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Given a 2-adic field K, we give a formula for the number 
of totally ramified quartic field extensions L/K with a given 
discriminant valuation and Galois closure group. We use these 
formulae to prove refinements of Serre’s mass formula, which 
will have applications to the arithmetic statistics of number 
fields.
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1. Introduction

Throughout this paper, we use the term 2-adic field for a finite field extension of the 
2-adic numbers Q2, and all the fields we consider will be 2-adic. Once and for all, fix a 
2-adic field K.

Let L/K be a finite field extension. The Galois closure group of L/K is the Galois 
group Gal(L̃/K), where L̃ is the normal closure of L over K. Write ΣG

m for the set of 
isomorphism classes of totally ramified quartic field extensions L/K with vK(dL/K) = m, 
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such that the Galois closure group of L/K is isomorphic to G. We allow ourselves to 
drop either or both of the decorators G and m, with the obvious meanings.

Using his eponymous lemma, Krasner [Kra66, Théorème 1] found a formula, in terms 
of m, for the size of the set Σm. More recently, Sinclair [Sin15] and Pauli–Sinclair [PS15]
gave refinements of Krasner’s formula, enumerating (among other things) the elements 
of Σm that have a prescribed ramification polygon. In a different direction, Wei and Ji 
[WJ07] counted the elements of ΣS4 and ΣA4 , without any conditions on discriminant 
valuation. In this paper, we combine the flavours of [PS15] and [WJ07] to give new 
refinements of Krasner’s result: formulae for the sizes of the sets ΣG

m, for all m and G. 
These results in hand, we prove novel refinements of Serre’s mass formula, which will 
have applications in the arithmetic statistics of number fields.

1.1. Outline and key results

Write eK and fK for the absolute ramification index and absolute inertia degree of 
K, respectively, and let q be the size 2fK of its residue field. In Section 2, we use a result 
of Serre to relate

#
(
ΣS4

m ∪ ΣA4
m

)
to the density of the corresponding Eisenstein polynomials. We then find explicit con-
gruence conditions for this set of Eisenstein polynomials and use them to compute the 
required density. Finally, we establish conditions for distinguishing between ΣA4

m and 
ΣS4

m , which we use to obtain the following two results:

Theorem 1.1. Suppose that fK is even. Then ΣS4
m is empty for all m. Moreover, ΣA4

m is 
nonempty if and only if m is an even integer with 4 ≤ m ≤ 6eK + 2. In that case, we 
have

#ΣA4
m =

{
1
3q

�m
3 �−2(q2 − 1) if 3 | m,

q�
m
3 �−1(q − 1) if 3 ∤ m.

Theorem 1.2. Suppose that fK is odd.

• The set ΣS4
m is nonempty if and only if m ∈ 2Z \ 6Z and 4 ≤ m ≤ 6eK + 2. In that 

case, we have

#ΣS4
m = q�

m
3 �−1(q − 1).

• The set ΣA4
m is nonempty if and only if m is a multiple of 6 and 6 ≤ m ≤ 6eK . In 

that case, we have

#ΣA4
m = 1 · q�m

3 �−2(q2 − 1).
3
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The case V4 was addressed by Tunnell in [Tun78]. We repackage his result in Section 3
as the following theorem:

Theorem 1.3. If ΣV4
m is nonempty, then m is an even integer with 6 ≤ m ≤ 6eK + 2. For 

all such m, we have

#ΣV4
m = 2(q − 1)q

m−4
2

(
q−�m

6 �(1 + 13|m · q − 2
3 ) − 1m≤4eK+2 · q−�m−2

4 �
)
.

The bulk of our work goes into the C4 case. In [CDO05], Cohen, Diaz y Diaz, and 
Olivier obtain asymptotic formulae for the number of C4-extensions of a number field. We 
adapt their methods to compute the size of ΣC4

m . Our formula depends on the discriminant 
valuation

d(−1) = vK(dK(
√
−1)/K),

which is an even integer by Lemma 4.20.

Theorem 1.4. If ΣC4
m is nonempty, then either m = 8eK + 3 or m is an even integer 

with 8 ≤ m ≤ 8eK . For even m with 8 ≤ m ≤ 8eK , the number #ΣC4
m is the sum of the 

following four quantities:

1. 18≤m≤5eK−2 · 1m≡3 (mod 5) · 2q
3m−14

10 (q − 1).
2. 14eK+4≤m≤5eK+2 · 2q

m
2 −eK−2(q − 1).

3. 15eK+3≤m≤8eK ·1m≡2eK (mod 3)·2q
m+4eK

6 −1(1 +1m≤8eK−3d(−1))(q−1 −1m=8eK−3d(−1)+6).
4. 110≤m≤5eK · 2(q − 1)(q� 3m

10 �−1 − qmax{�m+2
4 �,m2 −eK}−2).

We also have

#ΣC4
8eK+3 =

⎧⎪⎪⎨⎪⎪⎩
4q2eK if −1 ∈ K×2,

2q2eK if K(
√
−1)/K is quadratic and totally ramified,

0 if K(
√
−1)/K is quadratic and unramified.

Finally, in Section 5, we compute the number of towers of two quadratic extensions 
L/E/K with vK(dL/K) = m and express this number in terms of #ΣC4

m , #ΣV4
m , and 

#ΣD4
m . Rearranging, we obtain:

Theorem 1.5. If ΣD4
m is nonempty, then one of the following holds:

1. m is an even integer with 6 ≤ m ≤ 8eK + 2.
2. m ≡ 1 (mod 4) and 4eK + 5 ≤ m ≤ 8eK + 1.
3. m = 8eK + 3.
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For even m with 6 ≤ m ≤ 8eK + 2, we have

#ΣD4
m = 2(q − 1)qm

2 −2

×
(
1m≥4eK+4 · q−eK + 1m≤8eK ·

(
qmin{0,eK+1−�m

4 �} − q−min{�m−2
4 �,eK}))

− 1
2#ΣC4

m − 3
2#ΣV4

m .

For m ≡ 1 (mod 4) with 4eK + 5 ≤ m ≤ 8eK + 1, we have

#ΣD4
m = 2(q − 1)qeK+m−1

4 −1 − 1
2#ΣC4

m − 3
2#ΣV4

m .

If m = 8eK + 3, then

#ΣD4
m = 2q3eK − 1

2#ΣC4
8eK+3.

Theorems 1.3 and 1.4 make these expressions completely explicit.

1.2. Application: refinements of Serre’s mass formula

Our main application is to prove refinements of Serre’s mass formula. Define the mass
of a set S of field extensions L/K to be

m̃(S) =
∑
L∈S

(# Aut(L/K))−1

qvK(dL/K) .

This quantity was first studied by Serre, who proved his famous “mass formula” [Ser78, 
Theorem 2]. In [Bha07], Bhargava generalised Serre’s formula to sets of étale algebras over 
K and developed the so-called “Malle–Bhargava heuristics” which predict the asymp-
totic number of degree n number fields with Galois closure group Sn, when ordered by 
discriminant. Essentially, Bhargava predicts that the probability of a “randomly select-
ed” such number field having a prescribed local completion is proportional to the mass 
of that local completion.

Bhargava, Shankar, and Wang proved these heuristics for n = 2, 3, 4, 5 in [BSW15, 
Theorem 2], replacing degree n number fields by degree n extensions of an arbitrary 
base number field. Recently, in [Alb23], Alberts extended the Malle–Bhargava heuristics, 
replacing Sn with more general classes of Galois closure groups. Aside from the mass’s 
general importance in arithmetic statistics, the original motivation for our refinements 
comes from our earlier preprint [Mon22]; our formula for the local masses at primes 
p lying over 2 (called mA,p in [Mon22]) is woefully inexplicit, and we intend to use 
the formulae in this paper to remedy that shortcoming. Similarly, upcoming work of 
Newton–Varma uses a modified version of Corollary 1.9, and more generally we expect 
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our refined mass formulae to be useful for obtaining explicit masses when counting S4-
quartic extensions with local conditions.

We find explicit formulae for m̃(ΣG) for each G, which we now state. The proofs are 
deferred to later sections of the paper.

Corollary 1.6. If fK is even, then

m̃(ΣS4) = 0,

and

m̃(ΣA4) = 1
3(q − 1) · q

4eK − 1
q4 − 1 · q−4eK−3

(
3q3 + q2 + q + 3

)
.

Corollary 1.7. Suppose that fK is odd. Then

m̃(ΣS4) = q3 + 1
q3 + q2 + q + 1 · (q−3 − q−4eK−3),

and

m̃(ΣA4) = 1
3 · 1

q2 + 1 · (q−2 − q−4eK−2).

Corollary 1.8. We have

m̃(ΣV4) = q − 1
6 ·

(
q−4eK−3 · q

4eK − 1
q4 − 1 · (3q3 +q2 +q+3)−3q−3eK−3 · q

3eK − 1
q3 − 1 · (q2 +1)

)
.

Corollary 1.9. The mass m̃(ΣC4) is the sum of the following nine quantities:
1.

1
2 · (q − 1)(1 − q−7� eK

2 �)
q7 − 1 .

2. 1
2 · q−3eK−3(1 − q−� eK

2 �).

3.
1d(−1)<eK · (q − 1)(q−5� eK

2 �−eK−1 − q
5
2d(−1)−6eK−1)

q5 − 1 .

4. 1
2 · 1d(−1)≥2 · q−6eK+ 5

2d(−1)−6(q − 2).

5. 1 · 1d(−1)≥4 ·
(q − 1)(q 5

2d(−1)−6eK−6 − q−6eK−1)
5 .
2 q − 1
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6.
1eK≥2 ·

1
2(q − 1)q−7� eK

2 �−1

×
(q(q7� eK

2 �−7 − 1)(q6 + q4 + q3 + q + 1)
q7 − 1 + 1 + 12∤eK (q−2 + q−3)

)
.

7.
−1eK≥2 ·

1
2 · (q − 1)(q + 1)(q−7 − q−3eK−1)

q3 − 1 .

8. −1
2q

−3eK−2(1 − q−� eK
2 �).

9. ⎧⎪⎪⎨⎪⎪⎩
q−6eK−3 if −1 ∈ K×2,
1
2q

−6eK−3 if K(
√
−1)/K is quadratic and totally ramified,

0 otherwise.

Corollary 1.10. We have the following formula for m̃(ΣD4), which is made completely 
explicit by Corollaries 1.8 and 1.9.

m̃(ΣD4) = 1
q2 + q + 1 · (q−3eK−3 + q−3eK−1 + q−2) − m̃(ΣC4) − 3m̃(ΣV4).

1.3. Correctness of results

Using MAGMA [BCP97] and the LMFDB [LMFDB], we have verified Theo-
rems 1.1-1.5 and Corollaries 1.6-1.10 for all extensions K/Q2 of degree at most 3. 
Whenever eK ≤ 10 and fK ≤ 10, we have also checked numerically the deduction of 
Corollaries 1.6-1.10 from Theorems 1.1-1.5. Our code is available at https://github .com/
Sebastian -Monnet /Mass -Formula -Checks.

1.4. Index of notation

We fix the following notation.

1. For a 2-adic field F , write:
(a) OF for its ring of integers.
(b) πF for a uniformiser of OF .
(c) pF for the maximal ideal of OF .
(d) FF for the residue field OF /pF .
(e) qF for the cardinality of FF .
(f) eF for the absolute ramification index e(F/Q2).
(g) fF for the inertia degree f(F/Q2).
(h) vF for the unique 2-adic valuation on F , normalised such that vF (πF ) = 1.
(i) U

(i)
F for the group 1 + piF in the unit filtration, where i > 0.

https://github.com/Sebastian-Monnet/Mass-Formula-Checks
https://github.com/Sebastian-Monnet/Mass-Formula-Checks
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(j) U
(0)
F for the unit group O×

F .
2. Given an extension E/F of 2-adic fields, write:

(a) dE/F for its discriminant ideal.
(b) e(E/F ) for its ramification index.
(c) f(E/F ) for its inertia degree.

