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Summary 

Machine learning has the potential to revolutionize passive acoustic monitoring (PAM) for 

ecological assessments. However, high annotation and compute costs limit the field’s adoption. 

Generalizable pretrained networks can overcome these costs, but high-quality pretraining 

requires vast annotated libraries, limiting their current development to data-rich bird taxa. 

Here, we identify the optimum pretraining strategy for data-deficient domains using tropical 

reefs as a representative case study. We assembled ReefSet, an annotated library of 57k reef 

sounds taken across 16 datasets, though still modest in scale compared to annotated bird 

libraries. We performed multiple pretraining experiments, finding that pretraining on a library 

of bird audio 50 times the size of ReefSet provides notably superior generalizability on held out 

reef datasets, with a mean AUC-ROC of 0.881 (±0.11) compared to pretraining on ReefSet itself 

or unrelated audio, with a mean AUC-ROC of 0.724 (±0.05) and 0.834 (±0.05) respectively. 

However, our key findings show that cross-domain mixing, where bird, reef and unrelated audio 

are combined during pretraining, provides a superior transfer learning performance, with an 

AUC-ROC of 0.933 (±0.02). SurfPerch, our optimum pretrained network, provides a strong 

foundation for automated analysis of tropical reef and related PAM data with minimal 

annotation and compute costs. 
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Introduction 

Advanced monitoring tools are key to tackling the biodiversity crisis (Pimm et al., 2015). Passive 

acoustic monitoring (PAM) represents a powerful medium through which to gather data for 

ecological assessments (Gibb et al., 2019; Ross et al., 2023). Low-cost autonomous recording 

units are now widely available, enabling the collection of vast quantities of PAM data with 

considerably lower logistical and expertise costs in the field (Hill et al., 2018; Lamont et al., 

2022; Shonfield et al., 2017). However, a boom in their accessibility and application has resulted 

in data collection scaling beyond the analytical capacity of human annotators (Gibb et al., 

2020). Effective automated analysis is therefore required to alleviate this analytical bottleneck 

and maximise the potential of these data. Machine learning (ML) has emerged as a powerful 

tool with the potential to meet this demand, with state-of-the-art approaches typically 

leveraging deep neural networks (Stowell, 2022). The current paradigm for ML-accelerated 

PAM analysis employs supervised learning techniques to train classifiers which can detect 

target signals. These supervised learning techniques are typically used to develop species-level 

detectors or identify anthropogenic activities (Gibb et al., 2020; Stowell, 2022). 

A key drawback of traditional supervised approaches is their reliance on large annotated 

libraries of validated target sounds, typically requiring hundreds of examples per class to train 

an accurate classifier. These libraries are costly and time-consuming to assemble, primarily due 

to their reliance on human annotators (Kholghi et al., 2018).  Additionally, classifiers often 

generalize poorly to “out of-distribution” data, where new data differs significantly from the 

initial training set (e.g., new field sites, different microphones). To address these issues, recent 

efforts have sought to develop broad multi-species classifiers that are trained on large and 

diverse libraries of recordings. Well-established pretrained bioacoustic networks have been 

primarily trained on bird taxa, where large open-source annotated libraries are available (e.g., 

Xeno-canto, Macaulay Library)(Ghani et al., 2023; Kahl et al., 2021). These pretrained networks 

can sometimes be used off the shelf to classify sounds in new recordings, but this is restricted 

to only the classes present in their training set. Furthermore, these pretrained classifiers still 

underperform on novel datasets which are out-of-distribution from their training data and on 

classes which are under-represented in their training data (Stowell, 2022; Pérez‐Granados, 

2023), limiting their broad application and utility. 

When a pretrained network cannot directly classify novel signals, transfer learning represents 

an effective alternative. Here, samples from new target classes are passed through the 

pretrained network, and outputs from an intermediate layer are used to produce a feature 

embedding representation of the samples. These fixed embeddings can then be used to train a 

lightweight machine learning classifier (Ghani., et al 2023; White et al., 2023). This removes the 

costly training phase by leveraging knowledge from the network’s embedding space learned 

during pretraining. Additionally, strong pretrained models facilitate few-shot transfer learning, 

where only a small number of training examples are needed to produce a highly accurate 



 

classifier, significantly reducing annotation costs (Kath et al., 2024). Emerging research shows 

networks pretrained on unrelated terrestrial bioacoustic data transfer well to similar 

bioacoustic domains, enabling few-shot learning (Ghani et al., 2023). However, the ability of 

pretrained bioacoustic networks to transfer to highly novel domains, such as aquatic 

environments, is largely untested (Williams et al., 2024). Substantial domain shifts may require 

the development of novel pretrained networks to achieve accurate few-shot transfer learning. 

