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ABSTRACT

Large scale solar Photovoltaic (PV) deployment on existing building rooftops has proven to be one of the most
efficient and viable sources of renewable energy in urban areas. As it usually requires a potential analysis over the
area of interest, a crucial step is to estimate the geometric characteristics of the building rooftops. In this paper,
we introduce a multi-layer machine learning methodology to classify 6 roof types, 9 aspect (azimuth) classes and
5 slope (tilt) classes for all building rooftops in Switzerland, using GIS processing. We train Random Forests
(RF), an ensemble learning algorithm, to build the classifiers. We use (2 × 2) [m2] LiDAR data (considering
buildings and vegetation) to extract several rooftop features, and a generalised footprint polygon data to localize
buildings. The roof classifier is trained and tested with 1252 labeled roofs from three different urban areas,
namely Baden, Luzern, and Winterthur. The results for roof type classification show an average accuracy of
67%. The aspect and slope classifiers are trained and tested with 11449 labeled roofs in the Zurich periphery
area. The results for aspect and slope classification show different accuracies depending on the classes: while
some classes are well identified, other under-represented classes remain challenging to detect.

Keywords: Geographic Information Systems, LiDAR, Roof classification, Random Forests, Roof mounted
Photovoltaics

1. INTRODUCTION

Solar energy is arguably one of the most promising sources of renewable energy, and has been vastly studied
over the last few years. While various solar energy technologies exist on the market, photovoltaic (PV) panels
are getting more and more attention as their electricity output make them very volatile and usable for all kinds
of tasks. Most specifically, the price of PV panels are continuously decreasing and their efficiency is significantly
increasing over time. Consequently, PV panels mounted over existing building rooftops have proven to be a
viable large scale resource of clean energy in urban areas.1,2 However, a potential study is necessary, before local
governements and municipalities can plan a large scale PV deployment. Studies on solar PV potential typically
consider 3 main estimations: the area available for PV installation over rooftops, the geometric properties of the
roofs including roof shape, slope (tilt) and aspect (azimuth), and finally the solar radiation over the roofs.

Several studies suggest methodologies to estimate the available roof area for PV installation.3 However, very
limited studies suggest an accurate methodology to estimate the geometric properties of the roofs. Depending
on the available source of data, the suggested methods to estimate the geometric characteristics of rooftops can
be different. A first general method consists in GIS processing, using LiDAR data and good quality footprint
vector polygons. Some studies use LiDAR data integrated with footprint polygons using Triangulated Irregular
Network (TIN) to classify roof types as either flat or pitched.4 Alternatively, rooftops segments can be created
using slope and aspect classes, along with different building types, with LiDAR data and footprint polygons.5

Other studies use LiDAR data to estimate roof characteristics by using a catalogue of common roof shapes fitted
with the studied roofs.6 A second common method is to use satellite images in order to detect different roof
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shapes. An example of such a method uses 2D satellite images to classify roof shapes into 4 common types,
and other combinations of these types.7 Other various methodologies include the direct use of LiDAR data and
satellite images to detect buildings8,9 and extract some geometric characteristics. An original learning-based
roof classification was recently presented using bags of words features extracted from a point cloud.10 However,
very few studies attempted to use similar methodologies at a large scale, given the precision needed for the data
to obtain good results. Large scale potential studies often use adapted methods that do not focus on geometric
characteristics of the building roofs. A good example of these kind of study is a recent one for Spain.11

The present paper uses Random Forests with low resolution building LiDAR data to classify building rooftops
and estimate their aspects and slopes using generalised footprint polygons at the national scale in Switzerland.
The machine learning approach aims at counterbalancing the lack of precision of the footprint polygons and the
LiDAR data, which are widely available datasets, but not designed for precise geometric analysis. In particular,
the location and the shape of the footprint polygons is rather approximative. The study aims at using Random
Forests with elevation raster features and geometric features extracted from the GIS data in order to: (1)
Classify roof types into 6 predefined classes, (2) Estimate the main slope and aspect class for each roof class,
with predefined 5 classes for slope, and 9 predefined classes for aspect, (3) Make these classifications embeddable
in a solar rooftop PV potential study.