3. K: A fixed 2-adic field.
4. q: Shorthand for qK .
5. Σ: The set of isomorphism classes of totally ramified quartic extensions L/K.
6. L̃: For an extension L/K of K, write L̃ for the normal closure of L over K.
7. For a group G ∈ {S4, A4, D4, V4, C4} and positive integer m, write:

(a) ΣG := {L ∈ Σ : Gal(L̃/K) ∼= G}.
(b) Σm := {L ∈ Σ : vK(dL/K) = m}.
(c) ΣG

m := Σm ∩ ΣG.
8. d(−1): The discriminant valuation vK(dK(

√
−1)/K).

9. m̃(S): For S ⊆ Σ, the mass of S is

m̃(S) =
∑
L∈S

(# Aut(L/K))−1

qvK(dL/K) .

10. Σ1−Aut and Σ1−Aut
m : The sets ΣA4 ∪ ΣS4 and Σ1−Aut ∩ Σm respectively.

11. P : The set of monic, quartic Eisenstein polynomials in K[X].
12. Lf : For f ∈ P , write Lf for the field extension K[X]/(f) of K.
13. Pm, PG and PG

m : For G ∈ {S4, A4, D4, V4, C4}, define Pm, PG, and PG
m to be the sets 

of f ∈ P such that Lf is in Σm, ΣG, and ΣG
m respectively.

14. P 1−Aut and P 1−Aut
m : The sets of f ∈ P such that Lf ∈ Σ1−Aut and Lf ∈ Σ1−Aut

m , 
respectively.

15. μ: Haar measure on O4
K , normalised so that μ(O4

K) = 1.
16. vπ: Given an extension L/K, such that π is a uniformiser of L, we write vπ for the 

2-adic valuation on L, normalised so that vπ(π) = 1.
17. Tm: For even integers 4 ≤ m ≤ 6eK+2, this is the set of a0+a1X+a2X

2+a3X
3+X4

in P such that{
vK(a1) = m

4 , vK(a2) ≥ m
6 , vK(a3) ≥ m

4 , if m ≡ 0 (mod 4),
vK(a1) ≥ m+2

4 , vK(a2) ≥ m
6 , vK(a3) = m−2

4 , if m ≡ 2 (mod 4).

18. R: System of representatives for (OK/pK)×.
19. g

(u)
f : When m is a multiple of 6 with 6 ≤ m ≤ 6eK and we have u ∈ R and f ∈ Pm, 

define

g
(u)
f (X) = f(X + π + uπ

m
3 ).

20. b
(u)
i : The Xi coefficient of g(u)

f .
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21. μ3 ⊆ K: Shorthand for “K contains three distinct cube roots of unity”.
22. Let F be a 2-adic field. Write:

(a) Ext2/F for the set of isomorphism classes of quadratic extensions of F .
(b) Ext2/F,m (respectively Ext2/F,≤m) for the set of E ∈ Ext2/F such that we have 

vF (dE/F ) = m (respectively vF (dE/F ) ≤ m).
23. Let E/K be a quadratic extension. Write:

(a) ExtG/K
2/E for the set of L ∈ Ext2/E such that the Galois closure group of L/K is 

isomorphic to G.
(b) ExtG/K

2/E,m2
(respectively ExtG/K

2/E,≤m2
) for the set of L ∈ ExtG/K

2/E such that 
vE(dL/E) = m2 (respectively vE(dL/E) ≤ m2).

24. Ext↑C4
2/K,m1

(respectively Ext↑C4
2/K,≤m1

): Set of C4-extendable quadratic extensions 
E/K such that vK(dE/K) = m1 (respectively vK(dE/K) ≤ m1).

25. Next(m1): Function explicitly defined in Definition 4.1.
26. NC4(m1, m2): Function explicitly defined in Definition 4.3.
27. α/x2 ≡ 1 (mod plF ): Given a p-adic field F , a nonnegative integer l, and elements 

α, x ∈ F , this means that x �= 0 and

vF (α/x2 − 1) ≥ l.

28. SF/K,t: For an extension F/K and an integer 1 ≤ t ≤ vF (2), we define

SF/K,t = {u ∈ K×/K×2 : u/x2 ≡ 1 (mod p2t
F ) for some x ∈ F×}.

For t = 0, define

SF/K,0 = {u ∈ K×/K×2 : vF (u) is even}.

29. Let A be a subgroup of K×/K×2. Then write:
(a) K(

√
A) = K({√α : [α] ∈ A}).

(b) OA
K = O×

K ∩ NmK(
√
A).

(c) SA
K/K,t = SK/K,t ∩

(
NmK(

√
A)/K×2), where 0 ≤ t ≤ eK .

(d) ExtA2/K,≤m1
for the set of E ∈ Ext2/K,≤m1

with A ⊆ NmE.
(e) (OK/p2t

K)A for the image of the map OA
K → (OK/p2t

K)×.
(f) At = A ∩

(
U

(2t)
K K×2/K×2), where 0 ≤ t ≤ eK .

30. Ext↪→L
2/K : For G ∈ {V4, C4, D4} and L ∈ ΣG, this is the set of E ∈ Ext2/K such that 

there exists a K-morphism E ↪→ L.
31. TwistK(L/E): For G ∈ {V4, C4, D4}, L ∈ ΣG, and E ∈ Ext↪→L

2/K , this is the set of 
L′ ∈ Ext2/E such that there is a K-isomorphism L → L′, where L is viewed as an 
extension of E via the unique embedding E ↪→ L.

32. Towm: The set of pairs (E, L), where L/E/K is a tower of totally ramified quadratic 
extensions and vK(dL/K) = m.

33. Φm: The forgetful map Towm → Σm, taking (E, L) to the extension L of K.
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2. The cases G = S4 and G = A4

Throughout this paper, all Eisenstein polynomials are taken to be monic. Write P
for the set of quartic Eisenstein polynomials in K[X]. For f ∈ P , let Lf be the field 
K[X]/(f), which is a totally ramified quartic extension of K. Given a finite group G, let 
PG be the set of f ∈ P such that Lf/K has Galois closure group isomorphic to G. For 
any integer m, let Pm be the set of f ∈ P such that vK(dLf/K) = m, or equivalently 
such that vK(disc(f)) = m. For each G, write PG

m for the intersection PG ∩ Pm. Write 
P 1−Aut and P 1−Aut

m as shorthand1 for PS4 ∪PA4 and PS4
m ∪PA4

m respectively. Similarly, 
write Σ1−Aut and Σ1−Aut

m for ΣS4 ∪ ΣA4 and ΣS4
m ∪ ΣA4

m respectively.
The quartic Eisenstein polynomials in K[X] embed naturally into O4

K via

X4 + a3X
3 + a2X

2 + a1X + a0 
→ (a3, a2, a1, a0).

Write μ for the Haar measure on O4
K , normalised such that μ(O4

K) = 1. We will apply 
this Haar measure to sets of Eisenstein polynomials, viewed as subsets of O4

K via the 
embedding described above.

Lemma 2.1. Let G ∈ {S4, A4} let m be a positive integer. We have

#ΣG
m = qm+2

q − 1 · μ(PG
m).

Proof. This follows easily from [Ser78, Equation 13].

1 The 1 − Aut refers to the fact that # Aut(L/K) = 1 if and only if L ∈ ΣS4 ∪ ΣA4 .
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2.1. Congruence conditions for P 1−Aut
m

In [Lbe09, Theorem 2.9], Lbekkouri gives congruence conditions for a quartic Eisen-
stein polynomial f(X) ∈ Q2[X] to define a Galois extension. We extend his methods to 
Eisenstein polynomials over arbitrary 2-adic base fields, to obtain congruence conditions 
for the set P 1−Aut

m , which we will state in Lemma 2.4 and Corollary 2.7.
It should be noted that Lbekkouri’s statement of [Lbe09, Theorem 2.9] is incorrect. 

In items (2i) and (2ii), both instances of “a0 +a2” should read “a0 +2”. This typo is first 
introduced in the statement of Proposition 2.8 and is carried over into Theorem 2.9.

For f ∈ P , we will always denote the coefficients of f by

f(X) = X4 + a3X
3 + a2X

2 + a1X + a0.

Whenever we refer to the coefficients ai, the choice of f will be clear. Let πf = X + (f)
be the natural uniformiser of Lf . We will always drop the subscript and denote πf by π, 
since our choice of f will be clear. Write vπ for the 2-adic valuation on Lf , normalised 
such that vπ(π) = 1. Fix an algebraic closure K of Lf , and let

σi : Lf → K, i = 1, 2, 3, 4

be the four embeddings of Lf , where σ1 is the identity embedding. For elements α of 
algebraic extensions of K, we will write vK(α) as shorthand for ṽK(α), where ṽK is the 
unique extension of vK to the algebraic closure K of K.

Lemma 2.2. For all f ∈ P 1−Aut, the three valuations

vK(σi(π) − π), i = 2, 3, 4

are equal.

Proof. Suppose that f ∈ P and the quantities vK(σi(π) − π) are not all equal for the 
values i = 2, 3, 4. Reordering the σi if necessary, we have

vK(σ2(π) − π) �= vK(σi(π) − π)

for i = 3, 4. The cubic polynomial X−1f(X + π) ∈ Lf [X] has roots

σi(π) − π, i = 2, 3, 4.

The minimal polynomial of σ2(π) − π over Lf therefore divides X−1f(X + π), and all 
its roots have the same valuation, so

σ2(π) − π ∈ Lf ,

and therefore f has at least two roots in Lf , so f �∈ P 1−Aut.
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For each even integer 4 ≤ m ≤ 6eK + 2, define Tm to be the set of f ∈ P such that{
vK(a1) = m

4 , vK(a2) ≥ m
6 , vK(a3) ≥ m

4 , if m ≡ 0 (mod 4),
vK(a1) ≥ m+2

4 , vK(a2) ≥ m
6 , vK(a3) = m−2

4 , if m ≡ 2 (mod 4).

Lemma 2.3. The following two statements are true:

1. Let m be an even integer with 4 ≤ m ≤ 6eK + 2 and let f ∈ Pm. Then f ∈ Tm if 
and only if

vK(σi(π) − π) = m

12

for i = 2, 3, 4.
2. Let m be a positive integer. If P 1−Aut

m is nonempty then m is even, 4 ≤ m ≤ 6eK +2, 
and P 1−Aut

m ⊆ Tm.

Proof. Let f ∈ Pm for any positive integer m, not necessarily even. Define the polynomial

g(X) := X−1f(X + π),

and write g(X) =
∑3

i=0 biX
i for bi ∈ Lf . It is easy to see that

b0 = a1 + 2πa2 + 3π2a3 + 4π3,

b1 = a2 + 3πa3 + 6π2,

b2 = a3 + 4π.

Since the vπ(ai) are all multiples of 4, we have

vπ(b0) = min{vπ(a1), vπ(2πa2), vπ(3π2a3), vπ(4π3)},
vπ(b1) = min{vπ(a2), vπ(3πa3), vπ(6π2)},
vπ(b2) = min{vπ(a3), vπ(4π)}.