The optimal pretraining strategies to produce these networks remain unknown, which is further 

compounded by the sparsity of annotated libraries for novel domains. 

Coral reef ecosystems host some of the highest documented bioacoustic diversity in the ocean 

(Kaplan et al., 2018; McWilliam et al., 2018), yet ML-accelerated PAM analysis is significantly 

underdeveloped for these habitats. Coral reefs host >25% of marine biodiversity and >375M 

people are directly reliant on the ecosystem services these habitats provide (Hoegh-Guldberg et 

al., 2019; Knowlton et al., 2010). They are also among the most threatened habitats globally, 

with >50% of the world’s reefs lost over the last 70 years and a projected loss of 90% of those 

remaining by 2050 (Eddy et al., 2021; IPCC 2019). The soundscapes of these habitats have been 

found to contain information relevant to key ecosystem attributes such as coral cover and fish 

community diversity, as well as representing a key ecosystem function which drives larval 

recruitment (Kaplan et al., 2018; Pysanczyn et al., 2023). PAM is therefore emerging as a 

promising tool to monitor these threatened habitats (Mooney et al., 2020), but there is a 

sparsity of relevant annotated data. As is common for underwater soundscapes, the majority of 

biological sounds on coral reefs remain un-documented and for a significant portion of those 

that have been recorded, the taxonomic source of origin has not been validated (Parsons et al., 

2022; Rountree et al., 2019). Automated analysis of reef PAM data is therefore highly 

underdeveloped, with only a very limited number of studies having used ML-accelerated 

analysis on PAM data from these habitats (Lin et al., 2018; Ozanich et al., 2021; Williams et al., 

2022). Consequently, coral reef habitats represent an excellent candidate for assessing novel 

few-shot transfer learning bioacoustic frameworks, with advances in this field having the 

potential to help address real-world conservation challenges. 

In this study, we aim to empirically identify an effective pretraining strategy to produce an 

efficient network which supports accurate few-shot transfer learning for a novel bioacoustic 

domain. Such a network should facilitate analysis of PAM data with minimal computational and 

annotation costs. We selected the coral reef domain due to the threatened status and high 

acoustic diversity of these ecosystems, with potential to provide a strong foundation for 

transferring to other aquatic habitats. To achieve this, we first assembled ReefSet, the largest 

published dataset of annotated reef recordings to date, though only 1.99% the size of 

comparable bird libraries at the time of writing (Xeno-canto, 2023). We then set out to 

determine how well existing pretrained networks perform at few-shot transfer learning on 

ReefSet. Next, we tested whether performance could be enhanced by i) pretraining on this 

significantly smaller but in-domain dataset, and ii) through cross-domain mixing during 



 

pretraining. Finally, to assess the generalizability of this strategy across the reef domain, we 

tested whether the output from cross-domain mixing optimized for the coral reef domain 

impacts generalizability to unrelated domains. 

 

Methods 

Data compilation 

To maximize the generalizability of our approach, we compiled a diverse meta-dataset of 

57,084 labelled coral reef bioacoustic recordings across 37 classes and from 16 individual 

datasets over 12 countries (Fig. 1; Supp. 1. Table S1), hereon referred to as “ReefSet”. Each 

individual dataset was originally collected and labelled for different purposes using a variety of 

sampling strategies and hydrophone models (Supp. 1. Table S2). During the annotation of each 

dataset, longer recording periods were cut into samples of shorter windows (1.88 sec) to fit two 

within two window lengths of the industry standard networks YAMNet and VGGish (Table 1) at 

the time of curation. Samples were labelled by human annotators using aural and visual 

inspection of each sample's spectrogram. While many classes were of a known origin, others 

were unknown but typically presumed to originate from fish. All labelled samples were then re-

sampled to 16 kHz and written out as a separate waveform audio file.  