2. DATA AND METHODS

2.1 Data pre-processing

The vector and raster data sources are as follows:

• VECTOR25: a generalised footprint polygon data for clusters of buildings in Switzerland. The data is
available from Swisstopo (https://shop.swisstopo.admin.ch). It includes 1,825,678 polygons in total. These
polygons will be used to capture the approximate geometry and locations of buildings all across Switzerland
and will be called VECpolygons throughout the study.

• DOM: the swiss Digital Surface Model available from Swisstopo (also called DSM). DOM is a LiDAR
data offering real elevation values for the urban and rural surface while taking into account vegetation
and buildings. Its resolution is (2 × 2) [m2] and the data is available in the form of (3000 × 4400) [m2]
rectangles.

• Sonnendach data: a precise roof surface polygon data for around 800 communes in Switzerland (11449
buildings), available from (http://www.bfe-gis.admin.ch/sonnendach/?lang=de). The data is originally
extracted from the swissBUILDINGS3D 2.0 data. It offers the projected polygon geometry of each roof
surface in the area of interest as well as aspect and slope values for each surface. It, however, does not show
superstructures and other more detailed structures over the roofs. It will be used to provide examples for
the aspect and slope classification models.

ModelBuilder (an ArcGIS tool) and Python codes were used to automate the process of extraction of useful
statistics from the DOM elevation data. We first split the entire DOM into medium-sized parts (about 25 parts
for the entire remaining Switzerland territory once the communes covered by Sonnendach data are discarded), to
allow for reasonable processing time on each of them. Then, we built a model using Model Builder which extract
aspect and slope data over VECpolygons. These data is used as features for the classifications. The convention
for aspect values is shown in Figure 1. A python script was written to run the model steps autonomously outside
of ArcGIS to speed up the computational time.

The model, for each portion, performs the following tasks: (i) Upsample it to (0,5 × 0,5) [m2] to gain in precision;
(ii) Compute aspect and slope raster from the DOM raster using the Spatial Analyst toolbox; (iii) Perform a
Re-classification of raster values (from Spatial Analyst toolbox) by bins:

• For slope, with 9 bins: [0◦, 10◦], [10◦, 20◦], [20◦, 30◦], [30◦, 40◦], [40◦, 50◦], [50◦, 60◦], [60◦, 70◦], [70◦, 80◦],
[80◦, 90◦].
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Figure 1. Convention used for aspect calculation.

• For aspect, with 2 different bins configuration: (a) 5 bins, including flat, [−135◦, 135◦] (North), [−135◦,−45◦]
(East), [−45◦, 45◦] (South), [45◦, 135◦] (West); (b) 19 more precise 20◦ bins, including flat, [−170◦, 170◦],
[−170◦,−150◦], [−150◦,−130◦], [−130◦,−110◦], ..., [130◦, 150◦], [150◦, 170◦]. These two different set of bins
are used separately for two tasks. The first is used to build features for roof classification, as it expresses
the main changes in aspect across the roof and to avoid dilution of the feature information. The second
more complete configuration is used to build labels for the aspect estimation.

(iv) Compute frequencies of raster cells for each slope and aspect bin over each VECpolygon to obtain the
frequencies of cells with an aspect in each of the 5 aspect bins, the frequencies of cells with an aspect in each of
the 19 aspect bins, and the frequencies of cells with a slope in each of the 9 slope bins; (v) Compute statistics
for each of the three histograms frequency data extracted in (iv) (mean bin, mode bin etc.); (vi) Export these
frequencies and statistics in csv format, ready to be used as features for further classifications. Illustrations of
reclassified slope and aspect rasters can be seen in Figure 2 for two different roof types.

