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Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of liver disease
with a current global prevalence of 25%. NAFLD consists of a spectrum of diseases
ranging from mild steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis and
can be diet or drug-induced. The early stages of NAFLD and drug-induced fatty liver
disease (DIFLD) are reversible. However, the symptoms of steatosis are vague and
there is a lack of specific and sensitive biomarkers.

The overall aim of this project was to identify metabolite biomarkers for mild steatosis
using NMR-based metabolomics; HepG2 monolayers and spheroids were used to
create dietary and drug-induced in vitro models of mild steatosis.

To create the steatotic models HepG2 cells were dosed with various doses of either a
2:1 mixture of oleic and palmitic acid, tetracycline or valproate and incubated for 24
hours. To ensure doses were not cytotoxic MTS and LDH assays were conducted.
Steatosis was confirmed using Oil Red O staining and a triglyceride assay. Cell
extracts were obtained from all models and analysed by 'H NMR and multivariate
statistical methods.

While a mixture of oleic and palmitic acid induce an increase in lipid accumulation and
upregulation of beta-oxidation, tetracycline and valproate affect lipid metabolism by
reducing beta-oxidation with both eventually leading to NASH. Therefore, changes in
the TCA cycle metabolites were observed as well as changes in the methylation
pathways. In particular, there were changes in levels of lactate, choline, homocysteine,
and arachidonic acid in all models. These metabolites could potentially be useful in a
panel of biomarkers for the early detection of steatosis.

Literature has suggested that HepG2 monolayers cells have poor CYP expression
compared to spheroids therefore, this study analysed CYP 2D6, 2E1 and 3A4
expression in both monolayers and spheroids. The resulting Western blots indicated
changes in all CYPs in both monolayers and spheroids in response to steatosis.

The results from this project provide a good overview of the major metabolic pathways
affected in steatosis, regardless of the cause. The use of HepG2 spheroids in drug-
induced steatosis offers a novel in vitro model for biomarker research that has not
been reported before in the literature.



Impact statement

Non-alcoholic fatty liver disease (NAFLD) defines a spectrum of liver diseases ranging
from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis.
NAFLD has emerged as a public health concern due to its rising global burden.

The initial stage of steatosis has long been considered a relatively benign condition;
however, fatty livers are vulnerable to further injury and possible rapid progression to
steatohepatitis. Data suggests that 41% of patients ultimately develop fibrosis and
predicts that NAFLD may become the major cause of end stage liver disease in the
coming decades. Incidence rates are set to increase by a further 18.3% in some
developed countries by 2030.

Many drugs can also induce fatty liver disease (DIFLD) a specific type of drug-induced
liver injury, characterised by intracellular lipid accumulation in hepatocytes. Such
drugs include tetracycline, valproic acid and tamoxifen. Annual incidence rates of
drug-induced liver injury were said to vary widely in population-based studies from 2.7
to 19.1 cases per 100,000 with approximately 27% of cases having some form of
steatosis.

While steatosis itself is reversible the difficulty lies in diagnosis since at this stage both
NAFLD and DIFLD are relatively asymptomatic. Currently liver biopsies remain the
gold standard for the diagnosis and prognosis of NAFLD and DIFLD. This leaves a
great unmet need for non-invasive biomarkers that can identify both NAFLD and
DIFLD before they progress. The lack of biomarkers is further complicated by the fact
that some patients may have pre-existing NAFLD or NASH before receiving a drug
known to cause DIFLD. In addition, there is a need for specific biomarkers capable of
differentiating between underlying NAFLD and DIFLD.

This project will attempt to analyse metabolite changes in both diet and drug-induced
models of steatosis in HepG2 cells. There is no published comparison between diet
and drug-induced models therefore this project will offer a novel insight into metabolite
changes occurring in both models and could help differentiate between the two. This
will potentially allow more sensitive and specific biomarkers of both diet and drug-
induced steatosis to be identified.

Therapy options are scarce in part due to the lack of reliable disease models for
research. There is an ongoing need for more human relevant predictive models as
interspecies differences are a major drawback when extrapolating animal data to
humans. Therefore, there is growing interest in in vitro models. This project will attempt
to develop in vitro models of steatosis in HepG2 monolayers and spheroids. The
morphology of spheroids is more reflective of the liver and will therefore provide a
more reliable model for the study of steatosis. To date there are no studies in literature
that have attempted to identify metabolite changes in drug-induced steatosis in HepG2
spheroids therefore this study offers novel models for the dentification of drug-induced
biomarkers.
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Chapter 1

1.1 Liver Anatomy

The liver is the largest human visceral organ in the body and contributes approximately
2-3% of the total body weight (Abdel-Misih and Bloomston, 2010). It is positioned on
the right-hand side of the upper quadrant of the abdominal cavity just below the
diaphragm and is protected by the ribcage. The human liver consists of four lobes: two
major lobes (right and left), which are separated by the falciform ligament (Figure 1.1)
and the caudate and quadrate lobes (Vernon et al., 2020). The quadrate lobe is visible
on the inferior surface of the right lobe whereas the caudate lobe is located between

the left and right lobes on the posterior side of the liver (Vernon et al., 2020).

Anterior view Posterior view

Inferior vena cava

Caudate lobe Renal impression

Portal vein
Hepatic artery
Common hepatic duct
Common bile duct

Left lobe

Falciform ligament

) Quadrate lobe 7§
Round ligament Round ligament Gall er

Cystic duct

Colic impression

Gallbladder

Figure 1.1 Gross anatomy of the liver. The liver is divided into the left and right lobes, separated by the
falciform ligament. (Adapted from Guido et al., 2019).

1.1.1 Blood supply

The liver has a unique dual blood supply; the hepatic artery contributes approximately
25% of the blood supply while the remaining 75% comes from the hepatic portal vein
(Abdel-Misih and Bloomston, 2010). The hepatic artery and portal vein enter the liver
at the hilum where they are divided into the right and left branches to supply the two
lobes. The hepatic artery arises from the coeliac axis and supplies the liver with
oxygenated blood (Naish et al., 2009; Abdel-Misih and Bloomston, 2010). Whereas
the hepatic portal vein forms at the junction of the superior mesenteric vein and the

splenic vein behind the pancreas and carries nutrient-rich but deoxygenated blood
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from the gut, spleen and pancreas to the liver (Naish et al., 2009). Deoxygenated blood
then leaves the liver via the hepatic vein and drains into the inferior vena cava (Figure
1.2).

Hepatic Vein SR Hepatic Artery

Oxygen-poor blood ' Oxygen-rich blood

Hepatic Portal Vein
Nutrient-rich blood

Bile Duct

From Body To Body

Gastrointestinal Tract

Figure 1.2 Overview of hepatic circulation. The hepatic artery supplies the liver with oxygenated blood,
while the hepatic portal vein carries deoxygenated blood from the body to the liver. Deoxygenated blood
then flows in the hepatic vein carries towards the inferior vena cava.

1.1.2 Microanatomy

The morphological unit of the liver is classically hexagonal in shape and is known as
a lobule, with a central vein in the middle (Kietzmann, 2017). The corners of the lobule
are formed by portal triads consisting of branches from the portal vein, the hepatic
artery and the bile duct. Lobules are described as consisting of 3 zones; with one zone
located close to the portal triads (the periportal zone), a second surrounding the central
vein known as the centrilobular zone and the intermediate area between these two

zones known as the midzonal regions (Krishna, 2013, Kietzmann, 2017).

While the lobule portrays the anatomical arrangement, the hepatic acinus is the term
used to define the functional unit of the liver. Hepatic acini have portal triads at the
centre and the terminal hepatic venule at the periphery (Dixon et al., 2013). Each
acinus has 3 zones according to the distance from the arterial blood supply (Figure
1.3). Zone 1 is closest to the arterioles in the portal triads and is the most oxygenated,
while zone 3 is furthest away and has the lowest supply of oxygen (Kurbel et al., 2003,
Lautt, 2009).
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Classic Lobule

Portal Lobule Hepatic Acinus

Hepatic Acinus

Figure 1.3 The lobular arrangement of the hepatocytes. The lobule portrays the anatomical
arrangement while the acinus is the functional unit of the liver. The acini have portal triads and are
separated into 3 zones. Source: (Adapted from Maronpot and Malarkey, 2019).

The main parenchymal cells of the liver are hepatocytes arranged in plates or rows 1-
2 cells thick within the many hexagonal lobules (Krishna, 2013). The rows of
hepatocytes have blood filled spaces known as sinusoids on each side. The sinusoidal
spaces are lined with a discontinuous endothelium, in which epithelial cells are highly
fenestrated allowing unimpeded flow of plasma between sinusoidal blood and the
perisinusoidal space, known as the space of Disse (Haussinger and Kordes, 2019,
Sanz-Garcia et al., 2020).

The space of Disse contains hepatic stellate cells (also known as Ito cells) which play
a key role in fibrogenesis, the storage of vitamin A and fat and the formation of
connective tissue framework made up of reticulin fibres (Dixon et al, 2013). Kupffer
cells and phagocytes are also present within the sinusoids. Both form an essential part
of the reticuloendothelial immune system as they are the firstimmune cells in the liver
to encounter gut bacteria, endotoxins and microbial debris transported to the liver via
the portal vein (Basit et al., 2020). Therefore, they play an essential role in host
defence (Dixon et al.,, 2013, Nguyen-Lefebvre and Horuzsko, 2015). Kupffer cells

facilitate phagocytic removal of foreign particulates and participate in the regulation of
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inflammatory and repair responses via the secretion of various cytokines into the

circulation and perisinusoidal space (Cullen and Stalker, 2016).

Located between the individual rows of hepatocytes are bile canaliculi which collect
bile secreted by the hepatocytes. From the canaliculi bile flows towards larger
collecting ducts and into the left and right hepatic ducts, which merge to form the
common hepatic duct. The common bile duct then carries bile either directly to the

duodenum or to the gallbladder where it is concentrated and stored (Boyer, 2013).

1.2 Liver physiology

The liver performs a wide range of vital metabolic functions including bile formation,
carbohydrate, lipid and protein metabolism, drug metabolism, detoxification, and
vitamin storage (Boyer, 2013, Vanputte et al., 2013, Kalra et al., 2020).

1.2.1 Carbohydrate and protein metabolism and bile formation

The human liver forms and secretes between 600-1000 mL of bile daily (Vanputte et
al., 2013). Bile is composed mainly of water (95%), bile salts, bilirubin and electrolytes
and is synthesised in the hepatocytes before being secreted into the bile canaliculi.
Bile salts serve to emulsify fats and increase their surface area to facilitate their
absorption by the intestines (Boyer, 2013). Lipophilic substances including cholesterol,
bilirubin which results from the breakdown of haemoglobin, lipid soluble hormones,
lecithin or lipophilic toxins are excreted from the body via bile (Vanputte et al., 2013,
Hundt et al., 2020).

Carbohydrate metabolism is controlled by the liver whereby glucose is stored within
hepatocytes in the form of glycogen. When blood glucose levels are elevated excess
glucose is taken up by the liver cells and is used to synthesise glycogen via
glycogenesis (Postic and Girard, 2004). Similarly, when blood glucose levels are
depleted glycogenolysis is upregulated within the hepatocytes forming glucose from

glycogen.
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Proteins are synthesised from dietary amino acids in the liver. The liver is also where
the synthesis and secretion of plasma proteins such as albumin and coagulation

factors take place (Kalra et al., 2020).

1.2.2 Lipid metabolism

The liver is the central organ for the control of lipid metabolism via the uptake,
synthesis, esterification, oxidation, and secretion of long chain fatty acids (Ding et al.,
2018). Fatty acids entering the liver originate from either dietary or endogenous
sources. Ingested dietary triglycerides are emulsified by bile acids in the intestinal
lumen before undergoing hydrolysis primarily by pancreatic lipase, yielding sn-2-
monoacylglycerols and free fatty acids (Alves-Bezerra and Cohen, 2017). Following
hydrolysis, these molecules are taken up by enterocytes in the small intestine and
synthesised into triglycerides. Triglycerides are then packaged into chylomicrons,
which are composed of cholesterol, triglycerides and apolipoprotein B48; which are
then secreted into the lymphatic system and ultimately reach the circulatory system.
Most triglycerides are taken up by muscle and adipose tissue. The remainder are
taken up by the liver by receptor mediated endocytosis of the chylomicron remnants
(Malhi and Gore, 2008, Alves-Bezerra and Cohen, 2017, Puschel and Henkel, 2018).
Thus, the rate at which fatty acids enter the liver depends on their plasma

concentration levels.

The liver can also synthesise triglycerides from non-esterified fatty acids taken up from
the plasma by hepatocytes or via de novo lipogenesis, whereby fatty acids are
synthesised from carbohydrates such as glucose (Malhi and Gores, 2008). This
process begins with the conversion of products from glycolysis into acetyl-CoA by
pyruvate dehydrogenase in the mitochondria. It is then transferred in the cytosol as
citrate followed by conversion back to acetyl-CoA by ATP-citrate lyase. Acetyl-CoA is
then converted to malonyl-CoA by acetyl-CoA carboxylase (ACC). Following this fatty
acid synthetase (FAS) catalyses the production of palmitic acid (a 16-carbon fatty
acid). Palmitic acid can undergo elongation and desaturation by the actions of

elongase 6 (ELOVL6) and stearyl-CoA desaturase 1 (SCD1) generating further mono-
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unsaturated fatty acids (Ameer and Zaidi, 2014). Glycerol-3-phosphate
acyltransferase (GPAT) catalyses the esterification of glycerol-3-phosphate from
glycolysis by incorporating an acyl moiety at the sn-1 position of the glycerol backbone
producing lysophosphatidic acid. Phosphatidic acids are then generated from
lysophosphatidic acid in the presence of 1-acylglycerol-3-phosphate acyltransferase
(AGPAT). The next step generates diacylglycerols via lipin 1 (Kawano and Cohen,
2013, Song et al., 2018). Triglycerides are then finally formed by the action of acyl-
CoA: diacylglycerol acyltransferase (DGAT) (Figure 1.4A) (Kawano and Cohen, 2013,
Ameer and Zaidi, 2014).

Fatty acyl-CoA
A Acetyl-CoA B Acylcamitine
Vit ll " V Inner mitochondrial membrane
al Onf -Co Acylcamitine (long chain)
Palmitic Acid Acyl-CoA (long chain)

l

Fatty acyl-CoA + Glycerol 3-phosphate

l

2-Enoyl-CoA (long chain)

Lys°ph°sl’ha“di° acid Acyl-CoA (medium & short chain)
Phosphatidic acid v
i Acyl-CoA
Diacyiglycerols

Trans-A?-Enoyl-CoA

|

B-hydroxyacyl-CoA

|

Triglycerides

B-ketoacyl-CoA

Acetyl-CoA
(Krebs cycle)

Acetyl-CoA (2C atoms shorter)

Figure 1.4 A. Overview of de novo lipogenesis and B. Overview of beta-oxidation. Excess fatty acids
are degraded in the liver via beta-oxidation, while the liver can synthesise fatty acids through de novo
lipogenesis. The enzymes that catalyse each step of these reactions are shown in red.

As well as synthesising fatty acids by de novo lipogenesis the liver also oxidises long
chain fatty acids to produce acetyl-CoA via the process of beta-oxidation, as shown in
Figure 1.4B. Beta-oxidation takes place over four steps: dehydrogenation, hydration,
oxidation and thiolysis with each step catalysed by a distinct enzyme (Nelson and Cox,
2012). Prior to beta-oxidation the relatively inert fatty acids must first be activated by
fatty acyl-CoA synthetase, using up one molecule of coenzyme A and one molecule
of ATP producing long chain fatty acyl-CoA. The long chain acyl-CoA is then converted
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to long-chain acyl-carnitine by carnitine palmitoyltransferase 1 (CPT1) allowing its
transportation by a translocase across the inner mitochondrial membrane into the
matrix where beta-oxidation takes place (Kumari, 2018). An inner mitochondrial
membrane carnitine palmitoyltransferase 2 (CPT2) then converts the long-chain
acylcarnitine back into long-chain acyl-CoA which enters the beta-oxidation pathway.
Beta-oxidation begins with the oxidation of acyl-CoA by acyl CoA dehydrogenase, a
double bond is formed between the second and third carbons (C2 and C3) to produce
trans-A2-enoyl-CoA vyielding FADH2 from FAD. In the next step the double bond
between C2 and C3 in trans-A2-enoyl-CoA is hydrated by enoyl CoA hydratase to form
B-hydroxyacyl CoA replacing the double bond with a hydroxyl group on C2. Following
this the hydroxyl group is then oxidised by NAD+ in a reaction that is catalysed by 3-
hydroxyacyl-CoA dehydrogenase to produce B-ketoacyl CoA and NADH+H* (Houten,
2010, Nelson and Cox, 2012). In the fourth and final step which is catalysed by (-
ketothiolase, B-ketoacyl CoA is cleaved by a thiol group of another CoA molecule. The
cleavage takes place between C2 and C3 producing acetyl CoA which enters the
Krebs cycle and a 2 carbon shorter fatty acyl-CoA chain; the process repeats until the
fatty acid chain has been shortened to a 2-carbon acetyl CoA (Mehta, 2013).

