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20-Fucosyllactose helps butyrate producers
outgrow competitors in infant gut microbiota
simulations

David M. Versluis,1 Ruud Schoemaker,2 Ellen Looijesteijn,2 Jan M.W. Geurts,2 and Roeland M.H. Merks1,3,4,*
SUMMARY

A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative
health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses
on the effect of the prebiotic galacto-oligosaccharides (GOS) or 20-fucosyllactose (20-FL) on butyrate pro-
duction by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant
gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the
community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-
specific metabolic networks taken from the AGORA database. The simulations predict that both GOS
and 20-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consis-
tently abundant in the presence of propane-1,2-diol, a product of 20-FL metabolism. In absence of prebi-
otics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete
butyrate producers by consuming intermediate metabolites.

INTRODUCTION

Infants develop a complexmicrobiota shortly after birth, which is important for healthy growth and development.1 Here, we focus on butyrate,

a short-chain fatty acid (SCFA) that is produced in significant amounts by the gut bacteria2 and is absorbed by the gut colonocytes. Production

of butyrate by the microbiota has been suggested to improve the health of infants in a number of ways. Firstly, butyrate in the gut is a key

energy source for the gut epithelium, making it important for maintaining the gut barrier function.3 A breakdown of the gut barrier function

due to a lack of butyrate is associated with diseases such as inflammatory bowel disease and rectal cancer.3,4 Butyrate production in young

infants specifically is associated with a reduced risk of allergies and allergy-associated atopic eczema.5–7 Infant butyrate producing bacteria

provide protection against food allergies when transplanted into a mouse model,8 suggesting causality. Butyrate production is also associ-

ated with a reduced risk of colic in infants.9 Butyrate also modulates the immune system throughout the body, inhibiting inflammation and

carcinogenesis.10 These data suggest it may be desirable to stimulate butyrate production in the infant gut. Usingmechanistic computational

modeling, here we investigate how stimulation of butyrate producing bacteria may be achieved in the early infant gut microbiota through

supplementation with prebiotics.

Microbiota composition and metabolism are influenced by endogenous factors, e.g., gut maturity and inflammation, and exogenous fac-

tors, e.g., nutrition, probiotics, and antibiotics. Here, we focus on nutrition, which is the primary exogenous factor. Human milk and many in-

fant formulas contain prebiotics such as galacto-oligosaccharides (GOS) and 20-fucosyllactose (20-FL), which influence the composition of the

gut microbiota and are associated with beneficial health effects for the infant, such as a decreased risk to require antibiotics11 and reduced

manifestation of allergies.12–14 It has been hypothesized that some of the health effects associated with prebiotics may be linked to indirect

stimulation of butyrate producing bacteria.7,15 Thus, both the capacity for butyrate production,5,7 and prebiotics in nutrition by itself, partic-

ularly 20-FL, have been linked to reduced manifestations of allergies.12–14

Butyrate producing bacteria such asAnaerobutyricum hallii (formerly Eubacterium hallii16) cannot directly consumeGOS or 20-FL, but they
can consumemetabolites of GOS or 20-FL digestion.17 The primary consumers of GOS and 20-FL in the infant gut are Bifidobacterium spp.18,19

Metabolites produced by Bifidobacterium spp., in turn, become important food sources for butyrate producing bacteria. For example, in vitro

it has been found that the butyrate producing bacterium A. hallii can feed on lactate and propane-1,2-diol (1,2-PD), which are metabolites of

Bifidobacterium spp.17 A. hallii can also coexist with Bifidobacterium longum ssp. infantis in vitro on a substrate of glucose or 20-FL.17

Despite these in vitro findings that demonstrate potential coexistence of Bifidobacterium spp. and butyrate producing bacteria, in vivo,

i.e., in the infant gutmicrobiota, butyrate producing bacteria often only have a low abundance andbutyrate is found in the feces of only 35%of
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infants.20 It is unclear why butyrate producing bacteria and butyrate are not commonly abundant in vivo, given that in vitro cross-feeding on

lactate occurs readily,17 and that lactate-producing Bifidobacterium species are abundant in the gut of most infants.21,22 Using computational

modeling, we explore the conditions that may stimulate butyrate producing bacteria in vivo in the infant gut. To this end, we will compare

simulations of simple microbial communities, such as those studied in vitro, with simulations of more complex communities that may

more closely resemble the in vivo situation.

Briefly, the computational model suggests that in simple microbial communities, populations of butyrate producing bacteria can cross-

feed on Bifidobacterium metabolites. However, in more complex communities the intermediary metabolites are consumed by competitors

instead of butyrate producing bacteria. In the presence of 20-FL, populations of butyrate producing bacteria are nevertheless supported. The

mechanism suggested by our simulations is that Bifidobacterium produces 1,2-PD from 20-FL, which specifically feeds butyrate producing

species, allowing these to outgrow competing cross-feeders. We provide predictions for interactions in in vivo and in vitro systems and sug-

gestions for in vitro verification of these predictions.

RESULTS

Model outline

To develop new hypotheses on how oligosaccharides can stimulate the production of butyrate, we further develop a multiscale metabolic

model (Figures 1A and 1B) of the carbon metabolism of the infant gut microbiota.23 The computational model is based on our earlier models

of the adult and infant microbiota.23,24 In comparison with these previous models, the present model simulates a larger number of small bac-

terial populations, using a larger, more diverse, and further curated set of metabolic models of gut bacteria from the AGORA database.25 In

particular, we have included the butyrate producersA. hallii, Roseburia inulinivorans, andClostridium butyricum and the digestion of the pre-

biotic oligosaccharides GOS and 20-FL by Bifidobacterium longum ssp. infantis. The complete community model integrates these predictions

of metabolism over space and time to create a multiscale model that covers the development and variation of the infant gut microbiota over

the first threeweeks of life. Othermultiscalemetabolicmodeling techniques have been used previously tomodel the adult humanmicrobiota

in frameworks such as SteadyCom and Comets.26,27 The model presented here distinguishes itself from these frameworks by its focus on the

infant gut microbiota, by including factors such as prebiotics and the initial presence of oxygen at birth.

Briefly, the spatial model simulates the ecology of an intestinal microbial ecosystem and features genome-scalemetabolic models (GEMs)

of intestinal bacteria, spatial structuring, exchange of extracellular metabolites, and population dynamics. The system is simulated on a reg-

ular square lattice of 22538 boxes of 232 mm, representing a typical infant colon of 4531:6 cm. Each box contains a simulated metapopu-

lation of one of a set of up to 20 of the most common bacterial species present in the infant gut21 (Table 1), and concentrations of simulated

nutrients and metabolites such as extracellular oligosaccharides and short-chain fatty acids. Based on the concentrations of metabolites, the

systems predict the growth rate for each metapopulation as well as the uptake and excretion rates of metabolites using a GEM taken from

AGORA,28 a database of metabolic networks of intestinal bacteria. The system is initialized by distributing, on average, 540 populations over

the system at random. Oxygen is introduced during initialization, and water is always available.

After initialization, the model is simulated in timesteps representing 3 min of real time. Each timestep of the simulation proceeds as fol-

lows. Every 3 h (i.e., 60 timesteps), a mixture of simulated lactose and/or oligosaccharides is added to the leftmost six columns of lattice sites.