2.2 Classification in Machine Learning

Machine Learning (ML) methods are algorithms that learn patterns from examples in order to perform predic-
tions. In a classical supervised learning framework, the examples are gathered in a dataset (xi, yi)i=1,...,N , where
N is the number of points in the data set. Each data point (xi, yi) includes a p-dimensional input vector xi, and
an output value yi. The input vector is a realization of the input variables of interest X1, X2, ..., Xp (e.g. number
of sides of the roof, roof area etc.), and the output value is the realization of the corresponding output variable
Y (e.g. roof type). Note that the input variables are also called features or predictors, the input values are
samples or instances, the output variable is the target, and the output values are targets or labels. The dataset
of observed data points (examples) is called the labeled set.

Given the data, the aim of a machine learning task is to learn a function f : X → Y, where X and Y are
respectively the input and output spaces, so that predictions f (x) are close as possible as the corresponding
targets y. Note that in case of a classification, Y is a finite set of classes (y can only take dicrete values), and f
is called a classifier. In order to maximize the performance of the classifier and allow it to generalize well outside
of the labeled set, we use the following classical strategy: (i) separate the labeled set into a training set (75% of
the data) and a test set (25% of the data), (ii) train a model using solely the training set, (iii) use the trained
model to predict output values for points in the test set and measure the discrepancy with the known labels to
compute the test error. Most models include parameters, usually called hyperparameters, that have to be tuned
in order to obtain the best model possible for a given data. The hyperparameters are often tuned while training
the model, using a procedure called k-fold cross validation.12

In order to measure the performance of the classifier (by measuring the error between predicted outputs and
labels), we use in this study the accuracy, which is a classical error measure for classification tasks. It computes
the probability of being well classified in the test set, using the model built in the training set:

Accuracy =
1

Ntest

Ntest∑
i=1

1[f(xi)=yi] (1)
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(a) Aspect (hip) (b) Slope (hip) (c) VECTOR25 and Sonnendach
polygons (hip)
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Figure 2. Aspect and Slope reclassified (0,5 × 0,5) [m2] rasters, along with the building polygons from VECTOR25 (grey
thick line) and Sonnendach data (black thin line) for a building with a hipped (a,b,c) and a gabled roof (d,e,f). One can
observe the significant delay of position between the two polygons. Also, the different aspect and slope patterns between
the two types are clearly shown, specially regarding the amount of roof raster cells showing a flat surface, significantly
larger in the gable case.

where Ntest is the size of the test set, and 1 is the indicator function, defined by:

1[f(xi)=yi] =

{
1, if f (xi) = yi

0, otherwise
(2)

2.3 Random Forests for classification

Random Forests (RF),13 is a machine learning algorithm that is part of the Ensemble Learning family of methods.
Ensemble Learning aims at aggregating the results from multiple generated “weak” learners (simple and fast
models with a poor performance) to obtain a better estimator. In case of RF, the weak learners are classification
and regression Trees.14 Trees are decision models that have been widely used for many years, and in various
applications. They are constructed with the training data by a series of binary splits, at each nodes of the
tree, which virtually split the input space according to a query. The query is performed on one of the variable,
for example “Is X2 < 3.5”. At each node, if the answer is “Yes”, the left path is taken, otherwise, the right
one. Terminal nodes are decision nodes, giving the predicted value for regression, or the predicted class for
classification. The query (meaning the choice of the variable and the threshold) is optimized at each node in
order to decrease the number of samples in the node as fast as possible (maximize the impurity decrease), which
contributes to the performance of the model. The details of optimization, however, will not be presented here.
New observations are predicted by passing their features through the tree down to a terminal node. As we use
classification in this study, we will focus on RF for classification. However, the regression version of the algorithm
is very similar to classification in principle.

The two ensemble algorithms attracting a lot of attention are originally Bagging15 and Boosting16 for classifi-
cation. Bagging aims at reducing the variance of the trees by fitting a large number of trees on bootstrap-sampled
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(sampled with replacement) versions of the training data. The predicted class is then the one with the majority
of votes from the independent trees, a vote being the class predicted by one of the trees. Boosting also combines
multiple trees. However, instead of building the trees on bootstrap samples of the training data it considers
weighted versions of the training data. The final classifier is a weighted average of the tree classifiers. Boosting
has proved to perform better than bagging in most problems, but it is delicate to tune its parameters.

