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Artificial intelligence assisted operative
anatomy recognition in endoscopic
pituitary surgery
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Pituitary tumours are surrounded by critical neurovascular structures and identification of these intra-
operatively can be challenging. We have previously developed an AI model capable of sellar anatomy
segmentation. This study aims to apply this model, and explore the impact of AI-assistance on
clinician anatomy recognition. Participants were tasked with labelling the sella on six images, initially
without assistance, then augmented by AI. Mean DICE scores and the proportion of annotations
encompassing the centroid of the sella were calculated. Six medical students, six junior trainees, six
intermediate trainees and six experts were recruited. There was an overall improvement in sella
recognition from a DICE of score 70.7% without AI assistance to 77.5% with AI assistance (+6.7;
p < 0.001). Medical students used and benefitted from AI assistance the most, improving from a DICE
score of 66.2% to 78.9% (+12.8; p = 0.02). This technology has the potential to augment surgical
education and eventually be used as an intra-operative decision support tool.

Pituitary tumours are amongst themost common intracranial tumours, and
are located in an anatomically dense region of the body. These tumours
often compress, distort or encase surrounding critical neurovascular
structures, such as the optic nerves and internal carotid arteries, often
manifesting in symptoms such as visual deficits1. During surgery, which is
most commonly performed via an endonasal transsphenoidal approach,
identification and protection of these structures is a core operative step and
paramount to preventing harm2,3.

Identification of these structures intra-operatively can be facilitated by
anatomical landmarks, most notably, impressions of these anatomical
structures on the base of the sphenoid bone4. However, these bony land-
marks are variable (e.g. variations in sphenoid sinus aeration and septa-
tions), and are often distorted by tumours, particularly giant adenomas,
making intraoperative anatomy orientation challenging. Similarly, previous
skull base surgery, radiotherapy or concomitant sinonasal pathology may
distort local structures and add to this challenge.

Endonasal transsphenoidal surgery has seen numerous technolo-
gical advancements in recent years, many of which have aided intrao-
perative navigation and protection of critical surrounding tissue5. Firstly,
the use of an endoscopic approach improves the width of vision at the
end of a long endonasal corridor. However, the majority of endoscopes

are 2D, and therefore lack depth perception. Similarly, the application of
image-guided surgical systems, or “neuronavigation”, assists in anato-
mical orientation based on pre-operative imaging but does not account
for intra-operative tissue shifts6. Furthermore, the application of micro-
Doppler (to identify arterial/venous structures) and neurophysiological
monitoring (e.g. optic nerve monitoring) may be used in selected cases,
with the advantage of being “real-time” but requiring extra equipment
and expertise7.

More recently, the use of computer vision and machine learning
(particularly deep learning) is being increasingly used to analyse operative
video data and recognise surgical steps, anatomy and instruments2,8–10. This
technology has the potential to be both real-time and integrate seamlessly
into the existing operative workflow5. Automated recognition of nasal
structures has previously beenexploredbut hasnot yet been achieved for the
critical sellar and para-sellar structures11. We have previously developed a
pre-clinical AI (Artificial Intelligence) model capable of accurate sellar
anatomy recognition8,9. In this pre-clinical IDEAL (Idea, Development,
Exploration, Assessment, Long-term study) Stage 0 study, we sought to
apply this AI model, and evaluate its performance as an AI assistant for
clinicians in anatomical structure recognition during endoscopic pituitary
adenoma resection.
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Results
General characteristics
Twenty-four participants took part in this pre-clinical comparative study,
including six medical students, six junior neurosurgical trainees, six inter-
mediate trainees and six experts (17 male, 7 female) from a single tertiary
neurosurgical centre.

Comparative evaluation of human-only vs AI-assisted anatomy
recognition
When considering the centroid of the sella only (rather than recognising the
whole sella), most participants encompassed this within their annotations
without AI assistance (19/24 participants, 79.2%), which improved with
statistical significance to24/24 (100%)withAIassistance (p = 0.025) (Table1,
Fig. 1).Medical students and junior trainees showed themost improvement,
with 4/6 participants in each group recognising the sella centroid
without AI assistance, and 6/6 participants in each group recognising it
with AI assistance (+33.3%; p = 0.157). Intermediate trainees improved
less dramatically (5/6 participants pre AI assistance, 6/6 participants
post AI assistance; p = 0.317). All experts recognised the sella centroid
without and with AI assistance.