Under normal circumstances the liver processes large quantities of fatty acids but
stores only a small amount in the form of triglycerides, typically less than 5% of the
total liver volume. This homeostatic control is achieved by balancing fatty acid uptake
from the plasma and de novo synthesis with fatty acid oxidation and secretion of
triglycerides into the blood (Alves-Bezerra and Cohen, 2017). For secretion, the liver
packages triglycerides into very low-density lipoproteins (VLDL) (Kawano and Cohen,
2013). VLDLs possess a hydrophobic core made up of cholesteryl esters, triglycerides
and a hydrophilic coating containing a phospholipid monolayer and unesterified
cholesterol (Tiwari and Siddiqi, 2012, Kawano and Cohen, 2013). Each VLDL is
stabilised by a single molecule of apolipoprotein B 100 (ApoB 100), which is a key
structural component (Sundaram and Yao, 2010) and contains a hydrophobic lipid
binding region that participates in the assembly of lipoproteins and a hydrophilic region
that interacts with the aqueous environment (Fabbrini et al., 2010). As a result, water-
insoluble triglycerides are converted to a more water-soluble form as VLDLs and thus
can be secreted from the hepatocytes (Kawano and Cohen, 2013). These triglycerides

can then be transported to other tissues as lipoproteins for use as a source of energy
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and for structural components (Ponziani et al., 2015). Triglycerides provide twice as
much energy compared with carbohydrates and proteins, as the fatty acids within
triacylglycerols are already in their reduced state (Mehta, 2013). The relatively small
quantities of triglycerides which are stored within the liver are normally localized in

cytoplasmic lipid droplets (Alves-Bezerra and Cohen, 2017).

The liver also plays a central role in cholesterol metabolism and under normal
circumstances the liver is the primary site of cholesterol biosynthesis and excretion
(Nemes et al., 2016, Puschel and Henkel, 2018). Cholesterol homeostasis is tightly
controlled through intestinal cholesterol absorption, hepatic de-novo synthesis and
cholesterol excretion from the body (Nemes et al., 2016, Malhotra et al., 2020). De
novo synthesis begins with acetyl CoA conversion to 3-hydroxy-3 methylglutaryl-CoA
(HMG-CoA) by HMG-CoA synthase which is then converted to mevalonate by HMG-
CoA reductase (HMGR) (Nemes et al., 2016, Malhotra et al., 2020, Yang et al., 2020).
Mevalonate undergoes a series of phosphorylation reactions followed by
decarboxylation yielding isopentenyl pyrophosphate (IPP). Squalene synthase then
catalyses a series of condensing reactions leading to the production of squalene (Do
et al., 2008). From squalene, lanosterol, the first of the sterols is formed (Nemes et al.,
2016, Malhotra et al., 2020, Yang et al., 2020). The newly synthesised cholesterol
along with the cholesterol absorbed from the intestine are packaged along with
triglycerides and apolipoprotein B-100 into VLDLs (Malhotra et al., 2020). As well as
being the primary site of cholesterol biosynthesis the liver is also the primary site of
cholesterol excretion, converting it into bile acids and removing free cholesterol and

neutral sterols via biliary excretion (Nemes et al., 2016).

1.2.3 Drug metabolism

The liver is the primary site for the metabolism and detoxification of xenobiotics. The
liver metabolises a wide range of drugs converting them into more water-soluble forms
to aid with excretion (Vaja and Rana, 2020). Drug metabolism consists of two phases:
phase | and phase Il. Some drugs undergo only one phase, but for the majority of
drugs both phase | and phase Il metabolism occurs sequentially (Phang-Lyn and
Llerena, 2020).
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Phase | reactions are most commonly oxidation reactions, but reduction and
hydrolysis of drugs may also take place. Oxidation reactions are predominantly
catalysed by the cytochrome P450 (CYP450) enzymes and occur mainly in the
smooth endoplasmic reticulum of hepatocytes (Xu et al., 2005, Schonborn, 2010).
The P450 family is a gene superfamily with 57 members in the human genome, and
a subset of approximately 15 P450 enzymes belonging to the CYP1, CYP2 and
CYP3 gene families. Together CYP450s particularly CYP450

isoforms CYP3A4, CYP1A1, CYP2B6, CYP2C9, and CYP2E1 mediate 70-80% of
all drug metabolism reactions (Zollner et al., 2010, Liu et al., 2017, Rey-Bedon et al.,
2022).

Phase Il metabolism involves the addition of polar groups to either the parent drug
molecule or phase | metabolites via various conjugation reactions such as
glucuronidation. This step increases the polarity of these compounds allowing them to
be more easily excreted (Crettol et al., 2010, Schonborn, 2010). The enzymes
responsible for catalysing phase Il reactions are collectively known as transferases for

example glucuronosyltransferase (UGT) (Liu et al., 2017).

Due to the high exposure of the liver to xenobiotics and intermediates formed during
drug metabolism the liver is particularly susceptible to chemically induced liver toxicity.
The intermediates formed during metabolism can cause direct injury to hepatocytes
or induce the inhibition of mitochondrial respiration leading to the production of reactive
oxygen species (ROS) and a depletion in ATP. This may lead to oxidative stress and
subsequent inflammatory cell response by the injured hepatocytes. Increased ROS
levels can directly damage DNA, proteins, enzymes and lipids in cells and induce
immune-mediated liver damage thus resulting in drug-induced liver injury (DILI)
(Kolaric et al., 2021).

As well as direct DILI induced by compounds or their metabolites some drugs can also

cause dysregulated fat metabolism (Kolaric et al., 2021). This leads to an

accumulation of lipids in liver cells resulting in drug-induced steatosis and NAFLD.
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1.3 Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) defines a spectrum of liver diseases ranging
from hepatic steatosis (otherwise known as fatty liver), non-alcoholic steatohepatitis
(NASH), fibrosis and cirrhosis (Figure 1.5) (Rabinowich and Shibolet, 2015). NAFLD
is associated with excess fat deposits in the liver in the absence of excessive alcohol
consumption. It is currently the most common type of liver disease globally with an
estimated prevalence of about 25% in the general population (Ramos et al., 2022).
Data suggests that 41% of patients ultimately develop fibrosis and predicts that
NAFLD may become the major cause of end stage liver disease in the coming
decades. Incidence rates are set to increase by a further 18.3% in some developed
countries by 2030 due to an ever-present sedentary lifestyle and greater economic
growth which could see NASH becoming the leading reason for future liver transplants
(Muller and Strula, 2019, Ramos et al., 2022). There is a close association between
NAFLD, diabetes, and obesity with studies reporting NAFLD as the hepatic
manifestation of metabolic syndrome (Le et al., 2017). It has been suggested that
individuals are 5 times more likely to develop diabetes if they already have NAFLD
(Bhatt and Smith, 2015). At the time of diagnosis most patients with NAFLD already
display clinical manifestations of metabolic syndrome such as diabetes, elevated
plasma triglyceride, reduced high-density lipoprotein cholesterol levels, obesity and
high blood pressure (Bhatt and Smith, 2015, Le et al., 2017, Sharma and John, 2020).
Taking this into account hepatologists recently suggested replacing the term NAFLD
with metabolic dysfunction-associated fatty liver disease (MAFLD). However currently
the name remains unchanged as it might create some confusion as many clinical trials
are currently specific to NASH which is not a major aspect in the MAFLD concept

molecular basis (Kolaric et al., 2021, Di Pasqua et al., 2022).
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Figure 1.5 Overview of the spectrum of NAFLD. NAFLD encompasses a spectrum of disease states
ranging from mild and reversible liver steatosis to more serious and irreversible liver cirrhosis. Adapted
from Guo et al., 2022.

Obesity, NAFLD and diabetes are all linked to the development of insulin resistance,
and are associated with increased gluconeogenesis (Gastadelli et al., 2000, Bhatt and
Smith, 2015, Finck, 2018). The presence of NAFLD in obese patients is associated
with adipose tissue insulin resistance and greater rates of adipose tissue lipolysis than
in obese patients without NAFLD (Fabbrini et al., 2010). Excessive release of free fatty
acids from adipose into circulation increases their delivery to the liver and skeletal
muscle. This can simultaneously lead to increased intrahepatic triglycerides causing
insulin resistance in the liver and skeletal muscle (Fabbrini et al., 2010). Skeletal
muscle insulin resistance and hyperinsulinemia can further increase triglyceride
accumulation in the liver by stimulating hepatic de novo lipogenesis and triglyceride
synthesis (Fabbrini et al., 2010, Dharmalingam and Yamasandhi, 2018). De novo
lipogenesis is further enhanced by insulin resistance as there is a reduced rate of
glycogen synthesis with increased rates of gluconeogenesis in NAFLD. This increase
in hepatic glucose and resultant glycolysis provides a substrate for de novo
lipogenesis (Dharmalingam and Yamasandhi, 2018). These pathological changes
occur due to the release of pro-inflammatory, procoagulant and pro-oxidant mediators
and the release of fetuin-A, fibroblast growth factor-21 and retinol-binding protein-4 by

the liver. Fetuin-A binds and inhibits the insulin receptor tyrosine kinase in the liver
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and skeletal muscle inhibiting insulin signalling transduction resulting in systemic and

hepatic insulin resistance (Dharmalingam and Yamasandhi, 2018).

NAFLD typically begins as simple steatosis, defined as when fat accounts for at least
5% of the liver weight. Steatosis results from either the dysregulated uptake of fats by
the liver, excess de novo lipogenesis or via the suppression of beta-oxidation (Parry
and Hodson, 2017, Alves-Bezerra and Cohen, 2017). This disruption to lipid
metabolism results in the excessive accumulation of fats within the hepatocytes.
Steatosis has long been considered a relatively benign condition; however, human
studies have suggested that fatty livers are vulnerable to further injury and possible

rapid progression to steatohepatitis (Kanuri and Bergheim, 2013).

The mechanism by which NAFLD is associated with increased de novo lipogenesis is
not fully understood. However, it is thought that elevated circulating insulin and
glucose activate the sterol regulatory element binding protein 1¢ (SREBP-1c) and
carbohydrate response element binding protein (ChREBP) which transcriptionally

activate genes involved in de novo lipogenesis (Section 1.2.2) (Smith et al., 2020).

Steatosis can manifest in two forms: macrovesicular and microvesicular steatosis.
Macrovesicular steatosis is characterised by the presence of small to large droplets of
fat located in the cytoplasm of the hepatocytes, which peripherally displace the
nucleus and is typically caused by alcohol, diabetes or obesity (Apica and Lee, 2014,
Rabinowich and Shibolet, 2015). The degree of steatosis and size of the fat droplets
observed in the macrovesicular state often indicates that no further lipid accumulation
is likely to occur. Whereas, in microvesicular steatosis very small fat droplets are
typically observed in the cytoplasm of the hepatocytes. Microvesicular steatosis is
associated with a number of conditions including acute fatty liver of pregnancy, Reye’s
syndrome, sodium valproate toxicity and high-dose tetracycline toxicity (Hautekeete
et al., 1990). Microvesicular steatosis is also related to the severe impairment of beta-
oxidation and as fatty acids are poorly oxidised by the mitochondria this leads to the
esterification of triglycerides, the main lipid form that accumulates in steatosis
(Satapathy et al., 2015, Kolaric et al., 2022). Consequently, microvesicular steatosis

is considered the more severe form since it suggests ongoing active changes in fat
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accumulation in the liver; however, unlike macrovesicular steatosis there is no

peripheral displacement of the nucleus (Rabinowich and Shibolet, 2015).

The majority of patients with NAFLD suffer from simple steatosis alone but
approximately 10-30% will have NASH, characterised by hepatic steatosis alongside
inflammation (Dyson et al., 2013). This can progress to more serious liver diseases

such as fibrosis and cirrhosis (Figure 1.5) (Feher and Lengyel, 2003).

The progression of simple steatosis to NASH is a complex process, and the
mechanisms involved are not fully understood. However, it is thought to be a result of
multiple parallel hits (Buzzetti et al., 2016, Kim and Lee, 2018, Tilg et al., 2020) often
due to a combination of oxidative stress, hyperinsulinemia and hepatic iron and lipid
accumulation (Shifflet and Wu, 2009, Sharma and John 2020). The excessive build-
up of fatty acids leads to oxidative stress which in turn leads to mitochondrial
dysfunction and an increase in the production of reactive oxygen species (ROS)
(Nassir and Ibdah, 2014, Peng and Meex, 2018, Li et al., 2019). Mitochondrial
dysfunction also leads to endoplasmic reticulum (ER) stress, uncoupling of oxidative
phosphorylation and subsequently ATP depletion (Patel and Sanyal, 2013, Kim and
Lee, 2018). Excess ROS can then cause direct damage to hepatocytes. Additionally,
ROS may interact with polyunsaturated fatty acids in the cell membrane producing
lipid peroxidation intermediates which can diffuse to neighbouring cells causing further
injury. An increase in lipid peroxidation and oxidative damage to mitochondrial DNA
further diminish the function of the mitochondria. This establishes a self-perpetuating
vicious cycle which increases oxidative stress and mitochondrial dysfunction (Ipsen et
al., 2018). Ultimately the c-Jun N-terminal kinase (JNK) signalling pathway is triggered
which subsequently alters mitochondrial permeability leading to possible apoptosis
and necrosis (Patel and Sanyal, 2013, Chen et al., 2015). Additionally, chronic ER
stress and increased ROS production may stimulate the production of several
proinflammatory molecules such as the transcription factor nuclear factor-kb (NF-kb),
tumour necrosis factor (TNF)-a and interleukin (IL)-8. Immune cells such as
macrophages, Kupffer cells, natural killer cells and T-cells may also be activated and
release pro-inflammatory chemokines. (Patel and Sanyal, 2013, Kim and Lee, 2018).
The presence of inflammation and such immune responses alongside steatosis is
defined as NASH.
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In obese patients with steatosis the excessive lipid accumulation and resulting
inflammatory response exacerbates insulin resistance (Kitade et al., 2017, Finck,
2018). Hypertrophic adipocytes in obesity also secrete inflammatory cytokines such
as TNF-a, IL-1B8 and IL-6. These pro-inflammatory cytokines can inhibit insulin
receptor signalling resulting in reduced hepatic insulin sensitivity (Kitade et al., 2017).
Thus, the activation of inflammatory pathways and recruitment of immune cells to
adipose tissue, liver and skeletal muscle leads to acute inflammation, the development
of insulin resistance and consequently the progression of steatosis to NASH (Kitade
et al., 2017).

Another mechanism by which the progression of steatosis to NASH is thought to occur
is via iron overloading. This has been reported in 30-70% of patients with NAFLD and
NASH (Abe et al., 2019). It can occur because patients with NAFLD have increased
iron absorption from the duodenum due to upregulation of the divalent metal
transporter 1 (DMT1) due to increased mRNA levels, which begins to accumulate in
the liver (Hoki et al., 2015). Studies suggest that iron can induce oxidative stress and
ROS production by catalysing hydroxyl radical formation via the Fenton reaction
leading to the formation of hydrogen peroxide. The induced oxidative stress leads to
further lipid peroxidation, protein modification and DNA damage, thus accelerating the
progression of NAFLD to NASH (Fargion et al., 2011, Nelson et al., 2011, Britton et
al., 2016).

