific rigor in study design and reporting 
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suggests that multiple studies done with the same study design on the 

same background population would render widely different findings, in 

which case, the reported results would be due to Type I error (Al-Hebshi 

et al., 2017; Gloor et al., 2017; Hu & Dignam, 2019; Kers & Saccenti, 

2022; Leung, 2011). Mainly, this is due to the authors not 

accommodating the compositional nature of the data (Gloor et al., 2017). 

The second of the three small sample studies with descriptive 

aims included in this review suffers from many of the same issues as the 

first one (Li et al., 2020). As stated in the article, the aim of the study was 

to explore the microbial composition and functions in periodontitis and 

gingival squamous cell carcinoma (GSCC) (Li et al., 2020). Even from 

the study aim, it is apparent that in order to characterize the oral 

microbiome in two completely different disease entities, a very large 

sample of at least 30 if not 100 homogenous patients must be drawn (Hu 

& Dignam, 2019; Serdar et al., 2021). Yet, this study included three 

groups of patients, with only ten participants in one group, and 15 in each 

of the two other groups (Hu & Dignam, 2019; Li et al., 2020). Further, the 

authors describe applying multiple post hoc tests of diversity and other 

indices without a stated a priori hypothesis, rendering their results 

uninterpretable (Gloor et al., 2017; Kers & Saccenti, 2022; Leung, 2011; 

Li et al., 2020). As with the last article, the authors are reduced to cherry-

picking and reporting results that they find interesting, such as their 

observation of Atopobium (a gram-positive bacteria that was found to 

colonize periodontal abscess and plaque) which was the most abundant 

in GSCC saliva and plaque as compared to periodontitis followed by 
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controls.(Kers & Saccenti, 2022; Leung, 2011; Li et al., 2020). While 

these observations are interesting, they should be treated with caution 

as the lack of rigorous study design and the high likelihood of Type I 

error would likely lead to unreproducible findings (Kers & Saccenti, 2022; 

Leung, 2011; Li et al., 2020). 

The third small sample study with descriptive aims reviewed in 

this comprehensive review actually exemplifies and illustrates the 

danger of not using statistical rigor when designing studies of the 

microbiome (Gloor et al., 2017; Kers & Saccenti, 2022; Leung, 2011; 

Namburi et al., 2020). While this study appears to be the first to use 

MinION nanopore in sequencing 16s rRNA gene of OSCC – a 

technology allowing the researcher to sequence longer reads as 

compared to Illumina Miseq, it is still expected to follow a scientific 

rigorous design (Namburi et al., 2020). The authors in this study 

confidently reported their findings – that there was a low abundance of 

Capnophilic Capnocytophaga species in OSCC patients compared to 

healthy patients – based on the findings from ten patients placed in two 

groups, with no statistical hypotheses posed, nor any metrics 

operationalized (Gloor et al., 2017; Kers & Saccenti, 2022; Leung, 2011; 

Namburi et al., 2020). It is completely unclear if this finding was random 

due to Type I error, or a finding that accurately characterizes the OSCC 

microbiome in the background population of individuals the authors were 

studying, which are Indian OSCC patients (Gloor et al., 2017; Leung, 

2011; Namburi et al., 2020). Nevertheless, due to severe issues with 

sampling, these study results do not provide any usable evidence related 
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to the human oral microbiome in general relating to OSCC (Gloor et al., 

2017; Leung, 2011; Namburi et al., 2020). 

Small Sample Studies Aiming to Develop Diagnostic Biomarker 

Profiles 

Three of the eight small sample studies included in this review 

sought to develop diagnostic biomarker profiles (Granato et al., 2021; 

Hashimoto et al., 2019; Rai et al., 2021). In the first article, Granato and 

colleagues (2021) conducted a study aiming to determine how a unique 

biomarker profile might differentiate between OSCC patients without an 

active lesion, OSCC patients with an active lesion, and healthy controls. 

This would be challenging, as described earlier, since epidemiologic 

studies to address cancer (such OSCC) utilize the concepts of “target 

biomarker” and “companion biomarkers” (Hemminki et al., 2020; Hu & 

Dignam, 2019). Therefore, seeking simply a profile would not be useful 

for cancer research, and from a statistical standpoint, it would be hard to 

demonstrate that a unique profile that differentiates one patient group 

from another could be identified, as so many biomarkers are correlated 

(Hemminki et al., 2020; Hu & Dignam, 2019). 

Further, the authors only included eight participants in each 

group, did not state any a priori hypotheses, utilized the HOMD for data 

profiling, and employed unusual and undefended statistical approaches, 

severely limiting the utility of the data they collected (Gloor et al., 2017; 

Granato et al., 2021; Kerr, 2016; Leung, 2011). For example, one of the 

analysis they did includes a linear regression equation which contained 

covariates as independent variables at two hierarchical levels of order: 
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Lesion type and tumour site (level one) and participant age (level two) 

(Granato et al., 2021). Such a regression analysis would not be 

appropriate without hierarchical modelling (Granato et al., 2021; 

Grantham et al., 2020; Kerr, 2016). Similarly, other analyses were 

described without any hypotheses, and as with the linear regression 

model described earlier, many of these statistics would be considered 

inappropriate to use on such small samples of compositional data (Gloor 

et al., 2017; Granato et al., 2021; Kerr, 2016; Leung, 2011). In summary, 

the study design and statistical approach in this study had many errors, 

and this precludes interpretation (Gloor et al., 2017; Granato et al., 2021; 

Kerr, 2016; Leung, 2011). Although the authors proposed that genus 

Alloscordovia was highly abundant in active OSCC group as compared 

to inactive OSCC samples while Veillonella was lowered in the active 

OSCC group as compared to the inactive group. In addition the authors 

suggested that Centipeda, Veillonella and Gamella to be associated the 

activity, size, and the clinical stage of the tumour, these findings should 

be interpreted carefully due to the estimates likely being unstable (Gloor 

et al., 2017; Granato et al., 2021; Leung, 2011). 

The second of the small sample biomarker profile studies 

included in this comprehensive review had a very similar design and 

approach as the one just described, so it carries with it a lot of the same 

methodologic errors (Gloor et al., 2017; Hashimoto et al., 2019; Leung, 

2011). As with the previous study, these authors included three groups 

and only a total of 16 individuals: Six having oral leukoplakia, six having 

OSCC, and four healthy controls (Hashimoto et al., 2019). With groups 
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with sample sizes this small, it would have been unlikely for the authors 

to find statistically significant differences between groups on any metric, 

and the statistical power needed to build an entire evidence-based 

replicable biomarker profile would have definitely have been out-of-

reach to the authors (Gloor et al., 2017; Hashimoto et al., 2019; Hu & 

Dignam, 2019; Kerr, 2016; Leung, 2011). Consequently, the results they 

report – such as the abundance of the genus Solobacterium as being 

higher in OSCC compared to the oral leukoplakia group – requires 

further confirmation as the result might be due to Type I error (Gloor et 

al., 2017; Hashimoto et al., 2019; Kerr, 2016; Leung, 2011). It would be 

extremely unlikely for this author group to be able replicate this study 

and achieve the same results, so the lack of rigor in the study design and 

statistical approaches preclude its utility for targeting cancer biomarkers 

or developing profiles (Gloor et al., 2017; Hashimoto et al., 2019; Kerr, 

2016; Leung, 2011). 

The third small sample study seeking to define biomarker profiles 

included in this review had a relatively larger sample in each group, with 

25 OSCC patients and 24 healthy controls (Rai et al., 2021). However, 

of these patients, only 11 patients of the OSCC groups were recruited 

for the metagenomic analysis. This level of sample is still much too small 

to support the development of an entire unique diagnostic profile that 

differentiates the groups, especially without defining target and 

companion biomarkers of interest a priori (Gloor et al., 2017; Hu & 

Dignam, 2019; Leung, 2011; Rai et al., 2021). These authors took a 

similar approach as the others, and reported interesting observations 
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they made resulting from their studies of microbiome signatures and 

bacterial abundance, such as higher abundance of certain taxa (Table 

2.2) (Rai et al., 2021). Again, because these results are not replicable, a 

study with these design and statistical flaws cannot contribute to the 

understanding of the microbiome in OSCC  (Gloor et al., 2017; Hu & 

Dignam, 2019; Kerr, 2016; Leung, 2011; Rai et al., 2021). 

Natural History Studies 

Although the small sample studies reviewed in the last section 

lacked rigor leading to results that were not robust, using small samples 

in studying the natural history of a lesion, especially in one patient or a 

homogenous group of patients, can yield useful results (Sepich-Poore et 

al., 2021). In the first of these two studies, Lee and colleagues (2017) 

used a cross-sectional design of participants who all had been evaluated 

for OSCC, and placed them in three groups: normal, epithelial precursor 

lesion, and OSCC. The authors applied appropriate statistical 

techniques, declaring they were only using species richness and the 

Shannon Index to evaluate α diversity, and they used the UniFrac 

distance as a metric for β diversity (evaluated using the Wilcoxon rank-

sum test) (Lee et al., 2017). 

Even with the high level of statistical rigor in this study, the results 

were complex reflecting the complexity of the oral microbiome (Lee et 

al., 2017). Visualizations of results demonstrated that biomarker profiles 

in the three different groups each contained a complex network of 

microbiomes (Lee et al., 2017). The authors were able to conclude that 

five genera - Bacillus, Enterococcus, Parvimonas, Peptostreptococcus, 
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and Slackia – had statistically significantly different metrics when 

compared between the epithelial precursor lesion group and the OSCC 

group (Lee et al., 2017). These results are useful, in that they could form 

the basis of future studies of target and companion biomarkers that might 

be prognostic or predictive (Hu & Dignam, 2019). However, it is 

important to note that these findings at this point only apply to the 

background cohort from which the sample was drawn, which was in 

Taiwan (Lee et al., 2017). Even so, by utilizing rigorous research 

approaches, the results of this study can contribute useful information to 

those studying biomarker-related therapies for OSCC (Hu & Dignam, 

2019; Lee et al., 2017). 

The second of the two articles included in this review with study 

designs aimed to elucidate the natural history of the OSCC microbiome 

had many similarities in design to the first article (C.-Y. Yang et al., 

2018). In their study, the authors included a group of healthy individuals, 

and a group of OSCC patients who had been evaluated and classified 

as Stage I, Stage 2 and 3, or Stage 4 (C.-Y. Yang et al., 2018). However, 

unlike with the previous study, these authors did not use an appropriate 

statistical approach where metrics for comparison were defined a priori, 

and instead, just compared all the metrics without regard to a hypothesis 

testing framework (C.-Y. Yang et al., 2018). The authors also used the 

LEfSe analysis comparing differential abundant taxa which does not take 

the compositionality of the data into account. In addition, the authors 

developed receiver-operator curves (ROC) and reported area under the 

curve (AUC) without apparently realizing that since these biomarkers are 



Page 102 

all correlated, such an approach will not provide results that can be 

interpreted (C.-Y. Yang et al., 2018). The reason using such tightly 

correlated biomarkers will not produce a usable predictive model is due 

to multi- collinearity (Ogoke, 2023). Logistic regression was also 

performed without a description or rationale for the equation (C.-Y. Yang 

et al., 2018). 

In the results section, the authors found Fusobacterium 

periodonticum, Parvimonas micra, Streptococcus constellatus, 

Haemophilus influenza, and Filifactor alocis to be associated with 

OSCC, and they were observed to progressively increase in abundance 

from stage 1 to stage 4 (Granato et al., 2021; C.-Y. Yang et al., 2018). 

As with many other author groups making similar study design and 

biostatistical errors, the results from the current article cannot be used 

as conclusive scientific evidence (Gloor et al., 2017; Granato et al., 2021; 

Leung, 2011; C.-Y. Yang et al., 2018). This can immediately be 

contrasted with the utility and clarity of the other paper reviewed in this 

section, which identified five genera that were statistically different 

between groups (Lee et al., 2017). Due to the poor selections made in 

the study design and statistical approaches, the results from the current 

article cannot be used on a scientific basis (Gloor et al., 2017; Kers & 

Saccenti, 2022; Leung, 2011; C.-Y. Yang et al., 2018). 

Comparative Case Series Studies 

Five of the studies that will be reviewed here were classified as a 

comparative case series in design, because they included analyses 

where healthy tissue and diseased tissue were compared within the 
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same individual (Mukherjee et al., 2017; Sarkar et al., 2021; Su et al., 

2021; Zhang et al., 2020; Zhao et al., 2017). These study designs are 

compelling, because they can shed light on the natural history of the 

tissue within the individual; however, they are limited in making 

inferences to background population groups (Semrau et al., 2023). 

Table 2.4 summarizes the studies in terms of study aims, metrics 

specified, use of the HOMD, and findings. “Metrics specified” refers to 

biostatistics, where the metrics that will be tested are stated prior to data 

collection (a priori, according to the scientific method). If metrics to be 

tested are not specified, and a descriptive analysis is completed, there 

are no issues. However, if the scientific method is applied, a test statistic 

calculated, and a p value declared and interpreted. Therefore, the 

reporting of p values implies the scientific method has been used. If 

metrics are not pre-specified and p values are being calculated and 

presented, it is evidence that there has been an error in the application 

of the scientific method. In the case of multiple post hoc analyses being 

conducted without adjustment of the p value before interpretation, this is 

called “fishing”. This should be contrasted with merely reporting 

descriptive statistics without p values. Using the HOMD in ML models is 

also included in the table because it is risky as described earlier. The 

reason it is risky is that the HOMD lacks the necessary metadata to 

support its utilization in ML models, because it is unclear if it is 

appropriate training data. Only one of them used a discernible 

biostatistical approach, so findings in four of the five studies are unclear. 
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Table 2.4. Characteristics of comparative case series studies 

Article Study Aim Metrics 
Specified 

Use of 
HOMD 
in ML 

Findings 

Zhao, et al. 
(2017) 
"Variations 
in oral 
microbiota
…" 

To unravel the 
connections 

underlying oral 
bacterial 

dysbiosis and 
OSCC. 

None, and 
evidence 
of fishing 

Yes Unclear 

Mukherjee, 
et al. (2017) 
"Bacteriome 
and 
mycobiome
…" 

To explore the 
bacteriome 

and 
mycobiome in 
mobile tongue 

cancers. 

None, and 
evidence 
of fishing 

No Unclear 

Zhang, et 
al. (2020) 
"The oral 
microbiota
…" 

To determine 
the 

characteristics 
of oral 

microflora on 
OSCC tumour 

sites. 

None, and 
evidence 
of fishing 

No Unclear 

Sarkar, et 
al. (2021) 
"Dysbiosis 
of oral 
microbiota
…" 

To establish 
the 

association of 
bacterial 

dysbiosis and 
OSCC among 

the Indian 
population 

Either 
there are 

no metrics 
specified, 
or this was 
intended 

as a 
descriptive 

analysis 

No Unclear 

Su, et al. 
(2021) "Oral 
microbial 
dysbiosis…
" 

To 
characterize 

the 
disturbances 

in the oral 
microbial 

population 
mainly due to 

oral 
tumorigenicity 

Shannon 
Index for 

alpha 
diversity, 

UniFrac for 
beta 

diversity. 

No 

"Significant 
alterations in 
the bacterial 
diversity and 

relative 
abundance of 
specific oral 
microbiota 

(most 
profoundly, an 
enrichment for 

genus 
Fusobacteriu

m and the loss 
of genus 
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Article Study Aim Metrics 
Specified 

Use of 
HOMD 
in ML 

Findings 

Streptococcus 
in the tumour 
sites) were 
identified." 

 

As described in Table 2.4, due to a lack of rigor in study design or 

the application of biostatistics, the results for four of these five studies 

was unclear. In all of these five studies, because individual participants 

are contributing more than one sample to the study, statistical methods 

need to account for and adjust for this individual variation (Grantham et 

al., 2020). Without taking this into account statistics, it would be very 

hard to make inferences about how healthy tissue might have evolved 

into diseased tissue in these individuals. 

Studies Published in 2017 

The earliest of the two studies were done by Zhao and colleagues 

(2017) in a Chinese cohort, and Mukherjee et al. (2017) in individuals 

from an unnamed country (speculated to be the US). Because of lack of 

scientific rigor, it is difficult to interpret the results of these two studies. 

In the Chinese study, the aim was to “unravel the connections underlying 

dysbiosis and OSCC”, which seems to presume that dysbiosis in OSCC 

is considered accepted science (Zhao et al., 2017). The authors describe 

many analyses, acknowledge the limitations of using the HOMD for 
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labelling, and say they calculated many statistics (Zhao et al., 2017). 

They also present many visualizations, but without using statistical 

inference or posing any a priori analysis, it would be difficult to address 

a research aim like this (Gloor et al., 2017; Kers & Saccenti, 2022; 

Leung, 2011; Zhao et al., 2017). The authors appear to be intending to 

study the degree to which the oral bacteriome becomes dysbiotic when 

transitioning from healthy tissue to OSCC, but the study design is not set 

up to answer such as research question (Gloor et al., 2017; Kers & 

Saccenti, 2022; Leung, 2011; Zhao et al., 2017). The authors reported 

that they identified many different taxa than previous studies (see Table 

2.4), and this will likely keep happening as long as studies refrain from 

using appropriate statistical inference methods for answering research 

questions (Gloor et al., 2017; Leung, 2011; Zhao et al., 2017). 

In the Mukherjee et al. (2017) study, the aim was to “explore the 

bacteriome and mycobiome” in mobile tongue cancers (see Table 2.4). 

Because the authors took pairs of samples of tumour and adjacent 

normal tissue from their participants who all had tongue cancers, the 

authors seem to intend to study how the bacteriome and mycobiome 

change when transitioning from healthy to disease tissue in the same 

individual (Mukherjee et al., 2017). The authors include a “statistics and 

bioinformatics” section, where they explain the metrics they intended to 

use to represent various constructs (such as diversity and relative 

abundance) (Mukherjee et al., 2017). However, for each of these metrics 

they test, they failed to state a priori hypothesis (Gloor et al., 2017; Kers 

& Saccenti, 2022; Leung, 2011; Mukherjee et al., 2017). While the 
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authors reported findings that might be of interest (such as the existence 

of Rothia mucilaginosa at a higher rate in the tumour group as compared 

to controls), the direct comparison of taxa proportions is not appropriate 

when dealing with microbiome data (Gloor et al., 2017). Because of the 

previously mentioned issues, the results are not considered robust and 

might be attributable to Type I error (Gloor et al., 2017; Kers & Saccenti, 

2022; Leung, 2011; Mukherjee et al., 2017). 