Then, in each step, the model predicts the metabolism of each local population using flux balance analysis (FBA) based on the metabolites

present in the local lattice site, theGEMof the species, and the enzymatic constraint. The enzymatic constraint limits the total amount ofmeta-

bolism that can be performed by each local population per timestep by limiting the maximum summed flux for each FBA solution. The enzy-

matic constraint scales linearly with the local population size. This approach allows us to model metabolic switches and trade-offs.23,29 The

FBA solution includes a set of influx rates and efflux rates ofmetabolites that are used to update the environmentalmetabolite concentrations.

The local populations are assumed to grow at a rate linearly proportional to the rate of ATP production,30 which is predicted by FBA by opti-

mizing for ATP production rates. Populations may create a new population in a neighboring lattice site if the local population is 200 times the

initial size (Figure 1A-1). Populations of more than 400 times the local size, which can only formwhen density if so high new populations cannot

be created, stop metabolism to represent quiescence. Populations spread at random into adjacent lattice sites (Figure 1A-2); metabolites

diffuse and advect toward the back of the tube (Figure 1A-3&4). To mimic excretion, metabolites and populations are deleted from the

most distal column each timestep. To represent bacterial colonization, new populations of randomly selected species are introduced into

empty lattice sites at a small probability. All parameters are given in Table 2. Details of the model are given in the STAR Methods.

Model with simplified consortium of species predicts coexistence of butyrate producing bacteria and Bifidobacterium

We first simulated the model using a simplified consortium of species, the two Bifidobacterium longum subspecies (Table 1) and three buty-

rate producing species:Anaerobutyricum hallii,Clostridium butyricum, and Roseburia inulinivorans. We performed 30 simulations for each of

four conditions, in which the following sugars were introduced every three simulated hours: (1) 211 mmol lactose and no prebiotics, (2)

422 mmol lactose and no prebiotics, (3) 211 mmol lactose plus 211 mmol GOS, and (4) 211 mmol lactose plus 211 mmol 20-FL. We estimated

211 mmol lactose to be a realistic amount of lactose to reach the infant colon, given infant intake and small intestinal uptake.26,31 As there

is little absorption by the small intestine of prebiotics,32 the amount of prebiotics in the nutrition consumed by the infant would be much

smaller than the amount of lactose. We also include the 422 mmol lactose condition to control for the possibility that effects in the conditions

with prebiotics are due the larger amount of sugar present conditions, instead of their type. The condition with 422 mmol lactose does not

correspond to an in vivo condition. We analyzed the abundance of each species at the end of 10,080 timesteps, representing 21 simulated
2 iScience 27, 109085, March 15, 2024



Figure 1. Model predicts coexistence of Bifidobacterium and butyrate producing bacteria in absence of competition

(A) Schematic of the model. Circles represent bacterial populations, color represents species. Flow through the tube is from left (proximal) to right (distal).

Nutrients entered the system proximally. All metabolites leave the system distally. Lattice dimensions are schematic.

(B) Screenshots of the model at a single time point, showing, from top to bottom, the bacterial layer, lactose, lactate, and acetate. Brightness indicates growth in

the bacterial layer, and concentration in the metabolic layers.

(C and D) Abundance of (C)Bifidobacterium spp., (D) butyrate producing bacteria, at the end of 21 days for 30 sets of simulations with no prebiotics, no prebiotics

and additional lactose, with GOS, or with 2’-FL at the end of 21 days n = 30 for each condition, each simulation is represented by one dot. See also Table S1.
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days. In each of the four conditions, Bifidobacterium bacteria (Figure 1C) and butyrate producing bacteria coexisted (Figure 1D), and, para-

doxically, butyrate producing bacteria were reduced in presence of prebiotics.
In the presence of competitors, model predicts coexistence of butyrate producing bacteria and Bifidobacterium in the

presence of 2’-FL but not in the presence of GOS

We next examined the behavior of the system in the presence of a more complex consortium, consisting of all 20 species and subspecies

listed in Table 1, simulating the same four conditions. In the absence of prebiotics, regardless of the quantity of lactose, the model predicted

thatBifidobacterium,Bacteroides, andEscherichiabecame themost abundant genera after threeweeks (Figure 2A, Video S1), consistent with

in vivo observation.21,22 We also observed some abundance of Bacilli in accordance with in vivo observations.21,22,33 The higher quantity of
iScience 27, 109085, March 15, 2024 3



Table 1. Species and subspecies included in the model

Name Phylum Anaerobic status per25 Butyrate producing

Bifidobacterium longum ssp. infantis Actinomycetota Obligate anaerobe no

Bifidobacterium longum ssp. longum Actinomycetota Obligate anaerobe no

Collinsella aerofaciens Actinomycetota Obligate anaerobe no

Cutibacterium acnes Actinomycetota Facultative anaerobe no

Rothia mucilaginosa Actinomycetota Microaerophile no

Eggerthella sp. YY7918 Actinomycetota Nanaerobe no

Streptococcus oralis Bacillota Facultative anaerobe no

Staphylococcus epidermidis Bacillota Facultative anaerobe no

Gemella morbillorum Bacillota Facultative anaerobe no

Enterococcus faecalis Bacillota Facultative anaerobe no

Lactobacillus gasseri Bacillota Facultative anaerobe no

Ruminococcus gnavus Bacillota Obligate anaerobe no

Veillonella dispar Bacillota Obligate anaerobe no

Anaerobutyricum hallii Bacillota Obligate anaerobe yes

Roseburia inulinivorans Bacillota Obligate anaerobe yes

Clostridium butyricum Bacillota Obligate anaerobe yes

Parabacteroides distasonis Bacteroidota Nanaerobe no

Bacteroides vulgatus Bacteroidota Nanaerobe no

Haemophilus parainfluenzae Pseudomonadota Aerobe no

Escherichia coli SE11 Pseudomonadota Facultative anaerobe no
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lactose resulted in a higher average abundance for all major groups. In the absence of prebiotics, butyrate producing bacteria achieved a

combined abundance over 1$1010 in only 4 of the 30 simulations with 211 mmol of lactose per 3 h, and 6 of the 30 with 422 mmol of lactose

(Figure 2B). In the remaining simulations, the butyrate producing bacteria remained almost absent, staying below 1$1010 bacteria. In the sim-

ulations with GOS, Bifidobacterium was more abundant than in the condition without prebiotics (p < 0.001, Figure 2A) whereas the butyrate

producing bacteria were not affected (p = 0.18) (Figure 2B). With GOS, butyrate producing bacteria also had a combined abundance of over

1$1010 bacteria at the endof 13 of the 30 simulations (Figure 2B). Interestingly, in the conditionwith 20-FL the abundance of butyrate producing
bacteria was over 1$1010 bacteria at the end of 19 of 30 simulations (Figure 2B), and the butyrate producing species were more abundant

(Figure 2A, Video S2) than in the other conditions. Thus 20-FL but not GOS stimulated butyrate producing bacteria in the complex community.

To test for any concentration dependence or crosstalk between 20-FL and GOS, we next performed sets of 30 simulations in the presence of

211 mmol lactose and levels of 20-FL and GOS varying between 21.1 mmol and 211 mmol per 3 h and combinations thereof (Figure S1). The

amount of 20-FL (p = 0.017, Kruskal-Wallis rank-sum test) but not that of GOS (p = 0.658, Kruskal-Wallis rank-sum test) affected the abundance

of butyrate producing bacteria, further supporting the prediction that 20-FL but not GOS stimulates butyrate producing bacteria in the com-

plex community.