Regarding whole sella recognition, without AI assistance, experts had
the highestDICE scores (73.4%, SD7.8), followedby junior trainees (72.1%,
SD 13.6), intermediate trainees (71.6%, SD 18.0) and medical students
(66.2%, SD 13.0) (Table 2). Overall, there was an improvement in sella
recognition across all subgroups from a DICE of score 70.7% without AI
assistance to 77.5% with AI assistance (+6.7; p < 0.001). Medical students
benefitted themost fromAI assistance, from aDICE score of 66.2%without
AI assistance to 78.9% with AI assistance (+12.8; p = 0.02). Junior trainees
had the second highest improvement from a DICE score of 72.1% without
AI assistance to 80.1% with AI assistance (+8.1; p < 0.001). This was fol-
lowed by intermediate trainees from DICE 71.6% without AI assistance to
76.3% with AI assistance (+4.8; p = 0.001). Experts experienced the least
improvement from a DICE score of 73.4% without AI assistance to 74.5%
with AI assistance (+1.2; p = 0.032) (Table 2).

Overall, 76/144 (53.8%) sella annotations were changed following AI
assistance. Medical students and junior trainees were more likely to change
their annotation following AI assistance – 25/36 (69.4%) annotations
changed compared to intermediate trainees 12/36 (33.3%) annotations
changed and experts 14/36 (38.9%) annotations changed. Examining both
the positive and negative impact of these sella annotation changes reveals
that students were againmost likely to improve DICE performance with AI
(66.7%of images) but alsomost likely to reduceperformancewithAI (22.2%
of images), with no change in performance in 11.1% of images. Conversely,
experts were least likely to change performancewithAI assistance (47.2%of
images), and whilst their performance was only improved on 36.1% of
images, they had the lowest reduction of performance post-AI (16.7% of
images) – tying with senior trainees. These senior trainees also reduced
performancewithAI assistance in 16.7%of images but improved (38.9%) or
had no change in performance (44.4%) for the majority of images. Inter-
mediate trainees post AI assistance improved in 61.1% of images, did not
change in 19.4% of images and worsened in 19.4% of images.

Both false positive and false negative errors were reduced overall with
AI assistance, with false positives reducing to a highermagnitude than false
negatives for all groups except for students (Table 3). Figure 1 depicts the
spatial aspect of the impact of AI assistance on false positive and false
negative errors across participant subgroups.

Discussion
We present the first comparative study of human-only vs AI assisted intra-
operative anatomy recognition in endoscopic pituitary adenoma surgery.AI
assistance was found to improve recognition of the sella (safe entry zone)
across different levels of expertise. Similarly, AI assistance appeared to
reduce the incidence of false positive and false negative errors, supporting its
potential for improving surgical safety. False positive errors were reduced to
a greater magnitude, which is reassuring as clinically these errors are more
dangerous, for example, leading to inadvertent damage of a critical non-sella
structure (e.g. carotid artery) through incorrectly recognising it as part of the
sella safe entry zone.

Surgical safety relies on the recognition and clear delineation of intra-
operative anatomy. In pituitary surgery, this anatomical recognition facil-
itates the safe opening and entering of the sella, and enables maximal safe
tumour resection, without collateral damage to critical neurovascular
structures. However, this anatomical recognition is often challenging -
reflected in the use of numerous adjuncts in modern practice, such as
neuronavigation and micro-Doppler. A real-time, AI-driven, vision-based
augmented reality displayof anatomical structuresmaybe auseful tool, used
in synergy with existing adjuncts, to improve surgical anatomy recognition
and surgical safety5. This could serve as a decision support for surgeons
intra-operatively, toggling on to display anatomical predictions when
required or as a warning system, and potentially reducing collateral damage
(e.g. carotid injury) during tumour access and resection5.

The maximal benefit of AI assistance was realised by non-expert
groups, with the benefit inversely proportional to the level of expertise, for
the recognition of the centre and the total area of the sella. Medical students
both utilised and benefitted from the AI assistance the most, followed by
junior trainees and senior trainees, with their AI-assisted performance
equivalent to that of an expert. This highlights the potential for such a
technology in this context for training. The knowledge and recognition of
anatomical structures is a core tenet of surgical training, but the majority of
resources focus on selected and curated dissections and diagrams for edu-
cation, with a growing use ofAI to automatically label anatomical structures
to augment educational yield from such materials12. Here, we demonstrate
the use of AI to display anatomical structures on contemporary surgical
images, with day-to-day challenges to anatomical recognition (e.g. bleeding,
blurring, blocking by instruments). Offline, this could be used to generate
indexed images of real-world surgical anatomy utilised by trainees to
improve their anatomical recognition skills before an operation5,13. Simi-
larly, this could be incorporated into educational procedure-specific
assessments13,14. Moreover, with further refinements of the AI model’s
performance, and through combinationwith augmented reality technology,
this anatomical recognition overlay could be displayed to trainees in real-
time intra-operatively to supplement their learning in practice5,13,15.