Studies of Microbial Imbalance/Dysbiosis 

The next study listed in Table 2.4 after these two early studies 

was similar in design to the first one, in that bilateral buccal mucosal 

swab samples were analysed in 50 Chinese participants, with each 

participant contributing a sample of diseased tissue and a sample of 

healthy tissue (Zhang et al., 2020). The authors explained that they 

believed “imbalances between microbes and their hosts could lead to 

OSSC”, which could be interpreted as another way of saying that the 

microbiome may be critical to the development of OSCC lesions, and 

this is the impetus for the study (Zhang et al., 2020). In their reporting in 

the “statistics and bioinformatics” section, the authors describe running 

many statistical tests on many different measurements, which suggests 

“fishing” and cannot provide interpretable results (Gloor et al., 2017; Kers 

& Saccenti, 2022; Leung, 2011; Zhang et al., 2020). The authors 

reported identifying abundances of Fusobacterium Nucleatum, 

Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga 

leadbetteri, Peptostreptococcus stomatitis, in addition to another five 

species to be significantly increased in OSCC, suggesting their potential 
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association with OSCC. While the authors reported differential abundant 

taxa between lesional and non-lesional swabs, and they mentioned 

using the STAMP software package, it was not clear which statistical test 

was used. Hence, without rigorous study design and using statistical 

inference, it is not clear if these findings are due to chance or are actually 

statistically significant (Gloor et al., 2017; Hu & Dignam, 2019; Leung, 

2011; Zhang et al., 2020). 

The next study in this category, by Sarkar and colleagues (2021), 

aimed to “establish the association of bacterial dysbiosis and OSCC” 

among the Indian population. This aim is similarly-worded to the one 

posed by Zhao and colleagues (2017), which implied that bacterial 

dysbiosis in OSCC is accepted science (Sarkar et al., 2021). However, 

from the wording of the aim, it is not clear what the authors intended as 

a study design or analytic approach (Sarkar et al., 2021). The design of 

this study was similar to the others in this category, where malignant 

lesions and adjacent normal tissues were sampled within the same 

individual (Sarkar et al., 2021). The statistical reporting was also similar, 

where the authors did not pose any a priori hypotheses, yet described 

the generation and comparison of multiple metrics with many statistical 

tests, suggesting “fishing” (Gloor et al., 2017; Leung, 2011; Sarkar et al., 

2021). 

Finally, the last of the five studies listed in Table 2.4 is different, 

in that while the study design was similar to the other four studies, the 

statistical approach was acceptable, and the results can be interpreted 

(Su et al., 2021). Like the previous two studies, the study aim had to do 
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with understanding disturbances in the oral microbial population due to 

oral tumorigenicity (Su et al., 2021). First, it is important to note that this 

study included a comparatively large sample of participants (Su et al., 

2021). Authors first sampled oral swabs of tumour lesions and their 

contralateral normal regions in 74 OSCC patients as one cohort, then 

completed the same data collection effort subsequently in what they 

termed a “validation cohort” of 42 participants (Su et al., 2021). The 

statistical analysis section of this article explains exactly how the authors 

approached this analysis, including the metrics they used, and the 

comparisons they conducted (Su et al., 2021). Further, they indicated 

that they used the knowledge they gleaned from analysing the data from 

the initial cohort to test predictions they made in the validation cohort 

about the microbiome (Su et al., 2021). This suggests that this is a 

rigorous study, and its results should be interpreted (Gloor et al., 2017; 

Leung, 2011). 

The background population for this study was in Taiwan, so the 

results that the authors report should apply directly to this population (Hu 

& Dignam, 2019; Su et al., 2021). Comparing OSSC tissue to normal, 

the authors found significant enrichment of genus Fusobacterium and 

loss of genus Streptococcus in tumour sites (Su et al., 2021). From their 

functional predictions, they found that microbial genes related to the 

metabolism of terpenoids and polyketides were significantly enriched 

differently in tumour vs. control (Su et al., 2021). Although the statistical 

test used for the previous comparison was criticized in the literature, 

because it does not take into account the compositional nature of the 
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data, and therefore increases the risk of false positive results when 

applied with microbiome data, all these findings were observed to be 

replicated in the validation cohort, suggesting they were robust (Gloor et 

al., 2017; Su et al., 2021). 

To summarize this section, as a generalization, all five studies in 

this category were aiming to better understand how the microbiome is 

disturbed as healthy tissue transitions to diseased tissue (Mukherjee et 

al., 2017; Sarkar et al., 2021; Su et al., 2021; Zhang et al., 2020; Zhao 

et al., 2017). Positive features of all of these studies is that they were 

conducted in specific populations, had a large enough sample in each 

participant group to provide for statistical inferences, and were careful, 

deliberate and transparent in their measurements (Mukherjee et al., 

2017; Sarkar et al., 2021; Su et al., 2021; Zhang et al., 2020; Zhao et al., 

2017). 

However, all but one study in this section failed to provide usable 

scientific evidence because of the study’s lack of statistical rigor (Gloor 

et al., 2017; Leung, 2011; Mukherjee et al., 2017; Sarkar et al., 2021; Su 

et al., 2021; Zhang et al., 2020; Zhao et al., 2017). While any data 

collection effort will produce tabulatable and graphable results, without 

the use of statistical inference, it is not possible to know which results to 

trust as likely correct, and which ones to conclude are likely due to 

chance (Gloor et al., 2017; Kerr, 2016; Leung, 2011; Mandal et al., 

2015). 
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Low Quality Cross-Sectional Studies 

The five low quality cross-sectional studies included in this review 

took place between 2019 and 2021, long after 16s rRNA gene NGS was 

well-adopted in the oral health research field (Chang et al., 2019; J.-W. 

Chen et al., 2021; Gopinath, Kunnath Menon, et al., 2021; Takahashi et 

al., 2019; Zhou et al., 2021). The groups included in these cross-

sectional studies had large enough sample sizes to enable the authors 

to make statistical inferences  (Chang et al., 2019; J.-W. Chen et al., 

2021; Gopinath, Kunnath Menon, et al., 2021; Takahashi et al., 2019; 

Zhou et al., 2021). Nevertheless, many had significant study design 

flaws (see Table 2.5). 

Table 2.5 Cross-sectional studies 

Article Study Aim Statistical 
Approach Findings 

Takahashi, 
et al. (2019) 
"Analysis of 
oral 
microbiota…" 

To clarify the 
relationship 

between oral 
cancer and oral 

microbiota in 
Japanese 
patients. 

Evidence 
of "fishing" 

Authors 
selectively 

present statistical 
findings in the 

abstract 

Chang, et al. 
(2019) "The 
prevalence 
rate…" 

To determine 
whether 

periodontal 
pathogens may 

have a role in oral 
cancer 

development 

Evidence 
of "fishing" 

Authors report 
relative 

abundance of 
periodontal 

pathogens, but 
unclear if this is 
due to chance. 

Gopinath, et 
al. (2021) 
"Salvatory 
bacterial 
shifts…" 

Study aim was 
not stated clearly 

Evidence 
of "fishing" 

Authors implicate 
14 taxa belonging 
to 8 genera, but it 
is unclear if this is 

due to chance. 

Zhou, et al. 
(2021) "The 
clinical 
potential…" 

To develop an 
early diagnostic 
model based on 
the relationship 
between OSCC 

Evidence 
of "fishing" 

The authors 
report results that 
seem difficult to 

replicate 
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Article Study Aim Statistical 
Approach Findings 

and oral 
microbiota. 

Chen, et al. 
(2021) 
"Taxonomic 
and 
functional…" 

To investigate the 
role of ecological 

patterns in 
healthy and 

diseased oral 
microbiomes 

Evidence 
of "fishing" Unclear 

 

As shown in Table 2.5, the study aims for four of these studies 

were diverse, and one did not have a discernible study aim (Chang et 

al., 2019; J.-W. Chen et al., 2021; Gopinath, Kunnath Menon, et al., 

2021; Takahashi et al., 2019; Zhou et al., 2021). One study sought to 

“clarify the relationship” between oral microbiota among Japanese oral 

cancer patients (Takahashi et al., 2019), while Chen and colleagues 

(2021) intended to investigate the role of “ecological patterns” in both 

healthy and diseased microbiomes, and another author group intended 

to develop an “early diagnostic model” based on OSCC microbiota (Zhou 

et al., 2021). The way these aims were stated, it was unclear how the 

authors would approach their study designs, in terms of what 

comparisons they would make between what metrics (Gloor et al., 2017; 

Kers & Saccenti, 2022; Leung, 2011). One study aimed to determine 

whether periodontal pathogens specifically had a role in oral cancer 

development (Chang et al., 2019), while another study lacked stated 

aims altogether (Gopinath, Kunnath Menon, et al., 2021). 

As described in Table 2.5, there is evidence of statistical fishing 

in all of the papers in this category in this review (Chang et al., 2019; J.-

W. Chen et al., 2021; Gloor et al., 2017; Gopinath, Kunnath Menon, et 
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al., 2021; Kers & Saccenti, 2022; Leung, 2011; Takahashi et al., 2019; 

Zhou et al., 2021). Many of the authors reported that they calculated 

different diversity, relative abundance, and other metrics, but when they 

do not pair the metrics with an a priori hypothesis, then they are 

essentially admitting that all of their analyses will be a posteriori, or 

conducted after the data are gathered without a presupposed hypothesis 

(Chang et al., 2019; J.-W. Chen et al., 2021; Gloor et al., 2017; Gopinath, 

Kunnath Menon, et al., 2021; Leung, 2011; Takahashi et al., 2019; Zhou 

et al., 2021). Doing this greatly complicates the understanding of the true 

scientific results of these studies (Leung, 2011). 

In each of the cases in Table 2.5, the studies engaged in post hoc 

analysis, yet presented the results as if they were derived from an a priori 

analysis (Chang et al., 2019; J.-W. Chen et al., 2021; Gopinath, Kunnath 

Menon, et al., 2021; Leung, 2011; Takahashi et al., 2019; Zhou et al., 

2021). The reason this is inappropriate is that when conducting a true 

post hoc analysis, adjustments are made to the cut point p-value to 

account for multiple comparisons, and after the application of this 

adjustment, interpretations are made (Leung, 2011). Without doing this, 

authors are likely to report spurious results – some of which appear to 

be obviously incorrect. For example, in the abstract of Takahashi et al. 

(2019) it is reported that “Peptostreptococcus, Fusobacterium, 

Alloprevotella, and Capnocytophaga were more abundant in the cancer 

group compared to the control, whereas Rothia and Haemophilus were 

less abundant (p < 0.01)” (p. 120). Because this p-value was derived 

from an unadjusted post hoc analysis, the results should not be reported 
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without proper adjustment, as it is likely after adjustment, the significance 

might disappear (Leung, 2011). With a similar scientifically incorrect 

approach, Zhou and colleagues (2021) reported that they developed a 

diagnostic model for OSCC microbiota with a greater than 95% accuracy 

and a 0% false positive rate, which on the face of it seems very optimistic 

(Leung, 2011). 

The American Statistical Association (ASA) has established 

“Ethical Guidelines for Statistical Practice” that they keep updated 

(American Statistical Association, 2022). These are used to guide the 

professional development of statisticians, including biostatisticians. 

These guidelines include “Principal B: Integrity of Data and Methods” 

(American Statistical Association, 2022). In terms of the statistical issues 

described with these studies, had a professional statistician been 

consulted and had recommended the analyses presented in these 

papers, it would have been unethical. However, these ethical guidelines 

only apply to professional statisticians. Technically, anyone who is able 

to use statistical software will be able to produce results and report them. 

Currently, the peer review process is expected to conduct oversight of 

such issues, but this is an optimistic position. (Makin & Orban de Xivry, 

2019) describe ten common statistical errors made in scientific papers 

and conducting post hoc analysis without adjustment of p value is among 

them. 

In one of the articles in this category, the authors mentioned they 

wanted to see whether periodontal pathogens have a role in OSCC and 

reported their findings that P. gingivalis and F. nucleatum had a higher 
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relative abundance in cancer vs. normal tissue (Chang et al., 2019). This 

seems to be a classic example of what can happen without applying 

appropriate statistical methods, where the authors “confirm” their 

hypothesis without using statistics according to the ethical guidelines 

provided by the ASA (American Statistical Association, 2022; Gloor et 

al., 2017; Kers & Saccenti, 2022; Leung, 2011). In these cases, if a 

statistician conducted the analysis, it would be seen as unethical, 

whereas if a statistician was not responsible for the analysis, it would 

likely be seen as an honest mistake. 

Nevertheless, when apparently biased results like these are 

reported as arising from rigorous scientific testing, it creates two primary 

issues (Leung, 2011). First, it is seen by the ASA as unethical, because 

it presents scientific findings in the literature as if they had been 

subjected to rigorous statistical testing when they have not, creating 

misinformation (Leung, 2011). But besides being misleading, publishing 

findings as if they had undergone rigorous statistical testing when they 

have not confuses evolution of scientific thinking on the topic (Leung, 

2011). While this is a problem in many scientific domains, including both 

management and medicine, whenever it occurs, it seriously impedes 

scientific progress in that domain (Leung, 2011). 

Up to this point, three of the five studies in this category have 

been discussed (Chang et al., 2019; Takahashi et al., 2019; Zhou et al., 

2021). The first article engaged in post hoc analyses, but reported and 

interpreted findings with an unadjusted p-value (Takahashi et al., 2019); 

the second article appeared biased toward the authors’ hypothesis due 
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to the lack of adjustment for multiple comparisons in their post hoc 

analysis (Chang et al., 2019); and the third reported that the authors 

were indeed conducting a post hoc analysis, but then did not include an 

adjustment for multiple comparisons, and interpreted the findings 

anyway (Zhou et al., 2021). The fourth article in this category did not 

include a discernible research aim (Gopinath, Kunnath Menon, et al., 

2021), and the fifth article intended to investigate the “role of ecological 

patterns” in healthy tissue and OSCC which is unclear (J.-W. Chen et 

al., 2021). In the article without a clear research aim, the authors 

apparently intended to make inferences about how the oral bacteriome 

is different when comparing leukoplakia patients, OSCC patients, and 

healthy controls, but without a specific study aim and rigorous statistical 

testing described, it is not possible to understand this article (Gopinath, 

Kunnath Menon, et al., 2021). The article intending to investigate the role 

of ecological patterns describes many methods for deriving data from 

sample, and presents many different visualizations (J.-W. Chen et al., 

2021). Without a clear focus and rigorous study design and statistical 

approaches, it is not possible to understand what evidence this article 

contributes to the scientific literature (J.-W. Chen et al., 2021). 

Case-Control Studies 

There are two case-control studies included in this 

comprehensive review of NGS of 16s rRNA gene oral microbiome 

results from studies of OSCC (Gopinath, Menon, et al., 2021; Perera et 

al., 2018). Case-control control study designs can be extremely useful 

for building evidence even though they are observational in design 



Page 117 

(Brooks, 2016; Gibbons et al., 2018; Hu & Dignam, 2019; Schifano, 

2019; Semrau et al., 2023). The downside is that case-control designs 

have a lot of inherent bias, so careful steps need to be taken at the study 

design stage to minimize bias, and these are often challenging in 

microbiome studies (Brooks, 2016). 

Brooks (2016) recommends that hypotheses involving 

microbiome measurements in case-control studies either seek to see if 

there is a difference in α diversity between cases and controls, or to test 

if relative abundance follows a different multivariate probability 

distribution in cases vs. controls (to provide evidence for post hoc testing 

of specific microbiota). How the hypotheses are formulated and posed 

in a case-control study provides the setting for the sources of bias that 

can creep into any case-control design, but in microbiome studies, the 

propensity for bias can be elevated due to the exploratory nature of the 

hypothesized causal parameters being tested (Brooks, 2016; Gibbons et 

al., 2018; Schifano, 2019). When authors do not clearly state the 

theoretical exposure (i.e., hypothesized cause, such as particular 

biomarker profile) being analysed in the case-control design, and follow 

a traditional case-control statistical analysis, then even if the data were 

collected according to a case-control framework, the analysed data 

cannot be interpreted (Schifano, 2019). 

In the first case-control study in this review, the authors were 

actually conducting a follow-up analysis of data gathered in a case-

control study reported in a different article (see Table 2.2) (Perera et al., 

2017, 2018). As reported in the original study, the cases were made up 
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of 25 Sinhala males (aged 40 and over) with histologically-confirmed 

OSCC, and the controls were comprised of 27 Sinhala males diagnosed 

with  fibro-epithelial polyps (FEP) (Perera et al., 2017). However, no 

case-control hypotheses were proposed in the original report, and upon 

further inspection, the study did not have all the necessary case-control 

features, and did not follow the traditional statistical approach for case-

control studies (Brooks, 2016; Gibbons et al., 2018; Perera et al., 2017, 

2018; Schifano, 2019). In the article included in this review, the authors 

said their research aims were to “corroborate the findings” from another 

study of similar design, but did not say what exact findings from the 

previous study they were seeking to corroborate (Perera et al., 2018). 

The article does not attempt statistics, and contains many visualizations 

of data (Perera et al., 2018). In the abstract, the authors list the different 

members of the microbiome they found in the different groups (Perera 

et al., 2018). 

The final of the two case-control studies included in this review 

did not have a clear reported study aim (Gopinath, Menon, et al., 2021), 

and it was observed that the first author of this article is the same first 

author of the article included in the cross-sectional category in this 

review that also did not include a clear study aim (Gopinath, Menon, et 

al., 2021). This lack of a study aim precluded a case-control study design 

framework and statistical investigation in this paper (Brooks, 2016; 

Gibbons et al., 2018; Schifano, 2019). The authors reported different 

taxa found in the samples analysed from 48 OSCC patients and 46 

healthy controls who were evaluated for OSCC, but without using 
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statistical testing and the correct case-control analytic framework, these 

results are likely due to chance (Brooks, 2016; Gibbons et al., 2018; 

Gopinath, Menon, et al., 2021; Schifano, 2019). 

2.5. Discussion and Conclusion 

Primary Findings 

Per the objectives of this comprehensive review, through 

purposive sampling, 22 studies were identified with applicable scientific 

evidence to inform the design of research investigating high-throughput, 

NGS technology targeting the 16s rRNA gene in the study of the oral 

bacteriome OSCC. Of those 22 studies, only two used rigorous enough 

study methods to allow for interpretation, hence the findings related to 

the oral bacteriome in OSCC in only these two studies will be 

synthesized here. 

In the first study, authors found that among Taiwanese individuals 

evaluated for OSCC and found to either be normal, have an epithelial 

precursor lesion, or have cancer, the compositions of five genera - 

Bacillus, Enterococcus, Parvimonas, Peptostreptococcus, and Slackia – 

significantly differed between the epithelial precursor lesion group to the 

cancer group (Lee et al., 2017). In the second study, in two separate 

Taiwanese cohorts of OSCC patients, it was found that there were 

significant alterations in the diversity and relative abundance between 

healthy and OSCC tissue, in that the genus Fusobacterium was 

relatively more abundant and genus Streptococcus was relatively less 

abundant in OSCC tumour sites compared to control (Su et al., 2021). 

Also, their study showed that microbial genes related to terpenoid and 
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polyketide metabolism played a functional role in the tumour 

microenvironment (Su et al., 2021). Because these authors used two 

separate cohorts, they were able to validate their results from the first 

cohort to the second, thus increasing the robustness of their findings (Su 

et al., 2021). 

Unfortunately, summarizing the results of two studies cannot 

provide an answer to the question of how the oral bacteriome should be 

characterized in OSCC. The results of the two studies appear to be 

contradictory in some ways, but if all of the studies in this review had 

been conducted with the same high level of statistical rigor, their results 

could have been synthesized into this interpretation, and a clearer 

picture of the oral bacteriome in OSCC might have emerged. 