In order to investigate why 20-FL led to a more consistent abundance of butyrate producing bacteria, we analyzed the metabolic interac-

tions between bacterial species. We visualized the network of metabolic fluxes between the bacteria using arrows between species and

metabolite pools in Figures 2C–2E. The resulting diagrams show both primary consumption, i.e., uptake of nutrients such as lactose,

GOS, and 20-FL, and cross-feeding, i.e., uptake of metabolites produced by other species. Sample visualizations of the condition without pre-

biotics (211 mmol lactose) (Figure 2C, Video S3) and the condition with GOS (Figure 2D) revealed co-occurrence of species and cross-feeding

but no butyrate production. In these simulations, the cross-feeding metabolite lactate, which is a known substrate for butyrate producing

bacteria,17 was consumed by Bacteroides vulgatus and Cutibacterium acnes, respectively. Butyrate formation only occurred in the sample

simulation with 20-FL (Figure 2E). Only in the presence of 20-FL and not in the other conditions, was a flux of 1,2-PD directed toward the buty-

rate producing species (Figure 2E; Video S4). We, therefore, hypothesized that butyrate producing species may be more abundant in the

model simulations with 20-FL because 20-FL digestion by Bifidobacterium produces 1,2-PD as a cross-feeding substrate. 1,2-PD is a known

Bifidobacteriummetabolite from 20-FL in vitro.17 To test this hypothesis, we performed new sets of simulations with 20-FL in which we blocked

the uptake by butyrate producing bacteria of either lactose, lactate, or 1,2-PD, i.e., the uptake of metabolites most consumed by butyrate

producing bacteria was disabled. Indeed, blocking the uptake of any of these metabolites led to a reduction of butyrate producing bacteria

(Figure 2F). Thus a flux of not only lactose and lactate, but also 1,2-PD that is only produced in presence of 20-FL, was required for sustaining

butyrate producing bacteria in our simulations.

We next turned to themodel with the simplified consortium of species, the two Bifidobacterium subspecies and three butyrate producing

species, to test if uptake of lactose, lactate, and 1,2-PD was also required for butyrate producing bacteria to become abundant with this
4 iScience 27, 109085, March 15, 2024



Figure 2. Unlike GOS, 20-FL leads to stimulation of butyrate producing bacteria through 1,2-PD in the full simulated microbiota

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.isci.2024.109085.

(A) Relative abundance of bacterial species in the condition with no prebiotics, no prebiotics and additional lactose, with GOS, or with 2’-FL at the end of 21 days

n = 30 for each condition, each simulation is weighed equally. The key to the species in each group is in Table 1.

(B) Abundance of butyrate producing bacteria at the end of 21 days for the four conditions of A. n = 30 for each condition. Each simulation is represented by one

dot. p < 0.001 for 20-FL compared to no prebiotics and no prebiotics with additional lactose. p = 0.004 for 20-FL compared to GOS.

(C–E) Visualization of metabolic interactions in a sample simulation (C) without prebiotics (211 mmol lactose per 3 h) (D) with GOS (DP3,DP4, and DP5 displayed

separately) (E) with 20-FL. Line width is scaled with the flux per metabolite over the last 60 timesteps, multiplied by the carbon content of the molecule, with a

minimum threshold of 100 mmol atomic carbon. Data from last 3 h, step 10,020 to 10,080. Circles indicate nutrients.

(F) Abundance of butyrate producing bacteria with 20FL at the end of 21 days. Uptake of lactose, lactate, or 1,2-PD by butyrate producing bacteria is disabled in

the ‘‘no lactose,’’ ‘‘no lactate,’’ and ‘‘no 1,2-PD’’ conditions, respectively. p = 0.010,p < 0.001,p < 0.001 for each disabled uptake compared to the baseline,

respectively. n = 30 for each condition. Each simulation is represented by one dot. NS: Not significant, *: p < 0.05, **:p < 0.01, ***:p < 0.001. See also

Figures S1 and S2 and Videos S1, S2, S3, and S4.
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consortium. After blocking the uptake of lactose, lactate, or 1,2-PD by butyrate producing bacteria, the abundance of butyrate producing

bacteria was reduced at the end of the simulations compared to the control (Figure 3A). Surprisingly, however, and in contrast to the complete

system (Figure 2F), butyrate producing populations retained an abundance of over 1$1010 bacteria in respectively 27 and 30 of 30 simulations

when lactose or 1,2-PD uptake was disabled. Thus neither lactose nor 1,2-PD were essential for butyrate producing bacteria. Altogether, 1,2-

PD, and thus 20-FL, was required for butyrate producing bacteria in the complex system but not in the simplified system. Thus, these model

simulations suggest that supplementation with 20-FL introduces a flux of 1,2-PD fromBifidobacterium spp. to butyrate producing bacteria that

prevents competitive exclusion of butyrate producers by competitors such as B. vulgatus (Figure 2C) or C. acnes (Figure 2D).
iScience 27, 109085, March 15, 2024 5
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Table 2. Parameters of the model

Parameter Value Unit

Lattice side length 2 mm

Width of lattice 225 lattice sites

Height of lattice 8 lattice sites

Timestep 180 seconds

Average number of initial populations 540 –

New population placement probability 0.00005 per timestep per empty lattice site

Population death probability 0.0075 per timestep per population

Initial size per population 5$107 no. of bacteria

Population size to create a new population 1$1010 no. of bacteria

Maximum population size 2$1010 no. of bacteria

ATP to grow one cell 1$10� 15 mol

Enzymatic constraint 2 mmol flux per timestep per 1$1010 bacteria

Nutrient input 211 mmol per nutrient per 60 timesteps

Initial oxygen 0.1 mmol per lattice site

Metabolic advection 2 mm per timestep

Diffusion (metabolites and bacteria) 6:3$105 square cm per second
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Bacteroides vulgatus and C. acnes are effective competitors on different substrates

In the 20-FL condition, butyrate producing bacteria fed on lactate and 1,2-PD (Figure 2E). In the conditions without 20-FL, no 1,2-PD was pro-

duced and lactate was consumed by B. vulgatus orC. acnes (Figures 2C and 2D). This suggests that, in the absence of 1,2-PD, B. vulgatus and

C. acnes outcompete the butyrate producing bacteria for lactate. To investigate whether these species could indeed be responsible for out-

competing butyrate producing bacteria, we again turned to the model with the simplified consortium and added the potential competitors

B. vulgatus and C. acnes to the consortium one by one.

First, we studied the simplified consortium in absence of prebiotics in the conditions with 211 mmol and 422 mmol lactose per 3 h. The

abundance of butyrate producing bacteria was reduced in presence of B. vulgatus but not in presence of C. acnes (Figure 3B, 422 mmol visu-

alized in Figure S3). After blocking lactose or lactate uptake by B. vulgatus in the condition with 211 mmol lactose, the abundance of butyrate

producing bacteria was restored (Figure 3B), indicating that B. vulgatus required both lactose and lactate to effectively outcompete the buty-

rate producing bacteria.

In the conditions with GOS, the situation was reversed:C. acnes but not B. vulgatus outcompeted butyrate producing bacteria (Figure 3C).

After blocking uptake of lactate by C. acnes the abundance of butyrate producing bacteria was restored (Figure 3C). C. acnes does not use

lactose in the model. Taken together, these simulations suggest that lactate is required for competitive exclusion of butyrate producing bac-

teria by C. acnes.