To amalgamate class labels across datasets, each sample was first given a single primary label: 

biophony, anthrophony, geophony or ambient. Here, the ambient label was used for negative 

samples in the Florida-boats, Kenyan and Indonesian datasets where the annotation strategy 

used a positive label class (motorboat, fish noise and bomb fishing respectively) alongside a 

strongly labelled negative class. A single secondary label was then applied to all other samples 

using existing labels from the datasets, with merging of labels under a common name where 

sounds matched across multiple datasets (e.g motorboats). Within any one dataset, only 

samples where one sound class was present were used. In some cases, co-occurrence of sound 

classes from another datasets may have been present in a sample, but this was minimised due 

to the short sample length. Later, for evaluation, classifiers were trained on a maximum of 32 

samples per class for each dataset, with a minimum of 10 samples from each class held out for 

testing. Therefore, classes with less than 42 samples in any given dataset were merged by only 

applying a primary label (biophony, geophony or anthrophony). Where the count of samples 

merged under the primary label class still did not total 42 or more samples in a given dataset, 

these samples were discarded. This yielded the final meta-dataset of 57,074 labelled samples, 

split across the four primary labels: biophony (79.20%), anthrophony (10.39%), geophony 

(0.09%) and ambient (10.32%), with 33 secondary labels (Supp. 1. Table S2).  

 

 



 

Evaluating existing pretrained networks 

We identified four pretrained networks widely adopted for use in acoustic transfer learning 

(Table 1). All four networks employ a convolutional neural network architecture. The first two 

were VGGish (Hershey et al., 2017) and YAMNet (Google Research), both trained on general-

purpose audio datasets. VGGish was trained on the YouTube-70M dataset, a dataset consisting 

of 20B weak multi-label samples across 31K classes. YAMNet was trained on AudioSet, a large 

ontology of 2.1M human labelled acoustic events across 521 classes gathered from YouTube 

(Gemmeke et al., 2017). The second two were BirdNET (Kahl et al., 2021) and Perch (Ghani et 

al., 2023) which were both primarily trained on bird recordings from the Xeno-Canto repository. 

Perch was trained on the full corpus of Xeno-Canto (XC) bird recordings split into 2.9m samples 

5 sec in length, and was configured with hierarchical taxonomic output heads for species, 

genus, family, and order classes. BirdNET was trained on a smaller set of bird classes than Perch 

overall, but included bird samples from the Cornell Lab of Ornithology’s Macaulay Library 

(Macaulay, 2023) alongside 101 additional classes such as human speech, dogs and amphibian 

species. 

For input to each network, audio samples were upsampled where required to match the input 

sample rate of the respective model (Table 1). As samples were shorter than the input window 

size of BirdNET and Perch, zero-padding was applied to the tail end of each sample. As samples 

were twice the length of the input window size of VGGish and YAMNet, samples were split into 

two windows, feature embeddings were calculated for each window and the mean across both 

taken. 

To evaluate the transfer learning capabilities of the four pretrained networks, for each of the 16 

datasets in ReefSet a pretrained network was configured with a final fully connected linear 

layer with corresponding output heads for the classes present in the respective dataset. This 

final layer was trained for 128 epochs using a batch size of 32, learning rate of 0.001 and 

categorical cross entropy loss. This process was repeated using 4, 8, 16 and 32 training samples 

per class, with ten repeats using a new random seed for the train-test split and initialization of 

each. For each seed, all remaining samples were set aside for testing, with a minimum of 10 per 

class. The mean area under the receiver operator curve (AUC-ROC) was calculated for the test 

set across the ten repeats for each of the four training sample counts (van Merriënboer, 2024).  

 

Pretraining with in-domain data 

State of the art bioacoustic few-shot learners commonly utilize convolutional neural network 

(CNN) architectures (Nolasco et al., 2022). We therefore adapted the pretraining protocol used 

for Perch, where an EfficientNet CNN classifier is trained and used to extract high quality 

feature embedding representations for transfer learning (Ghani et al., 2023). During training, 



 

datasets were filtered to remove any samples with the primary label ‘ambient’, in order to 

eliminate samples that may contain unintentional positive matches for classes in other 

datasets. For input to the network, samples were upsampled to 32 kHz and log-mel PCEN 

spectrograms calculated from each (Supp. 1). Repeat padding was applied to samples, where 

the signal was repeated until they met the 5s input shape. Samples were shuffled and two 

augmentations were implemented throughout training: random normalization with a minimum 

and maximum gain of 0.15 and 0.25, and, MixUp with a mix in probability of 0.75 (Xu et al., 

2018). The Perch network architecture was adapted to be configured with hierarchical output 

heads for each primary label (biophony, geophony, anthrophony), with the 35 secondary labels 

nested within this minus any exclusive to held-out data. All training runs were completed for 

200K steps. 

