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H I G H L I G H T S

• Hourly profiles of photovoltaic potential are estimated for 9.6 M Swiss rooftops.

• The data mining approach combines Machine Learning and Geographic Information Systems.

• Uncertainties are quantified and propagated throughout all stages of the estimation.

• Switzerland’s annual rooftop PV potential is estimated at 24 ± 9 TWh.

• It may cover up to 43% of the national electricity demand (in 2018).
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A B S T R A C T

The large-scale deployment of photovoltaics (PV) on building rooftops can play a significant role in the transition
to a low-carbon energy system. To date, the lack of high-resolution building and environmental data and the
large uncertainties related to existing processing methods impede the accurate estimation of large-scale rooftop
PV potentials. To address this gap, we developed a methodology that combines Machine Learning algorithms,
Geographic Information Systems and physical models to estimate the technical PV potential for individual roof
surfaces at hourly temporal resolution. We further estimate the uncertainties related to each step of the potential
assessment and combine them to quantify the uncertainty on the final PV potential. The methodology is applied
to 9.6 million rooftops in Switzerland and can be transferred to any large region or country with sufficient
available data. Our results suggest that 55% of the total Swiss roof surface is available for the installation of PV
panels, yielding an annual technical rooftop PV potential of ±24 9 TWh. This could meet more than 40% of
Switzerland’s current annual electricity demand. The presented method for an hourly rooftop PV potential and
uncertainty estimation can be applied to the large-scale assessment of future energy systems with decentralised
electricity grids. The results can be used to propose effective policies for the integration of rooftop photovoltaics
in the built environment.

1. Introduction

The decarbonisation of the energy system plays an important role in
fulfilling the ambitious emission targets set by the Paris Agreement [1].
In this context, the large-scale deployment of rooftop-mounted photo-
voltaics (RPV) has attracted increasing attention in recent years [2]. A
quantitative assessment of the potential electricity generation from RPV
is essential to formulate effective incentive policies for their integration
in the built environment. This requires accurate input data at a high
spatial and temporal resolution in order to characterize regional dif-
ferences and to assess the seasonal and intra-day variation of the

potential generation [3]. In addition, the analysis of RPV potential in-
volves several uncertainties, which need to be quantified to facilitate
interpretation of the results for policy making.

Currently, there is no methodology that estimates the large-scale
RPV potential at a high spatio-temporal resolution and also addresses
the systematic propagation of uncertainties arising from the modelling
process. This paper contributes to fill this gap by adapting state of the
art methods for the assessment of RPV potential in order to quantify and
combine different sources of uncertainty. We further use Machine
Learning to incorporate information that is only available in parts of the
study region of Switzerland.
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Constrained by the availability of building and environmental data
at a high spatial resolution, most existing studies on RPV potential are
carried out at district or city scale only, including case studies in the US
[4], Canada [5], Portugal [6] or Germany [7]. Few studies analyse an
entire region or country, for example in the US [8,9], Spain [10], or
Saudia Arabia [11]. Many PV assessment studies use monthly or yearly
solar radiation data in order to derive a large-scale PV potential [12].
This data is used to quantify the available area to install PV [13] and to
discuss the economic feasibility of PV scenarios [14]. While these
granularities provide a relatively accurate estimation of the annual RPV
potential, an hourly or higher temporal resolution is needed to assess
the intra-day variation of the generation. Such temporal resolutions are
used at the scale of cities or municipalities [15,16] and serve to validate
the estimations against measurements [17], to compare PV technolo-
gies [18], or to simulate energy systems with high shares of PV [19].
However, an hourly resolution is used very rarely at regional or na-
tional scale, in which case the available area to install PV is not ad-
dressed [20].

Reasons for the lack of national-scale studies at an hourly temporal
resolution are the computational challenges associated with the pro-
cessing of the required input datasets as well as the handling of missing
data and data that is not available in the entire study region. To address
these challenges, state of the art data processing techniques for esti-
mating RPV potentials include physical models, geographic information
systems (GIS), image processing and Machine Learning (ML). Physical
models are used to compute the solar radiation on tilted surfaces, as
well as the module and inverter efficiencies [21]. GIS is applied to es-
timate shading effects and the sky view factor [22,23]. The available
area for installing PV is estimated in some studies using image re-
cognition [24,25], while other methods use ML [26,27]. The recent
computational and methodological advances enable the integration of
all mentioned aspects in high-resolution PV assessments at the national
scale. Missing data, in particular for predicting the available area for
installing PV, is typically handled using constant coefficients and expert
knowledge [28] or sampling techniques [29]. Data with partial spatial
coverage, i.e. information that is available only in parts of the study
area, is successfully used in [26,27] by applying ML. This method can
be further improved by using different urban features and a larger
training dataset.

To date, little research has quantified uncertainties for RPV poten-
tial assessments. Some studies address the uncertainties related to
photovoltaic yield predictions for individual case studies [30,31]. In
large-scale studies, confidence intervals are used in [20] to quantify the
uncertainty related to the solar radiation, while they are used in [27] to
assess the available area for installing PV. The combination of different
sources of uncertainty has been addressed through a scenario-based
analysis for a local case study [32] or by means of a sensitivity analysis
[33]. Izquierdo et al. [34] provide a statistical propagation of un-
certainty, which however focuses only on the available area for PV
installation. To the best of our knowledge, currently no methodology
exists which quantifies and combines different sources of uncertainty
related to the solar radiation and the available area that yields an un-
certainty estimate on the technical RPV potential.

Our big data mining approach contributes to the existing literature
by providing a methodology for a large-scale RPV potential and

uncertainty estimation in hourly temporal resolution and a spatial re-
solution of individual roof surfaces. For this purpose, we combine state
of the art physical models and GIS processing techniques with ML in
order to quantify (i) the spatio-temporal variation of the horizontal
radiation, (ii) the effects of surrounding trees and buildings on roof
shading and the sky view factor, (iii) the impact of roof geometry and
roof superstructures, for example dormers and chimneys, on the
available area for installing PV panels, and (iv) the temperature de-
pendence of the PV module efficiency. We further present a systematic
quantification of the uncertainties by treating each variable involved in
the modelling process as a randomly distributed variable. This allows to
combine the uncertainties using their statistical distribution in order to
obtain a total uncertainty on the technical potential estimate. The ap-
plication of our method to 3.7 million buildings in Switzerland results
in the first national-scale dataset of PV potential and uncertainty in
hourly temporal resolution for individual rooftops.

The paper is structured as follows. Section 2 introduces the datasets
used in the study. Section 3 describes the methodology for the com-
putation of the RPV potential and the uncertainty propagation. Section
4 presents the results of the individual processing steps as well as the
final technical RPV potential. A sensitivity analysis is performed to
identify the most impactful steps of the estimation process. Section 5
discusses the methodological and practical contribution of the work and
outlines its limitations and applications. Section 6 presents the con-
clusions and gives an outlook to future applications of the developed
method.

2. Data

Using big data mining techniques for the estimation of large-scale
RPV potential requires the availability of accurate and high-resolution
environmental and building datasets. Our approach combines large sets
of meteorological data, building data and digital surface models at
different resolutions and spatial coverage. Switzerland has been se-
lected as case study area due to its high data availability.

2.1. Meteorological data

We use four types of meteorological data, namely hourly global,
direct solar horizontal radiation (in W/m2), daily surface reflectance
(albedo), and daily maximum temperature (in °C), recorded during
12 years from 2004 to 2015. The specifications of all datasets are
summarized in Table 1. The solar radiation and albedo data is derived
from Meteosat Second Generation (MSG) satellite observations using
the Heliomont algorithm [35]. Satellite data is preferred over data from
measurement stations as it provides a better spatial coverage with an
increased resolution, it has a very low missing data ratio (<1%) and it
shows a negligible bias [36]. The daily maximum temperature data is
the result of a gridded interpolation of near-surface air temperature
measurements with errors below °1 C at urban altitudes [37]. As the PV
panel efficiency decreases with temperature, using the daily maximum
temperature corresponds to the least optimal PV performance.

We average the 12 years of data to obtain an annual mean dataset,
i.e. 8760 time steps for solar radiation and 365 time steps for albedo
and temperature. This reduces the variability of the meteorological data

Table 1
Meteorological data used in the study.