In the condition with 20-FL, B. vulgatus did not outcompete butyrate producing bacteria (Figure 3D). C. acnes (p = 0.001) moderately sup-

pressed butyrate producing bacteria, with 29 of 30 simulations still predicting an abundance of butyrate producing bacteria of over 1$ 1010

bacteria. This agrees with the simulations using the full consortium (Figure 2B), which also displayed a robust abundance of butyrate produc-

ing bacteria in the 20-FL condition.
Butyrate producing bacteria can use a mixture of lactate and 1,2-PD as substrates in the 20-FL condition to grow faster than

their competitors

To analyze how butyrate producing bacteria can outcompete other species only in the presence of 20-FL but not in the presence of

GOS or without prebiotics, we next examined the growth rates per timestep on unlimited quantities of the three key substrates for

butyrate producing bacteria indicated previously: lactose, lactate, and 1,2-PD. With unlimited availability of lactose, the growth

of the three butyrate producing species was reduced relative to the growth of most other species (Figure 4A). With unlimited

lactate, growth for butyrate producing species was superior to the other species but not to C. acnes (Figure 4B). In presence of

unlimited 1,2-PD and acetate the butyrate producing species A. hallii and Roseburia inulinivorans grew faster than the other species

(Figure 4C). On a mixture of limited lactate and 1,2-PD, with acetate available, two of the three butyrate producing species

also grew faster compared to all other species (Figure 4D). Thus the unique ability of butyrate producing bacteria to grow on 1,2-

PD and acetate in the model allowed them to outcompete other lactate-consuming species in environments with 1,2-PD, such as

those where Bifidobacterium consumes 20-FL. However, they would be unable to outcompete the same species in conditions without

1,2-PD.
6 iScience 27, 109085, March 15, 2024



Figure 3. 20-FL makes butyrate producing bacteria resistant to competition by other infant gut bacteria

(A) Abundance of butyrate producers with 2’-FL and without competitors (only Bifidobacterium and butyrate producers) at the end of 21 days. Uptake of lactose,

lactate, or 1,2-PD is disabled for butyrate producers in the ‘‘no lactose,’’ ‘‘no lactate,’’ and ‘‘no 1,2-PD’’ conditions respectively. n = 30 for each condition. Each

simulation is represented by one dot. (p < 0.001 for each disabled uptake compared to the baseline).

(B–D) Abundance of butyrate producers at the end of 21 days (B) without prebiotics, either without competitors (only Bifidobacterium and butyrate producers),

with addition of B. vulgatus, with addition of B. vulgatus unable to take up either lactose or lactate, or with addition of C. acnes. n = 30 for each condition. Each

simulation is represented by one dot. p < 0.001 for abundance of butyrate producers with B. vulgatus compared to no competitors (C) with GOS, either without

competitors (only Bifidobacterium and butyrate producers), with addition of C. acnes, with addition of C. acnes unable to take up lactate, or with addition of

B. vulgatus. n = 30 for each condition. Each simulation is represented by one dot. p < 0.001 for abundance of butyrate producers with C. acnes compared to

no competitors (D) with 20-FL, either without competitors (only Bifidobacterium and butyrate producers), with addition of C. acnes, or with addition of

B. vulgatus. n = 30 for each condition. Each simulation is represented by one dot. p = 0.001 for abundance of butyrate producers with C. acnes compared to

no competitors. NS: Not significant, *: p < 0.05, **:p < 0.01, ***:p < 0.001. See also Figure S3.
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Figure 4. Populations of butyrate producing bacteria only grow much faster than their competitors on a mixed substrate of 1,2-PD and lactate

(A) Growth on unlimited lactose and water over a single timestep for butyrate producing bacteria (three rightmost bars, in green) compared to other lactose-

fermenting bacteria in the model.

(B) Growth on unlimited lactate and water over a single timestep for butyrate producing bacteria (three rightmost bars, in green) compared to other lactate-

fermenting bacteria in the model.

(C) Growth on unlimited 1,2-PD, acetate, andwater over a single timestep for butyrate producing bacteria (two rightmost bars, in green) compared to another 1,2-

PD-fermenting bacterial species in the model.

(D) Growth on 1 mmol per mL of 1,2-PD and lactate, and unlimited acetate and water, over a single timestep for butyrate producing bacteria (three rightmost bars,

in green) compared to other bacteria in the model for populations of 5$109 bacteria with access to one lattice site (0.05mL).
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Sensitivity analysis

Finally, to test the generality of our observations, we performed a sensitivity analysis on the system. The enzymatic constraint (Figures S2A and

S2B), the death rate and growth rate (through the ATP required per population unit) (Figures S2C and S2D), the placement of newpopulations

of random species in empty lattice sites (colonization) (Figures S2E and S2F), the diffusion of metabolites and populations (Figures S2G and

S2H), the amount of initial oxygen (Figures S2I and S2J), the presence of quiescence for large populations (Figure S2K), well-mixed conditions

(Figure S2L), and the size of the lattices (Figures S2M and S2N) were varied. The exact implementation of colonization, well-mixed conditions,

quiescence, and lattice size are described in the methods. We used three conditions for most changed parameters: 211 mmol lactose,

211 mmol lactose plus 211 mmol GOS, and 211 mmol lactose plus 211 mmol 20-FL per 3 h. We only used the latter two for disabling quiescence,

as no populations entered quiescence during our initial runs with 211 mmol lactose. We found minor sensitivity for most parameter changes

(Figure S2). We found the most notable effects when we disabled colonization, or initial oxygen, when we used well-mixed conditions, and

when we decreased the lattice size. When we disabled colonization, the abundance of butyrate producing bacteria was lower in all three con-

ditions (p < 0.001 for all, Figure S2E). The absence of initial oxygen increased the abundance of butyrate producing bacteria in the condition

without prebiotics and with 20-FL (p = 0.002,p = 0.035, Figure S2I). When we used well-mixed conditions, which disabled spatial separation,

Bifidobacterium spp. were much less abundant without prebiotics, and B. vulgatus was much more abundant (p < 0.001, Figure S2L). There

were also larger butyrate producer populations with GOS (p = 0.012, Figure S2L) and with 20-FL (p < 0.001, Figure S2L). This indicates that the

butyrate producers were more competitive in this well-mixed environment in the model. With a smaller lattice size, each lattice site repre-

sented 434 mm of space, instead of 232 mm. In this condition, Bifidobacterium was much less abundant in all conditions (p < 0.001, Fig-

ure S2M), which represents a mismatch with in vivo data.21,22 Conversely, species in the ‘‘others’’ category were much more abundant

(p < 0.001, Figure S2M), as were butyrate producers without (p = 0.01) and with prebiotics (p < 0.001). A larger lattice, where each lattice

site represented 131 mm of space, led to very similar results as with our default lattice size (Figure S2N) but was much more computationally

intensive. Taken together, these results indicate that sustained colonization, the presence of initial oxygen, non-well-mixed conditions, and a

minimum lattice size are particularly important in the simulated system.

DISCUSSION

This paper describes a computational study of the effects of the prebiotics GOS and 20-FL on butyrate producing bacteria in the infant gut

microbiota. We have used the model to generate novel hypotheses to explain the—sometimes counter-intuitive—mechanisms at the
8 iScience 27, 109085, March 15, 2024
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biochemical and population level that underlie the effects of prebiotics. Themodel predicts that butyrate producing bacteria can coexist with

Bifidobacterium in the infant gut with or without GOS or 20-FL as long as no other bacterial species are present. As soon as other bacterial

species are introduced into the model, we found that they can act as competitors, thus reducing the abundance of butyrate producing bac-

teria. Specifically, the model predicts that B. vulgatus outcompetes butyrate producing bacteria in absence of prebiotics. The predicted

mechanism is that B. vulgatus consumes lactose and lactate, important food sources of the butyrate producing species. In presence of

GOS, the model predicts that C. acnes becomes the key competitor of the butyrate producing bacteria due to its lactate consumption. In

presence of 20-FL, however, the butyrate producing species are no longer outcompeted. The mechanism as predicted by the model is as

follows. The breakdown of 20-FL by Bifidobacterium produces 1,2-PD. 1,2-PD becomes an additional food source for the butyrate producing

bacteria, helping them to outgrow competitors. Thus, our modeling results predict that only 20-FL, but not GOS, supports populations of

butyrate producing bacteria in their competition against species such as B. vulgatus and C. acnes.