Random Forests are a refined version of the Bagging algorithm. The improvement is achieved by adding a
layer of randomness to attempt to de-correlate the trees built from bootstrap samples of the data. In Bagging,
each node is using the best possible split among all variables. Random forests, in contrast, randomly choose
m variables out of all possibles ones at each node and the best split among these m variables is used. This
little addition considerably increases the performance of the algorithm, making it comparable to Boosting and
other popular classifiers including Support Vector Machines or Neural Networks. What separates RF from other
algorithms, however, is its easiness to use in practice, since it only has two parameters (m, and B, the number
of trees). Furthermore, it is worth noting its various advantages in practice. These includes: (i) RF is not
sensitive to outliers, (ii) it automatically performs feature selection while choosing the best split at each node,
(iii) no need pre-processing such as scaling or normalizing the data is required before the training process, (iv)
two extra measures are embedded by Breiman in the algorithm: the variable importance, estimating the impact
of each variable in the model, and the Out-Of-Bag (OOB) error, a validation error provided during the training.
The OOB error is the average prediction error computed for all training points using, for the prediction of each
training point, only the trees that did not contain this training point in their bootstrap sample.

In addition, RF is not very sensitive to the choice parameters. The number of features considered for splitting
(m) is usually chosen from a list of values that work well in practice, and m = 1 gives the optimal result for
some data.17 m can nontheless be fine tuned by k-fold cross validation. Also, the accuracy increases with the
number of trees B. Thus, it is current practice to fix m and try increasing values of B, until an accuracy plateau
is reached. Even though the number of trees required increases with the size of the training data, B = 500 trees
appear to be enough to achieve optimal performance in most cases, from our experience.

3. ROOF GEOMETRIC FEATURES CLASSIFICATION

We describe here the methodology leading to the roof geometric features classification. It includes a roof type
classification as well as an aspect and slope estimation for all buildings in Switzerland. As mentioned before,
the building polygon data offers clusters of buildings (VECpolygons). Thus, for each cluster of buildings we
estimate: one roof type, one main -most frequent- roof slope and one main -most frequent- roof aspect. The
previously presented data will serve as input features for the machine learning algorithm used here, that is RF,
for the classification tasks.

3.1 Roof classification

We use the presented random forests to classify roof types to further help future estimation of potential for
PV deployment over roofs (specifically the area available for PV panels installation and the distribution of roof
aspects across the building).

The first step is to choose the different classes that cover all possible types of roof. There are many possible
roof types considered in the literature.6,10 For our purpose, we accounted for the differences both in roof shape
and the general footprint geometry of the building. For example, one building can have a pyramidal roof, but
with a rectangular or an L-shaped footprint, which will result in a very different aspect distribution. Roof shapes
include mainly flat, gable, hipped, pyramidal, shed, mansard, and gambrel. Footprint geometries of gatherings of
buildings can considerably vary. However usual forms include: rectangular, L-shaped, T-shaped, U-shaped, O-
shaped, Triangle-shaped. Some of these shapes and geometries can be difficult to differentiate from one another
due to their similarities and the relative lack of precision imposed by the large scale of our study. Thus, some
choices were made to decrease the complexity of the task, thus increasing the performance of our classifier. It
was decided to gather some of them in the same class (by similarity) in order to reduce the total number of
classes. The classes are as follows: Gable and Shed, Hip and Pyramidal, L and T-shaped, O and U-shaped; and
Complex. The complex class includes the Triangle-shaped buildings, and all roofs that do not fit in existing
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Figure 3. Roof classification scheme.

classes. Gambrel and Mansard were discarded because of their complex structure and the lack of examples found
in the training process, as discussed later in the study.

