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Abstract

Rooftop-mounted solar photovoltaics have shown to be a promising technology to provide clean electricity in
urban areas. Several large-scale studies have thus been conducted in different countries and cities worldwide to
estimate their PV potential for the existing building stock using different methods. These methods, however, are
time-consuming and computationally expensive. This paper provides a Machine Learning approach to estimate
the annual solar irradiation on building roofs (in kWh/m?) for large areas in a fast and computationally efficient
manner by learning from existing datasets. The estimation is based on rooftop characteristics, input features
extracted from digital surface models and annual horizontal irradiation. Five ML models are compared, with
Random Forests exhibiting the highest model accuracy. In the presented case study, the model is trained using
data of the Swiss Romandie area and is then applied to estimate annual rooftop solar irradiation in remaining
Switzerland with an accuracy of 92%.
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1. Introduction

Rooftop-mounted photovoltaics (PV) have shown to play a key role in the transition to renewable electricity
generation in cities and urban areas. Hence, several studies which estimate annual PV potential on building roofs
have been conducted city or country scale, for example in Germany (Mainzer et al., 2017; Ramirez Camargo et
al., 2015), in Spain (Izquierdo et al., 2008; Ordofiez et al., 2010) and in Switzerland (Assouline et al., 2017; Buffat
et al., 2018; Klauser, 2016). Various input parameters need to be determined to estimate PV potential at large
scale. These include (i) global, direct and diffuse horizontal irradiation at hourly or daily resolution, (ii) roof slope
and aspect, (iii) shading effects from trees and buildings, and (iv) available roof area for PV panel installation.
The parameters are determined using geographic information systems, image processing or Machine Learning
(ML) techniques. A physical model is then applied to compute the tilted irradiation, which is multiplied by the
available roof area for PV installation and the system’s performance to obtain the technical rooftop PV potential.

Existing studies of PV potential hence require the collection of various input datasets and the implementation of
computationally intensive data processing methods to compute each parameter. We propose a model which can
accurately predict long-term annual solar irradiation on building roofs from a reduced set of inputs and with a
significantly smaller computational effort compared to existing studies. Recent suggested methods such as a
simplified skyline-based method (Calcabrini et al. 2019) are insufficient for this task, as separate models needed
to be fitted for each pair of roof slope and aspect. Instead, we train a Machine Learning model using data from an
existing dataset of rooftop PV potential at national scale in Switzerland, in order to learn the relation between
rooftop features, weather data and rooftop irradiation. The use of ML for a large-scale estimation of rooftop PV
potential has been tested at the scale of communes (Assouline et al., 2017) and pixels of 200m x 200m resolution
(Assouline et al., 2018), but it has not yet been applied to the estimation of solar irradiation for individual roof
surfaces. ML methods to predict solar irradiation perform a short-term forecasting for individual roofs, but do not
address a large-scale potential estimation. An overview of these methods is provided by Voyant et al. (2017).
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In this work, we compare the performance of five different ML models in estimating the annual solar irradiation
on building roofs and we quantify the uncertainty for the predicted values. We further use Machine Learning to
reduce the number of input features by determining those with the highest importance for the prediction of annual
irradiation. Our model is trained and tested on data belonging to two distinct geographic areas in Switzerland. The
testing procedure demonstrates that our model predicts tilted irradiation (in kWh/m?) with an accuracy of 92.3%.
The results suggest that the proposed model is suitable to estimate annual solar irradiation on building roofs in
regions with similar geographic and meteorological conditions, for example in Germany, France or northern Italy.

2. Data and Methods

To estimate annual solar irradiation on building roofs (G;, in kWh/m?), we account for different types of input
features, which represent the main input parameters used in existing studies. These are (i) horizontal irradiation,
(i1) roof aspect, (iii) roof tilt, (iv) shading effects from buildings and trees, (v) sky visibility, (vi) horizon maps.
We use a feature selection procedure to extract the most relevant features, and compare five Machine Learning
methods with respect to their performance in predicting G.. The complete methodology is summarized in Fig. 1.

