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Abstract: This paper demonstrates the benefits of adapting Zero-Velocity Update (ZVU) algo- 9 

rithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account 10 

for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot- 11 

mounted inertial navigation are designed for indoor use and do not account for differences from 12 

various terrains. Different terrains affect the natural pedestrian gait and how zero-velocity inter- 13 

vals (ZVIs) are identified. By tuning the algorithm to account for accelerometer and gyroscope 14 

magnitude and walking cycle duration across four terrains (concrete, grass, pebble and sand) the 15 

accuracy is improved up to 31.04%, dependent on the terrain, and viable for outdoor use.  16 
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 18 

1. Introduction 19 

Inertial Measurements Units (IMU) collect data that is extracted for navigation solu- 20 

tions. The simplest models are examples of dead reckoning, which is any method of nav- 21 

igation that sums measurements of distance travelled or integrates measurements of ve- 22 

locity to calculate distance via known inputs or estimated user step length and a heading 23 

measurement [1]. In pedestrian dead reckoning (PDR), position and heading are derived 24 

by measuring specific force and angular rate with a microelectromechanical systems 25 

(MEMS) IMU attached in a minimally invasive manner to not disrupt the natural gait [2]. 26 

With a known starting point, heading, and distance an estimation of each step and posi- 27 

tion of the pedestrian can be calculated. However, there are limitations involved when 28 

relying solely on PDR navigation. These limitations include an increase in error bounds, 29 

or the area where it is statistically possible to be located for all detected steps [3], the mag- 30 

netometer and gyroscope heading output is susceptible to magnetic interference and 31 

without heading corrections the solution succumbs to magnetic disturbances and drift [4], 32 

and poor-quality sensors used in MEMS IMU lead to drift in the heading solution. 33 

Foot-mounted inertial navigation can achieve high accuracy from poor quality sen- 34 

sors by performing zero-velocity updates (ZVU) every step [5]. ZVUs keep sensors cali- 35 

brated and minimize drift in the position solution. To get the best performance, the ZVU 36 

algorithm needs to be carefully tuned [3]. ZVU algorithms are used for pedestrian navi- 37 

gation by collecting inertial data with an IMU and identifying zero-velocity intervals [6] 38 

when the IMU is briefly stationary. Stationary pedestrian detection relies on the walking 39 

cycle where the foot is constantly accelerating or decelerating. The walking cycle is di- 40 

vided into the stance and swing phase [7]. The stance phase is the period of time when 41 

the foot is in contact with the ground, from the heel strike to the heel release [8]. The swing 42 

phase is the duration of the foot leaving the ground until the same foot touches the ground 43 

again [9]. Figure 1 is an example of one cycle of the two phases in the walking cycle. The 44 
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stationary detection occurs during the stance phase. The stationary period is also known 1 

as a zero-velocity interval (ZVI) and historically this was assumed to be about 0.2 seconds 2 

within the entire walking cycle of about 1.14 seconds [10]. When the accelerometer or gy- 3 

roscope measurements are below a test quantity, computed from a specified moving win- 4 

dow of time, the foot is assumed to be stationary. One accepted threshold value is below 5 

the magnitude of 1.239 m/s2 of the MEMs accelerometers, where the value of gravity is 6 

factored out of consideration [11]. The threshold value comes from empirical data and the 7 

calculation of acceleration from the average force of the heel strike [12].  8 

  9 

 10 

Figure 1. Demonstration of the walking cycle for the stance and swing phase. 11 

In addition to ZVU-aided inertial navigation algorithms, a zero angular rate update 12 

(ZARU) can be performed in conjunction with ZVUs. ZARUs are similar to ZVUs, because 13 

they help keep sensors calibrated and aligned during the walking cycle when the angular 14 

rate measured is below a specific threshold. ZARUs can be utilized in addition to a ZVU, 15 

but not as an independent inertial navigation algorithm [3].   16 

The identification of ZVIs and the zero-angular rate during the walking cycle is dif- 17 

ficult because the foot tends to rotate during the stance phase, and varies between indi- 18 

vidual, shoe style, and terrain. Thus, some parts of the foot are more stationary than oth- 19 

ers. Identifying the ZVIs and zero-angular rates is accomplished using MEMS IMUS, sim- 20 

ilar to how context detection is used to decipher pedestrian activities [13]. Previous work 21 

has shown that in addition to using context detection for identifying pedestrian behavior, 22 

data recorded from MEMS IMUs can determine varying terrains over which a pedestrian 23 

traveled. This suggests that the walking cycle and natural gait of a pedestrian is affected 24 