Data Spatial res. Time Range Source

Global horizontal radiation 1.25 deg. min.a hourly 2004–2015 MeteoSwiss [38]
Direct horizontal radiation 1.25 deg. min.a hourly 2004–2015 MeteoSwiss [38]
Surface albedo 1.25 deg. min.a daily 2004–2015 MeteoSwiss [38]
Maximum temperature 1 km2 daily 2004–2015 MeteoSwiss [39]

a Deg. min. denotes degree minutes on a longitude-latitude grid. 1.25 deg. min. corresponds to approximately ×(1.6 2.3) km2.
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and allows the estimation of long-term PV potential without bias due to
extreme meteorological events of a specific year.

2.2. Building data

The computation of the RPV potential is based on a national dataset
of building roofs. It contains around 9.6 million vector polygons re-
presenting all roofs in Switzerland’s 3D building cadastre (LOD 2) with
the roof tilt, aspect (both in degree) and area (in m2). This dataset is
combined with the national register of buildings and dwellings (RBD),
which gives information on the building’s footprint, construction
period, number of floors and building type. To account for obstructing
objects on rooftops (superstructures), which impede the installation of
PV panels, we use a dataset derived from detailed city GML data (LOD
4) available only in the Canton of Geneva. It contains vector polygons
that represent superstructures such as dormers and chimneys and
covers nearly 38,000 roofs. Table 2 summarizes the building data.

2.3. Digital elevation models

Besides meteorological and building data, we use a Digital Terrain
Model (DTM) and Digital Surface Models (DSM) derived from Light
Detection and Ranging (LiDAR) data, which are summarized in Table 3.
From the DTM, terrain characteristics including altitude, slope and
curvature have been computed by Robert et al. [42]. The DSM is used to
account for the effects of landscape characteristics on the PV potential,
which requires the most up-to-date and accurate LiDAR data. We hence
use a DSM at national scale in ×(2 2) m2 resolution, denoted as DSM m2 ,
as well as a higher-resolution DSM of ×(0.5 0.5) m2 available for the
Canton of Geneva only, denoted as DSM cm50 .

3. Methodology

To estimate the RPV potential and its uncertainty, we propose a
methodology that combines Machine Learning, GIS processing and
physical models for the treatment of large spatio-temporal datasets,
such as those presented in Section 2. Uncertainties are quantified from
the statistical distribution of the variables involved in the potential
estimation in the form of standard deviations. They are assessed for
various modelling steps and combined in order to obtain an uncertainty
on the PV potential.

The method, illustrated in Fig. 1, is based entirely on open-source
software and adopts an hierarchical approach used in several related
studies [21,26,34]. Its steps include (i) the physical potential, driven by
the horizontal solar radiation, (ii) the geographic potential, accounting
for the impact of the built environment, and (iii) the technical potential,
defined as the potential electricity generation. The variables involved in
each stage of the model and their relationships are explained below.

The following subsections will detail the methodological contributions
for the individual processing steps and the quantification of un-
certainty.

The physical potential is defined as the horizontal solar radiation at
the earth’s surface (Gh) for each time step t. The Gh is composed of a
direct beam component (GB) and a diffuse component (GD) such that
[46]:

= +G t G t G t( ) ( ) ( )h B D (1)

The horizontal radiation is computed at a monthly-mean hourly
(MMH) temporal resolution and a spatial resolution of ×(200 200) m2,
which is chosen as a trade-off between topographic detail and compu-
tational complexity as suggested in [27,34]. Each MMH time step re-
presents an average value at a given hour of each month, across all days
of the month. This leads to 288 distinct time steps, i.e. 24 h for each of
the 12 months. Using MMH values instead of 8760 hourly time steps
allows to reduce the computational cost by a factor of 30, while pre-
serving the daily and seasonal patterns of the average PV potential. Any
deviation from the MMH values is however covered by their un-
certainty.

The geographic potential accounts for the rooftop geometry, for
superstructures, for shading effects and for the sky visibility. It is esti-
mated for each roof surface considering the tilted radiation (Gt) and the
available roof area for PV panel installation (APV ) [27], such that:

= + +G t S t G t SVF G t G t( ) (1 ( )) ( ) ( ) ( )t sh Bt Dt Rt (2)

=A A C C(1 )PV t pv sh (3)

where G G,Bt Dt and GRt are direct, diffuse and reflected tilted radiation
components, SVF is the sky view factor, At is the tilted roof area, Cpv is
referred to as the panelled area coefficient and Csh and Ssh are referred to
as the shaded area coefficient and the hourly shading fraction of the
rooftop, respectively. The Csh represents the fraction of roof surface that
is unshaded in less than 40% of the daylight hours and is hence un-
suitable for PV installation (see Section 3.5). The S t( )sh denotes the
portion of the remaining roof area ( C1 sh) that is shaded at each time
step t. We treat Csh and Cpv, the proportion of roof area available to
install PV panels, as independent factors. They are separately computed
and it is assumed that no relevant overlap exists between the two.

The technical potential (EPV ) is the electricity output of each roof
surface. It is obtained from the geographic potential, the panel effi-
ciency ( PV ) and the performance factor (PF), which accounts for in-
verter efficiency and other losses such as soiling or degradation, such
that [27]:

=E G t A t PF t( ) ( ) ( )PV t PV PV (4)

Table 4 summarizes the variables introduced above and the method
used to model each of them.

3.1. Physical models

State of the art hourly physical models are used to (i) obtain the
tilted radiation components (G G G, ,Bt Dt Rt) and (ii) to quantify the
module and inverter efficiency. Both models, shown as orange boxes in
Fig. 1, are summarized in Appendix A. We use the anisotropic Perez
model [47] to estimate GDt, which is the overall most accurate diffuse
radiation model [46,48]. The GRt is computed using monthly mean al-
bedo data (see Section 3.3). This allows to account for snow cover in
high-altitude locations, where a large albedo significantly increases the
PV production on steep roofs [49]. The efficiencies are calculated for
each time step t from the tilted radiation and the ambient temperature
using the PVWattsmodel [50]. We use daily maximum temperature (see
Table 1) to obtain a conservative estimate of the panel efficiency.

Table 2
Building data used in the study.

Data Coverage Spatial res. Creation Source

Roof surfaces Switzerland Rooftops 2010–2016 Sonnendach [22]
Register of

buildings
Switzerland Buildings 2015 SwissStat [40]

Superstructures Geneva Canton Rooftops 2005–2011 SITG [41]

Table 3
Digital elevation models used in the study.

Data Coverage Spatial resolution Creation Source

DTM Switzerland ×(2 2) m2 2010–2016 SwissTopo [43]
DSM m2 Switzerland ×(2 2) m2 2000–2008 SwissTopo [44]
DSM cm50 Geneva Canton ×(0.5 0.5) m2 2013 SITG [45]
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3.2. Machine Learning

Machine Learning is used here (i) to obtain the horizontal radiation
and the albedo at the ×(200 200) m2 output grid from lower-resolution
satellite data, (ii) to estimate Csh and (iii) to account for the roof area
covered by superstructures in the estimation of Cpv. We use supervised
regression algorithms, which learn from a training set that contains
pairs of inputs (features) and their known output values (targets). The
models are then applied to predict unknown outputs for a new set of
features.

We consider two ML algorithms, Random Forests (RF) [51] and
Extreme Learning Machine Ensembles (ELM-E) [52,53]. Both are en-
semble algorithms which predict a target variable by averaging the
results of multiple estimators (decision trees/ELMs) that have been
trained on random re-samples of the training data [54]. Ensembles are
well-suited for the estimaiton of uncertainties, which give a useful in-
dication of the model’s accuracy [55]. The ELM-E is very efficient at

modelling large datasets [56], so we use this algorithm to estimate the
hourly solar radiation and the monthly albedo. Preliminary work has
shown that the RF outperforms the ELM-E for higher-dimensional da-
tasets with less training data. The RF is hence used to estimate Csh and
Cpv.

To optimize the performance of each ML model, it is necessary to
firstly select its features, and secondly to choose the parameters de-
fining the structure of each model through hyper-parameter tuning. In
the following sections, we will focus on the feature selection and the
performance of the optimized ML models. Information regarding the
tuning of the algorithms is provided in Appendix B.

3.3. Horizontal solar radiation and albedo

We propose an ML-based approach to estimate the horizontal ra-
diation and the surface albedo for pixel maps of ×(200 200) m2 re-
solution, as presented in the blue box in Fig. 1-A. The ML models yield
the global (Gh) and direct (GB) horizontal radiation for each MMH time
step t and the albedo ( ) as monthly mean values. The diffuse radiation
(GD) is obtained from the estimated Gh and GB by applying Eq. (1). The
use of ML allows to model the complex spatial patterns while being
more efficient than other spatial interpolation techniques such as kri-
ging [57].