Ultimately, NASH will progress to fibrosis since the necro-inflammation that occurs in
NASH triggers pathological activation of hepatic stellate cells (HSCs) located in the
space of Disse. This results in differentiation of HSCs from vitamin-A storing cells to
proliferating, inflammatory myofibroblasts which cause impaired collagen deposition
and degradation resulting in an imbalance in fibrillar collagen in the liver and ultimately
leading to cirrhosis (Bataller and Brenner, 2005, Kisseleva, 2017, Tsuchida and
Friedman, 2017, Romero et al., 2020).
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1.4 Drug-induced liver steatosis

Alongside NAFLD many drugs can also cause a form of fatty liver disease, known as
drug-induced fatty liver disease (DIFLD). It is a specific type of drug-induced liver
injury, characterised by intracellular lipid accumulation in hepatocytes. Such drugs
include tetracycline, valproic acid and tamoxifen amongst others (Kolaric et al., 2021).
In a recent report the annual incidence rates of drug-induced liver injury were said to
vary widely in population-based studies from 2.7 to 19.1 cases per 100,000 with
approximately 27% of cases having some form of steatosis (Kolaric et al., 2021). This

represents a considerable number of cases of DIFLD.

DIFLD can present initially as pure microvesicular or macrovesicular steatosis or as
drug-induced steatohepatitis (DISH). Drugs that cause microvesicular steatosis are
often associated with acute liver injury and/or dysfunction such as Reye’s syndrome
(Pavlik et al., 2019). While those leading to macrovesicular steatosis and
steatohepatitis are more often associated with chronic and slow progressive liver injury
(Pavlik et al., 2019). Drugs linked to microvesicular steatosis include valproic acid,

tetracycline, aspirin, ibuprofen and zidovudine (Satapathy et al., 2015).

The main mechanisms behind DIFLD involve the interference with mitochondrial
respiration including beta-oxidation, oxidative phosphorylation and the TCA cycle
(Satapathy et al., 2015, Miele et al., 2017, Di Pasqua et al., 2022). DIFLD may also
be induced by the dysregulation of lipid hepatic homeostasis in terms of increased
fatty acid uptake, increased de novo lipogenesis (DNL), and decreased transport by
very low-density lipoprotein (VLDLs) as shown in Figure 1.6 (Patel and Sanyal, 2013,
Pavlik et al., 2019, Di Pasqua et al., 2022). Steatogenic drugs can also lead to the
inhibition of the carnitine palmitoyl shuttle and therefore prevent long chain fatty acids
entering the mitochondria where beta-oxidation occurs (Patel and Sanyal, 2013, Di
Pasqua et al., 2022). Drugs such as valproate can also upregulate the proliferator-
activated receptor gamma (PPARY) and cluster of differentiation 36 (CD36) which play
a role in facilitating fatty acid uptake in the liver and adipose tissue in humans
(Komulainen et al., 2015, Bai et al., 2017, Yan et al., 2021, Di Pasqua et al., 2022).
The subsequent mitochondrial dysfunction caused by lipid accumulation leads to

oxidative stress, including the release of inflammatory cytokines including TNF-alpha,
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TNF-beta and IL-8 which have chemotactic, proinflammatory and profibrogenic roles
(Satapathy et al., 2015, Miele et al., 2017, Pavlik et al., 2019, Di Pasqua et al., 2022).
This results in stellate cells activation and the generation of reactive oxygen species
(ROS) which elicits the peroxidation of fatty acids leading to further inflammation and
fibrogenesis via the activation of Kupffer cells and Ito cells (Miele et al., 2017).
Although drug-induced steatosis begins as a benign and reversible condition the
subsequent cellular events trigger progression to the more serious condition DISH
(Pavlik et al., 2019).
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Figure 1.6 Mechanisms of drug-induced liver steatosis. Adapted from Patel and Sanyal (2013).

1.5 Tetracycline

In this project tetracycline was used to develop a drug-induced in vitro model of
steatosis. Tetracycline belongs to a class of broad-spectrum bacteriostatic drugs
usually prescribed to humans for the treatment of upper respiratory, skin and soft
tissue infections (Choi et al., 2015). Tetracycline acts by inhibiting protein synthesis of
bacterial cells by binding to the 30s subunit of the ribosomes and preventing
aminoacyl-tRNA from binding. This prevents the addition of subsequent amino acids
to the growing protein chain and therefore slows the growth of the bacterium (Patrick,
2009, Shutter and Akhondi, 2022).
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Although generally considered a safe drug tetracycline induced hepatotoxicity was first
described more than 50 years ago (Lewis et al., 1967, Andrade and Tulkens, 2011,
Glenn and Feldman, 2011, Abdel-Gelil and Mansour, 2019). When administered in
high doses (3g tetracycline administered intravenously daily for 10 days), tetracycline

has been reported to induce hepatic steatosis (Robinson and Rywlin, 1970).

Tetracycline is thought to induce steatosis by inhibiting B-oxidation and the microsomal
triglyceride transfer protein (MTTP) (Tagliatti and Colet, 2016). A decrease in
mitochondrial B-oxidation of fatty acids and the inhibition of the microsomal triglyceride
transfer protein leads to a reduction in the secretion of triglycerides and therefore
accumulation of VLDLs in the liver (Tagliatti and Colet, 2016). Studies have indicated
that tetracycline can downregulate genes involved in beta-oxidation including
peroxisome proliferator activated receptor alpha (PPARa), carnitine palmitoyl
transferase | (CPT-I), and fatty acid-binding protein 1 (FABP- 1) (Satapathy et al.,
2015, AIGhamdi, 2019).

Furthermore, doxycycline and monocycline which belong to the same drug class have
been shown to enhance ROS production in hepatocytes by activation of the
transcription factor 4 (ATF4) which induces ROS production through the upregulation
of CYP2E1 (Di Pasqua et al., 2019). This suggests that this class of drugs might be
capable of inducing NASH.

1.6 Valproate

Valproate is another drug that has been shown to induce steatosis in vitro and was
used in this study for the induction of steatosis in HepG2 cells. Valproate is a broad-
spectrum antiepileptic drug which has been widely used in the treatment of
convulsions, bipolar and schizoaffective disorders (Mnif et al., 2016, Bai et al., 2017,
Xu et al.,, 2019A). Valproate is also used for the treatment of paediatric epilepsy.
Pharmacologically, valproate acts as a GABA (y-aminobutyric acid) analogue in the
central nervous system, blocking voltage-gated ion channels and inhibiting histone

deacetylase (Rahman and Nguyen, 2022, Allen et al., 2023).
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Although valproate is generally considered safe there are a wide range of adverse
effects associated with valproate treatment including hepatotoxicity (Rabinowich and
Shibolet, 2015). Patients undergoing long-term treatment with valproate develop
features consistent with metabolic syndrome including substantial weight gain, insulin
resistance and lipid abnormalities such as inhibited beta-oxidation. (Amacher and
Chalasani, 2014, Rabinowich and Shibolet, 2015, Chang et al., 2016). Approximately
61% of patients treated with valproate are diagnosed with hepatic steatosis following
ultrasound examination (Bai et al., 2017). Hepatic damage is usually accompanied by
elevations in serum aminotransferase and is pathologically characterised by the

presence of microvesicular steatosis (Bai et al., 2017).

Despite the number of studies reporting valproate hepatotoxicity the mechanisms
underlying the development of this liver injury are not fully understood (Bai et al.,
2017). Earlier studies suggested that the accumulation of lipids in the liver following
valproate treatment is due to an inhibition of beta-oxidation (Amacher and Chalasani,
2014, Rabinowich and Shibolet, 2015, Bai et al., 2017). Studies have also shown that
valproate can upregulate the cluster of differentiation 36 (CD36), also known as fatty
acid translocase, a membrane protein which plays an important role in facilitating fatty
acid uptake in the liver (Chang et al., 2016, Bai et al., 2017). CD36 expression is
closely associated with insulin resistance, metabolic syndrome and accelerates the
development of fatty liver by increasing fatty acid uptake rates in hepatocytes (Bai et
al., 2017). However, the role it plays in valproate-induced steatosis is not fully
understood (Chang et al., 2016, Bai et al., 2017). It has also been proposed that the
formation of valproyl-CoA causes depletion of intramitochondrial CoA affecting beta-
oxidation. This leads to impaired ATP production and inhibition of carnitine
palmitoyltransferase | (CPT1) which catalyses the transport of long chain fatty acid
into the mitochondria for beta-oxidation (Amacher and Chalasani, 2014, Rabinowich
and Shibolet, 2015, Chang et al., 2016).

1.7 Models of steatosis

NAFLD has emerged as a public health concern due to its rising global burden, yet

therapy options are scarce. This is in part due to the lack of reliable disease models

44



for research (Kozyra et al., 2018). Thus, there is an ongoing need for more human

relevant predictive models for research.

1.7.1 Animal models in steatosis

Several animal models of steatosis, NAFLD and NASH are routinely used
(Boeckmans and Rodrigues, 2018). Examples include the use of genetically modified
animals such as ob/ob mice which carry a spontaneous mutation in the leptin gene
making them insulin resistant, hyperinsulinemic, and severely hyperglycemic
(Nagarajan et al., 2012, Mohammed et al., 2017); dietary induced models such as the
high fat diet and methionine-choline deficient diet as well as drug-induced models

using carbon tetrachloride and sodium valproate (Gomez-Lechon et al., 2007).

However, interspecies differences can be a major drawback when extrapolating
animal data to humans (Boeckmans and Rodrigues, 2018). Additionally, there is an
increasing demand to reduce the number of animals used in research. This coupled
with the high cost and time required for animal studies has led to growing interest in
in vitro models of NAFLD (Grepper et al., 2019).

1.7.2 In vitro models of steatosis

Undoubtedly, primary hepatocytes are the “gold standard” for drug metabolism and
hepatotoxicity studies (Donato et al., 2013). Primary hepatocytes are differentiated
cells that can express CYP enzymes and can mimic many of the in vivo hepatic
functions, including drug metabolism. However, they tend to be phenotypically
unstable, and limitations preventing their routine use include the unavailability of
continuous supplies of liver tissue for harvesting and lack of reproducibility between
batches (Donato et al., 2013). This coupled with issues regarding ethics and cost

greatly limits the use of primary hepatic cells (May et al., 2016).

Alternatively, cell lines derived from hepatocarcinomas present a major advantage

over primary cell lines due to their easy handling, stable phenotype and unlimited
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lifespan (Donato et al., 2013, Willebrords et al 2015., Alkhatabeh et al., 2016, Molinaro
et al., 2020). Many hepatocellular cell lines exist, with one of the most characterised
and commonly used being the HepG2 cell line (Cui et al, 2010, Garcia-Ruiz et al.,
2015, Willebrords et al., 2015, Alkhatatbeh et al., 2016). This is an immortalised cell
line derived from the liver tissue of a 15-year-old Caucasian male who had a well

differentiated hepatocellular carcinoma.

HepG2 cells exhibit an epithelial-like morphology and are non-tumorigenic with high
proliferation rates (Donato et al., 2015). In addition, HepG2 cells are reported to have
the biosynthetic capabilities of normal liver parenchymal cells. Thus, these cells are
highly differentiated and display many of the genotypic features of normal liver cells
(Gerets et al., 2012). HepG2 cells retain many biochemical functions including the
potential to secrete lipoproteins, insulin-stimulated glycogen synthesis, albumin
secretion and glutathione-based detoxification making them a suitable model for
studying human lipid metabolism and drug-induced liver injury (Gerets et al., 2012,
Alkhatabeh et al., 2016, Sefried et al., 2018).

However, one of the main limitations of HepG2 cells is linked to their reduced
metabolic capacities such as urea formation compared with primary hepatocytes
(Gerets et al., 2012, Kammerer and Kupper, 2018, Sefried et al., 2018). Another
disadvantage of HepG2 cells is their low level of cytochrome P450 (CYP) enzyme
expression (Castell et al., 2006, Rodriguez-Antona et al., 2008, Gerets et al., 2012,
Kammerer and Kupper, 2018, Sefried et al., 2018). Nevertheless, despite the low CYP
enzyme expression HepG2 cells have been used in a number of toxicity and lipid

metabolism studies (Cui et al., 2010, Garcia-Perez et al., 2021).

1.7.3 Steatosis models in HepG2

The induction of steatosis in HepG2 cells is most commonly achieved by the

administration of saturated and/or unsaturated fatty acids (Lyall et al., 2018). Oleic and

palmitic acid are the most abundant fatty acids present in the human body and have

been used in many in vitro studies to create models of steatosis (Ricchi et al., 2009,
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Lyall et al., 2018, Zeng et al., 2020). Palmitic acid has been shown to act as a greater
steatogenic agent at lower concentrations of 0.25 and 0.5 mM after 24 hours whereas
the steatotic effects of oleic acid are greater at higher concentrations of 0.75 and 1
mM (Cui et al., 2010, Moravcova et al., 2015, Liang et al., 2015). However, besides
inducing steatosis palmitic acid has also been shown to exhibit a dose dependent
cytotoxic effect associated with ROS production, apoptosis and necrosis at high doses
as excess palmitic acid is poorly incorporated into triglycerides (Cui et al., 2010,

Moravcova et al., 2015).

Therefore, for the development of a simple steatotic model a combination of oleic and
palmitic acid is the preferred choice in the literature. A combination of the two induces
steatosis at lower overall fatty acid concentrations thereby reducing the possibility of
toxicity and allowing preservation of the functional capacity of cells (Moracova et al.,
2015, Nemecz et al., 2019). The addition of a small amount of palmitic acid to oleic
acid induces steatosis alongside minor toxic and apoptotic effects creating a benign
state of chronic mild steatosis (Liang et al., 2015, Moracova et al., 2015, Dave et al.,
2018). Studies have shown that a mixture of the two can induce similar dose
dependent changes in HepG2 cells to those seen in hepatocytes in vivo (Gomez-
Lechon et al., 2007, Donato et al., 2009, Cui et al, 2010). However, the overall
concentration of these fatty acids and the ratio of oleic to palmitic acid is critical
(Moracova et al., 2015, de Sousa et al., 2021). A study by Moracova et al., (2015)
showed that oleic acid does not affect cell membrane integrity at concentrations less
than 1 mM while palmitic acid enhances lactate dehydrogenase (LDH) leakage at
concentrations as low as 0.25 mM. Many ratios have been tested and previous studies
have used different ratios (3:1, 2:1 or 1:1) of oleic and palmitic acid to induce steatosis
in HepG2 cells (Donato et al., 2009, Cui et al., 2010). In these studies, the total fatty
acid concentrations varied from 0.5 to 2 mM and it was shown that the cells exhibited
intracellular accumulation of lipid droplets and triglycerides (Willebrords et al., 2015).
Although many ratios have been tested it is frequently reported that administering a
combined concentration of 0.5 mM oleic and palmitic acid in a 2:1 molar ratio results
in significant fat accumulation, insulin resistance and low-grade inflammation in
HepG2 cells after 24 hours representing a mild model of steatosis (Liang et al., 2015,
Dave et al., 2018).
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As well as fatty acid models, several drug-induced steatosis models have been
explored in HepG2 cells including the administration of tetracycline, sodium valproate,
amiodarone and tamoxifen (Donato et al., 2009). Tetracycline has been commonly
used and studies have demonstrated that HepG2 cells and rat primary hepatocytes
treated with tetracycline show increased intracellular lipid accumulation (Donato et al.,
2009, Choi et al., 2015, Garcia-Canaveras et al., 2016). Choi et al., (2015) reported
that HepG2 cells treated with 100 and 200 uM tetracycline exhibited an increase in
lipid accumulation after 24 hours. The literature agrees that tetracycline induces a
concentration-dependent increase in steatosis up to a maximum dose of 800 uM
before cytotoxicity occurs (Donato et al., 2012). Studies have also shown that single
doses of valproate between 0.5-5 mM induce steatosis in various cell models (Chang
et al., 2016, Bai et al., 2017, Yan et al., 2021).