Table 1 | Proportion of annotations including the sella centroid

Proportion of annotations including the sella
centroid, without AI assistance (%)

Proportion of annotations including the sella
centroid, with AI assistance (%)

Difference (%) p valuea

Overall 136/144 (94.4%) 144/144 (100%) +5.6 0.007

Medical students 31/36 (86.1%) 36/36 (100%) +13.9 0.054

Junior trainees 34/36 (94.4%) 36/36 (100%) +5.6 0.493

Intermediate trainees 35/36 (97.2%) 36/36 (100%) +2.8 1.0

Experts 36/36 (100%) 36/36 (100%) 0 –

ap values calculated using the Fisher’s Exact Test.
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Fig. 1 | Heatmap of participant sella annotations on each of the six images before
and after AI assistance, per subgroup. Areas of high agreeability between anno-
tations are shown in yellow and indicate significant overlap of sella annotations
amongst participants of a subgroup. For context, the outlines of the ground truth

(white border) and AI suggested (black border) sella labels are shown. Comparison
of heat maps pre and post AI assistance for each subgroup summarises the spatial
changes made after AI assistance.
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Furthermore, expert neurosurgeons both used AI assistance the least,
improved the least when they used AI assistance and were least likely to
reduce performance post AI assistance. For detection of the centre of the
sella (i.e. safe entry zone), experts had a 100% recognition rate pre-AI
assistance. However, when recognising the wider sella area, including the
boundary and interface with surrounding structures (arguably a more dif-
ficult task), experts achieved a 73.4 DICE score, which improved by a
marginal but statistically significant amount to 74.5 (p = 0.032). Thismay be
because their baseline performance without AI was already high; therefore,
any benefit attained was marginal. Alternatively, this may suggest experts
did not trust theAI assistance asmuch as less experienced clinicians – either
disregarding the AI recommendations (in 61% of images) or making
minimal changes to their annotations when AI assistance was used.
Determining the exact reasons for this was beyond the scope of this parti-
cular study; however, incorporation of human factors analysis (particularly
trust and usability) will be crucial in the ongoing development of this
technology (for example, as an intra-operative decision support tool), even
at the lowest levels of AI autonomy13,16,17.

In the wider literature, surgical anatomy recognition is a
developing space within the growing field of surgical video computer
vision, building on the foundations laid by diagnostic image (e.g.
radiological) analysis18–22. The majority of AI models use supervised
deep learning based methods, being largely applied to surgeries
during which the majority of the procedure is performed using
endoscopes or microscopes (to allow video recording)18–20. The rapid
expansion of this technology, particularly in laparoscopic surgery,
has been facilitated by numerous public video datasets, open-source
algorithms and co-ordinated community challenges22–29. In laparo-
scopic cholecystectomy, some AI models can recognise anatomical
structures (e.g. common bile duct) and safe surgical zones more
accurately and earlier in the operation than expert surgeons30–35. The
wider laparoscopic surgery field has seen similar advancements in AI
models for anatomy recognition in colorectal, urological and
gynaecological applications29,36–38. Similarly, there are numerous
examples of AI-driven anatomy analysis in endoluminal endoscopic

procedures, for example, ampulla recognition in endoscopic retro-
grade cholangiopancreatography, and real-time vocal cord recogni-
tion in laryngoscopy and bronchoscopy39,40. Another notable example
is polyp detection in colonoscopy, where accurate recognition was
achieved for a range of case difficulties, outperforming experts, and
subsequently translated into clinical practice as a decision support
tool28,41. Within pituitary surgery, computer vision work has focussed
on the recognition of surgical steps and phases2,5,10,42,43, with a single
study exploring nasal anatomy recognition and another exploring
tumour recognition11,44. In the future, many of these applications will
integrate together (e.g. improved anatomy recognition will likely
improve step recognition, and vice versa), and will interface with
other technologies (e.g. augmented reality), for a variety of potential
clinical applications5,20,22.

This pre-clinical comparative study has numerous strengths. Firstly, it
is the first comparative study of an AI-driven decision support tool for skull
base anatomy recognition to our knowledge. Additionally, we used a cross-
over design to match baseline characteristics in the study groups, and
attained a diverse sample of clinicians with varying expertise levels. There
are, however, numerous limitations of this work. Our assessment was
limited to six images for each of the 24 participants within an academic
teaching hospital environment, and future studies should include more
participants, acrossmultiple centres,with larger assessmentswherepossible.
Furthermore, all sella predictions are currently offline, on still images, and
future iterations with larger datasets and refined AI models will focus on
displaying this AI recognition on real-time video, with a user interface
tailored to the needs of surgeons, and metrics encompassing safety, effec-
tiveness and efficiency.