The targets for the ML models of Gh and GB are the satellite-derived
global and direct radiation, which are split into 12 monthly subsets. The
initially considered set of features are the mean hour of each month, the
geographic coordinates (x, y) as well as several terrain features in-
cluding altitude (z), terrain slope and curvature [42]. A DTM is used to
derive these terrain features for the satellite data and for the

Fig. 1. Workflow for modelling of hourly solar PV potential.

Table 4
Summary of the parameters used in the estimation of technical RPV potential.
The dimension refers to P for pixels of × R(200 200) m ,2 for roof surfaces and t
for time steps. PM denotes the use of physical models.

Gh B D, , GBt Dt Rt, , Ssh SVF Csh Cpv PF,PV

Dimension ×P t ×R t ×R t R R R ×R t
Unit W/m2 W/m2 – – – – –
Method ML PM GIS GIS GIS+ML GIS+ML PM
Section 3.3 3.1 3.5 3.6 3.5 3.4 3.1

Fig. 2. (a) Feature importance per hour for Gh for June and (b) December for six terrain features, namely altitude (z), longitude (x), latitude (y), medium-scale
curvature (medDoG), small-scale curvature (smallDoG), terrain slope in east-west (big_EW) and north-south (big_NS) direction.
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×(200 200) m2 output grid. To better model the spatio-temporal pat-
terns of Gh and GB, we analyze the spatial features for each time step
using the RF feature importance score [58]. Fig. 2 shows their pattern
for the months of June and December. The feature importance exhibits
a strong intra-day variation for x, y and z, which may be explained by
the impact of the Swiss alpine terrain. All other features have an overall
low importance throughout the day. Including these in the model does
not improve its performance further. Four features are hence selected
for the final model: hour, x, y, z. Fig. 2 refers to Gh, but GB shows a
similar trend.

Separate ELM-E are trained for each month for Gh and GB. Their
tuning procedure and the resulting hyper-parameter values of the
models are provided in Appendix B. Table 5 shows the mean-squared
error (MSE) between the targets and predictions for a random 20% of
the satellite coordinates (test set), which are excluded from training.
Each entry represents one trained ELM-E. The model performance is
overall better for Gh than for GB, as it is harder to model GB from the
given set of features. To estimate from the satellite-derived daily al-
bedo measurements, we train one ELM-E with similar features as de-
scribed above, namely x, y, z and month. The model is tuned in a si-
milar fashion as that of Gh and GB and yields a test MSE of 0.10, which
lies in the range of the values obtained for Gh.

3.4. Available area for PV panel installation

The panelled area coefficient Cpv describes the available roof area for
PV installation considering the roof geometry and superstructures. To
compute Cpv, we use a geospatial algorithm in combination with ML, as
represented by the green and blue box yielding Cpv in Fig. 1-B. The
geospatial algorithm, detailed in Appendix C, virtually installs PV pa-
nels by projecting rectangular polygons onto the tilted roofs as shown in
Fig. 3. The Cpv is then obtained from the number of installed panels. The
panels are installed in both horizontal and vertical alignments, as no
alignment has technical advantages over the other and both are wide-
spread. The configuration with a higher number of panels is selected for
each roof.

The data on roof superstructures is however only available in one of
Switzerland’s 26 cantons (Geneva). We hence train an ML model to

estimate the change in Cpv due to the area covered by superstructures,
which is applied to the rooftops of the remaining 25 cantons. In our
case, the training of the ML model is performed using the rooftop da-
taset with superstructure information in the Canton of Geneva (see
Section 2). The fraction of their area on which virtual panels are in-
stalled provides the target for the ML algorithm (Cpv

T ). In addition, we
define Cpv

F as the fraction of the area on which virtual panels may be
installed if no superstructures are removed from the roof polygons. This
Cpv

F is one feature of the ML model. The full set of the considered fea-
tures is listed in Table 6. Fig. 4 shows the feature importance for all
inputs. While the top six features have the highest importance, the
complete set of features is used for modelling Cpv as this has been found
to improve the estimation precision.

Table 7 reports the residuals between Cpv
F and Cpv

T (baseline), as well
as the cross-validation error between the estimated Cpv and the target
Cpv

T in the case of additive bias correction (MBE+) and for using the
tuned RF model (see Appendix B for details). The bias correction is
performed by adding the mean bias error (MBE) between Cpv

F and Cpv
T to

all samples. We compare the root mean squared error (RMSE), mean
absolute error (MAE), MBE and the R2 coefficient of determination. All
methods remove the negative baseline bias of 17%. The RF outperforms
the bias correction, as it achieves lower errors and a higher R2. It is
hence used to estimate the Cpv used in Eq. (3).

3.5. Shading effects

To quantify shading effects from surrounding buildings and trees,
we use a shadow casting approach [20–23]. In contrast to the existing
studies, we account for the shading effects in two ways: First, strong
shading effects may render parts of a roof unsuitable for installing PV.

Table 5
Test mean-squared error (MSE) for the estimation of Gh and GB.

MSE Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Gh 0.10 0.07 0.07 0.06 0.06 0.04 0.06 0.05 0.12 0.10 0.10 0.06
GB 0.17 0.12 0.18 0.17 0.21 0.14 0.18 0.12 0.26 0.16 0.21 0.11

Fig. 3. Output of the virtual installation of PV panels after removing roof su-
perstructures. The best configuration of vertically and horizontally oriented
panels is selected. Panels on flat roofs are placed in south-facing rows and tilted
at an optimal angle of 30°.

Table 6
Features considered in the ML models to estimate Cpv and Csh. 1The building
density is computed as the number of building coordinates within a 100 m ra-
dius of each roof. 2The roof perimeter, shape index (perimeter per area) and
vertex count are derived from the polygon data.

Computed features Roof features Building features

Cpv
F / Csh

F Tilted area Footprint area

Panel tilt Tilt angle Building type
(not used for Csh) Aspect angle Construction period
Build. density1 Perimeter2 Number of floors

Shape index2

Vertex count2

Fig. 4. Feature importance of all features considered for the estimation of Cpv.
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Second, some of the suitable area may be shaded at particular hours and
reduce the PV potential for these hours. We hence propose to distin-
guish between the shaded area coefficient (Csh), the fraction of roof area
which is unsuitable due to shading, and the hourly shading fraction
(S t( )sh ), which is computed for each time step as the shaded portion of
the remaining roof.

The shadow casting approach (green box in Fig. 1-B) models sha-
dows on building roofs for each pixel of a DSM at a given sun position.
It is used to produce hourly shadow maps for the representative day of
each month (close to day 15 [23]) and hence yields results at the same
temporal resolution as the solar radiation. Fig. 5a shows an example of
these maps. They are binary maps, with a 0 (dark areas) representing a
cast shadow and a 1 (yellow areas) indicating direct sun exposure. The
shadow maps are averaged for all daylight hours, resulting in the mean
illumination map shown in Fig. 5b. Its values represent the percentage
of time steps for which each pixel is unshaded.

All areas with a mean illumination lower than the average value
across all roofs (red areas) are considered unsuitable. We compute this
average value as 42.7% and hence use a rounded threshold of 40%
mean illumination to exclude unsuitable areas. Dividing the red areas in
Fig. 5b by the total roof area yields Csh, while Ssh is the fraction of zeros
in Fig. 5a on the suitable (non-red) surfaces at each time t. The GIS
algorithm for the shading effects is given in Appendix C.

Two datasets are available to compute Csh and Ssh: the national
DSM m2 and the DSM cm50 for the canton of Geneva (see Table 3). Our
method aims at enhancing the national-scale Csh and Ssh from the DSM m2
based on knowledge extracted from the DSM cm50 , which is more recent
and detailed. For this task, we denote the values extracted from the
DSM m2 as C S,sh

F
sh
F (features) and those obtained from the DSM cm50 as

C S,sh
T

sh
T (targets). Their comparison yields an MBE of 2.7% between Ssh

F

and Ssh
T and of 8.9% between Csh

F and Csh
T . As the MBE for Ssh is small

compared to the order of magnitude of other uncertainties, we use an
additive bias correction (MBE+) to correct Ssh

F at the national scale,
which is performed separately for each time step.

The Csh shows a larger bias, so Csh
F systematically underestimates the

shaded area coefficient. This leads to an overestimation of available
area. As a mean bias correction (MBE+) increases the MAE (see
Table 8), we apply an ML model (RF) to estimate Csh, illustrated by the
blue box yielding Csh in Fig. 1-B. The features that are used to estimate

Csh are listed in Table 6. Fig. 6 shows the feature importance for Csh.
Interestingly, the building type has a high importance. This may be due
to the different objects that cause shading on different types of build-
ings.