) . ML models*
Horizontal irradiation Annual rooftop irradiation

j
S i 2
Roof aspect 2 LIN (Gy, in KWh/m*=)
Roof tilt 2 KNN ¢
Roof shading g SVM
Sky visibility 2 ELM-E | | Model (o)) and data (o)
i RF uncertainty (ensemble models)

Horizon maps
* see Section 2.3

Fig. 1: Schematic for estimation of annual rooftop solar irradiation (G). Feature selection is applied to choose the most
important features and to reduce the total number of features. Five Machine Learning algorithms are tested for the prediction
of annual G.. The model and data uncertainties are computed for the ensemble-based algorithms (ELM-E and RF).

2.1. Dataset description

The target variable estimated in this work is the annual rooftop solar irradiation (G:). We use values for G; from a
publicly available dataset of PV potentials for 9.6M rooftops in Switzerland (Klauser, 2016) as labels for training
the ML models. The method applied by Klauser (2016) to obtain G is summarized in the Appendix. The dataset
also contains information on roof slope and roof aspect, which are input features to the ML models. We further
include the global and direct horizontal irradiation components (GHI and DNI) in the set of features. They are
derived from satellite data provided by the Swiss meteorological office MeteoSwiss (Stockli, 2013) for the years
of 2004-2014, by linearly interpolating the satellite pixels to the coordinates of each roof surface and averaging
the results for all years. The diffuse horizontal irradiation is omitted, as it is the difference between GHI and DNI.

The shading effects from surrounding buildings and trees and the sky visibility, which is quantified as the sky
view factor (SVF), are typically derived from the horizon height of a roof. The horizon height can be interpreted
as the minimum sun altitude to illuminate a given point (in degrees), as shown in Fig. 2a. It is typically computed
for each azimuth angle in bins of 5° or 10° using a Digital Surface Model (DSM). The shading effects are then
computed for each time step (e.g. hourly) as the portion of roof surface with a horizon height above the current
sun altitude, while the SVF is obtained by integrating the horizon height for all azimuth angles. We use a DSM of
Switzerland in (2x2)m? resolution, provided by the Swiss topographical office (Swisstopo, 2005), to compute the
average horizon height for each roof. In the feature set, we include the roof shading, obtained by averaging hourly
shading effects, the SVF and 9 of the DSM-derived horizons for azimuths of 60°-300° in bins of 30° (see Fig. 2a).
Table 1 summarizes all 15 features considered in the feature selection procedure.

Tab. 1: All available features for the estimation of rooftop solar irradiation. Italic features may not be
readily available or are computationally demanding to compute.

Roof features Horizontal irradiation Shade and skyview
Aspect angle Annual global irradiation (GHI) Roof shading
Tilt angle Annual direct irradiation (DNI) Skyview factor (SVF)
9 x horizon height (30° angle bins)
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Tab. 2: Characteristics of six cities selected for testing of the presented method. 4,..r denotes the total roof surface.

City Inhabitants | Area (km?) #buildings | Aroor (km?) | Aroor/ inhab. | Altitude (m)
Zirich 409,241 91.9 46,888 13.77 33.65 m? 400

Basel 171,513 239 11,122 6.27 36.55 260
Luzern 81,401 37.4 5,940 3.25 39.95 435
Lugano 63,494 86.2 10,052 3.10 48.85 270
Davos 10,937 284.0 2,582 1.21 1110.49 1,560

Interlaken 5,592 43 1,025 0.48 85.06 565
a) g b) . ctdam
oBasel
@ Ztrich
oluzern
o Dayos
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Fig. 2: a) Schematic representation of the calculation of horizon heights, computed for each DSM pixel and averaged per
rooftop; b) Geographic location of training and testing data (Swiss Romandie area and the remaining Switzerland).