For the first stage of the experiment a hyperparameter sweep was performed where models 

were trained on 14 of the 16 datasets with two held-out for validation (Supp. 1). Learning rate, 

EfficientNet architecture and batch size were probed during the sweep. The core pretraining 

stage of the experiment was then performed using the optimum hyperparameters from the 

sweep (Supp. 1. Table S3).  

To rigorously evulate the performance of few-shot transfer learning on unseen datasets we 

used a Leave-one-dataset-out (LODO) approach. During LODO, pretraining was first undertaken 

using 15 datasets from ReefSet, maintaining one held-out dataset for evaluation. This was 

repeated in all combinations one by one to produce 16 pretrained models. In the second stage 

of LODO, evaluation of each model was performed on its respective held-out dataset following 

the same few-shot transfer learning protocol as described for the existing pretrained networks. 

Given all data originated from reef habitats, evaluation data could be considered in-domain 

whilst being out of distribution. 

 

Pretraining with cross-domain mixing 

We first tested mixing the full XC Bird catalog of 2.9M samples used to train Perch with the 

more modest ReefSet, approximately 1.99% of the size in total sample count (Fig. 2). The XC 

Bird dataset was used without modifications to the original pretraining of the Perch model 

(Ghani et al., 2023). This mixing provided a total of 10,165 target classes, minus any exclusive to 

held-out reef data for LODO evaluation. To integrate the XC Bird dataset into the training 

procedure, the model was configured with the same output heads for ReefSet, alongside 

additional species, genus, family and order output heads for the XC Bird dataset, with a loss 

weighting of 0.1 for the latter three compared to standard heads. 

Next, alongside ReefSet and the XC Bird dataset we mixed in Freesound Dataset 50K (Fonseca 

et al., 2022), a dataset based on the AudioSet ontology consisting of 108.2 hrs of annotated 



 

sound events across 200 classes (Fig. 2). Freesound is comprised of audio from a more general 

selection of sound events, comparable to the domain used to train VGGish and YAMNet, but 

with fully open-source access to the audio whereas AudioSet must be scraped from YouTube. 

Our only adjustment to the Freesound dataset was to remove all samples with the label ‘bird’ 

(3.38% of the dataset) to mitigate overlap with more taxonomically detailed labels in the XC 

Bird dataset. The network was then configured following the XC Bird cross domain mixing 

strategy, alongside an additional set of output heads for Freesound for a total of 10’364 target 

classes. 

During pretraining for both the domain mixing strategy experiments, individual datasets were 

cycled back in once all samples from them had been used once. As with the ReefSet pretraining 

strategy, a hyperparameter sweep was performed, with an additional parameter for dataset 

weighting (Supp. 1). All other components remained unchanged, with the LODO approach used 

for pretraining and evaluation. 

 

Evaluating SurfPerch on novel bioacoustic domains 

Using SurfPerch, the resultant network after optimising the highest performing strategy in our 

pretraining experiments, we mirrored the evaluation protocol used in Ghani et al. (2023) to 

assess the ability of Perch to generalize to novel bioacoustic domains. Novel domains originated 

from bird, frog, bat and marine mammal recordings. Sample counts ranging from 4 to 256 

training samples per class were used, with 10 repeats of each. SurfPerch was evaluated in an 

“off the shelf” manner, with no hyperparameter sweeps or pretraining used to optimize for the 

novel bioacoustic domains being tested. These novel datasets originated from the bird, bat, 

frog and marine mammal domains, see Ghani et al. (2023) for further details on the data. As 

with the other pretraining experiments, a new network was configured with a final 

classification head to match the target classes for each respective dataset, which was then fine-

tuned whilst the rest of the weights were kept frozen. Fine-tuning was conducted for 128 

epochs using a batch size of 32, learning rate of 0.001 and categorical cross entropy loss. The 

fine-tuned networks were then evaluated on held out test sets from their respective dataset. 

Fine-tuning was performed across multiple counts of training samples per class for each 

dataset, ranging from 4 to 256, with ten repeats for each count using a new random seed to 

select the training data. 

