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Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to
quantify and trace. Here we introduce entropy measures for quantifying the complexity of street
orientations and length variations within planar networks and apply them to the street networks of 41
British cities, whose geometric evolution over centuries can be explored. The results show that the street
networks of the old central parts of the cities have lower orientation/length entropies - the streets are more
tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length
increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one
network indicates growth through densification (streets are added within the existing network) and
expansion (streets are added at the margin of the network) and a gradual increase in entropy over time.

C
omplex networks are common in many fields of science. These include computer networks, technological
networks, social networks, biological networks, and geological networks1–5. Many of these networks evolve
in such a way that they partly or completely modify their geometric structure. This means that it is difficult

- and for some networks impossible - to trace their history. In addition, many human-made networks have existed
for comparatively short periods in comparison with the duration of the societies that made them.

By contrast, a street network preserves its history in the sense that a part of its geometry remains unchanged -
frozen in time - as the city evolves. Some street networks maintain their overall geometry for hundreds of years
and are thus extremely resilient to change6,7. The resilience of many street networks makes it possible to study
their long-term evolution as complex networks. Additional properties include, first, that street networks are
essentially planar8; in the absence of tunnels and bridges, the streets (the links) cannot cross without generating an
intersection or a junction, that is, a node. In the present paper, we define a street as the distance from one junction
to the next one. Second, street networks are directional; they are composed of vectors. Each street has a mag-
nitude, such as length, but also a direction (azimuth). Third, many street networks are subject to well-defined
landform constraints as regards their evolution and overall geometry9,10. Fourth, street networks normally do not
follow any general plans; they are to a large degree self-organised structures that respond to changes in internal
and external forcing by gradual geometric changes.

There has been considerable work on street networks and urban growth using various methods4,8,11,12. Recently,
the focus has been on the structural and topological properties of networks using different approaches8,13–18. By
contrast, the orientations of streets and the network evolution have received comparatively little attention. Also,
while entropy calculations have been used for trip distributions and related topics19,20, as well as to assess city
heterogeneity17, the entropy method applied here has not previously been used to quantify orientation and length
variations within and between evolving street networks.

The main aim of this paper is to present and analyse data on the street patterns of cities with a view of
quantifying their complex-network characteristics. Particular attention is given to the geometric differences
between the older (inner) and more recent (and outer) parts of the street networks. For analysing the networks,
we introduce street orientation and street length entropy measures for quantifying these geometric differences. A
second aim is to trace the 400-year evolution of the street network of the city of Dundee in Scotland and to relate
the growth of the city to network densification, network expansion, and associated entropy changes.

Results
Orientations, lengths, and entropies of streets. To explore the street orientation, length, density, and network
evolution, we analysed 41 British cities with a cumulative number of street segments of 753,322 (Fig. 1). The
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selected cities range in population from just under 30 thousand to
close to 8 million. Since they are all from the same country, various
poorly-constrained cultural and climatic factors, which may differ
widely between countries, do not significantly affect the network
structures. There is no definitive agreement on how to define a
city/street network boundary; here we use the administrative
boundaries (and city populations) as determined by Office for
National Statistics (www.nomisweb.co.uk). The street datasets were
obtained from the Integrated Transport Network (ITN) layer and
downloaded from the Edina Digimap website (www.edina.ac.uk).

As regards street orientations, all the cities fall between two
extremes: Blackpool, with two roughly orthogonal sets generating a
grid-like network (Figs. 1b, e), and Birmingham, with street orienta-
tion similar in all directions, generating a circular distribution
(Figs. 1b,e). Six cites were selected to represent the general variation
in orientation and related parameters (Fig. 1). To quantify better the
differences in orientations and lengths of streets, within cities as
well as between cities, we use the Gibbs/Shannon entropy formula,
namely

S~{k
Xt

i~1

pi ln pi ð1Þ

where S is entropy, k is a positive constant, t is the number of
bins with nonzero probabilities of streets, and pi is the probability
of streets falling in the i-th bin. For Gibbs entropy, k is the Boltzmann
constant, kB 5 1.38 3 10223 JK21. Here, however, the calculated

entropies are dimensionless and given in the units of nat, which
corresponds to kB being normalised to a factor of 1. Eq. (1) is a
perfectly general relation between entropy S and probability pi: it is
equally valid for equilibrium and non-equilibrium systems.

