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Abstract

We propose a parametric hazard model obtained by enforcing positivity in the damped

harmonic oscillator. The resulting model has closed-form hazard and cumulative haz-

ard functions, facilitating likelihood and Bayesian inference on the parameters. We

show that this model can capture a range of hazard shapes, such as increasing, de-

creasing, unimodal, bathtub, and oscillatory patterns, and characterize the tails of the

corresponding survival function. We illustrate the use of this model in survival analysis

using real data.
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1. Introduction

The hazard function plays a key role in the analysis of survival data [1]. For a

positive random variable T , with probability density function f(t) and cumulative dis-

tribution F (t), the hazard function is defined as:

h(t) = lim
∆t↓0

P (t ≤ T < t+∆t | T ≥ t)

∆t
=

f(t)

1− F (t)
. (1)
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Given the intuitive interpretation of the hazard function as the instantaneous failure rate5

at time t > 0, this function serves as basis for defining many survival regression mod-

els [2]. Estimation of the hazard function using both parametric and non-parametric

methods has received considerable attention. We refer the reader to [3] for a compre-

hensive overview of these methods, which include the use of parametric distributions,

splines, and Bayesian nonparametric methods. In the parametric setting, it is desirable10

to define models capable of capturing the basic shapes of the hazard function: increas-

ing, decreasing, unimodal (up-then-down), and bathtub (down-then-up). To this end,

several generalizations of the Weibull distribution have been proposed, including the

generalized gamma distribution, the exponentiated Weibull distribution, and the power

generalized Weibull distribution, among others. Similarly, general methods have been15

proposed to add parameters to a baseline distribution or baseline hazard function. See

[4] and [5] for an overview of these methods. More recently, [3] proposed parametri-

cally modeling the hazard function using a system of first-order autonomous ordinary

differential equations (ODEs) with positive solutions. This approach offers a general

methodology for generating distributions with interpretable parameters and allows for20

adding flexibility to the resulting solutions by including hidden states.

Following [3], a novel family of hazard functions is derived using a general linear

second-order differential equation that represents the classical damped harmonic oscil-

lator. An additional parameter is used to allow the system to reach the equilibrium point

at a positive value (in contrast to the classical damped harmonic oscillator, which stabi-25

lizes at zero). The resulting model, which can be reduced to three parameters by fixing

the initial conditions (as discussed later), contains parameters that influence the shape

of the hazard function, resulting in a flexible, tractable, parsimonious (three parameters

only) and interpretable model. We characterize the tails of the survival function and the

hazard shapes in terms of the parameter values. We present a real data example which30

shows how the model can capture complex hazard shapes, and that it provides a better

fit compared to appropriate competitor models. R code and data are provided in the

GitHub repository https://github.com/FJRubio67/HOH. Python code may

also be obtained from JAC. All proofs are presented in the appendix.
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2. Modelling the hazard function with a harmonic oscillator35

Let us first introduce some notation and assumptions. Let o = (o1, . . . , on) be a

sequence of survival times, ci ∈ R+ the right-censoring times, ti = min{oi, ci} be the

observed times, and δi = I(oi ≤ ci) be the indicator that observation i is uncensored,

i = 1, . . . , n. Suppose that the survival times are generated by a continuous probability

distribution, with twice continuously differentiable probability density function f(t),40

cumulative distribution function F (t) =
∫ t

0
f(r)dr, survival function S(t) = 1−F (t),

hazard function h(t) = f(t)
S(t) , and cumulative hazard function H(t) =

∫ t

0
h(r)dr.