Study Design and Statistical Issues in Microbiome Studies 

It seems an overreach to consider these two articles “landmark” 

studies simply because they used adequate study design and statistical 

techniques, and were able to report scientific findings (Lee et al., 2017; 

Su et al., 2021). On the other hand, the results of this review expose 

serious issues in the field of microbiome analysis, especially with respect 

to the oral microbiome (Gloor et al., 2017; Gopinath, Kunnath Menon, et 

al., 2021; Gopinath, Menon, et al., 2021; Kers & Saccenti, 2022; Leung, 

2011). Although guidance exists for the design and analysis of 

microbiome studies using NGS 16s rRNA gene technology, this 

guidance appears to go largely unheeded, especially in the study of the 

oral microbiome (Brooks, 2016; Gibbons et al., 2018; Gloor et al., 2017; 

Gopinath, Kunnath Menon, et al., 2021; Hu & Dignam, 2019; Kers & 
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Saccenti, 2022; Schifano, 2019; Semrau et al., 2023). Although many 

methodologic issues were raised in this review, only two primary ones 

will be addressed here: issues with scientific rigor in study design and 

statistical analysis, and issues with accounting for compositional data in 

analysis (Gloor et al., 2017; Gopinath, Kunnath Menon, et al., 2021; Hu 

& Dignam, 2019; Kers & Saccenti, 2022; Leung, 2011). 

Issues of Scientific Rigor 

It is unreasonable to expect that all microbiology researchers will 

be biostatisticians or epidemiologists. However, microbiology research 

requires an advanced understanding of biology, so certainly the need to 

utilize rigorous statistical methods when comparing biological cohorts 

should be appreciated by these researchers (Brooks, 2016; Kers & 

Saccenti, 2022; Leung, 2011). In several of the studies included in this 

review, the authors say in the methods section that they will calculate 

multiple measures of diversity and other metrics, but do not include an a 

priori hypothesis, and do not go on the report the numerical results they 

say they will calculate (Chang et al., 2019; Mukherjee et al., 2017; Sarkar 

et al., 2021; Takahashi et al., 2019; Zhang et al., 2020). They also do 

not conduct post hoc adjustments, and then they provide an 

interpretation that may even contain a p-value (Chang et al., 2019; 

Mukherjee et al., 2017; Sarkar et al., 2021; Takahashi et al., 2019; Zhang 

et al., 2020). These author groups appear to be describing that they are 

fishing in their methods sections, and this suggests that they are 

unaware that the practice is inappropriate (Leung, 2011). In two studies 

included in this review, the authors did not include a discernible research 
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aim (Gopinath, Kunnath Menon, et al., 2021; Gopinath, Menon, et al., 

2021), and both case-control studies included did not apply the case-

control methodology correctly (Gopinath, Menon, et al., 2021; Perera et 

al., 2018). 

Very straightforward articles exist to give guidance to researchers 

using NGS 16s rRNA technology in terms of biostatistical and 

epidemiologic considerations necessary for such research, and these 

are not being cited in papers such as the ones in this review (Brooks, 

2016; Gibbons et al., 2018; Hu & Dignam, 2019; Kers & Saccenti, 2022). 

This observation suggests that there may be an educational gap in the 

training of microbiome researchers. This review showed that authors 

continue to conduct, publish, and review research studies without having 

an adequate understanding of the study design and statistical 

considerations that need to be applied in their field. Many of the papers 

included in this review had long lists of authors from highly reputed labs, 

and all of the papers with these serious methodologic errors underwent 

peer-review and were published in prestigious journals. 

On balance, it is important to consider the scientific challenges 

faced by the teams of scientific authors who produced these papers. By 

the nature of the questions posed, these studies are necessarily multi-

disciplinary. This requires clinicians and microbiologists to be able to 

effectively interact with and communicate to bioinformaticians and the 

statisticians. As these domains do not have a common language, these 

study design and statistical errors likely represent a failure of these 

groups to communicate effectively. Clinicians may be seeking guidance 
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they can use in a clinical setting, or results from an exploration, while 

microbiologists by their profession only focus on analysing the 

microbiome, so they are well-versed in laboratory methods, but do not 

have a clinical perspective. Statistician and bioinformaticians may offer 

help after data collection, but if an a priori hypothesis is not set up at the 

study design stage, there is little that can be done. It is important to focus 

on how challenging the research process is, and ways that these 

challenges can be reduced. 

As a remedy, Hamada and colleagues (2019) proposed the 

creation of a new field of knowledge called molecular pathological 

epidemiology (MPE). They described it as a transdisciplinary field 

designed to investigate hypothesized causes of disease (termed 

“exposures” in epidemiology) that may include microorganisms or utilize 

molecular pathological signatures of disease (Hamada et al., 2019). The 

vision would be to essentially aggregate all the existing guidance on how 

to do epidemiologic research that involves the microbiome and other 

biomarkers into one transdisciplinary field so that standards may be 

developed and applied (Hamada et al., 2019). Consequently, such 

reform could result in studies of the oral microbiome in OSCC with more 

robust designs that are comparable (Hamada et al., 2019). 

Accounting for Compositional Data in Analysis 

Gloor and colleagues (2017) accurately identify sources of bias 

inherent in the compositional data that arise from 16s rRNA gene 

technology. A main point of their writing (which is echoed in Mandal et 

al. (2015)) is that the 16s rRNA gene results do not have a denominator, 
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per se (Gloor et al., 2017). Imagine a situation where a sample is drawn 

from a human, split into three portions, and then analysed. Any individual 

microbiome signature may be detected at some level in each of the 

portions, but this does not provide a clear picture of the proportion of that 

particular microbiome in the whole sample portion, entire sample before 

it divided, an entire lesion that was the source of the sample, or entire 

human host relative to all the other microbiomes (Gloor et al., 2017; 

Mandal et al., 2015). By definition, samples are “cleaned” of material to 

enable the investigation of the microbiota of interest, and this necessarily 

introduces bias (Gloor et al., 2017; Mandal et al., 2015). 

While addressing this analytic puzzle is certainly a topic that could 

be remedied through the creation of a new MPE field of knowledge, 

currently, many researchers who study the microbiome are well aware 

of this challenge, and have developed easy-to-use, practical solutions 

(Gloor et al., 2017; Hamada et al., 2019; Mandal et al., 2015). Hence, 

improved attention to sharing information within the microbiology 

research community could help elevate awareness of this particular 

issue, and highlight the many practical solutions available (Gloor et al., 

2017; Mandal et al., 2015). In fact, both articles cited here were written 

with the intention of educating the microbial research community on this 

topic (Gloor et al., 2017; Mandal et al., 2015). 

Building an Evidence Base Behind the Oral Microbiome 

Although it is acknowledged that applying epidemiologic study 

designs and rigorous biostatistical methods may be challenging in 

microbiome research, this review suggests that those investigating the 
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oral microbiome for OSCC diagnostic and therapeutic targets are not 

progressing as quickly as researchers of biomarkers for other cancers 

(Hu & Dignam, 2019). As evidenced by only two in 22 articles reviewed 

having statistical methods adequate for interpretation, the state of the 

current research methods in the oral microbiome of OSCC are far inferior 

to the ones being used in lung cancer and for other neoplasms, where 

research has advanced to a therapeutic level (Hu & Dignam, 2019). Not 

only does this lack of using rigorous scientific research methods prevent 

the progression of the field of OSCC research toward more useful 

applications like in diagnostics and immunotherapies, it also consumes 

valuable resources. Each of the studies that was unable to report a 

rigorous finding represented unnecessary monetary expenditure as well 

as scientific delay. Even studies with very small sample could have 

provided some usable scientific evidence had they stated presupposed 

hypotheses; even in the absence of adequate sample, a test could have 

taken place, and scientific knowledge could be gleaned (Kers & 

Saccenti, 2022). Yet, peer-reviewers approved them without these 

features, and they were published. 

This disparate inattention to epidemiologic and biostatistical 

considerations in the study of the oral microbiome in OSCC compared 

to other microbiomes is exemplified by the relative lack of 

epidemiological documentation available for the HOMD (T. Chen et al., 

2010; HOMD :: Human Oral Microbiome Database, n.d.; Human 

Microbiome Project, n.d.). By contrast, the data portal for the HMP, the 



Page 126 

parent project of the HOMD, presents epidemiologic documentation up 

front (see Figure 2.3). 

Figure 2.3. Landing page of the human microbiome project data 

portal 

 

To be clear, the HMP involves a cohort study where well-

characterized samples from oral sites are collected and analysed, with 

the results available on the HMP portal (Markowitz et al., 2012). 

However, these data are distinct from the HOMD’s collection. 

Notice that on the landing page for the HMP data portal in Figure 

2.3, the epidemiologic information is immediately available. The number 

of studies hosted on the repository is displayed clearly, and functionality 

to search for the studies and review their relevant documentation is 

included. By contrast, the HOMD access page does not direct the user 

the epidemiologic information behind the studies included in the 

database (see Figure 2.4). 
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Figure 2.4. Upper part of the landing page for the HOMD 

 

Observe that in Figure 2.4, there is not an obvious menu choice 

to obtain information about the epidemiologic studies contained in this 

database. The lower part of the page (not shown in Figure 2.4) provides 

access to various analytic tools, but does not provide a search page or 

any other portal to review the epidemiologic information from the source 

studies included in the HOMD. This database was designed for a 

different time and purpose. 

That those who maintain the HOMD could continue to make such 

a serious oversight speaks to the issues specific to research on 

biomarkers for OSCC. Although it could be argued that the HOMD has 

nothing to do with clinical studies, Escapa and colleagues (2018), who 

host and maintain the database, proposed it as a valuable resource for 

both basic and clinical researchers. All 22 studies reviewed were 

essentially at the bottom of the evidence-based pyramid in terms of study 

design quality; the most rigorous study design reviewed was cross-

sectional, as the case-control studies included did not in actuality have 

a case-control design (Semrau et al., 2023). It appears that there was 
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some confusion in the establishment of the HOMD, because 

theoretically, it should be as usable as the oral component of the HMP if 

it was indeed developed for research that could be applied in the clinical 

or epidemiologic setting (T. Chen et al., 2010; Escapa et al., 2018). If it 

was developed for another purpose, it is unclear exactly what that 

purpose is. 

This situation further underscores the necessity of setting up a 

transdisciplinary field that will combine microbiome research with 

rigorous epidemiologic and statistical methods as proposed earlier 

(Hamada et al., 2019). It seems that this type of reform is needed in order 

to provide scientific checks and balances in studies using NGS 16s rRNA 

gene technology in general, and much needed oversight to 

investigations into the oral microbiome reported in the scientific literature 

(T. Chen et al., 2010; Hamada et al., 2019; Hu & Dignam, 2019). When 

projects like the HOMD and HMP are set up, it is necessary to be 

transparent about the goal of these projects: what they are intended to 

do, and what kind of science they are intending to serve. OSCC 

microbiome researchers should eagerly embrace such reform, as it will 

promote scientific rigor in their field while facilitating the progression of 

OSCC research to the level of lung and other cancers (T. Chen et al., 

2010; Hamada et al., 2019; Hu & Dignam, 2019). 

Strengths and Limitations 

This comprehensive review has some strengths and limitations. 

In terms of its strengths, the use of purposive sampling ensured that the 

22 articles reviewed were topically appropriate and should have been 
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able to inform investigations of the oral microbiome in OSCC. These 

articles were all published since 2010, and all focused on the technology 

of interest, which is NGS of 16s rRNA gene, and all analysed the oral 

microbiome in OSCC. However, this review eventually was limited by the 

poor quality of the articles available for selection. Only two of the 22 used 

fundamental study design and statistical methods, so only those could 

be interpreted. However, it is believed that had more studies been 

included, this issue would still exist, as there seems to be a persistent 

knowledge gap about basic research methods throughout the OSCC 

microbiome literature. While this lack of scientific knowledge about the 

oral microbiome in OSCC resulting from a lack of appropriate research 

methods provides an open field for investigation and new findings, it also 

reveals that the OSCC research field is not progressing meaningfully 

towards defining and developing therapeutic agents (Hamada et al., 

2019; Hu & Dignam, 2019). Due to this unfortunate circumstance, it is 

unlikely that many of the findings of this review would be changed had 

other articles on OSCC and the oral microbiome been selected for 

review. 

Conclusion 

This comprehensive review used purposive sampling to identify 

22 appropriate articles for review; of these, only two were of adequate 

scientific rigor to be interpreted. The first study found that five genera 

significantly differed between the epithelial precursor lesion group to the 

cancer group in a male Taiwanese cohort (Lee et al., 2017), and the 

second study found the genus Fusobacterium was relatively more 
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abundant and genus Streptococcus was relatively less abundant in 

OSCC tumour sites compared to healthy tissue in two cohorts of 

Taiwanese OSCC patients, and that microbial genes related to terpenoid 

and polyketide metabolism played a functional role in the tumour 

microenvironment (Su et al., 2021). Of course, making a conclusion 

about microbial genes playing a functional role is based on speculation, 

not rigorous science. Lack of rigorous studies on the oral microbiome in 

OSCC have led to a comparative lag in the progression toward defining 

biomarkers that may serve as therapeutic targets in OSCC (Hu & 

Dignam, 2019). While rigorous study design and biostatistical methods 

have been developed to analyse microbiome data, research groups 

specifically investigating the oral microbiome appear to be uniformly 

unaware of these approaches (Brooks, 2016; T. Chen et al., 2010; 

Gibbons et al., 2018; Gloor et al., 2017; Kers & Saccenti, 2022; Schifano, 

2019). While acknowledging that microbiome studies and analyses are 

extremely challenging from an epidemiologic and statistical point-of-

view, calls are being made to consolidate this research under one 

interdisciplinary umbrella field to ensure knowledge gaps like this one 

are addressed field-wide (Hamada et al., 2019). Such reform could 

greatly improve the quality of the scientific output related to 

investigations into the oral microbiome in OSCC. 
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Chapter 3: Substudy 1: Diversity and Differential Relative 

Abundance in the Bacteriome of Oral Squamous Cell Carcinoma 

and Oral Epithelial Dysplasia Lesions: Results from the United 

Kingdom 

3.1. Background 

Cancer of the oral cavity, specifically oral squamous cell 

carcinoma (OSCC), is a worldwide public health issue, contributing to 

significant global morbidity and mortality (Gormley et al., 2022; 

Salehiniya & Raei, 2020). Although primary prevention through the 

elimination of risk factors is the optimal public health approach to 

reducing rates of OSCC, as risk factors for OSCC remain prevalent 

worldwide, rates of OSCC continue to climb (Gormley et al., 2022; 

Salehiniya & Raei, 2020). Once oral cavity cancer is diagnosed, it is 

often in late stages, and there is poor prognosis (Gormley et al., 2022; 

Salehiniya & Raei, 2020). The advancement of biomarker analysis has 

expanded the capacity to study the oral microbiome, and using modern 

methods, members of the oral microbiome could be identified as 

diagnostic, prognostic, or treatment-related biomarkers (Bugshan & 

Farooq, 2020; Zaura et al., 2021). This section describes the 

epidemiology and risk factors for OSCC, and the advancement of 

biomarker studies of the oral bacteriome in OSCC. 

Epidemiology and Risk Factors for Oral Squamous Cell Carcinoma 

(OSCC) 

The purpose of this section is to summarize and highlight just the 

points provided in Chapter 2 that will later be relevant to my specific 



Page 132 

study in this current chapter, Chapter 3. Currently, as described in 

Chapter 2, there is a global increase in incidence rates of cancer of the 

oral cavity, specifically OSCC, with a complementary rise in mortality 

rates (Gormley et al., 2022; Salehiniya & Raei, 2020). Tobacco use and 

betel nut chewing (paan) are two of the strongest risk factors for OSSC, 

but these behaviours are more common in certain countries, and among 

certain demographics (Gormley et al., 2022; Salehiniya & Raei, 2020; J. 

Yang et al., 2021). Globally, men are more likely to use tobacco, but 

trends as to how it is used (e.g., cigarette smoking, pipe smoking, 

smokeless) vary by country (Salehiniya & Raei, 2020). Chewing of the 

betel nut is generally practiced among Southeast Asia and Asia-Pacific 

regions, and is again more common among men (Gormley et al., 2022; 

Salehiniya & Raei, 2020; J. Yang et al., 2021). As men are more likely 

to use tobacco, chew betel nut, and use alcohol, they are more likely to 

have the risk factors in OSCC (Salehiniya & Raei, 2020). For this reason, 

globally, men consistently have higher incidence and mortality rates for 

OSCC than women (Salehiniya & Raei, 2020). 

OSCC in the United Kingdom (UK) 

This is a summation of findings specifically related to the UK. 

Northern Europe, and specifically the United Kingdom (UK), has a 

unique epidemiologic profile of head and neck cancer (HNC) (which 

includes OSCC) (Salehiniya & Raei, 2020). Salehiniya and Raei (2020) 

observed that between 1995 and 2011, oral cavity cancer rose 7.3% for 

men and 6.5% for women in England, while rising 2.8% in men and 3.0% 

in women in Scotland in the same period. UK Cancer Registry data 
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showed an increase of 34% in total oropharyngeal cases across all 

regions between 2011 and 2018, and incidence rates have been found 

to be highest in Scotland, where they have increased 85% between 2001 

and 2012 (Gormley et al., 2022). Regional differences reflect socio-

economic status (SES) patterns, as low SES is also a risk factor for HNC 

and OSCC (Gormley et al., 2022; Salehiniya & Raei, 2020). 

In their analysis of more recent data, Bosetti and colleagues 

(2020) found that the age-standardized death rates from oral and 

pharyngeal cancer increased over the entire UK between 2010 and 2015 

by 11.6% in men and 7.1% in women. When stratified regionally, rates 

increased between 2010 and 2015 among men by 12.2% and women 

by 8.4% in England and Wales, however when looking at Northern 

Ireland, among men, rates increased by 78.8%, and among women, 

rates dropped by 33.9% during the same time period (Bosetti et al., 

2020). In Scotland, male rates dropped by 6.6%, while female rates 

increased by 15.2% during the same period (Bosetti et al., 2020). These 

mortality rates reflect that most cancers identified in the UK are at 

advanced stages, as 58.8% of HNCs diagnosed in the UK are at stage 

III or IV (Gormley et al., 2022). 

Biomarkers in OSCC 

Although survival from cancer of the lip, oral cavity, pharynx and 

larynx has increased 10% over the past few decades, still, just over half 

these patients survive beyond five years (Gormley et al., 2022; Hashim 

et al., 2019). For this reason, focus should be placed on primary 

prevention of OSCC through the elimination of established risk factors 



Page 134 

(especially tobacco, betel, and alcohol use), and through early 

identification to provide the best prognosis (Hashim et al., 2019; 

Salehiniya & Raei, 2020). 

From this perspective, reliable biomarkers relevant to the natural 

history of OSCC could be very useful to identify (Zaura et al., 2021). In 

cancer, biomarkers can be seen as either biologic molecules or 

diagnostic tests carried out on fluids or tissue for the purpose of 

diagnosis and/or treatment (Hu & Dignam, 2019). Exploratory studies 

have identified candidate biomarkers in OSCC that may indicate the 

degree of metastasis, impacts of etiologic factors like tobacco or alcohol 

consumption, and other diagnostic information (Bugshan & Farooq, 

2020). The ability to reliably identify valid biomarkers of OSCC would 

create a pathway to the development of advanced diagnostic and 

prognostic capabilities, as well as biomarker-targeted immunotherapies 

that could expand treatment options and improve survival (Hu & Dignam, 

2019; Zaura et al., 2021). 