The following in vitro and in vivo observations agree with these model predictions. Firstly, the model predicts coexistence and cross-

feeding between Bifidobacterium and butyrate producing species on 20-FL. In agreement with the model predictions, coexistence of and

cross-feeding between Bifidobacterium and butyrate producing bacteria occurs in vitro within simplified, synthetic communities on glucose,

fucose, and 20-FL in the absence of competitors.17 Secondly, the model predicts that in presence of the competitors such as B. vulgatus and

C. acnes, B. vulgatuswill become abundant in the absence of prebiotics and outcompete butyrate producing species. In agreement with this

model prediction, B. vulgatus is often abundant in the in vivo infant gut microbiota,21 and it can consume lactose in vitro.34 No information is

available on lactate consumption of B. vulgatus, but the related Bacteroides fragilis is able to consume lactate in vitro.35 Thirdly, the model

predicts thatC. acnes outcompetes butyrate producing bacteria in presence of GOS by consuming lactate. In agreement with this prediction,

C. acnes is found in 22% of infants21 andCutibacterium avidum, closely related toC. acnes,36 reduces the abundance of the butyrate producer

A. hallii in an in vitro lactate-fed microbiota from infant fecal samples.37 Both C. acnes and C. avidum consume lactate in vitro.38 Finally, the

model predicts that butyrate producing bacteria become competitive through cross-feeding on 1,2-PD, which is produced by Bifidobacte-

rium longum from 20-FL. In agreement with this prediction, the butyrate producer A. hallii cross-feeds on 1,2-PD in an in vitro synthetic com-

munity of A. hallii and B. longum.17 Also in line with this prediction, 20-FL supplementation increased the abundance of butyrate producing

bacteria in in vitro fecal communities based on infant fecal samples, which likely include key competitors of butyrate producing species.15 An

in vitro colonic fermentation model inoculated with infant feces has previously been used to study the effect of introducing specific compet-

itors to lactate-consuming infant gut microbiota.37 This approach could also be used to test if B. vulgatus andC. acnes are viable competitors

in the infant gut and if the presence of 1,2-PD allows butyrate producing species to outcompete other bacteria.

More broadly, the model simulations without prebiotics predict that Escherichia, Bacteroides, and Bifidobacterium become the three

most abundant genera, which agrees with the most abundant genera found in the infant gut microbiota around the age of three

weeks.21,22 The relative abundances the model predicts for butyrate producing species range from 1.4% without prebiotics to 4.8%

with 20-FL, both of which are within the broad range of values reported for the butyrate producing community.20 However, for two less

abundant groups, Bacilli and Veillonella, the model predictions disagree with in vivo data. Firstly, an initially dominant Bacilli phase is

sometimes seen in vivo, e.g., in 17.6% of subjects in,33 but not in any model outcomes. An initially dominant Bacilli phase is associated

in non-premature infants with a shorter gestational period,33 but it is unclear exactly what factors are responsible. A similar initial domi-

nance of Bacilli that often occurs in premature infants has been hypothesized to be related to selection pressures by the immune system,

a different composition of initial colonizers,39 or a defective mucin barrier.40 Secondly, the model predicted a very low Veillonella dispar

abundance in all conditions. These predictions contradict in vivo data21,41 in which V. dispar is relatively abundant. V. dispar likely has a

lower abundance in the model due to an incorrectly reduced growth rate relative to the other species in the model on lactate, the primary

energy source of V. dispar42 (Figure 4B). We do not expect a large influence on the overall model predictions from this discrepancy, as

C. acnes has a metabolism similar to that of V. dispar in the model and in vitro: both produce propionate, consume lactate, and cannot

consume lactose.38 However, we cannot exclude that other species in the model, such as Veillonella spp., may be more important com-

petitors in vivo than the competitors that the model predicts.

Despite the inevitable limitations of the model, we have shown here how the model can be used to produce testable predictions on the

effects of prebiotics and competition on butyrate producing bacteria in the infant gut microbiota. Future versions of the model may be a use-

ful help in follow-up studies on the effects of nutrition on bacterial population dynamics in the infant and adult gut microbiota.
Limitations of the study

Potential sources of the discrepancies betweenmodel predictions and experimental data include (1) errors in themetabolic predictions of the

underlying FBAmodels; (2) computational errors, and (3) incomplete representation of the biology underlying infant digestion. A typical error

occurring in FBAmodels is an incomplete prediction ofmetabolic shifts, which is in part due to the assumption of FBAmodels that the growth

rate or energy production is optimized.43 For example, the FBA model does not correctly predict the metabolic shift from high-yield to low-

yield metabolism as observed in vitro in Bifidobacterium growing on increasing concentrations of GOS and 20-FL.44,45 FBA only predicts high-

yield metabolism. The model, therefore, likely underestimates total lactate production. The effects of this discrepancy on the results are

difficult to predict, but as lactate is a cross-feeding substrate, the underestimation of lactatemay cause themodel to underestimate the abun-

dance of cross-feeding species such as C. acnes or butyrate producing bacteria. The optimality assumption of FBA also ignores any other

‘‘task’’ that a bacterium has, besides growth. For example, sporulation, toxin production, or metabolic anticipation46 may limit biomass pro-

duction. The model does not represent such genetically regulated mechanisms.
iScience 27, 109085, March 15, 2024 9
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Further errors in the model predictions can be due to simplifications in the FBAmodel. For example, we assume that the total flux through

the reactionnetworks is cappedbya limit that depends linearly on the local population size (Equation5). This limitmimics themaximumvolume

in a cell that canbefilledwithenzymes.Here, eachenzyme is assumed tohaveequalmaximumflux, and theoptimizationproblemthenpredicts

the optimal relative flux distribution. In reality, due to differences in enzyme concentration and enzymeefficiency, thesemaximumfluxes can of

course differ, which affects the predictions of FBA.47,48 If species-specific data on efficiency and genetic regulation of pathways become avail-

able, suchweightingcouldbe included in themodel. Themetabolic predictions fromtheFBA layer couldbe further improved in future versions

of themodel by improving theGibbs free energy estimates (Equation 1), such as by using species-specific or dynamic estimates of intracellular

pH. Intracellular pH is an important factor in calculatingGibbs free energy.49 BetterGibbs free energy estimateswould then allow for reactions

to be curated further based on whether they are thermodynamically feasible, and for thermodynamic favourability to be included in FBA. The

inclusion of thermodynamic favourability in FBAhas previously improvedmetabolic predictions for intracellularmetabolism.50,51 Also, the FBA

model currently includes an extracellular compartment in which long GOS chains are broken down into shorter GOS chains, but it is not

possible for extracellular breakdown products to diffuse during this process. Such extracellular digestion may lead to additional competition

effects, because competitorsmay ‘‘steal’’ digestion products without investing in the enzymes themselves.52 Such effectsmay become impor-

tant if additional species are introduced in the model that digests prebiotics extracellularly, such as Bifidobacterium bifidum.18

Computational errors in the model (2) include the discretization of time, the discretization of space, and rounding errors in the FBA solver.