 

Results 

Pretrained bioacoustic networks outperform networks pretrained on general audio 



 

Mean AUC-ROC scores revealed that the pretrained networks ranked consistently across all 

four training sample counts. In ascending order the mean and standard deviations of these 

were: BirdNET (0.908 ±0.09), Perch (0.881 ±0.11), YAMNet (0.834 ±0.05), VGGish (0.813 ±0.05) 

(Fig. 3). These results revealed the two networks pretrained primarily on the bird domain 

outperformed the two trained on the more general YouTube data. As expected, the mean AUC-

ROC of all pretrained models improved and standard deviation of this declined as the number 

of training samples per class increased from 4 through to 32 (Fig 3; Fig. S1).  

Considering the constituent datasets within ReefSet on an individual basis, these presented a 

range of apparent difficulty and complexity (Fig. 4; Fig. S1). The datasets from Thailand, the 

Philippines and Indonesia, which only required binary classification between one anthropogenic 

and one biophonic class, generally presented easier challenges with mean AUC-ROC scores of 

0.994 (±0.007), 0.960 (±0.010) and 0.935 (±0.056) respectively across all four pretrained 

networks and sample counts. More challenging datasets were those which required the 

prediction of multiple classes where samples were labelled with secondary biophony labels 

alongside samples labelled only with the primary biophony label class. These more challenging 

tasks included the Kenya, Belize and Tanzania datasets with mean AUC-ROC scores of 0.703 

(±0.043), 0.791 (±0.065) and 0.812 (±0.037) respectively across all four pretrained networks and 

sample counts. Using just four training examples per class with BirdNET, the overall best 

performing pretrained network, the lowest and highest AUC-ROC scores were reported for the 

Kenya and Thailand datasets, with mean AUC-ROC scores of 0.746 (±0.062) and 0.996 (±0.006) 

respectively across the ten random seeds used for each. 

 

Existing pretrained networks outperform pretraining on limited in-domain data 

Our second experiment revealed that few-shot transfer learning capabilities of a CNN 

pretrained on our highly in-domain but smaller ReefSet meta-dataset were considerably lower 

than that of all four existing pretrained networks. This strategy reported a mean AUC-ROC score 

of 0.724 (±0.05) across all four training sample counts, lower than any of the pretrained 

networks. The ReefSet only pretraining strategy had a 200.72% and 47.80% higher AUC-ROC 

error (area above the ROC) than BirdNET and VGGish, the highest and lowest performing 

pretrained networks respectively. 

 

Cross-domain pretraining improves generalizability 

Our third experiment revealed cross-domain mixing of the small in-domain ReefSet dataset 

with a large set of out-of-domain bird bioacoustic data provided considerable improvements. 

Using the LODO pretraining and evaluation procedure once again, we observed a mean AUC-

ROC score of 0.895 (±0.03) across all four training sample counts using this cross-domain 



 

pretraining strategy (Fig. 3). This represented a notable improvement over pretraining on the 

in-domain ReefSet alone, which had a 163.90% higher AUC-ROC error. Importantly, this also 

achieved a 12.32% improvement in AUC-ROC error upon pretraining with the XC Bird dataset 

alone, represented by the pretrained Perch model. The only pretrained network which still 

outperformed this cross-domain pretraining strategy was BirdNET, with our ReefSet and XC Bird 

cross-domain pretraining strategy having a 12.24% higher mean AUC-ROC error. 

Our fourth experiment revealed that expanding the diversity of data used in cross-domain 

pretraining further enhanced few-shot transfer learning capabilities on the novel coral reef 

domain. Using the LODO train and evaluation protocol, this triple-domain pretraining achieved 

the highest mean AUC-ROC scores of any strategy, with a mean AUC-ROC of 0.928 (±0.02) 

across all four training sample counts (Fig. 3). This represented a 31.26% reduction in error 

compared to cross-domain pretraining with the ReefSet and XC Bird datasets. Importantly, this 

strategy also outperformed BirdNET, the previously highest scoring network, which had a 

21.68% higher AUC-ROC error. Using just four training samples per class, this triple-domain 

pretraining strategy achieved a mean AUC-ROC of 0.900 (±0.02) across the 16 datasets. 