However, the current biomarker picture for OSCC is admittedly 

confusing (Cristaldi et al., 2019; Doddawad et al., 2022). Doddawad and 

colleagues (2022) summarized and classified the scientific literature to 

date regarding biomarkers and oral cancer, noting that sampling the 

tissue (healthy or lesional) for biomarker identification has many 

advantages over other types of specimens such as saliva, and should 

be used whenever possible. The authors described several historical 

classification schemes for oral cancer biomarkers, and explained that 

setting up classifications itself is challenging, and based on available 
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science (Doddawad et al., 2022). As described in the paper, one 

historical classification scheme looked at the type of biomarker in terms 

of its general function (e.g., cytokines and blood group antigens), 

whereas another system classified the biomarker in terms of what it 

indicated (e.g., tumour growth markers, and markers of tumour 

suppression and antitumor response) (Doddawad et al., 2022). 

Ultimately, the authors proposed four classifications of oral biomarkers 

to use going forward: prognostic biomarkers, biochemical markers, 

hormone receptors, and proliferation markers (Doddawad et al., 2022). 

This simple system is based on a clinical perspective, and promotes the 

progression of biomarker research towards translation into clinical 

science applicable to patients (Doddawad et al., 2022). 

However, the development of this simple classification system 

does not solve the problem of accurately placing biomarkers already 

researched into the classification system (Cristaldi et al., 2019; 

Doddawad et al., 2022). Cristaldi and colleagues (2019) provided a 

comprehensive review of research results from OSCC biomarker studies 

in various patient samples. The authors presented the results from the 

perspective that regardless of the exact biomarker being measured, the 

resulting numerical value is simply a measurement of a larger process 

going on that may impact biomarker values across different types of 

biomarkers (Cristaldi et al., 2019). The article reviewed circulating 

tumour DNA, extracellular vesicles (EVs), and microRNAs as salivary 

OSCC biomarkers, and proposes looking into circulating tumour cells 

(CTCs) as another set of OSCC biomarkers (Cristaldi et al., 2019). 
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Although this review paper classifies oral cancer biomarkers differently 

than the previous one, both articles suggest that current research 

directions now should focus on determining which of the various 

biomarkers are involved in which processes, and classifying them into 

relationships of target biomarkers and companion biomarkers, as 

described in Chapter 2 (Cristaldi et al., 2019; Doddawad et al., 2022; Hu 

& Dignam, 2019). This step is necessary to enable biomarkers to be 

developed into valid and reliable measurements that can be used to 

facilitate clinical decision-making (Cristaldi et al., 2019; Hu & Dignam, 

2019). 

Oral Bacteriome Biomarkers in OSCC 

Due to advancing technology, the use of the next-generation 

sequencing (NGS) of the 16s rRNA gene for biomarker identification in 

cancer has greatly expanded in the last decade, and this has generated 

advanced knowledge as to methodologic considerations necessary for 

biomarker studies (Hu & Dignam, 2019; Zaura et al., 2021). In OSCC, 

studies have been conducted on the oral bacteriome using 16s rRNA 

gene sequencing in an effort to identify members critical to the formation 

of the OSCC lesion as reliable biomarkers (Lee et al., 2017; Mukherjee 

et al., 2017; Pushalkar et al., 2011; Sarkar et al., 2021; Su et al., 2021; 

Zhang et al., 2020; Zhao et al., 2017). Many of these studies have 

included a case series of OSCC patients, along with one or more groups 

of patients or healthy individuals as a comparison group (Lee et al., 

2017; Mukherjee et al., 2017; Pushalkar et al., 2011; Sarkar et al., 2021; 

Su et al., 2021; Zhang et al., 2020; Zhao et al., 2017). These studies 
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analysed lesional tissues, healthy tissues, and saliva from participants 

in an effort to identify members of the oral microbiome which may be 

responsible for OSCC lesion development (Lee et al., 2017; Mukherjee 

et al., 2017; Pushalkar et al., 2011; Sarkar et al., 2021; Su et al., 2021; 

Zhang et al., 2020; Zhao et al., 2017). 

Unfortunately, these studies have not produced consistent 

results, and the most likely reason is lack of scientific rigor in study 

design, study conduct, or statistical testing (Hu & Dignam, 2019; Kers & 

Saccenti, 2022; Zaura et al., 2021). In terms of study design, researchers 

designing oral microbiome studies often fail to make important 

epidemiologic considerations when sampling individuals, and may 

include small sample sizes too heterogeneous to produce statistical 

results (Goossens et al., 2015; Hu & Dignam, 2019; Ou et al., 2021; 

Zaura et al., 2021; Zheng, 2018). In terms of study conduct, scientific 

authors often do not realize how much configuration is involved in a 

typical 16s rRNA gene sequencing pipeline, and therefore do not fully 

report their configurations or their rationale (Gloor et al., 2017; Goossens 

et al., 2015; Zaura et al., 2021). Finally, in terms of statistical testing, 

rarely are hypotheses posed a priori (Kers & Saccenti, 2022; Ou et al., 

2021; Zaura et al., 2021). Instead, post hoc testing is routinely 

performed, and typically interpreted without adjustment for multiple 

comparisons (Kers & Saccenti, 2022; Ou et al., 2021; Zaura et al., 2021). 

A few of these studies will be presented here to provide context. 

Zhao et al. (2017) took swabs of both lesional and healthy tissue sites 

from 40 OSCC patients in China, but due to the absence of an a priori 
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hypothesis, the authors were only able to conclude that the taxa they 

found in their study was different than found in previous studies. Using a 

similar study design, Mukherjee and colleagues (2017) compared 

tongue cancer tissue to normal tissue in a case series of tongue cancer 

patients (apparently in the US) undergoing resection. Like the previous 

author group, these authors did not pose any a priori hypotheses; for 

statistical analyses, they ran many post hoc tests, did not use an 

adjustment, and struggled to interpret the results, saying that they found 

“differences” in the microbiome between cancer and normal tissue 

(Mukherjee et al., 2017). 

In oncology, epithelial dysplasia refers to anomalous growth of 

the epithelium resulting in a lesion exhibiting disturbed differentiation and 

maturation (Tilakaratne et al., 2019). Epithelial dysplasia is diagnosed 

microscopically based on individual features of the lesion, and has long 

been considered a pre-malignant disorder, although it is recognized that 

many cases of epithelial dysplasia do not proceed to a cancerous tumour 

(Tilakaratne et al., 2019). This is not just an artifact of grading or having 

a range of disease conditions with similar architectural changes labelled 

together (Tilakaratne et al., 2019). Some cases simply remain in a state 

of epithelial dysplasia but do not become cancerous, although the patient 

remains high risk (Tilakaratne et al., 2019). Oral epithelial dysplasia 

(OED) therefore is specifically considered a pre-malignant condition 

requiring careful management and follow-up (Tilakaratne et al., 2019). 

Shen and colleagues (2023) conducted a systematic review of oral 

dysbiosis as a risk factor for the onset and carcinogenesis of OED, and 
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overall, the authors concluded that when comparing the oral microbiome 

of OED to OSCC, the results are inconsistent. The authors attributed 

their lack of findings due to the heterogeneity of the type and size of 

sample in the underlying groups, reflecting criticisms echoed about lack 

of rigor in study design across oral microbiome studies (Hu & Dignam, 

2019; Shen et al., 2023; Zaura et al., 2021). 

In an attempt to focus on findings from only high-quality oral 

microbiome studies in OSCC, Peter and colleagues (2022) conducted a 

systematic review and meta-analysis of case-control studies of OSCC 

and the associated microbiome. Reflecting the lack of rigor in the 

previous works, the authors were only able to identify eleven articles of 

high enough quality to be included in the systematic review, and only five 

of those qualified for their meta-analysis (Peter et al., 2022). Five of the 

eleven studies used the patient as their own control, whereas the others 

used other participants as controls, and the eleven studies included 

represented samples from the following countries: China, US, Sri Lanka, 

Japan, and Taiwan (Peter et al., 2022). For the meta-analysis, the 

authors pooled the data from the five studies and reanalysed them with 

the intention of identifying specific pathogenic bacteria, genes, and 

functional pathways in OSCC (Peter et al., 2022). For the specific 

pathogenic bacteria, they identified the Fusobacterium genus and 

specifically implicated F. nucleatum (Peter et al., 2022). They also 

identified the gene K06147, an ABC transporter, as associated with 

OSCC, and discussed potential functional pathways (Peter et al., 2022). 
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The authors of the meta-analysis, as well as authors of other 

works reviewed here, repeatedly emphasized the challenges with 

determining the scientific significance of the results of oral microbiome 

studies without rigorous study design (Goossens et al., 2015; Hu & 

Dignam, 2019; Kers & Saccenti, 2022; Ou et al., 2021; Peter et al., 2022; 

Zheng, 2018). First, they recommended that swabs be used whenever 

possible, because they are a more direct measure of the tissue 

environment, as associated with OSCC, and discussed potential 

functional pathways (Doddawad et al., 2022; Peter et al., 2022). 

Potential functional pathways refer to how biomarkers behave in terms 

of protein function; several different potential functional pathways in 

OSCC are proposed by Doddawad and colleagues (2022) as well as 

Peter et al. (2022). Next, they described how they believe their meta-

analysis was confounded through poor epidemiologic sampling and 

measurement in some of the studies contributing data to the meta-

analysis, introducing bias (Peter et al., 2022). They explained how 

different approaches to amplicon sequence analysis (in terms of 

computer platforms and bioinformatics) may be the sources of important 

differences in results between studies, and emphasized that this issue is 

currently a serious shortcoming that needs to be taken into account 

when comparing the results of oral microbiome studies (Peter et al., 

2022). Finally, they emphasized the necessity to use appropriate 

statistical methods and hypothesis testing, while keeping in mind that 

microbiome data are compositional in nature, and need to be analysed 
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using methods appropriate to this structure (Gloor et al., 2017; Peter et 

al., 2022). 

As described earlier, OSCC is prevalent globally, but due to 

differential distributions of risk factors, rates are higher in certain 

countries, including the UK (Bosetti et al., 2020; Gormley et al., 2022; 

Salehiniya & Raei, 2020). The aim of my study was to test three 

hypotheses: Among UK cancer centre patients with either an OSCC or 

OED lesion, 1) the OSCC lesions would have on average more α 

diversity in the oral bacteriome than the OED lesions; 2) there would be 

significant β diversity between the oral bacteriome of the OSCC lesions 

compared the OED lesions; and 3) the OSCC lesions would have 

significantly different relative abundance for species/genera than the 

OED lesions. 

3.2. Methods 

This was a cross-sectional study of swab tissue from patients 

diagnosed with either OSCC or OED. In this study, participants were 

consented and enrolled, then data and tissue specimens were collected. 

The specimens underwent processing, and statistical tests were applied 

to answer the research aims. Details of these steps are included here. 

Participants and Setting 

All participants were recruited from the Head and Neck Cancer 

Centre, University College of London Hospital (UCLH) or the Oral 

Medicine clinics at Eastman Dental Hospital (EDH) in London, UK. 

UCLH Head and Neck Cancer Centre is a tertiary care centre which 

provides diagnosis and treatment of cancer identified through the 
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general practitioner (GP) through primary care and local hospitals 

(UCLH, n.d.). The EDH is a dental hospital that also provides diagnosis 

and treatment for oral cancer (UCL, 2018). Data collection took place 

between November 2018 and November 2019. 

All participants had been referred to the study location to be 

evaluated for potential OSCC. Study participants needed to meet the 

following qualification criteria. Because of the unique participant group 

being targeted, it was difficult to reduce bias due to the study design. No 

sample size estimate was developed because recruitment was limited to 

one clinical centre within a limited time. Further, it was intended to be a 

pilot study, so it was expected to be underpowered. 

Inclusion Criteria 

Must be age 18 and older. 

Must be diagnosed with either OSCC (case definition in Macey 

(2015)) or OED (case definition in Tilakaratne (2019)) as a result of the 

evaluation. Patients with OSCC were recently diagnosed, while patients 

with OED included both recently diagnosed as well as OED patients with 

ongoing active disease. 

Must speak, understand and write English well enough to provide 

informed consent in writing. 

Exclusion Criteria 

Patients currently undergoing treatment for OSCC or OED were 

excluded. 

Patients with a current diagnosis of active cancer of any type 

other than OSCC were excluded. 
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Patients reporting antibiotic intake in the previous two weeks, or 

previous long-term antibiotic use were excluded (per Goodrich (2014)). 

Enrolment and Consent 

Patients at both clinical locations diagnosed with OSCC or OED 

were approached for study participation. Records were reviewed for 

eligibility. Those who were interested underwent eligibility screening and 

consent. 

Participant Data Collection 

Those who consented were assigned an anonymous Study ID 

which was then used on all study materials. After consent and enrolment, 

the participants were asked a series of questions from a questionnaire, 

and recorded their answers on paper (see Appendix A for consent form 

and participant information sheet, and Appendix B for blank 

questionnaire). These data were later transferred to a Microsoft Excel 

spreadsheet for data analysis. After the participant visit, the gathered 

clinical records about the participant’s biopsy information were added to 

the spreadsheet. 

Specimen Sampling and Analysis 

This section will describe sample collection, transport, storage, 

and processing. These processes were designed to limit bias in 

measurement. 

Sample Collection 

For swab samples, both lesion area (i.e., biopsied lesion 

diagnosed as OSCC or OED) and an anatomically matched non-lesional 

area (i.e., clinically intact) were swabbed by applying the swab at an 
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angle of approximately 20° using a gentle rubbing movement against the 

area (ten times). Then, the swab was rotated 180°, and the same 

process was followed for the other side of the swab (three rotations were 

performed if the patient could tolerate it). Then the swab was pressed 

against the wall of the DNeasy PowerSoil Kit collection tube (QIAGEN 

Inc., Germantown, MD, USA) for 20 seconds to ensure bacterial transfer. 

Then, the tip of the swab was detached from the handle and kept inside 

the tube. 

Although healthy tissue was collected at this stage, it was not 

considered in the current analysis. Please see Chapter 4 (Substudy 2) 

where analysis of healthy tissue is included in the study design. 

Sample Transport and Storage 

All sample tubes were dated and labelled with the participant’s 

Study ID. Sample tubes were placed immediately on ice and transported 

within two to four hours to the laboratory. Swab samples were placed in 

DNeasy PowerSoil Kit collection tubes and directly stored at -80 ⁰C. 

Sample Processing 

This section will describe DNA extraction and quantification, 

amplification, purification, library preparation, and final bioinformatics 

processing. 

DNA Extraction 

DNA extraction of the samples were performed using the DNeasy 

PowerSoil Kit (QIAGEN Inc., Germantown, MD, USA) following the 

manufacturer’s instructions with slight modifications (see Appendix C). 

DNA extraction included a combination of mechanical (using bead-
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beating) and chemical methods for cell lysis. All DNA samples were 

stored in tubes labelled according to the Study ID and stored at - 20 ⁰C 

until further processing. 

DNA Extract Quantification 

Quality and quantity of DNA extracts were measured using 

Nanopore (Oxford, Cambridge, UK). 

Polymerase Chain Reaction (PCR) Amplification (V3-V4 16s rRNA 

gene) 

PCR was performed to amplify the hypervariable regions V3 and 

V4 of 16s rRNA gene using NGS specific primers with overhang 

adaptors for metabarcoding (Appendix D) The reactions were set up to 

a final volume of 25 µl by preparing the following mixtures: 10 µl of 2.5 x 

Master Mix 16s/18s Basic (suitable for 100 reactions) (vh bio, 

Gateshead, UK) and 5.2 µl of sterile molecular grade water (Sigma-

Aldrich, St. Louis, MO, USA). The Master Mix volumes were: 0.8 µl 

Moltaq; 2 µl of reverse primers; 2 µl of forward primers; and 5 µl of DNA 

template. The reactions were then carried out in a thermocycler under 

the following conditions: Initialization cycle at 95 ⁰C for 30 seconds, 

followed by 30 cycles of denaturing at 95 ⁰C for 30 seconds, 30 cycles 

of annealing at 58 ⁰C for 40 seconds, 30 cycles of elongation at 72 ⁰C 

for 1 minute, and a termination cycle at 72 ⁰C for 10 minutes. A negative 

control of “no DNA template” was used to ensure no contamination.  

PCR Amplicon Purification 

Agencourt AMPure XP (Beckman Coulter, Indianapolis, IN, USA) 

was used for amplicons purification. 
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Library Preparation and Sequencing 

The following steps were performed to further enhance the quality 

of the library. Amplicons were quantified using QubitTM dsDNA High 

Sensitivity Assay kit (ThermoFisher Scientific, Waltham, MA, USA). 

Concentrations were then adjusted to create an equimolar pooled library 

of 5 nM. The pooled library underwent an additional step of short 

polymerase chain reaction (PCR). This was conducted through the use 

of 5µl of the pooled library, and adaptors primers (P5 and P7) with the 

following conditions: Initialisation cycle at 98 ⁰C for 30 seconds, followed 

by 2 cycles of denaturing at 98 ⁰C for 10 seconds, followed by annealing 

at 60 ⁰C for 30 seconds, then elongation at 72 ⁰C for 60 seconds, ending 

with a termination cycle at 72 ⁰C for 5 minutes. Purification of the library 

was then carried out using Agencourt AMPure XP (Beckman Coulter, 

Indianapolis, IN, USA). 

The library was then quantified using QubitTM dsDNA High 

Sensitivity Assay kit (ThermoFisher Scientific, Waltham, MA, USA) and 

sent to the UCL Genomics Centre. At the UCL Genomics Centre, the 

library was assessed for both quality and quantity using TapeStation 

(Agilent Technologies Inc., Santa Clara, CA, USA) utilizing HS D1000 

ScreenTape and Qubit respectively. The 4 pM library spiked with 10% 

12 pM PhiX was loaded on the MiSeq platform v2 kit (Illumina Inc., San 

Diego, CA, USA), and processed using 2 x 250 bp paired-end 

sequencing runs per manufacturer’s instructions. 
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Bioinformatics Processing 

De-multiplexed reads were received from the UCL Genomics 

Centre on the Illumina BaseSpace sequence Hub Account. Data were 

then imported locally using BaseSpace Downloader in Fastq format. A 

manifest file was then created using text format then imported to QIIME2 

(versions qiime2-2019.4 and qiime2-2022.2) (Bolyen et al., 2019). 

