# Channel-Spatial Support-Query Cross-Attention for Fine-Grained Few-Shot Image Classification

Shicheng Yang Lanzhou University of Technology Lanzhou, China shicheng\_yang@126.com Xiaoxu Li\* Lanzhou University of Technology Lanzhou, China lixiaoxu@lut.edu.cn Dongliang Chang\* Tsinghua University Beijing, China changdongliang@pris-cv.cn

Zhanyu Ma Beijing University of Posts and Telecommunications Beijing, China mazhanyu@bupt.edu.cn

# Abstract

Few-shot fine-grained image classification aims to use only few labelled samples to successfully recognize subtle sub-classes within the same parent class. This task is extremely challenging, due to the co-occurrence of large inter-class similarity, low intra-class similarity, and only few labelled samples. In this paper, to address these challenges, we propose a new Channel-Spatial Cross-Attention Module (CSCAM), which can effectively drive a model to extract discriminative fine-grained feature representations with only few shots. CSCAM collaboratively integrates a channel cross-attention module and a spatial cross-attention module, for the attentions across support and query samples. In addition, to fit for the characteristics of fine-grained images, a support averaging method is proposed in CSCAM to reduce the intra-class distance and increase the inter-class distance. Extensive experiments on four few-shot fine-grained classification datasets validate the effectiveness of CSCAM. Furthermore, CSCAM is a plug-and-play module, conveniently enabling effective improvement of state-of-the-art methods for few-shot fine-grained image classification. The code is available at https://github.com/YSC-yes/CSCAM/tree/master

# **CCS** Concepts

• **Computing methodologies** → **Computer vision tasks**; *Supervised learning by classification; Classification and regression trees.* 

## Keywords

Few-shot learning, Fine-grained image classification, Channel crossattention, Spatial cross-attention

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

https://doi.org/10.1145/3664647.3680698

Jing-Hao Xue University College London London, United Kingdom jinghao.xue@ucl.ac.uk



Figure 1: Queries from four fine-grained datasets (CUB, Aircraft, Flowers, Cars). The Grad-CAM visualization showcases areas of interest localised by Proto [28], FRN [38], and our method. Ours offers more focused discriminative areas.

#### **ACM Reference Format:**

Shicheng Yang, Xiaoxu Li, Dongliang Chang, Zhanyu Ma, and Jing-Hao Xue. 2024. Channel-Spatial Support-Query Cross-Attention for Fine-Grained Few-Shot Image Classification. In *Proceedings of the 32nd ACM International Conference on Multimedia (MM '24), October 28-November 1, 2024, Melbourne, VIC, Australia.* ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/ 3664647.3680698

## 1 Introduction

Few-shot fine-grained image classification aims to recognize subtle sub-classes within the same parent class (e.g., bird species [35], car models [12]), with only few labeled samples for training. In addition to the intrinsic challenge of few labeled samples, there are two more major challenges co-occurring in few-shot fine-grained image classification: large inter-class similarity, and low intra-class similarity [19, 36].

Therefore, technically speaking, few-shot fine-grained image classification needs to tackle challenges from two frontiers, fine grains and few shots. On the one hand, fine-grained image classification requires attention to small and hard-to-explore discriminative feature regions, which is challenging even for advanced few-shot image classification methods such as Proto [28] and FRN [38], as shown in Figure 1. On the other hand, most of existing fine-grained

<sup>\*</sup>Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

<sup>@</sup> 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0686-8/24/10

image classifiers rely on a large number of labeled samples for training, which is unavailable under the few-shot setting. Hence, how to deal with few-shot fine-grained image classification task is an extremely challenging topic.

Metric learning, which classifies query images by comparing the distance between query features and support features, is widely used in few-shot learning. For example, Proto [28] uses the cosine similarity; Relation [30] learns a metric; FRN [38], TDM [14], BiFRN [40] and BSFA [44] use reconstructed features. Many metric learning networks can be diagrammed as Figure 2(a).



Figure 2: Different attention mechanisms for metric-based few-shot learning. (a) Without attention, e.g., Proto [28] and FRN [38]. (b) With spatial cross-attention, e.g., CAM [9] and CAD [4]. (c) With channel and spatial self-attentions, e.g., MattML [47]. (d) Our method with collaborative channelspatial support-query cross-attentions, which can generate more focused and discriminative features to improve the performance of few-shot fine-grained image classification.

Attention mechanisms have also been explore for few-shot learning. For example, Hou et al. [9] and Chikontwe et al. [4] use spatial cross-attention to implicitly reweight the underlying spatial map to focus on relevant target regions, which can be combined with metric learning and diagrammed as in Figure 2(b). Recently, people use the self-attention mechanism in both channel and space to learn better corresponding relation, which can be diagrammed as Figure 2(c), for example, Zhu et al. [47] and Xu et al. [42]. However, none of them explore the cross-attention in both channel and space.

Therefore, this paper considers the cross-attentions between support and query features from both spatial and channel perspectives, and proposes the *channel-spatial cross-attention module (CSCAM)* as diagrammed in Figure 2(d), which can improve the state-of-the-art performance in few-shot fine-grained image classification.

The proposed CSCAM contains two sub-modules: a channel cross-attention module (CCAM), and a spatial cross-attention module (SCAM). CCAM explores the dependence between the query and support samples along the feature channel dimension; SCAM explores the spatial dependence between the query and support samples. Finally, the outputs of these two sub-modules are mixed to simultaneously enhance the feature representations in the channel and spatial dimensions and generate more discriminative features. In addition, to fit for the characteristics of fine-grained images, we propose a support averaging method to further adjust the weight of the cross-attention score to expand the inter-class distance and reduce the intra-class distance.

In summary, the novelties of our CSCAM are twofold:

First, unlike existing methods, we consider the cross-attentions from both channel and space perspectives, fully leveraging the spatial and channel cross-information between support and query.

Secondly, different from the existing attention methods that usually generate class prototypes before attention or stack multidimensional features after attention, CSCAM averages the attention scores of all support features, reducing the between-class similarity and increasing the within-class similarity, as shown by ablation studies and visualisation.

Both novelties makes CSCAM fit for few-shot fine-grained image classification. Extensive experiments including ablation studies show that CSCAM achieves excellent performance on few-shot fine-grained image classification tasks. Moreover, we note that CSCAM is a plug-and-play module that can be integrated without restricting the choice of embedding module and metric module.

## 2 Related Work

# 2.1 Metric-based Few-shot Fine-grained Classification

In few-shot learning, metric-based methods have been widely used because of their simplicity and efficiency [18]. Well-established methods in this category include Proto [28], which evaluates the Euclidean distance between a query sample and a class prototype, and Relation [30], which learns a metric. In recent years, feature reconstruction-based approaches have also demonstrated promising results. TDM [14] highlights the information of different channels. BiFRN [40] proposes a self-reconstruction module and a bidirectional reconstruction module to enlarge the inter-class distance and reduce the intra-class distance. BSFA [44] proposes a two-stage framework that incorporates background suppression and foreground alignment to localize foreground objects and mitigate background interference. However, the problems with these methods include insufficient mining of channel information and insufficient capture of the cross-information between support and query samples, hence the features generated by them are still not strong enough for few-shot fine-grained image classification.

Different from the aforementioned methods, our proposed CSCAM mixes channel and spatial cross-attentions to fully leverage the spatial and channel cross-information.

# 2.2 Attention Mechanisms for Few-shot Fine-grained Classification

The objective of attention mechanisms is to highlight important local regions, thereby enhancing the discriminative nature of the reweighted features. In recent years, various attention mechanisms have been explored in few-shot learning. For example, Hou et al. [9] employed spatial cross-attention between support features and query features to reweight key regions of the target. Similarly, Chikontwe et al. [4] utilized spatial cross-attention from the mixedset to the prototype, placing greater emphasis on critical regions and Channel-Spatial Support-Query Cross-Attention for Fine-Grained Few-Shot Image Classification

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia



Figure 3: Diagram of our proposed method. We first use a shared backbone  $F_{\theta}$  to extract globally pooled features, then use a channel-spatial cross-attention module (CSCAM) to refine the features of the query set samples. The query embedding  $Z_q$  and the support embedding  $Z_s$  are fed into CSCAM, which re-weights  $Z_q$  to produce  $\hat{Z}_{qc}$  and  $\hat{Z}_{qs}$  in channel and spatial aspects, respectively. After that, we collaboratively mix the channel and spatial re-weighted query features to obtain  $\hat{Z}_q$ . Finally, we feed  $\hat{Z}_q$  and  $Z_s$  into the metric module for image classification. Notation: way represents the number of classes; *shot* is the number of images in each class;  $B_S$  and  $B_Q$  are the sizes of support sets and query sets, respectively; C represents the number of channels of the features; H, W represent the height and width of the images; h, w represent the height and width of the features; and M is equal to  $h \times w$ .



Figure 4: Diagram of the Channel-Cross Attention Module (CCAM). The initial support embeddings  $Z_s$  and query embeddings  $Z_q$  are fed into CCAM;  $Z_q$  is projected as  $K_c$  and  $V_c$ , and  $Z_s$  as  $Q_c$ . Duplicate  $B_Q$  copies of  $Q_c$  and  $B_S$  copies of  $K_c$  and compute channel attention scores. Then, the *support average*  $S_c$  of the attention scores re-weights query features  $V_c$  to obtain  $\hat{Z}_{qc}$ . Notation:  $B_S$  and  $B_Q$  denote the cardinalities of support sets and query sets, respectively; D is the number of channels; h, w represent the height and width of the feature; M is equal to  $h \times w$ ; and  $f_c^Q$ ,  $f_c^K$ ,  $f_c^V$  are fully-connected (FC) layers for feature projections. Note: The spatial crossattention module (SCAM), with its diagram omitted here, is structurally similar to CCAM, but with feature projections in the channel dimension replaced by  $f_s^Q$ ,  $f_s^K$ ,  $f_s^V$  in the spatial dimension, hence the resulting  $Q_s$ ,  $K_s$ ,  $V_s$ ,  $S_s$ , and  $\hat{Z}_{qs}$ .

generating adaptive reweighted features. However, these two methods only use cross-spatial attentions and are not for fine-grained classification. For few-shot fine-grained image classification, Zhu et al. [47] utilized two CBAM modules to adaptively attend to the discriminative parts from both channel and spatial perspectives. Xu et al. [42] propose two dual branches incorporating both hard and soft attention. However, these two attention methods do not consider the channel and spatial cross-attentions between support and query features simultaneously.

Different from the above methods, we construct and fuse crossattentions from both channel and spatial perspectives. In addition, to fit the characteristics of fine-grained images, we propose a new support averaging method for channel and spatial cross-attentions, which reduces the weight of similar regions from different classes and increases the weight of similar regions within the same class.

#### 3 Method

#### 3.1 Problem Setting

In standard few-shot classification, both the training and test stages consist of multiple episodes. Each episode is composed of randomly sampled C classes, and within each class, there are K support images and U query images. This is referred to as a C-way K-shot episode. In each episode, the model is provided with the K labeled images from each of the C classes and is tasked with correctly classifying the U unlabeled images. The model's performance is evaluated based on its ability to accurately classify the unlabeled images in these episodes. Given a dataset  $\mathcal{D} = \{(x_i, y_i), y_i \in \mathcal{Y}\}$ , where  $\mathcal{Y}$  is the label set. It is divided into three parts, that is,  $\mathcal{D}_{train} =$  $\{(x_i, y_i), y_i \in \mathcal{Y}_{train}\}, \mathcal{D}_{val} = \{(\bar{x}_i, \bar{y}_i), \bar{y}_i \in \mathcal{Y}_{val}\} \text{ and } \mathcal{D}_{test} =$  $\{(\widetilde{x}_i, \widetilde{y}_i), \widetilde{y}_i \in \mathcal{Y}_{test}\}$ , where  $x_i, \overline{x}_i, \widetilde{x}_i$  and  $y_i, \overline{y}_i, \widetilde{y}_i$  are the original image and class label of the *i*<sup>th</sup> image on  $\mathcal{D}_{train}, \mathcal{D}_{val}, \mathcal{D}_{test}$ , respectively. The label space of the training labels  $\mathcal{Y}_{train}$ , validation labels  $\mathcal{Y}_{val}$  and test labels  $\mathcal{Y}_{test}$  are non-overlapping, i.e.,  $\{\mathcal{Y}_{train} \cap \mathcal{Y}_{val}\} = \phi, \{\mathcal{Y}_{train} \cap \mathcal{Y}_{test}\} = \phi, \text{ and } \{\mathcal{Y}_{val} \cap \mathcal{Y}_{test}\} = \phi.$  In few-shot classification, the objective is to improve the performance of *C*-way *K*-shot classification on the test dataset  $\mathcal{D}_{test}$ by leveraging knowledge from the training dataset  $\mathcal{D}_{train}$  and selecting optimal model weights through the validation dataset  $\mathcal{D}_{val}$ . During episodic training, a task  $\mathcal{T}$  is formed by randomly sampling *C* classes from  $\mathcal{D}_{train}$ , with each class having *K* randomly selected labeled (*support*) samples  $S = \{(x_s, y_s)\}_{s=1}^{C \times K}$  and *U* randomly sampled unlabeled (*query*) samples  $Q = \{(x_q, y_q)\}_{q=1}^{C \times U}$ . Similarly, tasks  $\tilde{\mathcal{T}}$  and  $\tilde{\mathcal{T}}$  are defined on  $\mathcal{D}_{val}$  and  $\mathcal{D}_{test}$  for validation and test scenarios, respectively. The training process on  $\mathcal{D}_{train}$  is analogous to the prediction process on  $\mathcal{D}_{test}$ .