Theoretically, a street or a road can have essentially any length. In
practice, the length is limited, for a city (or a town), to the diameter of
the city, and for a country, to the diameter of the country, and so on.
Furthermore, as defined here, a street is a segment that extends from
one junction to the next, and is thus generally much shorter than
these theoretical limits. The greater the number of streets per unit
area of a city, the greater will be the street-network density and the
shorter the average street length. Within these limits of street-length
definition, there are no restrictions as such on the values that the
street lengths can take (in a low-density network), and the same
applies to the associated number of bins.

By contrast, the orientation of lineaments of various types can only
take values between 0 and 360u. Furthermore, streets, and many
geological lineaments (such as rock fractures), are oriented data,
which means that they have no directional distinction and yield bid-
irectional or symmetric roses (Fig. 1e; cf. the section on Methods). It
follows that the opposite classes or sectors (180u apart) have the same
street frequency, so that, for streets, the orientation can only take
values between 0 and 180u. Since the class limits or bin widths for
street orientation are here taken as 5u (the same for all the street
networks), the number of bins for the orientation entropy is fixed
at 36 (Fig. 1b). The limited number of bins puts constraints on the
possible variation in orientation entropy.

Figure 1 | Location of the 41 British cities studied here. (a), City name, location, and its number of streets (source: OS Boundary-Line: District Borough

Unitary Authority [Shape geospatial data], Coverage: Great Britain, Ordnance Survey (GB), Using: EDINA Digimap Boundary Download Service,

,http://edina.ac.uk/digimap., Downloaded: September 2011). (b), Orientation histograms of 6 cities: Blackpool, Liverpool, Reading, London, Leeds,

and Birmingham. (c), Number of streets. (d), Orientation entropy. (e), Rose diagrams. (f), The entire street network of the 6 cities. Map composed in ESRI

ArcGIS 9.3.1.
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The shape of the probability distribution affects its entropy. For
example, if all the streets occupied a single bin the entropy would be
zero. By contrast, if the distribution were uniform, so that all bins had
the same lengths (heights), the entropy would reach its maximum
value - given by the Boltzmann entropy equation, namely

S~k ln t ð2Þ

It follows that Birmingham, with a close-to uniform distribution, has
a higher entropy than Blackpool, with a peaked distribution (Figs. 1b,
d, e).

The street length-size distributions of all the networks analysed
here are heavy-tailed and follow approximately power laws. We
tested how well power laws fitted the distributions in comparison
with other functions using the maximum likelihood method. The
results indicate a generally good power-law fit (see Table 1 and the
discussion in the section on Methods).

For each network, we analysed three street sets: (a) all the streets of
the city network, (b) the streets of the inner (older) or central part of
the network and, for comparison, (c) the streets of an outer (recent)
part of the network. The outer part was selected (1) to be as far from
the centre of the network as possible, and (2) to have a very similar
number of streets to that of the compared inner part. The inner part
of the network is defined primarily by its being older and in most
cases surrounded by a ‘ring road’ (a beltway or loop).

Correlations. The results show strong linear correlations between
the length-entropies of the entire street sets and the street density
(Fig. 2a) and the average street length (Fig. 2b). There are also
correlations between the entropies of the outer and inner parts of
the networks, calculated separately, and the density (Fig. 2c) and the
average street length (Fig. 2d).

The negative linear correlation between entropy and density
means that as the number of streets per unit area increases, the
entropy decreases (Figs. 2a, c). Thus, the more confined the network,
other things being equal, the lower is its entropy - in agreement with
well-known thermodynamic effects of constraints21. By contrast, as
the average length of the streets increases, the network expands and
the entropy increases (Figs. 2b, d).

The entropies of the inner parts of all the networks (except for the
city of Peterborough where major streets penetrate the centre) are
lower than those of the outer parts (Fig. 2e). Similarly, for almost all
the networks the average street length (Fig. 2f) and length range
(Fig. 2h) are lower, and the density thus higher (Fig. 2f), in the inner

than in the outer parts of the networks. These results are an indica-
tion of spreading in the lengths of the streets as the network grows.
When the city becomes larger, the average distance between the
streets, and thus their average length, increases (Figs. 2d, g).
However, because the suburbs contain numerous residential areas,
short streets continue to be constructed, so that the minimum length
(commonly 3–5 m) stays more or less constant as the network
expands while the average and maximum lengths increase.
Consequently, the length range, which is the difference between
the maximum and the minimum street length, also increases as the
network expands (Fig. 2h).