The data set is standardized and split into training and test data, covering separate geographic areas of Switzerland
(see Fig. 2b). We use the Swiss Romandie area for training and the remaining country for testing. This boundary
is chosen as it represents a cultural and language border which divides all three geographic terrains of Switzerland,
namely the Alps, the Plateau (where most buildings are situated) and the Jura mountains. We randomly select
100,000 samples for training and 1,000,000 samples for testing with no noticeable reduction in the model
performance. We choose six cities inside the test area, shown in Fig. 2b, for which we will predict the aggregated
annual PV potential in order to test the performance of the proposed method at city level. The cities are selected
to cover different population sizes, geographic areas and altitudes. The details for each city are shown in Table 2.

2.2. Feature selection

The reduction of the number of features to a small set of easily available variables is one of the key aspects of this
work. To obtain such a reduced feature set, we use a recursive selection procedure that can be applied to any ML
algorithm. The metric used for the selection is the mean-squared error (MSE), which is obtained using a k-fold
cross-validation (CV). For this, the training data is randomly split into & subsets (folds), from which £ ML models
are trained. Each model uses (k — 1) folds for training and the last fold for validation, i.e. to compute the MSE
between the target (annual G/) and the predicted value. In this work, we use a 5-fold cross-validation (k = 5).

Starting from the complete feature set, we iteratively exclude one feature at a time and compute the MSE. The
feature whose exclusion causes the lowest change in MSE (Awmsk) is permanently removed from the set of features.
This procedure is repeated until only one feature remains. The Awmsk is recorded for each iteration and a threshold
for Awse is chosen, which represents the maximum tolerable increase in MSE. The selected features are those
which form the smallest feature set that keeps Amse below its threshold. As the number of cross-validations
increases with N2, where N is the number of features, this procedure may not be applicable for high-dimensional
problems, but it is appropriate for the size of the feature set used in this study (up to 15 features). We further aim
to obtain a feature set that contains only easily accessible features that can be obtained with a low computational
effort. Three out of 15 features, highlighted in Table 1, are hence excluded before applying the recursive selection.
These are (i) the DNI, which is frequently unavailable at measurement stations and not included in some future
climate scenarios, (ii) the roof shading and (iii) the SVF, which both require the computation of the horizon height
for all azimuth angles, which is the highest computational burden in large-scale PV potential studies.
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Fig. 3: Concepts of ML algorithms used in this work. The selected algorithms are Linear regression (LIN), K-Nearest Neighbor
Regression (KNN), Support Vector Machine (SVM), Extreme Learning Machine Ensemble (ELM-E) and Random Forest (RF).

2.3. Machine Learning Algorithms

We compare five supervised regression models from different families of ML algorithms: (i) Linear Regression
(LIN), (i1) K-Nearest Neighbors (KNN), (iii) Support Vector Machines (SVM), (iv) Extreme Learning Machine
Ensembles (ELM-E), and (v) Random Forests (RF). In each case, the annual G; is predicted from the selected
features. The architecture of each model is determined through a tuning procedure in the training phase, where
the parameters defining the model structure (hyper-parameters) are optimized in order to minimize the mean-
squared error (MSE) between the prediction and the target. The ML algorithms and their hyper-parameters are
summarized below and shown in Fig. 3. Table 3 gives the values of all hyper-parameters, which are tuned using
5-fold cross-validation. All algorithms except ELM-E are implemented using the Scikit-learn library for python
(Pedregosa et al., 2011), while the ELM-E is based on the HPELM package for python (Akusok et al., 2015).

Linear Regression assumes that the target is a linear function of the inputs. The prediction is obtained from the
linear combination of the features which minimizes the residual sum of squares between the target and predicted
values. It is fast and requires no tuning of hyper-parameters but shows a low accuracy for non-linear problems.

K-nearest Neighbor Regression is an interpolation algorithm, which computes a prediction as the average of the
targets of the k training samples whose features are closest to the given inputs. The training dataset hence works
as a look-up table for the predictions, which makes it effective for low-dimensional problems but inefficient for
large datasets. We use the Euclidean distance as a measure of “closeness” and tune the number of neighbors (k).