Firstly, all processes in the model are assumed to be constant within each timestep, which means the model only roughly approximates the

continuous temporal dynamics of processes such asmetabolism and diffusion. Several techniques have been developed to improve this, such

as incorporating additional rate of change constraints to the FBA.53 This ensures that fluxes can only change gradually between timesteps,

thus bringingmetabolism in themodel closer to the continuous dynamics of actual bacterial metabolism. Thismay cause amismatch between

protein activity and the environment, where for example the proteins that take up lactose are still active even without lactose. Secondly, we

discretize the three-dimensional continuous cylindrical space of the gut into a two-dimensional rectangular grid of lattice sites. We consider

each lattice site to be of equal volume and to have equal flow through it. This simplification introducesmany errors, as lattice sites must repre-

sent different shapes of three-dimensional space, and these shapes are not connected as they would be in three-dimensional space. It is diffi-

cult to estimatewhat impact these discretizations have on themodel. Finally, the FBA solver uses floating point arithmetic to generate a deter-

ministic but not exact solution to each FBA problem. These distortions are very small, typically on the order of 10� 15 mmol per metabolite per

FBA solution, so we do not expect a notable effect on the results.

Errors in the model predictions due to an incomplete representation of the biology underlying infant digestion (3) include missing organ-

isms, missing ecological interactions, the simplifications we made to the metabolic input, and missing representation of host interactions.

Firstly, the model does not include fungi or archaea in the infant gut. Both groups occur at a lower absolute abundance than the bacterial

microbiota but may still influence it.54 Secondly, the model does not include interactions between bacteria other than cross-feeding and

competition for resources. Missing interactions include acidification of the gut,55 the production of bacteriocins,56 and the effects of phage

infections,57 all of which have species-specific effects. Thirdly, the model does not include the input of fats, proteins, or minerals into the gut.

This means that the model cannot represent stimulation of growth by digestion of fats or proteins, nor potential limits on growth due to, for

example, the lack of iron58 or essential amino acids.59 Finally, the model does not represent the interactions of the host with the microbiota,

such as the continuous secretion by the gut wall of mucin60 and oxygen,61 and the uptake of short-chain fatty acids.62 Colonicmucins in partic-

ular could greatly influence the microbiota, as B. bifidum consumes colonic mucins extracellularly, which facilitates cross-feeding by butyrate

producing bacteria in vitro.63
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18. Böger, M., Van Leeuwen, S.S., Lammerts Van
Bueren, A., and Dijkhuizen, L. (2019).
Structural Identity of Galactooligosaccharide
Molecules Selectively Utilized by Single
Cultures of Probiotic Bacterial Strains.
J. Agric. Food Chem. 67, 13969–13977.
https://doi.org/10.1021/acs.jafc.9b05968.

19. Bunesova, V., Lacroix, C., and Schwab, C.
(2016). Fucosyllactose and L-fucose utilization
of infant Bifidobacterium longum and
Bifidobacterium kashiwanohense. BMC
Microbiol. 16, 248. https://doi.org/10.1186/
s12866-016-0867-4.

20. Appert, O., Garcia, A.R., Frei, R., Roduit, C.,
Constancias, F., Neuzil-Bunesova, V., Ferstl,
iScience 27, 109085, March 15, 2024 11

https://doi.org/10.1016/j.isci.2024.109085
https://doi.org/10.1186/s13052-020-0781-0
https://doi.org/10.1186/s13052-020-0781-0
https://doi.org/10.1016/j.cmet.2011.02.018
https://doi.org/10.1016/j.cmet.2011.02.018
https://doi.org/10.1111/j.1749-6632.2012.06553.x
https://doi.org/10.1111/j.1749-6632.2012.06553.x
https://doi.org/10.7150/jca.25324
https://doi.org/10.7150/jca.25324
https://doi.org/10.1016/j.jaci.2019.06.029
https://doi.org/10.1111/all.12549
https://doi.org/10.1016/j.jaci.2017.05.054
https://doi.org/10.1016/j.jaci.2017.05.054
https://doi.org/10.1038/s41591-018-0324-z
https://doi.org/10.1038/s41591-018-0324-z
https://doi.org/10.1542/peds.2012-1449
https://doi.org/10.1111/j.1365-2036.2007.03562.x
https://doi.org/10.1111/j.1365-2036.2007.03562.x
https://doi.org/10.1128/mBio.03196-19
https://doi.org/10.1136/adc.2006.098251
https://doi.org/10.1136/adc.2006.098251
https://doi.org/10.1007/s00394-016-1180-6
https://doi.org/10.1007/s00394-016-1180-6
https://doi.org/10.3945/jn.116.236919
https://doi.org/10.3945/jn.116.236919
https://doi.org/10.1016/j.jff.2019.103484
https://doi.org/10.1099/ijsem.0.003041
https://doi.org/10.1099/ijsem.0.003041
https://doi.org/10.3389/fmicb.2017.00095
https://doi.org/10.3389/fmicb.2017.00095
https://doi.org/10.1021/acs.jafc.9b05968
https://doi.org/10.1186/s12866-016-0867-4
https://doi.org/10.1186/s12866-016-0867-4


ll
OPEN ACCESS

iScience
Article
R., Zhang, J., Akdis, C., Lauener, R., et al.
(2020). Initial butyrate producers during infant
gut microbiota development are endospore
formers. Environ. Microbiol. 22, 3909–3921.
https://doi.org/10.1111/1462-2920.15167.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

AGORA genome-scale metabolic models Magnusdottir et al.28 www.vmh.life, https://doi.org/10.1038/nbt.3703

Original models uploaded at

https://github.com/DMVers/IGMOST2datafiles

Infant gut microbiota abundance data Table S3 of Bäckhed et al.21 https://doi.org/10.1016/j.chom.2015.04.004

Software and algorithms

IGMOST 2 This paper https://github.com/DMVers/IGMOST2

https://doi.org/10.5281/zenodo.10497046

R 4.2.1 The R foundation RRID:SCR_001905; https://www.r-project.org/

Equillibrator API (December 2018 update) Noor et al.49 RRID:SCR_006011; https://doi.org/10.1371/journal.pcbi.1003098

GLPK 4.65 GNU project www.gnu.org/software/glpk/

C++ 11 Standard C++ Foundation https://isocpp.org/

Python 3.6 Python software foundation RRID:SCR_008394; https://www.python.org/

Raincloud plots library for R Allen et al.64 https://doi.org/10.12688/wellcomeopenres.15191.1

libSBML 5.18.0 Bornstein et al.65 RRID:SCR_014134; https://doi.org/10.1093/bioinformatics/btn051
RESOURCE AVAILABILITY

Lead contact

Further information regarding themethods and the dataset should be directed to andwill be fulfilled by the lead contact, R.M.H.Merks, r.m.h.

merks@biology.leidenuniv.nl.
Materials availability

This study did not generate new reagents.
Data and code availability

� Datasets reported in this paper will be shared by the lead contact upon request.
� All original code has been deposited at GitHub at github.com/DMvers/IGMOST2 and is publicly available as of the date of publication.

The GEMs were downloaded from vmh.life28; the versions used for this work are available at github.com/DMvers/IGMOST2datafiles.

Modifications need to be applied according to Table S1 and instructions at github.com/DMvers/IGMOST2.GEMswere selectedbased

on data from Table S3 in Bäckhed et al. 2015.21 DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

We used a spatially explicit model to represent the newborn infant gut microbiota. The model is based on our earlier models of a general

microbiota24 and the infant microbiota.23 Prebiotic digestion is the most important addition in the present version of the model.