Reads were then visualised and reviewed in the Interactive Quality Plot 

tab in qiime2 viewer (https://view.qiime2.org/) to assess the quality of the 

reads. Then DADA2 plugin (q2-dada2) was used for both merging and 

denoising the paired-end reads after adjusting the parameter --p-trunc-

len, to trim out nucleotides with poor quality scores (Callahan et al., 

2017). Forward reads were truncated at 250 nucleotides, while reverse 

reads were truncated at 225 nucleotides. This was done to filter out 

nucleotides with low quality score (QS) to improve the paired-end 

merging of the reads. The cutpoint for a low quality score was  an 

average QS of 25 (Estaki et al., 2020). Before processing and merging, 

the original demultiplexed sequence count was n = 9,519,032. The 

number of paired-end reads after filtering was n = 7,155,813. Therefore, 

in processing, 2,363,219 input sequences were discarded after trimming 

and assembly. Taxonomy analysis was done by first importing both the 

sequence reads and taxonomy reference files of 16s rRNA gene 

amplicons from the extended Human Oral Microbiome Database to 

QIIME2 (HOMD_16S_rRNA_RefSeq_V15.1.fasta.txt and 

HOMD_16S_rRNA_RefSeq_V15.1.qiime.taxonomy.txt respectively). 

The Human Oral Microbiome Database was chosen over other popular 
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alternatives that included more than oral human microbiome data - such 

as GreenGenes and Silva. The reason why it was selected was that 

training the classifier using environment-specific data is suggested to 

improve the accuracy of taxonomy assignment (Estaki et al., 2020). 

Once taxonomy analysis was complete, qiime feature-classifier using 

the following parameters --p-f-primer CCTACGGGNGGCWGCAG and 

  --p-r-primer GACTACHVGGGTATCTAATCC was used to 

extract the hypervariable regions (V3-V4) of interest from the reference 

reads to enhance the performance of the classifier. Then classifier was 

trained using qiime feature-classifier fit-classifier-naive-bayes. 

Taxonomy was then assigned using qiime feature-classifier classify-

sklearn. Phylogenetic tree reconstruction was done using fragment-

insertion plugin (q2-fragment-insertion) (Janssen et al., 2018) against 

pre-built sepp tree using Silva database (sepp-refs-silva-128.qza). The 

phylogenetic tree was then visualised using empress plugin (q2-

empress). Normal samples were then filtered out of the feature table 

generated by DADA2, and this was ensured through a visualization. 

Next, the sequences of normal samples were filtered out based on the 

filtered feature table. This produced a *.qza file which was utilized in 

statistical testing. 

Statistical Analysis 

To compare α diversity between OSCC and OED lesions, 

Shannon’s Index was used, and to compare β diversity, weighted 

UniFrac distances were used (Kers & Saccenti, 2022). To compare 

differential abundance, ALDEx2 was used (Gloor, 2023; Gloor et al., 
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2017, 2023). For all statistical testing, α was set at 0.05 (Kers & Saccenti, 

2022). 

To perform the tests, first, the *.qza file was further processed in 

qiime2 to develop core phylogenic metrics using a sampling depth of 

28,000. One drawback of the MiSeq platform is that it creates an uneven 

sampling depth for each sample. Because of this, a sampling depth of 

28,000 was chosen for qiime2 processing, since it is the depth at which 

the likelihood of identifying taxa increased without losing samples in my 

data. Next, to conduct the α diversity test, the alpha-group-significance 

command in QIIME2 was run, which conducts Kruskal-Wallace analysis 

testing on the Shannon Index. For the β diversity test, a PERMANOVA 

was conducted on the weighted UniFrac distance. For differential 

abundance, number of significant taxa based upon Wilcoxon tests with 

Benjamini-Hochberg-corrected p-values from ALDEx2 were considered, 

as well as those with effect confidence intervals that did not cross zero 

(Gloor et al., 2023). 

Ethics 

The Integrated Research Application System (IRAS) has a 

standing ethical committee approval (IRAS project ID 96630) which 

covers this study. To ensure complete reporting of this observational 

study, a STrengthening the Reporting of OBservational studies in 

Epidemiology (STROBE) checklist was completed for this analysis (von 

Elm et al., 2007) (see Appendix E). 
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3.3. Results 

A total of 46 participants enrolled in and completed the study, 

including 21 with OSCC (46%), and 25 with OED (54%). Table 3.1 

presents a descriptive statistical summary. 
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Table 3.1. Sample summary 

Category Level All 
n, % 

OSCC 
n, % 

OED 
n, % 

All All 46, 100% 21, 46% 25, 54% 

Gender Male 25, 54% 17, 81% 8, 32% 
 Female 21, 46% 8, 38% 13, 52% 

Age Group 30-39 4, 9% 3, 14% 1, 4% 
 40-49 3, 7% 0, 0% 3, 12% 
 50-59 8, 17% 3, 14% 5, 20% 
 60-69 13, 28% 11, 52% 2, 8% 
 70-79 15, 33% 7, 33% 8, 32% 
 80-89 3, 7% 1, 5% 2, 8% 

Ethnicity White 30, 65% 15, 71% 15, 60% 
 Asian 

Indian 6, 13% 5, 24% 1, 4% 

 Other 
Asian 7, 15% 3, 14% 4, 16% 

 Black 1, 2% 1, 5% 0, 0% 
 Not 

Reported 2, 4% 1, 5% 1, 4% 

Use 
Alcohol Yes 25, 54% 13, 62% 12, 48% 

Use 
Tobacco 

Current 
or 

Former 
33, 72% 21, 100% 12, 48% 

Use Betel 
Nut 

Current 
or 

Former 
5, 11% 3, 14% 2, 8% 

 

As shown in Table 3.1, although about half the sample was male, 

men were overrepresented in the OSCC group (n = 17, 46%). As was 

described in the background, this is likely due to men having a higher 

prevalence of OSCC risk factors. In terms of age, one third of the sample 

(n = 15) were aged 70 to 79, with another 28% (n = 13) in the next lower 

age group, 60 to 69, making this a largely older sample. Almost two thirds 

of the sample were of White ethnicity (n = 30, 65%). While only about 

half (n = 25, 54%) of the sample reported any use of alcohol, almost 
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three fourths (33, 72%) reported tobacco use, and this was 100% (n = 

21) of the OSCC group. 

Table 3.2 presents a clinical summary of the sample. 

Table 3.2. Clinical summary. 

Category Level All 
n, % 

OSCC 
n, % 

OED 
n, % 

All All 46, 100% 21, 46% 25, 54% 

Number of 
Teeth None 5, 11% 4, 19% 1, 4% 

 11 to 17 5, 11% 1, 5% 4, 16% 
 20 to 24 9, 20% 6, 29% 3, 12% 
 25 to 29 20, 43% 12, 57% 8, 32% 
 30 to 32 7, 15% 2, 10% 5, 20% 

 

As shown in Table 3.2, 58% of the sample had at least 25 teeth, 

which was 67% in the OSCC group (n = 14), and 52% in the OED group 

(n = 13). 

Diversity Results 

The α diversity analysis showed that there was not a statistically 

significant difference in α diversity between OSCC and OED lesions (p 

= 0.4337). Figure 3.1 compares box plots of Shannon Index between 

OSCC and OED. 
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Figure 3.1. Box plots comparing Shannon index: OED vs. OSCC 

 

As can be seen in Figure 3.1, the interquartile range (IQR) of the 

Shannon Index in both groups overlapped, and the medians were very 

similar, which is consistent with non-significant statistical test results. 

In terms of β diversity, results showed statistically significant β 

diversity between OED and OSCC lesions (p = 0.013, see Figure 3.2). 

Figure 3.2. Box plots comparing β diversity: OED vs. OSCC 

 

As shown in Figure 3.2, in the PERMANOVA approach, multiple 

permutations of the data are developed to estimate distances in from the 

base sample (e.g., OED) to itself as well as other samples (e.g., OSCC). 

As there were only two samples included, the box plot on the left in 
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Figure 3.2 visualizes the PERMANOVA results when OED is selected 

as the base sample, and the one on the right visualizes results when 

OSCC is selected as the base sample (Kers & Saccenti, 2022). It is not 

evident from the visualizations why the results were statistically 

significant, because in both sets of box plots, the IQRs overlap and the 

medians are visually close. 

Differential Abundance Results 

The ALDEx2 approach identified 4,201 taxa to compare between 

OSCC and OED lesions. Bland-Altman and dispersion plots are included 

in Figure 3.3 to facilitate interpretation of results. 

Figure 3.3. Bland-Altman and dispersion plots: OED vs. OSCC 

 

The Bland-Altman plot in Figure 3.3 (left) shows the association 

between the relative abundance (log-ratio abundance on the x-axis) and 

the magnitude of difference per sample (on the y-axis). The plot on the 

right is identical to the one on the left, but it replaces log-ratio abundance 
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on the x-axis with dispersion. In both plots, black points represent rare 

taxa, and grey ones represent abundant taxa (Gloor et al., 2016). As can 

be seen in both plots, many rare taxa coalesce on the left side of the x-

axis, while an equally large proportion of more abundant taxa appear 

dispersed across the x-axis. 

Any genera that were differentially abundant between the two 

groups (q ≤ 0.1) would be represented by a red dot on the plots in Figure 

3.3 (Gloor et al., 2016). As there was a lack of red dots, further analysis 

was conducted. As part of ALDEx2, for each of the 4,201 taxa identified, 

a Wilcoxon test was performed, and an expected Benjamini-Hochberg-

corrected p-value was generated (Gloor, 2023). Also, for each of the 

taxa, an effect size with confidence bounds was identified (Gloor, 2023). 

A descriptive analysis was conducted to determine if any of the Wilcoxon 

corrected p-values were statistically significant at p < 0.05, and to see if 

there were any taxa with effect sizes with confidence intervals that did 

not include zero. This analysis found that there were no taxa with 

Wilcoxon corrected p-values < 0.05, and there were no taxa with effect 

sizes with confidence intervals that did not include zero. On the basis of 

Figure 3.3 and this descriptive analysis, the current research fail to reject 

the null, and interpret the results to say there is not statistically significant 

differential abundance in the oral bacteriome between OED and OSCC 

lesions in this study. 

3.4. Discussion 

In this study of UK cancer centre patients with either OED or 

OSCC, results showed that in terms of the oral bacteriome, OSCC 
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lesions did not have statistically significantly more α diversity, but did 

have statistically significantly more β diversity than OED lesions. Also, 

there was not a statistically significant difference in the differential 

relative abundance of taxa between OSCC and OED lesions. It is 

notable that Peter and colleagues (2022) identified Fusobacterium when 

conducting their meta-analysis of pooled data of OSCC, while in the 

current study, Fusobacterium (nor any other member of the oral 

bacteriome) was not identified as being associated with OSCC. It is 

possible that the lack of finding in the current study for Fusobacterium is 

due to low sample, and that a larger study would find a relationship (as 

was done by the authors who conducted the pooled analysis) (Peter et 

al., 2022). It is also possible that the reason why the current study did 

not identify differences in Fusobacterium between OSCC and OED 

because the comparison was with OED controls, not healthy controls. 

As described in Chapter 2, many studies in this domain have 

study design flaws, and this study was designed to overcome those that 

could be addressed. First, clear research aims were defined before the 

data were analysed, and an analysis plan was designed a priori. Next, 

efforts were made to clearly characterize the sample descriptively, which 

is often missing in published articles. Next, the informatics processing 

approach selected was supported by the literature (Gloor et al., 2023). 

Finally, the statistical presentation in the results was designed to clearly 

relate to the research aims stated earlier, and statistical approach 

defined in the methods. 
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For reasons cited by other author groups, it is difficult to 

synthesize findings from this study with the background literature due to 

lack of consistency and rigor in the background literature (Shen et al., 

2023). As an obvious example, the lack of scientific consistency and 

rigor in studies of the OED oral bacteriome preclude the ability to 

compare this study’s findings to those (Shen et al., 2023). Shen and 

colleagues (2023) noted in their review of ten studies on OED that there 

was substantial heterogeneity in the populations and sizes of samples, 

so there was a consistent issue of comparability between groups. 

Although many studies of the OSCC bacteriome exist in the literature, 

due to epidemiologic, operational, and statistical issues, it is not possible 

to scientifically compare their results (Bugshan & Farooq, 2020; 

Doddawad et al., 2022; Gloor et al., 2017; Goossens et al., 2015; Kers 

& Saccenti, 2022; Ou et al., 2021; Peter et al., 2022; Zaura et al., 2021; 

Zheng, 2018) to the results of the current study. 

Admittedly, the current study suffers from some of the same 

limitations as previous studies, including heterogeneity of sample with 

respect to OSCC risk factors, and potential lack of comparability 

between OED and OSCC sample. In other words, those in the OSCC 

sample may have a different distribution of underlying risk factors for 

OSCC than the OED sample. In the current study, it would have been 

ideal to reduce the heterogeneity of the sample to, for example, only a 

high risk group, such as men aged 60 and over who are current smokers 

diagnosed with either OSCC or OED (see Table 3.1). Statistically, in a 

homogeneous high-risk sample, it is more likely that oral bacteriome 
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profile that is unique to OSCC vs. OED could be identified if it existed. If 

there were certain members of the oral bacteriome indicated in the 

development of OSCC in male smokers in the UK, it is likely that using 

an optimal sampling strategy in this study would have allowed their 

identification. As described before, an optimal sampling strategy would 

only filter in a high-risk group so as to reduce the statistical noise. By 

including such a small, heterogenous sample, if there are different oral 

bacteriome members involved in different disease processes (e.g., 

conversion of OED to OSCC outside the presence of tobacco), it would 

not be possible to identify this. All these characteristics represent bias in 

the current study. 

However, placing high restrictions on qualifications for the study 

sample to filter in only a high-risk population would have reduced the 

feasibility of conducting the study at all. Had those restrictions been 

applied to the current study, only 17 OSCC patients would have qualified 

(see Table 3.1). Further, it would have been difficult to identify matched 

OED patients in the same age bracket, as OED is a risk factor for OSCC, 

and likely there would be fewer patients identified at the OED stage, 

making the sample unbalanced. Trade-offs in study design were 

considered acceptable to facilitate research that could be done within 

the timeframe of a doctoral project. Ideally, in the future, a multi-centre 

study could be designed with such restrictions eligibility qualifications 

that proceeds along a longer timeline. That would enable the 

accumulation of a large enough, homogenous sample to promote the 

ability to make and test statistical inferences. 
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Nevertheless, this study makes an improvement upon previous 

studies on this topic which have been criticized for not using rigorous 

study design and biostatistical methods. As is recommended, a priori 

statistical testing was conducted, measurement approaches were 

transparent, and the results were interpreted according to current 

conventions (Kers & Saccenti, 2022; Zaura et al., 2021). By being 

transparent about measurement approaches, specimen processing, 

bioinformatics pipelines, and statistical strategies in their 

communication, scientific authors can facilitate a standardization of the 

scientific literature around the study of the oral microbiome (Doddawad 

et al., 2022; Gloor et al., 2017; Goossens et al., 2015; Ou et al., 2021; 

Peter et al., 2022). 

In conclusion, while there was not a statistically significant 

difference in α diversity, there was statistically significant differences in 

β diversity between OSCC and OED lesions in this study of patients in 

the UK. No differentially relatively abundant taxa were identified that 

would differentiate OSCC from OED lesions, but the sample was small 

and heterogenous. Further, this study only investigated differences 

between OSCC and OED lesions. A study comparing OSCC or OED 

specimens to healthy tissue in the same individual may provide another 

opportunity for detecting a signal in the oral bacteriome that could be a 

marker for disease status or progression. Future studies should also 

seek to identify target and companion biomarker profiles that can be 

utilized clinically in the identification and management of OSCC. 
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Chapter 4: Substudy 2: Study to Characterize How the Oral 

Microbiome Differs in OSCC and OED from Healthy Tissue in the 

Same Individual 

4.1. Background 

This second of three substudies continued to investigate the oral 

microbiome for biomarkers diagnostic of oral squamous cell carcinoma 

(OSCC) or oral epithelial dysplasia (OED). This was done by comparing 

the α diversity, β diversity, and differential abundance between the oral 

microbiome in lesion tissue and healthy tissue in the same individuals. 

This section will briefly summarize the epidemiology, risk factors, and 

treatment approaches for OSCC and OED, and will describe what is 

known about identifying diagnostic biomarkers for OSCC and OED in the 

oral bacteriome. Finally, this section will reflect on the findings from 

Substudy 1 in Chapter 3, and propose a different research approach to 

investigate differences in the oral bacteriome between diseased and 

healthy tissues within the same individual. 

OSCC and OED: Epidemiology, Risk Factors, and Treatment 

Approaches 

As described in Chapters 2 and 3, OSSC is prevalent globally, 

posing a worldwide public health problem (Gormley et al., 2022; 

Salehiniya & Raei, 2020). OSCC incidence rates are higher in 

geographies where risk factors for OSSC are concentrated (Gormley et 

al., 2022; Salehiniya & Raei, 2020). The strongest risk factors for OSCC 

are using tobacco or betel nut, and since these behaviours are more 

likely to take place among men, men generally have higher rates of 



Page 161 

OSCC in all geographies (Gormley et al., 2022; Salehiniya & Raei, 

2020). Alcohol use is also a risk factor, and is thought to interact with 

tobacco use to greatly elevate risk (Gormley et al., 2022; Mello et al., 

2019; Salehiniya & Raei, 2020). 

Epithelial dysplasia is an anomalous growth of the epithelium that 

leads to a lesion that exhibits disturbed differentiation and maturation 

(Tilakaratne et al., 2019). Oral epithelial dysplasia (OED) is considered 

a pre-malignant condition at high risk for progressing into OSCC, 

although many cases of OED do not progress to OSCC (Tilakaratne et 

al., 2019). OED has the same risk factors as OSCC, and once identified, 

a clinical decision must be made between managing the OED lesion 

conservatively, or engaging in active treatment, which includes both 

surgical and non-surgical approaches (Tilakaratne et al., 2019).  

While those diagnosed with OED have a pre-malignant condition, 

most patients diagnosed with head and neck cancer (HNCs) like OSCC 

are identified in later stages, limiting both treatment options and patient 

survival (Hashim et al., 2019; Marur & Forastiere, 2016). For the 40% of 

head and neck squamous cell carcinoma (HNSCC) patients who are 

diagnosed at stage I or II, the typical treatment is with surgery or radiation 

alone (Marur & Forastiere, 2016). Chemoradiation and chemotherapy 

are available for advanced cases, but due to substantial toxicity in some 

of the regimens, patient quality-of-life and survival needs to be weighed 

when selecting these treatments (Marur & Forastiere, 2016). Screening 

for OSCC with the most sensitive and modern technology is invasive, so 

it would be ideal to identify reliable and valid diagnostic biomarkers that 



Page 162 

could be identified through less invasive methods (e.g., saliva) (Hashim 

et al., 2019). 

Identifying Diagnostic Biomarkers of OSCC or OED in the Oral 

Bacteriome 

As described in Chapters 2 and 3, studies of the oral bacteriome 

seeking to identify diagnostic or prognostic biomarkers must follow 

rigorous scientific study designs and statistical approaches to be able to 

detect biomarkers reliably and validly enough to be used in clinical 

decision-making (Hu & Dignam, 2019; Zaura et al., 2021). More recent 

studies have used 16s rRNA gene NGS as an approach to identifying 

biomarkers in the oral bacteriome (Lee et al., 2017; Mukherjee et al., 

2017; Pushalkar et al., 2011; Sarkar et al., 2021; Su et al., 2021; Zhang 

et al., 2020; Zhao et al., 2017). However, methodologists have criticized 

the rigor of the study design approaches in many of these studies, as 

well as their lack of scientific statistical hypothesis testing (Goossens et 

al., 2015; Hu & Dignam, 2019; Ou et al., 2021; Zaura et al., 2021; Zheng, 

2018). 