Extreme Learning Machine Ensemble is a collection of single-layer neural networks (ELMs), which were
developed by (Huang et al., 2006). Each ELM consists of one hidden layer, which is optimized in a more efficient
way than traditional neural networks. This results in a faster training time and a low number of hyper-parameters.
The aggregation of # ELMs in an ensemble further increases the robustness of the model and reduces the risk of
overfitting. We tune the size of the hidden layer (mz.um) and the number of ELMs in the ensemble (n£Lu).

Support Vector Machine, introduced by (Cortes and Vapnik, 1995), is the most popular algorithm in the family of
kernel methods. It exploits the kernel trick, which projects the features to a higher-dimensional space that allows
for linear modelling. Its structure makes it particularly effective for high-dimensional problems, but it does not
scale well with the number of samples. In this work, we use e-Support Vector Regression with a radial basis
function as kernel and tune the kernel coefficient (3), the penalty parameter (C) and the error tolerance (¢).

Random Forest is another ensemble algorithm, which was proposed by (Breiman, 2001). It consists of regression
trees, which pass a training sample along a set of nodes based on a threshold (defined during training) until a leaf
node is reached. The prediction of each tree is obtained by averaging the target values in the respective leaves. It
is a popular algorithm due to its good predictive power and high robustness. Its main hyper-parameters are the
number of features considered for the optimization of each threshold (mys), the minimum number of samples in
each leaf (mi.q) and the number of trees in the ensemble (7esr).
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Tab. 3: Hyperparameters for each Machine Learning algorithm after tuning using k-fold cross-validation (k = 5).

LIN KNN ELM-E SVM RF
- k=17 meLy = 45 C=5 Mys =3
Nest =25 =200 Miear =3
¢=0.1 Hest = 500

2.4. Uncertainty Estimation for Ensemble Models

We implement a method to estimate uncertainties on the predicted values, which has been used successfully to
estimate GHI at high spatio-temporal resolution (Walch et al., 2019). This method is applicable to models with an
ensemble structure, i.e. ELM-E and RF. It allows to distinguish between the uncertainty arising from the modelling
process (o)) and the uncertainty related to the data noise (o). The model uncertainty is estimated as the standard
deviation of the ensemble predictions, and the data uncertainty is derived from the modelling residuals, such that:

N
1
) =5 ) OF =907, =1L (eq. 1)
n=1
62(x;)) = min {(t; — 9,)*> — 6%(x),0}, i=1,..,L (eq. 2)

where x; denotes input sample i, 9" is the prediction of each ensemble member n, §; is the ensemble prediction
(the mean of §1"), t; is the target for sample i, N is the ensemble size and L is the total number of samples. As t;
is not available for the prediction, a second ML model is trained with the residuals as targets, using the same
hyper-parameters as the primary ML model. This second model is used to estimate o, during the test phase.

3. Results

3.1. Feature selection and importance analysis

As described in Section 2.2, we perform recursive feature selection for the reduced set of 12 features, which
excludes the DNI, roof shading and SVF. We use the KNN as assessment model due to its high computational
efficiency and low error. Figure 4a shows the results for the selection procedure as the increase in the cross-
validation root-mean squared error (RMSE) for the selected features with respect to the RMSE obtained from the
complete feature set (listed in Tab. 1). The curve falls steeply for a low number of features, where each additional
feature brings a large improvement in performance, and flattens out when six or more features are used. We choose
a threshold of SkWh/m? as maximum acceptable increase in RMSE, corresponding to approximately 5% of the
modelling RMSE (see Tab. 4). This gives a set of six remaining features, and six features are excluded. The
removed features are shown in Fig. 4a in the order of exclusion, indicating that north-facing horizon heights have
the smallest contribution in the modelling, followed by the near-south as well as the east and west horizon heights.
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Fig. 4: a) Change in RMSE for recursively eliminating variables from the feature set, with indication of eliminated features
(threshold = 5kWh/m?); b) Feature importance score (obtained using RF) for all selected features used in the ML models.
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The remaining features are shown in Fig. 4b, ranked by their importance score. This score is obtained from the
built-in feature importance method of the Random Forest algorithm, which quantifies the contribution of each
feature to increasing the model performance. The results confirm that all features are relevant to the modelling,
with the roof aspect as well as the south-facing horizon height scoring highest, before the roof tilt and GHI. This
analysis suggests that three horizon heights, at 120°, 180° and 240°, are sufficient for a good prediction of annual
tilted rooftop irradiation.