1.8 3D spheroid models

Although 2D monolayer cultures are well established for creating in vitro NAFLD
models and their low cost and easy handling make them suitable for high-throughput
screening, there are some limitations with their use (Stampar et al., 2021, Ramos et
al., 2022). The most important being the lack of multiple biological functions including
cell-to-cell and cell-to-matrix contact which mean 2D cell cultures do not accurately
mimic the natural cell microenvironment (Bialkowska et al., 2020, Stampar et al.,
2021). This can result in modified cell signalling pathways and reduced expression
and activities of several hepatic enzymes implicated in the metabolism of xenobiotic
substances (Pingitore et al., 2019, Ingelman-Sundberg and Lauschke, 2021, Stampar
et al.,, 2021). Furthermore, as mentioned above HepG2 cells have reduced CYP
expression compared to primary hepatocytes making their use in in vitro models less
reliable. In addition, studies have shown that CYP enzyme expression is further
downregulated in HepG2 monolayer cells after 24 hours of culturing meaning they are
less suitable for long term dosing studies (Mizoi et al., 2020, Stampar et al., 2020,

Ingelman-Sundberg and Lauschke, 2021).
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Consequently, while monolayers have been routinely used to understand the
molecular mechanism of disease they do not represent the complexity of human
tissues. Therefore, there is a growing need for better in vitro models mimicking the
liver's complexity and this has led to growing interest in 3D spheroid models (Pingitore
et al.,, 2019). 3D culture is emerging as a bridge between the easy-to-use 2D cell
cultures and more complex in vivo models (Jensen and Teng, 2020). By maintaining
hepatic cell proliferation within a controlled microenvironment 3D liver models better
mimic the in vivo phenotype with respect to cell shape, behaviour and morphology and
create an environment with tightly packed 3D multicellular aggregates providing
enhanced cell-to-cell contact and extracellular matrix components (Kozyra et al., 2018,
Pingitore et al., 2019, Bialkowska et al., 2020, Stampar et al., 2021, Ramos et al.,
2022).

Table 1.1. Comparison of 2D and 3D cell culture methods (Adapted from: Kapalczynska et al., 2018).

Type of culture 2D 3D

Time of culture formation 24 hours 17 to 21 days

Culture quality High performance, Lower performance and
reproducible, easy to interpret, | reproducibility, cultures more
simple culture difficult to carry out

In vivo imitation Do not mimic the natural Mimic the in vivo environment
structure of the tissue more closely

Cell interactions Deprived of cell to cell and cell | Increased cell to cell and cell to
to extracellular environment extracellular environment
interactions

Characteristics of cells Changed morphology, loss of Preserved morphology, diverse
diverse phenotype and polarity | phenotype and polarity

Access to essential compounds | Unlimited access to oxygen, Variable oxygen, nutrient and
nutrients and metabolites metabolite access

Molecular mechanisms Changes in gene expression, Same expression of genes,
mRNA splicing, topology and splicing, topology and
biochemistry of cells biochemistry of cells as in vivo

Since the development of the first spheroid model in the 1970s by Sutherland et al.,
(1971) multiple techniques have been used to establish culture systems of increasing
sophistication; these include spheroids, organoids, liver-on-a-chip and bio-printed
platforms (Ramos et al., 2022). Spheroids represent a very promising 3D cell model.
They can be cultured under static or dynamic conditions, using many techniques,
ranging from hanging drop cultures, spinner flasks, non-adhesive surfaces, micro-

moulding and bioreactors (Stampar et al., 2021).
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However, the most popular method of spheroid culture in NAFLD studies is by liquid
overlay in which cell suspensions are cultured on ultra-low adherent surfaces allowing
cell-cell adhesion rather than adherence to the flask this is shown in Figure 1.7 (Ryu
et al., 2019). These 3D models have helped to elucidate the role of hepatocytes in
NAFLD, the mechanism by which insulin resistance elicits de novo lipogenesis and
lipid accumulation through the administration of monosaccharides and fatty acids as
they are more reflective of the in vivo environment (Kozyra et al., 2018, Ramos et al.,
2022).

Figure 1.7 Light microscope images of HepG2 spheroids. A. HepG2 monolayer cells. B. HepG2
spheroids.

HepG2 spheroids have been reported to have higher expression of some CYP
enzymes (approximately 2-fold higher) compared to monolayer models (Mizoi et al.,
2020, Stampar et al., 2020 and Ingelman-Sundberg and Lauschke, 2021). They also
display functional bile canaliculi, increased albumin expression and drug transporters
and xenobiotic receptors that mediate induction of CYP450 enzymes (Ramaiahgari et
al., 2014). Spheroids can survive up to 28 days without the need for passaging giving
them an advantage over monolayers which need to be passaged every 4-5 days (Shah
et al., 2017, Kozyra et al., 2018). Spheroid cultures can also be used for repeat dose
studies. Furthermore, upon treatment with pathological concentrations of fatty acids,
carbohydrates, or insulin, hepatic spheroids enabled induction and investigation of
steatosis for up to 5 weeks offering an environment more reflective of clinical settings
(Kozyra et al., 2018, Stampar et al., 2021, Ramos et al., 2022). As spheroids show

greater expression of genes involved in xenobiotic metabolism, they have increased
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sensitivity to hepatotoxins and compounds requiring metabolism (Edmondson et al.,
2014, Shah et al., 2017, Kapalczynska et al., 2018). As there is growing interest in
their use spheroids have been used in the study of NAFLD and in drug-induced liver
injury where they display many in vivo phenomena (Kozyra et al., 2018, Lasli et al.,
2019, Cox et al., 2020, Frandsen et al., 2022, Tutty et al., 2022). A study by Kozyra et
al., (2018) demonstrated that 3D spheroids dosed with oleic and palmitic acid creates
a steatosis model capable of demonstrating insulin resistance as well as the
reversibility of steatosis. Frandsen et al., (2022) also reported that HepG2 spheroids
dosed with oleic and palmitic acid displayed changes in lipid accumulation and other
lipidome changes similar to those seen in vivo. These studies indicate that 3D models
are well suited to the study of steatosis. Although 3D spheroid models have been used
in the study of drug-induced liver injury, studies specifically looking at drug-induced

steatosis in spheroids are limited.

To further improve in vitro studies and to create an environment that represents the
complete in vivo phenotype there is also growing interest in co-culturing models with
Kupffer or stellate cells. These models reflect the impact of cytokine signalling and
demonstrate the progression to NASH as they are capable of mimicking steatosis as
well as inflammation (Muller and Strula, 2019, Ouchi et al., 2019, Bialkowska et al.,
2020). Such so-cultured models would provide a powerful tool to examine the effects
of free fatty acid accumulation on the inflammatory process and give a better
understanding of the progression of steatosis to NASH (Soret et al., 2020).

1.9 Detection and diagnosis of NAFLD

Since NAFLD exists as a spectrum of diseases, there are currently no specific and
sensitive biomarkers for diagnosis (Sanal, 2015). An early diagnosis of NAFLD is
dependent on the detection of steatosis (Sanal, 2015). However, steatosis and the
early stages of NAFLD are typically asymptomatic which means many patients are not
identified until the disease has progressed to NASH or further (Piazolla and Mangia,
2020). To date there are also no licensed pharmacological treatments for NAFLD and

while bariatric surgery is effective in a small proportion of patients, diet and exercise
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remain the cornerstone of disease management. This is because of evidence that
suggests a 10% body weight loss allows a reversion of steatosis and inflammation
(Ramos et al., 2022).

In patients with suspected NAFLD the aminotransferase enzymes, alanine
transaminase (ALT) and aspartate transaminase (AST), are routinely monitored as
general liver function tests to identify nonspecific hepatocellular damage (Neuman et
al., 2014). However, in the absence of advanced liver disease or necrosis it is typical
to observe normal or only mildly elevated levels of both enzymes (Neuman et al.,
2014). In fact, approximately, 80% of patients with steatosis have normal enzyme
levels making the measurement of these enzymes very unreliable and non-sensitive,
they also lack specificity to NAFLD (Neuman et al., 2014).

To date, biopsy remains the “gold standard” for the diagnosis and prognosis of NAFLD
(Moolla et al., 2020). This is despite the fact it is an expensive and invasive procedure
with high sampling error and a risk of complications including pain, bleeding and in
very rare cases death (Piazolla and Mangia, 2020). Due to poor patient acceptance of
liver biopsies, there is an urgent need for reliable, accurate and non- or minimally

invasive biomarkers.

In an effort to improve diagnosis of liver disease and injury several non-invasive tools,
including clinical and imaging-based markers and algorithms, including the fatty liver
inhibition of progression (FLIP) algorithm, have more recently been developed (Moolla
et al., 2020). The FLIP algorithm is a simple histological algorithm based on a scoring
system, known as the SAF score (steatosis, activity, fibrosis) intended for pathologists
to reliably diagnose NASH (Bedossa, 2014, Moolla et al., 2020). The FLIP algorithm
uses the presence of steatosis, grade of ballooning-change and lobular inflammation
to assess the severity of NASH (Lee et al., 2020). Grade 1 or 2 ballooning change
which is defined as swelling and rounding of hepatocytes and lobular inflammation are
the minimum diagnostic criteria of NASH used in the FLIP algorithm. Histological
scoring systems have been very successful in the evaluation of chronic liver diseases
and although effective in improving diagnosis they do not provide all the information
that can be conveyed by a liver biopsy and are considered as additional tools to liver
biopsies (AlShaalan et al., 2015).
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Alternatively, the fatty liver index comprising BMI, waist circumference serum
triglyceride and gamma glutamyl transferase (GGT) levels is another algorithm used
for the diagnosis of NAFLD (AlShaalan et al., 2015). However, the fatty liver index is
not able to quantify lipid accumulation and does not always correlate well with the
amount of fat in the liver define by magnetic resonance spectroscopy therefore its use
as a quantitative biomarker of NAFLD is limited (Fedchuk et al., 2014). Inflammatory
cytokines and chemokines including TNF-alpha and interleukin-6 can be used to help
with the diagnosis of the inflammation associated with NASH (Neuman et al., 2014,
Piazzolla and Mangi, 2020). Several other tests such as the fibrosis-4 index and the
liver stiffness measure are available to help rule out the later stages of fibrosis and
cirrhosis. However, these tests cannot accurately differentiate between steatosis,
NASH or different severities of NASH. There is also no single test available to identify
steatosis, or to predict and monitor the disease progression and these tests are best
used in combination leaving the need for more reliable ways of diagnosis and staging
NAFLD (Piazzolla and Mangia, 2020).

The importance of diagnosing steatosis early is highlighted by the fact that 20 — 30
percent of all NAFLD patients progress to NASH, liver fibrosis and cirrhosis and
NAFLD is the second most common indication for a liver transplant (Drescher et al.,
2019). Reliable non-invasive biomarkers and screening techniques to diagnose
NAFLD at the earliest stages could present patients with the opportunity to reverse
the disease (Drescher et al., 2019). In the majority of cases dietary and lifestyle
changes can positively impact on the severity of both steatosis and NASH. Similarly,
to NAFLD currently the only way to identify DIFLD is by the use of imaging
methodologies or liver biopsies. Therefore, there is a great unmet need for non-
invasive biomarkers that are able to identify drug-induced steatosis and
steatohepatitis. Having reliable biomarkers would be especially beneficial for
preclinical testing during drug development in order to determine the potential for new
drugs to induce DILFD (Pavlik et al., 2019). The lack of biomarkers for both NAFLD
and DIFLD is further complicated by the fact that some patients may have pre-existing
NAFLD or NASH before receiving a drug known to cause DILFD. In addition, there is
a need for specific biomarkers that are able to differentiate between underlying NAFLD
and DILFD (Pavlik et al., 2019).
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1.10 Biomarker studies

Biomarkers are unbiased differential indicators of disease onset which can help to
stage disease progression and offer insights into the relative severity of disease
(Neuman et al., 2014). Methods common for biomarker discovery include proteomic,

genomic and metabolomic approaches (Kulasingam and Diamandis, 2006).

As explained above there is a great need for improved biomarkers for NAFLD and a
number of in vivo and in vitro models of steatosis have been used in the search for
potential biomarkers in NAFLD and DIFLD (Caussy et al., 2019, Masoodi et al., 2021,
Nimer et al., 2021, Shao et al., 2022A).

Proteomics is typically used to investigate changes in proteins and describes the large-
scale analysis of protein expression patterns, profiles and identification (Miller et al.,
2021). The identification of specific proteins, either as novel biomarkers or as
over/under expressed markers, can provide useful biomarkers for early diagnosis and
therapy of disease and toxicity (Lim et al., 2014). The advancement of proteomics
analysis tools has been taken advantage of for studying NAFLD in terms of the disease
and diagnosis (Lim et al., 2014, Miller et al., 2021). This has led to changes in
cytochrome P450 (CYP) enzymes being reported in the livers of patients with
steatosis, and in both in vivo models of steatosis in experimental animals and in vitro
models of fat-overloaded cells (Gomez-Lechon et al., 2009). These findings have
suggested an association between increased lipid deposition and impaired CYP
expression and activity (Fisher et al., 2009, Gomez-Lechon et al., 2009, Basaranoglu
et al., 2013, Albadry et al., 2022).

However, one field of biomarker research that has become more popular is the
application of metabolomic and metabonomic techniques to determine changes to the
metabolome (Gowda and Raftery, 2016). The metabolome refers to the complete set
of low molecular weight metabolites that are produced by cells in all metabolic
pathways (Steuer et al., 2019). Metabolites serve as a direct signature of biochemical
activity and are easier to correlate with phenotypes unlike genes or proteins whose
functions are subject to epigenetic regulation and post translational modifications
(Antcliffe and Gordon, 2016).
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1.11 Metabolomics and metabonomics

The study of the metabolome focuses on the concentrations and fluxes of low
molecular weight metabolites found in cells (of molecular weight <1000 Da). In doing
so studies provide detailed information on metabolite patterns of change and
quantification of the individual metabolites which can increase understanding of

biological phenotypes and help with deciphering physiological mechanisms.

Two terms are used for metabolite profiling and quantification: metabolomics and
metabonomics. Metabolomics is defined as a comprehensive and non-selective
analytical chemistry approach used to identify and quantify the metabolome under a
given set of conditions (O’Gorman et al., 2013). While the metabonomic approach is
typically used to assess patterns of change for the quantitative measurement of
metabolites in response to a stimulus, such as disease, toxicity, or a drug (Antcliffe
and Gordon, 2016). Therefore, metabolomic studies can provide accurate
understanding of biochemical events inside the cell and aid the identification of
potential biomarkers while metabonomics provides information on pattern profiles.
(Gitto et al., 2018). While both refer to separate measurements the two terms are often

used interchangeably.

The study of metabolite changes may identify useful biomarkers or drug targets for
disease and toxicity (Patti et al., 2012, Cui et al., 2020, loannou et al., 2020). As a
result, metabolomics has become a common omics tool for the study of NAFLD
focusing on both early detection as well as identification of altered pathways (Patti et
al., 2012, loannou et al., 2020, Perakakis et al., 2020).

The analysis of the metabolome can be carried out using both nuclear magnetic
resonance (NMR) and mass spectroscopy. Each technique has its own strengths and
weaknesses highlighted in Table 1.2 with the main issue being the identification and
validation of metabolites. However, when used together these techniques tend to
provide complementary data (Antcliffe and Gordon, 2016). NMR spectroscopy was
employed in this project due to its ability to detect many metabolites in one
measurement, its reproducibility and easy sample preparation making it more suitable

for larger metabolomics experiments. It was employed to identify metabolite changes
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and monitor patterns of metabolite change in HepG2 cells dosed with either fatty acids,

tetracycline or valproate.

Table 1.2. Comparison of NMR vs Mass spectrometry for metabolomics

nonselective analysis, however
selective experiments are
available such as TOCSY

NMR Mass spectrometry
Sensitivity Lower but can be improved High and detection limit reach
with cryo- and microprobes, nanomolar
higher field strength and
dynamic nuclear polarisation
Selectivity Generally used for Can be used for selective and

nonselective analyses

Sample measurement

All metabolites that have NMR
concentration level can be
detected in one measurement

Usually need different
chromatography techniques for
difference classes of
metabolites

Sample recovery

Non-destructive; samples can
be recovered and stored.

Destructive technique but only
a small amount needed

Therefore, several analyses
can be carried out on the same
sample

Minimal preparation required

More demanding, as columns
and optimisation of ionisation
conditions are needed

Sample preparation

Reproducibility Very high Moderate
Target analysis Not relevant for targeted Superior for targeted analysis
analysis

1.11.1 NMR Spectroscopy

The use of 'TH NMR spectroscopy enables the simultaneous analysis of low molecular
weight metabolites from a variety of metabolic pathways (Nicholls et al., 2001). NMR
is a non-destructive and reproducible technique giving it an advantage over other
techniques when analysing biological samples, as samples can be recovered and
stored meaning several analyses can be carried out on the same sample (O’Gorman
et al., 2013, Emwas, 2015).