by the terrain [14]. Studies have shown that there are changes in pedestrian speed across 25 

differing terrains [11, 15-16], suggesting that the natural gait of the walking cycle is af- 26 

fected. Most work on foot-mounted inertial navigation has been conducted indoors on 27 

hard surfaces [17-18], but a reliable system needs to work effectively both indoors and 28 

outdoors on a variety of different surfaces. 29 

Similar to a human’s ability to use sensory awareness in determining terrain while 30 

walking due to differences experienced in the gait cycle, a ZVU navigation solution must 31 

account for this difference. Human sensory awareness determines changes in terrain type 32 

while walking and work by Knuth and Groves verified that inertial data can be used to 33 

differentiate between terrains with 99.24% accuracy using a k-Nearest Neighbor machine 34 

learning algorithm [14]. If the natural gait is affected, then the differences will be recorded 35 

by the IMU, and ZVU navigation algorithms should be tuned for differences to the gait.  36 

Existing ZVU and ZARU navigation algorithms are limited by using predetermined 37 

thresholds and tuning parameters to determine accuracy, such as acceleration-moving 38 

variance detectors [19], acceleration-magnitude detectors [20], angular rate energy 39 
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detectors [21], and duration of ZVI [10]. Conventionally, these parameters are used re- 1 

gardless of terrain type. If differences are experienced while walking across different ter- 2 

rains, then these differences affect ZVU-aided inertial navigation solutions. 3 

In order to determine how differences in terrain affect the navigation solution, an 4 

investigation on how parameters to existing ZVU and ZARU algorithms are used is 5 

needed. Furthermore, an examination into additional parameters is required to accommo- 6 

date the differences in terrain from sensory awareness. For comparisons OpenShoe, an 7 

opensource ZVU-aided inertial navigation algorithm for use with foot-mounted IMUs, is 8 

used throughout as a navigation algorithm [22] and modified to include terrain-depend- 9 

ent parameters. For ZVUs, the threshold is calculated from the magnitude of the three- 10 

axis accelerometer during the ZVI. In this paper, a test statistic is used to account for grav- 11 

ity in the accelerometer magnitude threshold. Equation 1 converts the raw data into test 12 

data:  13 

Accelerometer Magnitude = |√𝑥2 + 𝑦2 + 𝑧2
2

− 9.81|. (1) 

The ZARU threshold is calculated from the magnitude of the three-axis gyroscope during 14 

the stance phase. Finally, the last parameters are the time of a complete cycle and duration 15 

of the ZVI. This accounts for the time between each step, including the ZVI, and sets a 16 

timing threshold where a step is not measured without a wait period. A visualization of 17 

the thresholds during the walking cycle is shown in Figure 2 by applying a moving aver- 18 

age filter to help with conceptualization, the data was collected from a single user using a 19 

MEMS IMU to demonstrate the walking cycle on concrete.   20 

 21 

 22 

Figure 2. Pedestrian walking cycle demonstration on concrete. (a)Visualization of ZVU parameters 23 
for accelerometer magnitude, zero-velocity duration, and duration between occurrences for accel- 24 
erometer data. (b) Visualization of ZARU parameter for gyroscope magnitude. 25 

2. Materials and Methods 26 

Four terrains were used in previous work and were successfully identified using IMU 27 

data: concrete, grass, pebble and sand [14]. For algorithm tuning across different terrains, 28 

an IMU is attached to the foot of the user for greater sensitivity when recording the inertial 29 

data. To reduce impact on pedestrian gait, an IMU was placed on top of the right shoe, 30 

shown in Figure 3. Attaching the IMU to the surface of the shoe, above the toes, provides 31 

the most consistent step and ZVI detection [23-24] when compared to placement on the 32 

ankle or heel. Attaching the IMU to the ankle requires a support structure that limits the 33 

motion of the foot and when the IMU is attached to the heel, the straps used to secure the 34 

IMU wrap under the arch of the foot and affect the natural gait. 35 

 36 
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 1 
Figure 3. Placement of an IMU on top of right shoes above the toes. 2 

 3 
Data was collected using a six degree of freedom (DOF) IMU from Inertial Elements 4 

[25]. Inertial Element’s IMU is low-cost and compact, the sensor specifications are in Table 5 

1. IMU data is recorded via Bluetooth to an Android app, OsmiumScope. The IMU is at- 6 

tached using Velcro above the toe of the shoe to reduce impact on the natural gait. By 7 

attaching the IMU with Velcro, there are no straps under the arch of the foot to alter each 8 

footstep or any casing at the heel that affects the balance of the user and changes the gait. 9 