3.2. Comparison of ML models

After choosing the final set of features (see Fig. 4b), we apply each of the five ML models to the test data. The
models are previously tuned individually using 5-fold cross-validation, yielding the hyper-parameters shown in
Tab. 3. The test errors and execution times for the algorithms are given in Tab. 4. Four error metrics are shown,
namely RMSE, mean absolute error (MAE), mean bias error (MBE) and the R? coefficient of determination (R2),
as well as the training and testing times (using a laptop with 4 cores and 8GB RAM). Linear regression is the
fastest method but shows large errors. KNN and ELM-E show a similar performance and execution time, with
particularly low training times. SVM has a similar error as KNN and ELM-E, but it is very slow in comparison.
This is expected, as the SVM is designed for high-dimensional feature spaces rather than large datasets.

The RF shows the lowest errors with a reasonable execution time. Further tests have shown that this is due to the
strong decrease in the error when increasing the size of the training set from 10k to 100k samples. This
improvement, caused by a larger training sample, is much smaller for the other algorithms, which suggests that
the RF is well suited for modelling large datasets. Using the RF model, the time for estimating the solar irradiation
of 1M rooftops is 33.3s, which is considerably less than the hours needed to perform a detailed modelling. Figure
5a shows a density graph for RF of the targets against the predicted values and the fitted regression line. We see
that the prediction tents to slightly underestimate G, as many values lie just above the diagonal. Figure 5b gives
the predicted G: for a random sample of 50 roofs, with their targets and uncertainties. The predicted values
generally lie within one standard deviation of the total uncertainty (error bars). The MAE for the test sample
(generalization error) amounts to 7.7% of the target potential, resulting in an average accuracy of 92.3%.

Tab. 4: Test errors and computational time for the five ML models, using 100k samples for training and 1M for testing.

LIN KNN ELM-E SVM RF
RMSE (kWh/m?) 157.03 115.48 117.55 113.92 94.69
MAE (% of target) 14.16 9.45 10.03 9.21 7.66
MBE (% of target) -8.84 -6.38 -5.16 -5.88 -3.87
R2 0.55 0.76 0.75 0.76 0.84
Training time (s) 0.02 0.31 2.03 254.1 44.42
Prediction time (s) 0.16 29.94 39.44 1178.3 33.30
a) b)
1600
1600 — Regression line (R2 = 0.84) ° tarregde_imn
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Fig. 5: a) Comparison of predicted and target irradiation for 1M roofs in the test area; b) Prediction (blue), target (green) and
uncertainties (bars) for a random sample of the test data
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3.3. Large-scale estimation of rooftop solar irradiation patterns

We use the test results for the RF model to analyze the solar irradiation patterns for roof surfaces in Switzerland
with respect to their aspect and tilt angles. Figure 6a shows the predicted annual G, with flat roofs in the center.
The largest irradiation is found for surfaces with a tilt angle of 30-50°, which is expected given Switzerland’s
latitude. Steep north-facing roofs have the lowest solar irradiation, of less than 700kWh/m? on average. Figure 6b
shows the relative uncertainty, as percentage of predicted G.. The relative uncertainty is lowest for the roofs with
the highest solar irradiation, while it is high for roofs with low G:. This may be due to a low number of steep roofs
and strong shading effects on these. We also observe a relatively high uncertainty for (nearly) flat roofs, which
may be due to unpredictable shading effects on these roofs, for example caused by objects installed on the surfaces.