NMR spectroscopy uses the spin properties of nuclei in a strong magnetic field to
analyse chemical structures. Nuclei with an odd number of protons and neutrons
possess a nuclear spin meaning they can produce their own electromagnetic field
(Rosen and Brady, 1983). However, the spin properties of protons and neutrons can
cancel each other out giving a net spin of zero meaning nuclei with an even number

will not produce an NMR signal (Koutcher and Burt, 1984). Therefore, only isotopes
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such as 'H, '3C and "N whose spin quantum number is >1/2 are used for analysis
(Shenderovich and Limbach, 2021).

When placed in the magnetic field protons within the nuclei have two spin states: one
in line with the magnetic field and the other opposed to it (Antcliffe and Gordon, 2016).
A radio frequency is applied which excites the nuclei from their base energy state to a
higher energy state (Figure 1.8). When the radio frequency is removed the nuclei
return to their base energy state, they re-emit radio wave photons which produce an
interference pattern called a free induction decay (FID) (Rosen and Brady, 1983,
Tognarelli et al., 2015, Antcliffe and Gordon, 2016, Esvan and Zeinyeh, 2020). The
FID is converted into an NMR spectrum using a mathematical process called Fourier
transformation (Rosen and Brady, 1983, Esvan and Zeinyeh, 2020). The Fourier
technique transforms the function of time whereby a single proton is observed as a
wave in time into a function of frequency, this generates an NMR spectrum with
chemical shift shown on the x-axis and intensity on the y-axis (Esvan and Zeinyeh,
2020). Each peak or multiplet on the NMR spectrum represents a different chemical

environment.

To facilitate data analysis the obtained raw NMR data must first be processed using
chemical shift referencing, phase and baseline corrections. NMR spectra should be
referenced against an internal chemical shift standard, this is important for correct
peak alignment and future multivariate analysis (Emwas et al., 2016, Emwas et al.,
2018). This reference peak is typically set at 0.00ppm when 3-(trimethyl-siyl) propionic
acid (TSP) is used as the standard for aqueous samples or tetramethylsilane (TMS)
for organic samples. Each spectrum is then calibrated to this internal chemical shift
standard. Spectra are then phased to ensure all peaks are above the baseline
maximising the absorptive character and the symmetry of all NMR peaks over all
regions of the spectrum. Baseline correction is then applied to ensure any regions
without peaks appear flat aiding analysis (Emwas et al., 2018). It is also important to
control pH and temperature while conducting metabolomics experiments (Bhinderwala
et al., 2022). Changes in pH can have an effect on metabolite stability and can lead to
degradation or transformation. While temperature fluctuations can also accelerate
degradation of some metabolites that are sensitive to temperature like amino acids

and lipids (Trainor et al., 2020, Putko et al., 2024). Alterations in pH and temperature
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can also have an effect on the chemical equilibrium of ionisable metabolites
influencing their detection and quantification (Trainor et al., 2020, Putko et al., 2024).
Furthermore, accurate control of pH and temperature is essential for the proper
calibration of analytical instruments in NMR ensuring reliable quantification and
identification of metabolites. Controlling both pH and temperature is also essential for
maintaining reproducibility and standardisation between experiments (Trainor et al.,
2020, Putko et al., 2024).
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Figure 1.8 The basis of NMR. Hydrogen nuclei resonate between two spin states providing information
regarding the chemical structure of molecules. Source: (NMR Lab, 2018).

Despite the ease of use one of the major limitations with using "H NMR for biological
samples and biomarker identification is that large quantities of data are generated
leading to spectral congestion and overlapping of peaks on the chemical shift axis
making metabolite identification more difficult (de Graaf et al., 2011, Huang et al.,
2015). One solution for this is the application of 2D NMR techniques including J-
resolved (JRES) 'H NMR spectroscopy which can yield a two-dimensional spectrum
separating chemical shifts and J-couplings into different spectral dimensions aiding
metabolite identification in complex metabolite mixtures (Huang et al., 2015).
However, even with this, to compare the metabolite patterns in different sample
spectra, it is usually necessary to apply statistical data reduction and multivariate
analysis techniques (Nicholls et al., 2001).
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1.11.2 Multivariate Statistical Analysis

Prior to multivariate statistical analyses further NMR spectral processing is required.
The first step is known as binning whereby the individual spectra (sample
observations) are divided into bins or buckets with fixed or variable widths along the
x-axis. These buckets represent a chemical shift region on the NMR spectra and are
sufficiently wide to include one or more NMR peaks. The intensity of all the peaks in
each bucket is determined by calculating the area under the curve creating a set of
integrated values for each region along the x-axis of the NMR spectra. This process
is carried out for all sample spectra in the experiment. The data generated, therefore,
consists of sample observations (Y) with integrated values for the different chemical
shift regions (X). From this a data matrix (or bucket table) consisting of columns of
spectral regions for each sample is created (Sousa et al., 2012, Emwas et al., 2018).
Since the bucket regions are the same for all samples in the experiment each bucket

represents a metabolic descriptor and can be compared for all samples.

Before the data can be further processed, the data must be normalised using pareto
scaling to ensure that data from all samples is directly comparable with each other
as some samples may have different concentrations of metabolites (Craig et al.,
2006, Kohl et al., 2012). Metabolomics datasets contain a wide range of variability
from one experiment to the next and can be influenced by many factors that can
have an effect on metabolite concentration such as the number of cells extracted in
each experiment. However, this variability can be reduced using pareto scaling.
Although other scaling methods such as auto-scaling do exist pareto scaling is
favoured in metabolomics as it offers a balanced approach to handling variance of
metabolites with difference abundance levels (van den Berg et al., 2006). Some
metabolites can have higher concentrations which can dominate the analysis
masking the concentration of low-abundant metabolites. By dividing each variable by
the square root of its standard deviation pareto scaling can lessen the impact of
highly abundant metabolites without eliminating their variance thus balancing the
influence of both high and low abundance metabolites in the analysis. Also, pareto
scaling does not standardise everything to the same level, as auto-scaling does,
therefore retaining some degree of biological variation within the dataset (van den
Berg et al., 2006, Wheelock and Wheelock, 2013, Worley and Powers, 2013). By
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reducing the dominance of high abundance metabolites Pareto scaling can also
improve data visualisation in PCA plots and helps enhance performance of statistical
methods making it easier to identify trends and patterns (van den Berg et al., 2006).
Metabolomics data often exhibits heteroscedasticity where standard deviations can
vary complicating statistical analysis and data interpretation. Pareto scaling mitigates
this by applying a milder scaling factor compared to auto-scaling (van den Berg et
al., 2006).

1.11.3 Principal component analysis

Following normalisation, the first step in multivariate analysis is principal component
analysis (PCA). PCA is one of the oldest data reduction approaches (Ma and Dai,
2011) and is a commonly used statistical tool for metabonomic studies. PCA is an
unsupervised technique used to reduce the dimensionality of the dataset, while at the
same time preserving as much variability as possible (Jolliffe and Cadima, 2016). The
creation of a PCA model (Figure 1.9) allows for the identification of a set of unique
patterns within a data set which capture the greatest variation present in the original
measurements while at the same time displaying trends and patterns. This is achieved
in a PCA model by the transformation of the data into fewer dimensions whereby each
spectral measurement is reduced to a single scores point (Worley and Powers, 2016).
Data points are then projected onto lower dimensions called principal components
(PCs).

25
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Figure 1.9 PCA Scores Plot.
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For the creation of sample scores each chemical shift region in an NMR spectrum
forms an axis in a k-dimensional space and the integrated values for each sample are
plotted on their corresponding axis within a k-dimensional space. A linear combination
of the integrated values for each sample observation is calculated, thereby reducing
the data for one sample spectra to a single integrated value (score). Each original
spectral sample will have its own score and all scores points can then be projected

onto a plane forming a scores plot.

Principal component 1 (PC1) describes the largest variation in the dataset, while
PC2 is orthogonal to PC1 and describes the next level of variation (Figure 1.10)
(Jolliffe and Cadima, 2016). Each successive PC represents the maximum amount
of variation possible that was not accounted for in the previous components. The
goal is to find the best summary of the data using a limited numbers of PCs (Lever et
al., 2017). Each component captures a certain amount of variance in the total data
and this is reported in the fraction of variance. In this study the fraction of variances
for the PCA plots ranged from 45-85% for PC1 and 13-21.8% for PC2. The first 2
components were chosen to be analysed in this study as they offer a simplified
representation of the data while still capturing the most significant sources of

variation in the dataset (Lever et al., 2017).
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Figure 1.10 Reduction of dimensionality. PC 1 and 2 are projected onto a plane to give a scores plot,
each variable has a score along each component.
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Two PCs are rotated and projected onto a plane to produce a scores plot with the x-
axis representing PC1 and the y-axis representing PC2 (Jolliffe and Cadima, 2016).
Each sample is represented as a score along these two components which shows the
location of the sample in this model and can be used to detect sample patterns,

groupings, similarities or differences (Gergen and Harmanescu, 2012).

A loadings plot can then be used to further interpret the scores plot; each point on the
loadings plot represents a bucket region (variable region) on the NMR spectra and
reflects the extent of contribution each spectral variable region has on the complete
data set (Gergen and Harmanescu, 2012). Variables close to the centre of the plot will
be similar to the mean of the data set whereas those furthest away vary more from the
mean and contribute most to the sample group separation. Therefore, loadings plots
show the variable regions responsible for the clustering and separation of sample
observations on a scores plot. Variables that have positive loadings have higher than
average values for that variable, and those with a negative loadings have lower than

average values.

A PCA analysis can also highlight potential sample outliers which fall outside the 95%
confidence interval and are observed outside the ellipse of the scores plot. Outliers
identified in a PCA model can be further analysed using the Hotelling’s T? Range Line
plot (Mashuri et al., 2021). However, only those samples which fall above the 99%
confidence level on the Hotelling’s plot are deemed outliers as some biological
variation must be accounted for. This is the multivariate extension of student’s t-test
and provides a tolerance range for the data in a two-dimensional scores plot. It shows
how different each individual sample spectra is from the mean of the samples. If a
sample exceeds the 95% confidence level it is assumed to be an outlier and removed

from further analysis (Pretzner et al., 2020).

While PCA is a powerful means of analysing spectral data, it will only reveal
differences between measurements in its scores if those differences are major
contributors to the total variability. Therefore, good separation between groups may
not be visible. Additionally, data sets with large intragroup variation do not allow for
good intergroup separation on a PCA scores plot as the subtle intergroup spectral

differences are easily overwhelmed by intragroup spectral variations (Guo et al.,
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2019). Consequently, it is common to use PCA to obtain an overview of the dataset
and to assess for outliers before further analyses in which groups are separated

according to class (Guo et al., 2019).

1.11.4 OPLS

Unlike PCA, orthogonal partial least squares (OPLS) is a supervised regression
method that assesses the relationship between sample groups in the spectral dataset
by assessing changes in a descriptor X variable with respect to the response Y
variable. OPLS finds the variation in the X variable (NMR spectral data) that is
correlated with Y (sample class) (Bylesjo et al., 2007). To generate an OPLS model,
sample classes for each measurement are firstly assigned, thus prior sample class
knowledge is required for constructing an OPLS model (Worley and Powers, 2016). It
also displays the components that are not correlated with the Y variable (intragroup or
orthogonal variation) (Wiklund, 2008). A scores plot is also produced from OPLS
models. These scores plots show predictive variation between the different groups
along the t[1]-discriminating component (x-axis) as well as orthogonal variation

(intragroup) along the t[0]-discriminating component (y-axis).

Essentially, OPLS forces scores-space separation, because the integrated orthogonal
signal correction filter removes any systematic spectral variation that does not agree
with the assigned group (Worley and Powers, 2016). Therefore, separation may be

visible even if it was not in the PCA.

One limitation with OPLS analysis is that data interpretation is compromised when
there are more than two groups. Therefore, OPLS can be extended to allow for
discriminate analysis (OPLS-DA) (Figure 1.11) when two groups are comparatively
analysed at a time (Worley and Powers, 2016). OPLS-DA models are used to identify
the spectral variables that define the separation between two experimental groups and
can therefore enable the identification of biologically relevant changes in the

metabolome (Worley and Powers, 2016).
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Figure 1.11 OPLS-DA scores plot.

In order to identify metabolite regions contributing to the separation between two
groups in an OPLS-DA scores plot the variable influence of projection (VIP) is used.
The VIP summarizes the importance of the X-variables (chemical shift regions) to
sample separation on the scores plot (Galindo-Prieto, 2015). Any variable regions with
a VIP value of greater than one are considered to be significant and contribute to group

separation.

The variable regions can then be further visualised using S-plots which is an OPLS-
DA loadings plot and combines the correlation and covariance from the OPLS-DA into
a scatter plot (Wiklund, 2008). Each point on the S-plot represents a chemical shift
region from the original NMR spectra. The variable regions highlighted in red, as
shown in Figure 1.12, represent regions with a VIP value greater than one, the S-plot
also allows an increase or decrease in these variables to be identified. Variables
located in the top right-hand side of the S-plot are increased when compared to the
sample group assigned 1 in analysis (e.g. a control group). In contrast variables
located in the bottom left-hand side of the S-plot are decreased when compared to the

primary group.

64



14
0.5 04 0.3 0.2 0.1 0 01 02 03 04

Figure 1.12 S-plot.

The chemical shift regions determined to be significant can be further validated using
other statistical methods including the Kruskal-Wallis test. This rank-based
nonparametric test is often used to determine whether there are statistically
significant differences between two or more groups. Unlike parametric tests, non-
parametric tests are based on the idea that the data does not follow normal
distribution. Although parametric tests are more powerful and precise than non-
parametric tests the main disadvantage of these tests are that they are sensitive to
violations of the assumptions such as normality or independence. If the data does
not meet the assumptions the results may be inaccurate or misleading. Non-
parametric tests are more robust and flexible compared to parametric tests allowing
them to handle data that is skewed, has outliers or different scales and units (Nahm,
2016). As the data in this project did not follow normal distribution and was prone to
outliers it was decided that the Kruskal-Wallis test would be applied. Chemical shift
regions were also assigned a p-value to assess their statistical significance. P-values
are defined as the probability under the assumption of no effect or no difference of
obtaining a result equal to or more extreme than what was actually observed
(Dahiru, 2008). P-values can take any value between 0 and 1 where values close to
0 indicated that the difference is unlikely to be due to chance (Dahiru, 2008). Values

closer to 0 are deemed to be more significant.

Once the chemical shift regions that are significantly contributing to the group
separation have been determined, the corresponding metabolites can be identified

based on the multiplicity of the peaks using the Human Metabolome Database
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(HMDB) which stores more than 40,000 different metabolites and published literature.

Metabolites can also be validated by spiking samples with metabolite standards.

1.12 CYPs and steatosis

CYP enzymes are found in all major organs but are most abundant in the liver where
they are usually expressed in the centrilobular region of hepatic lobules (Albadry et
al., 2022). Therefore, diseases that affect the liver and hepatotoxicants can have an

impact on the expression of CYP enzymes.

CYP2E1 is perhaps one of the most studied CYP enzymes in relation to NAFLD and
was the first documented as modulated in clinical fatty liver disease (Merrell and
Cherrington, 2011). CYP 2E1 catalyses the biotransformation of both xenobiotics and
endogenous molecules including acetone, a ketone body generated in beta-oxidation
of fatty acids. It can also metabolise glycerol and different fatty acids including
saturated C12 to C18 fatty acids and some polyunsaturated fatty acids such as
arachidonic acid and epoxyeicosatrienoic acid (Massart et al., 2022). More recently,
CYP 2E1 has been shown to potentially play a significant role in adipocyte lipid
metabolism suggesting it plays a role in lipid metabolism in tissues able to accumulate
lipids in normal and pathologic conditions (Massart et al., 2022). Additionally, it has
been shown that CYP 2E1 could also be involved in the synthesis and metabolism of
lipids by inhibiting PPARa and enhancing SREBP-1c (Wang et al., 2021). The
pathogenesis of NAFLD is complex and the theory of “two hits” for progressive disease
is well known. The first hit being steatosis caused by insulin resistance and the second
is liver damage and inflammation caused by oxidative stress (Wang et al., 2021). The
majority of studies have reported increased expression and activity of cytochrome
P450 2E1 (CYP2E1) and this increase is thought to play a role in the pathogenesis of
NAFLD (Merrell and Cherrington 2011, Garcia-Ruiz et al., 2015, Sukkasem et al.,
2020, Wang et al., 2021). Itis thought that mitochondrial dysfunction leads to abnormal
activation of CYP2E1 producing reactive oxygen species (ROS) promoting oxidative
stress leading to the progression of NAFLD (Wang et al., 2021). CYP2E1 is also
involved in fatty acid hydroxylation capable of initiating lipid peroxidation (Bell et al.,

2010). It has also been implicated as a source of nitro-oxidative stress as it is a
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member of the oxidoreductase cytochrome family, oxidising a variety of small
molecules including fatty acids further damaging mitochondria leading to the
progression of NAFLD (Garcia-Ruiz et al., 2015).