Change in entropy with network growth. The change in entropy as
a street network grows is illustrated further by the network of the city
of Sheffield (Fig. 3). This is a medium-sized city, with a population of
about 560,000, a total number of streets of 23,500, and a total
cumulative street length of 1893 km. Using 10 circles, covering a
large fraction of the entire street network of Sheffield, the entropy
was measured as a function of distance from the approximate
network centre, defined as coinciding with the oldest part of the
city. Each circle is made to include a similar number of streets
(average 1500, range 1424–1568 streets). The results (Fig. 3) show
a gradual increase in the entropy with distance from the network
centre. The coefficient of determination R2 5 0.7808 implies that
close to 80% in the variation in network entropy can be related to
linear distance from the network centre.

For exploring the changes in network geometry and entropy
during its growth, we traced the evolution of the street network
of the city of Dundee, East Scotland (Fig. 1), for the past 400 years
(Fig. 4). The evolution of the network of Dundee, which has a
current population of 144,000 and 9,616 streets, is well documen-
ted and makes it possible to assess not only the entropy changes
but also the way the network has grown during this period. The
results show that, during these 400 years, the length entropy has
gradually increased from 2.114 to 3.268 (Fig. 4a) while the ori-
entation entropy has increased from 2.721 to 3.514 (Fig. 4b). The
increase in length entropy coincides with a proportional increase
in the tail part of the power-law length-size distribution (Fig. 4a),
making the distribution more uniform. Similarly, the increase in
orientation entropy relates to the orientation distribution becom-
ing gradually more uniform (Fig. 4b).

As regards the network growth, two principal mechanisms operate
at any particular time (Figs. 4c, d): (1) densification, that is, adding of
streets within the existing network, and (2) expansion, that is, adding

Table 1 | Tests of power-law model for the street-network evolution of the city of Dundee. The symbols are as follows. Number of street
segments for each time period (n), scaling exponent based on MLE (a) (6 shows the standard error on a), the number of observations in the
power law range, ntail (6 shows the standard error of the ntai)l, lower bound of power law (xmin) at which the power law model no longer
applies (6 shows the standard error of xmin), power law fits and the corresponding p-values, and each of the subsequent rows shows the
log likelihood ratios (LR) for the alternative models (fits) and the associated p-values. Positive values for LR indicate that the power law
model is favoured over the alternative models if the p-value , 0.1. However, if the p-value is large than 0.1, the sign is not a reliable
indicator as to which model provides the better fit to the data

Tests of power law behaviour in street data sets

Dundee evolution 1600 1776–77 1821 1846 1912 2007
n 70 209 376 1360 2184 9616
a 3.46 6 0.39 2.79 6 0.42 2.71 6 0.43 3.33 6 0.14 2.93 6 0.27 3.27 6 0.09
ntail 32 6 11 93 6 30 185 6 71 440 6 110 615 6 358 961 6 241
xmin 101 6 23 108 6 37 103 6 50 100 6 15 164 6 57 165 6 26
Power law p 0.99 0.00 0.40 0.32 0.21 0.34
Log normal LR 0.000 23.388 28.461 21.198 24.181 20.402

p 0.57 0.22 0.00 0.17 0.04 0.29
Exponential LR 3.048 25.044 29.436 19.214 24.124 90.124

p 0.89 0.11 0.00 0.98 0.96 0.99
Stretched
exponential

LR 0.048 25.080 29.520 21.279 24.169 20.359
p 0.63 0.11 0.00 0.17 0.04 0.36
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of streets at the margin of the network13. Densification is indicated
when the maximum street length (the peak) in the recent year is
less than that in the earlier year. These are marked by shaded
zones, whereas the expansion is marked by white zones

(Fig. 4c). The figure shows that expansion dominates in the per-
iods 1600–1776 and 1846–1912, whereas expansion and densifica-
tion are more similar in the other three periods considered. For
comparison, the entire street networks at these times are also

Figure 2 | Street lengths and length entropies of the 41 networks. (a), Entropy versus density (number of streets per km2) for the networks of the whole

cities. (b), Entropy versus average street length for the whole-city networks. (c), Entropy versus density for the inner (red dots) and outer (blue dots) parts

of the networks. (d), Entropy versus average street length for the inner and outer parts of the networks. (e), Entropies of the inner (red) and outer (blue)

parts of all the networks (the numbers refer to the named cities). (f), Network densities (numbers in hundreds) in the inner and outer parts. (g), Average

street lengths (m) in the inner and outer parts. (h), Length range (m) of streets in the inner and outer parts.

www.nature.com/scientificreports
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shown (Fig. 4d). A detailed study has recently been made of the
densification associated with the street (road) network of Milan13.