The polynomial g(X) ∈ Lf [X] has roots σi(π) − π for i = 2, 3, 4. Suppose that

vK(σi(π) − π) = m

12

for each i. Then the Newton polygon of g(X) consists of one line segment (0, m) ↔ (3, 0), 
so ⎧⎪⎪⎨⎪⎪⎩

m = min{vπ(a1), vπ(2πa2), vπ(3π2a3), vπ(4π3)},
2m
3 ≤ min{vπ(a2), vπ(3πa3), vπ(6π2)},

m ≤ min{v (a ), v (4π)},
(∗)
3 π 3 π
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and for even m this implies membership of Tm. Reversing the argument, it is easy to see 
that for even m with 4 ≤ m ≤ 6eK + 2, every f ∈ Tm has

vK(σi(π) − π) = m

12 , i = 2, 3, 4.

Thus we have proven (1). Now let f ∈ P 1−Aut
m for some positive integer m. Then 

Lemma 2.2 implies that

vK(σi(π) − π) = m

12

for i = 2, 3, 4, and we have shown that this implies Equation (∗), so

{
m = min{vπ(a1), vπ(a2) + 4eK + 1, vπ(a3) + 2, 8eK + 3},
2m
3 ≤ min{vπ(a2), 4eK + 2}.

Since f is Eisenstein, vπ(ai) ≥ 4 for each i, and therefore 4 ≤ m ≤ 6eK + 3. Moreover, 
vπ(a2) ≥ 2m

3 implies that m ≤ vπ(a2) + 2eK + 1, so m �= vπ(a2) + 4eK + 1. Since 
m < 8eK + 3, we obtain

m = min{vπ(a1), vπ(a3) + 2},

so m is even, so in fact 4 ≤ m ≤ 6eK + 2. Finally, Part (1) of this lemma shows that 
f ∈ Tm, completing the proof of (2).

Lemma 2.4. Let m be an even integer with 4 ≤ m ≤ 6eK + 2. If m is not a multiple of 
3, then P 1−Aut

m = Tm.

Proof. Lemma 2.3 tells us that P 1−Aut
m ⊆ Tm, so we just need to show that Tm ⊆ P 1−Aut

m . 
Let f ∈ Tm. Lemma 2.3 tells us that

vπ(σi(π) − π) = m

3 , i = 2, 3, 4,

so σi(π) �∈ Lf for each i, since m3 is not an integer, and therefore Tm ⊆ P 1−Aut
m .

From now on, fix a system of representatives R for (OK/pK)×. When 3 | m, for each 
u ∈ R and f ∈ Pm, define the polynomial

g
(u)
f (X) := f(X + π + uπ

m
3 ),

and write g(u)
f (X) =

∑4
i=0 b

(u)
i Xi for b(u)

i ∈ Lf . We will always omit the subscript and 

write g(u)(X) for g(u)
f (X), leaving f implicit.
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Lemma 2.5. Let m be a multiple of 6 with 4 ≤ m ≤ 6eK + 2. Let f ∈ Tm and u ∈ R. We 
have:

1. vK(b(u)
3 ) ≥ m−2

4 .
2. vK(b(u)

2 ) ≥ m
6 .

3. vK(b(u)
1 ) = m

4 .
4.

vK(b(u)
0 )

⎧⎪⎪⎨⎪⎪⎩
≥ m

3 + 1 if 4 | m and a1 + ua2a
m
12
0 + u3a

m
4
0 ≡ 0 (mod p

m
4 +1
K ),

≥ m
3 + 1 if 4 ∤ m and a3 + ua2a

� m
12 �

0 + u3a
�m

4 �
0 ≡ 0 (mod p

�m
4 �+1

K ),
= m

3 otherwise.

Proof. It is easy to see that for each i and u, we have

b
(u)
i =

4∑
j=i

(
j

i

)
aj(π + uπ

m
3 )j−i,

where we adopt the convention that a4 = 1. Using this formula for the b(u)
i , along with 

the congruence conditions defining Tm, gives us the following three congruences:

b
(u)
3 ≡ a3 (mod πm+1).

b
(u)
2 ≡ a2 (mod π

2m
3 +1).

b
(u)
1 ≡

{
a1 (mod πm+1) if m ≡ 0 (mod 4),
3π2a3 (mod πm+1) if m ≡ 2 (mod 4).

We can read off the first three claims from these congruences. Expanding the formula 
for b(u)

0 and ignoring the high-valuation terms, we obtain

b
(u)
0 ≡

{
ua1π

m
3 + u2a2π

2m
3 + u4π

4m
3 (mod π

4m
3 +1) if m ≡ 0 (mod 4),

u2a2π
2m
3 + ua3π

m
3 +2 + u4π

4m
3 (mod π

4m
3 +1) if m ≡ 2 (mod 4).

It follows that vK(b(u)
0 ) ≥ m

3 , and vK(b(u)
0 ) ≥ m

3 + 1 if and only if

{
a1 + ua2π

m
3 + u3πm ≡ 0 (mod πm+1) if m ≡ 0 (mod 4),

a + ua π
m
3 −2 + u3πm−2 ≡ 0 (mod πm−1) if m ≡ 2 (mod 4).
3 2
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The result then follows from the fact that,2 for any positive integer k, we have

π4k ≡ (−a0)k (mod π4k+ 2m
3 −2).

Lemma 2.6. Let 4 ≤ m ≤ 6eK + 2 be a multiple of 6 and let f ∈ Tm. Then f �∈ P 1−Aut
m

if and only if vK(b(u)
0 ) ≥ m

3 + 1 for some u ∈ R.

Proof. Suppose that f �∈ P 1−Aut
m . Then f has at least two roots in Lf . Reordering the 

σi if necessary, we may assume that σ2(π) ∈ Lf . Since f ∈ Tm, Lemma 2.3 tells us that 
vK(σ2(π) − π) = m

12 , so

σ2(π) = π + ũπ
m
3

for some ũ ∈ O×
Lf

. Since Lf/K is totally ramified, there is some element u ∈ R with 
u ≡ ũ (mod π), which means that

vK(σ2(π) − π − uπ
m
3 ) > m

12 .

The other three roots of g(u) all have valuation at least m12 , so

vK(b(u)
0 ) ≥ m

3 + 1.

Suppose conversely that vK(b(u)
0 ) ≥ m

3 + 1 for some u ∈ R. Lemma 2.5 tells us that 
vK(b(u)

1 ) = m
4 and vK(b(u)

2 ) ≥ m
6 , so considering the Newton polygon of g(u) tells us that 

it has exactly one root σi(π) − π − uπ
m
3 with

vπ(σi(π) − π − uπ
m
3 ) ≥ m

3 + 1.

Therefore we have

σi(π) − π − uπ
m
3 ∈ Lf ,

so σi(π) ∈ Lf , which means that f �∈ P 1−Aut.

Corollary 2.7. Let m be a multiple of 6 with 4 ≤ m ≤ 6eK + 2, and let f ∈ Tm. The 
following are equivalent:

1. We have f �∈ P 1−Aut
m .

2 This follows from expanding the binomial on the right-hand side of

(π4)k = ((−a0) + (−a1π − a2π
2 − a3π

3))k.
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2. There is some u ∈ R such that⎧⎨⎩a1 + ua2a
� m

12 �
0 + u3a

�m
4 �

0 ≡ 0 (mod p
�m

4 �+1
K ) if m ≡ 0 (mod 4),

a3 + ua2a
� m

12 �
0 + u3a

�m
4 �

0 ≡ 0 (mod p
�m

4 �+1
K ) if m ≡ 2 (mod 4).

Proof. This is immediate from Lemmas 2.5 and 2.6.

2.2. Computing the densities

Lemma 2.8. Let m be an even integer with 4 ≤ m ≤ 6eK + 2. Then

μ(Tm) = q−� 2m
3 �−3(q − 1)2.

Proof. This is easy to see from the definition of Tm.

Since FK
∼= F2fK , the trace map TrFK/F2 : FK → F2 is given by

TrFK/F2(x) = x + x2 + . . . + x2fK−1
.

Lemma 2.9. Let α, β, γ ∈ FK with α �= 0, and let g be the polynomial αX2 + βX + γ in 
FK [X]. The number of roots of g in FK is⎧⎪⎪⎨⎪⎪⎩

1 if β = 0,
2 if β �= 0 and TrFK/F2(αγ/β2) = 0,
0 if β �= 0 and TrFK/F2(αγ/β2) = 1.

Proof. The case with β = 0 is clear, so assume β �= 0. Let u be a root of g in a splitting 
field over FK , and let θ = αu

β . Clearly u ∈ FK if and only if θ ∈ FK , which is equivalent 
to θ + θq = 0. Since

Gal(FK/F2) = {x 
→ x2i

: i = 0, 1, . . . , fK − 1},

it is easy to see that

TrFK/F2(θ + θ2) = θ + θq,

and also that

θ + θ2 = αγ

β2 .

Therefore, u ∈ FK if and only if TrFK/F2(
αγ

2 ) = 0, and the result follows.
β
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Lemma 2.10. Let n ≥ 0 be an integer and let λ, μ ∈ pnK , with μ �∈ p
n+1
K . Define the map

α : OK/pK → OK/pn+1
K , c 
→ λc + μc3.

The following two statements are true:

1. For c ∈ (OK/pK)×, we have

#{c′ ∈ (OK/pK)× : α(c′) = α(c)}

=

⎧⎪⎪⎨⎪⎪⎩
1 if c2 ≡ λ/μ (mod pK),
1 if c2 �= λ/μ and TrFK/F2

(
λ

c2μ

)
�≡ fK (mod 2),

3 if c2 �= λ/μ and TrFK/F2

(
λ

c2μ

)
≡ fK (mod 2).

2. We have

# imα =
{2q+(−1)fK

3 if λ �∈ p
n+1
K ,

q+1+(−1)fK
2+(−1)fK if λ ∈ p

n+1
K .

Proof. It is easy to see that for c, c′ ∈ (OK/pK)×, we have α(c) = α(c′) if and only if

(c− c′)
(
(c′)2 + cc′ + λ

μ
+ c2

)
≡ 0 (mod pK).

The first statement then follows from Lemma 2.9. For the second statement, suppose 
first that λ �∈ p

n+1
K . Then there is some c ∈ (OK/pK)× with α(c) = 0, so

# imα =
∑

c∈(OK/pK)×

1
#{c′ ∈ (OK/pK)× : α(c′) = α(c)}

= 1 + (q − 2 − a) + a

3 ,

where

a = #{c ∈ (OK/pK)× : c2 �= λ

μ
and TrFK/F2

( λ

c2μ

)
≡ fK (mod 2)}.

Since λ �∈ p
n+1
K , the map

(pK/OK)× → (pK/OK)×, c 
→ λ

c2μ

is a bijection, so
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a = #{u ∈ (OK/pK)× \ {1} : TrFK/F2(u) ≡ fK (mod 2)}

= 1
2(q − 3 − (−1)fK ),

and the result follows. Now suppose that λ ∈ p
n+1
K . Then α(c) = 0 if and only if c = 0, 

so

# imα = 1 +
∑

c∈(OK/pK)×

1
#{c′ ∈ (OK/pK)× : α(c′) = α(c)} .

We have λ
c2μ ≡ 0 (mod pK) for all c ∈ (OK/pK)×, so

#{c′ ∈ (OK/pK)× : α(c′) = α(c)} = 2 + (−1)fK ,

and the result follows.

Lemma 2.11. Let a, b > 0 be integers, and let S be the set of triples (x0, x1, x2) ∈ O3
K

such that the following two conditions hold:

1. vK(x0) = 1, vK(x1) = a + b, vK(x2) ≥ b.
2. There is some u ∈ R such that x1 + ux2x

a
0 + u3xa+b

0 ≡ 0 (mod p
a+b+1
K ).