The errors for estimating Csh are shown in Table 8. While the im-
provement of the MAE when using ML is relatively small, we do observe
a large improvement in the R2 coefficient. Unpredictable factors, such
as discrepancies between the DSM m2 and the DSM cm50 or mismatches
between the roof polygons and the DSMs, keep even the improved R2

coefficient rather low. These errors will be reflected in the results by an
increased uncertainty.

3.6. Sky view factor

The sky view factor (SVF), representing the visible proportion of the
sky, is computed by combining the vertical elevation angles of the
horizon for a discretized set of directions [59]. We find 32 equally
spaced directions to be sufficient for a precise estimation of the SVF,
which we have implemented according to Appendix C. Using the DSM m2
and the DSM cm50 , we compute a national SVFF and a “true” SVFT in
Geneva, respectively. The MBE between the two variables is 7.16%.
This error of SVFF with respect to SVFT follows no identifiable pattern
given the available features. We hence apply bias-correction (MBE+) to
adjust the SVFF at national scale based on data from the high-resolution
DSM cm50 , similar to Ssh in Section 3.5.

Table 7
Errors for estimating Cpv. We compare the residuals between Cpv

F and Cpv
T

(baseline) with the cross-validation error between the estimated Cpv and the
target Cpv

T in the case of bias correction (MBE+) and for using the Random
Forest model (RF).

RMSE MAE MBE R2

Baseline 0.23 0.17 −0.17 −0.10
MBE+ 0.15 0.12 0.00 0.52
RF 0.12 0.09 0.00 0.69

Fig. 5. (a) Binary shadow maps used to derive Ssh, for 5 example time steps (0: cast shadow, 1: sun exposure). (b) Mean illumination map used to compute Csh (red
areas).

Table 8
Errors for estimating Csh. Baseline is the error between Csh

F and Csh
T . The con-

sidered models are MBE+ and RF.

RMSE MAE MBE R2

Baseline 0.23 0.13 0.09 0.12
MBE+ 0.21 0.14 0.00 0.25
RF 0.18 0.12 0.00 0.44

Fig. 6. Feature importance of all features considered for the estimation of Csh.
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3.7. Flat rooftops

For a more realistic representation of PV panels on flat roofs, we
assume PV panels to be installed in individual south-facing rows instead
of placing them in consecutive rows along the roof aspect. Some spacing
is left between the rows to reduce mutual shading effects between them
(see Fig. 3). The tilt angle and row spacing is chosen as a trade-off
between the total PV output and the capacity factor, which is a proxy of
the economic feasibility. We have simulated different configurations
and found a technically optimal trade-off for a tilt angle of °30 and a
spacing of one panel height at the Swiss latitude.

The installation strategy on flat roofs impacts the PV potential in
multiple ways: (i) tilted radiation increases due to the panel tilt of °30 ,
(ii) Cpv decreases due to the spacing of the rows, (iii) mutual shading
between adjacent rows of panels increases the hourly shaded fraction
and (iv) the sky view factor is reduced. The Ssh and the SVF of flat roofs
are hence multiplied with an additional hourly shading factor and sky
view factor, respectively, which we have simulated using a geometric
model.

3.8. Uncertainty

The technical potential depends on multiple variables, as shown in
Fig. 1. The best estimate for each variable is given by their first and
second order moments, which may be used to combine various un-
certainties using statistical methods. Uncertainties arise from different
sources and are unknown in some cases. In this work, we consider only
those uncertainties for which information can be extracted from the
statistical analysis of our data. Further potential sources of uncertainty
will be discussed in Section 5.4.

3.8.1. Uncertainty for ML methods
To estimate the uncertainties for the output variables of the ML

models, namely G G C, , ,h B sh and Cpv, we follow a two-stage approach.
It distinguishes between the uncertainty arising from the modelling
process (model uncertainty, M) and the uncertainty related to the data
noise (data uncertainty, D) [60]. The data uncertainty may also re-
present errors introduced by previous processing steps, for example
using GIS.

The model uncertainty is estimated as the standard deviation of the
predictions from each ensemble member of the RF or ELM-E [55,60]. To
quantify the data uncertainty, a second ML model is trained on the
remaining residuals of the out-of-bag training data [54], which are
derived from the squared difference between the targets and predic-
tions [55,60]. This second ML model is used to predict D for each
predicted output. Further information regarding our implementation of
this method is provided in [61]. The total uncertainty of a variable
estimated using ML is then the squared sum of its model uncertainty
and its data uncertainty.

3.8.2. Uncertainty for GIS methods
The uncertainty for the GIS-derived and bias corrected quantities

(Ssh and SVF) is estimated from the residuals between the values com-
puted using the national DSM m2 (S SVF,sh

F F) and the ”true” values ex-
tracted from the DSM cm50 (S SVF,sh

T T) in Geneva. The error is treated as a
random variable, whose first and second order moments are computed
as the mean and the variance of these residuals. The mean is used for
the bias correction, as explained in Sections 3.5 and 3.6, while the
variance represents the uncertainty.

3.8.3. Uncertainty propagation
The propagation of uncertainty is performed by treating Eqs. (1)–(4)

as functions of randomly distributed variables with statistical errors. To
compute the variances of their output variables from a combination of
the means, variances and covariances of their inputs (summarized in
Table 4), we make the following assumptions: First, statistical

independence is assumed between the solar radiation (Gh B D, , ) and the
DSM-derived variables (S SVF,sh ). This is valid as the uncertainty of
Gh B D, , is dominated by the meteorological variability, while that of
S t( )sh and SVF is related to errors in the GIS methods. These are in-
dependent and uncorrelated processes. By contrast, Gh and GB, as well
as Ssh and SVF, exhibit a mutual correlation, as Table 9 shows. There-
fore, their covariances must be considered in the uncertainty propa-
gation. Second, we assume that Gt and APV , and Cpv and Csh, are in-
dependent as their correlation coefficients are negligible (see Table 9).
Third, we neglect the uncertainties of and of the temperature data, as
these have a low impact on the final results. Fourth, we do not account
for the uncertainty related to the physical models of G ,Dt PV and PF
(Section 3.1), due to a lack of data on their performance and the ex-
pected errors. This limitation will be discussed in Section 5.4.

Table 10 summarizes all variables for which uncertainties are con-
sidered, as well as the dimensions along which these are derived. Based
on the above assumptions and given the uncertainties in Table 10, the
variances of GD ( GD

2 ) and Gt ( Gt
2 ) are derived from Eqs. (1) and (2) using

error propagation theory [62,63], such that:

= + G G2 Cov( , )GD Gh GB h B
2 2 2 (5)

= + + + + +B D B R D R2 (Cov( , ) Cov( , ) Cov( , ))Gt B D R
2 2 2 2 (6)

where the direct, diffuse and reflected components of Gt are denoted as
= =B S G D SVF G(1 ) ,sh Bt Dt and =R GRt . The expressions for

their variances ( , ,B D R
2 2 2) and covariances are provided in Appendix D.

The variances of APV ( A
2 ) and EPV ( PV

2 ) are derived from Eqs. (3)
and (4), respectively:

= + +A C C( (1 ) )A t Csh pv Cpv sh Csh Cpv
2 2 2 2 2 2 2 2 (7)

= + +PF G A( )PV PV A t Gt PV Gt A
2 2 2 2 2 2 2 2 2 (8)

4. Results

4.1. Physical potential estimation

The models of Section 3.3 are used to predict the MMH solar hor-
izontal radiation and the monthly albedo for each pixel of the

×(200 200) m2 output grid in Switzerland. The results, as well as the
estimated model and data uncertainties (Section 3.8), are reported in
Table 11 as monthly sums. The uncertainty of is not shown as it is
neglected in the uncertainty propagation. For Gh and GB, the model
uncertainty M is negligible compared to the data uncertainty D due to
the large amount of training data. The model performs better for the
prediction of Gh than GB. This may be explained by the large relative
data uncertainty of GB (up to 32%), indicating that its hourly variability
is higher than that of Gh. The results for are close to the standard

Table 9
Linear correlation coefficients for pairs of potentially correlated random vari-
ables. 1denotes a spatio-temporal mean, 2indicates a mean across all time steps
t.

