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Abstract—Pulse  Descriptor Words (PDWs) are a
fundamental output of a Radar Electronic Support Measures
(RESM) System, they record key features of received radar
pulses which can be used to detect and classify radar systems,
and if necessary, deploy active protection measures. This paper
focuses on three different techniques of varying complexity used
to extract PDWs from both simulated and real I/Q samples,
and compares their accuracy at extracting pulse width and
centre frequency at a range of signal-to-noise ratios (SNR).
Comparative techniques are applied in parallel using a digital
Instantaneous Frequency Measurement (IFM) receiver on the
time domain I/Q samples and two time-frequency methods:
the Short Time Fourier transform (STFT) and Wigner-Ville
distribution (WVD) in conjunction with the Hough transform.
Results show that the greatest accuracy of extracted features
was achieved using the IFM receiver at high SNRs down to
+6dB and then the Smoothed Pseudo WVD / Hough method
down to -15dB SNR.

Keywords — Radar, ESM, ELINT, Software Defined Radio.

I. INTRODUCTION

The ability to detect and identify Radio Frequency (RF)
signals is an ever growing challenge, today’s Electromagnetic
Environment (EME) is now utilised by more and more devices
which emit a diverse range of signal types covering a wide
range of centre frequencies and bandwidths. This presents
significant difficulties in developing methodologies that are
able to process these signals and successfully identify their
characteristics in this challenging EM environment.

Many modern commercial and military radars operate in a
"Low Probability of Intercept” (LPI) mode and spread energy
in time and frequency to avoid interception by adversaries,
[1]. One such example of an LPI waveform is the "Frequency
Modulated Continuous Wave" (FMCW) pulse, which linearly
sweeps between two frequencies at a set chirp rate. The spread
spectrum and low peak power nature of FMCW pulses makes
blind detection and characterisation challenging.

Whilst RESM systems intrinsically have a one-way
propagation advantage over the target radar system, the
inability to blindly perform processing such as pulse
integration or matched filtering to increase the signal-to-noise
ratio (SNR) means that in many scenarios, the received pulse
may still be buried in the background electromagnetic noise.

Detecting and extracting pulse parameters in these
scenarios is challenging for traditional crystal video and
Instantaneous Frequency Measurement (IFM) receivers,
underscoring the motivation to explore signals through

time-frequency transforms for improved detection and
estimation of parameters [2] whilst balancing computational
complexity. The fusion of time-frequency transforms and
image processing techniques is one area where this is possible.

Recent advances in RF receiver hardware have enabled
multi giga-sample per second (Gs/s) captures across multiple
channels, for example the Xilinx RFSoC (Radio Frequency
System-on-a-Chip) features up to 16 ADC/DAC channels
with samples rates up to 9.85Gs/s [3]. The capture of large
bandwidths of the RF spectrum increases the quantity of data
that needs to be processed, leaving a strong requirement on
advanced Digital Signal Processing (DSP) methods to handle
the throughput.

Previous work has documented the process of extracting
radar pulse parameters using time-frequency and Hough
transforms [4] [5], this paper focuses on a quantitative
comparison of both time domain and time/frequency PDW
extraction methods on a mixture of simulated and real
data. The objective of this processing was to extract the
pulse width and centre frequency of each FMCW pulse and
understand the accuracy of this estimation as a function
of both applied method as well as SNR. Signal processing
methods were applied in both the time domain using a
digital IFM receiver and in the time-frequency domain,
utilising the Short-Time Fourier Transform (STFT) and Pseudo
Wigner-Ville Distribution (PWVD) in conjunction with the
Hough transform.

The remainder of the paper is structured as follows, Section
II covers the signal domains and extraction methods, Section
IIT defines the datasets used, Section IV presents the results
and finally Section V concludes the work.

II. SIGNAL DOMAINS FOR FEATURE EXTRACTION
A. Time Domain

The first step for pulse extraction in the time domain is
to compute the magnitude of each I/Q sample to verify if
it exceeds the pulse detection threshold, a similar threshold
is also used to detect the end of the pulse when the
magnitude of the signal decays back into the background noise.
Careful consideration is necessary when choosing the optimum
threshold so that the full duration of pulses are successfully
detected and noise is not falsely classified as a pulse.

In the implementation tested in this paper, the pulse
trigger threshold was set four standard deviations above the
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Fig. 1. Adaptive Pulse Trigger Threshold

mean noise magnitude as shown in Fig. 1. The start of
a pulse was triggered when the average magnitude over
5 consecutive samples exceeds this threshold, providing a
balance of detection sensitivity and resistance to false alarm.