To assess the performance of the model on the large scale, we compute the PV potential for the six cities shown
in Tab. 2. To obtain the PV potential, we follow the method suggested by (Portmann et al., 2016), which was
developed for the dataset used here. The annual G: is multiplied with the total roof surface, a roof utilization factor
(which depends on the roof tilt and the building type), a module efficiency of 17% and a performance factor of
80%. Roofs with a surface area below 10m? and an irradiation below 1000kWh/m? are excluded. The aggregated
PV potential for the selected cities is shown in Fig. 7a, while Fig. 7b shows the PV potential per inhabitant. The
orange bars show the target value, the blue bars show the RF prediction and the error bars indicate the uncertainty.
The largest cities clearly have the highest total PV potential, while the small cities (Davos and Interlaken) have
the highest potential per inhabitant. It is interesting to see that Lugano has a noticeably higher potential than
Luzern, despite a nearly identical roof surface, due to its location south of the Alps. Davos, with its high altitude
and large roof area per person, has the highest potential per inhabitant. Comparing the targets and predictions, we
see that the difference is small, and in all cases within the estimated uncertainty.
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Fig. 6: a) Predicted pattern for annual solar irradiation (G:) and b) estimated uncertainty (as percentage of predicted G;) for
building roofs with different aspect and tilt angles (grouped in bins of 10°)
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Fig. 7: a) Target and predicted PV potential for six Swiss cities of different sizes (see Tab. 2);
b) PV potential per inhabitant for each city
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4. Discussion

4.1. Limitations

The model proposed here reduces the set of features required for a large-scale estimation of annual solar irradiation
to the GHI, the roof aspect, the roof tilt as well as three horizon heights, approximately towards south, east and
west. While this largely reduces the computation required for such a study, a DSM and a reliable dataset with roof
tilt and aspect angles are still necessary. The latter two are only available for cities with a 3D building model
(LOD 2 or higher). If such a dataset is not available, a high-resolution DSM or a roof shape classification as
proposed by (Mohajeri et al., 2018) may be used to derive tilt and aspect angles. As the model is trained in
Switzerland, it is only applicable to locations with a similar latitude, as the latitude has a major impact on the peak
irradiation and the corresponding tilt angle. To extend the area of applicability, results from a study in another
geographic area can be added to the training dataset. Finally, we do not specifically address the available area for
the installation of PV panels in this work. Studies show that the available area may be much smaller than the total
roof surface (Assouline et al., 2017), which reduces the estimated large-scale PV potential.

4.2. Application and future work

The motivation behind this work is to facilitate the study of rooftop PV potentials in areas where no such study
has yet been carried out, primarily in similar meteorological and geographic conditions as Switzerland. Applying
our model to such a case study will be the principal objective of future work. The model can further be used to
predict future PV potentials, accounting for climate as well as urbanization scenarios. The former leads to changes
in GHI, while the latter reflects as changes in the number of roofs and the composition of tilt and aspect angles.

While the estimation of annual irradiation gives a useful indication of the order of magnitude of the large-scale
PV potential, a higher temporal resolution is required to assess its seasonal and intra-day variation. Studies in
monthly (Assouline et al., 2018) or hourly (Buffat et al., 2018) resolution may be used for this task. Furthermore,
transfer learning techniques may be applied to retrain our model on different latitudes, meteorological conditions
and roof characteristics, by using large-scale PV potential studies from other regions or countries.

5. Conclusion

This study provides a Machine Learning algorithm to estimate annual solar irradiation on building rooftops for
areas at similar latitudes as Switzerland. The proposed model is trained using data of existing PV potential studies
and uses the following six input features: annual GHI, roof tilt, roof aspect and three mean horizon heights for
each roof (120°, 180°, 240°). Comparing five ML algorithms, we found that Random Forests are most suited for
this task due to their high accuracy, reasonable execution time and their ensemble structure, which in turn allows
for a sound estimation of uncertainties. The obtained results show that the proposed model can effectively learn
from existing large-scale datasets of PV potential and accurately estimate annual irradiation for individual rooftops
and entire cities. The computational time for estimating solar irradiation at city or even country scale can thereby
be reduced from hours to seconds.
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Appendix: Annual solar irradiation on building roofs

This section summarizes the data and the method used in Klauser (2016) to compute the annual solar irradiation
on building roofs in Switzerland, which is used as target in the Machine Learning model proposed in this work.