Based on definition (1), a hazard function for an absolutely continuous, positive,

random variable may be defined through a continuous function satisfying h(t) ≥ 0,

and
∫ t

0
h(r)dr < ∞, for t ≥ 0. Thus, any function satisfying these properties can be45

used as a hazard function. This allows for defining various types of hazard estimators

or hazard-based regression models, such as those that model the hazard function using

splines. Building on this idea, we propose modelling the hazard function, h(t), through

the linear second order ODE:

h′′(t) + 2ηw0h
′(t) + w2

0(h(t)− hb) = 0; h(0) = h0, h′(0) = r0. (2)

In any case, once h is postulated as a hazard function, this fixes the distribution of the50

survival times, i.e. the probability model involved, and should always be interpreted as

in (1). Equation (2) models the acceleration of the hazard function and also has a geo-

metric interpretation, describing the curvature of the hazard function, both at any time

t > 0. More specifically, this equation can be seen as a shifted version of the damped

harmonic oscillator [6, 7]. The damped harmonic oscillator is a classical model in55

Physics which is used to describe the motion of a mass attached to a spring when damp-

ing (friction) is present [6, 7]. The damped harmonic oscillator is generally understood

as a system that degrades or stabilizes over time due to the combined effects of the

restoring force and damping. Thus, the damped harmonic oscillator (2) represents the

evolution of the instantaneous failure rate, depicting a system that evolves over time to60

reach a degraded or stable state. Since the solutions to the damped harmonic oscillator

equation can take negative values, and the equilibrium point is exactly 0, we consider

3
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the shifted version (2) of this model to allow for a positive equilibrium point hb > 0.

The parameters of this ODE are easily interpreted. The natural frequency, w0 > 0,

controls the frequency of oscillation, while the damping coefficient, η > 0, represents65

the dissipative forces acting on the system. The shift parameter, hb > 0, represents

the stability state or equilibrium level of the solution. In the above parametrization

the value of the damping coefficient η determines the system’s behavior and, in our

case, the shape of the hazard function. The three regimens of the system are the under-

damped case (0 ≤ η < 1), the over-damped case (η > 1), and the critically damped70

case (η = 1). We present a more detailed analysis of these cases in the next Sections.

The ODE in (2) defines a parametric hazard function h(t | θ) with parameters

θ = (η, w0, hb, h0, r0)
⊤ ∈ R4

+ × R. There are parameter values θ that lead to a

negative h(t | θ) for some values of t. The reason for this is that the shift parameter

hb > 0 only defines the equilibrium position of the hazard function, which may not be75

sufficient to translate the entire oscillator to the positive quadrant. In such cases, it is

necessary to discard parameter values that lead to negative solutions. This approach is

related to a method known as enforcing positivity of ODE solutions, which is used in

several areas [8, 9]. The parameter values leading to positive hazard functions will be

referred to as the admissible parameter space, as follows.80

Definition 1. Let θ = (η, w0, hb, h0, r0)
⊤ ∈ R4

+ × R. We define the admissible

parameter space as:

ΘA = {θ ∈ R4
+ × R : h(t | θ) > 0 for all t ≥ 0}.

In the following Sections, we will present a simple characterization of the admissi-

ble parameter space ΘA based on the parameter values.

2.1. Under-damped case85

The analytic solution to (2) in the under-damped case (0 ≤ η < 1) is:

h(t | θ) = hb +Ae−w0ηt sin (w1t+ ϕ) ,

where w1 = w0

√
|η2 − 1|, A denotes the amplitude of the oscillations, and ϕ is

the phase, which represents the position of the hazard function within its cycle of

4
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oscillation. h(t | θ) − hb tends exponentially to zero as t → ∞, since the term

e−w0ηt dominates the asymptotic behavior of h(t | θ). From the initial conditions90

h(0) = h0 and h′(0) = r0 one can easily find the value for the amplitude A and the

phase ϕ. That is, if hb ̸= h0 then, if r0 + w0η(h0 − hb) ̸= 0, A =
h0 − hb

sin(ϕ)
and

ϕ = tan−1
(

w1(h0−hb)
r0+w0η(h0−hb)

)
and, if r0 + w0η(h0 − hb) = 0, ϕ = sign(h0 − hb)

π
2

and A = h0 − hb. If h0 − hb = 0, then ϕ = 0 and A =
r0
w1

. The cumulative hazard

function can be found by integrating h(t | θ) as follows:95

H(t | θ) = hbt+
A

w0η

sin(ϕ) + µ cos(ϕ)− e−w0ηt(sin(w1t+ ϕ) + µ cos(w1t+ ϕ))

µ2 + 1
,

where µ = w1

w0η
=

√
|η2−1|
η .