# 3.2 Channel-Spatial Cross-Attention Module (CSCAM)

3.2.1 Overview. The diagram of our proposed method including the Channel-Spatial Cross-Attention Module (CSCAM) is shown in Figure 3. CSCAM consists of two attention modules named Channel Cross-Attention Module (CCAM) and Spatial Cross-Attention Module (SCAM). Different from existing attention methods, CSCAM collaborates cross-attentions from both channel and spatial perspectives. To fit for the characteristics of fine-grained images, a support averaging method is proposed on the basis of the two-aspect attentions, with the attention scores further adjusted to enlarge the inter-class distance and reduce the intra-class distance. Specifically, for each query feature, all support features are averaged to capture the relationship between each query feature and all support features, reducing the weight of similar regions from different classes and increasing the weight of similar regions within the same class.

To obtain more discriminative features, we introduce a crossattention mechanism from both spatial and channel perspectives, to re-weight the query features by considering the relevant features between the support features and the query features. Let D be the number of channels of the feature, M be the resolution  $(h \times w)$  of the feature, and  $B_S$  and  $B_Q$  be the amount of data of the support features and query features, respectively. Formally, let  $Z_s \in \mathbb{R}^{B_S \times D \times M}$ and  $Z_q \in \mathbb{R}^{B_Q \times D \times M}$  be the globally pooled features extracted by backbone  $F_{\theta}$ . Then, query embeddings  $Z_q$  and support embeddings  $Z_s$  are further fed to our channel-spatial cross-attention module to generate re-weighted query features. Finally, we feed the reweighted query features  $\hat{Z}_q$  and support features  $Z_s$  into the metric module.

3.2.2 *Channel Cross-Attention Module (CCAM).* Following the work of Vaswani et al. [34], we employ an attention function to re-weight *V* using the similarity between *Q* and *K*:

$$\varphi(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{D}}V).$$
(1)

In our CCAM, as shown in Figure 4, through feature projections using fully-connected (*FC*) layers  $f_c^Q$ ,  $f_c^K$ ,  $f_c^V$  from the channel perspective, the projections of the query embedding  $Z_q$  are denoted by  $K_c$  and  $V_c$  and the projection of the support embedding  $Z_s$  by  $Q_c$ :

$$Q_c = f_c^Q(Z_s), K_c = f_c^K(Z_q), V_c = f_c^V(Z_q).$$
 (2)

Then, we duplicate  $B_Q$  copies of  $Q_c$  and  $B_S$  copies of  $K_c$ , to facilitate the subsequent operation, where the support average

attention score  $S_c$  is obtained by performing the support averaging operation  $A_c$  on the attention scores as:

$$S_c = A_c(Q_c, K_c) = \frac{1}{B_S} \sum_{i=1}^{B_S} \operatorname{softmax}(\frac{Q_c \times (K_c)^T}{\sqrt{D'}}),$$
 (3)

where D' is the number of channels after projection.

The obtained support average attention score  $S_c$  is then used to weight  $V_c$ :

$$\varphi(Q_c, K_c, V_c) = S_c \times V_c = A_c(Q_c, K_c) \times V_c.$$
(4)

*3.2.3 Spatial Cross-Attention Module (SCAM).* The architecture of SCAM (omitted here) is similar to that of CCAM in Figure 4, hence the similarity between the computation of SCAM and that of CCAM in the section above.

In the end, similar to Equation (4), the obtained support average attention score  $S_s$  is used to weight the  $V_s$ :

$$Q_{s} = f_{s}^{Q}(Z_{s}), K_{s} = f_{s}^{K}(Z_{q}), V_{s} = f_{s}^{V}(Z_{q}),$$
(5)

$$S_s = A_s(Q_s, K_s) = \frac{1}{B_S} \sum_{i=1}^{B_S} \operatorname{softmax}(\frac{Q_s \times (K_s)^T}{\sqrt{D'}}), \quad (6)$$

$$\varphi(Q_s, K_s, V_s) = S_s \times V_s = A_s(Q_s, K_s) \times V_s.$$
<sup>(7)</sup>

3.2.4 Integration of CCAM and SCAM. The re-weighted query features obtained in channel  $\hat{Z}_{qc}$  and spatially  $\hat{Z}_{qs}$  are mixed to obtain a more discriminative query feature  $\hat{Z}_q$ . In addition, to prevent the attention from focusing on non-critical areas, which causes the weight of key locations to become extremely small and causes overfitting [7], we retain  $V_c$  and  $V_s$ . This is represented by summing the original query features:

$$\ddot{Z}_{qc} = \varphi(Q_c, K_c, V_c) + V_c,$$

$$\dot{Z}_{qs} = \varphi(Q_s, K_s, V_s) + V_s,$$
(8)

$$\hat{Z}_q = f^O(m_1 \times \hat{Z}_{qc} + m_2 \times \hat{Z}_{qs}) + Z_q, \tag{9}$$

where  $m_1, m_2$  with the initial value of 0.5 can be learnable parameters, representing the weights of the channel and space, and  $f^O$  is a fully-connected (*FC*) layer.

The innovation of CSCAM is to capture the channel and spatial cross-attention between query features and support features simultaneously. Also, to fit for the characteristics of fine-grained images, the support averaging method is proposed to adjust the attention scores from both channel and spatial perspectives. Specifically, the whole support set of the attention scores is averaged to increase the weight of regions with high similarity within the same class, and reduce the weight of regions with high similarity from different classes, hence enlarging the inter-class distance and reducing the intra-class distance to generate discriminative features more suitable for few-shot fine-grained image classification tasks.

#### 3.3 Plug-and-Play with Existing Methods

Our proposed module CSCAM can be readily integrated into existing metric-based few-shot learning models, for example, Proto [28], Relation [30], FRN [38] and TDM [14] (inductive only), using their metric module and loss functions. Here, for illustrative purposes, we use FRN [38] as an example to outline the entire network training process. Table 1: Performance of five-way few-shot classification on the CUB-200-2011 (CUB), FGVC-Aircraft (AIRCRAFT), 102 Flowers (FLOWERS), and Stanford-Cars (CARS) datasets using the ResNet-12 and Conv-4 backbones, respectively.