Then μ(S) = 1
3q

−a−2b−4(q − 1)2(2q − 1).

Proof. Suppose that, for xi and x′
i in OK , we have xi ≡ x′

i (mod p
a+b+1
K ) for i = 0, 1, 2. 

Then (x0, x1, x2) ∈ S if and only if (x′
0, x

′
1, x

′
2) ∈ S, so

μ(S) = #S

q3a+3b+3 ,

where S is the set of triples

(x̄0, x̄1, x̄2) ∈
(
(pK/pa+b+1

K ) \ (p2
K/pa+b+1

K )
)
×
(
(pa+b

K /pa+b+1
K ) \ {0}

)
× (pbK/pa+b+1

K )

such that there is some u ∈ R with

x̄1 + ux̄2x̄
a
0 + u3x̄a+b

0 = 0.

For each x̄0 ∈ (pK/pa+b+1
K ) \ (p2

K/pa+b+1
K ) and x̄2 ∈ pbK/pa+b+1

K , define the map

αx̄0,x̄2 : OK/pK → p
a+b
K /pa+b+1

K , u 
→ −ux̄2x̄
a
0 − u3x̄a+b

0 .

Then
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S = �
x̄0∈(pK/pa+b+1

K )\(p2
K/pa+b+1

K )
x̄2∈p

b
K/pa+b+1

K

{x̄0} ×
(

imαx̄0,x̄2 \ {0}
)
× {x̄2}.

Since αx̄0,x̄2(0) = 0, we always have 0 ∈ imαx̄0,x̄2 , so

#
(

imαx̄0,x̄2 \ {0}
)

= # imαx̄0,x̄2 − 1,

and therefore

#S =
∑

x̄0∈(pK/pa+b+1
K )\(p2

K/pa+b+1
K )

x̄2∈p
b
K/pa+b+1

K

(# imαx̄0,x̄2 − 1),

Lemma 2.10 tells us that

# imαx̄0,x̄2 =

⎧⎨⎩
2q+(−1)fK

3 if x̄2 �∈ p
b+1
K /pa+b+1

K ,

q+1+(−1)fK
2+(−1)fK if x̄2 ∈ p

b+1
K /pa+b+1

K .

It follows that

#S = 1
3q

2a+b−1(q − 1)2(2q − 1),

so

μ(S) = 1
3q

−a−2b−4(q − 1)2(2q − 1).

Corollary 2.12. Let 4 ≤ m ≤ 6eK + 2 be a multiple of 6. Then

μ(Tm \ P 1−Aut
m ) = 1

3q
− 2m

3 −4(q − 1)2(2q − 1).

Proof. Suppose first that 4 | m. Setting xi = ai for i = 0, 1, 2 and (a, b) = (m
12 , 

m
6 ), 

Corollary 2.7 tells us that Tm \P 1−Aut
m is the set S from Lemma 2.11, together with the 

added congruence condition that vK(a3) ≥ m
4 , so

μ(Tm \ P 1−Aut
m ) = μ(S) · q−m

4 = 1
3q

− 2m
3 −4(q − 1)2(2q − 1).

If 4 ∤ m, then set

(x0, x1, x2) := (a0, a3, a2), (a, b) =
(m− 6

12 ,
m

6

)
,

and proceed similarly.
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Corollary 2.13. Let 4 ≤ m ≤ 6eK + 2 be an even integer. Then

μ(P 1−Aut
m ) = q−� 2m

3 �−3(q − 1)2 ·
(
1 + 16|m ·

(1 − 2q
3q

))
.

Proof. This is immediate from Corollary 2.12 and Lemma 2.8.

Corollary 2.14. If Σ1−Aut
m is nonempty, then m is an even integer with 4 ≤ m ≤ 6eK +2, 

and

#Σ1−Aut
m = q�

m
3 �−1(q − 1)

(
1 + 16|m ·

(1 − 2q
3q

))
.

Proof. This is immediate from Lemma 2.1 and Corollary 2.13.

2.3. Distinguishing between A4 and S4

Write “μ3 ⊆ K” as shorthand for “K contains three distinct cube roots of unity”.

Lemma 2.15. The following three statements are true:

1. (Tower law for discriminant) Let M/L/K be extensions of 2-adic fields. Then

vK(dM/K) = [M : L] · vK(dL/K) + f(L/K) · vL(dM/L).

2. We have μ3 ⊆ K if and only if fK is even.
3. If μ3 �⊆ K, then K has only one C3-extension up to isomorphism, namely the un-

ramified extension.

Proof. Claim (1) is [Ser95, Proposition III.8]. Claim (2) follows from Hensel’s Lemma. 
Finally, Claim (3) comes from class field theory, along with the fact that we have 
K×/K×3 ∼= Z/3Z, which follows from [Neu13, Proposition 3.7].

Lemma 2.16. If μ3 ⊆ K, then K has no S4-extensions.

Proof. This is part of [WJ07, Theorem 1.2].

Proof (Proof of Theorem 1.1). By Lemma 2.15 (2), we have μ3 ⊆ K, so Lemma 2.16
tells us that ΣA4

m = Σ1−Aut
m , and the result follows by Corollary 2.14.

Lemma 2.17. Let M/F be a V4-extension of 2-adic fields, and let E1, E2, E3 be its three 
quadratic intermediate extensions. Then

vF (dM/F ) =
3∑

vF (dEi/F ).

i=1
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Proof. This follows easily from [Keu23, Theorem 17.50].

Lemma 2.18. Suppose that μ3 �⊆ K and let L ∈ ΣA4 . Then 3 | vK(dL/K).

Proof. Let M be a normal closure of L over K, so Gal(M/K) ∼= A4, and let F = MV4 . 
The extension F/K is a C3-extension, so it is unramified by Lemma 2.15, Part (3). Since 
L/K is totally ramified, we have e(M/K) = 4 and f(M/K) = 3, so V4 is the inertia 
group of M/K. Since F/K is unramified, the tower law for discriminant gives

vK(dM/K) = 3vF (dM/F ).

Let E1, E2, E3 be the three intermediate extensions of the V4-extension M/F . Since the 
three double transpositions in A4 are conjugate, the extensions Ei/K are isomorphic, so 
they have the same discriminant. By the tower law for discriminant, it follows that the 
valuations

vF (dEi/F ), i = 1, 2, 3

are all equal. By Lemma 2.17, we have

vF (dM/F ) =
3∑

i=1
vF (dEi/F ) = 3vF (dE1/F ),

so

vK(dM/K) = 9vF (dE1/F ).

Since M/L is unramified, the tower law also gives

vK(dM/K) = 3vK(dL/K),

and the result follows.

In the statement and proof of the following lemma, the term “A4-extension” refers to 
a Galois extension with Galois group A4.

Lemma 2.19. Suppose that μ3 �⊆ K. Then there is a bijection between ΣA4 and the set of 
isomorphism classes of A4-extensions of K.

Proof. For an A4-quartic extension L/K, let L̃ be the normal closure of L over K. The 
map L 
→ L̃ is a well-defined bijection between the set of isomorphism classes of A4-
quartics and the set of isomorphism classes of A4-extensions. Therefore, to prove the 
lemma, it suffices to show that every A4-quartic is totally ramified.
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Let L/K be an A4-quartic. Then there is an extension M/L such that M/K is an 
A4-extension and L = MA3 for some choice of embedding A3 ⊆ A4. Let G0 ⊆ A4 be the 
inertia group of M/K. Since MV4/K is a C3-extension, it is unramified by Lemma 2.15, 
Part (3), and therefore G0 ⊆ V4. Since M/K is not cyclic, it is ramified, so #G0 ≥ 2. 
Since G0 is a normal subgroup of A4, we must have G0 = V4, so e(M/K) = 4. Since M/L

is a C3-extension, it is unramified by Lemma 2.15, Part (3), so L/K is totally ramified, 
as required.

Lemma 2.20. Suppose that μ3 �⊆ K. We have

ΣA4 =
⋃
m

6|m

Σ1−Aut
m .

Proof. By Corollary 2.14 and Lemma 2.18, we have

ΣA4 ⊆
⋃
m

6|m

Σ1−Aut
m .

Lemma 2.19 and [WJ07, Theorem 1.2] tell us that

#ΣA4 = q2eK − 1
3 .

From Corollary 2.14, we obtain

∑
m

6|m

#Σ1−Aut
m = q2eK − 1

3 ,

and the result follows.

Proof (Proof of Theorem 1.2). Lemma 2.15(2) tells us that μ3 �⊆ K. The result then 
follows from Corollary 2.14 and Lemma 2.20.

Proof (Proof of Corollary 1.6). Theorem 1.1 tells us that m̃(ΣS4) = 0 and

m̃(ΣA4) =
∑

4≤m≤6eK+2
m even

q−� 2m
3 �−1(q − 1)

(
1 + 16|m ·

(1 − 2q
3q

))
.

The result then follows from a tedious computation, which we omit since it is straight-
forward.
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Proof (Proof of Corollary 1.7). By Theorem 1.2, we have

m̃(ΣS4) =
∑

4≤m≤6eK+2
2|m, 3∤m

q�
m
3 �−m−1(q − 1),

which can easily be rearranged into the required form. The computation of m̃(ΣA4) is 
similar.

3. The case G = V4

Lemma 3.1. Let d ∈ K× \K×2 and let E = K(
√
d). If vK(d) is even, then vK(dE/K) is 

an even integer with 0 ≤ vK(dE/K) ≤ 2eK . If vK(d) is odd, then vK(dE/K) = 2eK + 1.

Proof. This is part of the p = 2 case of [Dab01, Theorem 2.4].

Lemma 3.2. If ΣV4
m is nonempty, then m is an even integer and 6 ≤ m ≤ 6eK + 2.

Proof. Let L ∈ ΣV4
m , and let E1, E2 and E3 be the intermediate quadratic subfields of L. 

Let ci = vK(dEi/K) for each i, so that

m = c1 + c2 + c3,

by Lemma 2.17. We may write Ei = K(
√
di), for di ∈ K×\K×2, such that d1d2d3 ∈ K×2. 

Since vK(d1d2d3) is even, it follows from Lemma 3.1 that either 0 or 2 of the ci are equal 
to 2eK + 1, and the rest are even integers with 2 ≤ ci ≤ 2eK . The result follows.

Lemma 3.3. [Tun78, Lemma 4.7] Let m be a positive even integer with 2 ≤ m ≤ 6eK +2. 
Then

#ΣV4
m = 2(q − 1)q

m−4
2

(
q−�m

6 �(1 + 13|m · q − 2
3 ) − 1m≤4eK+2 · q−�m−2

4 �
)

Proof (Proof of Theorem 1.3). The result follows immediately from Lemmas 3.2 and 3.3.