Discussion
Entropy is often related to ‘disorder’. Perhaps a more appropriate
description is to say that entropy is a measure of spreading or dis-
persal. From Eq. (1) it follows that entropy is the expectation value of
the logarithm of the probability multiplied by a constant. In the
present analysis the constant k in Eqs. (1,2) has the units of nat. As
indicated above, this dimensionaless unit, used when the base of the
logarithm in Eqs. (1,2) is e, corresponds to the Boltzmann’s constant
kB being normalised to a factor 1. By contrast, in statistical mechanics
the corresponding Boltzmann’s constant kB has the units of J K21.
Clearly, the greater the spreading in the orientations of streets, the
greater the entropy (Fig. 2); similarly, the greater the spreading in
the lengths of streets, that is, the longer the tail of the power law, the
greater is the entropy (Fig. 4). Since the number of bins for street
orientation is here fixed at 36, the limited number of bins puts con-
straints on the possible variation in orientation entropy.

The spread in street length is not constrained in the same way as
the spread in orientation. As the tail of the power law becomes longer
(Fig. 4), it follows that the spread in street length increases. For a
constant bin width, the number of bins must increase with increasing
tail length or spreading in length, and so does the entropy. A high
range in street length also correlates with a high average length. The

average length, in turn, is inversely related to the street-network
density, as can be inferred from Fig. (2a, b). It follows that when
the average street length of a network increases, so does the length
entropy (Fig. 2). There have been several models proposed to explain
why street networks tend to be denser (and thus with smaller average
street lengths) in the inner parts of cities than in their outer parts
(e.g22.).

To test the correlation between entropy and street-network den-
sity further, we selected two inner-city parts of the same area
(1660 km2) but with widely different street numbers. The inner parts
selected are those of York, with 534 streets, and of Blackpool, with
1,194 streets. Thus, the number of streets in Blackpool, per unit area,
is 2.2-times that of York. It follows that the average length of streets
(the distance between street intersections) should be greater, and
thus the entropy larger, in the inner part from York than from
Blackpool. And that is exactly what is obtained: the average street
length in York is 57 m (but 46 m in Blackpool), and the entropy of
the inner part in York is 1.833 (but 1.685 in Blackpool). Thus,
increasing (here more than doubling) the number of streets per unit
area increases the street density, decreases the average street length,
and decreases the entropy (Figs. 2a, 2c). Conversely, when the aver-
age street length increases – the streets become more spread – the
entropy increases (Figs. 2b, 2d). This shows that for street (or other
lineament) networks entropy is best interpreted as a measure of
dispersal or spreading.

Figure 3 | Variation in length entropy with distance from the centre of the street network of Sheffield. The circle in the centre, a, coincides with the

oldest part of the network. (source: OS MasterMap ITN Layer [GML geospatial data], Coverage: UK, Ordnance Survey (GB), Using: EDINA

Digimap Ordnance Survey Service, ,http://edina.ac.uk/digimap., Downloaded: September 2011). Map composed in ESRI ArcGIS 9.3.1.
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Street networks constitute a part of the wide field of complex
networks. As is shown here, many street networks preserve their
histories in the sense that a part of the network geometry remains
essentially unchanged for hundreds of years. Their additional char-
acteristics include that they are essentially planar and have geometric
properties that can easily be measured and quantified. In spite of
their size, accessibility, and geometric durability, street networks
have received less attention than complex networks in many others
fields1–5.

The present analysis of 41 street networks of British cities shows
that these networks offer many interesting possibilities for geometric
analysis and entropy studies that may be useful for comparison with
other complex networks. The present real-world results are particu-
larly relevant to the recently introduced methods for quantification

of network complexity through entropy measures23,24. The orienta-
tion and length entropy results for the street networks are clearly
useful for quantifying the geometric characteristics, as well as the
evolution, of the present networks. We believe that the entropy mea-
sures and methods of visualisation introduced here may be used to
analyse other networks, including their complex textural and struc-
tural variations and, where appropriate, their development through
time.

Methods
It is well known that no definitive agreement exists as to how to define a city
boundary. The definitions used depend much on the intended application25,26. In the
present paper the city boundaries used are administrative boundaries; namely, those
determined by Office for National Statistics (www.nomisweb.co.uk). The same source
is used for the data on city populations. The datasets for the street networks were

Figure 4 | Evolution of the street network of Dundee since AD 1600. (a), Power-law length distributions (inset: log-log plots and calculated tail

entropies, S) for the time periods shown in d. L denotes street length in metres. (b), Orientation histograms, rose diagrams, and entropies, S. (c), Graphs

showing maximum street length (ML) as a function of orientation. The shaded zones indicate the process of densification; the non-shaded (white) zones

indicate the process of network expansion. (d), General evolution of the street network since 1600 and the reference times for the illustrations in a–c.