Previous studies in rodent models, human hepatocytes and differentiated human cells
have reported increases in CYP2E1 in response to fatty acid administration (Sung et
al., 2004, Yao et al., 2006, Sukkasem at el., 2020). Researchers have also observed
upregulation in CYP2E1 in morbidly obese patients, general steatosis and NASH due
to increase lipid accumulation (Weltman et al., 1998, Emery et al., 2003, Videla et al.,
2004, Kohjima et al., 2007, Baker et al., 2010, Merrell and Cherrington, 2011). In
contrast a number of studies have reported a decrease in CYP2E1 expression and
activity in obese and NASH mouse models potentially due to the development of
hyperinsulinemia (Enriquez et al., 1999, Watson et al., 1999, Deng et al., 2005, Ito et
al., 2007). As CYP 2E1 is involved in lipid metabolism and has been implicated in the
pathogenesis of NAFLD it was chosen to be analysed in this study to confirm its

presence in HepG2 cells.

CYP3A4 is the most abundant CYP enzyme in the liver and accounts for the
metabolism of over 50% of drugs (Hewitt et al., 2007, Rey-Bedon et al., 2022). Due to
its major role in drug metabolism a number of investigators have studied the impact of
disease state on the expression levels of the enzymes and a decrease in expression
during steatosis and NASH have been reported in rat models (Weltman et al., 1996,
Zhang et al., 2007, Hanagama et al., 2008, Osabe et al., 2008). Studies have also
reported decreases in CYP3A4 expression and impaired activity in NAFLD patients
due to decreased mRNA expression (Weltman et al., 1998, Donato et al., 2006,
Donato et al., 2007, Rey-Bedon et al., 2022). Lipid accumulation could also cause
down-regulation of P450s by interfering with transcriptional activation of genes or by
increasing mMRNA degradation leading to decreased expression of these enzymes
(Donato et al., 2007).

Although few studies have documented changes in CYP2D6 expression and activity
in NAFLD a general downregulation of enzymatic activity in hepatocytes is observed
(Donato et al., 2006, Merrell and Cherrington et al., 2011). Previous investigations

have demonstrated a relationship between NAFLD progression and decreased activity
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of CYP2D6 and CYP3A4 (Yao et al., 2006, Huang et al., 2019). Taken together the
increase in CYP2E1 and decreases in CYP2D6 and CYP3A4 expression affect the
progression of NAFLD via ER and mitochondrial injury (Sukkasem et al., 2020).

In this project three CYP enzymes were chosen to be investigated: CYP 2D6, 2E1 and
3A4 as increases in CYP2E1 and decreases in CYP3A4 and 2D6 are consistently
reported in most NAFLD studies (Merrell and Cherrington 2011, Wang et al., 2021,
Sukkasem et al., 2022, Albadry et al., 2022).

Furthermore, the maijority of studies on the measurement of CYP levels in NAFLD or
steatosis models have been conducted in monolayers or in in vivo models and there

is little known about changes to CYP enzymes in 3D spheroid models.

1.13 Aims and Objectives

The overall aim of this project is to determine the metabolomic profiles of in vitro
models of steatosis with the intention of identifying potential biomarkers for the early

diagnosis of steatosis.

The major objectives are:

1. To develop three in vitro models of hepatic steatosis: a dietary model induced
by endogenous fatty acids, and two drug-induced models using tetracycline and
valproate, in HepG2 monolayers and spheroids.

2. To evaluate and compare metabolite changes in the steatotic cell models using
NMR metabolomics analysis.

3. To investigate the reliability of spheroid and monolayer HepG2 cells in the
investigation of steatosis by comparing metabolite changes and assessing CYP

expression in all models.
In objective 1, it is known that all three treatments are toxic at high dose levels in

HepG2 cells therefore the initial goal will be to identify dose levels high enough to

induce mild steatosis without causing cytotoxicity. This will be determined using Oil
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Red O staining and a triglyceride assay to confirm lipid accumulation and MTS and
LDH assays for cytotoxicity evaluation. The results from the dose response
experiments will be used to determine a suitable low and high dose to be used to
induce steatosis in spheroids. This is important since it has been suggested that

spheroids have greater sensitivity to hepatotoxicants.

Objective 2 will use the steatotic models developed and 'H NMR spectroscopy
metabolomics techniques to compare metabolite patterns and identify metabolite
changes in response to steatosis in each model. Metabolite changes will be compared
between the fatty acid and drug-induced models to determine any similar changes that
might be occurring in both models. There is a great unmet need for markers of both
diet and drug-induced steatosis, by comparing the models this would allow for
biomarkers specific to each model to be identified and could help to differentiate
between the two. "H NMR spectroscopy will be used for this purpose combined with

multivariate analysis.

The expression levels of CYP2D6, CYP3A4 and CYP2E1 in both monolayers and
spheroids treated with fatty acids, tetracycline and valproate will be determined by
Western blotting. For in vitro models to be reliable they must be capable of reflecting
physiological functions. There are claims that HepG2 monolayers have been shown
to have lower CYP expression than 3D spheroids and this will be investigated as part

of the validation of the models.
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Chapter 2

2.1 Materials

Methanol, absolute ethanol, isopropanol, chloroform, formalin, hexamethyldisilazane,
phosphoric acid, dimethyl sulfoxide-d6 (DMSO-d6), chloroform-d, deuterium oxide
(D20) and acetic acid were all supplied by Merck, United Kingdom. Glycerol was

supplied by Fisher Scientific, United Kingdom.

For cell culture Dulbecco’s Modified Eagle high glucose medium (DMEM), Fetal
Bovine Serum (FBS) and penicillin/streptomycin (HycloneTM) were purchased from
Thermo Fisher Scientific, Horsham, UK. Phosphate-buffered saline (PBS), trypsin

HycloneTM were purchased from Merck, UK.

For cell dosing Oleic acid (C18:1), palmitic acid (C16:0), bovine serum albumin (BSA)
were all from Sigma Aldrich, UK. Tetracycline hydrochloride (cell culture grade) was
purchased from Affymetrix|Thermo Fisher, Horsham, UK. Sodium Valproate was

obtained from mpBio, UK.

The nuView Precast Gels were supplied by Generon, Slough, UK. The PVDF Western
blotting membrane was from Thermo Fisher Scientific, Horsham, UK. Extra thick blot
paper and Goat Anti-Rabbit IgG (H+L) Horseradish Peroxidase Conjugate were
obtained from BioRad, Watford, UK. Primary antibodies (Rabbit Polyclonal to
Cytochrome P450 3A4, 2D6, 2E1) were all supplied by Abcam, Cambridge, UK. Semi
skimmed milk powder, Tween 20 were purchased from VWR International LDT,
Lutterworth, UK. SuperSignal™ West Pico PLUS chemiluminescent substrate was

acquired from Thermo Fisher Scientific, Horsham, UK.

Coomassie blue G250 and Coomassie blue R250 were purchased from Sigma
Aldrich, UK. Glycine was obtained from VWR International LDT, Lutterworth, UK. Tris
and sodium chloride (NaCl) came from Thermo Fisher Scientific, Horsham, UK. 3-
(trimethyl-siyl) propionic acid (TSP), potassium hydroxide (KOH), magnesium chloride
(MgCl2), hydrochloric acid (HCI), sodium dodecyl sulfate (SDS), bromophenol blue,
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free glycerol reagent (F6428), glycerol standard (G7793), triton x-100, Oil Red O stain,
dithiothreitol (DTT), soybean trypsin inhibitor (SBTI) and tosyl phenylalanyl
chloromethyl ketone (TPCK) were all supplied by Sigma Aldrich, United Kingdom

Assay Kits: Triglyceride-Glo Assay Kit, Promega, Chilworth, England. MTS cell
proliferation assay kit (colorimetric), lactate dehydrogenase (LDH) cytotoxicity assay
kit Il (ab65393) were obtained from Abcam, Cambridge, United Kingdom

2.2 HepG2 culture preparation and seeding

HepG2 cells were acquired from AddexBio supplied by Caltag Medsystems,
Buckingham, UK (3x108 cells per vial, Catalog No: C0015002, Lot:0038272). Cells
were thawed by gentle agitation in a 37°C water bath for 2 minutes whilst keeping the
O-ring and cap out of the water to avoid contamination. The vial was then removed
from the water bath and the outside of the vial decontaminated by spraying with 70 %
ethanol. All operations from this point on were carried out under strict aseptic

conditions.

A sterile falcon tube containing 9.0 mL of complete DMEM containing 10 % FBS and
1 % penicillin/streptomycin (complete culture media) was placed in an incubator at
37°C, 5 % COz2 for 15 minutes prior to cell recovery to avoid excessive alkalinity. The
contents of the vial were then transferred to the falcon tube and centrifuged at 125 x
g for 5 minutes. After centrifugation the supernatant was discarded, and the pellet
containing live cells was resuspended in 9.0 mL of complete culture media. A 20 yL
aliquot of the cell suspension was removed to a fresh Eppendorf to which 20 pL of
trypan blue was added for cell counting using a haemocytometer. The remainder of
the cells in culture media were dispensed into a new T75 flask which was placed in an
incubator at 37 °C (5 % COz2) for 24 hours to allow the cells to attach. Cell culture

media was changed every 48 hours and cells were passaged every 4 days.

For passaging, the HepG2 cell culture was removed from the incubator, media was
discarded, and the attached cells washed with 8.0 mL of PBS. The PBS was
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discarded, and 4.0 mL of trypsin was added to the flask for approximately 1 minute to
detach the cells from the surface of the flask. Detached cells were resuspended in 20
mL of complete DMEM to stop trypsinisation and centrifuged at 400 x g for 6 minutes.
After removing the supernatant, the cell pellet was resuspended in 10 mL of culture
media. 20 pL of the cell suspension was then taken for counting using a
haemocytometer and approximately 0.25x10° cells per 1.0 mL of media were seeded

into a new T75 flask.

2.3 Spheroid culture preparation

To prepare 3D spheroids in low attachment 6-well plates, HepG2 cells were seeded
at a density of approximately 0.25x10° cells per mL of complete DMEM,; a total of 2.0
mL was added to each well (0.5x10° cells per well). For spheroid culture in 96-well

plates approximately 20x102 in 200 pL of media was added to each well.

For all spheroid studies the culture media was changed every second day and

spheroids were grown for 17 days before dosing.

2.4 Dosing

For cell dosing of monolayers, for metabolomics and Oil Red O staining experiments
HepG2 cells were seeded at a density of approximately 0.25x10° cells per mL of media
in 6-well plates. A total of 2.0 mL (5x10° cells per well) was added to each well and

cells were allowed to attach for 24 hours prior to dosing.

Just prior to dosing HepG2 cells were removed from the incubator, media was
discarded, and the cells were washed with 1.0 mL of PBS. Then 2.0 mL of complete
cell culture media containing either fatty acids, tetracycline or valproate was added to

the wells.
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For spheroid metabolomics experiments, approximately 5x108 cells in 2.0 mL of
complete media were seeded in low attachment 6-well plates and incubated for 17
days. The spheroids were removed from the incubator, media was discarded and

replaced with 2.0 mL of culture media containing each treatment.

In all experiments 6 replicates for each dose level of the 3 different treatment models
(fatty acids, tetracycline and valproate) were prepared and the plates were incubated
for 24 hours at 37°C. Each treatment model had a corresponding media only control
and a media with dosing vehicle control (ethanol containing 1% BSA for the fatty acids

and DMSO for tetracycline and valproate).

2.5 Preparation of cell dosing solutions

2.5.1 Fatty acid solution

A mixture of oleic and palmitic acid (2:1 combination) was used for dosing HepG2
cells. 50 mM solutions of both oleic and palmitic acid were prepared in ethanol. From
these solutions a 2:1 ratio oleic acid and palmitic acid stock solution containing 1 %
bovine serum albumin (BSA) was made. A serial dilution of the stock solution in
complete DMEM was created to obtain final fatty acid solutions at concentrations of
0.1, 0.25, 0.5 and 1.0 mM. 5 plates in total were prepared one for each dose level and

a vehicle control (media containing 2 % ethanol but no fatty acids).

2.5.2 Tetracycline solution

A 160 mM initial stock solution of tetracycline was prepared by dissolving 3.078 mg of
tetracycline in 4.0 mL of DMSO. This solution was then diluted to give further stock
solutions of 120, 80, 40 and 20 mM. Final dosing solutions of tetracycline at
concentrations of 800, 600, 400, 200 and 100 uM tetracycline were prepared by
adding 10 uL of each of the stock solutions to 1.99 mL of DMEM. Two control groups
were also prepared: one containing 10 uL of DMSO only and the other consisting of

media only.
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2.5.3 Valproate solution

An 800 mM initial stock solution was prepared by dissolving 0.531 g of sodium
valproate in 4.0 mL of DMSO. This stock solution was serially diluted using DMSO to
produce solutions at 400, 200 and 100 mM. Final dosing solutions of valproate at
concentrations of 0.5, 1, 2 and 4 mM were prepared by adding 75 pL of each stock to
14.925 mL of DMEM. 75 pL of DMSO was also added to 14.925 mL of DMEM to give
a vehicle control and 6 wells only contained media (blank control). Plates were
incubated for 24 hours at 37°C.

Monolayer HepG2 cells were dosed with all dose levels of each treatment. However,
the dose levels for the spheroids were selected based on the results from Oil Red O
staining and MTS viability assays. Consequently, spheroids were dosed for 24 hours
at concentrations of 0.1 and 0.5 mM of fatty acid solution, 100 and 600 uM of

tetracycline and 1.0 and 4.0 mM of sodium valproate.

2.6 MTS assay

Cell viability for HepG2 monolayers after dosing with the different treatments was
assessed using a commercial MTS assay kit. For the assay approximately 5x103
HepG2 cells in a total volume of 200 pyL were seeded in a 96-well plate and allowed

to attach for 48 hours to allow cells to grow to roughly 10 x103.

Cells were then dosed with either fatty acids, tetracycline or valproate as described in
Section 2.5. Six replicates at each dose level were used for this assay. The viability of
the controls (ethanol and DMSO) for each model was also tested. The media was
removed, and the cells were washed with 100 L of PBS before 200 pL of fresh media
was added to each well. Then 20 pL of MTS reagent was added into each well and
the plate was incubated at 37 °C for 3 hours. Blank wells were prepared by adding
200 pL of fresh media and 20 pL of MTS reagent. The average absorbance from these

wells was then subtracted from all test absorbance readings. The plate was shaken
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briefly on a shaker and the absorbance was read at 490 nm using a plate reader.

Viability was calculated as follows:

Viability (%) = (absorbance of treated cells/ absorbance of control cells) x 100.

2.7 Oil Red O staining

To confirm an increase in lipid accumulation within the monolayer cells or spheroids

after dosing with the different treatment models Oil Red O staining was carried out.

To prepare the stock staining solution 60 mg of Oil Red O was dissolved in 20 mL of
ethanol, mixed and allowed to rest at room temperature for 20 minutes. Three parts of
the stock solution was then added to two parts distilled water and mixed at room

temperature for 10 minutes before filtering.

For staining, the 6-well plates containing dosed HepG2 cells were removed from the
incubator and the media was discarded from all wells. Cells were washed with 1.0 mL
of PBS, which was discarded before cells were fixed in 10% phosphate buffered
formalin for 15 minutes at room temperature. Cells were then washed with 60%
ethanol and incubated in 2.0 mL of the Oil Red O solution for 30 minutes. Excess stain
not taken up by the cells was then washed away by rinsing with distilled water several
times before visualising the stained cells under a light microscope at x10

magnification.