The model consists of a regular square lattice of 22538 lattice sites, with each lattice site representing 232 mm of space. In the sensitivity

analysis we also use a smaller lattice of 11234 lattice sites, each representing 434 mm, and a larger lattice of 450316 lattice sites each rep-

resenting 131 mm. Taken together this represents an infant colon of 450316 mm, in line with in vivo estimates.66,67 Each lattice site can

contain an amount of the 735 metabolites represented in the model, as well as a single bacterial population.
Species composition

Species were selected based on Bäckhed et al.21 using sheet 2 of their Table S3. We selected the 20 entries with the highest prevalence in

vaginally delivered newborns. After removing two duplicate entries we selected a representative species for each genus from the AGORA

database.28 We then added an additional Bifidobacterium longum ssp. infantis GEM to serve as prebiotic consumer, and a Roseburia
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inulinivorans GEM. Roseburia spp. have been shown to be a prevalent butyrate producing bacterium in infants in other studies.20 Together,

these form the list of species (Table 1).
Changes from AGORA

The model uses GEMs generated in the AGORA project.25 We have applied various changes and additions to these models (Table S1).

We have added digestion of GOS or 20-FL to the B. longum ssp. infantisGEM as follows. 20-FL digestion was implemented by adding re-

actions representing anABC-transporter and an intracellular fucosidase that breaks 20-FL down to lactose and fucose.44 GOSwas represented

through separate DP3, DP4, and DP5 fractions.68 The DP4 andDP5 fractions are broken down extracellularly to DP3 and DP4 fractions respec-

tively, releasing one galactosemolecule in the process.69 The DP3 fraction is taken up with an ABC transporter, and broken down internally to

lactose and galactose.69

We have also further expanded earlier curation of the AGORA GEMs.23 We disabled anaerobic L-lactate uptake for the Bifidobacterium

GEMs and for E. coli in line with available literature.70,71 To have the GEMs correspond with existing literature on lactose uptake we added a

lactose symporter to Anaerobutyricum hallii,63 both Bifidobacterium longum GEMs,72 Roseburia inulinivorans,73 Haemophilus parainfluen-

zae,74 and Rothia mucilaginosa.75 We also added galactose metabolism to R. inulinivorans76 and R. mucilaginosa.75 Further changes were

made to prevent unrealistic growths and the destruction of atoms within reactions (Table S1).
Validity checks

After applying the changes in Table S1 we tested all GEMs individually for growth on a substrate of lactose and water. In line with literature,

this did not lead to growth for Veillonella disparans,42Cutibacterium acnes,38 Eggerthella sp. YY7918,77 andGemella morbillorum.78 All other

species grew on this substrate. We also checked for any spurious growth by checking each GEM for growth with only water present.

During each simulation, the model checks the FBA solutions for thermodynamic plausibility. The model uses a database of Gibbs free

energy values49 for all metabolites except 20-FL and GOS. Values for 20-FL and GOS were generated from the values for lactose and fucose,

and lactose and galactose, respectively. Separate values were generated for the separate fractions of GOS. All values assumed a pH of 7 and

an ionic strength of 0.1 M. This is a simplification of actual pH values. The infant gut typically has a pH around 5–6.5.79,80 However, as most

reactions in themodel occur inside bacterial cells, we have used a pHof 7, which is a rough estimate of the internal pH of commongut bacteria

at an external pH around 5–6.5.81,82 Ideally, pHwould be calculated dynamically, and thermodynamic values would be generated dynamically

based on the relevant pH values, but this has not been implemented in the current version of the model.

Energy loss l in joules per timestep per population unit is recorded as follows, where i aremetabolites, F is the exchange flux rate inmol per

timestep per population unit and E contains the Gibbs free energy in joules per mol for each metabolite,

l =
X
i

FðiÞ $EðiÞ (Equation 1)

We found that in the simulations of Figure 2Awith the baseline level of lactose, combinedwith those with GOS and 20-FL (n = 90) 99.98% of

all FBA solutions had a lower or equal amount of Gibbs free energy in the output compared to the input. The remaining 0.02% of FBA solu-

tions was responsible for 0.003% of total bacterial growth.
FBA with enzymatic constraint

Although other aspects of themodel were changed, the FBA approachwe used is identical to that used in the earliermodel.23 Themodel uses

a modified version of flux balance analysis with an enzymatic constraint to calculate the metabolic inputs and outputs of each population at

each timestep.29,43 EachGEM is first converted to a stoichiometricmatrix S. Reversible reactions are converted to two irreversible reactions, so

that flux is always greater than or equal to 0. Reactions identified in theGEMas ‘exchange’, ‘sink’, or ‘demand’ in theGEMare also recorded as

‘exchange’ reactions. These exchange reactions are allowed to take up or deposit metabolites into the environment. Each timestep, all re-

actions are assumed to be in internal steady state:

S $ f
!

= 0; (Equation 2)

where f
!

is a vector of the metabolic fluxes through each reaction in the network, in mol per time unit per population unit.

Each exchange reaction that takes up metabolites from the environment Fin is constrained by an upper bound Fub which represents the

availability of metabolites from the environment. It is determined as follows:

F
!

in % F
!

ub; (Equation 3)

where F
!

in is a vector of fluxes between the environment and the bacterial population. F
!

ub is a vector of upper bounds on these fluxes. F
!

ub is

set dynamically at each timestep t by the spatial environment at each lattice site x!:

F
!

ubð x!; tÞ =
c!ð x!; tÞ
Bð x!; tÞ ; (Equation 4)
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where c! is a vector of all metabolite concentrations in mol per lattice site, x! is the location and Bð x!; tÞ is the size of the local bacterial pop-

ulation. The size of B can range from 5$107 to 2$1010 bacterial cells.

Finally the enzymatic constraint constrains the total flux through the network. It represents the maximum, total amount of flux that can be

performed per cell in each population:

X
f
!

% a: (Equation 5)

The enzymatic constraint a is in mol per time unit per population unit. As both f
!

and a are per population unit, this limit scales linearly with

population size, so each bacterial cell contributes equally to themetabolic flux possible in a lattice site. The enzymatic constraint is included as

a constraint on each FBA solution. Given the constraints, FBA identifies the solution that optimizes the objective function, ATP production.

The solution consists of a set of input and output exchange fluxes F
!

inð x!; tÞ and F
!

outð x!;tÞ, and a growth rate gð x!;tÞ. The exchange fluxes are
taken as the derivatives of a set of partial-differential equations to model the exchange of metabolites with the environment. The size of the

population increases proportionally to the growth rate in the FBA solution.

Tomimic quiescence at high densities, populations above the spreading threshold of 2$1010 bacteria do not performmetabolism. In prac-

tice this rarely occurs because we maintain sufficient space for populations to spread into empty lattice sites. In the simulations of Figure 2A

(n = 120) metabolism was not performed in, on average, 0.05% of all populations in a timestep.
Environmental metabolites

Wemodel 735 different extracellular metabolites. This is the union of all metabolites that can be exchanged with the environment by at least

one GEM in the model. In the simulations 39 metabolites are present in the medium in more than micromolar amounts at any point. We

combine the L-lactate and D-lactate metabolites for Figure 1B and Videos S1 and S2. Nearly all lactate in the model is L-lactate.