(source: OS MasterMap ITN Layer [GML geospatial data], Coverage: UK, Ordnance Survey (GB), Using: EDINA Digimap Ordnance Survey Service,

,http://edina.ac.uk/digimap., Downloaded: September 2011). Map composed in ESRI ArcGIS 9.3.1.
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obtained from the Integrated Transport Network (ITN) layer and downloaded from
EDINA Digimap website (Digimap: www.edina.ac.uk). The ITN layer contains the
street network and also transport information. Following this, the ITN layers were
converted into GIS shape-file format.

The City Council of Dundee and the National Library of Scotland provided the
historical maps for the city of Dundee (Fig. 4). All these historical maps were geo-
referenced and digitised in ArcGIS (ArcMap Version 9.3) after the maps had been
imported into a GIS environment as a tif extension. Also, all the layers were projected
using the coordinate system of the British National Grid and Transverse Mercator
Projection. To align the different historical maps (geo-referencing) we used the
historical buildings and the main streets as the reference points on the images. The
street networks were drawn in vector format on the geo-referenced historical maps in
an ArcGIS environment. Following this, the Network Analyst was used to build the
entire network dataset for each historical map.

In the present analysis, intersections of streets are regarded as nodes and the streets
themselves are regarded as links between nodes, that is, we use a primal representa-
tion27–30. Also, in the present study, the data is treated as an undirected network
representation. This implies that each pair of nodes can only be connected to a
maximum of one undirected link. It should be noted that, when analysing the geo-
metry of a street network, either curved (real or physical) links or Euclidean (straight-
line) distances between the starting and end points of each street can be used. In the
Euclidean analysis, all links are assumed to be straight lines. This assumption gen-
erates a systematic bias towards shorter link lengths8. In the present analysis we use
physical links so that curved links are treated as curved when measuring their lengths.

For presenting the orientation of streets, we use rose diagrams (Figs. 1e, 4b). A rose
diagram (Fig. 5) shows the frequencies of lineaments31, such as streets10 and geological
fractures32, and processes, such as the wind direction at a certain locality over a certain
period of time (a wind rose). The standard rose diagrams are of two main types: (1)
complete circles, which is the type used in the present paper, and (2) half circles (semi-
circles). More specifically, the orientation of each sector shows the orientation of
streets and the length of the sector shows the number or frequency of streets of that
orientation. For the present analysis of street orientations the program GEOrient
(www.holcombecoughlinoliver.com) is used.

Both directional and oriented data can be used when analysing lineament ori-
entation. In directional data we can distinguish one end of the lineament from the
other or, alternatively, left from the right, as is the case for water flow in a river or for a
dominating wind direction. By contrast, in oriented data there is no directional
distinction, as is the case for geological fractures32 and streets in a city33. When the
data are directional the rose diagram shows a unidirectional or asymmetric trend
distribution (Fig. 5a). By contrast, when the data are oriented the rose diagram shows
a bidirectional or symmetrical trend distribution (Fig. 5b). For directional data the
measured data azimuths range from 0 to 360u. For oriented data, however, the
opposite directions, 180u apart, are equivalent. It follows that the graphical portrayal
should then either be restricted to one-half of a complete circle, or have a rotational
symmetry so that opposite classes or sectors in the rose have the same frequency
(Fig. 5b31). In this study, the data presented are oriented (streets) so that the rose
diagrams show bidirectional or symmetric trend distribution on a complete circle
(Figs. 1e, 4b).

We tested how well the power laws fitted the street-length distributions in com-
parison with other functions or models, primarily the log normal, exponential, and
stretched exponential functions. The testing was made using the maximum likelihood
method34, focusing on whether the data for each of the city-evolution periods are
consistent with power laws (Fig. 4a). The results (Table 1) indicate that most of the
Dundee-evolution data sets are consistent with power-law models, the one doubtful
period being 1776–77 where the p-value is 0.00 and thus less than 0.1. However,
p-values for the alternative models are so large that we cannot decide which, if any, of
the alternative models are statistically better than power laws. It should be noted,

however, that even if the alternative models (log-normal, exponential and stretched
exponentials) would give statistically better fits than power laws for some of the street
network datasets, power-law fits would still be useful. This follows because different
slopes (scaling exponents) of street-length distributions on log-log plots can often be
used to distinguish between different street sets, that is, short and long streets which
have different transport functionality10,33.
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