G G,h B
1 S SVF,sh

2 G A,t PV
2 C C,pv sh

Correlation 0.87 0.36 0.04 0.02

Table 10
Summary of the uncertainties for each variable in the RPV potential estimation.
The dimension (dim) of the uncertainties refers to R as roof surfaces and t as
time steps.

Gh B D, , Ssh SVF Csh Cpv Gt APV EPV

Uncertainty Gh B D, , Ssh SVF Csh Cpv Gt A PV
Dim. of ×R t t 1 R R ×R t R ×R t
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value of 0.2 in the summer and reach up to 0.5 on average in the winter
due to snow coverage at high altitudes in the Swiss alps.

Fig. 7a and b show the spatial distribution of Gh and GB for Swit-
zerland, while Fig. 7c and d show Gh and GB, which are dominated by
the data uncertainty. The highest solar radiation and the largest un-
certainty is found at high altitudes in the south of the country where
weather extremes are frequent. The majority of buildings are however
located at lower altitudes in the Swiss plateau, which spans from the
north-west to the north-east of the country. The uncertainty tends to be
low here, so the weather patterns are more predictable. In the plateau,
also the values for (not shown in Fig. 7) lie below the averages quoted
in Table 11 with a low uncertainty, which shows that mostly impacts
the potential at high altitudes.

4.2. Geographic potential estimation

The available area for PV panel installation (APV ) is obtained from
the shaded area coefficient (Cpv) and the panelled area coefficient (Csh)
using Eq. (3). Its uncertainty A is derived from C C,pv sh and their total
uncertainties ( ,Cpv Csh) using Eq. (7).

Fig. 8 shows the final values for Cpv (a) and Cpv (b) as a function of
roof tilt and roof area, which is shown on a logarithmic scale. Large
areas with a low tilt have the highest Cpv (70–80%) and a small un-
certainty. This is due to the high number of installed panels, which
reduces the relative effects of the roof shape and the presence of

superstructures on Cpv. Large roofs with a steep tilt have a high un-
certainty, as they are rare. Due to the panel placement strategy for flat
roofs (see Section 3.7), these tend to have a lower Cpv. The highest
uncertainty appears for medium-sized roofs (10–100 m2) with Cpv in the
range of 0.3–0.6. In this range, exact roof shapes as well as the fa-
vourable or unfavourable location of superstructures may change the
number of installed panels considerably. Very small areas (<10 m2)
have nearly zero available area and a low uncertainty, as the roof shape
is frequently unsuitable for the installation of the rectangular panels.

The predicted values for C(1 )sh , grouped by roof aspect and tilt
angles, are shown in Fig. 9a, with the related Csh shown in Fig. 9b. As
expected, steep north-facing surfaces have the highest proportion of
strongly shaded roof surface, i.e. the lowest values for C(1 )sh , while
this value is highest for steep south-facing surfaces. Interestingly, flat
surfaces (in the centre of Fig. 9a) are significantly more shaded than
roofs with a shallow tilt. This may be due to obstructing objects on flat
surfaces or a stronger shading from surrounding buildings. The un-
certainty is proportional to the shaded area coefficient and is hence
highest for steep north-facing roofs.

To compute Gt from Eq. (2) and its uncertainty Gt from Eq. (6), we
combine the tilted radiation GBt Dt Rt, , (Section 3.1) with the Ssh (Section
3.5) and the SVF (Section 3.6). Fig. 10a shows the bias-corrected un-
shaded fraction S(1 )sh for roofs of different tilts and aspects for four
example hours in June. The patterns of Ssh follow the trajectory of the
sun, with shading on west-facing surfaces in the morning hours and

Table 11
Results for the estimation of G G,h B and GD, showing the monthly predicted values (in kWh/m2) and the model ( M) and data ( D) uncertainties (no distinction for GD),
as percentage of the monthly radiation.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Gh 44.9 66.1 114 145 168 180 183 151 115 77.1 45.5 36.6
(%)M 1.32 1.02 1.01 1.27 1.09 1.16 1.32 1.12 1.36 1.15 0.97 1.03
(%)D 19.1 15.8 15.7 13.8 13.6 11.8 13.7 12.9 19.9 18.4 19.0 14.0

GB 22.1 35.2 62.3 79.6 87.6 101 107 89.7 68.2 43.1 23.3 17.8
(%)M 2.28 1.60 1.55 1.91 1.91 2.10 2.23 1.93 2.04 1.83 1.82 2.18
(%)D 30.1 23.1 26.8 26.2 29.2 23.2 26.0 22.5 32.9 26.3 31.8 26.2

GD 22.8 30.9 51.8 65.3 80.1 79.6 75.4 60.9 47.0 34.0 22.2 18.8
(%)GD 19.0 17.0 17.3 16.1 15.8 14.6 18.3 16.7 24.7 20.9 19.3 13.5

0.52 0.50 0.41 0.32 0.26 0.22 0.19 0.19 0.22 0.27 0.36 0.48

Fig. 7. Spatial distribution of annual predicted Gh (a) and GB (b), as well as the respective total uncertainties Gh (c) and GB (d).
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shaded east-facing roofs in the evening. Around solar noon (12 h–14 h),
Ssh is nearly zero for all roofs. This is expected as strongly shaded areas
are already excluded (as part of Csh). Fig. 10b shows the related un-
certainty Ssh (blue line), which is strongly correlated with the zenith
angle of the sun (orange line). As the uncertainty primarily arises from
the discrepancy between the DSM m2 and the DSM cm50 , these results in-
dicate that the discretization error of the DSM m2 has a higher impact on
Ssh at low sun altitudes. Consequently, the uncertainty is high in the
morning and evening and low during midday in the summer months,
when the solar radiation is highest. The average SVF on Swiss roofs is
0.69, with a SVF of 0.12 derived from the bias correction.

Fig. 11 shows the annual tilted irradiation on the building roofs (Gt)
and its uncertainty ( Gt), again grouped by their tilt and aspect angles.
The annual Gt (a) is highest for south-facing roofs with a tilt angle of
around °40 . This matches the latitude of Switzerland. As panels on flat
roofs are oriented south and tilted at °30 , they receive near-maximum
solar irradiation. Fig. 11b shows Gt as percentage of Gt . It is lowest for
steep north-facing roofs, which receive low direct radiation and are
hence less impacted by GB. The highest relative uncertainty is found on
steep roofs in the east and the west. These roofs receive their highest
proportion of direct radiation at low sun positions, for which Ssh is
high. Fig. 11c shows the hourly profiles for surfaces oriented north,
east, west and south, averaged across all roofs of similar aspect. In
summer, the peak of east-facing roofs in the morning is higher than that
of the west-facing roofs in the afternoon. In winter, the opposite is the
case. These results suggest that during summer the sky is clearer in the
morning, while the weather conditions are generally better in the
afternoon in winter.

4.3. Technical potential estimation

To obtain the technical PV potential (EPV ) and its uncertainty ( PV ),
Eqs. (4) and (8) are applied to G A,t PV , the module efficiency ( PV ) and
the performance factor (PF), which are obtained as described in Section
3.1. Fig. 12 shows the annual EPV for Switzerland, grouped by its three
main characteristics: tilt, aspect and roof area. For comparability, the
values are normalized by the total roof area (At). Fig. 12a shows the
potential with respect to roof tilt (x-axis) and roof area (y-axis), in-
dicating the highest potential for large roofs (>500 m2) with shallow tilt.
The similarity to the pattern of Cpv in Fig. 8a demonstrates the strong
dependency of EPV on Cpv. As a consequence, the peak potential in
Fig. 12b is no longer at 40° south, as it is the case for Gt (see Fig. 11), but
it appears instead at 10°–20°, which is the tilt angle of many large roofs.
Flat roofs, on the other hand, show a relatively smaller potential, due
the selected strategy for installing PV panels on flat roofs (see Section
3.7).

To obtain a realistic large-scale potential estimate, we exclude roofs
with a small available area of <A 8 mPV

2 [27], which represents a
minimal economic feasibility [14,26,27,64]. We further exclude all
north-facing roofs with an aspect angle > °| | 90 from south [26,27],
which aims at removing those roofs with a low PV potential. Other
studies use a minimum annual Gt of 1000 kWh/m2 [14,20,64]. This
threshold however is found to be very sensitive to small changes in the
estimated potential. The aspect angle is hence preferred as selection
criterion.

Applying these criteria to all 9.6 million roof surfaces in
Switzerland, 2.7 million roofs on 2.3 million buildings remain suitable
to install PV panels. The suitable roofs represent 56.4% of the total APV
of ±267 71 km2, yielding a maximum technical PV potential of

±24 9 TWh. Fig. 13a shows the spatial distribution of the annual EPV ,

Fig. 8. (a) Panelled area coefficient Cpv and (b) associated uncertainty Cpv, for roofs with different tilt angle and roof area.