To represent the mixing of metabolites by colonic contractions we apply a diffusion process to the metabolites at each timestep. Meta-

bolic diffusion is applied in two equal steps to themodel. In each step, 14.25% of eachmetabolite diffuses from each lattice site to each of the

four nearest neighbors. This causes a net diffusion each timestep of 6:3$105 cm2/s. In the sensitivity analysis, eight of these diffusion steps are

performed when the lattice is larger, or one step with a diffusion of 7.125% is performed when the lattice is smaller. This ensures the net diffu-

sion of 6:3$105 cm2/s remains constant. Whenwe usewell-mixed conditions in the sensitivity analysis, all nutrients andmetabolites are instead

divided equally over all lattice sites. Metabolites are also added and removed by bacterial populations as a result of the FBA solutions,

yielding

d c!ð x!; tÞ
dt

= F
!

outð x!; tÞBð x!; tÞ � F
!

inð x!; tÞBð x!; tÞ+ D

L2

X

i
!

˛NBð x!Þ

�
c!
�
i
!
; t
�
� c!ð x!; tÞ

�
; (Equation 6)

where F
!

outð x!; tÞ is a vector of fluxes from the bacterial populations to the environment, in mol per time unit per population unit, D is the

diffusion constant, L is the lattice side length, and NBð x!Þ are the four nearest neighbors.

All metabolites except oxygen are moved distally by one lattice site every timestep to represent advection. On the larger lattice the me-

tabolites are instead moved by two lattice sites. On the smaller lattice, they are moved one lattice sites every two steps. The transit time,

including diffusion, is approximately 11 h, corresponding with in vivo observations in newborn infants.83,84 Metabolites at the most distal col-

umn of the lattice, the end of the colon, are removed from the system at each timestep.

Every 60 timesteps (representing 3 h) metabolites representing inflow from the small intestine are inserted into the first six columns of lat-

tice sites. Three hours represents a realistic feeding interval for neonates.85 Food intake contains 211 mmol of lactose by default, a concen-

tration in line with human milk,31 assuming 98% host uptake of carbohydrates before reaching the colon.26 In some simulations 211 mmol of

additional lactose, GOS, or 20-FL is added. Because there is very little uptake of prebiotics by the infant,32 the oral intake of prebiotics would

be much lower than that of lactose. GOS is inserted as separate fractions of DP3, DP4, or DP5 based on analysis of the composition of Vivinal-

GOS.68 64% is DP3, 28% is DP4 and 8% is DP5. Water is provided in unlimited quantities. Oxygen is placed during initialization86 at 0.1 mmol

per lattice site. No other metabolites are available, other than those produced as a result of bacterial metabolism within the model.
Population dynamics

During initialization there is a probability of 0.3 for each lattice site to get a population of size 5$107 of a random species (Table 1). Taken

together, this averages around 540 populations, leading to a total initial bacterial load of 2:7$1010, in line with in vivo estimates87 when we

assume a uniform bacterial density and a total colon volume of 90 mL. In each timestep each local population solves the FBA problem based

on its own GEM, the enzymatic constraint a, its current population size Bð x!; tÞ and the local concentrations of metabolites c!ð x!;tÞ, and ap-

plies the outcome to the environment (see above) and the growth rate gð x!; tÞ to its own population size, as follows:

dBð x!; tÞ
dt

= Bð x!; tÞgð x!; tÞ: (Equation 7)

Each step, each population of at least 1$1010 bacteria (Table 2) will create a newpopulation if an adjacent empty lattice site is available. Half

of the old population size is transferred to the new population, so that the total size is preserved. To mimic colonization new populations are
16 iScience 27, 109085, March 15, 2024



ll
OPEN ACCESS

iScience
Article
introduced at random into empty lattice sites during the simulation, representing both dormant bacteria from colonic crypts88 and small bac-

terial populations formed from ingested bacteria, which may only become active after being moved far into the gut. Each empty lattice site

has a probability of 0.00005 (Table 2) each step to acquire a new population of a randomly selected species. All species have an equal prob-

ability to be selected. We initialize these populations at the same population size B as the initial populations in the model (Table 2). Each

population dies out at a probability of 0.0075 per timestep, creating a turnover within the range of estimated microbial turnover rates in

the mouse microbiota.89

To mix the bacterial populations, the lattice sites swap population contents each timestep. We use an algorithm inspired by Kawasaki dy-

namics,90 also used previously for bacterial mixing23,24 In random order, the bacterial content of each site, i.e., the bacterial population rep-

resented by its size Bð x!; tÞ and the GEM, are swapped with a site randomly selected from the Moore neighborhood. This swap only occurs if

both the origin and destination site have not already swapped in this timestep.With this mixingmethod the diffusion constant of the bacterial

populations is 6:3$105cm2=s, equal to that of themetabolites. Bacterial populations at themost distal column, i.e., at the exit of the colon, are

removed from the system. To increase the bacterial diffusion rate in the sensitivity analysis this process was executed five times, marking all

sites as unswapped after each execution. To decrease the bacterial diffusion rate the number of swaps was limited to a fifth of the usual num-

ber of swaps. In the sensitivity analysis simulations with a larger or smaller grid the bacterial diffusion rate was adapted in the same way, to

ensure a constant effective diffusion in cm2=s. In the well-mixed sensitivity analysis simulations all populations were instead assigned random

non-overlapping locations.
Data recording

We record the size, species, location, and important exchange fluxes F
!

inð x!; tÞ and F
!

outð x!; tÞ for each population at each timestep. To

detect irregularities we also record the net flux of carbon, hydrogen, oxygen, and Gibbs free energy for every population at each timestep.

Gibbs free energy values were estimated using the Equillibrator database49 and Equation 1.
Parameters

Parameters of the system are listed in Table 2.We estimate a total volume of 90mL for the infant colon,66,67 which leads to a rough estimate on

the order of 1012 bacteria in the newborn infant colon given an abundance permL of around 1010.87 Values for free parameters were estimated

and evaluated in the sensitivity analysis.
Implementation

We implemented the model in C++11. We based the model on our own earlier models of the gut microbiota.23,24 Random numbers are

generated with Knuth’s subtractive random number generator algorithm. Diffusion of metabolites was implemented using the Forward Euler

method. The GEMs are loaded using libSBML 5.18.0 for C++.65 We used the GNU Linear Programming Kit 4.65 (GLPK) as a linear program-

ming tool to solve each FBA with enzymatic constraint. We used the May 2019 update of AGORA,28 the latest at time of writing, from the

Virtual Metabolic Human Project website (vmh.life). We used Python 3.6 to extract thermodynamic data from the eQuilibrator API (December

2018 update).49 When not noted otherwise p values were calculated with R 4.2.1 using the Mann-Whitney test from the ‘stats’ package 3.6.2.

Model screenshots were made using the libpng16 and pngwriter libraries. Other visualizations were performed with R 4.2.1 and Google

Sheets. Raincloud visualizations used a modified version of the Raincloud plots library for R.64
QUANTIFICATION AND STATISTICAL ANALYSIS

Weused R 4.2.1 (www.r-project.org) to calculate all p values.When not noted otherwise, we used the non-parametricMann-Whitney test from

the ‘stats’ package 3.6.2, which compares medians. p values are noted with asterisks in figures, as follows: NS: Not significant, *: p < 0.05,

**:p < 0.01, ***:p < 0.001, and also written out as exact values in the text. A p value below 0.05 was considered significant. n-values are noted

in figure captions. Each n represents an independent simulation with a different seed. A new seed was randomly generated for each simu-

lation. Raincloud visualizations were generated with the Raincloud plots library for R.64 Each dot represents an independent simulation, and

the bold line indicates the median.
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