In conclusion, in this pre-clinical comparative study, we have
demonstrated the utility ofAI assistance for students, trainees and experts in
skull base anatomy recognition in endoscopic pituitary surgery. The less
experienced the user, themore benefit was gained fromAI assistance – both
in terms of improving performance and safety. With AI assistance, trainees
were able to achieve expert-level anatomy recognition proficiency. This
technology, therefore, has the potential for use in augmenting surgical

Table 2 | Mean DICE scores of whole sella recognition without and with AI assistance

Mean DICEa

score without AI
assistance

Mean DICE score
with AI assistance

Difference in
mean DICE

p valueb

Overall 70.7% (SD 18.0) 77.5% (SD 9.0) +6.7 < 0.001

Medical students 66.2% (SD 13.0) 78.9% (SD 6.3) +12.8 0.020

Junior trainees 72.1% (SD 13.6) 80.1% (SD 9.4) +8.1 < 0.001

Intermediate trainees 71.6% (SD 11.2) 76.3% (SD 8.2) +4.8 0.001

Experts 73.4% (SD 7.8) 74.5% (SD 8.1) +1.2 0.032

SD standard deviation.
aDICE score of 100 indicates maximum overlap between annotated images and the ground truth annotation.
bp values calculated using the Wilcoxon Signed-Rank Test, pairing for each participant-image combination.

Table 3 | Summary of false positive and false negative error analysis in whole sella recognition, pre and post AI assistance

Mean false positive error (%) Mean false negative error (%)

Pre-AI assistance Post-AI assistance Change Pre-AI assistance Post-AI assistance Change

Overall 24.6 (SD 14.2) 19.8 (SD 11.7) −4.8 (SD −2.5) 20.7 (SD 12.9) 17 (SD 10.7) −3.7 (SD −2.2)

Medical students 22.4 (SD 13.1) 17.6 (SD 10) −4.8 (SD −3.2) 28.2 (SD 21.9) 17.3 (SD 10.7) −10.9 (SD −11.2)

Junior trainees 24.9 (SD 14.4) 16.2 (SD 11.4) −8.7 (SD −3) 18.8 (SD 9.9) 17 (SD 13.2) −1.8 (SD 3.3)

Intermediate trainees 26.6 (SD 13.6) 21.9 (SD 14.6) −4.7 (SD 0.9) 17.7 (SD 11) 16.4 (SD 12.5) −1.3 (SD 1.5)

Experts 24 (SD 15.5) 23.2 (SD 18.6) −0.8 (SD 3.1) 18.1 (SD 8.9) 17.4 (SD 16.5) −0.7 (SD 7.7)

AI artificial intelligence; SD standard deviation.
Values are given as a percentage of the total combined area of the overlap between the ground truth and prediction segmentations.
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education, both for offline review and for real-time learning in practice.
Further work is needed to improve real-time model performance, the user
interface of displays, and integration with other anatomy recognition
adjuncts, for use as an eventual intra-operative decision support tool.

Methods
Study design
A pre-clinical (IDEAL Stage 0) comparative study of clinician performance
in sellar anatomy recognition, with and without AI assistance, was adopted
—guided by DECIDE-AI and IDEAL reporting guidelines16,45–47. The study
was based at a tertiary neurosurgical centre, the National Hospital for
Neurology &Neurosurgery London, which acts as a regional referral centre
for pituitary tumours and carries out approximately 150-200 pituitary
operations eachyear. Ethical approvalwas grantedvia theFrenchay regional
ethics committee (IRAS 271696), and informedwritten patient consent was
obtained for the data used for AI model development.