Fig. 9. (a) Proportion of roof area suitable for PV installation based on shading effects ( C1 sh), (b) its uncertainty Csh per roof aspect and tilt.
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aggregated to pixels of ×(500 500) m2 for visualisation purposes. The
potential is centered in the Swiss plateau, where most densely popu-
lated cities are located. The annual EPV per rooftop of one such pixel is
shown in Fig. 13b, which demonstrates that large flat roofs have by far
the highest potential to install PV panels. Fig. 13c shows the temporal
variation of the PV potential and its total uncertainty, in comparison
with the Swiss electricity demand of 2018 [65]. In absolute terms, the
uncertainty is highest during the summer months, due to the high
variability of the horizontal radiation in these months. The RPV po-
tential exceeds the electricity demand even for the lower boundary of
EPV (EPV PV ) from March until September, while a deficit is expected
from November to January and during night hours.

4.4. Sensitivity analysis

We conduct a sensitivity analysis to quantify the impact of the in-
dividual parameters computed in this study on the technical PV po-
tential. The analysis is performed in two stages: firstly, each parameter
is independently varied in a fixed range of ± 50%. Secondly, all para-
meters with a quantifiable uncertainty are varied by ± . Due to the
high correlation of the horizontal radiation components, Gh and GB are
varied simultaneously. A representative sample of 10,000 rooftops has
been used for this analysis.

Fig. 14a shows the change in technical PV potential for varying each
parameter by ± 50%. The horizontal radiation components (Gh), and the
fractions of available roof area (C C,sh pv) are the most sensitive para-
meters and thus exhibit the steepest slope. This is expected, as these

Fig. 10. (a) Hourly unshaded fraction of suitable roof area ( S1 sh) for four example hours in June, averaged across roofs with equal aspect and tilt angles and (b) its
uncertainty Ssh as a function of time. The yellow line shows the bias between the two DSMs, for which we correct the values of S1 sh.

Fig. 11. (a) Annual tilted irradiation (Gt , in kWh/m2) and (b) relative annual uncertainty ( G/Gt t) per roof aspect and tilt angle, (c) MMH profiles of Gt for north, east,
west and south-facing roofs.
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variables are directly correlated with the factors in the computation of
EPV (see Eq. (4)). As the panel efficiency reduces slightly for high Gh, its
sensitivity curve lies just below C C,sh pv. Changes in Ssh and SVF have a
smaller impact on the RPV potential, as they are multiplied with GBt and
GDt , respectively. The curves flatten out for large positive changes, as
both factors are saturating at a value of 1. The albedo ( ) has a very low
sensitivity, as there are few steep roofs that are impacted by a change in
. The ambient temperature (Tamb) is the only curve with a negative

slope, as high temperatures decrease PV . Its sensitivity is rather low, as
Tamb only indirectly impacts the PV potential as part of the physical
model of PV .

Fig. 14b shows the impact of varying each variable within their

uncertainty (± ). The upper and lower dashed lines represent the
propagated PV . The results suggests that in a year with low Gh, the
electricity generation may be up to 18% lower than estimated, and si-
milarly for the higher case. The Ssh and SVF show the lowest sensitivity,
which agrees with Fig. 14a. Comparing Cpv and Csh shows that Cpv,
driven by the high uncertainty of medium-sized roofs, is overall larger
than Csh, with a potential impact of ± 11%. The bars in Fig. 14b indicate
the potential change when all roofs are considered, while the lines show
the potential change for the suitable roofs only (see Section 4.3). For Gt ,
the suitable south-facing roofs have a higher uncertainty than all roofs,
as expected from Fig. 11b. The opposite is the case for APV , as the
suitable roofs have a higher proportion of flat roofs with a low Cpv.

Fig. 12. Annual technical RPV potential for all roof surfaces (EPV , in kWh/m2), (a) grouped by roof tilt and area, (b) grouped by roof tilt and aspect.

Fig. 13. (a) Spatial distribution of annual EPV , aggregated to pixels of ( ×500 500) m2 for visualization purposes, (b) annual EPV for the suitable roofs of a randomly
selected ( ×500 500) m2 pixel in the city of Geneva, (c) monthly-mean-hourly profiles of EPV , summed for all suitable roofs, the PV and the Swiss electricity demand of
2018.
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5. Discussion

5.1. Methodological contribution

Our methodology presents an end-to-end approach to estimate the
RPV potential at monthly-mean-hourly temporal resolution for in-
dividual roof surfaces. It uses large building and environmental datasets
and may be transferred to any region or country where such data is or
will become available. The proposed method adapts best existing
practices for a data-driven estimation of each parameter that impacts
RPV potential. This includes (i) the spatio-temporal variation of the
horizontal solar radiation, (ii) the effects of surrounding trees and
buildings on roof shading and the sky view factor, (iii) the impact of
roof geometry and superstructures on the available area for installing
PV panels, and (iv) the temperature-dependence of the PV module ef-
ficiency. As a result, the potential computed here is more accurate and
provides a higher spatio-temporal resolution than previous works.

The strength of our method lies in the combination of physical
models with GIS and ML. The former two provide a detailed re-
presentation of the physical processes underlying the RPV assessment.
The use of ML, applied previously only in [26,27], allows to include
additional knowledge extracted from data with only partial spatial or
temporal coverage, and hence improves the accuracy of the results. The
ML approach also outlines a method to use sparsely available datasets
for a PV assessment in other regions.

Furthermore, we propose a structured method to estimate and
propagate uncertainty in large-scale PV potential studies. Using the ML
and GIS methods, we are able to quantify uncertainties related to the
data sources and individual processing steps. These values are then
combined using statistical tools to estimate the total uncertainty. This
allows decision-makers to better understand the potential contribution
of RPV to future energy systems.

5.2. Practical contribution

The application of the methodology to Switzerland provides several

practical contributions for an effective integration of RPV in the built
environment. Firstly, our results form a dataset of hourly profiles of
RPV potential and its uncertainty for 9.6 M rooftops in Switzerland,
which will be publicly accessible. To the best of our knowledge, it is the
first dataset of its type at this spatio-temporal resolution and scale. Our
data can be used by the research community to study future energy
systems with large shares of RPV, whereby the uncertainty permits the
modelling of different scenarios.

Secondly, the large-scale estimate of ±24 9 TWh provides a rea-
listic estimate of the maximum technical RPV potential for Switzerland.
According to our data, electricity generation from PV may cover over
40% of Switzerland’s annual demand of 57.6 TWh in 2018 [66].
However, our results also show that the potential contribution from
RPV is insufficient during winter and night hours, while there may be a
large surplus of RPV generation during peak hours in summer (see
Fig. 13b).

Thirdly, the sensitivity analysis performed here identifies the
parameters with the highest impact on the estimated RPV potential, as
well as the main sources of uncertainty (see Fig. 14). The parameter
with the highest impact is the horizontal radiation. Its uncertainty is
mainly caused by the high intermittency of the solar resource and can
not be significantly reduced, even if higher-quality data was available.
The panelled area ratio represents the second largest source of un-
certainty. It is due to inaccuracies in the input data and uncertainty in
the modelling approach. These may be reduced by a more precise
model, for example using image processing techniques [24], or a more
detailed building model (i.e. LOD 4) that is available in the entire study
region.

5.3. Comparison with existing studies

To set our large-scale estimate into context, we compare it to five
national studies on RPV potential in Switzerland [20,22,26–28], in-
cluding a national project known as Sonnendach/toitsolaire [22,64]. This
allows to validate the magnitude of our results against existing work
and to point out the improvements achieved through our methodology.

Fig. 14. Change in RPV potential for the variation of (a) each variable by ± 50% and (b) each uncertain variable by ± . Considered variables are the horizontal
radiation (Gh), partly shading factor (Ssh), sky view factor (SVF), surface albedo ( ), shaded and panelled area ratios (C C,sh pv) and ambient temperature (Tamb).

Table 12
Comparison of the results presented in 6 studies of technical RPV potential in Switzerland. To obtain comparable results, the entries labelled with ∗ are computed
from values quoted in the respective publications as explained in [67].