Final trials using the triple-domain strategy revealed modifications to the bias, gain and 

smoothing parameters of the PCEN spectrogram (Supp. 1), alongside pretraining for 1m steps, 

further improved performance. Following the LODO pretraining and evaluation protocol, a 

mean AUC-ROC score of 0.933 (±0.02) was reported using these adjustments, representing the 

strongest overall performance. This improvement corresponded to 26.84% and 6.60% mean 

improvements upon the AUC-ROC error of BirdNET and our initial triple-domain pretraining trial 

respectively (Supp 1. Fig. S2). Finally, we produced SurfPerch, the open-source version of this 

model (Supp. 2), by pretraining with this triple-domain strategy including the full ReefSet meta-

dataset, using all 16 source datasets.  

 

Targeted cross-domain pretraining does not improve generalizability to non-target 

bioacoustic domains 

Whilst cross-domain mixing reported notable generalizability improvements to the reef 

domain, we observed this strategy negatively impacts performance on alternative bioacoustic 

domains which were not optimized for during pretraining (Fig. 5). We observed that Perch and 

BirdNET outperformed SurfPerch in all six of the novel domains. The lowest performance gap 

between SurfPerch and Perch, the overall best performing pretrained network at the novel 

challenges, was observed for the Godwit Calls and Watkins Marine Mammals datasets, with 

mean AUC-ROC scores 0.019 lower than Perch for both datasets across all training sample 

counts per class. The largest performance gap between SurfPerch and Perch was observed for 

the Yellowhammer dialect dataset, with a mean AUC-ROC score 0.084 lower than Perch across 

all training sample counts per class. However, SurfPerch did outperform both YAMNet and 



 

VGGish across all datasets. As the training samples per class counts increased, the performance 

gap between SurfPerch and Perch decreased for each, with a difference between mean AUC-

ROC scores across all datasets of 0.067 for 4 training samples per class, and 0.012 for the 

maximum training sample count per class (32 or 256).  

 

Discussion 

We show that by leveraging multiple domains during pretraining, we can achieve far superior 

transfer learning capabilities to the data-deficient domain of marine bioacoustics. In doing so, 

we present a novel pipeline that could resolve the considerable bottlenecks in the analysis of 

tropical reef and similar acoustic domains. We began by testing the transfer learning 

capabilities of existing pretrained networks on marine bioacoustic data. We found networks 

pretrained on data from bioacoustic domains outperformed those pretrained with more 

general audio data from unrelated domains. Next, we show these existing pretrained networks 

outperformed pretraining with our highly in-domain, but smaller, ReefSet meta-dataset. We 

then found that cross-domain mixing using the larger out-of-domain XC Bird dataset with the 

smaller in-domain ReefSet improved upon transfer learning capabilities of the previous 

strategies. Finally, we reveal that mixing together all three domains during pretraining provides 

the strongest performance. Importantly, however, we observe that cross-domain mixing did 

not improve performance on unrelated bioacoustic domains which were not optimized for 

during pretraining. These findings present a powerful strategy to produce pretrained networks 

for bioacoustic and other acoustic domains that do not currently have adequate pretrained 

networks for use in transfer learning. 

The product of our optimum pretraining strategy for marine bioacoustic data, SurfPerch, 

supports accurate few-shot learning. Furthermore, this was evaluated by only fine-tuning the 

final layer of the network during transfer learning. This combined few-shot transfer learning 

protocol therefore significantly reduces both the annotation and computational costs required 

to build accurate classifiers, enabling end-users to perform this on standard personal 

computing devices using a significantly reduced set of annotations. Example uses of tropical 

reef bioacoustic analyses that could be accelerated or scaled using SurfPerch include reef 

health assessments (Jarriel et al., 2024), tracking reef restoration success (Lamont et al., 2022), 

measuring marine protected area outcomes (Manna et al., 2021), or understanding 

fundamental processes within the soundscape such as temporal patterns and biogeographical 

variability (Duane et al., 2024; Raick et al., 2023). Given its potential applications, we have 

provided an interactive demonstration on how to implement this approach on new data 

entirely from a web browser (Supplementary 2), including the incorporation of an agile 

modeling protocol which can be used to further boost classifier performance by identifying the 

most relevant samples for annotation (Hamer et al., 2023). A simplified workflow for fine tuning 

on new data is detailed in Fig. S3.  