Proof (Proof of Corollary 1.8). By Lemmas 3.2 and 3.3, we have

m̃(ΣV4) = 1
2(q − 1)

×
( ∑

4≤m≤6eK+2
m even

q−
m+4

2 −�m
6 �(1 + 13|m · q − 2

3 ) −
∑

4≤m≤4eK+2
m even

q−
m+4

2 −�m−2
4 �

)
,

and it is straightforward to rearrange this expression into the desired form.
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4. The case G = C4

4.1. Sketch of our approach

Let L/K be a C4-extension and let E be its unique nontrivial intermediate field.
For a 2-adic field F , write Ext2/F for the set of isomorphism classes of quadratic 

extensions of F . For any real number m, write Ext2/F,m (respectively Ext2/F,≤m) for 
the set of E ∈ Ext2/F with vF (dE/F ) = m (respectively vF (dE/F ) ≤ m). For quadratic 

extensions E/K and G ∈ {D4, V4, C4}, write ExtG/K
2/E for the set of L ∈ Ext2/E such 

that L/K has Galois closure group isomorphic to G. Finally, for any real number m2, 
write ExtG/K

2/E,m2
(respectively ExtG/K

2/E,≤m2
) for the intersection ExtG/K

2/E ∩Ext2/E,m2
(re-

spectively ExtG/K
2/E ∩ Ext2/E,≤m2

).
Call a quadratic extension E/K C4-extendable if there is some quadratic exten-

sion L/E such that L/K is a C4-extension. For any real number m1, write Ext↑C4
2/K,m1

(respectively Ext↑C4
2/K,≤m1

) for the set of C4-extendable extensions E/K such that 
vK(dE/K) = m1 (respectively vK(dE/K) ≤ m1).

Recall that we write d(−1) = vK(dK(
√
−1)/K). In the current subsection, we state the 

main results, whose proofs are postponed to the later subsections.

Definition 4.1. For even integers m1 with 2 ≤ m1 ≤ 2eK , define

Next(m1) := (1 + 1m1≤2eK−d(−1))q
m1
2 −1(q − 1 − 1m1=2eK−d(−1)+2).

For m1 = 2eK + 1, define

Next(2eK + 1) =

⎧⎪⎪⎨⎪⎪⎩
2qeK if −1 ∈ K×2,

qeK if K(
√
−1)/K is quadratic and totally ramified,

0 if K(
√
−1)/K is quadratic and unramified.

And set Next(m1) = 0 for all other real numbers m1.

Lemma 4.2. If E/K is a totally ramified C4-extendable extension, then 2 ≤ vK(dE/K) ≤
2eK + 1 and vK(dE/K) is either even or equal to 2eK + 1. For such m1, we have

#Ext↑C4
2/K,m1

= Next(m1).

Definition 4.3. Let m1 be an even integer with 2 ≤ m1 ≤ eK . For each integer m2, define

NC4(m1,m2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qm1−1 if m2 = 3m1 − 2,
q�

m1+m2
4 � − q�

m1+m2−2
4 � if 3m1 ≤ m2 ≤ 4eK −m1 and m2 is even,

qeK if m2 = 4eK −m1 + 2,
0 otherwise.
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Suppose that m1 = 2eK + 1 or m1 is even with eK < m1 ≤ 2eK . Then define

NC4(m1,m2) =
{

2qeK if m2 = m1 + 2eK ,

0 otherwise.

Finally, define NC4(m1, m2) = 0 for all other real numbers m1 and m2.

Lemma 4.4. Let E be a totally ramified C4-extendable extension and let m1 = vK(dE/K). 
For all m2, we have

#ExtC4/K
2/E,m2

= NC4(m1,m2).

Corollary 4.5. If ΣC4
m is nonempty, then either m = 8eK +3 or m is an even integer with 

8 ≤ m ≤ 8eK . For any even integer m, the number #ΣC4
m is the sum of the following 

four quantities:

1. 18≤m≤5eK−2 · q
m−3

5 Next(m+2
5 ).

2. ∑
max{2,m−4eK}≤m1≤min{m

5 ,eK}
m1≡m (mod 4)

q
m−m1

4 −1(q − 1)Next(m1).

3. 14eK+4≤m≤5eK+2 · qeKNext(m − 4eK − 2).
4. 15eK+3≤m≤8eK · 2qeKNext(m−2eK

3 ).

Moreover,

#ΣC4
8eK+3 =

⎧⎪⎪⎨⎪⎪⎩
4q2eK if −1 ∈ K×2,

2q2eK if K(
√
−1)/K is quadratic and totally ramified,

0 if K(
√
−1)/K is quadratic and unramified.

4.2. Counting C4-extendable extensions

The aim of this subsection is to prove Lemma 4.2. The paper [CDO05] gives conditions 
on d ∈ K× for the extension K(

√
d)/K to be C4-extendable. We use these conditions 

and adapt the methods of [CDO05] to parametrise and count C4-extendable extensions.

Lemma 4.6 (Hecke’s Theorem). Let E be a 2-adic field, let α ∈ E× \ E×2, and let 
L = E(

√
α). If vE(α) is odd, then vE(dL/E) = 2vE(2) + 1. If vE(α) is even, then L/E

is totally ramified if and only if α/x2 ≡ 1 (mod p
2vE(2)
E ) has no solution x ∈ E. In that 

case, we have
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vE(dL/E) = 2vE(2) + 1 − κE,α,

where

κE,α = max{0 ≤ l < 2vE(2) : α/x2 ≡ 1 (mod plE) has a solution in E}.

Proof. This is the special case p = 2 of [Dab01, Theorem 2.4].

Corollary 4.7. Let E, α, and L be as in Lemma 4.6, and assume that vE(α) is even. Let 
t be an integer with 0 ≤ t ≤ vE(2). Then vE(dL/E) is an even integer and

vE(dL/E) ≤ 2vE(2) − 2t

if and only if there is some x ∈ E× with α/x2 ≡ 1 (mod p2t
E ).

Proof. This follows from Lemma 4.6, along with the fact3 that for 0 ≤ t < vE(2) and 
u ∈ O×

E , if u is square modulo p2t
E then it is also square modulo p2t+1

E .

Lemma 4.8. Let E = K(
√
d) for d ∈ K× \K×2 and let L = E(

√
α) for α ∈ E× \ E×2. 

The Galois closure group of L/K is⎧⎪⎪⎨⎪⎪⎩
V4 if NE/K(α) ∈ K×2,

C4 if NE/K(α) ∈ dK×2,

D4 otherwise.

Proof. Write α = a + b
√
d for a, b ∈ K and let θ =

√
α. Let m(X) be the minimal 

polynomial of θ over K. Let N be a splitting field of m(X) over L. The polynomial 
m(X) has roots ±θ, ±ϕ for some element ϕ ∈ N .

We claim that L/K is a V4-extension if and only if θϕ ∈ K. Suppose that L/K is a 
V4-extension. Since L/K is the splitting field of m(X), there are σ, τ ∈ Gal(L/K) with 
σ(θ) = ϕ and τ(θ) = −θ. These have order 2, so σ(θϕ) = τ(θϕ) = θϕ, and therefore 
θϕ ∈ K. Suppose conversely that θϕ ∈ K. Then K(θ) = K(ϕ), so L is the splitting field 
of m(X) over K, and therefore there are σ, τ ∈ Gal(L/K) with σ(θ) = ϕ and τ(θ) = −θ. 
Since θϕ ∈ K, it is fixed by σ, so

θϕ = ϕσ(ϕ),

and therefore θ = σ(ϕ), so σ has order 2. Clearly τ has order 2, so Gal(L/K) ∼= V4.
Let λ := θ

ϕ − ϕ
θ . We claim that L/K is a C4-extension if and only if λ ∈ K. Suppose 

that L/K is a C4-extension. Then θ, ϕ ∈ L, so there is a generator σ ∈ Gal(L/K) such 

3 If u ≡ x2 (mod p
2t
E ), then u/x2 = 1 + π2t

E y for some y ∈ OE . Taking z ∈ OE with y ≡ z2 (mod pE), 
we obtain u/x2 ≡ (1 + πt

Ez)2 (mod p
2t+1
E ).
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that σ(θ) = ϕ. It follows that σ(λ) = λ, so λ ∈ K. Suppose conversely that λ ∈ K. There 
is some element σ ∈ Gal(N/K) such that σ(θ) = ϕ. It is easy to see that σ2(θ) = εθ for 
some ε ∈ {±1}. Since λ ∈ K, we have ε = −1, so σ has order 4. Clearly θ2 +ϕ2 = 2a, so

λ = 2θ2 − 2a
θϕ

,

which means that

ϕ = 2θ2 − 2a
θλ

∈ L,

so L/K is Galois and hence C4 with Galois group 〈σ〉. Finally,

λ2 = 4b2d
NE/K(α) ,

and the result follows.

Corollary 4.9. For d ∈ K× \K×2, the following are equivalent:

1. The extension K(
√
d)/K is C4-extendable.

2. The element d is a sum of two squares in K.
3. The element d is in the norm group of the extension K(

√
−1)/K.

Proof. The equivalence of (1) and (2) follows from Lemma 4.8. If −1 ∈ K×2, then (2) and 
(3) are equivalent because every element of K can be written as a sum of two squares, 
due to the identity

d =
(d + 1

2

)2
+
( d− 1

2
√
−1

)2
.

If −1 �∈ K×2, then the equivalence of (2) and (3) is trivial.

By symmetry of the quadratic Hilbert symbol, it follows from Corollary 4.9 that we 
need to count extensions K(

√
d) such that −1 ∈ NmK(

√
d). Our technique for doing 

this applies much more generally, to counting K(
√
d) such that A ⊆ NmK(

√
d), where 

A is any subgroup of K×/K×2. Since it does not require much additional theory, we opt 
to work at this more natural level of generality.

Let F/K be an extension of 2-adic fields. For 1 ≤ t ≤ vF (2), write

SF/K,t = (U (2t)
F F×2 ∩K×)/K×2

= {u ∈ K×/K×2 : u/x2 ≡ 1 (mod p2t
F ) for some x ∈ F×},

and define



S. Monnet / Journal of Number Theory 269 (2025) 157–202 183
SF/K,0 = {u ∈ K×/K×2 : vF (u) is even}.

For a subgroup A ⊆ K×/K×2, let K(
√
A) be the extension

K({
√
α : [α] ∈ A})

of K, write NmK(
√
A) for its norm group, and define

OA
K = O×

K ∩ NmK(
√
A).

For 0 ≤ t ≤ eK , define the subgroup

SA
K/K,t = SK/K,t ∩

(
NmK(

√
A)/K×2

)
.

For each m1, let ExtA2/K,≤m1
be the set of E ∈ Ext2/K,≤m1

with A ⊆ NmE.

Lemma 4.10. Let 0 ≤ t ≤ eK and let A ⊆ K×/K×2 be any subgroup. We have a bijection

SA
K/K,t → ExtA2/K,≤2eK−2t ∪ {K}, u 
→ K(

√
u).

Proof. By Corollary 4.7, the map u 
→ K(
√
u) gives a well-defined bijection

O×
K/O×2

K → Ext2/K,≤2eK ∪ {K}.

For u ∈ O×
K \ O×2

K , we claim that the following two statements are true:

1. K(
√
u) ∈ ExtA2/K,≤2eK if and only if u ∈ SA

K/K,0.
2. K(

√
u) ∈ Ext2/K,≤2eK−2t if and only if u ∈ SK/K,t.

The first statement follows from symmetry of the quadratic Hilbert symbol, and the 
second follows from Corollary 4.7. The result then follows, since

SA
K/K,t = SA

K/K,0 ∩ SK/K,t.

For each 0 ≤ t ≤ eK , define the subgroup

(OK/p2t
K)A ⊆ (OK/p2t

K)×

to be the image of the map

OA
K → (OK/p2t

K)×.
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Lemma 4.11. Let 0 ≤ t ≤ eK and let A ⊆ K×/K×2 be any subgroup. There is a short 
exact sequence

1 → SA
K/K,t → SA

K/K,0 → (OK/p2t
K)A

(OK/p2t
K)×2 → 1.

Proof. This is immediate from the definitions.

Lemma 4.12. For any subgroup A ⊆ K×/K×2, we have

[O×
K : OA

K ] = #A
f(K(

√
A)/K)

.