The adhesive Velcro strips cover the base of the IMU housing, the larger contact area 10 

reduces the likelihood of the IMU shifting during data collection and affecting the 11 

measurements. The IMU records data along three orthogonal axes: X; Y; and Z for both 12 

accelerometers and gyroscopes. The collected data on the mobile phone was exported for 13 

processing. 14 
 15 
Table 1. Inertial Elements MIMU22BLPX sensor specifications 16 
 17 

Sensor Axis Bias Stability (mg) Velocity Random Walk (m/s/√hr) 

Accelerometer 

X 0.051 0.079 

Y 0.063 0.08 

Z 0.056 0.073 

Gyroscope 

Axis Bias Stability (°/hr) Angle Random Walk (°/√hr) 

X 4.76 0.381 

Y 4.49 0.366 

Z 4.62 0.378 
 18 

Tuning data was collected on four terrains using an IMU attached to athletic trainers. 19 

A single user wearing athletic trainers was used for data collection, thus eliminating gait 20 

variation. Test locations are all in England. Tuning data for the concrete and grass terrains 21 

was collected at Royal Air Force Mildenhall (RAFM) on a concrete running track and grass 22 

field. Data used for tuning the pebble terrain was collected at Chesil Beach. The sand tun- 23 

ing data was collected at Weymouth Beach. The beach terrains are defined using the 24 

Wentworth Scale [26], based on the grain size. Chesil Beach is a pebble beach with aggre- 25 

gates of 30 – 200 mm in diameter and Weymouth beach is a very fine to fine sand with 26 

grains of 0.0625 to 0.25 mm in diameter. Each beach and their respective grain types are 27 

shown in Figure 4.  28 

 29 

 30 
Figure 4. (a) Weymouth Beach in England. (b) Sand at the beach. (c) Chesil Beach in England. (d) 31 
Pebbles at Chesil Beach. 32 
 33 
Tuning for the algorithm was performed by manually identifying the ZVIs and zero angu- 34 

lar rate intervals across the terrains. Initial analysis indicated that the less firm the terrain was, 35 

the more variation in the threshold value. Figure 5 shows data from the test statistic 36 
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accelerometer magnitude of four terrains. The ZVIs are noisier for the sand and pebble terrains, 1 

whereas the concrete and grass terrains are more stable.  2 

 3 

 4 
Figure 5. Visualization of ZVI slope for four different terrains. 5 
 6 
The values for each parameter were determined from manual tuning and data selec- 7 

tion. The visual inspection of each stance phase was conducted by selecting the start of 8 

the ZVI following the heel strike. A second point was selected at the end of the ZVI before 9 

the magnitude increases due to the toe release. All magnitude and time data between the 10 

two points was exported, saved for each footstep from the tuning data and averaged to 11 

create a threshold value. The time between the first and second selected points is saved 12 

and a difference is calculated for the ZVI duration. The difference is saved for each set of 13 

selected points and averaged for the tuning data for the ZVI duration of the tested terrain. 14 

An additional difference is calculated between the second point selected and the following 15 

first point of the next ZVI. This difference is saved for the tuning data and averaged for 16 

the duration of the walking cycle, excluding the ZVI. Finally, the process is repeated for 17 

the gyroscope magnitude data to determine the zero angular rate threshold. The average 18 

values of the four parameters of the terrains is shown in Table 2. The four parameters 19 

comprise the tuning for the algorithm used for pedestrian navigation.  20 

Table 2. The average parameter values for tuning the ZVU algorithm for four separate terrains. 21 

Tuning Parameter Concrete Grass Pebble Sand 

Zero Angular Rate Max Threshold (deg/s) 0.256 0.386 0.568 0.303 

Zero Velocity Max Threshold (m/s2) 1.422 1.485 4.351 1.815 

ZVI Duration (s) 0.112 0.119 0.140 0.187 

Walking Cycle Duration – excluding ZVI (s) 1.040 1.122 1.154 1.140 
 22 
One standard deviation is then applied to each calculated average for the parameter 23 

threshold values to account for missed step detections in the walking cycle. The standard 24 

deviation for each parameter is shown in Table 3. The missed detections are attributed to 25 

variations in the ground, especially for softer terrains, where the ground gives way under 26 

each footstep. The final threshold values for each parameter are in Table 4. The threshold 27 

value for the zero-velocity threshold for concrete of 1.42  0.21 m/s2 is within the standard 28 

deviation of the 1.239 m/s2 single indoor threshold accepted value from literature. 29 