1. Data

Meteorological data
Four types of meteorological datasets, are used in the

study. They are the global, direct and diffuse horizontal
radiation (in W/m?) and the surface albedo (in [0,1]).
The data has an hourly temporal resolution for the years
of 2004-2014 and a spatial resolution of 1.25 degree
minutes (=1.6km x 2.3km) covering all of Switzerland.
It is provided by MeteoSwiss (Stockli, 2013).

Roof surface polygons
A dataset of roof geometry polygons has been derived

from the latest CityGML LOD?2 building cadaster of
Switzerland (swisstopo, 2019). It contains 9.6M roof
surfaces for 3.7M buildings in the cadaster. The
attributes include the roof tilt and roof aspect angle and
its tilted area. This dataset is used in the present work
as features for the ML model.

Digital Surface Models (DSM)
Four surface models are overlaid to create a combined

DSM at a 0.5m pixel resolution. It consists of the
rasterized geometries of the building cadaster, the DSM
and digital terrain models of Switzerland (interpolated
to 0.5m pixels), and a Radar Topography surface model
(SRTM) for 100m pixels outside of Switzerland.
Details and sources are provided in (Klauser, 2016).

2. Method

Horizon matrix
To compute the effects of roof shading and the skyview

factor, a horizon matrix is computed for each roof. It
represents the mean sky visibility of a roof for each
zenith and azimuth angle, in a resolution of 1° (zenith)
x 5° (azimuth). It is computed by overlaying three types
of horizons maps: (i) a far horizon (25km distance) for
each roof, based on the combined DSM aggregated to
100m, (ii) a medium distance horizon (1km) for the
center of each roof, based on the DSM aggregated to
10m and (iii) a near horizon (100m) for each pixel of
the DSM, which is averaged across each roof surface.

Shading effects and skyview factor (SVF)
The roof shading is computed for each hour of a year

and represents the reduction in direct radiation received
by a surface due to obstructing objects or landscape
features. Its value equals the value of the horizon
matrix corresponding to the solar position (zenith and
azimuth angle) at a given hour. The SVF represents the
mean visibility of the sky and is obtained by
numerically integrating the horizon matrix.

Tilted radiation

A physical model is used to compute the tilted radiation
(G) on the rooftops for each hour in the meteorological
dataset. It is based on the global (Gp), direct (Gs), and
diffuse (Gp) horizontal radiation components, which
are linearly interpolated from the satellite grid to the
roof coordinates. The annual solar irradiation for each
building roof is obtained by summing the hourly tilted
radiation for each year and averaging the results.

The tilted radiation consists of a direct (Ga:), diffuse
(Gpr) and reflected (Gr:) component such that:

(eq.3)

The basic form of the hourly geometric model for the
direct tilted radiation is given by:

Gy = Gpy + Gpy + Gp

Gg: = Gg * max (0, ﬂ) (eq. 4)

cosfz

where cos 0 = sinsin6, cosys —y + cos 3 cos 0.
The angles 0, and yg describe the sun zenith and
azimuth angles, while the roof tilt and aspect are given
by Band y. In (Klauser, 2016), the direct tilted radiation
is multiplied with the hourly roof shading.

The diffuse tilted radiation is computed using the Perez
model (Perez et al., 1990), which is formulated as:

1+cosf

Gpe = Gp * [(1 = F) (F22B) + F, 2+ F, sin ]
(eq. 5)

where F; and F> are empirically fitted functions and a
and b are geometric angles. The three addends in eq. 5
denote the isotropic diffuse radiation, the circumsolar
radiation and the horizon brightness, respectively (see
Loutzenhiser et al., (2007) for details). In (Klauser,
2016), the isotropic radiation is multiplied with the
SVF, while the circumsolar radiation is multiplied with
the hourly roof shading.

The reflected radiation is computed using the surface
albedo p such that:

1_
Gre = G xp (CZ_OSB) (eq. 6)

In (Klauser, 2016), the reflected radiation is multiplied
with (1 — SVF).

A more detailed description of the physical model is
provided for example in (Loutzenhiser et al., 2007).
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