In addition to the pulse width, another important parameter
of a detected pulse is the centre frequency. Radar Warning
Receivers (RWRs) typically use an analogue IFM receiver to
calculate frequency using the phase difference between the
incoming signal and a delayed variant of the signal. In this
paper a digital equivalent is used which differentiates the
instantaneous phase of the IQ signal with respect to time (the
sampling interval) to extract the frequency at a given instance
[6], this is then averaged over the length "N" of the pulse to
give an approximation to the centre frequency when noise is
present. This implementation is given by the equation below.
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B. Frequency Domain
1) The Short-Time Fourier Transform (STFT)

The STFT is a common time-frequency transform, a
graphical example of which is shown in Fig. 2. It builds upon
the Fourier transform by segmenting a signal into a set of
overlapping windows. The Fourier transform is then computed
across each window thus allowing the frequency content of a
signal to be tracked across time. For low-SNR signals, the
output of the STFT allows for the energy of structured signals
(e.g. FMCW chirps) to be detected due to the focusing in the
frequency-time space.

The discrete variant of the STFT can be given as:

N-1
STFT(m,w) = Z z(n)w(n — m)e I«m )

n=0
A key parameter of the STFT is the length of the analysis
window. Short windows provide good time resolution, but lack
sufficient samples for precise estimation of a signal’s frequency
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Fig. 2. STFT of a Simulated FMCW Radar Pulse

content. Conversely, large windows give good frequency
resolution at the expense of time resolution.

The trade-off between time/frequency resolution is
problematic for pulse parameterisation techniques that rely on
time-frequency distributions to extract both pulse length and
frequency content.

2) The Pseudo Wigner-Ville Distribution (PWVD)

The limitations of the STFT have led to interest in
alternative time-frequency transforms that offer improved time
and frequency resolution simultaneously.

One of the many alternative time-frequency transforms
is the "Wigner-Ville Distribution” (WVD) which achieves
a greater time and frequency resolution over the STFT. It
involves computing the Fourier transform of the ambiguity
function [2].

The main drawback of using the WVD is the introduction
of "cross-terms" in the output when multiple signals are
present [7]. Modified Wigner-Ville Distributions such as
the "Smoothed Pseudo Wigner-Ville Distribution" (SPWVD)
aim to suppress cross-terms by using independent window
functions to smooth in time (g(¢)) and frequency (H(f)).

The formula for the discrete SPWVD is given below:

N-1

Z z(n+m)z*(n —m)

m=—N+1 (3)
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SPWVD(m,w) =

C. Hough Space

The Hough transform is a computer vision technique that
is used to detect lines in images [8]. It functionally integrates
across each possible line in an image and is therefore effective
at concentrating intensity in a 2D distribution to a point in the
Hough parameter space, enabling the detection of tones and
linear chirps down to low SNRs in the time-frequency domain.

Before the Hough transform is applied, typically a median
filter is used to smooth out noise but preserve edges [9]
and then a binary threshold or edge detection method is



used to isolate features as shown in Fig. 3. In some cases,
morphological thinning may also be applied to reduce the
features, allowing a more accurate Hough line estimation.
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Fig. 3. Median and Binary Filtered PWVD with Estimated Hough Line

In the instance where only one pulse is present in the
processed time-frequency transform, the strongest point in the
Hough feature space (Fig. 4.) can be used to reconstruct a
line of set gradient and distance from the origin, the start
(z1,y1) and end points (z2,y2) are estimated by using the
binary filtered thresholds from the original image.

In a realistic threat scenario where multiple chirps may
coexist in the same time-frequency spectrogram, iteratively
identifying multiple Hough peaks and their associated lines
allows for the detection of chirps that overlap in time and
frequency, a capability that is not possible with a typical IFM
receiver.
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Fig. 4. Hough Feature Space for Fig 3

To extract the pulse width, the difference between the
estimated (x) coordinates of the line is multiplied by an x-axis
scalar. Similarly, multiplying the mid-point of the y coordinates
by the y-axis scalar gives the centre frequency.

In Figure 3, the predicted line from the Hough transform
in Figure 4 is shown. Inspection of the x and y axes shows
that this is a linearly frequency modulated pulse with width
approximately 10 us and bandwidth of 40 MHz.

Careful consideration is essential when choosing the image
filtering thresholds to achieve good parameter extraction
accuracy at both high and low SNR. Aggressive filtering
ensures good accuracy at high SNRs but may cause truncation
or omission of valid pulses at low SNRs. Exploring the

performance trade-offs against a representative calibration
dataset is essential in ensuring acceptable performance.

After systematically evaluating a range of parameters, it
was determined that for the STFT/Hough method with a
window length of 512, the best overall estimation accuracy
was achieved by applying a 3x3 median filter, setting the
binary filtering threshold to 0.5, and performing one pass
of morphological thinning. Similarly, for the WVD/Hough
technique, the optimal estimation accuracy on the simulation
dataset was obtained using an 8x8 median filter and a binary
threshold of 0.25.