Table 3. Standard deviations of terrain-dependent parameters. 30 

Tuning Parameter Concrete Grass Pebble Sand 

Zero Angular Rate Max Threshold (deg/s) 0.045 0.098 0.428 0.135 

Zero Velocity Max Threshold (m/s2) 0.213 0.624 1.434 1.262 

ZVI Duration (s) 0.025 0.043 0.060 0.057 

Duration of Walking Cycle – excluding ZVI (s) 0.032 0.049 0.085 0.077 

 31 

  32 
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Table 4. ZVU algorithm parameter threshold values for four terrains and an indoor threshold. 1 

Tuning Parameter Concrete Grass Pebble Sand Indoor 

Zero Angular Rate Max Threshold (deg/s) 0.301 0.484 0.996 0.439 0.555 

Zero Velocity Max Threshold (m/s2) 1.635 2.108 5.785 3.077 1.239 

ZVI Duration (s) 0.086 0.076 0.080 0.130 0.080 

Duration of Walking Cycle – excluding ZVI (s) 1.009 1.073 1.069 1.063 1.000 
 2 
The ZVU is performed whenever the test statistic is below the threshold. The algo- 3 

rithm waits for the ZVI and duration of the walking cycle before searching again for a 4 

value below the threshold. The ZVI and walking cycle vary for each terrain, so wait time 5 

is terrain-dependent. This process is repeated for the ZARU. The magnitude thresholds 6 

for the accelerometers and gyroscopes are synched and the ZARU is identified when the 7 

test statistic is below the threshold of the gyroscope magnitude. If a ZVI and zero angular 8 

rate instance occur within one ZVI duration, heading and position are updated.  9 

The differences in the measured threshold values are consistent with sensory aware- 10 

ness that different terrains affect the natural gait, thus separate threshold values need to 11 

be considered when using a ZVU algorithm. 12 

When testing the algorithm, new data was collected across the four terrains. The 13 

threshold value used in literature of 1.239 m/s2 is derived from Schwartz’s work on walk- 14 

ing patterns of “normal” males [12] as well as Gast’s work on walking speed on different 15 

terrains [11]. OpenShoe assumes the walking surface to be firm without uneven imperfec- 16 

tions. These assumptions are similar to concrete and thus accepted as a suitable compari- 17 

son for the concrete terrain, as majority of work in ZVU-aided inertial navigation focuses 18 

on indoor navigation. The other terrains considered are not always on a firm foundation, 19 

meaning the ground on which the user walks can give way under each footstep. Addi- 20 

tionally, the surfaces of the three other terrains may exhibit unevenness or imperfections. 21 

To test the algorithm, datasets were collected at four locations: RAFM– concrete; Red 22 

Lodge Community Hall – grass; Aldeburgh Beach – pebble; and Southwold Beach – sand. 23 

Figure 6 is a picture of each terrain at the test locations.  24 

 25 

 26 
Figure 6. Test Terrains: (a) Grass at RAFM (b) Pebble at Aldeburgh Beach. (c) Sand at Southwold 27 
Beach. (d) Concrete track at RAFM. 28 
 29 

To compare the calculated terrain thresholds against existing ZVU algorithms the 30 

opensource OpenShoe ZVU algorithm is used as a baseline. For an accurate comparison, 31 

a 100m straight line was measured with surveying tape. A single user collected data along 32 

the straight line to eliminate heading errors. Data was collected at 125 Hz with the Inertial 33 

Elements IMU for five tests at each location. The collected data was post-processed and 34 

analyzed with the OpenShoe algorithm using existing threshold values and compared to 35 

the OpenShoe algorithm using terrain-specific parameters. The 100m is a truth reference 36 

distance against which the default ZVU-aided inertial navigation algorithm is compared. 37 

Additionally, the ZVU-aided inertial navigation algorithm with terrain-dependent pa- 38 

rameters is compared to the 100m reference. Comparing both ZVU algorithms to the 100m 39 

reference distance shows how each algorithm performs in calculating distance traveled. 40 
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3. Results 1 

The ZVU algorithm identifies the first instance under the threshold value in the ZVI 2 

and waits the time interval before searching for another instance. Occasionally steps are 3 

missed due to time constraints or the magnitude never crossing below the threshold. Fig- 4 

ure 7 highlights steps using the ZVU algorithm on pebble terrain. Figure 7(a) uses single 5 

threshold values not tuned to the terrain - missing five steps. Figure 7(b) uses terrain- 6 

specific threshold values and identifies all nine steps. 7 

 8 

 9 
Figure 7. Pebble terrain step identification (a) ZVU single threshold identification. (b) ZVU threshold 10 
identification using terrain-dependent pebble parameters. 11 