To quantify the amount of Oil Red O taken up by the cells 1.25 mL of 100% isopropanol
was added to each well to destain the cells and the plates were agitated on a shaker
at room temperature for 10 minutes. The absorbance of the Oil Red O eluted from the
cells was then read at 520 nm using a spectrophotometer using isopropanol as the
blank.
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2.8 Triglyceride Assay

A triglyceride assay was used to quantify the lipid accumulation within the cells and
spheroids after dosing with either fatty acids, tetracycline or valproate using a

Triglyceride-Glo™ assay kit from Promega, UK.

For the assay approximately 20x102 HepG2 cells in 200 yL of DMEM media were
plated in 96-well plates and incubated for 24 hours to allow attachment. For spheroid
seeding approximately 20x10% HepG2 cells in 200 uL of DMEM media were plated in
a low attachment 96-well plate and incubated for 17 days to allow spheroids to form.
Cells and spheroids were then dosed with either fatty acids, tetracycline or valproate

(as described in Section 2.5) and incubated for 24 hours.

Prior to use all components of the triglyceride assay kit were thawed in a water bath
at 22 °C and mixed to ensure homogeneous solutions. The Reductase Substrate,
Kinetic Enhancer and Lipoprotein Lipase were then placed on ice while the assay
buffers and reagents were prepared. The final volumes prepared depended on

number of samples to be assayed.

To prepare the glycerol lysis solution for the assay 80 uL of Lipoprotein Lipase was
added per mL of supplied glycerol lysis solution. The glycerol detection reagent for the
assay was made by adding 10 pL of Reductase Substrate per mL of supplied glycerol
detection solution. This detection reagent was prepared 1 hour before use and
incubated at room temperature. After 1 hour 10 uyL of Kinetic Enhancer per mL of

glycerol detection reagent was added.

When all reagents for the assay had been prepared the treated HepG2 cells were
removed from the incubator and media discarded from each well. Cells were then
washed twice with 100 yL of PBS. After removing the PBS 50 uL of glycerol lysis
solution containing lipoprotein lipase was added to all wells, the plate was then shaken
briefly and incubated for 30 minutes at 37 °C. Following incubation, samples were
transferred to an opaque white 96-well plate and 50 uL of glycerol detection reagent

was added to all wells. The plate was shaken for 30-60 seconds by hand before being
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incubated for 1 hour at room temperature. Luminescence was then recorded using a

plate-reader.

A standard curve was created by adding 2.0 pyL of the 20 mM Glycerol standard
provided in the kit to 498 pL of Glycerol Lysis solution to produce an 80 uM glycerol
standard and then serially diluted 2-fold by mixing 200 uL of the standard with 200 uL
of Glycerol Lysis Solution to give final concentrations of 40, 20, 10, 5, 2.5 and 0 uM

glycerol.

Final concentrations of triglycerides within the samples were calculated using the

equation below:

Glycerol concentration of sample= STD x (RLUsample — RLUbackground) / (RLUstandard — RLUbackground)

2.9 Scanning electron microscopy

Scanning electron microscopy was used to confirm that spheroids had formed and to
visualise their 3D structure. Spheroids grown in both 6- and 96-well low attachment
plates were gently aspirated using a 200 uL pipette tip with the end cut off. Individual
spheroids were placed on a glass slide ensuring the spheroids did not get caught
between the pipette and the glass slide as this may disrupt and destroy the 3D

structure.

The slides were then placed in a container lined with filter paper dampened with
ethanol and allowed to dry for 10-20 minutes. Slides were then coated in 1.0 mL 10%
formalin and incubated for 2 hours in the tissue culture hood. To each slide 1.0 mL of
PBS was briefly added before being dehydrated in a series of ethanol solutions (35,
50, 75, 95, 100% ethanol) for 10 minutes at each concentration. Slides were then
placed in a fume hood and 1.0 mL of hexamethyldisilazine was added, the
hexamethyldisilazine was allowed to evaporate in the fume hood. This acts as an extra

drying step to remove any remaining water from the sample prior to SEM.
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For SEM imaging the glass slides were attached to a self-adhesive carbon disc
mounted on a 25 mm aluminium stub which was coated with 25 mm of gold using a
sputter coater. The stub was then placed into an FEI Quanta 200 FEG scanning
electron microscope for imaging at 5KV accelerating voltage using secondary electron
detection. Spheroids were visualised and images were taken at magnifications of 100x
and 500x.

2.10 Sample collection for "H-NMR analysis

In the metabonomics studies for both monolayers and spheroids sample collection
was carried out 24 hours after dosing. Cell culture medium was removed from the

wells, frozen and stored at -80 °C until analysis.

After removing the media, cells were washed with 1.0 mL of PBS before discarding
the PBS. Cell metabolism was quenched by adding 400 uL of ice-cold methanol
followed by 400 pL of ice-cold distilled water. Cells were detached from the well
surface using a cell scraper to ensure that as few cells as possible remained attached
to the plate and resuspended in the methanol and water mixture. The cell extracts
were then transferred into a fresh Eppendorf tube containing 400 uL of chloroform at
-20°C. Samples were agitated at 14,000 rpm on a tube shaker at 4°C for 20 minutes

followed by 5 minutes of centrifugation at 16,000 x g.
After centrifugation, the top aqueous layer containing the more polar metabolites was
removed, placed into a new Eppendorf tube and dried down in a centrifugal vacuum

concentrator. The bottom organic layer was dried overnight in a fume cupboard. Both

aqueous and organic extracts were stored at — 80°C until later analyses.

2.11 Sample preparation for 'TH-NMR-based metabolomics

Media samples were thawed and 250 uL of each sample transferred to an Eppendorf

tube containing 250 uL of ice-cold methanol/water (8:1). Samples were centrifuged at

79



13,000 rpm for 5 minutes and 100 pL of the supernatant was placed in a new tube and
dried in a rotary vacuum evaporator. The dried samples were then resuspended in
600 pL of D20 containing 1.0 mM TSP to provide a reference peak for calibration of
the NMR spectra. Samples were centrifuged at 10,000 rpm for 20 minutes and 550 pL

of the supernatant was transferred into 5 mm NMR tubes.

Aqueous extract samples were resuspended in 600 uL of deuterium oxide (D20)
containing 1.0 mM TSP. Samples were vortexed for 20 minutes followed by
centrifugation for another 20 minutes at 10,000 rom. Then 550 uL of the supernatant

was transferred to a 5 mm NMR tube for NMR analysis.

The dried organic fractions were resuspended in 600 uL d-chloroform. The samples
were vortexed for 20 minutes followed by a 20-minute centrifugation step at
10,000rpm. Then 550 pL of the supernatant was transferred into a 5 mm NMR tube

for analysis.

2.12 "TH-NMR spectroscopy

One-dimensional '"H NMR spectra of cell samples were analysed at 500,000 MHz
using a Bruker DRX-500 spectrometer. One-dimensional spectra were acquired using
a standard pre-saturation pulse sequence for water suppression with irradiation at the
water frequency during the relaxation delay of 4s. Following four dummy scans,
spectra were acquired using 512 scans into 64k points with a spectral width of
10,248Hz and an acquisition time of 3.20 s. Experiments were conducted at room

temperature.

Two-dimesional J-resolved (JRES) 'H NMR spectra of cell extracts were measured at
500,000 MHz on a Bruker DRX-500 spectrometer. JRES spectra were acquired using
standard pre-saturation pulse sequence for water suppression with irradiation at the
water frequency during the relaxation delay of 4 s. Following four dummy scans,
spectra were acquired using 8 scans into 8K points with a spectral width of 8,192 Hz

and an acquisition time of 0.5 s.
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All 'TH NMR spectra were phase and baseline corrected using Topspin 4.0.8 (Bruker
Analytik, Rheinstetten, Germany). Data was then reduced using AMIX (Bruker
Analytik, Rheinstetten, Germany) into buckets of 0.04 ppm wide corresponding to the
region 810.0-0.2 ppm giving a total of 250 buckets. The NMR region between 4.6-5.0
ppm was excluded in all aqueous samples to remove the water region from these
samples as the residual solvent signal often interferes with analysis of other metabolite

signals even after solvent signal suppression (Emwas et al., 2018)

The next step in data processing is known as normalisation. The area under the curve
for each region of the spectra was calculated and expressed as an integral value. Then
all regions of the spectra were normalised to the sum of the integrals to reduce any

significant differences in concentration between individual samples.

From Amix the data was imported into Microsoft Excel and converted into bucket
tables which were then transferred into SIMCA 15 (SIMCA V.15, MKS Umetics AB,
Sweden). The final step in data processing known as scaling was carried out to reduce
the noise in the data. This is a column operation that acts on each spectral intensity
across all samples. Mean-centering scaling was applied whereby the mean of each
column is subtracted from each value in the column, giving each column a mean of
zero. Following this, pareto scaling was performed in which each variable was divided

by the square root of its standard deviation (Craig et al., 2006).

2.13 Pattern recognition of '"H NMR analysis

Using SIMCA 15 software, PCA, OPLS, and OPLS-DA analyses were performed. For
all metabolomics experiments data was first analysed using principal component
analysis (PCA), an unsupervised method of multivariate statistical analysis (O’Gorman
et al., 2013). PCA assesses the clustering of the samples in the data set and identifies
any outliers that may be present. If a sample is outside the 95% confidence ellipse on
the PCA scores plot it may represent a potential outlier in the dataset which can be
confirmed using a Hotelling’s T2 plot. Any samples above the 99% confidence interval

were excluded from further analyses.
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Following PCA, orthogonal partial least square (OPLS) and orthogonal partial least
square-dimensional analyses (OPLS-DA) were carried out. OPLS is a supervised
method of statistical analysis which demonstrates the relationship between X variables
(NMR regions on the spectra) and Y variables (sample class). It represents a more
bias form of analysis since the sample class is already known. For all metabonomics
experiments OPLS scores plots were constructed and used to identify separation
between the sample groups along a predictive t[1] discriminating component.

Intragroup (orthogonal) variation is visualised along the t[0] axis.

In each study OPLS-DA analysis was also carried out to compare two sample groups
at a time. Scores plots were generated for each OPLS-DA model and used to generate
variable importance of projection (VIP) predictive and S-plots. The VIP summarizes
the importance of the X-variables (chemical shift regions) to sample separation on the
scores plot (Galindo-Prieto, 2015). Variables with a VIP score above 1 were
considered to be statistically significant and therefore thought to contribute to the
sample separation on the OPLS-DA scores plot. These variables were further
highlighted on an S-plot (a loadings plot). Variables located in the top right-hand side
of the S-plot are increased when compared to the primary group (e.g. a control group).
In contrast variables located in the bottom left-hand side of the S-plot are decreased

when compared to the primary group.

2.14 Kruskal-Wallis test

The Kruskal-Wallis test is a rank based nonparametric test used to identify statistically
significant differences between two or more groups of an independent variable on a
continuous or ordinal dependent variable. It is an extension of the Mann-Whitney U
test and allows for the comparison of more than two independent groups. The Kruskal-

Wallis is also considered to be the nonparametric alternative to one-way ANOVA.

In this project the Kruskal-Wallis test was performed using SPSS statistics 26 software

package to confirm statistical significance of metabolite variable regions in the bucket

82



tables that differ between the sample groups in OPLS-DA models. A p-value of less

than 0.05 was considered to be significant.

2.15 Metabolite identification

Following multivariate analyses, the NMR spectra in each study were examined further
to determine the multiplicity and chemical shifts of the statistically significant variable
regions identified using the VIP plot and a Kruskal-Wallis test. The S-plot was also
used to determine if the peaks in these regions were decreased or increased between
two comparative sample groups. Using this information metabolites with peaks in the
relevant NMR regions were then identified using the Human Metabolome database

and published literature.

2.16 Protein Collection from HepG2 cells

Protein samples were collected from monolayers and spheroids 24 hours after dosing
with fatty acids, tetracycline or valproate. For monolayer studies cells were cultured

and dosed in 6-well plates while spheroids were grown in 96-well plates.

At 24 hours after dosing media was removed from each well and discarded. Then 1.0
mL of protein lysis buffer was added to each well. To make the protein lysis buffer 150
mM NaCl, 1% Triton X-100, 50 mM Tris pH 8 and 1.0 mM of each protease inhibitor
(DTT, SBT1, TPCK) was diluted in 100 mL of water. For monolayer samples 2.0 mL
of lysis buffer was added to each well while 50 uL of lysis buffer was added for the

spheroid models.
Cells were scraped and then incubated for 30 minutes in the lysis buffer under

constant agitation at 4 °C. Samples were then centrifuged at 12,000 rpm for 20

minutes and the supernatant was collected and frozen at -80 °C.
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2.17 Bradford Assay

Protein concentration in the HepG2 monolayer and spheroid cell extracts from all
treatment models were measured using the Bradford assay. Bradford reagent was
prepared by dissolving 30 mg of Coomassie Blue G250 in 100 mL of absolute ethanol,
and adding 55 mL of phosphoric acid, and the solution was then made up to 1.0 L with

water.

To create a standard curve, firstly, a stock solution of BSA (200 ug/mL) was prepared.
The stock solution of BSA was then diluted in water to produce the following
concentrations of standard protein: 0 (blank), 1, 2, 3, 4, 5 6 ug/100 uL. The remaining
steps were carried out in triplicate. To 100 pyL of each standard sample 1.0 mL of
Bradford reagent was added to all tubes, and the tubes were mixed and left for 5
minutes at room temperature. Then the absorbance for each sample was read at 595

nm using the blank sample to zero the spectrophotometer.

Protein samples extracted from dosed HepG2 monolayers and spheroids were diluted
1 in 50 with water. 100 uL of each diluted sample was added to an Eppendorf tube
with 1.0 mL of Bradford reagent in triplicate and incubated for 5 minutes at room
temperature. The absorbance was read at 595 nm. The BSA calibration curve was
used to estimate the protein concentration in the samples taking into account the

dilution factor.

218 One-dimensional sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE)

SDS-PAGE describes the method of separating proteins in a gel matrix when an
electric force is applied. NuView precast gels were used to separate the protein

samples collected from the dosed cells.

Protein samples from all treatment models were pre-treated with SDS sample buffer.

A x5 concentrated sample buffer was initially made consisting of 62.5 mM Tris HCI,
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pH 6.8, 10% glycerol, 2% SDS and 0.05 mg/ml bromophenol blue. This buffer was
then diluted with water to create a 2.0 mL x2 sample buffer which contained 50 pL of
dithiothreitol (DTT). DTT is widely used to reduce disulphide bonds in the analysis of
protein structure and function (Alliegro, 2000). Using the results from the Bradford
Assay the volume of each sample equivalent to 10 ug protein was calculated and
transferred to Eppendorf tubes to which an equal volume of the x2 SDS sample buffer

was added and the sample mixed.

Samples were then heated to 100 °C for approximately 10 minutes and loaded into
wells of the gel. A blank solution containing SDS sample buffer was loaded into any
unused wells (10 pL). A protein molecular weight marker (10 yL) was also added to
one well in each gel to estimate the molecular weight of the proteins of interest. The
gel was placed in the tank and reservoir buffer (25 mM Tris, 0.19 M glycine and 0.1 %
SDS) added. A constant voltage of 200 V was applied for 1 hour or until the dye front
reached the bottom of the gel. Following this, gels were either stained in Coomassie

blue or used for Western blotting.

2.19 Coomassie blue staining

Following electrophoresis proteins were visualised by Coomassie blue staining. Gels
were incubated overnight in 0.4% Coomassie blue R-250 in 50% methanol and 10%
acetic acid. Gels were then destained until bands were visible following several
washes with destaining solution (10% acetic acid, 30% methanol). The molecular
weight of the proteins present could be estimated by comparison with the standard

protein molecular weight markers.

2.20 Western blotting
For Western blotting, following gel electrophoresis the gels were washed 3 times in

transfer buffer (48 mM Tris, 39 mM glycine, 20 % methanol) for 5 minutes each wash

to remove electrophoresis buffer salts.
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PVDF membrane was cut to the size of the gel and placed in methanol for 2 seconds,
followed by a brief wash in water to remove the methanol. The PVDF membrane was
then equilibrated in the transfer buffer for 10 minutes. Two pieces of blotting filter pads
were saturated in transfer buffer. The semi-dry transfer method was then carried out
using a Trans-Blot Turbo Transfer machine. To assemble the semi-dry unit a piece of
filter paper pre-soaked in transfer buffer was placed into the cassette, the equilibrated
PVDF membrane was placed on top of the filter and air bubbles were removed. The
gel was then placed onto the membrane followed by a second pre-soaked sheet of
filter paper. The cassette was closed and placed into the machine. The gel was

transferred for 30 minutes at 25 volts.