Since the footprint geometry and roof shape do not depend on the same features, we decided to perform two
layers of classification, separating three main polygon classes in the first layer, and treating with shapes and
geometry independently in the second layer. More Specifically, we perform: (i) Classification 1 to differentiate
between Flat, Rectangle, and Non-Rectangle polygons (ii) Classification 2.1 on Rectangle polygons, to differen-
tiate between Gable, and Hip; Classification 2.2 on Non-Rectangle polygons, to differentiate between O-shaped,
L-T-shaped, and Complex. The complete classification process is illustrated in Figure 3. Note that in performing
this classification, we did not differentiate between the different roof shapes when classifying the non-rectangular
polygons. We show further in the study that the simple binary classification between Gable and Hip for rectangle
polygons is a very hard task at a large scale, resulting in a quite poor accuracy. As it would lead to an even
poorer accuracy for multi-buildings polygons, we focus on the geometry of the footprint and consider they are
gable shaped.

The chosen roof classes are then considered to build the labeled set of examples. The labeled set was ob-
tained by manually detecting different classes of buildings from examples using high resolution satellite images
and the Sonnendach data (http://www.bfe-gis.admin.ch/sonnendach/). The VECTOR25 VECpolygons were
layered over satellite images from Swisstopo (Swissimages 25cm) so that roof classes could be attributed to each
polygon by visual observation. A total number of 1252 VECpolygons were manually labelled, which approx-
imatively corresponds to 1% of the total number of VECpolygons all around Switzerland. We considered 3
regions containing both rural/suburban parts and dense urban parts, including contemporary and old city center
buildings: Baden region, Luzern region, and Winthertur region. A number of 268, 556, 232, 32, 88, and 76
VECpolygons were labeled respectively for Flat, Gable, Hip, O-shaped, L-shaped, and Complex classes. The
training set was composed by 75% of the labels and the remaining 25% of the labels was used for the test set,
leading to the accuracy computation for the classifiers.

Going in pairs with the labels, the features used for each polygon in the classification tasks are of two types:
(i) the geometric features will serve as simple features to differentiate between different geometric footprint
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shapes, (ii) the raster based features will be used to differentiate between different roof shapes (Flat, Gable, Hip)
and will be extracted from the slope and aspect raster data.

The geometric features characterize the shape of the building footprints. They must be simple enough to be
computable directly from the polygons, and aim at differentiating the different geometric footprint shapes. A
natural feature is the number of vertices. Yet, it is clearly not sufficient to characterize the footprint shapes. To
add information about the compactness of the polygon, the iso-perimetric quotient (isoQ) of the polygon is used
as an extra geometric feature. This coefficient is defined as the ratio of the polygon area and the area of a circle
with the same perimeter. A straight-forward calculation leads to the isoQ expression:

isoQ =
4πA

P 2
(3)

where A and P are respectively the area and the perimeter of the polygon.

The raster features characterize the roof shape based on the elevation data. Since a roof shape is intuitively
described by the arrangement of the roof different directions and tilts, the raster features used for training will be
combination of various slope and aspect statistics extracted in the DSM raster processing. These raster features
include:

• Statistics from the 5 bins aspect raster data: mean, standard deviation, variety, majority, minority, median.

• Statistics from the 9 bins slope raster data: mean, standard deviation, variety, majority, minority, median.

• Frequencies and percentages from the 5 bins aspect raster data: number of cells with aspect in each aspect
bin, and proportion of cells with aspect in each aspect bin.

• Frequencies and percentages from the 9 bins slope raster data: number of cells with slope in each slope
bin, and proportion of cells with slope in each slope bin.

• Ratios of flat cells frequencies and other directions frequencies: East/Flat ratio, South/Flat ratio, West/Flat
ratio, North/Flat ratio.

• Ratios of flat cells frequencies and other slope bins frequencies: [10◦, 20◦] /Flat ratio, [20◦, 30◦] /Flat ratio
... etc.

• Ratios of slope bins with one another: [10◦, 20◦] / [20◦, 30◦] ratio, [10◦, 20◦] / [30◦, 40◦] ratio ... etc.