| ResNet-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aire                                                                                                                                                                                                                                                                                                                                                                                                        | craft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow                                                                                                                                                                                                                                                                                                             | wers                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca                                                                                                                                                                                                                                                                                                                                                                                               | ars                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-shot                                                                                                                                                                                                                                                                                                                                                                                                      | 5-shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-shot                                                                                                                                                                                                                                                                                                           | 5-shot                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-shot                                                                                                                                                                                                                                                                                                                                                                                           | 5-shot                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Proto (NeurIPS'17) [28]†                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $79.64 \pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $91.15 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $86.57 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                            | $93.51 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $75.41 \pm 0.22$                                                                                                                                                                                                                                                                                                 | $89.46 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                          | $82.29 \pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                 | $93.11 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relation (CVPR'18) [30] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $63.94 \pm 0.92$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $77.87 \pm 0.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $64.24 \pm 1.03$                                                                                                                                                                                                                                                                                                                                                                                            | $77.56 \pm 0.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $65.93 \pm 1.00$                                                                                                                                                                                                                                                                                                 | $85.10 \pm 0.63$                                                                                                                                                                                                                                                                                                                                                                                                                          | $65.77 \pm 0.99$                                                                                                                                                                                                                                                                                                                                                                                 | $84.29 \pm 0.60$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Baseline++ (ICLR'19) [3] ◊                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $64.62\pm0.98$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $81.15\pm0.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $74.51\pm0.90$                                                                                                                                                                                                                                                                                                                                                                                              | $88.06 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $69.03 \pm 0.92$                                                                                                                                                                                                                                                                                                 | $85.72\pm0.63$                                                                                                                                                                                                                                                                                                                                                                                                                            | $67.92 \pm 0.92$                                                                                                                                                                                                                                                                                                                                                                                 | $84.17\pm0.58$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DeepEMD (CVPR'20) [46]◊                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $71.11 \pm 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $86.30 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $69.86 \pm 0.30$                                                                                                                                                                                                                                                                                                                                                                                            | $85.17 \pm 0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $70.00 \pm 0.35$                                                                                                                                                                                                                                                                                                 | $83.63 \pm 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                          | $73.30 \pm 0.29$                                                                                                                                                                                                                                                                                                                                                                                 | $88.37 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VFD (ICCV'21) [41] ◊                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $79.12 \pm 0.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $91.48 \pm 0.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $76.88 \pm 0.85$                                                                                                                                                                                                                                                                                                                                                                                            | $88.77 \pm 0.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $76.20 \pm 0.92$                                                                                                                                                                                                                                                                                                 | $89.90 \pm 0.53$                                                                                                                                                                                                                                                                                                                                                                                                                          | $77.52 \pm 0.85$                                                                                                                                                                                                                                                                                                                                                                                 | $90.76 \pm 0.46$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RENet ( <i>ICCV'21</i> ) [11] ◊                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $79.49 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $91.11 \pm 0.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $82.04 \pm 0.41$                                                                                                                                                                                                                                                                                                                                                                                            | $90.50\pm0.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $79.91 \pm 0.42$                                                                                                                                                                                                                                                                                                 | $92.33 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                          | $79.66 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                 | $91.95 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MixFSL ( <i>ICCV'21</i> ) [1] ◊                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $67.87 \pm 0.94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $82.18\pm0.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $60.55 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                            | $77.57 \pm 0.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $72.60 \pm 0.91$                                                                                                                                                                                                                                                                                                 | $86.52 \pm 0.65$                                                                                                                                                                                                                                                                                                                                                                                                                          | $58.15 \pm 0.87$                                                                                                                                                                                                                                                                                                                                                                                 | $80.54\pm0.63$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FRN (CVPR'21) [38] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $83.11\pm0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $92.49\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $87.53\pm0.18$                                                                                                                                                                                                                                                                                                                                                                                              | $93.98 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $81.07\pm0.20$                                                                                                                                                                                                                                                                                                   | $92.52\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                            | $85.91\pm0.18$                                                                                                                                                                                                                                                                                                                                                                                   | $94.52\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CAD (CVPR'22) [4] *                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $82.95\pm0.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $90.80\pm0.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AGPF (PR'22) [31] *                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $78.73 \pm 0.84$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $89.77 \pm 0.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                         | $85.34 \pm 0.74$                                                                                                                                                                                                                                                                                                                                                                                 | $94.79 \pm 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HelixFormer (MM'22) [45] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $81.66\pm0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $91.83 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $75.79 \pm 0.23$                                                                                                                                                                                                                                                                                                                                                                                            | $83.03\pm0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $63.30\pm0.26$                                                                                                                                                                                                                                                                                                   | $66.96 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                          | $79.40 \pm 0.43$                                                                                                                                                                                                                                                                                                                                                                                 | $92.26 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TDM (CVPR'22) [14] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $82.41 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $92.37\pm0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $87.96 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                            | $94.20\pm0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $82.41 \pm 0.19$                                                                                                                                                                                                                                                                                                 | $93.42\pm0.10$                                                                                                                                                                                                                                                                                                                                                                                                                            | $86.77 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                 | $95.94\pm0.07$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BSFA (IEEE TCSVT'23) [44] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $82.27\pm0.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $90.76 \pm 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $87.85 \pm 0.35$                                                                                                                                                                                                                                                                                                                                                                                            | $94.93\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $74.48 \pm 0.54$                                                                                                                                                                                                                                                                                                 | $86.05\pm0.36$                                                                                                                                                                                                                                                                                                                                                                                                                            | 88.93 ± 0.38                                                                                                                                                                                                                                                                                                                                                                                     | $95.20\pm0.20$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IDEAL-clean (TPAMI'23) [2] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $77.56 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $88.87 \pm 0.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $61.37 \pm 0.92$                                                                                                                                                                                                                                                                                                                                                                                            | $82.51\pm0.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $74.39 \pm 0.93$                                                                                                                                                                                                                                                                                                 | $87.29 \pm 0.61$                                                                                                                                                                                                                                                                                                                                                                                                                          | $74.02\pm0.89$                                                                                                                                                                                                                                                                                                                                                                                   | $89.98 \pm 0.50$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BiFRN (AAAI'23) [40] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $83.08 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $93.33 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $86.88 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                            | $93.74\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $80.62\pm0.20$                                                                                                                                                                                                                                                                                                   | $92.54\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                            | $87.98 \pm 0.16$                                                                                                                                                                                                                                                                                                                                                                                 | 96.66 ± 0.06                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C2-Net (AAAI'24) [21] †                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $83.37 \pm 0.42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $92.20 \pm 0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $87.98 \pm 0.39$                                                                                                                                                                                                                                                                                                                                                                                            | $93.96\pm0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $80.86\pm0.46$                                                                                                                                                                                                                                                                                                   | $91.54 \pm 0.27$                                                                                                                                                                                                                                                                                                                                                                                                                          | $84.42\pm0.43$                                                                                                                                                                                                                                                                                                                                                                                   | $92.72\pm0.23$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Proto+CSCAM (Ours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $81.69 \pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $91.01 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $87.45 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                            | $93.68 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $80.36 \pm 0.20$                                                                                                                                                                                                                                                                                                 | $91.11 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                          | $85.73 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                 | $93.26 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relation+CSCAM (Ours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $71.14 \pm 0.