Focusing on epidemiologic considerations, studies of the natural 

history of the oral microbiome are observational, not interventional 

(Zaura et al., 2021). That is because in order to study the natural history 

of a condition, it is necessary to observe it, and not apply an intervention 

that could change the course of the disease (Zaura et al., 2021). Choice 

of observational study design in oral microbiome studies is important 

because study designs have different strengths and limitations (Hu & 

Dignam, 2019; Zaura et al., 2021). Cross-sectional designs, such as the 
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one used in substudy 1, have a high risk of bias, and this is argued to be 

even higher in oral microbiome studies due to the complex and dynamic 

nature of host-microbiome interactions (Zaura et al., 2021). Some of this 

bias comes from the heterogeneity of the samples typically included in 

oral microbiome studies, such as including participants with different risk 

factor statuses with respect to tobacco and betel nut use in the same, 

small sample study (Zaura et al., 2021). Other primary sources of bias 

in oral microbiome studies is introduced by using matching approaches, 

which often inadvertently increase bias rather than reducing it (Zaura et 

al., 2021). 

In substudy 1, lesional swab tissues from OSCC were compared 

with OED in an effort to evaluate differences in biomarker profiles 

between the oral microbiome of these tissues. Of particular importance 

would be a biomarker that could suggest progression from OED to 

OSCC. Although there was a statistically significant difference in β 

diversity between the OSCC lesions and OED lesions, this was the only 

significant finding from substudy 1. Likely due to the heterogeneity and 

small size of the sample, no statistically significant different abundant 

members of the oral microbiome were seen between OSCC and OED 

lesions. 

While it was not possible with such a small, heterogenous sample 

to identify a significantly different oral microbiome biomarker profile 

between OSCC and OED lesions in substudy 1, it may be possible to 

identify biomarkers that indicate a difference between diseased and 

healthy tissues in the same individual. As described in the methods of 
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substudy 1, for each participant, not only the lesion area was sampled, 

but another sample was also taken from an anatomically-matched non-

lesional area within the same participant. Comparing lesional to non-

lesional tissues within the same individual in both OSCC and OED 

provides an opportunity to identify potential biomarkers in the oral 

bacteriome that are associated with diseased as compared to healthy 

tissue in the same person. 

OSSC vs. OED in a UK Sample 

As described in Chapters 2 and 3, Northern Europe, and 

specifically the UK, has a distinctive epidemiologic profile of HNC 

(Bosetti et al., 2020; Salehiniya & Raei, 2020). Regional HNC and OSCC 

rates in the UK fluctuate based on increases and decreases in the 

presence of risk factors in the population (Bosetti et al., 2020; Gormley 

et al., 2022). Regional differences in rates of low socio-economic status 

(SES), which was discussed as another risk factor for HNC and OSCC 

in Chapter 2, also contribute to differing rates across the various regions 

of the UK (Bosetti et al., 2020; Gormley et al., 2022; Salehiniya & Raei, 

2020). Across all regions in the UK, incidence rates correlate with 

mortality rates, as 58.8% of HNCs diagnosed in the UK have already 

advanced to stage III or IV (Gormley et al., 2022). 

Substudy Design 

As described in Chapter 3, substudy 1 included a small, 

heterogeneous sample of OSCC and OED patients from the UK. 

Although the comparison of the oral microbiome from the surfaces of the 

lesion did not show significant differences leading to the identification of 
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target biomarkers, in substudy 1, a comparison with healthy tissue was 

not conducted. This was purposeful, as it was felt that it would be too 

overwhelming to present a comparison with healthy tissue in addition to 

the other results. 

Therefore, a second substudy was done. In an effort to identify 

biomarkers indicating OSCC or OED in the oral bacteriome using 16s 

rRNA gene sequencing, the aim of this second substudy was to test 

whether, among patients in the UK with either OSCC or OED, 1) lesional 

tissues had more α diversity than healthy tissues from the same 

individual, 2) lesional tissues had more β diversity than healthy tissues 

in the same individual, and 3) lesional tissues had significantly different 

relative abundant taxa when compared to healthy tissues in the same 

individual. 

4.2. Methods 

As described in substudy 1 (Chapter 3), this is a cross-sectional 

study of patients from two different UK medical centres diagnosed with 

either an OED or OSCC lesion. Eligible patients from these centres were 

consented and enrolled in the study. Patients provided questionnaire 

information, and data from their medical records was included in the 

study. Swab samples from both lesional tissue and healthy tissue for all 

participants were obtained and underwent processing, and statistical 

tests were employed to answer the research aims. These steps are 

detailed below. To ensure complete reporting of this observational study, 

a STROBE checklist was completed (von Elm et al., 2007) (see 

Appendix F). 
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Participants and Setting 

Please refer to Substudy 1 as the information is identical. 

Enrolment and Consent, and Data Collection 

Please refer to Substudy 1 as the information is identical. 

Specimen Sampling and Analysis, and Bioinformatics Processing 

Sample collection, transport and storage, and processing were 

the same as in substudy 1 (described fully in Chapter 3), so this section 

will briefly summarize these steps. For sample collection, on all 

participants, both a lesion area and an anatomically matched non-

lesional area were swabbed. The sample from the swab was stored, then 

transferred to the laboratory. 

At the laboratory, the samples underwent DNA extraction and 

quantification, amplification, and purification, as described in detail in 

Chapter 3. Additionally, library preparation followed the description in 

Chapter 3. Bioinformatics processing also took place as described in 

Chapter 3, only this time, *.qza files were prepared so that pairwise 

comparisons could be done between lesional and healthy tissue for each 

participant separately for each group (OSCC vs. OED). The *.qza files 

were prepared iteratively. Each time a *.qza files was processed, *.qzv 

files which are visualizations were reviewed to determine the next 

processing step. Once the final *.qza file was processed, it was output 

and used for analysis. 

Statistical Analysis 

To compare α diversity between lesional and healthy tissue in 

both OSCC and OED, Shannon’s Index was used, and paired tests were 
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performed separately for the OSCC and OED groups (Kers & Saccenti, 

2022). To compare β diversity between lesional and healthy tissue, 

OSCC and OED groups were tested separately using weighted UniFrac 

distances entered into a PERMANOVA (Kers & Saccenti, 2022). To 

compare differential abundance taxa between lesional and healthy 

tissues in each group, ALDEx2 was used (Gloor, 2023; Gloor et al., 

2017, 2023), with α set at 0.05 (Kers & Saccenti, 2022). 

To develop a data file to support statistical testing, first, the *.qza 

files were prepared using the same method as described in substudy 1 

(Chapter 3) using qiime2. For the α diversity test, the alpha-group-

significance command in qiime2 was run on each tissue sample group 

(OSCC lesion vs. healthy, OED lesion vs. OED healthy). This option in 

qiime2 conducts Kruskal-Wallace analysis testing on the Shannon 

Index. To evaluate β diversity, the beta-group-significance command 

was run on separate datasets, one with OSCC, and one with OED, which 

tests using a PERMANOVA. To evaluate differential abundant taxa 

between healthy and lesional tissues, number of significant taxa based 

upon pairwise Wilcoxon tests with Benjamini-Hochberg-corrected p-

values from ALDEx2 were quantified, as well as the number of taxa with 

effect confidence intervals that did not cross zero (Gloor et al., 2023). 

4.3. Results 

As described in substudy 1 (Chapter 3), a total of 46 participants 

enrolled in and completed the study, including 21 with OSCC (46%), and 

25 with OED (54%) (refer to Table 3.1 for a descriptive summary of the 

sample). 
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α Diversity Results 

Results for the α diversity analysis are visualized in Figure 4.1. 
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Figure 4.1. Comparison of α diversity results between lesion and 

non-lesion tissues in OED and OSCC samples 

 

Figure 4.1 shows the box-and-whisker plots for the Shannon 

Index for OED lesion vs. non-lesion tissue (p = 0.9298) on the left side 

of the figure, and for OSCC lesion vs. non-lesion tissue (p = 0.1138) on 

the right side of the figure. Although there are visual differences in the 

distributions as depicted in the box plots, these differences did not rise 

to the level of statistical significance. 

β Diversity Results 

Results for the β diversity analysis are visualized in Figure 4.2. 
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Figure 4.2. Comparison of β diversity results between OSCC and 

OED lesion and non-lesion tissue 

 

As a reminder, in testing for β diversity, weighted UniFrac 

distances between the samples that take into account the phylogenetic 

tree and thus phylogenetic distances between community members was 

tested, and these are the distances that were examined (Kers & 

Saccenti, 2022). As can be seen in Figure 4.2, for the OED results at the 

top, the box plots appear very similar, and the β diversity is not 

statistically significantly different between healthy and diseased tissue in 

OED (p = 0.921). The results are different for OSCC, shown at the 

bottom of Figure 4.2, where β diversity was found to be statistically 
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significantly different between lesion and non-lesion in OSCC (p = 

0.001). It is visually apparent in Figure 4.2 that there is a trend toward 

greater β diversity in the OSCC lesion when viewing the distance to non-

lesion (right side of figure), but even though those differences are 

statistically significant, they are of a small magnitude. 

Differential Abundance Results 

For the OED analysis, 3,709 taxa were identified, and for the 

OSCC analysis, 3,516 taxa were identified. Figure 4.3 visualizes the 

results of the differential relative abundance analysis in Bland-Altman 

and dispersion plots. 

Figure 4.3. Relative differential abundance in OED and OSCC vs. 

healthy tissue 

 

In Figure 4.3, comparison between relative differential abundance 

in OED tissue is shown on the left, and the results for OSCC are shown 

on the right. Both plots are similar in that there are no differentially 

relatively abundant taxa displayed, because these would produce red 

dots (Gloor et al., 2016). As black points represent rare taxa, and grey 

ones represent abundant taxa, both comparisons are similar in that they 
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plot many rare as well as abundant taxa, and therefore it is difficult to 

argue that they are different (Gloor et al., 2016). For both the OED and 

OSCC comparisons, none of the Wilcoxon corrected p-values were 

statistically significant at p < 0.05, and all of the effect sizes included 0. 

For these reasons, it appears that in this analysis, there are not 

significantly differentially relatively abundant taxa in OED tissue vs. 

healthy from the same individual, or in OSCC tissue vs. healthy from the 

same individual. 

4.4. Discussion 

In this UK study comparing both OED and OSCC tissue to healthy 

tissue in the same individual, in terms of the oral microbiome as 

measured using 16s rRNA gene sequencing, it was found that neither 

type of lesional tissues had more α diversity than healthy tissues. 

However, while it was found that in OED, there was not a significant 

difference in β diversity between lesional and non-lesional tissues, in 

OSCC, there was a statistically significant difference in β diversity 

between lesional and non-lesional tissues. Nevertheless, no taxa were 

found to be differentially relatively abundant in either OED or OSCC 

compared to healthy tissues. 

Comparing these results to the scientific literature is challenging 

for the reasons stated in Chapter 2, in that both statistical methods as 

well as processing configuration pipelines are not comparable 

(Goossens et al., 2015; Ou et al., 2021). However, it is fair to compare 

the results to Substudy 1, where only lesional tissues between OED and 

OSCC were compared. Substudy 1 also found significant differences in 
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β diversity in OSCC compared to OED, with OSCC appearing more β 

diverse. In the current study, OSCC tissues were found to be significantly 

more β diverse than healthy tissues. This seems to be a robust finding, 

in that it suggests that OSCC tissue that originated as OED tissue may 

became more β diverse as it evolved. This is purely speculation based 

on the findings arising from these two studies. If this speculation were to 

be the case, the challenge is to identify the new taxa that are being 

added as the OSCC lesion develops. 

In both substudy 1 and the current analysis, studies of differential 

relative abundance was done on taxa numbering in the thousands, and 

no differentially relatively abundant taxa were detected. This may be an 

artifact of classification, in that in compositional data like oral microbiome 

data, how members of the microbiome are classified can greatly impact 

the analytic approach and the potential interpretation of the results 

(Gloor et al., 2017). Su and colleagues (2021) provide a descriptive 

figure from their study of the oral microbiome of Taiwanese oral cancer 

patients that illustrates this issue, which is reprinted as Figure 4.4. 
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Figure 4.4. Challenges with oral microbiome classification 

approaches to compositional data. Reprinted from Su et al. (2021) 

 

As can be seen in Figure 4.4, depending upon whether the 

members of the oral microbiome were classified to the phylum level or 

the genus level changed not only the number of levels of the 

classification, but the patterns of relative abundance identified. It is 

possible that by changing the level of classification of the current data 

used in this study and repeating the analysis, significant results might be 

obtained. Although higher level of classification might not provide 

sufficient information about specific member/members of the OSCC 

microbiome, robust statistical findings can provide a better guidance on 

the development of diagnostic microbiome biomarkers. 

The results of this study are consistent with the background 

scientific literature which has not identified specific biomarkers that 

signal the development of OED or OSCC, or that signal the progression 

from OED to OSCC (Doddawad et al., 2022). However, this analysis 

identified that there appears to be significantly increased β diversity in 

OSCC swabbed tissues when compared to healthy tissues in the same 

individual (current study results), and when compared to OED tissues 
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from other individuals (results of substudy 1). It would be interesting to 

observe the results from other studies of OSCC, OED and heathy tissue 

samples from different populations that replicate the same approaches 

used in substudies 1 and 2 to see if the same patterns appear in different 

samples. Perhaps as the OSCC lesion forms, the microbiome becomes 

significantly more β diverse, and if a biomarker signal from the oral 

microbiome indicating healthy or OED tissue was achieving greater β 

diversity compared to biomarkers arising from the surrounding tissue 

could be identified, it could be seen as an early indication of OSCC 

formation. 

While this study has strengths in terms of its statistical and 

compositional approach to analysing the oral microbiome, it also has 

significant limitations. As noted in the discussion to substudy 1, the 

underlying sample is diverse in terms of its OSCC risk factors, so it was 

unlikely that any particular member of the oral microbiome could be 

identified as responsible for lesion formation given the likely diverse 

underlying aetiologies of the pathology seen. Nevertheless, this study 

used similar methods as existing studies in the literature (Sarkar et al., 

2021; Zhang et al., 2020). The current study and similar studies had 

small, heterogenous samples, likely due to time limitations with respect 

to positive lesion sample accumulation (Sarkar et al., 2021; Zhang et al., 

2020). Due to lack of standardization in the background literature, it is 

difficult to compare the results of this study to other, similarly-designed 

studies (Sarkar et al., 2021; Zhang et al., 2020). As highlighted by the 

inclusion of Figure 4.4, in this study, the level of classification of the taxa 
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may have impacted the findings relating to relative differential 

abundance. This study is limited to a UK population with a particular 

OSCC risk factor profile; different results would like be seen in 

populations with different risk factor profiles (Gormley et al., 2022; 

Salehiniya & Raei, 2020). There was enough sample in the current study 

to allow for the identification of some statistically significant associations. 

However, obtaining a larger sample would provide greater insight into 

whether there are indeed members of the oral microbiome that serve as 

biomarkers that signal the conversion of OED tissue or healthy tissue to 

OSCC. 

In conclusion, although this study found that there was significant 

differences in β diversity between OSCC lesions and healthy tissues in 

the same individual, it was not apparent what member of the oral 

microbiome were responsible for this finding. Taken together, the 

findings from this substudy and substudy 1 suggest that in the population 

studied, as OSCC lesions form, their associated oral microbiome 

becomes more diverse. This appears to not be true of OED lesions, so 

an increase in diversity beyond a certain threshold could signal 

progression in OSCC. Future studies should seek to replicate this finding 

in other OED and OSCC patient populations, as well as to identify which 

members of the oral microbiome are responsible for the increasing 

diversity as the OSCC lesion forms. 
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Chapter 5: Substudy 3: A Reanalysis of OSCC Microbiome 

Repository Data Shows Consistent Results with Current Study 

Data 

5.1. Background 

In substudy 1 presented in Chapter 3, the oral bacteriome of 

lesional tissues from swab samples of oral squamous cell carcinoma 

(OSCC) and oral epithelial dysplasia (OED) patients in the United 

Kingdom (UK) were analysed using 16s rRNA gene sequencing and 

compared, and the only significant finding was that OSCC lesions had 

significantly more β diversity than OED lesions. Next, in substudy 2 

presented in Chapter 4, lesional and healthy tissue swabs were 

compared within the same individuals - using the same sample used in 

substudy 1. Again, the only significant finding was greater β diversity 

between OSCC lesions and healthy tissues within the same individuals; 

OED tissues did not show this pattern. These findings suggest that as 

tissue evolves from healthy or OED to OSCC, it becomes more diverse 

in terms of taxa. If the additional taxa being added could be identified, 

they could serve as clinical biomarkers for disease progression. 

An important limitation of substudy 2 was the small number of 

heterogenous samples coming from the UK, an area of the world with a 

unique risk factor pattern for OSCC (Bosetti et al., 2020). It would be 

advantageous to analyse OSCC data from a similar study design taking 

place in a different part of the world, such as China or India, where the 

risk factor patterns are different, using the same analytic methods 

(Gormley et al., 2022; Salehiniya & Raei, 2020; Sarkar et al., 2021; 
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Zhang et al., 2020). That way, the differences in both statistical approach 

as well as data processing approaches can be analysed for possible 

effects on study outcomes, and results can be directly compared to 

Substudy 2 (Gloor et al., 2017; Goossens et al., 2015; Kers & Saccenti, 

2022; Ou et al., 2021). 

Replication of Substudy 2 Approach 

The Sequence Read Archive (SRA) is a public service sponsored 

by the United States (US) National Institutes of Health (NIH) (National 

Institutes of Health, n.d.). The SRA is a public data repository that 

accepts data from sequencing projects that involve human participants 

or their metagenomes (National Institutes of Health, n.d.). The SRA 

sequencing data were available for several of the studies that were the 

subject of the comprehensive review presented in Chapter 2, including 

a case-series of OSCC patients in China that used a similar design as 

substudy 2 (Zhang et al., 2020). This study included 50 OSCC patients 

who had a tumour site and an opposite healthy site swabbed, and the 

oral microbiome from these tissues were analysed using 16s rRNA gene 

sequencing (Zhang et al., 2020). The raw reads were placed in the SRA 

repository under PRJNA533177 (National Institutes of Health, n.d.). 

These data are available for download and re-analysis by other 

researchers (National Institutes of Health, n.d.). 

Similar to substudy 2, the participants studied by Zhang et al. 

(2020) were heterogenous in terms of risk factors. This means the risk 

factors for OSCC were not distributed evenly across the sample, just has 

was the case in substudy 2. For example, the sample included 
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individuals with different tobacco use, alcohol use, and betel nut use 

profiles, and since these are risk factors for OSCC, this sample was 

considered heterogenous (Zhang et al., 2020). In addition, the sample 

studied by Zhang et al. (2020) had tumours at all four clinical stages, 

making it even more heterogeneous. 