• Boolean variables to identify symmetry in roofs: EWsym, NSsym, BothSym respectively indicates an east-
west symmetry, north-south symmetry, and a symmetry in both directions. They are simply computed: if
the number of east cells is equal to the number of west cells, plus or minus 100, EWsym = 1, otherwise
EWsym = 0. The computation is similar for NSsym. BothSym is given by EWsym × NSsym.

The first classification (Classification 1) uses both geometric and raster based features to differentiate between
flat roofs, non-flat rectangular polygons and non-flat non-rectangular polygons. The features of Classification 1
include: number of vertices, isoQ, percentages from 5 bins aspect data, and ratios of flat cells [20◦, 30◦] /Flat,
[30◦, 40◦] /Flat, [40◦, 50◦] /Flat slope bins, for a total of 8 features. A choice of B = 500 trees is found to be
sufficient to obtain optimal results, and m is chosen by 6-fold cross validation. Figure 4 shows the evolution of
the OOB error with an increasing number of trees. The same number of trees and strategy for m tuning is used in
the other roof classifications. The performance of the trained RF classifier is summarized in Table 1, in the form
of a confusion matrix. This matrix exposes, for each class (each row), the number of polygons well classified, and
the number of polygons wrongly classified in other classes. For example, the first row of the matrix shows that,
out of the 45 + 13 + 9 = 67 flat roofs considered in the validation set, 45 were well classified as flat roofs, 13 were
wrongly classified as rectangular non-flat polygons, and 9 were wrongly classified as non-flat non-rectangular
polygons. The last column gives the accuracy of the classifier for each class, meaning the percentage of well
classified polygons. The Out-Of-Bag (OOB) estimate of the error is also provided in the table.
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Table 1. Classification 1 confusion matrix.

OOB = 85% Flat Rect Non-Rect Acc.

Flat 45 13 9 70%

Rect 5 185 7 94%

Non-Rect 4 4 41 84%

Figure 4. Evolution of OOB estimate of error rate with an increasing number of trees for classification 1. Note that⌊√
p
⌋

and
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p
⌋

are values advised in practice.17 The plateau is reached very quickly, so that 500 trees seem more than
sufficient. One can also observe that m does not have a very high impact on the OBB error.

The second classification (Classification 2.1) uses purely raster based features to differentiate between gable
and hipped roofs. The features of Classification 2.1 include aspect and slope statistics, frequencies and percent-
ages respectively for aspect and slope, and 13 different slope ratios. The performance of the trained RF classifier
is summarized in Table 2.

Finally, the third classification (Classification 2.2) uses purely geometric features to differentiate between
O-U-shaped, L-T-shaped and complex buildings. The features are simply the number of vertices and the isoQ.
The performance of the trained RF classifier is summarized in Table 3. It is straight forward to obtain the final
classification accuracy for each roof type, by multiplying the accuracies in each classification layer: AEfinal =
AEclass1 ×AEclass2. It can be observed in Table 4. After the classifiers are built with the labeled data, they are
used on the remaining polygons to determine their shape.

Table 2. Classification 2.1 confusion matrix.

OOB = 72% Gable Hip Acc.
Gable 118 21 85%

Hipped 40 18 31%

Table 3. Classification 2.2 confusion matrix.

OOB = 65% O-sh. L-Sh. Complex Acc.
O-sh. 8 0 0 100%
L-Sh. 3 16 3 73%

Complex 2 0 17 90%

Table 4. Final accuracy of the overall classifier to detect each roof class.

Flat Gable Hip O-shaped L-Shaped Complex Mean

70% 80% 30% 84% 61% 76% 67%

The results of the classification vary greatly depending on the class. While the model identifies Gabled roofs
quite well, it is very poor in classifying hipped roofs. This is mainly caused by the relatively low resolution of
the LiDAR data and the lack of precision of the VECTOR25 polygons in shape and more particularly in the
location. Thus, this prevents the model from detecting changes in aspect values in small areas, which is the key
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to detect hipped roofs, characterized by the two lateral small “hips” (Figure 2). Besides the quality of the data
at hand, the model performance is heavily depending on the size of the training data and the number of labels
for each class. In case of the hipped roofs, a higher number of labels is desirable, and will be used in the future,
to distinguish them from gabled roofs.