I1I. DATASETS
A. Simulated Data

To test the three PDW extraction techniques, a library
of around 15,000 baseband I/Q samples was generated at
120 Ms/s. The library simulates a set of linearly frequency
modulated pulses across 11 different centre frequencies with
the SNRs spanning from -15 to +21dB in 3dB increments.

B. Real Data

The experimental data utilised in this paper was generated,
transmitted and captured using the UCL ARESTOR system
(shown in Fig. 5) which is built around the Xilinx RFSoC,
specifically the ZCU111 development board. The ARESTOR
system provides an 8 channel transmit/receive capability which
is expandable to multiple frequency ranges using custom
daughter boards [10].

Fig. 5. The UCL ARESTOR System

One ARESTOR node was used to transmit a index
modulated sequence of FMCW pulses of varying centre
frequency and bandwidth over-the-air while a second node
captured these pulses. The pulses were sampled at 3.84 Gs/s on
a single channel, mixed down to baseband and then decimated
by a factor of 32 to achieve a functional 120 Ms/s final sample
rate for offline processing. The SNR was then degraded for
each pulse from +21dB to -15dB in 3dB steps, giving a dataset
of around 280,000 pulses.

IV. RESULTS

A. Pulse Width Estimation Accuracy

Shown below in Table I is the percentage pulse width
estimation error of each technique against SNR for the
simulation and experimental datasets.



Table 1. Pulse Width Estimation Percentage Error

SNR Simulation Experimental
IFM STFT PWVD IFM STFT PWVD
21 0.525 -2.7740  -1.012 0.568 -3.216 -1.514
18 0.449 -2792 -1.021 0.525 -3.219 -1.523
15 0.396 -2767  -1.043 0.454 -3.005 -1.537
12 0.333 -2912 -1.064 0.439 -3.259 -1.441
9 0.094 -3.037  -1.096 1.231 -3.306 -1.587
6 -10.277  -3.165  -1.135 -9.312 -3.360 -1.636
3 -3.465 -1.222 -3.357 -1.707
0 -3.858  -1.389 -4.033 -1.850
-3 -4.155  -1.784 -4.393 -2.020
-6 -5.616  -1.462 -4.521 -2.303
-9 -6.514  -1.417 -5.991 -2.507
-12 -9.902  -3.813 -12.201  -3.511
-15 -8.937 -10.503

B. Simulation Dataset Results

Table II below shows the corresponding percentage centre
frequency estimation error of each technique against SNR for
both datasets.

Table 2. Centre Frequency Estimation Percentage Error

SNR Simulation Experimental
IFM STFT PWVD IFM STFT  PWVD
21 -0.462  -0.025 0.413 -0.528  -0.230 0.520
18 -0.368  -0.039  0.371 -0.465  -0.338 0.540
15 -0.330  -0.071 0.284 -0414  -0.291 0.561
12 -0475  -0.018  0.235 -0.487  -0.355 0.514
9 -1.519  0.014 0.227 -1.500  -0.219 0.596
6 -4.627  0.021 0.203 -5435  -0.396 0.590
3 0.013 0.126 -0.098 0.599
0 -0.021 0.192 -0.733 0.620
-3 0.014 0.721 -1.243 0.598
-6 -0.54 0.619 -1.766 0.931
-9 -2.920  2.538 -2.460 2.499
-12 -6.390  4.433 -15.268  4.294
-15 8.390 9.043

C. Combined Results

By combining the absolute pulse width and centre
frequency percentage error, the plot of total percentage error
for both datasets can be generated as shown below in Fig. 6.
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Fig. 6. Combined Feature Estimation Percentage Error

V. CONCLUSION

The blended simulation and experimental results have
demonstrated that at SNRs down to +6dB the pulse width and
centre frequency can be reliable extracted directly from the
I/Q samples using an IFM receiver.

At lower SNRs, the IFM technique fails to differentiate
valid pulses from noise, however the STFT and PWVD
based Hough methods are still able to reliably extract pulse
parameters down to -12dB and -15dB respectively when a
pulse is localised in the spectogram, below this some false
parameters are estimated but a clustering algorithm at the pulse
descriptor level may be able isolate the correct parameters.

Comparing the two time frequency methods analysed,
the PWVD achieved a greater accuracy at the expense of
computation efficiency, with each 1500 sample acquisition
taking on average (.78 seconds to process and estimate
the detected pulse parameters, whereas the STFT based
method and the IFM method took 0.007 and 0.015 seconds
respectively. In many scenarios, the requirements for efficient
processing may outweigh the benefits of increased resolution
in time and frequency. All methods performed similarly on
simulation and experimental data, with some discrepancies
likely to stem from non-ideal frequency response in the RF
chain of the transmit and receive nodes, leading to intra-pulse
variations in the magnitude and thus SNR.
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