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $85.15\pm0.58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $67.72 \pm 1.05$                                                                                                                                                                                                                                                                                                                                                                                            | $78.24 \pm 0.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $69.62 \pm 0.96$                                                                                                                                                                                                                                                                                                 | $85.17\pm0.66$                                                                                                                                                                                                                                                                                                                                                                                                                            | $70.08 \pm 0.99$                                                                                                                                                                                                                                                                                                                                                                                 | $85.63 \pm 0.64$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FRN+CSCAM (Ours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84.00 ± 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.52 ± 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.01 ± 0.17                                                                                                                                                                                                                                                                                                                                                                                                | 95.06 ± 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $82.35 \pm 0.19$                                                                                                                                                                                                                                                                                                 | 93.87 ± 0.10                                                                                                                                                                                                                                                                                                                                                                                                                              | $86.24\pm0.18$                                                                                                                                                                                                                                                                                                                                                                                   | $95.55 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TDM+CSCAM (Ours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $83.34 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $92.98 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $87.84 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                            | $9437 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $82.50 \pm 0.19$                                                                                                                                                                                                                                                                                                 | $9357 \pm 010$                                                                                                                                                                                                                                                                                                                                                                                                                            | $8686 \pm 017$                                                                                                                                                                                                                                                                                                                                                                                   | $95.63 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                             | ) HO/ ± 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  | , 0107 ± 0110                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.00 ± 0.17                                                                                                                                                                                                                                                                                                                                                                                     | JJ.05 ± 0.00                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conv-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aire                                                                                                                                                                                                                                                                                                                                                                                                        | craft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flox                                                                                                                                                                                                                                                                                                             | wers                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca                                                                                                                                                                                                                                                                                                                                                                                               | urs                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Conv-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UB<br>5-shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Airo                                                                                                                                                                                                                                                                                                                                                                                                        | craft<br>5-shot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flow<br>1-shot                                                                                                                                                                                                                                                                                                   | vers<br>5-shot                                                                                                                                                                                                                                                                                                                                                                                                                            | Ca<br>1-shot                                                                                                                                                                                                                                                                                                                                                                                     | ars<br>5-shot                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conv-4<br>Proto (NeurIPS'17) [28] †                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Ct$ $1-shot$ $61.82 \pm 0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB           5-shot           83.37 ± 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\text{Airc}}{1-shot}$ 50.90 ± 0.22                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\text{praft}}{5\text{-shot}}$ 80.65 ± 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow $1-shot$ 64.23 $\pm$ 0.23                                                                                                                                                                                                                                                                                   | $\frac{\text{vers}}{5\text{-shot}}$ 84.94 ± 0.16                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{Ca}}{1-\text{shot}}$ $48.42 \pm 0.22$                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{5-shot}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{5-shot}{83.37 \pm 0.15}$ 77.87 ± 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Airo<br>1-shot<br>$50.90 \pm 0.22$<br>$61.73 \pm 0.98$                                                                                                                                                                                                                                                                                                                                                      | $\frac{\text{craft}}{5\text{-shot}}$ 80.65 ± 0.15 75.96 ± 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$                                                                                                                                                                                                                                                           | $\frac{\text{vers}}{5\text{-shot}}$ 84.94 ± 0.16 83.91 ± 0.63                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{5-shot}$ $\frac{5-shot}{71.38 \pm 0.18}$ $68.52 \pm 0.78$                                                                                                                                                                                                                                                                                                                                                                    |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] ◊                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} CU\\\hline 1-shot\\ 61.82 \pm 0.23\\ 63.94 \pm 0.92\\ 62.36 \pm 0.84 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                         | $UB \\ \hline 5-shot \\ 83.37 \pm 0.15 \\ 77.87 \pm 0.64 \\ 79.08 \pm 0.61 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{Airc}\\\hline\\\hline\\50.90 \pm 0.22\\61.73 \pm 0.98\\58.38 \pm 0.83\end{array}$                                                                                                                                                                                                                                                                                                   | $\frac{5-shot}{80.65 \pm 0.15}$ $\frac{80.65 \pm 0.15}{75.96 \pm 0.72}$ $\frac{77.62 \pm 0.60}{77.62 \pm 0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$<br>$70.54 \pm 0.84$                                                                                                                                                                                                                                       | $\frac{5-shot}{84.94 \pm 0.16}$ 84.94 ± 0.16 83.91 ± 0.63 86.63 ± 0.58                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{5-shot}{71.38 \pm 0.18}$ $\frac{5-shot}{68.52 \pm 0.78}$ $\frac{68.52 \pm 0.78}{68.20 \pm 0.72}$                                                                                                                                                                                                                                                                                                                                |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] ◊<br>DN4 (CVPR'19) [15] *                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \hline \\ \hline 1-shot \\ 61.82 \pm 0.23 \\ 63.94 \pm 0.92 \\ 62.36 \pm 0.84 \\ 57.45 \pm 0.89 \end{array}$                                                                                                                                                                                                                                                                                                                                                                              | JB           5-shot           83.37 ± 0.15           77.87 ± 0.64           79.08 ± 0.61           84.41 ± 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{Aire} \\ \hline 1\text{-shot} \\ \hline 50.90 \pm 0.22 \\ 61.73 \pm 0.98 \\ 58.38 \pm 0.83 \\ 68.41 \pm 0.91 \end{array}$                                                                                                                                                                                                                                                           | $\frac{5-shot}{80.65 \pm 0.15}$ $\frac{5-shot}{75.96 \pm 0.72}$ $\frac{77.62 \pm 0.60}{87.48 \pm 0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$<br>$70.54 \pm 0.84$<br>$70.44 \pm 0.95$                                                                                                                                                                                                                   | $\frac{5-shot}{84.94 \pm 0.16}$ 84.94 ± 0.16 83.91 ± 0.63 86.63 ± 0.58 89.45 ± 0.52                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \hline \hline \\ $                                                                                                                                                                                                                                                                             | $\frac{5-shot}{71.38 \pm 0.18}$ $\frac{5-shot}{68.52 \pm 0.78}$ $\frac{68.20 \pm 0.72}{87.47 \pm 0.47}$                                                                                                                                                                                                                                                                                                                                |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3]<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] <                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} Ct\\ \hline 1-shot\\ 61.82 \pm 0.23\\ 63.94 \pm 0.92\\ 62.36 \pm 0.84\\ 57.45 \pm 0.89\\ 71.57 \pm 0.92 \end{array}$                                                                                                                                                                                                                                                                                                                                                                      | JB           5-shot           83.37 ± 0.15           77.87 ± 0.64           79.08 ± 0.61           84.41 ± 0.58           83.51 ± 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{Aire}\\\hline\\ 1\text{-shot}\\\hline\\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ \end{array}$                                                                                                                                                                                                                                           | $\begin{array}{r} \text{sraft} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$<br>$70.54 \pm 0.84$<br>$70.44 \pm 0.95$<br>$67.71 \pm 0.92$                                                                                                                                                                                               | state         010           vers         5-shot           84.94 ± 0.16         83.91 ± 0.63           86.63 ± 0.58         89.45 ± 0.52           84.58 ± 0.70         84.58                                                                                                                                                                                                                                                              | $\begin{array}{r} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\frac{5-shot}{71.38 \pm 0.18}$ $\frac{5-shot}{68.52 \pm 0.78}$ $\frac{68.20 \pm 0.72}{87.47 \pm 0.47}$ $\frac{60.77 \pm 0.75}{0.75}$                                                                                                                                                                                                                                                                                                  |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3]<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27]<br>BSNet (D&C) (IEEE TIP'20) [17] *                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} Ct\\ \hline 1-shot\\ \hline 61.82\pm0.23\\ \hline 63.94\pm0.92\\ \hline 62.36\pm0.84\\ \hline 57.45\pm0.89\\ \hline 71.57\pm0.92\\ \hline 62.84\pm0.95\\ \end{array}$                                                                                                                                                                                                                                                                                                                     | JB           5-shot           83.37 ± 0.15           77.87 ± 0.64           79.08 ± 0.61           84.41 ± 0.58           83.51 ± 0.60           85.39 ± 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{Aire}\\\hline\\ 1\text{-shot}\\\hline\\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ \end{array}$                                                                                                                                                                                                                          | $\begin{array}{r} \text{sraft} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$                                                                                                                                                                                            | state         010           vers         5-shot           84.94 ± 0.16         83.91 ± 0.63           86.63 ± 0.58         89.45 ± 0.52           84.58 ± 0.70         80.42 ± 0.75                                                                                                                                                                                                                                                       | $\begin{array}{r} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.63\\ \hline \\ 1138 \pm 0.18\\ \hline \\ 68.52 \pm 0.78\\ 68.20 \pm 0.72\\ 87.47 \pm 0.47\\ \hline \\ 60.77 \pm 0.75\\ 86.88 \pm 0.50\\ \end{array}$                                                                                                                                                                                                                                                      |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3]<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27]<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *                                                                                                                                                                                                                                                                                    | $\begin{array}{r} Ct\\ \hline 1-shot\\ \hline 61.82\pm0.23\\ \hline 63.94\pm0.92\\ \hline 62.36\pm0.84\\ \hline 57.45\pm0.89\\ \hline 71.57\pm0.92\\ \hline 62.84\pm0.95\\ \hline 66.29\pm0.56\end{array}$                                                                                                                                                                                                                                                                                                  | JB           5-shot           83.37 ± 0.15           77.87 ± 0.64           79.08 ± 0.61           84.41 ± 0.58           83.51 ± 0.60           85.39 ± 0.56           80.34 ± 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{Aire}\\\hline\\ \hline 1-shot\\ \hline 50.90\pm0.22\\ 61.73\pm0.98\\ \hline 58.38\pm0.83\\ 68.41\pm0.91\\ 66.30\pm0.87\\ 62.86\pm0.96\\ \hline 75.69\pm0.54\\ \end{array}$                                                                                                                                                                                                          | $\begin{array}{r} 5.80 \pm 0.03 \\ \hline \\ 5.80 \\ \hline \\ 80.65 \pm 0.15 \\ 75.96 \pm 0.72 \\ 77.62 \pm 0.60 \\ 87.48 \pm 0.49 \\ 79.00 \pm 0.61 \\ 83.12 \pm 0.68 \\ 86.23 \pm 0.31 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$<br>$70.54 \pm 0.84$<br>$70.44 \pm 0.95$<br>$67.71 \pm 0.92$<br>$66.60 \pm 1.04$                                                                                                                                                                           | $\frac{5-shot}{84.94 \pm 0.16}$ $\frac{5-shot}{83.91 \pm 0.63}$ $86.63 \pm 0.58$ $89.45 \pm 0.52$ $84.58 \pm 0.70$ $80.42 \pm 0.75$                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ 1138 \pm 0.18 \\ \hline \\ 68.52 \pm 0.78 \\ \hline \\ 68.20 \pm 0.72 \\ \hline \\ 87.47 \pm 0.47 \\ \hline \\ 60.77 \pm 0.75 \\ \hline \\ 86.88 \pm 0.50 \\ \hline \\ 82.80 \pm 0.28 \end{array}$                                                                                                                                                                                        |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$                                                                                                                                                                                                                                                   | $\begin{array}{r} Ct\\ \hline 1-shot\\ \hline 61.82\pm0.23\\ \hline 63.94\pm0.92\\ \hline 62.36\pm0.84\\ \hline 57.45\pm0.89\\ \hline 71.57\pm0.92\\ \hline 62.84\pm0.95\\ \hline 66.29\pm0.56\\ \hline 53.61\pm0.88\\ \end{array}$                                                                                                                                                                                                                                                                         | JB           5-shot           83.37 ± 0.15           77.87 ± 0.64           79.08 ± 0.61           84.41 ± 0.58           83.51 ± 0.60           85.39 ± 0.56           80.34 ± 0.30           73.24 ± 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{Airc}\\\hline\\ 1\text{-shot}\\\hline\\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ \end{array}$                                                                                                                                                                                        | $\begin{array}{r} \text{stat} = 0.03\\ \text{stat} = 0.03\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$                                                                                                                                                                       | $\begin{array}{r} \text{vers} \\ \hline \\ \hline \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \hline \\ 85.10 \pm 0.62 \end{array}$                                                                                                                                                                                                      | $\begin{array}{r} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ \hline \\ 1138 \pm 0.18 \\ \hline \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ \hline \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \end{array}$                                                                                                                                                                                                    |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †                                                                                                                                                                                                                           | $\begin{array}{r} Ct\\ \hline 1-shot\\ \hline 61.82 \pm 0.23\\ \hline 63.94 \pm 0.92\\ \hline 62.36 \pm 0.84\\ \hline 57.45 \pm 0.89\\ \hline 71.57 \pm 0.92\\ \hline 62.84 \pm 0.95\\ \hline 66.29 \pm 0.56\\ \hline 53.61 \pm 0.88\\ \hline 73.46 \pm 0.21\\ \end{array}$                                                                                                                                                                                                                                 | $\begin{tabular}{ c c c c c } \hline $5-shot$\\\hline\hline $5-shot$\\\hline\hline $83.37 \pm 0.15$\\\hline\hline $77.87 \pm 0.64$\\\hline\hline $79.08 \pm 0.61$\\\hline\hline $84.41 \pm 0.58$\\\hline\hline $83.51 \pm 0.60$\\\hline\hline $85.39 \pm 0.56$\\\hline\hline $80.34 \pm 0.30$\\\hline\hline $73.24 \pm 0.75$\\\hline\hline $88.13 \pm 0.13$\\\hlineend{tabular}$                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{Airc}\\\hline\\ 1\text{-shot}\\\hline\\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ 69.29 \pm 0.22\\ \end{array}$                                                                                                                                                                       | $\begin{array}{r} \text{stat} = 0.03\\ \text{stat} = 0.03\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$                                                                                                                                                      | $\begin{array}{r} \text{vers} \\ \hline \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \end{array}$                                                                                                                                                                                                     | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ \hline \\ 1138 \pm 0.18 \\ \hline \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \end{array}$                                                                                                                                                                                            |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †                                                                                                                                                                                                   | $\begin{array}{r} Ct\\ \hline 1-shot\\ \hline 61.82 \pm 0.23\\ \hline 63.94 \pm 0.92\\ \hline 62.36 \pm 0.84\\ \hline 57.45 \pm 0.89\\ \hline 71.57 \pm 0.92\\ \hline 62.84 \pm 0.95\\ \hline 66.29 \pm 0.56\\ \hline 53.61 \pm 0.88\\ \hline 73.46 \pm 0.21\\ \hline 74.39 \pm 0.21\\ \end{array}$                                                                                                                                                                                                         | $\begin{tabular}{ c c c c c } \hline $-shot$\\\hline\hline\\ \hline $3.37 \pm 0.15$\\\hline\\ $77.87 \pm 0.64$\\\hline\\ $79.08 \pm 0.61$\\\\\hline\\ $8.41 \pm 0.58$\\\\\hline\\ $8.51 \pm 0.60$\\\\\hline\\ $8.539 \pm 0.56$\\\\\hline\\ $8.034 \pm 0.30$\\\hline\\ $73.24 \pm 0.75$\\\\\hline\\ $8.13 \pm 0.13$\\\\\hline\\ $8.89 \pm 0.13$\\\hlineend{tabular}$                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{Airc}\\\hline\\ 1\text{-shot}\\\hline\\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ 69.29 \pm 0.22\\ 69.90 \pm 0.23\\ \end{array}$                                                                                                                                                      | $\begin{array}{r} \text{pract} = 0.03 \\ \hline \text{pract} = 0.03 \\ \hline$ | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$                                                                                                                                     | $\begin{array}{r} \text{vers} \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \end{array}$                                                                                                                                                                                                | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                         |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *                                                                                                                                                                  | $\begin{array}{r} & Ct\\ \hline 1-shot\\ \hline 61.82 \pm 0.23\\ 63.94 \pm 0.92\\ 62.36 \pm 0.84\\ 57.45 \pm 0.89\\ 71.57 \pm 0.92\\ 62.84 \pm 0.95\\ 66.29 \pm 0.56\\ 53.61 \pm 0.88\\ 73.46 \pm 0.21\\ 74.39 \pm 0.21\\ 72.89 \pm 0.50\\ \end{array}$                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c } \hline $-shot$ \\ \hline $5-shot$ \\ \hline $83.37 \pm 0.15$ \\ $77.87 \pm 0.64$ \\ $79.08 \pm 0.61$ \\ \hline $84.41 \pm 0.58$ \\ \hline $83.51 \pm 0.60$ \\ \hline $85.39 \pm 0.56$ \\ \hline $80.34 \pm 0.30$ \\ \hline $73.24 \pm 0.75$ \\ \hline $88.13 \pm 0.13$ \\ \hline $8.89 \pm 0.13$ \\ \hline $86.60 \pm 0.31$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{Airc}\\\hline\\1-shot\\50.90\pm0.22\\61.73\pm0.98\\58.38\pm0.83\\68.41\pm0.91\\66.30\pm0.87\\62.86\pm0.96\\75.69\pm0.54\\44.89\pm0.75\\69.29\pm0.22\\69.90\pm0.23\\\end{array}$                                                                                                                                                                                                     | $\begin{array}{r} 5.85 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$                                                                                                                                     | $\begin{array}{r} \text{vers} \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \end{array}$                                                                                                                                                                                   | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                         |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *                                                                                                                                         | $\begin{array}{r} & Ct\\ \hline 1-shot\\ \hline 61.82 \pm 0.23\\ \hline 63.94 \pm 0.92\\ \hline 62.36 \pm 0.84\\ \hline 57.45 \pm 0.89\\ \hline 71.57 \pm 0.92\\ \hline 62.84 \pm 0.95\\ \hline 66.29 \pm 0.56\\ \hline 53.61 \pm 0.88\\ \hline 73.46 \pm 0.21\\ \hline 74.39 \pm 0.21\\ \hline 72.89 \pm 0.50\\ \hline 59.71 \pm 1.46\\ \end{array}$                                                                                                                                                       | $\begin{tabular}{ c c c c } \hline $5-shot$\\\hline\hline\\ \hline $3.37 \pm 0.15$\\\hline\\ $77.87 \pm 0.64$\\\hline\\ $79.08 \pm 0.61$\\\\\hline\\ $8.41 \pm 0.58$\\\\\hline\\ $8.351 \pm 0.60$\\\\\hline\\ $8.39 \pm 0.56$\\\\\hline\\ $8.034 \pm 0.30$\\\hline\\ $73.24 \pm 0.75$\\\\\hline\\ $8.13 \pm 0.13$\\\\\hline\\ $8.89 \pm 0.13$\\\\\hline\\ $8.660 \pm 0.31$\\\hline\\ $73.09 \pm 0.73$\\\hline\end{tabular}$                                                                                                                                                                                                                                                    | $\begin{array}{r} \text{Airc}\\\hline\\ 1\text{-shot}\\\hline\\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ 69.29 \pm 0.22\\ 69.90 \pm 0.23\\ -\\ 57.55 \pm 1.37\\ \end{array}$                                                                                                                                 | $\begin{array}{r} 5.65 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$ $-$                                                                                                                                 | $\begin{array}{r} \text{vers} \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \\ \hline \\ \\ \end{array}$                                                                                                                                                                | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                             | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \end{array}$                                                                                                                      |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *<br>BSFA (IEEE TCSVT'23) [44] †                                                                                                          | $\begin{array}{r} $ 1-shot$ \\ \hline $ 1-shot$ \\ \hline $ 61.82 \pm 0.23$ \\ \hline $ 63.94 \pm 0.92$ \\ \hline $ 62.36 \pm 0.84$ \\ \hline $ 57.45 \pm 0.89$ \\ \hline $ 7.45 \pm 0.89$ \\ \hline $ 7.157 \pm 0.92$ \\ \hline $ 62.29 \pm 0.56$ \\ \hline $ 53.61 \pm 0.88$ \\ \hline $ 73.46 \pm 0.21$ \\ \hline $ 74.39 \pm 0.21$ \\ \hline $ 72.89 \pm 0.50$ \\ \hline $ 59.71 \pm 1.46$ \\ \hline $ 68.16 \pm 0.52$ \\ \end{array}$                                                                  | $\begin{tabular}{ c c c c } \hline $-shot$ \\ \hline $5-shot$ \\ \hline $7.87 \pm 0.64$ \\ 79.08 \pm 0.61$ \\ 84.41 \pm 0.58$ \\ 83.51 \pm 0.60$ \\ 85.39 \pm 0.56$ \\ 80.34 \pm 0.30$ \\ 73.24 \pm 0.75$ \\ 88.13 \pm 0.13$ \\ 88.89 \pm 0.13$ \\ 88.89 \pm 0.13$ \\ 86.60 \pm 0.31$ \\ 73.09 \pm 0.73$ \\ 82.41 \pm 0.35$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} \text{Airc}\\\hline\\\hline\\1-shot\\\hline\\50.90\pm0.22\\61.73\pm0.98\\58.38\pm0.83\\68.41\pm0.91\\66.30\pm0.87\\62.86\pm0.96\\75.69\pm0.54\\44.89\pm0.75\\69.29\pm0.22\\69.90\pm0.23\\\hline\\-\\57.55\pm1.37\\61.17\pm0.49\end{array}$                                                                                                                                                | $\begin{array}{r} 5.85 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$ $-$ $66.84 \pm 0.59$                                                                                                                | $\begin{array}{r} \text{vers} \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                           | $\begin{array}{r} \hline C_{1}\\ \hline C_{2}\\ \hline \\ \hline$                                                                                                                                                                                                                                                | $\begin{array}{r} 5.65 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \hline \\ - \\ 67.52 \pm 0.44 \end{array}$                                                                                        |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *<br>BSFA (IEEE TCSVT'23) [44] †<br>IDEAL-clean (TPAMI'23) [2] †                                                                          | $\begin{array}{r} $ 1-shot$ \\ \hline $ 1-shot$ \\ \hline $ 61.82 \pm 0.23$ \\ \hline $ 63.94 \pm 0.92$ \\ \hline $ 62.36 \pm 0.84$ \\ \hline $ 57.45 \pm 0.89$ \\ \hline $ 71.57 \pm 0.92$ \\ \hline $ 62.29 \pm 0.56$ \\ \hline $ 53.61 \pm 0.88$ \\ \hline $ 73.46 \pm 0.21$ \\ \hline $ 74.39 \pm 0.21$ \\ \hline $ 72.89 \pm 0.50$ \\ \hline $ 59.71 \pm 1.46$ \\ \hline $ 68.16 \pm 0.52$ \\ \hline $ 69.93 \pm 0.89$ \\ \hline \end{array}$                                                          | $\begin{tabular}{ c c c c } \hline $5-shot$\\\hline\hline\\ \hline $5-shot$\\\hline\\ $77.87 \pm 0.64$\\\hline\\ $79.08 \pm 0.61$\\\hline\\ $84.41 \pm 0.58$\\\hline\\ $83.51 \pm 0.60$\\\hline\\ $85.39 \pm 0.56$\\\hline\\ $80.34 \pm 0.30$\\\hline\\ $73.24 \pm 0.75$\\\hline\\ $88.13 \pm 0.13$\\\hline\\ $88.89 \pm 0.13$\\\hline\\ $88.89 \pm 0.13$\\\hline\\ $86.60 \pm 0.31$\\\hline\\ $73.09 \pm 0.73$\\\hline\\ $82.41 \pm 0.35$\\\hline\\ $81.67 \pm 0.69$\\\hline\end{tabular}$                                                                                                                                                                                    | $\begin{array}{c} \text{Airc}\\ \hline \\ \hline 1-shot\\ \hline \\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ 69.29 \pm 0.22\\ 69.90 \pm 0.23\\ \hline \\ 57.55 \pm 1.37\\ 61.17 \pm 0.49\\ 52.56 \pm 0.83\\ \end{array}$                                                                                     | $\begin{array}{r} 5.85 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$ $-$ $-$ $66.84 \pm 0.59$ $72.25 \pm 0.90$                                                                                           | $\begin{array}{r} 5.037 \pm 0.137 \\ \hline \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                             | $\begin{array}{c} \hline C_{1}\\ \hline C_{2}\\ \hline \\ \hline$                                                                                                                                                                                                                                                | $\begin{array}{r} 5.65 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \hline \\ - \\ 67.52 \pm 0.44 \\ 70.28 \pm 0.69 \\ \end{array}$                                                                   |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *<br>BSFA (IEEE TCSVT'23) [44] †<br>IDEAL-clean (TPAMI'23) [2] †<br>BiFRN (AAAI'23) [40] †                        | $\begin{array}{r} 1 - shot \\ \hline 1 - shot \\ 61.82 \pm 0.23 \\ 63.94 \pm 0.92 \\ 62.36 \pm 0.84 \\ 57.45 \pm 0.89 \\ 71.57 \pm 0.92 \\ 62.84 \pm 0.95 \\ 66.29 \pm 0.56 \\ 53.61 \pm 0.88 \\ 73.46 \pm 0.21 \\ 74.39 \pm 0.21 \\ 72.89 \pm 0.50 \\ 59.71 \pm 1.46 \\ 68.16 \pm 0.52 \\ 69.93 \pm 0.89 \\ 76.52 \pm 0.21 \end{array}$                                                                                                                                                                    | $\begin{tabular}{ c c c c } \hline $5-shot$\\\hline\hline\\ \hline $3.37 \pm 0.15$\\\hline\\ $7.87 \pm 0.64$\\\hline\\ $7.87 \pm 0.64$\\\hline\\ $7.08 \pm 0.15$\\\hline\\ $8.41 \pm 0.58$\\\hline\\ $8.539 \pm 0.56$\\\hline\\ $8.39 \pm 0.56$\\\hline\\ $8.034 \pm 0.30$\\\hline\\ $7.24 \pm 0.75$\\\hline\\ $8.13 \pm 0.13$\\\hline\\ $8.89 \pm 0.13$\\\hline\\ $8.167 \pm 0.69$\\\hline\\ $8.75 \pm 0.11$\\\hline \end{tabular}$ | $\begin{array}{r} \text{Airc}\\\hline\\1-\text{shot}\\\hline\\50.90\pm0.22\\61.73\pm0.98\\58.38\pm0.83\\68.41\pm0.91\\66.30\pm0.87\\62.86\pm0.96\\75.69\pm0.54\\44.89\pm0.75\\69.29\pm0.22\\69.90\pm0.23\\\hline\\57.55\pm1.37\\61.17\pm0.49\\52.56\pm0.83\\75.72\pm0.21\\\hline\end{array}$                                                                                                                | $\begin{array}{r} 5.86 \pm 0.03 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$<br>$70.54 \pm 0.84$<br>$70.44 \pm 0.95$<br>$67.71 \pm 0.92$<br>$66.60 \pm 1.04$<br>-<br>$68.01 \pm 0.90$<br>$73.60 \pm 0.22$<br>$70.66 \pm 0.24$<br>-<br>$66.84 \pm 0.59$<br>$72.25 \pm 0.90$<br>$71.49 \pm 0.23$                                         | $\begin{array}{r} 5.005 \pm 0.103 \\ \hline \\ \hline \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \\ \\ \hline \\ \\ 79.34 \pm 0.47 \\ 86.43 \pm 0.70 \\ 85.02 \pm 0.16 \end{array}$                                                                                            | $\begin{array}{r} \hline Circle \\ \hline Circle \\ \hline Circle \\ \hline \\ $                                                                                                                                                                                                                                 | $\begin{array}{r} 5.63 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \hline \\ 67.52 \pm 0.44 \\ 70.28 \pm 0.69 \\ 87.39 \pm 0.12 \\ \end{array}$                                                      |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *<br>BSFA (IEEE TCSVT'23) [44] †<br>IDEAL-clean (TPAMI'23) [2] †<br>BiFRN (AAAI'23) [40] †<br><b>Proto+CSCAM (Ours)</b>                   | $\begin{array}{r} $1$-shot$\\\hline $1$-shot$\\\hline $61.82 \pm 0.23$\\\hline $63.94 \pm 0.92$\\\hline $62.36 \pm 0.84$\\\hline $57.45 \pm 0.89$\\\hline $71.57 \pm 0.92$\\\hline $62.94 \pm 0.95$\\\hline $66.29 \pm 0.56$\\\hline $53.61 \pm 0.88$\\\hline $73.46 \pm 0.21$\\\hline $74.39 \pm 0.21$\\\hline $72.89 \pm 0.50$\\\hline $59.71 \pm 1.46$\\\hline $68.16 \pm 0.52$\\\hline $69.93 \pm 0.89$\\\hline $76.52 \pm 0.21$\\\hline $72.33 \pm 0.21$\\\hline \end{array}$                          | $\begin{tabular}{ c c c c } \hline $5-shot$\\\hline\hline\\ \hline $3.37 \pm 0.15$\\\hline\\ $77.87 \pm 0.64$\\\hline\\ $79.08 \pm 0.61$\\\\\hline\\ $84.41 \pm 0.58$\\\\\hline\\ $8.539 \pm 0.56$\\\\\hline\\ $8.39 \pm 0.56$\\\\\hline\\ $8.39 \pm 0.30$\\\hline\\ $73.24 \pm 0.75$\\\\\hline\\ $8.13 \pm 0.13$\\\\\hline\\ $8.89 \pm 0.13$\\\\\hline\\ $8.89 \pm 0.13$\\\\\hline\\ $8.89 \pm 0.13$\\\\\hline\\ $8.60 \pm 0.31$\\\hline\\ $7.10 \pm 0.73$\\\\\hline\\ $8.241 \pm 0.35$\\\\\hline\\ $81.67 \pm 0.69$\\\\\hline\\ $89.75 \pm 0.11$\\\hline\\\hline\\ $87.18 \pm 0.13$\\\hline$                                                                                 | $\begin{array}{r} \text{Airc}\\ \hline \\ \hline 1-shot\\ \hline \\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ 69.29 \pm 0.22\\ 69.90 \pm 0.23\\ \hline \\ 57.55 \pm 1.37\\ 61.17 \pm 0.49\\ 52.56 \pm 0.83\\ 75.72 \pm 0.21\\ 69.96 \pm 0.23\\ \end{array}$                                                   | $\begin{array}{r} 5.861 \pm 0.030 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$ $-$ $66.84 \pm 0.59$ $72.25 \pm 0.90$ $71.49 \pm 0.23$ $71.20 \pm 0.23$                                                             | $\begin{array}{r} s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.s.$                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} \hline C_{12} \\ \hline C_{13} \\ \hline C_{14} \\ \hline 1-shot \\ \hline 48.42 \pm 0.22 \\ 46.04 \pm 0.91 \\ 46.82 \pm 0.76 \\ 34.12 \pm 0.68 \\ 48.16 \pm 0.86 \\ 40.89 \pm 0.77 \\ 66.11 \pm 0.54 \\ 44.56 \pm 0.80 \\ 64.03 \pm 0.22 \\ 65.89 \pm 0.22 \\ 70.21 \pm 0.50 \\ \hline - \\ 49.98 \pm 0.48 \\ 52.64 \pm 0.91 \\ 72.24 \pm 0.21 \\ 66.58 \pm 0.23 \end{array}$ | $\begin{array}{r} 5.65 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \hline \\ 67.52 \pm 0.44 \\ 70.28 \pm 0.69 \\ 87.39 \pm 0.12 \\ \hline \\ 83.25 \pm 0.15 \\ \end{array}$                          |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *<br>BSFA (IEEE TCSVT'23) [44] †<br>IDEAL-clean (TPAMI'23) [2] †<br>BiFRN (AAAI'23) [40] †<br>Proto+CSCAM (Ours)<br>Relation+CSCAM (Ours) | $\begin{array}{r} $1$-shot$\\\hline $1$-shot$\\\hline $61.82 \pm 0.23$\\\hline $63.94 \pm 0.92$\\\hline $62.36 \pm 0.84$\\\hline $57.45 \pm 0.89$\\\hline $71.57 \pm 0.92$\\\hline $62.94 \pm 0.95$\\\hline $66.29 \pm 0.56$\\\hline $53.61 \pm 0.88$\\\hline $73.46 \pm 0.21$\\\hline $74.39 \pm 0.21$\\\hline $72.89 \pm 0.50$\\\hline $59.71 \pm 1.46$\\\hline $68.16 \pm 0.52$\\\hline $69.93 \pm 0.89$\\\hline $76.52 \pm 0.21$\\\hline $72.33 \pm 0.21$\\\hline $65.50 \pm 1.02$\\\hline \end{array}$ | $\begin{tabular}{ c c c c } \hline $5-shot$\\\hline \hline $5-shot$\\\hline $7.87 \pm 0.64$\\\hline $79.08 \pm 0.61$\\\hline $84.41 \pm 0.58$\\\hline $8.51 \pm 0.60$\\\hline $8.539 \pm 0.56$\\\hline $8.034 \pm 0.30$\\\hline $73.24 \pm 0.75$\\\hline $8.13 \pm 0.13$\\\hline $8.89 \pm 0.73$\\\hline $8.241 \pm 0.35$\\\hline $81.67 \pm 0.69$\\\hline $89.75 \pm 0.11$\\\hline $87.18 \pm 0.13$\\\hline $79.10 \pm 0.66$\\\hline \end{tabular}$                                                                                                                           | $\begin{array}{r} \text{Airc}\\ \hline \\ \hline 1-shot\\ \hline \\ 50.90 \pm 0.22\\ 61.73 \pm 0.98\\ 58.38 \pm 0.83\\ 68.41 \pm 0.91\\ 66.30 \pm 0.87\\ 62.86 \pm 0.96\\ 75.69 \pm 0.54\\ 44.89 \pm 0.75\\ 69.29 \pm 0.22\\ 69.90 \pm 0.23\\ \hline \\ 57.55 \pm 1.37\\ 61.17 \pm 0.49\\ 52.56 \pm 0.83\\ 75.72 \pm 0.21\\ 69.96 \pm 0.23\\ 53.04 \pm 0.95\\ \end{array}$                                  | $\begin{array}{r} 5.65 \pm 0.15 \\ \hline 5-shot \\ \hline \\ \hline \\ 80.65 \pm 0.15 \\ 75.96 \pm 0.72 \\ 77.62 \pm 0.60 \\ 87.48 \pm 0.49 \\ 79.00 \pm 0.61 \\ 83.12 \pm 0.68 \\ 86.23 \pm 0.31 \\ 62.81 \pm 0.73 \\ 83.94 \pm 0.13 \\ 83.34 \pm 0.15 \\ \hline \\ \hline \\ 72.88 \pm 0.64 \\ 76.96 \pm 0.36 \\ 80.36 \pm 0.69 \\ 86.91 \pm 0.12 \\ \hline \\ 85.24 \pm 0.13 \\ 67.22 \pm 0.79 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Flow$ $1-shot$ $64.23 \pm 0.23$ $69.50 \pm 0.96$ $70.54 \pm 0.84$ $70.44 \pm 0.95$ $67.71 \pm 0.92$ $66.60 \pm 1.04$ $-$ $68.01 \pm 0.90$ $73.60 \pm 0.22$ $70.66 \pm 0.24$ $-$ $66.84 \pm 0.59$ $72.25 \pm 0.90$ $71.49 \pm 0.23$ $71.20 \pm 0.23$ $66.02 \pm 1.04$                                            | $\begin{array}{r} 5.031 \pm 0.13 \\ \hline \\ \text{vers} \\ \hline \\ \hline \\ 5-shot \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \\ 79.34 \pm 0.47 \\ 86.43 \pm 0.70 \\ 85.02 \pm 0.16 \\ 85.43 \pm 0.16 \\ 80.72 \pm 0.73 \end{array}$                                      | $C_{1} = 0.10$ $C_{2}$ $\frac{1-shot}{48.42 \pm 0.22}$ $46.04 \pm 0.91$ $46.82 \pm 0.76$ $34.12 \pm 0.68$ $48.16 \pm 0.86$ $40.89 \pm 0.77$ $66.11 \pm 0.54$ $44.56 \pm 0.80$ $64.03 \pm 0.22$ $65.89 \pm 0.22$ $70.21 \pm 0.50$ $-$ $49.98 \pm 0.48$ $52.64 \pm 0.91$ $72.24 \pm 0.21$ $66.58 \pm 0.23$ $45.63 \pm 0.87$                                                                        | $\begin{array}{r} 5.65 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \hline \\ 67.52 \pm 0.44 \\ 70.28 \pm 0.69 \\ 87.39 \pm 0.12 \\ \hline \\ 83.25 \pm 0.15 \\ 71.50 \pm 0.79 \end{array}$           |
| Conv-4<br>Proto (NeurIPS'17) [28] †<br>Relation (CVPR'18) [30] †<br>Baseline++ (ICLR'19) [3] \$<br>DN4 (CVPR'19) [15] *<br>DSN (CVPR'20) [27] \$<br>BSNet (D&C) (IEEE TIP'20) [17] *<br>MattML (IJCAI'20) [47] *<br>MixFSL (ICCV'21) [1] \$<br>FRN (CVPR'21) [38] †<br>TDM (CVPR'22) [14] †<br>DUAL ATT-NET (AAAI'22) [42] *<br>CAML (WACV'23) [29] *<br>BSFA (IEEE TCSVT'23) [44] †<br>IDEAL-clean (TPAMI'23) [2] †<br>BiFRN (AAAI'23) [40] †<br>Proto+CSCAM (Ours)<br>Relation+CSCAM (Ours) | $\begin{array}{r} 1 - shot \\ \hline 1 - shot \\ 61.82 \pm 0.23 \\ 63.94 \pm 0.92 \\ 62.36 \pm 0.84 \\ 57.45 \pm 0.89 \\ 71.57 \pm 0.92 \\ 62.84 \pm 0.95 \\ 66.29 \pm 0.56 \\ 53.61 \pm 0.88 \\ 73.46 \pm 0.21 \\ 74.39 \pm 0.21 \\ 72.89 \pm 0.50 \\ 59.71 \pm 1.46 \\ 68.16 \pm 0.52 \\ 69.93 \pm 0.89 \\ 76.52 \pm 0.21 \\ 72.33 \pm 0.21 \\ 65.50 \pm 1.02 \\ 77.68 \pm 0.20 \end{array}$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} \text{Airc} \\ \hline \\ \hline 1-shot \\ \hline \\ 50.90 \pm 0.22 \\ 61.73 \pm 0.98 \\ 58.38 \pm 0.83 \\ 68.41 \pm 0.91 \\ 66.30 \pm 0.87 \\ 62.86 \pm 0.96 \\ 75.69 \pm 0.54 \\ 44.89 \pm 0.75 \\ 69.29 \pm 0.22 \\ 69.90 \pm 0.23 \\ \hline \\ 57.55 \pm 1.37 \\ 61.17 \pm 0.49 \\ 52.56 \pm 0.83 \\ 75.72 \pm 0.21 \\ 69.96 \pm 0.23 \\ 53.04 \pm 0.95 \\ 76.12 \pm 0.20 \end{array}$ | $\begin{array}{r} 5.65 \pm 0.15 \\ \hline 5-shot \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flow<br>1-shot<br>$64.23 \pm 0.23$<br>$69.50 \pm 0.96$<br>$70.54 \pm 0.84$<br>$70.44 \pm 0.95$<br>$67.71 \pm 0.92$<br>$66.60 \pm 1.04$<br>-<br>$68.01 \pm 0.90$<br>$73.60 \pm 0.22$<br>$70.66 \pm 0.24$<br>-<br>$66.84 \pm 0.59$<br>$72.25 \pm 0.90$<br>$71.49 \pm 0.23$<br>$66.02 \pm 1.04$<br>$74.29 \pm 0.22$ | $\begin{array}{r} 5.031 \pm 0.13 \\ \hline \\ \text{vers} \\ \hline \\ \hline \\ 5-shot \\ \hline \\ 84.94 \pm 0.16 \\ 83.91 \pm 0.63 \\ 86.63 \pm 0.58 \\ 89.45 \pm 0.52 \\ 84.58 \pm 0.70 \\ 80.42 \pm 0.75 \\ \hline \\ \\ 85.10 \pm 0.62 \\ 88.69 \pm 0.14 \\ 85.14 \pm 0.17 \\ \hline \\ \\ 79.34 \pm 0.47 \\ 86.43 \pm 0.70 \\ 85.02 \pm 0.16 \\ 85.43 \pm 0.16 \\ 80.72 \pm 0.73 \\ \hline \\ \textbf{88.70 \pm 0.14} \end{array}$ | $C_{1}$ $C_{2}$ $\frac{1-shot}{48.42 \pm 0.22}$ $46.04 \pm 0.91$ $46.82 \pm 0.76$ $34.12 \pm 0.68$ $48.16 \pm 0.86$ $40.89 \pm 0.77$ $66.11 \pm 0.54$ $44.56 \pm 0.80$ $64.03 \pm 0.22$ $65.89 \pm 0.22$ $70.21 \pm 0.50$ $-$ $49.98 \pm 0.48$ $52.64 \pm 0.91$ $72.24 \pm 0.21$ $66.58 \pm 0.23$ $45.63 \pm 0.87$ $71.44 \pm 0.21$                                                              | $\begin{array}{r} 5.65 \pm 0.03 \\ \hline \\ \hline \\ 5-shot \\ \hline \\ \hline \\ 71.38 \pm 0.18 \\ 68.52 \pm 0.78 \\ 68.20 \pm 0.72 \\ 87.47 \pm 0.47 \\ 60.77 \pm 0.75 \\ 86.88 \pm 0.50 \\ 82.80 \pm 0.28 \\ 59.63 \pm 0.79 \\ 84.02 \pm 0.13 \\ 82.45 \pm 0.15 \\ 85.55 \pm 0.31 \\ \hline \\ \hline \\ 70.28 \pm 0.69 \\ 87.39 \pm 0.12 \\ \hline \\ 83.25 \pm 0.15 \\ 71.50 \pm 0.79 \\ 86.44 \pm 0.13 \\ \hline \end{array}$ |