If r0 < 0 and/or h0 > 2hb, h(t | θ) may become negative for a region around 0,

say t ∈ [0, tM ]. To test if is a set of parameters leads to h(t | θ) < 0 for t ∈ [0, tM ],

we can calculate the derivative of the analytic solution to obtain

h′(t | θ) = −Ae−w0ηt (w1 cos (w1t+ ϕ)− w0η sin (w1t+ ϕ)) .

Solving h′(t | θ) = 0 leads to tan(w1t
∗ + ϕ) = µ. This equation has many solutions,100

but we know that the minimum must be in the first or second critical point after t = 0,

given that the solution has an envelope function hb±Ae−w0ηt. Therefore, we test these

two critical points

t∗ =
arctan(µ)− ϕ+ (0 or π)

w1
,

to find the minimum h(t∗ | θ). If h(t∗ | θ) < 0, for either solution, then θ /∈ ΘA,

since this implies that h(t | θ) < 0 for some region t ∈ [0, tM ]. Otherwise, it follows105

that h(t | θ) > 0 for t > 0 and θ ∈ ΘA.

2.2. Over-damped case

The case when η > 1 is called over-damped, since the state variable (hazard func-

tion) h(t | θ) does not oscillate and returns, exponentially, to hb. The analytic solution

in this case is110

h(t | θ) = hb + e−w0ηt

(
h0 − hb + a

2
ew1t +

h0 − hb − a

2
e−w1t

)
,

5
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where a = h0−hb

µ + r0
w1

(w1 = w0

√
η2 − 1 as above). Since

√
η2 − 1 < η then

−w0η ± w1 < 0 and h(t | θ) − hb also tends exponentially to zero, as e−w0(η−w1)t.

The cumulative hazard function is:

H(t | θ) = hbt+
h0 − hb + a

2(−w0η + w1)
(e(−w0η+w1)t−1)+

h0 − hb − a

2(−w0η − w1)
(e(−w0η−w1)t−1).

Depending on the value of r0, h(t | θ) may take negative values for a region t ∈
[0, tM ]. In this case, we know there is at most one critical point, as the solution does115

not oscillate [6, 7]. By solving h′(t | θ) = 0, the critical point is

t∗ =
1

2w1
log

(
(h0 − hb − a)(w1 + w0η)

(h0 − hb + a)(w1 − w0η)

)
,

if (h0−hb−a)
(h0−hb+a)(w1−w0η)

> 0, otherwise there is no critical point. Moreover, if r0 > 0,

the solution is increasing or unimodal (see Proposition 1), which implies that h(t |
θ) > 0 for t > 0, and then θ ∈ ΘA. If r0 < 0, depending on the values of the

remaining parameters, the shape of the hazard function can be decreasing or bathtub120

(see Proposition 1). We can characterize the admissible parameter space as follows. If
(h0−hb−a)

(h0−hb+a)(w1−w0η)
> 0 and h(t∗ | θ) < 0, then θ /∈ ΘA. If (h0−hb−a)

(h0−hb+a)(w1−w0η)
> 0

and h(t∗ | θ) > 0, then θ ∈ ΘA. If (h0−hb−a)
(h0−hb+a)(w1−w0η)

< 0, then θ ∈ ΘA.

2.3. Critically-damped case

The case η = 1 is referred to as critically damped. The analytical solution is125

h(t | θ) = hb + {h0 − hb + t (r0 + w0(h0 − hb))} e−w0t.

The corresponding cumulative hazard is:

H(t | θ) = hbt+
(h0 − hb) (1− e−w0t)

w0
+
(r0 + w0(h0 − hb))

w2
0

(
ew0t − w0t− 1

)
e−w0t.

Unfortunately, there is no closed-form expression for the critical point in this case.

However, since this is a limit case of the under-damped and over-damped cases, and

we will consider continuous prior distributions for η in the Bayesian analysis presented

in Section 5, this case will have zero probability. Consequently, it is ignored in our130

implementation. Nonetheless, the expressions for the hazard and cumulative hazard

functions are presented here for completeness.