 

The results we present here provide key advancements on pretraining for bioacoustics. The 

performance of existing pretrained networks supports similar work in Ghani et al. (2023) which 

reported networks pretrained on large and diverse bird bioacoustic datasets generalize better 

to other bioacoustic domains than those pretrained on more general audio. The reasons behind 

this remain an open research question, this could be due to common properties between 

bioacoustic domains, or, the high innate acoustic complexity and variety of bird vocalizations 

compared to AudioSet. The increased volume of training data also likely contributed to the 

improved performance of our two- and three-way cross-domain mixing strategies. However, 

class diversity has been empirically demonstrated as a more significant driver of generalization 

in multiple settings (Dhillon et al., 2020; Dumoulin et al., 2021; Luo et al., 2023). Both 

bioacoustic networks were pretrained on a far larger diversity of classes compared to YAMNet, 

whereas VGGish was trained on the largest diversity of classes but these were weakly labelled 

(Table 1). Whilst BirdNET was trained on a lower class diversity, its outperformance of Perch 

provides potential evidence that cross-domain mixing during pretraining is also a key factor in 

enhancing generalizability. BirdNET’s (v2.3) pretraining included invertebrate, amphibian, 

mammal and anthropogenic sound classes. Future experiments controlling for data volume and 

domain diversity across datasets could help disentangle the contributions of class and domain 

diversity versus data quantity further. Lastly, given zero-padding was used to lengthen ReefSet 

samples during transfer learning to match the input length of Perch and BirdNET, the latter's 

shorter fixed window length may have been favourable due to reduced padding. Where 

padding is necessary due to cross-domain mixing, future experiments could compare models 

using repeat-padding versus zero-padding. 

Our findings present guidance for future users aiming to leverage deep neural networks for 

bioacoustics. Pretraining experiments such as those presented here are inherently 

computationally expensive. The experiments outlined total to the training of 139 networks, on 

average requiring ~20 hrs on a TPUv3 pod, the equivalent of 26 '668 USD using Google Cloud 

spot instances at the time of writing. By comparison, fine tuning a model is arbitrary, taking <1 

min on CPU with 128 training samples using a standard personal laptop. Bioacousticians with 

novel datasets will therefore benefit most from identifying an existing pretrained network most 

relevant to their domain, or testing a suite of existing networks as presented in our first 

experiment. Here, we show SurfPerch presents the strongest option for coral reefs and likely 

related aquatic domains, whereas Perch, trained exclusively on bird data, presents a better 

option for unrelated bioacoustic domains. Interestingly, Perch still outperformed SurfPerch on 

the Watkins marine mammal dataset. Many of the sounds in the Watkins dataset were in fact 

terrestrial marine mammal vocalizations which may partially explain this (Sayigh et al., 2016). 

Additionally, marine mammal calls typically consist of multiple high frequency phonemes (Erbe 

et al., 2017), potentially making these more comparable to the bird domain than the single 

phenome sounds characteristic of most fish vocalizations (e.g grunts, pops). 

Where an adequate pretrained network is not available and domain specific data is sparse, we 

show cross-domain pretraining presents a valuable strategy to develop a suitable network for 



 

the target domain. Future work may be able to improve upon the strategies tested here. 

Increasing the volume of high quality in-domain training data is typically the most valuable tool 

for improving model performance (Halevy et al., 2009). Relevant sound libraries to the coral 

reef domain with potential for growth include the FishSounds platform (Looby et al., 2023) and 

the proposed Global Library of Underwater Biological Sounds (Parsons et al., 2022). 

Furthermore, growing open-source sound event libraries are available, meaning additional 

bioacoustic and unrelated acoustic domains could be integrated, (Cañas et al., 2023; Humphrey 

et al., 2018; Mac Aodha et al., 2018). Ongoing efforts to release updated versions of existing 

bioacoustic networks, which incorporate an increased diversity of data from both bioacoustic 

and other domains into pretraining, will likely improve their generalizability to novel 

bioacoustic domains. Indeed, updated versions such as BirdNET v2.4, which has been trained on 

over twice the number of classes, could be used to validate this. More broadly, mixing data 

from a diverse set of domains and optimizing for a range of these during evaluation, rather than 

the single domain we targeted here, may present a route to developing improved foundational 

bioacoustic and acoustic models for wider contexts. While we restricted our pretraining in the 

present work to fully open-source datasets, incorporating AudioSet in its entirety, with its 

greater data volume and class diversity, could provide a direct route to improving 

generalisability during transfer learning for bioacoustic models. Additionally, including 

bioacoustic data in the pretraining of industry-standard models may offer reciprocal 

improvements in their generalizability.  