\*: results from BSNet [17]. <a>: results from LCCRN [16].</a> <a>: results reported in the official papers.</a>

†: reproduced results from using the officially published code.

The output of the convolutional feature extractor for  $x_s, x_q$  are feature map  $Z_s \in \mathbb{R}^{M \times D}, Z_q \in \mathbb{R}^{M \times D}$ , where *M* denotes the spatial resolution (height × width) of the feature map, and *D* denotes the number of channels. We obtain the weighted query features  $\hat{Z}_q$  after feeding  $Z_s, Z_q$  into our CSCAM:

$$\ddot{Z}_q = CSCAM(Z_s, Z_q). \tag{10}$$

For each class  $c \in C$ , pool all features from the *K* support images into a single matrix of support features  $Z_{sc}$ , and calculate the final probability distribution:

$$P(y_q = c | x_q) = \frac{\exp(-d\left\langle \hat{Z}_q, Z_{sc} \right\rangle)}{\sum_{c' \in C} \exp(-d\left\langle \hat{Z}_q, Z_{sc'} \right\rangle)},\tag{11}$$

where d denotes the metric module.

Table 2: Five-way few-shot classification performance on the *CUB-200-2011* (CUB) and *Stanford-Cars* (Cars) datasets for the Conv-4 and the ResNet-12 backbone.

| Attention module     | CUB (Conv-4)     |                  | Cars (Conv-4)    |                  | CUB (ResNet-12)  |                  | Cars (ResNet-12) |                |
|----------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|
|                      | 1-shot           | 5-shot           | 1-shot           | 5-shot           | 1-shot           | 5-shot           | 1-shot           | 5-shot         |
| Proto [28]           | $63.21\pm0.23$   | $83.88 \pm 0.15$ | $48.70\pm0.22$   | $72.18 \pm 0.18$ | $78.56 \pm 0.20$ | $90.39 \pm 0.11$ | $82.29\pm0.20$   | $93.11\pm0.10$ |
| +SE [10]             | $68.27 \pm 0.22$ | $86.20\pm0.14$   | $64.15\pm0.23$   | $81.70\pm0.15$   | $77.14 \pm 0.21$ | $90.67 \pm 0.11$ | $80.83 \pm 0.20$ | $93.82\pm0.09$ |
| +CBAM [39]           | $69.89 \pm 0.22$ | $86.29 \pm 0.14$ | $64.43 \pm 0.24$ | $82.34 \pm 0.15$ | $78.12 \pm 0.20$ | $90.95 \pm 0.11$ | $80.00\pm0.21$   | $93.39\pm0.09$ |
| +DA[5]               | $68.18 \pm 0.22$ | $86.28\pm0.14$   | $59.63 \pm 0.22$ | $81.08\pm0.16$   | $75.95 \pm 0.21$ | $90.85 \pm 0.11$ | $80.23 \pm 0.21$ | $93.88\pm0.09$ |
| +CAM [9]             | $68.43 \pm 0.22$ | $86.41 \pm 0.13$ | $61.88 \pm 0.22$ | $81.60\pm0.15$   | $76.53 \pm 0.21$ | $90.50 \pm 0.11$ | $82.43 \pm 0.20$ | $93.83\pm0.09$ |
| +Triplet [23]        | $70.19\pm0.23$   | $86.10\pm0.14$   | $65.22 \pm 0.23$ | $82.20\pm0.15$   | $79.06 \pm 0.20$ | $90.92 \pm 0.11$ | $80.46 \pm 0.21$ | $93.83\pm0.09$ |
| +S2 [43]             | $71.18\pm0.23$   | $84.16\pm0.15$   | $66.51 \pm 0.24$ | $80.32\pm0.17$   | $77.38 \pm 0.21$ | $88.78\pm0.12$   | $81.97 \pm 0.20$ | $91.09\pm0.12$ |
| +GAM [20]            | $69.16 \pm 0.23$ | $84.56\pm0.14$   | $64.20\pm0.24$   | $80.09\pm0.16$   | $77.96 \pm 0.20$ | $90.62\pm0.11$   | $81.22\pm0.21$   | $93.63\pm0.09$ |
| +Parnet [6]          | $70.42 \pm 0.22$ | $86.39 \pm 0.13$ | $65.93 \pm 0.22$ | $83.03\pm0.15$   | $76.19 \pm 0.21$ | $90.59 \pm 0.11$ | $82.06\pm0.20$   | $93.71\pm0.09$ |
| +ACmixAttention [25] | $69.17 \pm 0.22$ | $85.58\pm0.14$   | $67.35 \pm 0.22$ | $83.17\pm0.14$   | $76.25 \pm 0.21$ | $90.39 \pm 0.11$ | $82.43 \pm 0.20$ | 94.16 ± 0.09   |
| +DAN [37]            | $62.59 \pm 0.23$ | $84.06\pm0.15$   | $66.81 \pm 0.22$ | $82.94 \pm 0.14$ | $79.74 \pm 0.20$ | $90.65\pm0.12$   | $83.35\pm0.21$   | $93.06\pm0.10$ |
| +CSCAM (Ours)        | $72.33 \pm 0.21$ | 87.18 ± 0.13     | $67.58 \pm 0.23$ | $83.25 \pm 0.15$ | 81.69 ± 0.20     | 91.01 ± 0.11     | 85.73 ± 0.18     | $93.26\pm0.10$ |

Following FRN [38], it optimizes the network by the cross-entropy loss *loss<sub>cross</sub>* and the auxiliary loss *loss<sub>aux</sub>* (details in FRN [38]):

$$loss_{cross} = -\frac{1}{B_Q} \sum_{q=0}^{B_Q} y_q^{\top} \log(P(y_q | x_q)).$$
(12)

 $loss = loss_{cross} + loss_{aux},$ (13)

where  $B_Q$  is the number of query images, and  $y_q$  is the one-hot vector that predicts the label of the *q*-th query image.

In short, our CSCAM, only requiring the input support features and query features, is a plug-and-play module.

#### 4 Experimental Analysis

# 4.1 Datasets

We conduct all the experiments on four benchmark datasets:

*CUB-200-2011* [35] (CUB): 11,788 images from 200 bird species; *FGVC-Aircraft* [22] (Aircraft): 10,000 images from 100 aircraft species;

*Flowers-102* [24] (Flowers): 102 categories of common flowers; *Stanford-Cars* [12] (Cars): 16,185 images of 196 classes of cars.

For each dataset, following the setting in [38], we divide the data into training set  $\mathcal{D}_{train}$ , validation set  $\mathcal{D}_{val}$  and test set  $\mathcal{D}_{test}$  in a ratio of 2:1:1. All images are resized to 84×84. Dataset preprocessing also follows [38]; each image in CUB is cropped to a manually annotated bounding box, while original images is used from the other three datasets.

## 4.2 Implementation Details

In our experiments, we set the training epoch to 1,200, the initial learning rate to 0.1, and the weight decay to 5e-4. The learning rate is decreased after every 400 epochs, and we verify the model's performance every 20 epochs to monitor its progress during training.

During the test stage, we use the trained model to classify 10,000 test images. The average classification accuracy of the model on these test images is taken as the performance metric.

Additionally, we conduct experiments using different backbone architectures. Specifically, we use the Conv-4 backbone [13, 32] and

the ResNet-12 backbone [8, 13]. For the Conv-4 backbone, we set the parameter training way to 20, while for the ResNet-12 backbone, We set the parameter training way to 10.

## 4.3 Comparison with State-of-the-Art Methods

In our experiments, we evaluate the performance of the proposed method and compared it against state-of-the-art metric-based fewshot methods on four fine-grained benchmark datasets in Table 1.

As shown in Table 1, when integrated into Proto [28], Relation [30], FRN [38] and TDM [14], our method can mostly improve their performances, on both ResNet-12 and Conv-4 backbones. In particular, when the Conv-4 backbone is used, CSCAM integrated with FRN or TDM achieves the highest accuracy on all four datasets; when the ResNet-12 backbone is used, CSCAM integrated with FRN or TDM achieves the highest accuracy on three datasets. This verifies general effectiveness of our CSCAM as a plug-and-play module for various few-shot fine-grained image classification models.