6
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2.4. Parametrization

Overall, we adopt the parametrization (2), with parameters η, w0, hb, h0, and

r0. Nonetheless, other parametrizations might provide further insights into the model.135

Looking at the ODE formulation in 2, w0 is called the “natural frequency” and its units

are the inverse of time units. The parameter η has no units, and is referred to as the

“damping ratio”. Then, w1 = w0

√
|η2 − 1| is the angular frequency in the under-

damped case, and has the same units as w0. This means that if t ∈ [0, tM ], tM > 0, h

will oscillate w1tM
2π times in that time window.140

Since the hazard function h(t | θ) does not contain an explicit scale parameter, it is

important to check if one can control the scale of this function through a combination of

the parameters. It can be noted that by using the following equivalent parametrization,

(hb, η, w0, α0, θ0) for (2)

h′′(t) + 2η(w0hb)h
′(t) + (w0hb)

2(h(t)− hb) = 0, h(0) =
α0

hb
, h′(0) =

θ0
hb

,

hb becomes a scale parameter in the usual sense. Since both parametrizations are equiv-145

alent, the model does not need an additional scale parameter, and which parametriza-

tion to use is a matter of convenience. In our applications, we will provide empirical

strategies for fixing the initial conditions (see Section 4) and therefore we use the orig-

inal parametrization (2).

3. Shapes and tail-weight characterization150

As previously discussed, one of the desirable properties of parametric survival mod-

els is their ability to capture the basic shapes. The following result presents a charac-

terization of the hazard shapes of (2), in terms of the parameter values, which include

the basic shapes as well as oscillatory cases. We focus on the under-damped and over-

damped cases, which are the main cases of interest for modelling, as discussed in the155

previous Section. See Figure 1 for examples of the hazard shapes obtained as a solution

to (2).

Proposition 1. Let T > 0 be a random variable with hazard function defined by the

damped harmonic oscillator model (2), and θ ∈ ΘA. Then, the corresponding hazard

function can capture the following shapes:160

7
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Figure 1: Examples of harmonic oscillator hazard functions: (a) Strictly decreasing (red, over-damped),

“bathtub” (gray, over-damped) and oscillating (blue, under-damped). (b) Strictly increasing (orange, over-

damped), unimodal (black, over-damped) and oscillating (magenta, under-damped). All converge to the

asymptotic value hb (= 1).

• Increasing (monotonic): η > 1, r0 > 0, (h0−hb−a)
(h0−hb+a)(w1−w0η)

< 0.

• Decreasing (monotonic): η > 1, r0 < 0, (h0−hb−a)
(h0−hb+a)(w1−w0η)

< 0.

• Unimodal (up-then-down): η > 1, r0 > 0, (h0−hb−a)
(h0−hb+a)(w1−w0η)

> 0.

• Bathtub (down-then-up): η > 1, r0 < 0, (h0−hb−a)
(h0−hb+a)(w1−w0η)

> 0.

• Oscillatory (multiple cycles): η < 1.165

Although some parametric distributions, such as the power generalized Weibull or

generalized gamma distributions, can capture the first four shapes, they do not account

for oscillatory behaviors. Another important distinction is that the hazard function of

the damped harmonic oscillator is always upper-bounded, with its amplitude decay-

ing over time. Consequently, h(t) approaches the stable state hb as t → ∞. We170

acknowledge that these are implicit assumptions of the damped harmonic oscillator

model, which may not be suitable for all types of data sets. However, we argue that all

parametric models have implicit, and often overlooked, limitations. For instance, the

Weibull distribution implicitly requires that when the hazard function is increasing, it

must satisfy h(0) = 0 and remain unbounded, which implies lighter tails than those175
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of the exponential distribution [3]. Conversely, decreasing Weibull hazard functions

must satisfy h(0) = ∞. The proposed damped harmonic oscillator model allows for a

better understanding of the hazard shapes and properties thanks to the interpretability

of the parameters in the ODE (2).