Proof. Let [α1], . . . , [αr] ∈ K×/K×2 be a minimal set of generators for A, so that

K(
√
A) = K(

√
α1, . . . ,

√
αr).

By class field theory, we have

[K× : NmK(
√
A)] = 2r = #A.

It follows that

[O×
K : OA

K ] =
{

#A if there exists x ∈ Nm(K(
√
A)) with vK(x) = 1,

1
2 · #A otherwise,

so we need to show that there exists x ∈ Nm(K(
√
A)) with vK(x) = 1 if and only if 

K(
√
A)/K is totally ramified. This follows from class field theory, since K(

√
A) contains 

the unramified quadratic extension Eur/K if and only if

NmK(
√
A) ⊆ NmEur = {x ∈ K× : 2 | vK(x)}.

For each 0 ≤ t ≤ eK , let

At = A ∩
(
U

(2t)
K K×2/K×2).

Lemma 4.13. Let 0 ≤ t ≤ eK and let A ⊆ K×/K×2 be any subgroup. The extension 
K(

√
A)/K is totally ramified if and only if K(

√
At)/K is totally ramified.

Proof. Suppose that K(
√
A)/K is not totally ramified. Then we have [u] ∈ A, where 

[u] ∈ K×/K×2 is the unique element such that K(
√
u)/K is unramified. In that case, 

Corollary 4.7 tells us that u ∈ At, so K(
√
At)/K is not totally ramified.

Suppose conversely that K(
√
At)/K is not totally ramified. Since At ⊆ A, we have 

K(
√
At) ⊆ K(

√
A), so K(

√
A) is not totally ramified.
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Lemma 4.14. Let 0 ≤ t ≤ eK and let A ⊆ K×/K×2 be any subgroup. We have

OAt

K = OA
KU

(2eK−2t)
K .

Proof. First we claim that

NmK(
√
At) = U

(2eK−2t)
K NmK(

√
A).

For [α] ∈ At, Corollary 4.7 tells us that vK(dK(
√
α)/K) ≤ 2eK − 2t, so we have the 

inclusion U (2eK−2t)
K ⊆ NmK(

√
α), and therefore

U
(2eK−2t)
K ⊆ NmK(

√
At).

Since At ⊆ A, class field theory tells us that

NmK(
√
A) ⊆ NmK(

√
At),

and therefore

U
(2eK−2t)
K NmK(

√
A) ⊆ NmK(

√
At).

Suppose that

U
(2eK−2t)
K NmK(

√
A) ⊆ G ⊆ NmK(

√
At),

for a subgroup G of K×. By class field theory, there is a unique abelian extension L/K
such that NmL = G. We have

K(
√
At) ⊆ L ⊆ K(

√
A),

so

L = K(
√
B)

for some subgroup B ≤ A. Let [β] ∈ B. Since U (2eK−2t)
K ⊆ NmL ⊆ NmK(

√
β), we have 

vK(dK(
√
β)/K) ≤ 2eK − 2t, so Corollary 4.7 tells us that β ∈ U

(2t)
K K×2, and therefore 

[β] ∈ At. It follows that B ⊆ At, and therefore L ⊆ K(
√
At), so G = NmK(

√
At). 

Therefore, as claimed, we have

NmK(
√
At) = U

(2eK−2t)
K NmK(

√
A).

It follows that

OAt

K =
(
U

(2eK−2t)
K NmK(

√
A)

)
∩ O×

K ,
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so we need to show that(
U

(2eK−2t)
K NmK(

√
A)

)
∩ O×

K = U
(2eK−2t)
K

(
NmK(

√
A) ∩ O×

K

)
,

which is an easy exercise in definitions.

Lemma 4.15. Let 1 ≤ t ≤ eK and let A ⊆ K×/K×2 be any subgroup. There is a short 
exact sequence

1 → OAeK−t

K → O×
K → (OK/p2t

K)×

(OK/p2t
K)A → 1.

Proof. Clearly the map ϕ : O×
K → (OK/p2t

K )×
(OK/p2t

K )A is well-defined and surjective. It follows 
from the definitions that

kerϕ = OA
KU

(2t)
K ,

so the result follows from Lemma 4.14.

Lemma 4.16. For any subgroup A ⊆ K×/K×2, we have

#AeK = f(K(
√
A)/K).

Proof. Lemma 4.6 tells us that U (2eK)
K K×2/K×2 = {1, [u]}, where K(

√
u)/K is the 

unique unramified quadratic extension. It follows that

AeK =
{
{[1], [u]} if K(

√
u) ⊆ K(

√
A),

{[1]} otherwise,

and the result follows.

Lemma 4.17. Let 0 ≤ t ≤ eK and let A ⊆ K×/K×2 be any subgroup. We have

#SA
K/K,t = 2qeK−t · #AeK−t

#A .

Proof. It follows from Lemma 4.11 that

#SA
K/K,t =

#SA
K/K,0#(OK/p2t

K)×2

#(OK/p2t
K)A .

By [Neu13, Proposition 3.7], we have [O×
K : O×2

K ] = 2qeK , so the definition of SA
K/K,0

gives
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#SA
K/K,0 = 2qeK

[O×
K : OA

K ]
.

The result for t = 0 then follows from Lemmas 4.12 and 4.16. Now assume that t ≥ 1. 
Lemma 4.15 tells us that

1
#(OK/p2t

K)A = [O×
K : OAeK−t

K ]
#(OK/p2t

K)× .

It follows that

#SA
K/K,t = 2qeK

[(OK/p2t
K)× : (OK/p2t

K)×2] ·
[O×

K : OAeK−t

K ]
[O×

K : OA
K ]

.

The short exact sequence

1 → U
(t)
K /U

(2t)
K

[u] �→[u]→ (OK/p2t
K)× [u] �→[u2]→ (OK/p2t

K)×2 → 1

tells us that [(OK/p2t
K)× : (OK/p2t

K)×2] = qt. Finally, the result follows from Lemmas 4.12
and 4.13.

Corollary 4.18. Let 0 ≤ m1 ≤ 2eK be an even integer and let A ⊆ K×/K×2 be any 
subgroup. Then

#ExtA2/K,≤m1
= 2qm1/2 ·

#Am1/2

#A − 1.

Proof. This is immediate from Lemmas 4.10 and 4.17.

Corollary 4.19. Let m1 be an even integer with 2 ≤ m1 ≤ 2eK . We have

#Ext↑C4
2/K,≤m1

= (1 + 1m1≤2eK−d(−1)) · qm1/2 − 1.

Proof. Let A = 〈[−1]〉 ⊆ K×/K×2. Corollary 4.9 tells us that

Ext↑C4
2/K,≤m1

= ExtA2/K,≤m1
,

and it follows by Corollary 4.18 that

Ext↑C4
2/K,≤m1

= 2qm1/2 ·
#Am1/2

#A − 1.

Suppose first that −1 ∈ K×2. Then [−1] = [1], so #A = #Am1/2 = 1, and the result 
follows since d(−1) = 0.
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Suppose instead that −1 �∈ K×2. Then

#A = 2,

and (by Corollary 4.7)

#Am1/2 = 1 + 1d(−1)≤2eK−m1 ,

and the result follows.

Proof (Proof of Lemma 4.2). The first claim follows from the classification of quadratic 
extensions in [Tun78, Lemma 4.3]. The result for 2 ≤ m1 ≤ 2eK follows from Corol-
lary 4.19. By Lemma 4.6, for any quadratic extension E/K, we have vK(dE/K) = 2eK+1
if and only if E = K(

√
α) for some α ∈ K× with vK(α) = 1. Assume that this is the 

case. Then Corollary 4.9 tells us that E/K is C4-extendable if and only if α is in the 
norm group of K(

√
−1)/K, and the result follows by basic class field theory.

Lemma 4.20. The constant d(−1) is an even integer with

d(−1) ≤ 2
⌈eK

2

⌉
.

Proof. This follows from Corollary 4.7, along with the trivial fact that

−1 ≡ 1 (mod p
eK
K ).

4.3. Counting C4-extensions with a given intermediate field

Lemma 4.21. Let E = K(
√
d) be a totally ramified C4-extendable extension of K with 

m1 = vK(dE/K), and let 0 ≤ m2 ≤ 4eK be an even integer. The following are equivalent:

1. The set ExtC4/K
2/E,≤m2

is nonempty.
2. There is some β ∈ O×

E such that β ≡ 1 (mod p
4eK−m2
E ) and NE/K(β) ∈ dK×2.

3. We have m2 ≥ min{m1 + 2eK , 3m1 − 2}.

Proof. The first two points are equivalent by Corollary 4.7 and Lemma 4.8. The equiv-
alence of (2) and (3) is essentially [CDO05, Proposition 3.15]. At the start of the proof, 
the authors state that their “condition (∗)” is equivalent to (2), and the statement of 
their proposition is equivalent to (3), where t = 2eK − m2

2 . Their result is stated for 
prime ideals of number fields lying over 2, but it is trivial to check that the proof works 
for 2-adic fields.
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Lemma 4.22. Let E/K be a totally ramified C4-extendable extension, and suppose that 
0 ≤ m2 ≤ 4eK is an even integer such that ExtC4/K

2/E,≤m2
is nonempty. Let ω ∈ E such 

that E(
√
ω) ∈ ExtC4/K

2/E,≤m2
. Then the map

K×/K×2 → ExtC4/K
2/E , u 
→ E(

√
uω)

is surjective and 2-to-1. Moreover, this map restricts to a surjective 2-to-1 map

SE/K,2eK−m2
2

→ ExtC4/K
2/E,≤m2

.

Proof. The first claim is [CDO05, Proposition 1.2], and the second claim follows from 
Corollary 4.7.

Fix a totally ramified quadratic extension E/K with m1 = vK(dE/K), and assume 
that m1 is even. For 0 ≤ t ≤ 2eK − m1

2 , define ZE,t by the short exact sequence

1 → SE/K,t → K×/K×2 → ZE,t → 1.

Lemma 4.23. Let E be a totally ramified quadratic extension of K with even discriminant 
exponent m1 = vK(dE/K). Let m2 be an even integer with m1 ≤ m2 ≤ 4eK . Then we 
have:
1.

#ZE,2eK−m2
2

=
{

2q�eK−m1+m2
4 � if m2 ≤ 4eK −m1,

1 if m2 > 4eK −m1.

2.
#SE/K,2eK−m2

2
=

{
2q�

m1+m2
4 � if m2 ≤ 4eK −m1,

4qeK if m2 > 4eK −m1.

Proof.

1. For m2 = 4eK , we have ZE,2eK−m2
2

= 1, so we can assume that m1 ≤ m2 ≤
4eK − 2. The claim is then essentially [CDO05, Corollary 3.13]. Under our notation, 
ZE,t corresponds4 to Cohen, Diaz y Diaz, and Olivier’s ZP2t , defined in [CDO05, 
Page 486]. As with Lemma 4.21, the statement in [CDO05] is for prime ideals of 
number fields, but the modifications to the proof are trivial.

2. The second claim follows from the first, together with the definition of ZE,t, and 
[Neu13, Proposition 3.7].

4 In [CDO05], here are the locations of the relevant definitions: ZC2 is defined on Page 486; QK(C2) is 
defined on Page 479; C is defined on Page 478; T is defined on Page 478; the angle brackets 〈T 〉 denote the 
monoid of ideals generated by T - this can be inferred from the proof of Lemma 1.6.
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Corollary 4.24. Let E/K be a totally ramified C4-extendable extension such that the 
discriminant valuation m1 = vK(dE/K) is even. Let m2 ≤ 4eK be an even integer and 
write n0 := min{m1 + 2eK , 3m1 − 2}. Then we have

#ExtC4/K
2/E,≤m2

=

⎧⎪⎪⎨⎪⎪⎩
0 if m2 < n0,

q�
m1+m2

4 � if n0 ≤ m2 ≤ 4eK −m1,

2qeK if m2 ≥ max{4eK −m1 + 2, n0}.