## 4.4 Comparison with Other Attention Modules

To evaluate the effectiveness of our method in comparison to other attention mechanisms, we integrate various attention modules into Proto [28] and list their performances in Table 2. The compared attention modules include those of SE [10], CBAM [39], DA [5], CAM [9], Triplet [23], S2 [43], GAM [20], Parnet [6], ACmixAttention [25] and DAN [37], as presented in their official papers. We only take their attention modules to compare with the proposed CSCAM and do not use the whole network of these methods. We note that some of the previously mentioned attention methods [4, 42, 47] have no officially published code, hence we only compare their entire network with our proposed method in Table 1.

As shown in Table 2, CSCAM has the highest classification performance in seven out of eight few-shot settings. This shows that our CSCAM, which exploit cross-attentions from both channel and spatial perspectives and can generate more discriminative features, is superior to these current attention mechanisms for few-shot fine-grained image classification.

| Table 3: Ablation studies on the CUB, Flower, and Cars datasets, employing the Proto (Conv-4) and FRN (Conv-4) backbones in   |
|-------------------------------------------------------------------------------------------------------------------------------|
| a 5-way few-shot setup. These studies involved the separate utilization of CCAM or SCAM, as well as the impact that SA has on |
| this module.                                                                                                                  |

| Pr                                            | oto [28]                                 |                                  | CUB                                                                                                                                                                                                                                   |                                                                                                                                                                                     | Flow                                                                                                                                                       | wers                                                                                                                                                                   | Cars                                                                                                                                                                      |                                                                                                                      |
|-----------------------------------------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| CCAM                                          | SCAM                                     | SA                               | 1-shot                                                                                                                                                                                                                                | 5-shot                                                                                                                                                                              | 1-shot                                                                                                                                                     | 5-shot                                                                                                                                                                 | 1-shot                                                                                                                                                                    | 5-shot                                                                                                               |
| ×                                             | ×                                        | ×                                | $61.82 \pm 0.23$                                                                                                                                                                                                                      | $83.37 \pm 0.15$                                                                                                                                                                    | $64.23 \pm 0.23$                                                                                                                                           | $84.94\pm0.16$                                                                                                                                                         | $48.42 \pm 0.22$                                                                                                                                                          | $71.38 \pm 0.18$                                                                                                     |
| $\checkmark$                                  | ×                                        | ×                                | $71.92\pm0.22$                                                                                                                                                                                                                        | $84.72\pm0.15$                                                                                                                                                                      | $70.99 \pm 0.23$                                                                                                                                           | $84.06\pm0.17$                                                                                                                                                         | $63.08\pm0.23$                                                                                                                                                            | $77.99 \pm 0.17$                                                                                                     |
| $\checkmark$                                  | ×                                        | $\checkmark$                     | $71.17\pm0.22$                                                                                                                                                                                                                        | $85.72\pm0.14$                                                                                                                                                                      | $69.77 \pm 0.23$                                                                                                                                           | $84.07\pm0.17$                                                                                                                                                         | $65.73 \pm 0.22$                                                                                                                                                          | $82.82\pm0.16$                                                                                                       |
| ×                                             | $\checkmark$                             | ×                                | $65.59 \pm 0.23$                                                                                                                                                                                                                      | $85.65\pm0.14$                                                                                                                                                                      | $68.10\pm0.23$                                                                                                                                             | $85.42\pm0.16$                                                                                                                                                         | $54.26 \pm 0.23$                                                                                                                                                          | $76.19\pm0.17$                                                                                                       |
| ×                                             | $\checkmark$                             | $\checkmark$                     | $71.67 \pm 0.22$                                                                                                                                                                                                                      | $86.08 \pm 0.14$                                                                                                                                                                    | $70.24 \pm 0.22$                                                                                                                                           | $85.12\pm0.16$                                                                                                                                                         | $64.30 \pm 0.23$                                                                                                                                                          | $81.61\pm0.16$                                                                                                       |
| $\checkmark$                                  | $\checkmark$                             | ×                                | $71.94 \pm 0.23$                                                                                                                                                                                                                      | $86.89 \pm 0.14$                                                                                                                                                                    | $71.13 \pm 0.21$                                                                                                                                           | $85.28\pm0.15$                                                                                                                                                         | $66.13 \pm 0.23$                                                                                                                                                          | $81.52\pm0.16$                                                                                                       |
| $\checkmark$                                  | $\checkmark$                             | $\checkmark$                     | $72.33 \pm 0.21$                                                                                                                                                                                                                      | 87.18 ± 0.13                                                                                                                                                                        | $71.20 \pm 0.23$                                                                                                                                           | 85.43 ± 0.16                                                                                                                                                           | $66.58 \pm 0.23$                                                                                                                                                          | 83.25 ± 0.15                                                                                                         |
|                                               |                                          |                                  | CUB                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                           |                                                                                                                      |
| FI                                            | RN [38]                                  |                                  | CU                                                                                                                                                                                                                                    | JB                                                                                                                                                                                  | Flow                                                                                                                                                       | wers                                                                                                                                                                   | Ca                                                                                                                                                                        | ars                                                                                                                  |
| FI<br>CCAM                                    | RN [38]<br>SCAM                          | SA                               | CU<br>1-shot                                                                                                                                                                                                                          | JB<br>5-shot                                                                                                                                                                        | Flow                                                                                                                                                       | vers<br>5-shot                                                                                                                                                         | Ca<br>1-shot                                                                                                                                                              | ars<br>5-shot                                                                                                        |
| FI<br>CCAM<br>×                               | RN [38]<br>SCAM<br>×                     | SA<br>×                          | CU<br>1-shot<br>73.46 ± 0.21                                                                                                                                                                                                          | JB<br>5-shot<br>88.13 ± 0.13                                                                                                                                                        | $Flow$ $1-shot$ $73.60 \pm 0.22$                                                                                                                           | vers<br>5-shot<br>88.69 ± 0.14                                                                                                                                         | $Ca$ $1-shot$ $64.03 \pm 0.22$                                                                                                                                            | $\frac{5-shot}{84.02 \pm 0.13}$                                                                                      |
| FI<br>CCAM<br>×                               | RN [38]<br>SCAM<br>×<br>×                | SA<br>×<br>×                     | $Ct = \frac{1-shot}{73.46 \pm 0.21}$ $76.63 \pm 0.21$                                                                                                                                                                                 |                                                                                                                                                                                     | Flow<br>1-shot<br>$73.60 \pm 0.22$<br>$74.15 \pm 0.21$                                                                                                     | $ \frac{5-shot}{88.69 \pm 0.14} $ $ 88.62 \pm 0.14 $                                                                                                                   |                                                                                                                                                                           | $ \frac{5-shot}{84.02 \pm 0.13} \\ 84.27 \pm 0.14 $                                                                  |
| FI<br>CCAM<br>×<br>√                          | RN [38]<br>SCAM<br>×<br>×<br>×           | SA<br>×<br>√                     | $Ct = \frac{1-shot}{73.46 \pm 0.21}$ $76.63 \pm 0.21$ $76.34 \pm 0.21$                                                                                                                                                                | $\begin{array}{c} JB \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                     | Flow<br>1-shot<br>$73.60 \pm 0.22$<br>$74.15 \pm 0.21$<br>$74.16 \pm 0.22$                                                                                 | $ \frac{5-shot}{88.69 \pm 0.14} \\ 88.62 \pm 0.14 \\ 88.17 \pm 0.14 $                                                                                                  | $Ca = \frac{1-shot}{64.03 \pm 0.22}$ $69.14 \pm 0.22$ $71.40 \pm 0.22$                                                                                                    | $\frac{5-shot}{84.02 \pm 0.13}$ $84.27 \pm 0.14$ $86.17 \pm 0.13$                                                    |
| FI<br>CCAM<br>×<br>√<br>×                     | RN [38]<br>SCAM<br>×<br>×<br>×           | SA<br>×<br>×<br>✓                | $\begin{array}{c} \text{Ct} \\ \hline 1\text{-shot} \\ \hline 73.46 \pm 0.21 \\ \hline 76.63 \pm 0.21 \\ \hline 76.34 \pm 0.21 \\ \hline 76.14 \pm 0.21 \end{array}$                                                                  | $\begin{tabular}{ c c c c c } \hline JB & \\ \hline & 5\text{-shot} \\ \hline & 88.13 \pm 0.13 \\ & 89.28 \pm 0.12 \\ & 89.28 \pm 0.13 \\ & 88.47 \pm 0.12 \\ \hline \end{tabular}$ | Flow<br>1-shot<br>$73.60 \pm 0.22$<br>$74.15 \pm 0.21$<br>$74.16 \pm 0.22$<br>$74.06 \pm 0.22$                                                             | state         state           5-shot         88.69 $\pm$ 0.14           88.62 $\pm$ 0.14         88.17 $\pm$ 0.14           88.29 $\pm$ 0.14         9.14              | $\begin{array}{c} Ca \\ \hline \\ \hline \\ 64.03 \pm 0.22 \\ 69.14 \pm 0.22 \\ 71.40 \pm 0.22 \\ 70.22 \pm 0.21 \end{array}$                                             |                                                                                                                      |
| FI<br>CCAM<br>×<br>×<br>×<br>×<br>×           | RN [38]<br>SCAM<br>×<br>×<br>×<br>√      | SA<br>×<br>✓<br>×<br>✓           | $\begin{array}{c} \text{CU}\\\hline 1\text{-shot}\\ \hline 73.46 \pm 0.21\\ 76.63 \pm 0.21\\ 76.34 \pm 0.21\\ 76.14 \pm 0.21\\ 76.14 \pm 0.21\\ 76.59 \pm 0.21 \end{array}$                                                           | JB $5\text{-shot}$ $88.13 \pm 0.13$ $89.28 \pm 0.12$ $89.28 \pm 0.13$ $88.47 \pm 0.12$ $88.88 \pm 0.12$                                                                             | Flow<br>1-shot<br>$73.60 \pm 0.22$<br>$74.15 \pm 0.21$<br>$74.16 \pm 0.22$<br>$74.06 \pm 0.22$<br>$72.89 \pm 0.22$                                         | state         state           5-shot         88.69 $\pm$ 0.14           88.62 $\pm$ 0.14         88.17 $\pm$ 0.14           88.29 $\pm$ 0.14         87.53 $\pm$ 0.15  | $\begin{array}{c} & Ca \\ \hline \\ \hline \\ 64.03 \pm 0.22 \\ 69.14 \pm 0.22 \\ 71.40 \pm 0.22 \\ 70.22 \pm 0.21 \\ 70.76 \pm 0.22 \end{array}$                         | $\begin{array}{r} \hline \\ \hline $ |
| FI<br>CCAM<br>×<br>×<br>×<br>×<br>×<br>×<br>× | RN [38]<br>SCAM<br>×<br>×<br>√<br>√<br>√ | SA<br>×<br>✓<br>×<br>×<br>✓<br>× | $\begin{array}{c} \hline \\ \hline 1-shot \\ \hline 73.46 \pm 0.21 \\ \hline 76.63 \pm 0.21 \\ \hline 76.34 \pm 0.21 \\ \hline 76.14 \pm 0.21 \\ \hline 76.14 \pm 0.21 \\ \hline 76.59 \pm 0.21 \\ \hline 77.26 \pm 0.21 \end{array}$ | JB $5\text{-shot}$ $88.13 \pm 0.13$ $89.28 \pm 0.12$ $89.28 \pm 0.13$ $88.47 \pm 0.12$ $88.88 \pm 0.12$ $89.38 \pm 0.12$                                                            | Flow<br>1-shot<br>$73.60 \pm 0.22$<br>$74.15 \pm 0.21$<br>$74.16 \pm 0.22$<br>$74.06 \pm 0.22$<br>$74.06 \pm 0.22$<br>$72.89 \pm 0.22$<br>$73.68 \pm 0.22$ | state $5-shot$ 88.69 ± 0.14       88.62 ± 0.14         88.17 ± 0.14       88.29 ± 0.14         88.29 ± 0.14       88.29 ± 0.14         87.53 ± 0.15       88.06 ± 0.16 | $\begin{array}{c} & Ca \\ \hline 1 - shot \\ \hline 64.03 \pm 0.22 \\ 69.14 \pm 0.22 \\ 71.40 \pm 0.22 \\ 70.22 \pm 0.21 \\ 70.76 \pm 0.22 \\ 70.34 \pm 0.23 \end{array}$ | $\begin{array}{r} \hline \\ \hline $ |

#### 4.5 Ablation Studies

To further explore the effectiveness of two sub-attention modules and the support averaging method of our CSCAM, we conduct a series of ablation studies: (1) what if without the spatial crossattention module (SCAM); (2) what if without the channel crossattention module (CCAM); and (3) what if without the support averaging method. We perform the ablation experiments for both FRN and Proto. The experimental results are presented in Table 3.