The following proposition presents a characterization of the right tail of the dis-180

tribution of a random variable with hazard function defined by the damped harmonic

oscillator model (2). As we can see, the shifting parameter plays a key role in control-

ling the tail-weight in all cases.

Proposition 2. Let T > 0 be a random variable with hazard function defined by the

damped harmonic oscillator model (2), with θ ∈ ΘA. Then,185

P(T > t | θ) = O
(
e−hbt

)
.

The above result indicates that the distribution associated with the harmonic oscil-

lator hazard function is a sub-exponential distribution [10]. An important difference

of model (2) compared to the exponential distribution (which has a constant hazard

function) or other parametric sub-exponential distributions [10], is that the proposed

model (2) allows for capturing a variety of shapes of the hazard function. This sub-190

exponential tail-weight characterization also allows for deriving other properties of the

distribution induced by (2), such as properties of the moments and moment generating

function, as detailed in Chapter 2 of [10], and thus omitted here.

4. Inference

The likelihood function for model (2) under right-censoring is fully determined by195

the hazard and cumulative hazard functions, h(t | θ) and H(t | θ) as follows,

L(θ) =
n∏

i=1

h(ti | θ)δi exp {−H(ti | θ)} , θ ∈ ΘA.

Since these functions are available in analytic form, the likelihood function can be im-

plemented in any numeric programming language. This also implies that the maximum

likelihood estimates can be calculated using general-purpose optimization methods, al-

though this may require comparing different methods an initial points since, in general,200

the concavity of the above likelihood (or log-likelihood) function is not guaranteed.

9
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In general, one could consider the initial conditions, h0 and r0, as unknown pa-

rameters to be estimated. However, estimating these parameters may be challenging in

practice for some data sets that do not contain uncensored observations near t = 0. Al-

ternatively, one can fix the initial conditions using prior or expert information (see [3]205

for a discussion on these points). Specifically, setting values for the survival function

S(∆t) and S(2∆t) for some (“small”) initial time step ∆t, we may approximate the

initial condition h0 = h(0) using

h0 = −S′(0)
S(0)

≈ −S′(∆t)

S(∆t)
≈ −S(∆t)− S(0)

∆tS(∆t)
.

Similarly, we may approximate the initial condition r0 = h′(0) using

r0 = −S′(0)2 − S(0)S′′(0)
S(0)2

≈
(
S(∆t)− S(0)

∆tS(∆t)

)2

− S(2∆t)− 2S(∆t) + S(0)

∆t2S(∆t)
.

If there is uncertainty or reservations about these choices, one can choose a prior con-210

centrated on such values. This could serve as an alternative method for estimating the

initial conditions or for performing a sensitivity analysis [3]. In the example presented

in Section 5 the above method for setting the initial values h0 and r0 is used.

5. Real data application

In this Section, we present a real data application in which we analyze the rotterdam215

data set from the survival R package. This data set contains information about the

survival times of n = 2, 982 breast cancer patients, of which 1, 710 cases were right-

censored. Generally, breast cancer patients have a good prognosis, and the hazard

function may begin to increase slowly from the time of diagnosis. Clinically, this indi-

cates that the hazard function starts at a low point and grows slowly at the beginning.220

Based on these points, and following the discussion presented in Section 4 to fix h0 and

r0, we assume that ∆t = 1/12 (one month), S(0) = 1 (no deaths before the start of

follow-up), S(∆t) = 0.999 and S(2∆t) = 0.998 (i.e. one death per 1000 patients per

month, immediately after the start of follow-up). These choices lead to the initial con-

ditions h0 = 0.012 and r0 = 0.00014. Similar values for the initial conditions would225

be obtained with slight variations in the initial choices, provided they are consistent

with the clinical context.

10
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We fit the harmonic oscillator model (2), using a Bayesian approach with the fixed

initial conditions mentioned above. The three parameters to be estimated are θ =

(η, w0, hb). We adopt a product prior structure

πθ(θ) ∝ π(w0)π(η)π(hb), θ ∈ ΘA,

where π is a gamma prior with a scale parameter 1000 and shape parameter 0.001.