AI Model and Dataset Background
This study applies an artificial neural network previously developed
by our team - capable of accurate recognition of the sella in endo-
scopic pituitary adenoma surgery8,9. This model was trained using an
image dataset from 64 anonymized videos of endoscopic pituitary
adenoma surgery. Ten images corresponding to the ten seconds of
the sellar phase immediately preceding sellotomy were extracted
from each video, resulting in 640 images in total2,42. Ground truth
annotation of these images for the sella was performed with polygon
labelling using the Touch SurgeryTM Ecosystem (Medtronic, Dublin,
Ireland) via a multi-round expert consensus process. The sella was
identified from endoscopic images by its bony protrusion into the
sphenoid sinus, with its boundaries defined by peripheral contour
changes (i.e. flattening of the prominence) and/or the beginning of an
adjacent structure (e.g. carotid arteries)4,48–50. Firstly, each image was
segmented in duplicate by trainee neurosurgeons [DZK, JGH, SW],
with any differences settled through discussion. These segmentations
were reviewed and adjusted by two consultant neurosurgeons [HJM,
AB] independently, who had performed the source operations and
had access to the full operative video of each image set to improve the
contextualisation of images and support more accurate ground truth
annotations. Interrater agreement for sella ground truth annotations
was calculated using DICE scores (a measure of overlap between
annotation masks) for 20 randomly selected images (from 20 cases).
Interrater agreement was worse between trainees (DICE 76.4), best
between consultants (DICE 85.2), and intermediate between trainees
vs. consultants (DICE 80.2). This supported the need for multi-

round, multi-expert verified ground truth labelling for model
training.

Comparative evaluation of human-only vs AI-augmented anat-
omy recognition
Sixmedical students, six juniorneurosurgical trainees (in thefirst three years
of training, without formal subspecialty experience in pituitary surgery), six
intermediate trainees (over three years of training but without formal
subspecialty experience in pituitary surgery) and six experts (consultants or
senior fellowswith subspecialty training in pituitary surgery) were recruited
from our centre. Six video cases were selected randomly from the hold-out
dataset, and one frame was selected per video from the available video
images. Visualisation of all of the sella was not possible in all images due to
obscuring blood, mucosa, bony septations and instruments, pathological
distortions or anatomical variations8,51. Therefore, the selection of each
frame was on the basis of its clarity, i.e. minimal blurring and obscuration
(from blood, mucous, etc.). This six image dataset was presented in a ran-
dom order to each participant.

In round 1 (human only), each of the 24 human participants was asked
todraw theoutline of the sella on eachof the six imageswithout any adjuncts
using the Touch SurgeryTM Ecosystem polygon annotation platform. If the
sella was partly occluded, participants were instructed to draw around any
obscuration.Thiswas immediately followedby round2 (AI-assisted),where
the output of the AI model (a predicted sella outline) was overlayed onto
their existing annotation for each image, and participants were invited to
keep their existing annotations or alter their annotations based on AI
recognition (Fig. 2).

Comparative analysis was performed between the human-only vs
human + AI-assistance sella annotations, judging them against the afore-
mentioned multi-round expert consensus labelling (best available ground
truth). The mean DICE score was calculated for each subgroup (medical
students, junior trainees, intermediate trainees and experts), with and
without AI assistance. TheWilcoxon signed rank test was used to compare
DICE scores per group and sub-group, maintaining the pairing for each
participant-image combination. The number of participants with sella
annotations encompassing the centroid of the ground truth label (i.e.
including an approximate of the middle of the sella) across the six images
was calculated for each subgroup, with and without AI assistance – com-
pared using McNemar’s test. Statistical analysis was conducted using
Python 3.852 and R statistical programming53.

Additionally, the incidence of changes post AI assistance was explored
descriptively, as well as the effect of these changes on DICE scores for sella
recognition. Finally, error analysis was performed by calculating false
positive and false negative predictions, both pre and post AI assistance.

Fig. 2 | The six images used in this study in the order presented to the human
participants (1–6).The top “Image” row shows the image without any AI assistance
– this was presented to the participants and they added polygon labelling of

anatomical structures. The bottom “AI Prediction” row shows the image with the AI
predicted sella segmentation, which was presented to the participants as an overlay
onto their anatomical labelling.
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These are a focused analysis of areas of non-overlap, as opposed to theDICE
score, which is a metric of overlap. False positive prediction was defined as
the area labelled as sella by participants, which did not overlap with the
ground truth sella label. False negative prediction was defined as the area of
the ground truth sella label which did not overlap with the participant sella
label. Both were calculated as a percentage of the total combined area of the
overlap between the ground truth and participant labels.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
A 50-5-9 training-validation-test videos split was employed, and a Jaccard
loss function and Adam optimiser was employed, with a batch size of 5 and
run for 20 epochs8. The epoch with the highest mean Jaccard score of the
sella segmentation mask on the validation dataset was kept as the final
model8. The hold-out test dataset consisted of the first image of each of the 9
unseen videos (9 images), with a DICE score of 79.18. The code is written in
Python3.8usingPyTorch 1.8.1, run on a singleNVIDIATeslaV100Tensor
Core 32-GBGPU using CUDA 11.2, and is available at https://github.com/
dreets/pitnet-anat-public8.
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