From the results, we can observe the followings. Firstly, using SCAM or CCAM alone with the support averaging can already improve the baseline performance. Secondly, if integrated into FRN, CCAM performs mostly better than SCAM. However, if integrated into Proto, CCAM can be often worse than SCAM. This suggests that each of spatial cross-attention and channel cross-attention has their own strength. Thirdly, the proposed CSCAM, which combines both CCAM and SCAM, always performs the best. This proves that the attention mechanism from a single perspective is insufficient, and the best performance improvement can be achieved by leveraging cross-attentions collaboratively from both spatial and channel perspectives. Finally, a comparison of the experimental results in the last two rows of each table shows the positive effect of the support averaging method.

## 4.6 Visualization

4.6.1 *Feature visualization by Grad-CAM.* To verify the effectiveness of CSCAM in learning discriminative features, we utilize Grad-CAM [26] to visualize the features. The visualization results are presented in Figure 5, where the heatmaps highlight the regions that contribute significantly to the classification decisions. We can observe the following patterns. First, it shows that in some cases, Proto [28] and FRN [38] focus on background regions (e.g., the sky in the Aircraft dataset, the grass in the Flowers dataset, the wall in the Cars dataset). Secondly, in comparison with Proto and FRN, when the proposed sub-module CCAM or SCAM is integrated into FRN, the model can focus more on regions critical for classification. Thirdly, when CSCAM, which includes both CCAM and SCAM, is integrated into FRN, the model accurately focuses on the discriminative regions of fine-grained images (such as the claws, beak, and wings of birds; the head and engine of aircraft; the petal, core, and edge of flowers; the lights, mirrors, roof, and handlebars of cars). This indicates that the attention mechanism of CSCAM successfully captures discriminative features and effectively attends to the critical parts of the input images for classification.

4.6.2 *Feature visualization by t-SNE.* Furthermore, we will use t-SNE [33] to illustrate the effect of support averaging on increasing the inter-class distance and decreasing the intra-class distance. Specifically, we take ResNet-12 as the backbone and compare the visualization results of their 5-way 5-shot on two fine-grained benchmarks, CUB, Cars and Flowers, as shown in Figure 6, in which the same color represents the same class of samples.

From Figure 6, by comparing the proposed support averaging method (*Ours*) with the case without using it (w/o *SA*), it can be found that the support averaging method can enlarge the distance between feature classes while reducing the distance within a class, which verifies the rationality and positive effect of the support averaging method. In addition, by comparing the feature dimension-reduction visualization of *FRN* + *CSCAM* and *FRN*, it can be found that the between-class distance of *FRN* + *CSCAM* is clearer and more separable, and the within-class distance is relatively more

#### MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia



Figure 5: Visualization of features extracted by Proto, FRN, and our proposed method and its ablated variants, using Grad-CAM [26] for the visualization on the CUB, Aircraft, Flowers, and Cars datasets.



Figure 6: Features dimension-reduction visualization by t-SNE for *FRN*, *FRN+CSCAM(w/o SA)*, and *FRN+CSCAM (Ours)* on CUB and Cars with ResNet-12 for 5-way 5-shot.

compact, which confirms that the proposed method can better meet the requirements of fine-grained image classification and is more suitable for the few-shot fine-grained classification tasks.

#### 4.7 Remarks on Strength and Limitation

4.7.1 Strength. Through the above experimental comparisons and visualizations, it can be verified that our method can improve stateof-the-art performance in few-shot fine-grained image classification. This can be ascribed to several reasons. Firstly, CSCAM makes full use of the channel and spatial cross-attention between query features and support features, hence the network can obtain richer information than the existing attention modules, so as to improve the classification of fine-grained images. Secondly, while focusing on the intra-class similarity, the proposed CSCAM also considers the regions with high inter-class similarity by averaging the attention scores over the entire support set through the support averaging method, which can further expand the inter-class distance and reduce the intra-class distance, so as to generate more fine-grained and discriminative features. It hence can better meet the needs of few-shot fine-grained image classification tasks.

4.7.2 *Limitation.* Although in the task of few-shot fine-grained image classification, the proposed CSCAM can achieve a good performance improvement when inserted into the existing metric-based few-shot learning models, it still has the following limitation: In the attention computation, the space overhead is large. Hence it is our future work to reduce various computational overheads in the attention computation.

#### 5 Conclusion

In this paper, we proposed a channel-spatial cross-attention module (CSCAM) for few-shot fine-grained image classification. The proposed attention module contains a channel cross-attention module and a spatial cross-attention module. Different from other selfattention methods based on single spatial or channel cross-attention in few-shot learning, CSCAM captures the cross-attention between query features and support features from both channel and space simultaneously. In addition, the support averaging method proposed to fit for the characteristics of fine-grained images can enlarge the between-class distance and reduce the within-class distance, obtaining more subtle and discriminative features for fine-grained image classification. Extensive experiments show that CSCAM can clearly improve state-of-the-art performance on few-shot fine-grained image classification. Channel-Spatial Support-Query Cross-Attention for Fine-Grained Few-Shot Image Classification

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

## Acknowledgments

This work was supported by the Beijing Natural Science Foundation Project No. Z200002, the National Nature Science Foundation of China (Grant 62176110, U23B2052, 62225601), the Youth Innovative Research Team of BUPT No. 2023YQTD02, the Key Research and Development Program of Gansu Province, China under Grant 22YF7GA130, S&T Program of Hebei, China under Grant SZX2020034, Hong-liu Distinguished Young Talents Foundation of Lanzhou University of Technology, the China Postdoctoral Science Foundation under Grant 2023M741961, the Postdoctoral Fellowship Program of CPSF under Grant GZB20240359, and the Royal Society under International Exchanges Award IEC\NSFC\201071.

#### References

- Arman Afrasiyabi, Jean-François Lalonde, and Christian Gagné. 2021. Mixture-Based Feature Space Learning for Few-Shot Image Classification. In ICCV.
- [2] Yuexuan An, Hui Xue, Xingyu Zhao, and Jing Wang. 2023. From Instance to Metric Calibration: A Unified Framework for Open-World Few-Shot Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).
- [3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. 2019. A Closer Look at Few-shot Classification. In *ICLR*.
- [4] Philip Chikontwe, Soopil Kim, and Sang Hyun Park. 2022. CAD: Co-Adapting Discriminative Features for Improved Few-Shot Classification. In CVPR.
- [5] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. 2019. Dual Attention Network for Scene Segmentation. In CVPR.
- [6] Ankit Goyal, Alexey Bochkovskiy, Jia Deng, and Vladlen Koltun. 2022. Non-deep Networks. In NIPS. Curran Associates, Inc.
- [7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
- [8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In CVPR.
- [9] Ruibing Hou, Hong Chang, Bingpeng MA, Shiguang Shan, and Xilin Chen. 2019. Cross Attention Network for Few-shot Classification. In NIPS. Curran Associates, Inc.
- [10] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In CVPR.
   [11] Dahyun Kang, Heeseung Kwon, Juhong Min, and Minsu Cho. 2021. Relational
- Embedding for Few-Shot Classification. In *ICCV*. [12] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3D object repre-
- sentations for fine-grained categorization. In *ICCV*.
  [13] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019. Meta-Learning With Differentiable Convex Optimization. In *CVPR*.
- [14] SuBeen Lee, WonJun Moon, and Jae-Pil Heo. 2022. Task Discrepancy Maximization for Fine-Grained Few-Shot Classification. In CVPR.
- [15] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo. 2019. Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning. In CVPR.
- [16] Xiaoxu Li, Qi Song, Jijie Wu, Rui Zhu, Zhanyu Ma, and Jing-Hao Xue. 2023. Locally-Enriched Cross-Reconstruction for Few-Shot Fine-Grained Image Classification. IEEE Transactions on Circuits and Systems for Video Technology (2023).
- [17] Xiaoxu Li, Jijie Wu, Zhuo Sun, Zhanyu Ma, Jie Cao, and Jing-Hao Xue. 2021. BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification. *IEEE Transactions on Image Processing* (2021).
- [18] Xiaoxu Li, Xiaochen Yang, Zhanyu Ma, and Jing-Hao Xue. 2023. Deep metric learning for few-shot image classification: A Review of recent developments. *Pattern Recognition* (2023).
- [19] Hai Liu, Cheng Zhang, Yongjian Deng, Bochen Xie, Tingting Liu, Zhaoli Zhang, and You-Fu Li. 2023. TransIFC: Invariant Cues-aware Feature Concentration Learning for Efficient Fine-grained Bird Image Classification. *IEEE Transactions* on Multimedia (2023), 1–14.
- [20] Yichao Liu, Zongru Shao, and Nico Hoffmann. 2021. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions. ArXiv abs/2112.05561 (2021).
- [21] Zhen-Xiang Ma, Zhen-Duo Chen, Li-Jun Zhao, Zi-Chao Zhang, Xin Luo, and Xin-Shun Xu. 2024. Cross-Layer and Cross-Sample Feature Optimization Network for Few-Shot Fine-Grained Image Classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 4136–4144.
- [22] Subhransu Maji, Ésa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. 2013. Fine-Grained Visual Classification of Aircraft. ArXiv abs/1306.5151 (2013).
- [23] Diganta Misra, Trikay Nalamada, Ajay Uppili Arasanipalai, and Qibin Hou. 2021. Rotate to Attend: Convolutional Triplet Attention Module. In WACV.

- [24] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated Flower Classification over a Large Number of Classes. In ICCV.
- [25] Xuran Pan, Chunjiang Ge, Rui Lu, Shiji Song, Guanfu Chen, Zeyi Huang, and Gao Huang. 2022. On the Integration of Self-Attention and Convolution. In CVPR.
- [26] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In *ICCV*.
- [27] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. 2020. Adaptive Subspaces for Few-Shot Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- [28] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks for Few-shot Learning. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc.
- [29] Rakshith Subramanyam, Mark Heimann, TS Jayram, Rushil Anirudh, and Jayaraman J Thiagarajan. 2023. Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
- [30] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales. 2018. Learning to compare: Relation network for few-shot learning. In CVPR.
- [31] Hao Tang, Chengcheng Yuan, Zechao Li, and Jinhui Tang. 2022. Learning attention-guided pyramidal features for few-shot fine-grained recognition. *Pattern Recognition* (2022).
- [32] Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui Liu, Lei Hou, and Juanzi Li. 2021. Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition. ArXiv abs/2106.15167 (2021).
- [33] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, 11 (2008).
- [34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In NIPS.
- [35] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. 2011. The Caltech-UCSD Birds-200-2011 dataset. (2011).
- [36] Chuanming Wang, Huiyuan Fu, and Huadong Ma. 2023. Learning Mutually Exclusive Part Representations for Fine-grained Image Classification. *IEEE Transactions* on Multimedia (2023), 1–12.
- [37] Zhengyao Wen, Wenzhong Lin, Tao Wang, and Ge Xu. 2023. Distract Your Attention: Multi-Head Cross Attention Network for Facial Expression Recognition. *Biomimetics* (2023).
- [38] Davis Wertheimer, Luming Tang, and Bharath Hariharan. 2021. Few-Shot Classification With Feature Map Reconstruction Networks. In *CVPR*.
- [39] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. CBAM: Convolutional Block Attention Module. In ECCV.
- [40] Jijie Wu, Dongliang Chang, Aneeshan Sain, Xiaoxu Li, Zhanyu Ma, Jie Cao, Jun Guo, and Yi-Zhe Song. 2023. Bi-directional feature reconstruction network for fine-grained few-shot image classification. In AAAI.
- [41] Jingyi Xu, Hieu Le, Mingzhen Huang, ShahRukh Athar, and Dimitris Samaras. 2021. Variational Feature Disentangling for Fine-Grained Few-Shot Classification. In *ICCV*.
- [42] Shu-Lin Xu, Faen Zhang, Xiu-Shen Wei, and Jianhua Wang. 2022. Dual attention networks for few-shot fine-grained recognition. In AAAI.
- [43] Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. 2021. S<sup>2</sup>-MLPv2: Improved Spatial-Shift MLP Architecture for Vision. ArXiv abs/2108.01072 (2021).
- [44] Zican Zha, Hao Tang, Yunlian Sun, and Jinhui Tang. 2023. Boosting Few-shot Finegrained Recognition with Background Suppression and Foreground Alignment. *IEEE Transactions on Circuits and Systems for Video Technology* (2023).
- [45] Bo Zhang, Jiakang Yuan, Baopu Li, Tao Chen, Jiayuan Fan, and Botian Shi. 2022. Learning cross-image object semantic relation in transformer for few-shot finegrained image classification. In ACM MM.
- [46] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. 2020. DeepEMD: Few-Shot Image Classification With Differentiable Earth Mover's Distance and Structured Classifiers. In CVPR.
- [47] Yaohui Zhu, Chenlong Liu, and Shuqiang Jiang. 2020. Multi-attention Meta Learning for Few-shot Fine-grained Image Recognition. In IJCAI.