These are “weakly informative” priors which reflect a high degree of prior uncertainty

about the parameters. Figure 2 shows the predictive hazard and the predictive survival230

distributions for these three models, along with the Kaplan-Meier (KM) estimator of

survival.

Finally, we compare the fit of the harmonic oscillator model (2) against the Weibull

distribution and the power generalized Weibull distribution (PGW), using the Bayesian

information criterion (BIC). We choose weakly informative priors for the parameters235

of these models (gamma priors with scale parameter 1000 and shape parameter 0.001).

The Weibull distribution can only capture increasing, decreasing or constant hazard

shapes. The PGW distribution is a three-parameter distribution that can capture the

basic shapes (except for the oscillatory shape). The BIC for the Weibull model is

9, 650.30, the BIC for the PGW model is 9, 590.03, and the BIC for the harmonic240

oscillator model is 9, 581.037. Thus, the harmonic oscillator model is clearly favored

by the data, based on the BIC.

6. Discussion

We have developed a novel parametric hazard model obtained by enforcing posi-

tivity in the damped harmonic oscillator. As shown in the qualitative analysis of the245

solutions to the corresponding second order ODE, the parameters of this model are

interpretable and the model is both tractable and flexible. The real data analysis pre-

sented here shows that the proposed model offers competitive performance compared

to flexible parametric models commonly used in survival analysis.

The focus of this paper has been on survival analysis without covariates. A potential250

extension involves incorporating covariates into the damped harmonic oscillator hazard

11



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Time

P
re

di
ct

iv
e 

H
az

ar
d

HO
Weibull
PGW

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
re

di
ct

iv
e 

S
ur

vi
va

l

HO
Weibull
PGW
KM

(a) (b)

Figure 2: rotterdam data. (a) Predictive hazard functions for the Weibull, PGW, and harmonic oscillator

(HO) models; and (b) Predictive survival functions for the Weibull, PGW, and HO models, and Kaplan-Meier

(KM) estimator.

function proposed here. This can be achieved by using this model as the baseline hazard

in any hazard-based regression model [2], or by introducing covariates through linear

predictors on the parameters (similar to distributional regression). These directions will

be explored in future work.255

Acknowledgements

We thank the referee and the Editor for their constructive comments. JAC was

partially supported by the ONRG grant N62909-24-1-2016 P01

References

[1] H. Rinne, The Hazard rate: Theory and inference (with supplementary MATLAB-260

Programs), Justus-Leibig-University, Giessen, Germany, 2014.

[2] F. Rubio, L. Remontet, N. Jewell, A. Belot, On a general structure for hazard-

based regression models: an application to population-based cancer research, Sta-

tistical Methods in Medical Research 28 (2019) 2404–2417.

[3] J. Christen, F. Rubio, Dynamic survival analysis: modelling the hazard function265

via ordinary differential equations, Statistical Methods in Medical ResearchIn

press.

12



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[4] A. Marshall, I. Olkin, A new method for adding a parameter to a family of dis-

tributions with application to the exponential and Weibull families, Biometrika

84 (3) (1997) 641–652.270

[5] K. Anaya-Izquierdo, M. Jones, A. Davis, A family of cumulative hazard functions

and their frailty connections, Statistics & Probability Letters 172 (2021) 109059.

[6] H. Georgi, The Physics of Waves, Prentice Hall, Englewood Cliffs, NJ, 1993.

[7] S. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biol-

ogy, Chemistry, and Engineering, CRC press, Boca Raton, FL, 2018.275

[8] L. Shampine, S. Thompson, J. Kierzenka, G. Byrne, Non-negative solutions of

ODEs, Applied Mathematics and Computation 170 (1) (2005) 556–569.

[9] S. Blanes, A. I., S. Macnamara, Positivity-preserving methods for ordinary dif-

ferential equations, ESAIM: Mathematical Modelling and Numerical Analysis

56 (6) (2022) 1843–1870.280

[10] R. Vershynin, High-Dimensional Probability: An Introduction with Applications

in Data Science, Vol. 47, Cambridge University Press, Cambridge, United King-

dom, 2018.

13


	On harmonic oscillator hazard functions
	Data availability