Beyond enhancing the data used for training, future work could also explore methodological 

improvements. Marine PAM data is inherently noisy, with recordings typically comprised of 

multiple sources from biophony, geophony and anthropogenic components (Mooney et al., 

2020). Implementing an unsupervised source separation model presents a proven tool for 

improving classification in noisy bioacoustic datasets, through disentangling individual signals 

from the broader soundscape (Denton et al., 2022; Lin & Tsao, 2019). Elsewhere, self 

supervised learning (SSL) presents a tool which can be used to learn informative features from 

unlabelled data, enabling it to exploit vast un-annotated datasets (Moummad et al., 2023). 

Future work could benchmark pretraining on larger in-domain datasets with SSL against cross-

domain pretraining of supervised classifiers. Other changes during the transfer learning 

component could boost performance. Firstly, alternative lightweight classifiers (e.g two layer 

models, random forests) could be tested. Augmentations are another proven way to improve 

classification accuracy with limited training data (Stowell, 2022). Better still, agile modeling, 

alternatively known as active learning, can be integrated into the pipeline using a human in the 

loop to identify the most informative training samples (Hamer et al., 2023; Stretcu et al., 2023). 

In conclusion, we leveraged cross-domain pretraining to develop a powerful tool that supports 

automated analysis of marine PAM recordings with low annotation and computational costs for 

the end-user. Our findings offer insights into replicating this for other acoustic domains where 

existing pretrained networks are inadequate. Combining efficient machine learning analysis 

such as ours with the vast scales at which PAM data can be collected has a significant potential 



 

to boost our understanding and monitoring capacity of global biodiversity. We anticipate these 

technologies will facilitate the expansion of scientific frontiers towards new applications and 

challenges so far unrealized. 
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Tables 

Table 1. Details of the four pretrained networks used to evaluate transfer learning performance 

on ReefSet. Real-time-factor inference speed reflects how many times faster each network is at 

processing the audio’s real time duration on a CPU, further details are in Supp. 1. 

Network Training domain 

Number of 

training 

classes 

Input 

sample 

rate (kHz) 

Input 

length 

(sec) 

Embedding 

dimension 

Parameter 

count 

Real-time-factor 

inference speed 

(CPU) 

VGGish 
AudioSet 

(YouTube) 
31000 16 0.96 128 72.1M 41.1 

YAMNet 
AudioSet 

(YouTube) 
521 16 0.96 1024 4.7M 86.04 

BirdNET v2.3 
Bioacoustic 

(primarily birds) 
3337 48 3 1024 10.4M 260.68 

Perch v1.4 
Bioacoustic 

(birds) 
10932 32 5 1280 80.1M 39.41 
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Figures 

 
Fig. 1. Datasets used to assemble ReefSet. Size indicates the relative size of each dataset to 

ReefSet, summing to one. Classes indicates the number of unique labels within each dataset. 

Pie charts indicate the distribution of labels within the dataset, with colours set independently 

for each dataset. 

 

 
Fig. 2.  Histogram of counts by class for the three datasets used for pretraining: XC Birds, 

Freesound and ReefSet. Bins are logarithmically spaced based on the range of counts in the XC 

Bird data, with bin edges determined by creating 20 equal intervals on a logarithmic scale 

between the minimum and maximum counts observed in the XC Bird dataset. 

 



 

 

Fig. 3. Mean AUC-ROC scores reported by transfer learning evaluation for each model across all 

16 datasets within ReefSet. Dashed lines represent existing pretrained networks, with names 

indicated in the legend. Solid lines represent the three alternative pretraining strategies for our 

model, with the data used for pretraining indicated in the legend. 



 

 

Fig. 4. Mean AUC-ROC scores reported by transfer learning evaluation on each dataset within ReefSet across all training samples per 

class counts used (4, 8, 16 and 32). Points represent the mean, lines represent standard deviation. Within each dataset bin, models 

are ordered by overall mean performance across all dataset and training sample counts, going from weakest (left) to strongest 

(right). In the legend, existing pretrained networks are indicated by name, whereas our alternative pretraining strategies are 

indicated by the datasets used during pretraining.



 

 

 

 

Fig. 5. Mean AUC-ROC scores reported from transfer learning evaluation of each model on six novel 

bioacoustic datasets. Each model and training sample per class count combination were repeated 

across ten random seeds. 

 