Study APV (km2) Suitable roofs (%) Gt (kWh/m2) sys (%) EPV (TWh)

IEA [28] 251∗ 55 1,088∗ 10 15.04
Assouline et al. [26] 328 60.5∗ 662∗ 13.6 17.86
Assouline et al. [27] 252 60.5∗ 786∗ 13.6 16.29
Sonnendach [22,64] 439∗ 71.6∗ 1243∗ 13.6 53.09∗
Buffat et al. [20] 485 70.1∗ 1176∗ 10.3 41.20∗
Present study 267 56.4 1186 13.8 24.58
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Table 12 shows a quantitative comparison of all studies, which is fur-
ther detailed in [67]. The metrics used for comparison are the total
available area (APV ), the percentage of total roof surface that is suitable
for installing PV, the annual tilted irradiation (Gt), the system efficiency
( sys), which combines module efficiency and performance factor, and
the annual PV potential (EPV ).

Our results lie in the mid-range of the existing work. The estimate
for APV is relatively low in comparison with other studies. It is in the
range of the estimates by Assouline et al. [26,27], which use similar
data-driven methods for estimating APV as applied here. This suggests
that the ratio of available roof area for PV installation lies much below
current expert recommendations, which are used in [64]. This may be
due to the fact that current recommendations are focused on roofs with
a high potential, which may not be representative for all roofs in the
Swiss building stock. In [20], the available area for PV is not specifically
addressed.

The annual tilted irradiation is relatively high and comparable to
that estimated in [20,22]. Both studies apply best practices for the es-
timation of shading effects and use high-resolution satellite data. A
validation of Gt against measurement data is provided in [20], who find
a negligible mean error in summer when production is highest, and a
small overestimation in winter. This suggests that the annual irradiation
is close to its real value, while it is likely underestimated in [26–28],
possibly due to a different computation of the shading effects.

Several complementarities exist between this study and previous
work, given by the use of similar datasets and methods. This leads to
comparable aggregated values and allows for the validation of our re-
sults against existing approaches. The added value of our work is given
firstly by the computation of the results in monthly-mean-hourly re-
solution, instead of yielding monthly or yearly values as used in
[22,26,27]. Secondly, we contribute to the existing work by assessing
the available area for PV installation for each roof surface, rather than
using communes [26] or pixel sizes of ×(200 200) m2 [27]. Thirdly, our
study is the only one that quantifies the uncertainty on the final po-
tential estimate. Uncertainties are not specifically addressed in [26–28]
and qualitatively assessed in [20,22].

5.4. Limitations

As all large-scale potential studies, our study relies on various data
sources and a combination of statistical and empirical modelling steps.
In this work, emphasis has been placed on systematically identifying
and combining uncertainties in order to obtain a global uncertainty
estimate for the technical RPV potential. Furthermore, a sensitivity
analysis has been conducted to assess the impact of the uncertainty of
individual steps on the final potential.

Some assumptions were made that impact these results: (i) The
input data is assumed to be coherent and without error. In reality, some
features may be missing or incorrectly represented, and discrepancies
between the datasets may arise from different data collection dates and
methods of creation. (ii) The systematic error introduced by using a
fixed number of azimuth angles for computing the shading effects (38
bins) and the SVF (32 bins) is neglected. This error is expected to be
negligible as the number of bins used here is relatively high. (iii) The
potential uncertainties arising from the physical models of tilted ra-
diation and module efficiency are neglected, as no comprehensive
quantification of these has been found in the literature. (iv) The PV
panel performance parameters as well as the system losses are treated
as assumptions rather than random variables, due to the large variety of
available technologies and their fast development. (v) PV panels on flat
roofs are all placed in a technically optimal fashion (see Section 3.7). A
comparison with other installation practices, such as lower tilt angles or
the alternation of east and west-facing rows, is beyond the scope of this
work. To consider different configurations of PV on flat roofs and the
uncertainty in technological developments, a scenario-based approach
may be followed.

5.5. Application and future work

A monthly-mean-hourly technical RPV potential for Switzerland is
useful for applications including policy making, urban planning and the
design of future energy systems. Policy makers may use our results,
aggregated at regional or national scale, in order to formulate effective
policies to integrate RPV into the built environment. Urban planners
may assess the potential self-consumption and the electricity demand
which could be covered by installing PV on existing roofs. They may
further estimate the expected PV yield for new roofs taking into account
the roof size, tilt and orientation from our results. Energy system de-
signers can use this work to simulate future electricity networks at local
scale, which allows to assess the potential mismatch between supply
and demand and the resulting storage needs.

The generated dataset may be further used to estimate the PV po-
tential for future scenarios that account for urbanization, climate
change and technological advancement of PV. This is possible as the
existing building stock covers different types of roofs in various urban
contexts and climatic conditions, which exist in the Swiss plateau, the
Jura mountains and the Alps. A techno-economic potential may be
formulated for these scenarios by combining the maximum technical
potential with economic factors such as installation and operational
cost.

Finally, a further validation of the estimated RPV potential provides
a challenging subject of future work. We validate our results against
those of previous work (Section 5.3), some of which have been com-
pared to measurement data [20]. While this approach is feasible for
validating the tilted radiation, a direct validation of the available area is
difficult due to the lack of a ”ground truth”. A possible method to es-
tablish such a ground truth may be the application of image segmen-
tation techniques, for example using Convolutional Neural Networks
[68], to high-resolution aerial imagery. This would allow for a more
accurate detection of obstructing objects on rooftops as well as the
recognition of already installed PV panels.

6. Conclusion

In this work, we present a big data mining approach to estimate the
PV potential on 9.6 million rooftops at monthly-mean-hourly temporal
resolution and propose a quantification the uncertainty on the esti-
mated potential. The developed Machine Learning methodology uses
high-resolution building and environmental data to extract information
from data which is only available in parts of the study area. The
Machine Learning algorithms are further used to quantify the un-
certainties related to the estimated parameters. These are combined
with uncertainties arising from other modelling steps and propagated to
obtain an uncertainty on the technical PV potential estimate.

The national-scale application of our method results in a total
rooftop PV potential for Switzerland of ±24 9 TWh, which could meet
more than 40% of the country’s electricity demand in 2018. This po-
tential is in the mid-range of other large-scale estimates for Switzerland.
The added value of our approach lies in the higher spatio-temporal
resolution of the resulting datasets compared to existing studies, as well
as in the uncertainty estimate for each spatio-temporal instance. This
highlights areas and time spans with potentially large inaccuracies. Our
results may be used to quantify the potential mismatch between PV
production and supply, which is relevant for the design of future energy
efficient districts and for the formulation of regional and national in-
centive policies for the diffusion of rooftop PV.

The work presented in this study provides an important contribution
for the decarbonisation policies in Switzerland, as it enables the large-
scale modelling of future electricity grids with high shares of rooftop PV
using hourly data for individual buildings. The proposed PV assessment
method using data mining and uncertainty propagation is transferable
to any region or country with sufficient high-quality data, where it can
contribute to the transition towards low-carbon energy systems.
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Appendix A. Physical models

A.1. Tilted radiation

Widely accepted physical and empirical models are used to compute the plane-of-array (POA) radiation. The GBt is computed from GB and the
angle of incidence of the sun rays on the tilted panel ( ) [69]:

=G G max 0, cos( )
cos( )Bt B

Z (A.1)

= +cos( ) sin( )sin( )cos( ) cos( )cos( )Z S Z (A.2)

The angles Z and S describe the sun zenith and azimuth angles, respectively, while roof tilt and aspect are given by and . The empirical
formula for GDt using the Perez model is given by [47]:

= + + +G G F F a
b

F(1 ) 1 cos
2

sinDt D 1 1 2
(A.3)

where F1 and F2 are empirically fitted functions for the circumsolar and horizon brightness, and a b, are geometric angles. The derivation of these
factors is described in [46]. The calculation of GRt from the surface albedo is given by [70]:

=G G 1 cos
2Rt h (A.4)

To ease the notation, Eqs. (A.1)-(A.4) can be referred to as:

= = =G F G G F G G F G, ,Bt B B Dt D D Rt R h (A.5)

A.2. Module and inverter efficiency

The module and inverter efficiencies are computed using the PVWatts model developed by the National Renewable Energy Laboratory (NREL)
[50]. The DC power output of a PV panel is modelled as a function of the tilted radiation Gt and the cell temperature Tcell:

= +P G P T T
1000

(1 ( ))dc
t

dc pdc cell ref0 (A.6)

where Pdc0 is the DC rating of the panel, pdc is its temperature coefficient and Tref is the reference temperature. We use average panel specifications of
mid-range 60-cell mono-crystalline PV modules, the most frequently used technology in Switzerland [20], from three market-leading manufacturers
(JA Solar, Jinko Solar, Trinasolar). The PVSyst model [71] is used to derive Tcell from Gt and the ambient temperature Tamb:

= +T T G
U

(1 )
cell amb t

m
(A.7)

where denoted the absorption coefficient, m denotes the module efficiency and U is the heat transfer component. From the DC power output and
the area of a PV panel (Apanel), we compute the module efficiency PV :

= P
G APV

dc

t panel (A.8)

The empirical loss formula for the inverter efficiency ( inv) in PVWatts is given by:

= +0.0162 0.0059 0.9858inv
nom

ref (A.9)

where = P P/ ,dc dc nom0 is the nominal inverter efficiency and ref is the reference efficiency. The performance factor (PF) is obtained by multiplying
inv with other system losses. These include soiling, degradation, mismatch, wiring and connection losses and are estimated as 14% [50].