Proof. Lemma 4.21 deals with the case m2 < n0. Let n0 ≤ m2 ≤ 4eK . By Lemma 4.21, 
the set ExtC4/K

2/E,≤m2
is nonempty, so Lemma 4.22 tells us that

#ExtC4/K
2/E,≤m2

= 1
2#SE/K,2eK−m2

2
,

and the result follows from Lemma 4.23.

Proof (Proof of Lemma 4.4). By [Tun78, Lemma 4.3], either m1 = 2eK +1 or m1 is even 
with 2 ≤ m1 ≤ 2eK . The case where m1 is even follows easily from Corollary 4.24. For the 
case with m1 odd, suppose that m1 = 2eK +1. Then by Lemma 4.6 we have E = K(

√
d)

for d ∈ K× with vK(d) = 1. By Lemma 4.8, each C4-extension L/K extending E has 
L = E(

√
α) for some α ∈ E× with vK(NE/K(α)) odd. It follows that vE(α) is odd, so 

vE(dL/E) = 4eK + 1 by Lemma 4.6. Therefore,

ExtC4/K
2/E = ExtC4/K

2/E,4eK+1,

so the result follows from Lemma 4.22.

Proof (Proof of Corollary 4.5). Suppose that L/K is a C4-extension with intermediate 
quadratic field E. By the tower law for discriminant, we have

vK(dL/K) = 2vK(dE/K) + f(E/K) · vE(dL/E).

So if L ∈ ΣC4
m with m1 = vK(dE/K) and m2 = vE(dL/E), then m = 2m1 + m2, and 

Lemmas 4.2 and 4.4 tell us that either (m1, m2) = (2eK + 1, 4eK + 1) or m1 and m2 are 
both even with 2 ≤ m1 ≤ 2eK and 4 ≤ m2 ≤ 4eK . It follows that either m is even with 
8 ≤ m ≤ 8eK or m = 8eK + 3. If m = 8eK + 3, then the result follows from Lemmas 4.2
and 4.4.

Now consider the case where 8 ≤ m ≤ 8eK and m is even. For positive integers 
m1 and m2, write ΣC4

m1,m2
for the set of totally ramified C4-extensions L/K such that 

vK(dE/K) = m1 and vE(dL/E) = m2. By the discussion above, we have

#ΣC4
m =

∑
2≤m1≤2eK

#ΣC4
m1,m−2m1

.

m1 even
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Let 2 ≤ m1 ≤ 2eK be even. By Lemmas 4.2 and 4.4, whenever Next(m1) �= 0 we have

#ΣC4
m1,m−2m1

Next(m1)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qm1−1 if m1 = m+2
5 and m1 ≤ eK ,

q�
m−m1

4 � − q�
m−m1−2

4 � if m− 4eK ≤ m1 ≤ min{m
5 , eK},

qeK if m1 = m− 4eK − 2 and m1 ≤ eK ,

2qeK if eK < m1 ≤ 2eK and m1 = m−2eK
3 ,

0 otherwise.

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q
m−3

5 if m1 = m+2
5 and 8 ≤ m ≤ 5eK − 2,

q�
m−m1

4 � − q�
m−m1−2

4 � if m− 4eK ≤ m1 ≤ min{m
5 , eK},

qeK if m1 = m− 4eK − 2 and 4eK + 4 ≤ m ≤ 5eK + 2,
2qeK if m1 = m−2eK

3 and 5eK < m ≤ 8eK ,

0 otherwise.

To finish the proof, we just need to observe that

q�
m−m1

4 � − q�
m−m1−2

4 � =
{
q

m−m1
4 −1(q − 1) if m1 ≡ m (mod 4),

0 if m1 �≡ m (mod 4).

Proof (Proof of Theorem 1.4). The possible values of m come from Corollary 4.5. The 
result for m = 8eK + 3 is immediate from Corollary 4.5. Now consider the case where m
is even and 8 ≤ m ≤ 8eK . The first, third, and fourth items of Corollary 4.5 respectively 
are equal to

1. 18≤m≤5eK−2 ·1m≡3 (mod 5) ·q
3m−14

10 (1 +1m≤10eK−5d(−1)−2)(q−1 −1m=10eK−5d(−1)+8).
2. 14eK+4≤m≤5eK+2 · q

m
2 −eK−2(1 + 1m≤6eK−d(−1)+2)(q − 1 − 1m=6eK−d(−1)+4).

3. 15eK+3≤m≤8eK ·1m≡2eK (mod 3)·2q
m+4eK

6 −1(1 +1m≤8eK−3d(−1))(q−1 −1m=8eK−3d(−1)+6).

Lemma 4.20 turns these into the first three points of Theorem 1.4. It remains to compute 
the value of ∑

max{2,m−4eK}≤m1≤min{m
5 ,eK}

m1≡m (mod 4)

q
m−m1

4 −1(q − 1)Next(m1).

For such m1, we have

Next(m1) =

⎧⎪⎪⎨⎪⎪⎩
2q

m1
2 −1(q − 1) if m1 ≤ 2eK − d(−1),

q
m1
2 −1(q − 2) if m1 = 2eK − d(−1) + 2,

q
m1
2 −1(q − 1) if m1 ≥ 2eK − d(−1) + 4.

Lemma 4.20 tells us that 2eK − d(−1) + 2 > eK , so the sum is actually
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∑
max{2,m−4eK}≤m1≤min{m

5 ,eK}
m1≡m (mod 4)

2q
m+m1

4 −2(q − 1)2.

For integers l and u, the substitution m1 = −m + 4k makes it easy to see that

∑
l≤m1≤u

m1≡m (mod 4)

q
m+m1

4 = 1l≤u · q
b+1 − qa

q − 1 ,

where a = �m+l
4 � and b = �m+u

4 �. In this case, we have l = max{2, m − 4eK} and 
u = min{eK , m5 }, which gives

a = �max{m + 2
4 ,

m

2 − eK}�, b = �min{m + eK
4 ,

3m
10 }�.

Finally, it is easy to see that l ≤ u if and only if 10 ≤ m ≤ 5eK . In that case, we have 
b = �3m

10 �, so

∑
max{2,m−4eK}≤m1≤min{eK ,m5 }

m1≡m (mod 4)

q
m+m1

4 = 110≤m≤5eK · q
� 3m

10 �+1 − q�max{m+2
4 ,m2 −eK}�

q − 1 ,

and the result follows.

Proof (Proof of Corollary 1.9). Theorem 1.4 and Lemma 4.20 tell us that the mass is 
the sum of the following quantities:
1.

1
2 ·

∑
8≤m≤5eK−2
m≡8 (mod 10)

q−
7m+14

10 (q − 1).

2. 1
2 ·

∑
4eK+4≤m≤5eK+2

m even

q−
m
2 −eK−2(q − 1).

3. (a) ∑
5eK+3≤m≤8eK−3d(−1)

m≡2eK (mod 6)

q
4eK−5m

6 −1(q − 1).

(b)
1d(−1)≥2 ·

1
2 · q−6eK+ 5

2d(−1)−6(q − 2).

(c) 1
2 ·

∑
8eK−3d(−1)+12≤m≤8eK

q
4eK−5m

6 −1(q − 1).
m≡2eK (mod 6)
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4. (a) 1
2(q − 1)q−1

∑
10≤m≤5eK

m even

q�−
7m
10 �.

(b)
−1

2(q − 1)q−2
∑

10≤m≤5eK
m even

qmax{�−3m+2
4 �,−m

2 −eK}.

5. ⎧⎪⎪⎨⎪⎪⎩
q−6eK−3 if −1 ∈ K×2,
1
2q

−6eK−3 if K(
√
−1)/K is quadratic and totally ramified,

0 otherwise.

We address these one by one.

1. Making the substitution m = 10k + 8, we have

∑
8≤m≤5eK−2
m≡8 (mod 10)

q−
7m+14

10 = 1eK≥2 ·
1 − q−7� eK

2 �

q7 − 1 ,

so the contribution to the mass is

1
2 · 1eK≥2 ·

(q − 1)(1 − q−7� eK
2 �)

q7 − 1 ,

and we can omit the indicator function since eK = 1 gives 1 − q−7� eK
2 � = 0.

2. Making the substitution m = 2k, it is easy to see that

∑
4eK+4≤m≤5eK+2

m even

q−
m
2 = 1eK≥2 ·

q−2eK−1 − q−� 5eK+2
2 �

q − 1 ,

so the contribution is

1
2 · (q−3eK−3 − q−� 7eK+6

2 �) = 1
2 · q−3eK−3(1 − q−� eK

2 �),

where we omit the indicator function since eK = 1 gives q−2eK−1 − q−� 5eK+2
2 � = 0.

3. (a) The substitution m = 2eK + 6k gives

∑
5eK+3≤m≤8eK−3d(−1)

m≡2eK (mod 6)

q
4eK−5m

6 = 1d(−1)<eK

q−5� eK
2 �−eK − q

5
2d(−1)−6eK

q5 − 1 ,

so the contribution is
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1d(−1)<eK · (q − 1)(q−5� eK
2 �−eK−1 − q

5
2d(−1)−6eK−1)

q5 − 1 .

(b) This is already in closed form.
(c) The substitution m = 2eK + 6k gives

∑
8eK−3d(−1)+12≤m≤8eK

m≡2eK (mod 6)

q
4eK−5m

6 = 1d(−1)≥4 ·
q

5
2d(−1)−6eK−5 − q−6eK

q5 − 1 .

Therefore, the contribution is

1
2 · 1d(−1)≥4 ·

(q − 1)(q 5
2d(−1)−6eK−6 − q−6eK−1)

q5 − 1 .

4. (a) We need to compute

∑
10≤m≤5eK

m even

q�
−7m
10 � =

� 5eK
2 �∑

k=5

q−� 7k
5 �.

For an integer b ≥ 1, it is easy to see that

5b∑
k=5

q−� 7k
5 � = (q−6 − q1−7b)(q6 + q4 + q3 + q + 1)

q7 − 1 + q−7b.

If eK is even, then we have

� 5eK
2 �∑

k=5

q−� 7k
5 � =

5· eK2∑
k=5

q−� 7k
5 �

= 1eK≥2 ·
( (q−6 − q1− 7eK

2 )(q6 + q4 + q3 + q + 1)
q7 − 1 + q−

7eK
2

)
.

If eK is odd, then we have

� 5eK
2 �∑

k=5

q−� 7k
5 � =

( 5· eK−1
2∑

k=5

q−� 7k
5 �

)
+ q−� 7

5 ·
5eK−3

2 � + q−� 7
5 ·

5eK−1
2 �

= 1eK≥2 ·
( (q−6 − q1−7· eK−1

2 )(q6 + q4 + q3 + q + 1)
q7 − 1 + q−7· eK−1

2

+ q−7· eK−1
2 −2 + q−7· eK−1

2 −3
)
.

In other words, the sum 
∑� 5eK

2 �
k=5 q−� 7k

5 � is equal to
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1eK≥2·
( (q−6 − q1−7� eK

2 �)(q6 + q4 + q3 + q + 1)
q7 − 1 +q−7� eK

2 �(1+12∤eK (q−2+q−3))
)
,

and therefore we have a contribution of

1eK≥2 ·
1
2(q − 1)

( (q−7 − q−7� eK
2 �)(q6 + q4 + q3 + q + 1)

q7 − 1

+ q−7� eK
2 �−1(1 + 12∤eK (q−2 + q−3))

)
.