 12 
The baseline ZVU algorithm was run for all terrains using the single indoor threshold 13 

value across each test and terrain. The ZVU algorithm was then run for all terrains with 14 

terrain-specific parameter values. The distance measured using ZVU-aided inertial navi- 15 

gation from each test is compared to each other and the 100m reference. A comparison 16 

between the terrain-specific thresholds and the indoor single threshold is calculated using 17 

root mean square error (RMSE) from the measured distances in Equation 2: 18 

RMSE = √(𝑓 − 𝑜)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 22
, (2) 

where f is the measured distance of each test, and o is the 100m reference. The RMSE 19 

comparisons between the terrain-specific parameters and single threshold is in Table 5. 20 

Using the single threshold for concrete results in a 4.601m error. This is the most accurate 21 

result for the single threshold and consistent with concrete terrain using terrain-depend- 22 

ent parameters. Concrete is a hard surface similar to indoor surfaces on which the single 23 

threshold was tuned. For the other terrains the single threshold yields distance errors of 24 

29.351, 35.137 and 36.253m. Using terrain-dependent thresholds yields an RMSE below 25 

8.239m for all terrains. The improved accuracy of distance measured using terrain-de- 26 

pendent thresholds versus an indoor threshold is in Table 5 and calculated in Equation 3: 27 

Terrain Threshold Improvement = |
𝑅𝑀𝑆𝐸𝑡−𝑅𝑀𝑆𝐸𝑖

𝑅𝑀𝑆𝐸𝑡−100
|, (3) 

where RMSEt is the RMSE value for each terrain-dependent threshold, RMSEi is the 28 

RMSE value using the indoor threshold and 100 is the reference distance. 29 

Table 5. RMSE computed using ZVU-aided inertial navigation across five 100m lengths on each of 30 
four different terrains using terrain-dependent and single ZVU thresholds. 31 

Terrain 
RMSE with terrain-dependent 

thresholds (m) 

RMSE with indoor 

threshold (m) 

Terrain-Dependent Percent 

Improvement (%) 

Concrete 1.491 4.601 3.157 

Grass 2.506 29.351 27.531 

Pebble 8.239 35.137 29.316 

Sand 7.560 36.253 31.036 
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Using the single indoor threshold parameters, a distance of 95.399m was calculated 1 

for the concrete terrain and performed worse for each subsequent terrain. The terrain- 2 

dependent parameters are tuned to the specific terrains. The terrain data was tested using 3 

the parameters for the other terrains; for example, the pebble data was tested using con- 4 

crete parameters. This was repeated for every permutation of terrain and terrain parame- 5 

ters. Table 6 shows the distances when terrain data is tested using parameters for other 6 

terrains. The ZVU algorithm using the pebble and sand terrain parameters is more likely 7 

to identify steps because the threshold is larger, but when the sand and pebble data is 8 

tested using the concrete or grass parameters the RMSE calculated is above 18.355m.  9 

Table 6. RMSE (m) with varying thresholds across four terrains. 10 

 
Threshold 

Concrete Grass Pebble Sand Indoor 

Terrain 

Data 

Concrete 1.491 2.334 0.733 0.730 4.601 

Grass 10.361 2.506 0.745 0.750 29.351 

Pebble 18.818 19.889 8.239 12.240 35.137 

Sand 24.063 18.355 3.583 7.560 36.253 

4. Conclusion 11 

In this work, fine tuning a ZVU-aided inertial navigation algorithm with terrain-spe- 12 

cific threshold parameters demonstrated that terrain-dependent tuning affects the navi- 13 

gation solution. Using terrain-specific threshold values of four parameters (accelerometer 14 

and gyroscope magnitudes and durations of the ZVI and walking cycle) instead of values 15 

optimized for indoor use on hard surfaces, improved navigation accuracy. The terrain- 16 

dependent thresholds improved the distance measured by: 3.157, 27.531, 29.316 and 17 

31.036% across concrete, grass, pebble and sand terrains. The accuracy was better on con- 18 

crete and grass because as pedestrians walk on sand or pebble terrains, the terrain gives 19 

way causing more variation in accelerometer and gyroscope magnitude during each step.  20 

Future investigation is needed to determine if reducing the number of terrain classes 21 

to two, hard and soft, can improve accuracy and reduce the computational load of ZVU 22 

algorithms. Further investigation is recommended to understand the algorithm in real 23 

time as the pedestrian transitions between terrains. Additionally, the fine tuning of the 24 

algorithm needs to account for navigation solutions due to heading changes. This will also 25 

incorporate tuning further parameters of the ZVU algorithm to include measurement 26 

noise, use with filtering algorithms, and multiple ZVU updates within a single ZVI. 27 
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