3.2 Aspect and slope estimation

The aspect and slope angle of the roofs are of course very significant when it comes to estimating the solar
energy available over the roofs. As the current study is based on building VECpolygons available at a large scale
(VECTOR25 polygons), aggregated values of aspect and slope are desirable for buildings. More specifically, we
aim at one aspect value and one slope value for each polygon (cluster of buildings). Consequently, the modes (most
frequent value) of the aspect and slope distributions were considered. These two quantities are real numbers, and
naturally call for a regression estimation. Nevertheless, they revealed themselves to be quite delicate to predict,
solely based on our raster features. As a consequence, we decided to relax the problem into a classification task
by creating bins that act as classes, for both aspect and slope. The resulting classifications for each polygon
consist of: (i) classification of the main aspect, meaning the center of the most frequent aspect bin represented,
and (ii) classification of the main slope, meaning the center of the most frequent slope bin represented. In order
to capture the different aspects of the various roof sides in each building, we consider as a prior information the
predicted roof types from the previous part 3.1. We use the symmetry of each roof type to virtually distribute
the different roof aspects from the main aspect estimation. Note that this symmetry allows us to gather aspect
bins that are in the same direction, (meaning delayed by 180, as for example [−50◦,−30◦] ∪ [130◦, 150◦]), which
divides by two the number of aspect classes. Random Forests were used for both slope and aspect classifications.
A table summarizing how the roof aspects are distributed from the main aspect for each roof type is shown in
Table 7.

Classes were created as 20◦ bins for aspect estimation, and 10◦ bins for slope estimation. More specifically,
the following bins were used:

• 5 bins for slope: [10◦, 20◦], [20◦, 30◦], [30◦, 40◦], [40◦, 50◦], [50◦, 60◦], corresponding respectively to classes
Cs1, Cs2, Cs3, Cs4, Cs5. Slope values beyond 60◦ are very rare and thus not considered.

• 9 bins for aspect:

1. [−10◦, 10◦] ∪ [−170◦, 170◦]

2. [−170◦,−150◦] ∪ [10◦, 30◦]

3. [−150◦,−130◦] ∪ [30◦, 50◦]

4. [−130◦,−110◦] ∪ [50◦, 70◦]

5. [−110◦,−90◦] ∪ [70◦, 90◦]

6. [−90◦,−70◦] ∪ [90◦, 110◦]

7. [−70◦,−50◦] ∪ [110◦, 130◦]

8. [−50◦,−30◦] ∪ [130◦, 150◦]

9. [−30◦,−10◦] ∪ [150◦, 170◦]

corresponding respectively to classes Ca1, Ca2, Ca3, Ca4, Ca5, Ca6, Ca7, Ca8, Ca9.

The labeled set was extracted from the Sonnendach data, containing aspect and slope values for each surface
of all building rooftops in the covered area. The main aspect and slope were computed by extracting the most
frequent aspect and slope value classes accross the surfaces of each polygon, thus forming the label for each
polygon. The entire Sonnendach data was considered, gathering 11449 polygons. The training and test set were
built respectively with 75% and 25% of the labeled set. In both aspect and slope classifications, we use the
respective frequencies and ratios to serve as features. For the aspect classification, the reclassified aspect values
from the 20◦ bins were used to form the features of the input data. More specifically, the features include 9

Proc. of SPIE Vol. 10428  1042806-9

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/21/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



LI * A

aspect percentages and 20 ratios of aspect frequencies. For the slope classification, similarly, the reclassified slope
values from the 10◦ bins were used to form the features of the input data. More specifically, the features include
7 slope percentages and 12 ratios of slope frequencies.