The availability of the samples studied by Zhang et al. (2020) in 

the SRA provided the opportunity for the raw sequencing microbiome 

data to be pre-processed and reanalysed in the same way as the data 

in substudy 2. This facilitated a direct comparison of the results to that 

of substudy 2. In other words, the raw reads data from the SRA 

generated by Zhang et al. (2020) could be processed and analysed to 

compare the findings directly to the findings of substudy 2, so this 

became the aim. Specifically, to test whether 1) OSCC lesional tissue 

swabs had more α diversity than healthy tissue swabs from the same 

individual, 2) OSCC lesional tissue swabs had more β diversity than 

healthy tissue swabs in the same individual, and 3) OSCC lesional tissue 

swabs had significantly different relative abundance of certain taxa when 

compared to healthy tissue swabs in the same individual. 

5.2. Methods 

This was a reanalysis of data placed in the SRA that was 

generated by a previous study (National Institutes of Health, n.d.; Zhang 

et al., 2020). First, raw sequences from the data underwent a data 

reformatting and cleaning process to make them comparable to data 

used in substudy 2. Next, the data underwent further bioinformatic 

analysis similar to that conducted previously, and then statistical analysis 
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took place (see chapter 3 and 4). These processes are described in this 

section. To ensure complete reporting of this observational study, a 

STROBE checklist was completed (von Elm et al., 2007) (see Appendix 

G). 

Data Reformatting and Cleaning 

First, data for project PRJNA533177 were downloaded from the 

SRA (National Institutes of Health, n.d.; Zhang et al., 2020). For this 

project, the 100 runs described in the article were identified (Zhang et 

al., 2020). These were paired-end samples, in that each run had two 

reads per spot. The library layout was 2 × 300 bp paired-end Illumina 

MiSeq (Zhang et al., 2020). The primers used to amplify the V3-V4 

hypervariable regions in this project were 338F (5′-

CCTACGGGNGGCWGCAG-3′) and 806R (5′-

GACTACHVGGGTATCTAATCC-3′).  

Once the format of the library was determined, data were 

imported locally in SRA format using the SRA toolkit (Estaki et al., 2020; 

National Institutes of Health, n.d.). SRA runs were converted to fastq 

format using fastq dump in SRAtoolkit, and split into forward and reverse 

reads for each sample. As the data were demultiplexed paired-end 

sequences, a manifest file was created locally using text format 

accordingly (Estaki et al., 2020). 

Next the QIIME 2 environment was activated (qiime2-2023.5), 

and the manifest file was imported into QIIME 2 (Estaki et al., 2020). The 

data were visualized using the demux summarize command to allow for 

data cleaning (Estaki et al., 2020). Data were trimmed using the cutadapt 
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plugin to remove primers and adaptors and to filter out short reads 

(Estaki et al., 2020). As much as possible, the processing followed 

substudy 2’s processing. After this, denoising and merging of the reads 

was performed using the DADA2 QIIME 2 plug-in. Phylogenetic 

reconstruction took place using the sepp-refs-silva-128.qza file as 

reference as was used previously. Fragment-insertion tree was created 

and diversity metrics were generated (details in Chapter 3). The sample 

size was limited to the sample provided from the original analysis, so no 

sample size calculation was completed. 

Statistical Analysis 

As with substudy 2, α diversity between lesional and healthy 

tissue swabs was compared using Shannon’s Index, and β diversity was 

compared between lesional and healthy tissue swabs using weighted 

UniFrac distances via a PERMANOVA run in QIIME 2 (Kers & Saccenti, 

2022). UniFrac and weighted Unifrac distances between two samples 

are derived from taking into account the phylogenetic tree (Kers & 

Saccenti, 2022). In doing so, they are essentially measuring the 

phylogenetic distances between community members (Kers & Saccenti, 

2022). The UniFrac distance is calculated as a fraction of the branch 

length (Kers & Saccenti, 2022). To create a weighted UniFrac, the 

branch lengths are weighted by the relative abundance of sequences, 

thus giving them more influence (Kers & Saccenti, 2022). To compare 

differential abundance taxa between lesional and healthy tissue swabs 

as was done in Substudy 2, ALDEx2 was used (Gloor, 2023; Gloor et 
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al., 2017, 2023). For all statistical tests, α was set at 0.05 (Kers & 

Saccenti, 2022). 

5.3. Results 

As described earlier, data analysed were from a study of 50 

Chinese individuals diagnosed with OSCC (Zhang et al., 2020). Table 

5.1 is adapted from the original article, and provides summary statistics 

about the sample in the study (Zhang et al., 2020). 

Table 5.1 Sample summary. 

Category Level N % 
All All 50 100% 

Clinical Stage I 23 46% 
 II 16 32% 
 III 8 16% 
 IV 3 6% 

Alcohol Use Previous 20 40% 
 Current 17 34% 
 Non-drinker 13 26% 

Tobacco 
Smoking Previous 17 34% 

 Current 9 18% 
 Non-smoker 24 48% 

Betel Nut 
Chewing Previous 4 8% 

 Current 2 4% 
 Non-chewer 44 88% 

 

As shown in Table 5.1, the first row shows all of the members of 

the sample, with n = 50. Almost half the sample (46%) had lesions 

classified as Stage I. In Table 5.1, 74% of the sample were either 

previous or current alcohol users, while in substudy 2, 54% were current 

alcohol users, suggesting that the samples are not comparable in terms 

of alcohol use -as one is more than 20% greater than the other. In Table 

5.1, 52% are either previous or current tobacco smokers, while in 
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substudy 2, 72% were either current or former tobacco users, suggesting 

that results from the UK sample may be more dominated by the oral 

microbiome of smokers compared to the Chinese sample. In Table 5.1, 

12% of participants were current or previous betel nut chewers, and this 

is relatively similar to substudy 2, where 11% were current or former 

betel nut chewers. 

Diversity Results 

Figure 5.1 visualizes a comparison of α diversity between lesion 

and non-lesion tissue using Shannon’s Index, which was found not to be 

statistically significant (p = 0.1496). 

Figure 5.1 Comparison of α diversity: lesion vs. non-lesion 

 

As seen in Figure 5.1, although the box plot shape shows there is 

more diversity in the non-lesional samples, the medians are close, and 

the test results show the α diversity between the lesional and non-

lesional tissues are not statistically significantly different. These results 

mirror the results of substudy 2. 

Figure 5.2 visualizes the comparison of β diversity between 

lesional and non-lesional tissues, which like with substudy 2, resulted in 

a statistically significant PERMANOVA test (p = 0.001).  
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Figure 5.2 Comparison of β diversity: lesion vs. non-lesion 

 

As shown in Figure 5.2, while the box plots look very similar on 

the left side of the figure (visualizing distance to lesion), on the right side 

of the figure, it appears that there is a visual difference in box plot with 

the distance to lesion. In other words, the distribution of distances within 

the lesion vs. the non-lesion were visually very similar when considering 

the UniFrac distances to the lesion, but were not as similar when 

considering the equation with a different reference in terms of distance 

to non-lesion. As a reminder, the distance being calculated is the 

weighted UniFrac distance between different microbiome community 

members. Although this visual difference is subtle, like with the β 

diversity results from substudy 2, the analysis of β diversity results in a 

statistically significant PERMANOVA test (p = 0.001). 

Differential Abundance Results 

The differential relative abundance analysis identified 3,692 taxa 

for comparison. As with substudy 2, Bland-Altman and dispersion plots 

were created to interpret the differential abundance results (see Figure 

5.3). 
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Figure 5.3. Bland-Altman and dispersion plots 

 

Although the results in Figure 5.3 look similar to the differential 

relative abundance results shown in substudy 2, this analysis identified 

one member of the microbiome that was statistically significantly 

differentially abundant in comparing lesional to non-lesional tissues (q ≤ 

0.1), as shown by the single red dot (circled for clarification) on Figure 

5.3. Admittedly, it is difficult to identify the red dot, and the plot itself is 

challenging to interpret because it is mostly in black and grey. This has 

been acknowledged by those who use the Aldex2 approach; in cases 

where the distances are greater between members, the results appear 

much clearer in this plot (Gloor et al., 2016, 2017). With only one dot as 

shown here, the result is considered an artifact (Gloor et al., 2016, 2017). 

Recalling that black points represent rare taxa, and grey ones represent 

abundant taxa (Gloor et al., 2016), these results in Figure 5.3 are similar 

to the results of substudy 2. 



Page 186 

As with substudy 2, for each of the 3,692 taxa identified, further 

analysis found that there were no taxa with Wilcoxon corrected p-values 

< 0.05, and there were no taxa with effect sizes with confidence intervals 

not including zero. For these reasons, this research fails to reject the 

null, and concludes that there was not a statistically significant difference 

in the relative differential abundance between lesional and non-lesional 

tissues. 

5.4. Discussion 

Although it would be typical to begin this discussion by presenting 

the results of the current reanalysis study, instead, this discussion will 

start by presenting the results from the study from which the reanalysed 

data in the current study was sourced, which was written by Zhang et al. 

(2020). In their study, which was set in China, they enrolled 50 

participants with OSCC, and compared microbiota compositions 

between tumour sites and normal tissues opposite to those sites in the 

buccal mucosa using 16S rRNA sequencing (Zhang et al., 2020). 

Although inferential statistics were not applied in this study, the authors 

reported that they found richness and diversity of microbiota to be higher 

in tumour sites when compared to control tissues (Zhang et al., 2020). 

They have also reported some taxa to be higher in differential 

abundance in tumour sites as compared to healthy sites. These taxa 

were assigned to species level and included Fusobacterium nucleatum, 

Prevotella intermedia, Aggregatibacter segnis and other seven species. 

The results of the current study, which was a reanalysis of existing 

data from a study by Zhang et al. (2020) designed similarly to substudy 
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2, are consistent with the results from substudy 2. There was not a 

statistically significant difference between lesional and non-lesional 

tissue swabs in terms of α diversity, but when comparing β diversity 

between lesional and non-lesional tissue swabs, there was a statistically 

significant difference. However, relative differential abundance analysis 

was unable to identify the additional taxa present in the lesion that were 

not present in healthy tissues and were responsible for the statistically 

significant increase in β diversity in the lesion tissue compared to healthy 

tissues. 

The advantage of this comparison between the data obtained by 

Zhang and colleagues (2020) and the data used in substudies 1 and 2 

is that they have features that make them directly comparable. First, they 

all used similar study designs, in terms of sampling participants, 

gathering measurements, and processing specimen. These features of 

the original studies make them comparable. Next, through the research 

design, there was a consistency of method imposed by pre-processing 

the data. This feature ensured that data from substudy 2 and 3 not only 

used consistent processing methods, but also used the same statistical 

approach. Because of these consistencies, the results of all three studies 

can be directly compared.  

This approach provides a way to reanalyse data to make the 

results comparable to results from datasets from other sources. With 

respect to the original study by Zhang and colleagues (2020) in their 

scientific paper, the authors reported pre-processing the data differently 

than was done in the current studies presented in Chapters 3 and 4, and 
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as reported earlier, did not use formal hypothesis testing. The ability to 

reprocess the raw data from the SRA allows the researcher to impose a 

different processing protocol than was reported in the original scientific 

paper. This act will cause the newly processed data to be able to be 

analysed in a similar way to other data from other datasets that are 

processed in the same way, making them directly comparable. Likewise, 

imposition of a formal statistical testing approach used here allowed the 

results to be directly compared to Substudies 2. This led to the ability to 

consider if findings were consistent across studies in the current 

analysis, because now they could be directly compared. In the current 

reanalysis study, while α diversity did not differ significantly between 

lesional and healthy tissue samples in the same individual, β diversity 

differed significantly in both analyses. Yet, relative differential 

abundance analysis could not identify the additional taxa responsible for 

this finding of greater β diversity. 

One of the main challenges seen in the reanalysis in the present 

chapter, and in the analysis done for Substudy 2 presented in Chapter 

4, is that the process results in thousands of taxa being compared (as 

opposed to hundreds) (Zhang et al., 2020). The large number of taxa 

groupings becomes statistically challenging because of these large 

numbers. It is computationally difficult to identify differentially abundant 

taxa when the number of taxa groupings are in the thousands. As a 

thought experiment, consider calculated weighted UniFrac distances 

among thousands compared to hundreds of community members. The 

smaller the community, the easier it would be to identify clusters, as 
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these members would clearly separate away from the other members. 

But with thousands of members, the clustering would have to be 

extremely strong to be identified statistically. 

If there are indeed differentially-abundant taxa contributing to the 

elevated β diversity seen in tumour tissue, then these will need to be 

grouped in such a way as to be identified in the analysis. The grouping 

approach now produces thousands of groups; without an improvement 

in this area, it will be difficult to find clusters statistically (Gloor et al., 

2017; Kers & Saccenti, 2022). Although some studies have attempted to 

solve this problem by reducing the classifications to the genus or phylum 

level, these approaches have not been successful (Goossens et al., 

2015; Su et al., 2021). These approaches have indeed reduced the 

classifications, but have not aided in the identification of clusters 

(Goossens et al., 2015; Su et al., 2021). Also, many argue this approach 

does not seem logical (Goossens et al., 2015; Su et al., 2021). As such 

classifications to higher levels, for example to phylum or even genus, 

would provide broader categories of taxa which might include both 

commensal and oncogenic taxa under the same classification. 

Doddawad and colleagues (2022) summarized different 

approaches to classifying biomarkers in oral cancer as a way to facilitate 

improved prognostication and survival predication in patients. They first 

reviewed the biomarker classification system developed by Speight and 

Morgan in 1993 (Daniel & Lalitha, 2016; Doddawad et al., 2022; Speight 

& Morgan, 1993). In this system, biomarkers were classified into the 

following groups: proliferative markers, genetic markers, oncogenes, 
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tumour suppressor markers, cytokines, blood group antigens, and 

integrins extracellular matrix (ECM) ligands (Daniel & Lalitha, 2016; 

Doddawad et al., 2022). While this classification system may appear to 

be rather random, it was designed to accommodate the identified 

biomarkers at the time, such as histones as proliferative markers, ploidy 

as a genetic marker, and P53 mutations as tumour suppressor markers 

(Daniel & Lalitha, 2016; Doddawad et al., 2022). This classification 

system was improved upon by Schliephake (2003), who reclassified the 

biomarkers into several categories: tumour growth markers, markers of 

tumour invasion and metastatic potential, intracellular markers, 

angiogenesis markers, cells surface makers, arachidonic acid products, 

enzymes, markers of tumour suppression and antitumor response, and 

makers of anomalous keratinization (Daniel & Lalitha, 2016; Doddawad 

et al., 2022). 

Both of these systems attempted to use current knowledge on 

biomarker identification and function to develop classifications (Daniel & 

Lalitha, 2016; Doddawad et al., 2022; Schliephake, 2003). However, 

classifications can be based on site, separating epithelial markers from 

mesenchymal markers; biomarkers can also be classified as prognostic 

or biochemical (Doddawad et al., 2022). Based on current knowledge 

Doddawad et al. (2022) propose a higher-level classification into four 

categories: prognostic biomarkers, biochemical markers, hormone 

receptors, and proliferation biomarkers. The reason why they chose four 

categories is they were hoping to empirically establish a more scientific 

way of thinking about forming hypotheses regarding biomarker detection 
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(Doddawad et al., 2022). However, using just four categories would not 

be workable for OSCC, as there are many hypothesized members of the 

oral microbiome that deserve investigation. 

Reclassifying members of the microbiome into four categories as 

recommended by Doddawad et al. (2022) will not solve the challenge of 

comparing differential relative abundance of taxa between samples. 

Nevertheless, their exercise provides insight into what a more useful 

classification system would look like. Clearly, it would have to be based 

on some empirical knowledge not taken into account in the current 

approaches. As evidenced by papers that recommend new classification 

systems, scientific discussions in the published peer-reviewed literature 

are evolving towards developing functional classifications (Doddawad et 

al., 2022; Ou et al., 2021). In a functional classification system, the 

biomarker’s classification relates to its function in the course of the 

disease (Doddawad et al., 2022; Ou et al., 2021). 

Ou and colleagues (2021) are proponents of a functional 

classification system. These authors recommend identifying which 

biomarkers are present in relation to the course of the disease, 

comparing those seen in asymptomatic disease to those seen during 

symptomatic disease, diagnosis and treatment, and surveillance 

monitoring after treatment (Ou et al., 2021). Had the current study been 

able to leverage such classification systems, it would have been possible 

to develop hypothesis-driven analyses. For example, if there were 

proposed functional classifications of microbiome biomarkers involved in 
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the development of OED and OSCC, Substudy 1 could have been 

developed specifically to test hypotheses based on these classifications. 

Unlike many of the studies reviewed in Chapter 2, the current 

study proposed several hypothesis-driven analyses, and the results 

were difficult to interpret. Although it is possible to compare α and β 

diversity specifically, the true aim of the line of research is to identify 

specific biomarkers associated with disease states, this the current study 

could not accomplish. Hence, the limitations of the results of the current 

study highlight the need to find evidence-based biomarker classification 

systems that can be imposed on oral microbiome data to aid in 

hypothesis-driven analysis. (Doddawad et al., 2022; Ou et al., 2021). As 

evidenced in this current study and the literature, current classification 

approaches do not generate clusters of taxa that relate to clinical 

expression of disease (Doddawad et al., 2022; Ou et al., 2021). 

The current reanalysis study presented in this chapter has both 

strengths and limitations. The main strength of this reanalysis is that it 

provides a case study in how to reanalyse data from a public repository 

to provide a comparison to an analysis of a dataset generated from 

primary data collection. While this has been done by others, this adds 

another example. The term case study refers to a particular approach 

taken in a particular case. It is acknowledged that many researchers 

conducted case studies on the data in repositories. What is special about 

this case study is that it demonstrates how to reanalyse data from a 

repository in such a way as to make it directly comparable to data that 

was prospectively collected and analysed. Again, while this is novel it 
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has been done by others, this project provides yet another example that 

can be used as a guideline. 

By selecting data from a study with a similar study design to 

Substudy 2, pre-processing the data similarly as was done in substudies 

1 and 2, and conducting the statistical analysis in a similar way as was 

done in substudies 1 and 2, the research produced results that were 

directly comparable to the results presented in substudies 1 and 2. As a 

reminder, the reanalysed data were from a study set in China, where 

researchers enrolled 50 participants with OSCC (Zhang et al., 2020). In 

this study by Zhang et al. (2020), researchers compared microbiota 

compositions between tumour sites and normal tissues sampled from 

opposite those sites in buccal mucosal using 16S rRNA sequencing. 

They analysed the data using 16S rRNA sequencing and reported their 

results in their original paper (i.e., Zhang et al., 2020). In their original 

study, Zhang et al. (2020) did not use inferential studies, but the authors 

reported that they found the richness and diversity of microbiota were 

higher in tumour sites when they were compared to control tissues. 

However, while the results of the reanalysed data are directly 

comparable to substudies 1 and 2, the limitations inherent in the original 

study designs are also relevant here. The sample from the UK used in 

substudy 1 and 2 (presented in chapter 3 and 4), and the data used from 

the repository for substudy 3 from China (i.e., Zhang et al., 2020) were 

all based on a small sample of participants with heterogenous levels of 

OSCC risk factors. As described in substudy 1, improvements need to 

be made to the study design and statistical approaches in researching 
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the oral microbiome if reliable biomarkers for OSCC are to be identified 

(Goossens et al., 2015; Hamada et al., 2019; Hu & Dignam, 2019; Ou et 

al., 2021; Peter et al., 2022). 