(b) We need to evaluate

� 5eK
2 �∑

k=5

qmax{�−3k+1
2 �,−k−eK} =

2eK∑
k=5

q�
−3k+1

2 � +
� 5eK

2 �∑
k=2eK+1

q−k−eK .

We have

2eK∑
k=5

q�
−3k+1

2 � = 1eK≥3 ·
(q2 + q)(q−6 − q−3eK )

q3 − 1 ,

so the first half of the sum gives a contribution of

−1eK≥2 ·
1
2 · (q − 1)(q + 1)(q−7 − q−3eK−1)

q3 − 1 .

We also have

� 5eK
2 �∑

k=2eK+1

q−k−eK = 1eK≥2 ·
q−3eK − q−� 5eK

2 �−eK

q − 1 ,

so we also get a contribution of

−1
2(q−3eK−2 − q−� 7eK

2 �−2).

5. The case G = D4

For G ∈ {V4, C4, D4} and L ∈ ΣG, let

Ext↪→L
2/K := {E ∈ Ext2/K : ∃K-morphism E ↪→ L}.

Let L ∈ ΣG and E ∈ Ext↪→L
2/K . There is a unique embedding E ↪→ L, so we may naturally 

view L as an extension of E. We define a K-twist of L/E to be an element of the set

TwistK(L/E) = {L′ ∈ Ext2/E : ∃K-isomorphism L′ ∼= L}.
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Lemma 5.1. Let G ∈ {V4, C4, D4}. The following two statements are true:

1. For L ∈ ΣG, we have

#Ext↪→L
2/K =

{
1 if G ∈ {C4, D4},
3 if G = V4.

2. For L ∈ ΣG and E ∈ Ext↪→L
2/K , we have

# TwistK(L/E) =
{

1 if G ∈ {C4, V4},
2 if G = D4.

Proof. Claim (1) is obvious. For Claim (2), write E = K(
√
d) and L = E(

√
α), where 

d ∈ K and α ∈ E. Let L′ ∈ TwistK(L/E). Then there exists some K-isomorphism 
ϕ : E(

√
α) → L′. We will view E as a subset of both extensions L and L′, even though 

L and L′ are not necessarily inside the same algebraic closure of E.
The element ϕ(

√
α) ∈ L′ has the same minimal polynomial over K as 

√
α ∈ L, so 

either L′ ∼= E(
√
α) or L′ ∼= E(

√
α), where α is the conjugate of α over K. It is easy to 

see that both these choices for L′ are in TwistK(L/E), so

TwistK(L/E) = {E(
√
α), E(

√
α)}.

By elementary Galois theory, we have E(
√
α) �∼= E(

√
α) over E if and only if G = D4.

For an integer m, define an m-tower to be a pair (E, L), where E ∈ Ext2/K and 
L ∈ Ext2/E , such that L/K is a totally ramified extension with vK(dL/K) = m. Write 
Towm for the set of m-towers. There is a natural surjection

Φm : Towm → ΣC4
m ∪ ΣV4

m ∪ ΣD4
m , (E,L) 
→ L.

Lemma 5.2. Let G ∈ {C4, V4, D4}, let m be an integer, and let L0 ∈ ΣG
m. The fibre 

Φ−1
m (L0) has size ⎧⎪⎪⎨⎪⎪⎩

1 if G = C4,

2 if G = D4,

3 if G = V4.

Proof. It is easy to see that

Φ−1
m (L0) = {(E,L) : E ∈ Ext↪→L0

2/K , L ∈ TwistK(L0/E)},

and the result follows from Lemma 5.1.
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Corollary 5.3. For every integer m, we have

#ΣC4
m + 2 · #ΣD4

m + 3 · #ΣV4
m = #Towm.

Proof. This is immediate from Lemma 5.2.

Lemma 5.4. If Towm is nonempty, then one of the following three statements is true:

1. m is an even integer with 6 ≤ m ≤ 8eK + 2.
2. m ≡ 1 (mod 4) and 4eK + 5 ≤ m ≤ 8eK + 1.
3. m = 8eK + 3.

For even m with 6 ≤ m ≤ 8eK + 2, we have

#Towm = 4(q − 1)qm
2 −2

×
(
1m≥4eK+4 · q−eK + 1m≤8eK ·

(
qmin{0,eK+1−�m

4 �} − q−min{�m−2
4 �,eK})).

For m ≡ 1 (mod 4) with 4eK + 5 ≤ m ≤ 8eK + 1, we have

#Towm = 4(q − 1)qeK+m−1
4 −1.

We also have

#Tow8eK+3 = 4q3eK .

Proof. Let m be an integer such that Towm is nonempty. Let (E, L) ∈ Towm, and 
let m1 = vK(dE/K) and m2 = vE(dL/E), so that m = 2m1 + m2 by the tower law 
for discriminant. By [Tun78, Lemma 4.3], either m1 is even with 2 ≤ m1 ≤ 2eK , or 
m1 = 2eK + 1. Similarly, either m2 is even with 2 ≤ m2 ≤ 4eK , or m2 = 4eK + 1. If m2
is even, then m is even and 6 ≤ m ≤ 8eK + 2. If m2 = 4eK + 1 and m1 is even, then 
m ≡ 1 (mod 4) and 4eK + 5 ≤ m ≤ 8eK + 1. Finally, if m1 and m2 are both odd, then 
m = 8eK + 3. Now that we have identified the possibilities, we can enumerate Towm in 
each case.

Suppose first that m is even with 6 ≤ m ≤ 8eK + 2. Then each (E, L) ∈ Towm has 
m2 even, so #Towm is the sum of the following two quantities:
1. ∑

max{2,m2 −2eK}≤m1≤min{m
2 −1,2eK}

m1 even

∑
E∈Ext2/K,m1

#Ext2/E,m−2m1
.

2.
1m≥4eK+4 ·

∑
E∈Ext

#Ext2/E,m−4eK−2.
2/K,2eK+1
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By [Tun78, Lemma 4.3], the first of these quantities is equal to

#Ext2/E,m−2m1
=

∑
max{2,m2 −2eK}≤m1≤min{m

2 −1,2eK}
m1 even

4(q − 1)2q
m−m1

2 −2

= 4(q − 1)2qm
2 −2

b∑
k=a

q−k

= 4(q − 1)2qm
2 −2 · 1a≤b ·

q1−a − q−b

q − 1

= 16≤m≤8eK · 4(q − 1)qm
2 −2(q1−a − q−b),

where

a := max{1, �m4 � − eK}, b := min{�m− 2
4 �, eK}.

For m = 2, 4 we have q1−a − q−b = 0, so we may drop the “6 ≤ m” from the indicator 
function, giving

#Ext2/E,m−2m1
= 1m≤8eK · 4(q − 1)qm

2 −2(q1−a − q−b).

Similarly, the second quantity is equal to

1m≥4eK+4 · 4(q − 1)qm
2 −eK−2,

and we obtain the desired expression for #Towm. Now suppose that m ≡ 1 (mod 4)
and 4eK + 5 ≤ m ≤ 8eK + 1. Then each (E, L) ∈ Towm has m2 = 4eK + 1 and 
m1 = m−1

2 − 2eK , so [Tun78, Lemma 4.3] gives us

#Towm =
∑

E∈Ext
2/K,m−1

2 −2eK

#Ext2/E,4eK+1

= 4(q − 1)qeK+m−1
4 −1.

Finally, if m = 8eK + 3, then each (E, L) ∈ Towm has m1 = 2eK + 1 and m2 = 4eK + 1, 
so

#Towm =
∑

E∈Ext2/K,2eK+1

#Ext2/E,4eK+1

= 4q3eK ,

by [Tun78, Lemma 4.3].

Proof (Proof of Theorem 1.5). This is immediate from Corollary 5.3 and Lemma 5.4.
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Lemma 5.5. We have

1
4
∑
m

q−m#Towm = 1
q2 + q + 1(q−3eK−3 + q−3eK−1 + q−2).

Proof. Lemma 5.4 tells us that 1
4
∑

m q−m#Towm is the sum of the following four quan-
tities:

1.
∑

4eK+4≤m≤8eK+2
m even

(q − 1)q−m
2 −eK−2.

2.
∑

6≤m≤8eK
m even

(q − 1)qmin{0,eK+1−�m
4 �}−m

2 −2.

3. − 
∑

6≤m≤8eK
m even

(q − 1)q−m
2 −2−min{�m−2

4 �,eK}.

4.
∑

4eK+5≤m≤8eK+1
m≡1 (mod 4)

(q − 1)qeK+−3m−1
4 −1.

5. q−5eK−3.

We can simplify this as the sum of the following quantities:

1. (q − 1)q−eK−2 ·
∑4eK+1

k=2eK+2 q
−k.

2. (a) (q − 1)q−2 ·
∑2eK+2

k=3 q−k.
(b) (q − 1)qeK−1 ·

∑4eK
k=2eK+3 q

−� 3k
2 �.

3. (a) −(q − 1)q−eK−2 ·
∑4eK

k=2eK+1 q
−k.

(b) −(q − 1)q−2 ·
∑2eK

k=3 q
−� 3k−1

2 �.
4. (q − 1)qeK−2 ·

∑2eK
k=eK+1 q

−3k.
5. q−5eK−3.

We put the pieces together to obtain the contributions to the final sum:

• (1) and (3)(a) cancel to give a contribution of

(q − 1)(q−5eK−3 − q−3eK−3).

• (2)(a) simplifies to a contribution of

q−4 − q−2eK−4.

• We have

4eK∑
k=2eK+3

q−� 3k
2 � = q + 1

q3 − 1(q−3eK−3 − q−6eK ),

so (2)(b) gives a contribution of

q + 1
2 (q−2eK−4 − q−5eK−1).

q + q + 1
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• We have

2eK∑
k=3

q−� 3k−1
2 � = q + 1

q3 − 1(q−2 − q1−3eK ),

so (3)(b) gives a contribution of

− q + 1
q2 + q + 1(q−4 − q−1−3eK ).

• We have

2eK∑
k=eK+1

q−3k = q−3eK − q−6eK

q3 − 1 ,

so (4) gives a contribution of

1
q2 + q + 1(q−2eK−2 − q−5eK−2).

• Finally, (5) obviously gives a contribution of

q−5eK−3.

So far, we have shown that 1
4
∑

m q−m#Towm is the sum of the following six quantities:

(A) (q − 1)(q−5eK−3 − q−3eK−3).
(B) q−4 − q−2eK−4.
(C) q+1

q2+q+1 (q−2eK−4 − q−5eK−1).
(D) − q+1

q2+q+1 (q−4 − q−3eK−1).
(E) 1

q2+q+1 (q−2eK−2 − q−5eK−2).
(F) q−5eK−3.

The sum of (C), (D) and (E) is

q−2eK−4 − q−5eK−2 + q + 1
q2 + q + 1(q−3eK−1 − q−4),

so we have shown that 
∑

m q−m#Towm is the sum of the following four quantities:

1. (q − 1)(q−5eK−3 − q−3eK−3).
2. q−4 − q−2eK−4.
3. q−2eK−4 − q−5eK−2 + q+1

q2+q+1 (q−3eK−1 − q−4).
4. q−5eK−3.
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It is easy to check that this sum simplifies to

1
q2 + q + 1(q−3eK−3 + q−3eK−1 + q−2),

so we are done.

Proof (Proof of Corollary 1.10). This follows easily from Corollary 5.3, Lemma 5.5, and 
the definition of mass.

Data availability

No data was used for the research described in the article.
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