We use the pvlib python package developed by Sandia National Laboratories [72] for the computing the POA irradiance and the module and
inverter efficiency. All parameter values are shown in Table A.13.
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Appendix B. Tuning of Machine Learning models

The tuning of the ML models aims at selecting the architectural parameters (hyper-parameters) which optimize the model performance. The
mean-squared error (MSE) is used as means to assess performance and is evaluated on a validation set. This is a random subset of the training data
(here 20%), which is excluded from the training procedure. Both Machine Learning algorithms (ELM-E and RF) are implemented in python. The RF
uses the scikit-learn [58] library and the ELM-E is developed based on the HPELM package [73] with GPU acceleration.

B.1. Extreme Learning Machine Ensemble

To estimate Gh and GB (Section 3.3), we use training data from 11,243 pixel coordinates in Switzerland and for 4,663 h with non-zero solar
radiation, which are split into 12 monthly subsets. The training data for are 365 daily values for each coordinate. The output grid of ×(200 200) m2

pixels results in a prediction set of 1.04 M locations, with 146 non-zero MMH time steps (for G G,h B) or 12 monthly values (for ). As Extreme
Learning Machines (ELM) are single-layer neural networks, the ELM-E has two hyper-parameters that are tuned, (i) the number of nodes of the
hidden layer of each neural network m, and (ii) the number of ELM in the ensemble n. A large m may lead to over-fitting, while a small m may result
in a poor performance. Table B.14 shows the trade-off between the model performance (validation MSE) and the computational time for training and
prediction (on the validation set), which exists in the choice of m. The given data is for Gh in June, but similar trends exist for the other months, for GB
and . The tuning for n is not shown, as it is inhibited only by computational time. The selected hyper-parameters are = =m n1000, 50 for Gh and GB
and = =m n1000, 30 for .

B.2. Random Forest

Random Forests are used for two separate models, to estimate Cpv (Section 3.4) and Csh (Section 3.5). Due to the smaller size of the data as
compared to the ELM-E, a 5-fold cross-validation is applied. It splits the data into 5 subsets, from which 5 separate models are trained and validated
each on a different subset. The RF has three main hyper-parameters which can be tuned: the number of trees in the ensemble (n), the minimum
number of samples in each leaf node (l), and the number of features (m) which are randomly considered for splitting at each node. m determines the
level of randomization within each decision tree, l impacts the level of smoothing of the predictions, while n improves the robustness of the model,
and is primarily limited by computational time [51]. The selected hyper-parameters for both models are = =l m3, 5 and =n 1000. It should be
noted that the RF is much less prone to small deviations in the model hyper-parameters than the ELM-E.

Appendix C. Geospatial algorithms

C.1. Virtual installation of PV panels

Algorithm 1 details the geospatial algorithm that is implemented to virtually install PV panels on roof surfaces. It uses the python geopandas
library [74]. The output of the geospatial algorithm, Cpv, is calculated for each roof surface as the ratio between the roof area covered by Npanels
virtual panels, each of area Apanel, and the tilted area At of the roof surfaces:

=
×

C
N A

Apv
panels panel

t (C.1)

Table A.13
Parameters used in the PV module and inverter efficiency models [50,71].

Parameter Value Description

Pdc0 285 Wp Nameplate DC rating
pdc °0.39 %/ C Temperature coefficient

Tref °25 C Cell reference temperature
0.9 Absorption coefficient

m 0.17 Nominal module efficiency
U 15 W/m K2 Heat transfer component
Apanel 1.6 m2 PV panel area

nom 0.96 Nominal inverter efficiency

ref 0.9637 Reference inverter efficiency

Table B.14
Results of the tuning of m, showing the trade-off between the validation MSE and training and prediction times (per ELM), for Gh in June. The selected value for m is
shown in bold.

m 50 100 500 1000 2000 5000 10000

Validation MSE 0.084 0.052 0.044 0.043 0.043 0.042 0.042
Training time (s) 16 18 18 23 43 230 1040
Prediction time (s) 2.5 3.0 2.7 3.0 3.4 5.4 7.8
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Algorithm 1. PV panel placement on rooftop polygons

1: Rotate roof surfaces to face south
2: Create inside buffers (0.4 m) along the roof edges
3: Project PV panel dimensions for each tilted roof

for all roof surfaces:
4: Place rectangular grid on south-facing roof
5: Remove grid cells (panels) outside roof surface
6: Count panels and rotate to roof aspect
7: Compute panelled area and panelled area ratio

C.2. Shading effects

The shading effects, namely Ssh and Csh, are computed using horizon maps for each azimuth angle of the sun. Algorithm 2 describes the steps to
extract Ssh and Csh from the horizon maps. The computation of these maps is the most computationally expensive step in the estimation of hourly RPV
potential. Hence, several measures are taken to assure the feasibility of the approach:

1. Horizon maps are computed in bins of °5 for south-east to south-west sun azimuths (110–250°), and in bins of °10 for east (60–110°) and west
(250–300°) azimuths, where solar radiation is low. Thus, only 38 maps need to be computed.

2. The horizon distance is 100 m, i.e. a radius of 100 m is considered around each pixel to compute horizons. In Switzerland, where few high-rise
buildings exist, this threshold is suitable to estimate the shading effects from surrounding trees and buildings.

3. The algorithm is implemented using the GRASS GIS engine [75]. The Swiss terrain is split into 16 sub-regions and processed in parallel to reduce
the computational time from 1000 to 30 h.

Algorithm 2. Computation of shading effects on rooftops

1: Compute horizon maps from DSM for 38 angle bins
2: Crop horizon maps over (rasterized) roofs

for all t:
3: Apply binary filter to horizon maps using the solar position
4: Average binary shading masks over t (sun exposure map)
5: Extract roof areas with sun exposure <40%
6: Compute shaded area coefficient Csh

for all t:
7: Extract roof areas with sun exposure >40%
8: Compute hourly shading fraction S t( )sh

C.3. Sky view factor

The sky view factor is computed from similar horizon maps as described above for 32 equally spaced azimuth bins and a horizon distance of
100 m, using the skyview add-on for GRASS GIS [59]. The computation is performed in parallel over 64 sub-regions.

Appendix D. Uncertainty propagation for tilted radiation

The variance and covariance of the three addends in Eq. (2) (labelled B D R, , in Eq. (6)) are computed from the mean and variance of the
horizontal radiation (G ,B D h GB GD Gh, , , ,

2 ), the partly shaded factor ( S(1 ),sh sh
2 ) and the sky view factor (SVF , SVF

2 ) such that:

= + +
= + +
=

F G S
F G SVF
F

( (1 ) )
( )

B B Ssh B GB sh Ssh GB

D D SVF D GD SVF GD

R R Gh

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 (D.1)

where F F F, ,B D R are the beam, diffusion and reflection factors introduced in Eq. A.5. Under the assumptions in Section 3.8.3, we derive the cov-
ariances between the beam, diffuse and reflected components of Gt as a function of the covariances between the horizontal radiation components, as
well as the covariance between the shading and the SVF, such that:

= × × + × + × ×
= × ×
= × ×

B D F F G G S SVF G G S SVF S SVF G G
B R F F S G G
D R F F SVF G G

Cov( , ) (Cov( , ) Cov( , ) Cov( , ) (1 ) Cov( , ))
Cov( , ) (1 ) Cov( , )
Cov( , ) Cov( , )

B D B D sh B D sh sh B D

B R sh B h

D R D h (D.2)

where the covariances G GCov( , )h D and G GCov( , )B D are computed from ,Gh GB and GD in analogy to Eq. (5).

Appendix E. Supplementary material

The data associated with this article will be published in Zenodo under the following DOI: 10.5281/zenodo.3609833.
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