In conclusion, the reanalysis of data obtained from a repository 

from a similarly-designed study (i.e., Zhang et al., 2020) as substudy 2 

produced similar findings as substudy 2. While α diversity was found to 

be similar between OSCC lesion and non-lesion tissue in the same 

individual, there was significantly more β diversity in lesion tissue 

compared to non-lesion tissue. Nevertheless, specific differentially 

relatively abundant taxa responsible for the increased lesion β diversity 

were not identified, likely due to the large number of taxa being 

compared. In other words, no taxa were identified statistically that were 

differentially relatively abundant in the microbiome of OSCC lesion tissue 

compared to healthy tissue. Future studies should seek to use analytic 

approaches consistent with existing literature so results can be directly 

comparable. Additionally, more useful biomarker classifications based 

on empirical classifications should be developed in OSCC. If this can be 

done effectively, it can facilitate the identification of differentially 

abundant taxa associated with OSCC disease progression. 
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Chapter 6: Discussion and Conclusion 

6.1. Discussion 

This dissertation presents three analyses aimed at increasing 

knowledge about the human oral microbiome in oral squamous cell 

carcinoma (OSCC). In the first analysis, in substudy 1, the oral 

microbiome from tissue samples from a series of patients in the United 

Kingdom (UK) with either OSCC or oral epithelial dysplasia (OED) were 

analysed using 16s rRNA gene Next Generation Sequencing (NGS). 

Diversity and differential relative abundance were compared between 

lesional tissues, it was found that there was statistically significant β 

diversity between the OSCC and OED microbiomes. However, no 

differentially relatively abundant taxa were identified as being 

responsible for the increased diversity in the OSCC lesion. 

In the second analysis in substudy 2, the same approach was 

used to compare the oral microbiome in OSCC and OED lesional tissues 

to healthy tissues in the same patients. While there was not a statistically 

significant difference in β diversity between OED and healthy tissues in 

the same individual, there was a statistically significant difference in 

OSCC compared to healthy tissues in the same individual. However, as 

with substudy 1, no differentially relatively abundant taxa were identified 

as being responsible for this increased diversity in the OSCC tissues. 

In the third analysis in substudy 3, existing data from a Chinese 

study with a similar design as substudy 2 were obtained from an online 

repository, and reprocessed the same way data were processed in 

substudy 2, to make the results from this re-analysis comparable (Zhang 
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et al., 2020). The findings in substudy 3 were similar to substudy 2, 

where statistically significant β diversity was found when comparing 

OSCC lesional tissues to healthy tissues, but no relatively abundant taxa 

were identified as being present in the OSCC tissues and not present in 

the healthy tissues. 

6.2. Consistency with Prior Studies 

The three substudies in this dissertation have findings that fit 

together in a logical pattern. First, β diversity of the microbiome was 

increased in the OSCC lesions as compared to OED lesions from other 

participants in substudy 1. Next, β diversity of the microbiome in OSCC 

was increased compared to healthy tissues from the same individual in 

substudies 2 and 3, but differential relative abundance analysis was not 

able to detect the taxa responsible for this increased diversity. These 

findings contrast with those from the two studies from the comprehensive 

review in Chapter 2 whose results were interpretable statistically (Lee et 

al., 2017; Su et al., 2021). In one study, five genera had statistically 

significant differential relative abundance between the epithelial 

precursor lesion group and the cancer group: Bacillus, Enterococcus, 

Parvimonas, Peptostreptococcus, and Slackia (Lee et al., 2017). In the 

other study, it was found that that the genus Fusobacterium was 

relatively more abundant and genus Streptococcus was relatively less 

abundant in OSCC tumour tissue compared to control tissue (Su et al., 

2021). Both of these studies were of Taiwanese cohorts, and had study 

design differences from the current substudies presented in Chapters 3, 

4, and 5, such as their qualification criteria, type and size of sample, and 
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bioinformatics and statistical methods (Lee et al., 2017; Su et al., 2021). 

These and other differences between studies may have been 

responsible for these different results. 

Substudy 3 represents a best practices approach when trying to 

compare findings between studies with similar design, because in this 

approach, the same methods were used for preparing and analysing the 

data. The methods developed in substudy 2 were applied to an existing, 

well-characterized dataset in substudy 3, and this facilitates an accurate 

comparison of findings between substudy 2 and substudy 3 (Zhang et 

al., 2020). Efforts like these seek to standardize bioinformatics 

processing and other research methods between studies to make their 

results directly comparable (Goossens et al., 2015; Ou et al., 2021; 

Zheng, 2018). Potentially, there could emerge scientific standards that 

would then guide microbiome biomarker studies in general that would 

apply to the study of OSCC (Hamada et al., 2019; Peter et al., 2022). 

Nevertheless, as described at the end of Chapter 5, it still will be 

necessary to reduce the number of taxa included in relative differential 

abundance analysis in order to identify clusters, but this cannot come at 

the cost of misclassification (Daniel & Lalitha, 2016; Doddawad et al., 

2022). An immediate improvement that could be implemented in oral 

biomarker studies is promoting the use of more rigorous study designs 

and statistical approaches as recommended through published 

guidance (Gloor et al., 2017; Goossens et al., 2015; Hu & Dignam, 2019; 

Kers & Saccenti, 2022; Ou et al., 2021). Because mastering all these 

knowledge domains is challenging, a new integrative transdisciplinary 
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field of molecular pathological epidemiology (MPE), which prepares 

researchers to address heterogeneous effects of different exposures on 

disease outcomes, should be expanded (Hamada et al., 2019). 

6.3. Strengths and Limitations of this Research 

Although this research did not identify a particular member of the 

oral microbiome associated with OSCC, negative results are not 

necessarily a limitation. Compared to similar studies in the scientific 

literature, the substudies in this dissertation have several important 

strengths. First, all three adhere to rigorous study design principles 

recommended for biomarker studies, and second, all three used formal 

statistical testing (Gloor et al., 2017; Goossens et al., 2015; Hu & 

Dignam, 2019; Kers & Saccenti, 2022; Ou et al., 2021). As part of this, 

the most up-to-date and evidence-based approaches were used, 

including QIIME 2 and ALDEx2 (Estaki et al., 2020; Gloor et al., 2023; 

Nearing et al., 2022). Authors of a study that compared methods for 

assessing differential abundance in the microbiome across 38 datasets 

concluded that the tools that produced the most consistent results were 

ALDEx2 and ANCOM-II (Nearing et al., 2022). These authors highlighted 

the lack of specific standards, and recommended that either ALDEx2 or 

ANCOM-II be a main tool for measuring differential abundance 

compared to the others reviewed (Nearing et al., 2022). They discussed 

whether or not multiple differential abundance analyses should be 

conducted in the same study using multiple tools, and while they 

suggested it may improve consensus, they underscored the findings 

from their analysis, which is the results are inconsistent so they do not 
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facilitate a consensus (Nearing et al., 2022). Further, there are issues 

with post hoc analysis; only one tool should be used to answer 

hypotheses developed a priori (Gloor et al., 2017; Kers & Saccenti, 

2022). Next, the results of the three substudies were compatible, even 

when including an external dataset as was done in substudy 3 (Zhang 

et al., 2020). 

In addition to strengths, there are also many limitations to this 

research that could not be overcome. Many of these limitations were 

identified throughout the literature in Chapter 2. First, no significantly 

differentially abundant taxa or clusters of taxa were found in any of these 

studies. However, in consideration of the increased β diversity 

differences seen with statistical testing, one could speculate that this null 

finding might be due to study design features (such as small sample size, 

or high levels of heterogeneity in the sample). If there had been more 

sample, this may not have been the result, but more sample was not 

available. Next, as mentioned in the previous paragraph, due to timeline 

considerations, the sample analysed in substudies 1 and 2 was not ideal. 

The samples were heterogeneous with respect to risk factors for OSCC, 

which means that they had different distributions of risk factors for 

OSCC. Ideally, all of the samples would have included enough 

individuals who were positive for strong risk factors so that a subgroup 

analysis could take place. Alternatively, a stronger study design feature 

would have included small samples that focused on specific populations 

with known risk factors (e.g., studies restricted to tobacco users only). 

Because the samples included were both small and heterogeneous, it 
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decreased the power to be able to detect unique microbiome profiles. 

This also decreases the validity of the results. Finally, it is acknowledged 

that using different bioinformatics and statistical approaches may 

produce different results, as has been demonstrated in simulations 

(Gloor et al., 2016; Nearing et al., 2022). Therefore, the results of the 

substudies presented in this project should be understood to be 

tentative, and would need to be replicated with a similar study design 

before being considered robust findings. This is because scientifically, it 

is considered necessary to validate findings across rigorous studies 

before results can be accepted as scientifically factual (Kers & Saccenti, 

2022). 

6.4. Future Research Directions 

The three substudies described in this thesis did not identify any 

differentially relatively abundant taxa present in OSCC tissues compared 

to other tissues in this sample of UK patients. The β diversity results from 

the analyses suggest that it may be possible to identify genera 

associated specifically with OSCC. Because the sample was small and 

heterogeneous with respect to OSCC risk factors, the power to detect 

differences was low. If a hypothesis-driven study was developed 

focusing on candidate members of the microbiome, it would have more 

statistical power to detect differences. Also, studies with more 

homogenous samples and larger samples would have more statistical 

power to detect differences. As described in Chapter 2, Lee and 

colleagues (2017) identified Bacillus, Enterococcus, Parvimonas, 

Peptostreptococcus, and Slackia as potential biomarker targets in 
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OSCC, and Su and colleagues (2021) found that Fusobacterium was 

relatively more abundant and Streptococcus was relatively less 

abundant in OSCC tissue compared to control, identifying two additional 

biomarker targets. Although the current studies presented in this thesis 

did not identify any differentially abundant taxa, as a next step, future 

studies could seek to validate the results from these other studies (Lee 

et al., 2017; Su et al., 2021). This might be by quantifying the presence 

of these identified biomarkers, for example Fusobacterium in OSCC 

tissues of different cohort. Researchers conducting exploratory studies 

like the ones in the three substudies in this dissertation should also 

consider ways to improve the classification of taxa into functional groups 

to reduce the number of taxa analysed, thus producing results that are 

less noisy and easier to interpret (Doddawad et al., 2022).  

When reviewing the datasets in the SRA, it was found that many 

could not be used because the documentation about the data and 

informatics processing was not sufficient. Some datasets could not be 

used because the variables in the actual datasets shared were not clear. 

Even the cleanest, most appropriate and well-documented dataset that 

was selected for reanalysis presented many logistical data-cleaning 

challenges (Zhang et al., 2020). If microbiome repositories 

professionalize their dataset presentation through including the 

necessary documentation and curation, this would greatly facilitate 

future research in this area. Such an upgrade would allow authors to 

easily re-analyse different external datasets using a standardised 

protocol with appropriate bioinformatics and statistical processing. Such 
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action would greatly promote comparison to current studies, as was 

done with substudies 2 and 3 in this project. This both conserves 

research resources and expand the scientific evidence base. 

Once OSCC biomarker research advances to the point that 

reliable biomarkers are identified that are specific to OSCC, then efforts 

at developing standards will need to take place, as recommended in the 

article where authors compared differential abundance measures across 

38 datasets (Hu & Dignam, 2019; Nearing et al., 2022; Zaura et al., 2021; 

Zheng, 2018). Consensus across the scientific domain will need to be 

agreed-upon as to how specific biomarkers are measured, what they 

mean clinically, and how to make treatment decisions based on their 

values (Hu & Dignam, 2019; Zaura et al., 2021; Zheng, 2018). Until that 

point, research methods into OSCC biomarkers will need to be 

transparent and replicable so as achieve a level of standardization that 

would promote arriving at such a consensus. 

Overall, future research direction could be summarised into four 

overarching key points. First, there is a need for the development of 

OSSC microbiome study guidelines for researchers reporting their 

results. These could be developed by a consensus team of multi-

disciplinary researchers including epidemiologists, statisticians, 

clinicians, oral microbiome microbiologists, and bioinformaticians. 

Second, multi-centre OSSC microbiome studies conducted by multi-

disciplinary research teams are needed. These studies would include 

large sample sizes and homogenous groups of participants, and would 

follow a standardised research protocol. These features would make it 
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more possible to identify differences in the oral microbiome between 

subgroups. Third, researchers using hypothesis-driven inquiries should 

focus on identifying candidate members of the oral microbiome that have 

oncogenic potentials (e.g, Fusobacterium nucleatum). Identifying and 

publicizing these candidates will help guide researchers as to priority 

biomarkers to assess. Finally, in silico and laboratory studies mapping 

genetic and epigenetic changes in OSCC should seek to characterise 

the potential pathogenicity of members of the oral microbiome. 

6.5. Conclusion 

In conclusion, this dissertation presented three substudies 

seeking to identify members of the oral microbiome, using 16s rRNA 

gene NGS, that play an important role in the development of OSCC. The 

results of the thee substudies suggest that the diversity of the bacteriome 

of OSSC lesion was increased compared to OED and normal tissues. 

The exact differences in the members of the bacteriome between OSCC 

as compared to that of OED and normal controls should be identified. 

However, at the present time, there are many logistical barriers to 

moving forward with such research, including a lack of transdisciplinary 

knowledge of research and statistical methods required to impart rigor to 

such studies (Gloor et al., 2017; Hamada et al., 2019; Ou et al., 2021; 

Zheng, 2018). Improvements in the quality of microbiome research 

repositories could greatly facilitate the progress of research in the area 

of the OSCC microbiome because it would promote the standardisation 

of methodology from study to study (T. Chen et al., 2010; HOMD :: 
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Human Oral Microbiome Database, n.d.; Human Microbiome Project, 

n.d.). 

Ultimately, the aim of OSCC microbiome research is to improve 

the diagnostic and prognostic capabilities and therapeutic opportunities 

afforded OSCC patient population (Hu & Dignam, 2019). Research that 

is ultimately successful at identifying consistent, evidence-based OSCC 

biomarkers in the oral microbiome could result in earlier detection, better 

prognosis, and superior treatment of OSCC patients worldwide (Gormley 

et al., 2022; Hu & Dignam, 2019; Salehiniya & Raei, 2020; Zaura et al., 

2021). 
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Appendix A: Consent Form and Participant Information Sheet 

Consent Form 
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Participant Information Sheet 

 

  



Page 233 

 

  



Page 234 

 

  



Page 235 

 

  



Page 236 

Appendix B: Blank Questionnaire 
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Appendix C: DNeasy PowerSoil Kit modified instructions 

ORION samples laboratory processing 1 - Extraction of 

Metagenomics DNA using DNeasy PowerSoil Kit (QIAGEN): 

 

Materials & equipment: 

1. Gloves. 
2. Mask. 
3. DNeasy PowerSoil Kit (QIAGEN): 

• Small (2 ml) screw-top (external thread) MoBio collection tubes 
containing 750 µl of specimen collection fluid (MoBio buffer) 
(i.e, PowerBead tubes). 

• PowerSoil® 2 ml Collection Tubes  
• PowerSoil® Spin Filters (units in 2 ml tubes) 
• PowerSoil® Solution C1 
• PowerSoil® Solution C2 
• PowerSoil® Solution C3 
• PowerSoil® Solution C4 
• PowerSoil® Solution C5 
• PowerSoil® Solution C6 

4. Vortexer. 
5. MO BIO Vortex Adapter tube. 
6. Microcentrifuge. 
7. 4°C fridge. 
8. -20°C freezer. 
9. 5 ml sterile tubes. 
10. Filter tips (50 ul – 1000 ul). 
11. Pipettes. 
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DNA isolation: 

Wear gloves at all times. 

• Solutions preparations: 
1. Check solution C1. If solution C1 is precipitated, heat solution to 60°C 

until dissolved before use. 
- Prepare one tube of C1 for each participant to accommodate 60 µl 

for each sample. 
2. Solutions C2, C3, C4 (shake to mix C4 before use) and C5  

For each sample prepare 1 tube of solutions C2, C3, C4 and C5 
from the kit. 
- Tube C2= 250 µl in 2 ml collection tube 
- Tube C3= 200 µl in 2 ml collection tube 
- Tube C4= 1200 µl in 5 ml sterile collection tube 
- Tube C5= 500 µl in 2 ml collection tube 

3. Solution C6 
- Prepare one tube of C6 for each participant to accommodate 100 µl for 

each sample. 
 

• Procedure: 
1. Gently vortex the PowerBead tubes to mix. 
2. Add 60 µl of solution C1 and vortex briefly (10 seconds). 
3. Secure PowerBead Tubes horizontally using the MO BIO Vortex adapter 

tube holder for the vortex. Vortex at maximum speed for 20 min. 
4. Make sure the PowerBead Tubes rotate freely in your centrifuge 

without rubbing, Centrifuge tubes at 10,000 x g for 30 sec at room 
temperature. 

CAUTION: be careful not to exceed 10,000 x g or tubes may 

break. 

5. Transfer the supernatant (expect 400-500 µl don’t take any more than 
this) to tube C2 and vortex for 5 sec.  

6. Incubate at 4°C for 5 min (supernatant may still contain some sample 
particles). 

7. Centrifuge tubes at 10,000 x g for 1 min at room temperature. 
8.  Avoiding the pellet, transfer up to, but no more than, 600 µl of 

supernatant to tube C3 and vortex briefly. 
9. Incubate at 4°C for 5 min. 
10. Centrifuge tubes at 10,000 x g for 2 min at room temperature. 
11. Avoiding the pellet, transfer up to, but no more than, 750 µl of 

supernatant to tube C4 and vortex for 5 sec.  
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12. Load approximately 675 µl onto Spin filter column and centrifuge at 
10,000 x g for 1 minute at room temperature.  

13. Discard the flow-through and add an additional 675 µl of supernatant 
to the Spin Filter and centrifuge at 10,000 x g for 1 minute at room 
temperature. 

14. Discard the flow-through and add the remaining 675 µl of supernatant 
to the Spin Filter and centrifuge at 10,000 x g for 1 minute at room 
temperature. 

NOTE: a total of three loads for each sample processed are 

required. 

15. Add 500 µl of Solution C5 and centrifuge at room temperature for 30 
sec at 10,000 x g. 

16. Discard the flow-through. 
17. Centrifuge again at room temperature for 1 min at 10,000 x g. 
18. Carefully place Spin filter column into a clean 2 ml Collection Tube. 

Avoid splashing any solution C5 onto the column. 
19. Add 70 µl of 60C pre-heated molecular ddH2O (sterile DNA-free PCR-

grade water (cat. no. 17000-10) to the centre of the white filter 
membrane. 

20. Centrifuge at room temperature for 30 sec at 10,000 x g. 
21. Discard the spin column. The DNA in the tube should be stored at -20 

°C or lower. If these DNA samples will bel labelled according to the 
study ID ex. If the subject ID was ORION EDH-0001 for a normal swab, 
then the DNA will bel labelled ORION EDH-0001 DNA normal swab. 
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Appendix D: NGS specific primers with overhang adaptors for metabarcoding 
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Appendix E: STROBE Checklist for Substudy 1 
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Appendix F: STROBE Checklist for Substudy 2 
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Appendix G: STROBE Checklist for Substudy 3 
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