The strategy used for parameter tuning is similar than in part 3.1. A number of 500 trees is used and m
is chosen by 6-fold cross validation in both classifications. A summary of the classifiers’ performances is given
in the form of the accuracy matrices depicted in Tables 5 and 6. The two classifiers can now be used on the
unlabeled polygons to determine their main aspect and slope, and the distribution of aspect and slope for the
remaining sides of each roof is assumed to be as shown in Table 7.

Table 5. Aspect estimation confusion matrix.

OOB = 63% Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9 Acc.
Ca1 128 19 1 1 18 5 1 0 12 69%
Ca2 14 267 22 3 4 35 37 1 1 70%
Ca3 1 21 186 11 2 0 24 18 3 70%
Ca4 1 2 5 127 7 0 5 18 14 71%
Ca5 17 6 4 5 124 6 1 0 12 70%
Ca6 28 37 2 1 11 83 7 1 2 48%
Ca7 1 37 31 1 0 6 174 5 0 68%
Ca8 2 2 15 20 4 0 5 81 11 58%
Ca9 10 4 1 17 21 0 2 1 97 63%

Table 6. Slope estimation confusion matrix.

OOB = 50% [10,20] [20,30] [30,40] [40,50] [50,60] Acc.
[10,20] 83 126 24 11 0 34%
[20,30] 55 414 123 24 0 67%
[30,40] 32 257 304 86 0 45%
[40,50] 30 113 177 115 5 26%
[50,60] 3 18 20 21 1 2%

Table 7. Roof characteristics considered for each roof type. β and γ are the center value of respectively the slope and
aspect class predicted for the roof of interest.

Flat Gable Hip O-shaped L-Shaped Complex

Roof
Type

Number of
directions

1 2 4 8 4 8

Roof sides
aspect

γ
γ

γ + 180

γ
γ + 180
γ + 90
γ - 90

γ
γ + 180
γ + 90
γ - 90

γ
γ + 180
γ + 90
γ - 90

γ
γ + 180
γ + 90
γ - 90

Roof sides
Slope

10◦ β β β β β

As in the roof classification step, the performance of the model changes significantly depending on the class
of aspect or slope. While the aspect estimation offer a reasonable accuracy of around 67% for almost all aspect
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classes, it seems still very challenging to estimate slope at a large scale without a very high resolution data.
Indeed, if the most frequent slope class in Switzerland ([20◦, 30◦]) is relatively well identified, the other classes
show a very low accuracy. Note that the use of Random Forests classification is not the first natural idea for
aspect and slope estimation. One can simply compute the number of pixels in each aspect and slope bin, and
assume that the bin with the highest frequence of cells is the main bin. The center of the bin is then the estimated
aspect or slope value. Unfortunately, the lack of precision of the raster data resulted in poor results while using
this simpler approach. Random forests offered significantly higher performance.

4. CONCLUSION

In this study, we use a machine learning methodology, namely Random Forests, for the large scale estimation of
three geometric buildings characteristics: (i) the buildings roof type, (ii) the building roofs most frequent aspect
value, and (iii) the building roofs most frequent slope value. We use Switzerland buildings as a case study. We
use widely available low resolution data which includes (2 × 2) [m2] LiDAR data and generalized footprint vector
polygons. The roof classifier learns from a training data of 1252 labeled buildings with two classification steps
and is able to identify 6 roof types with an average accuracy of 70%. The slope and aspect classifiers learn from
a training data of 11449 buildings around the Zurich region and are able to identify 9 classes of aspect and 5
classes of slope with varying accuracies depending on the classes. While highly represented classes are relatively
well identified with an accuracy of 70%, under-represented classes suffer from a lack of labeled examples and
remain challenging to identify. The building rooftop geometric estimation is designed to be embedded in a solar
PV rooftop potential, which will be carried out in the future.

Future work will present improvements to increase the accuracy of the methodology, including: (1) the use of
more labeled training data, particularly for roof shape classification, and (2) more complex feature engineering
(trying different features that could have a better correlation with the outputs) to improve the performance of
the RF.
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