Following the transfer, the PVDF membrane was incubated in blocking solution
consisting of 1 % powdered milk in high salt tween (HST) buffer (20 mM Tris HCI pH
7.4; 0.5 M NaCl; 0.5 % Tween 20) overnight at 4 °C, to prevent non-specific binding
of the antibodies to the membrane proteins. The blocking solution was then removed,
and membranes were then incubated in primary antibody overnight at 4 °C. The rabbit
monoclonal antibodies to cytochrome 2D6 and 3A4 were diluted 1:1000 and 2E1 was
diluted in 1:500 in 1% marvel HST and membranes were incubated in 20 mL of
antibody solution overnight at 4 °C. Protein samples from all monolayer and spheroid
models treated with fatty acids, tetracycline and valproate were tested with each

antibody.

The primary antibody was removed, and membranes were then washed in HST buffer
3 times for 10 minutes. This was followed by incubation in the secondary antibody, a
goat anti-rabbit IgG horseradish peroxidase conjugate antibody diluted in 1:3000 in

blocking solution, for 1 hour at room temperature on an orbital shaker.

The secondary antibody was removed, and the blot membrane was washed again 5
times for 10 minutes with HST buffer. The membrane was transferred to a Syngene
GeneGnome detector. A 1.0 mL SuperSignal™ West Pico PLUS Chemiluminescent
Substrate detection solution was prepared using 500 uL of detection solution 1 and
500 pL of solution 2. The membrane surface was then covered in the detection solution
and 5 images were taken at 1-minute intervals. Band intensities were compared using

Imaged.
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2.21 LDH assay

Cell cytotoxicity was evaluated using a commercial Lactate Dehydrogenase (LDH)
assay which measures LDH leakage from damaged cells. For monolayers
approximately 20x103 cells were seeded in 96-well adherent plates and incubated for
24 hours to allow attachment. For spheroids approximately 20x102 cells were also
seeded in low attachment 96-well plates and grown for 17 days to allow spheroids to
form. Cells and spheroids were then dosed with the different treatments and incubated
for a further 24 hours (as described in Section 2.5). After incubation the plates were
gently shaken to ensure any LDH released from dosed cells into the media, due to

cytotoxic effects of the treatments, was distributed evenly.

The LDH positive control powder was reconstituted by adding 100 pyL of LDH assay
buffer and was then aliquoted and stored at -20°C until use. The Water Soluble
Tetrazolium salt (WST) Substrate Mix was reconstituted in 1.1 mL of ddH20 and mixed
thoroughly for 10 minutes. To prepare enough reaction mix for 100 assays 200 pL of
WST Substrate Mix was mixed with 10 mL of LDH assay buffer.

10 uL of the media from treated cells and spheroids was removed from all wells and

transferred into a fresh optically clear 96-well plate.

For the assay background control wells were prepared by adding 200 uL of cell culture
medium to empty wells in ftriplicate, these wells allowed for the measurement of
reagent and LDH background absorbance values. The value obtained for the

background control was then subtracted from all other absorbance readings.

To prepare a positive control for the assay, 30 minutes before the assay was
conducted 10 pL of cell lysis solution was added to 3 wells containing cells and
spheroids which had been grown in media only. The cell lysis solution kills the cells
releasing LDH into the media. After the 30-minute incubation 10 pL of media from

these positive controls was also added in triplicate to a fresh 96-well plate.

Then 100 yL of LDH Reaction Mix was added to all wells including the background

controls, the plate was mixed and then incubated for 30 minutes at room temperature.
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The absorbance of all controls and samples was the read at 450 nm using a plate

reader.

The data obtained from the plate reader was analysed using the following equation:

Cytotoxicity (%) = (Test Sample — Low Control) / (High Control — Low Control) X 100

2.22 LIVE/DEAD™ viability

A LIVE/DEAD assay was used to assess viability of the spheroids, the assay is a two-
colour assay used to determine viability of cells based on plasma membrane integrity
and esterase activity. The LIVE/DEAD assay staining solution contains a mixture of
two fluorescent dyes that differentially label live and dead cells. The live cell dye labels
viable cells green, it is membrane permeant and non-fluorescent until ubiquitous
intracellular esterase removes an ester group producing fluorescence. The dead cell
dye labels cells with compromised plasma membranes red. It cannot permeate the
cell membrane and binds to DNA with high affinity. Once bound to the DNA the
fluorescence increases >30 fold. A modified protocol of the commercially bought
LIVE/DEAD™ viability assay (Invitrogen, UK) was used. Spheroids were grown for 16
days and dosed with either fatty acids, tetracycline or valproate and incubated for 24

hours as described in Section 2.5.

To create the cell staining solution 5 uL of calcein AM and 20 pL of ethidium
homodimer-1 were mixed and added to 10 uL of PBS. Following dosing, the culture
medium was removed from the spheroids and 100 pL of the staining solution was
added directly to the cells. Cells were then incubated in the staining solution at room
temperature for 30 minutes. Cells were observed using a Zeiss AxioLab fluorescence
microscope. The LIVE/DEAD assay was used to visualise cell viable cells; therefore,

cells viability was not calculated.
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Chapter Three- Fatty acid-induced model of hepatic steatosis in HepG2 cells
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Chapter 3

3.1 Introduction

In the present study two models of steatosis were created in HepG2 cells (monolayer
and 3D spheroids) by the administration of fatty acids. Oleic and palmitic acid are the
most abundant monounsaturated and saturated fatty acids present in the Western diet
(Ricchi et al., 2009, Lyall et al., 2018, Zeng et al., 2020). Following intestinal
absorption, both fatty acids are esterified into triglycerides and delivered to the liver in
lipoproteins (Lyall et al., 2018, Eynaudi et al., 2021). Prolonged exposure to elevated
levels of both oleic and palmitic acid in the diet are known to induce an increase in
lipid accumulation in the liver (Ricchi et al., 2009, Lyall et al., 2018, Zeng et al., 2020).
A similar accumulation of lipids has been demonstrated when both are administered
to primary hepatocytes and hepatic cell lines. Therefore, it is common for both fatty
acids to be used in the development of in vitro models of steatosis (Ricchi et al., 2009,
Lyall et al., 2018, Zeng et al., 2020).

Using the newly created in vitro models, metabolomic and proteomic changes in the

steatotic cells were investigated.

Many studies have experimented with different ratios and concentrations of oleic and
palmitic acids varying from 0.5 to 2 mM. However, it has been frequently reported that
the administration of a combined overall concentration of 0.5 mM oleic/palmitic acid
(in a 2:1 molar ratio) to HepG2 cells results in significant fat accumulation after 24
hours (Donato et al., 2009, Cui et al., 2010, Liang et al., 2015, Willebrords et al., 2015,
Dave et al., 2018).

It has also been widely suggested that the use of a 2:1 combination allows for the
development of steatosis at a relatively low overall concentration of fatty acids.
(Moracova et al., 2015, Nemecz et al., 2019). This is of importance since fatty acids
in excess can be detrimental to cell viability and have been reported to promote ER
stress and stimulate pro-inflammatory signals resulting in mitochondrial dysfunction

and ROS (Mazzolini et al., 2020). Since the current study wished to create a model of
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mild steatosis and avoid cytotoxicity a combination of oleic and palmitic acid at a 2:1

ratio was chosen.

However, it was important to first determine the optimum dose levels to use since too
high a dose of fatty acids could result in lipotoxicity and too low a dose could be
ineffective. Therefore, the first step in this study was to carry out a dose response
experiment in the HepG2 monolayers to establish the optimal concentration of fatty
acids that would induce steatosis without causing cytotoxicity. Dose levels of 0.1, 0.25,
0.5 and 1 mM oleic and palmitic acid (2:1 molar ratio) were evaluated. Steatosis was
then confirmed using Oil Red O staining and a triglyceride assay. Based on the results
a low dose capable of inducing early steatosis and a high dose level capable of
inducing steatosis without cytotoxicity was chosen for the development of the 3D

spheroid model.

Once the two models were developed the second objective of this study was to identify
changes in the metabolome of the 2D monolayers and 3D spheroids using NMR
spectroscopy and multivariate statistical analysis to find potential biomarkers of

steatosis. Cytochrome P450 changes were also analysed using Western blotting.

The identification of biomarkers for early steatosis is of upmost importance since
steatosis represents the first stage of NAFLD in humans and can be reversed via a
change in dietary or lifestyle factors. However, there remains a great need for better
non-invasive and reliable biomarkers for steatosis since none are currently available
(Drescher et al., 2019 and Piazolla and Mangia, 2020).

The current study involved the development of both a monolayer and a 3D spheroid
model of steatosis. Hepatic cell lines express many differentiated hepatic functions,
such as synthesis and secretion of plasma proteins, cholesterol and triglyceride
metabolism, bile synthesis and insulin signalling (Donato et al., 2014). However, one
major limitation associated with the use of monolayer hepatic cell lines is a reduced
CYP expression when compared to primary hepatocytes. In addition, studies have
shown that CYP enzyme expression is further downregulated in monolayers after 24
hours of culturing. Therefore, the rationale for the development of a 3D spheroid model

in this study is that it is becoming increasingly clear that monolayer cell culture models
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are inadequate for reflecting the complexity of human tissues due to the loss of liver-
specific functions specifically the expression of phase | and Il enzymes (Pingitore et
al., 2019 and Ingelman-Sundberg and Lauschke, 2021). Meanwhile 3D spheroids
have been reported to show a higher expression of CYP enzymes when compared to
2D models (Mizoi et al., 2020, Stampar et al., 2020 and Ingelman-Sundberg and
Lauschke, 2021). This is a result of heterogeneous cell-to-cell interactions in the 3D
culture models which offers a similar micro-environment to the in vivo situation.
Consequently, HepG2 spheroids also display functional bile canaliculi, increased
albumin expression, drug transporters and xenobiotic receptors that mediate induction
of CYP450 enzymes (Ramaiahgari et al., 2014). The benefits that 3D culture models
offer over monolayers has led to growing interest in their use for both disease and
toxicity studies (Pingitore et al., 2019, Ellero et al., 2021, Balkrishna et al., 2022).

The low CYP expression in monolayers represents a particular limitation for their use
in in vitro studies since it has been shown that fatty liver disease can affect the
expression of CYP enzymes with a resulting impact on drug metabolism (Aljomah et
al., 2015, Woolsey et al., 2015, Jamwal and Barlock, 2020, Sukkasem et al., 2020,
Albadry et al., 2022). For in vitro models to be reliable for biomarker studies and more

relevant to humans they must be able to mimic all metabolic pathways.

A decrease in CYP3A4 expression has been commonly reported in NAFLD (Woolsey
et al., 2015, Jamwal and Barlock, 2020, Albadry et al., 2022). Sukkasem et al (2020)
also demonstrated down-regulated CYP3A4 in HepG2 cells in response to treatment
with oleic acid, while in the same paper the administration of palmitic acid reduced the
expression of CYP3A4 and 2D6 due to reduced mRNA expression. It has also been
reported that CYP2E1 is downregulated in NALFD patients in terms of protein and
MRNA expression (Albadry et al., 2022).

However, other studies reported upregulated activity and expression of CYP2E1 in
NAFLD in mice (Woolsey et al., 2015, Jamwal and Barlock, 2020, Albadry et al., 2022).
Increased hepatic metabolic substrates such as fatty acids and mitochondrial
dysfunction can initiate the expression of CYP2E1. High concentrations of ketone
bodies produced from excessive beta-oxidation can also increases CYP2E1 activity

and expression (Wang et al., 2021). It is thought that CYP2E1 contributes to oxidative
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stress through the production of ROS (Massart et al., 2013, Wang et al., 2021, Di
Pasqua et al.,, 2022). CYP2E1-mediated hydroxylation of some fatty acids can
generate cytotoxic lipid intermediates which can further increase ROS production (Bell
et al., 2010, Aubert et al., 2011, Wang et al., 2021). The administration of oleic and
palmitic acid has been shown to increase levels of CYP2E1 genes in rodents, human
hepatocytes and differentiated human cells leading to ER and mitochondrial

impairment (Sung et al., 2004, Sukkasem et al., 2020).

The majority of studies assessing CYPs in NAFLD or steatosis models have been
conducted in monolayers but there is little known about alterations to CYP enzyme
expression in 3D spheroid models. Consequently, the third objective of this study was
to analyse and compare CYP expression between the monolayer and 3D models and
to evaluate any dose related changes following the administration of fatty acids. CYP
expression was evaluated in 2D monolayers and 3D spheroids using Western blotting
for CYP antibodies.

3.2 Fatty acid study design

Monolayer HepG2 cells were plated in 6-well plates. A dose response study was
carried out by administrating a mixture of 2:1 oleic and palmitic acid at dose levels of
0.1, 0.25, 0.5 and 1.0 mM to HepG2 cells followed by a 24-hour incubation. Six

replicates were used for each dose level.
For the 3D spheroid model, the HepG2 cells were plated in low attachment 6-well

plates and grown for 17 days before being dosed with fatty acids at concentrations of
0, 0.1 and 0.5 mM.
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3.3 Results

3.3.1 Cell viability and cytotoxicity in monolayers

In this study HepG2 cell viability in response to the increasing doses of fatty acid was
assessed using an MTS assay as described in Section 2.6. Cytotoxicity was also

assessed using the lactate dehydrogenase (LDH) assay as described in Section 2.21.

The MTS assay results, shown in Figure 3.1, revealed no significant difference in
HepG2 cell viability compared to the ethanol control at dose levels of 0.1 and 0.25 mM
oleic and palmitic acid. However, when cells were dosed at 0.5 - and 1 -mM cell
viability was decreased significantly (p<0.01 and 0.001, respectively) relative to the
ethanol control. At the highest dose level cell viability had fallen to 56% compared to
the control viability of 100%.

In the same study the LDH assay (Figure 3.2) results demonstrated no statistically
significant increase in cell death at the lower dose levels (0.1, 0.25 and 0.5 mM) when
compared to the ethanol control. At 1 mM dose level cell death was approximately 7%
greater than the ethanol control values (p<0.01). However, this was not considered
significant when compared to the positive control. Therefore, it was decided that this

dose level would be acceptable for future studies.
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Figure 3.1 HepG2 cell viability in response to increasing fatty acid concentration as assessed by MTS
assay. HepG2 cells were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0
(ethanol control), 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours as described in Section 2.5.1.
The values shown represent the mean of six replicates. The MTS assay was carried out as described
in Section 2.6. Error bars represent standard deviation. Statistically significant differences compared to
the ethanol control were analysed using Kruskal Wallis (**<0.01, ***<0.001).
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Figure 3.2 HepG2 cell death in response to increasing fatty acid concentration assessed by LDH assay.
HepG2 cells were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 (ethanol
control), 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours as described in Section 2.5.1. The value
obtained for the positive control represents 100% cell death. The values shown represent the mean of
six replicates. The LDH assay was carried out as described in Section 2.21. Error bars represent
standard deviation. Statistically significant differences compared to the ethanol control were analysed
using Kruskal Wallis (**<0.017).
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3.3.2 Oil Red O staining of HepG2 cells

In this study to confirm that the exposure of HepG2 cell to fatty acids lead to an
increase in intracellular lipid accumulation and to determine if there was a dose-related
response, the cells were stained with Oil Red O stain. The Oil Red O reagent stains
intracellular lipids red, therefore fat accumulation becomes clearly visible under a light

microscope.

The images obtained under the light microscope (Figures 3.3 C-F) suggested a dose
dependent increase in lipid accumulation in the fatty acid treated cells. This was
observed as an increase in the number, size and intensity of red stained clusters in
the dosed cells compared to the control, thus indicating greater stain uptake by these

cells as a result of increased lipid accumulation.

A ©~ B
- 6
. W ® w
A A : e
A,’;“\ ‘f ‘
4 L
e
o ‘
. - ﬁt 4
& 2, b ¥
C D &
y et L
B
¥ ‘o # } ) ¢
033 v e o .
.,,. B, g..‘ e ~ 5. 0.0 Jp"\’
»1'{ ‘9; Mn ¢ { '; % *:
v o L8 ¢
g @ >3 . . &"5
g '~ fkacia: 'A a
L < K >
E > TR A A
<a o B K ')'
@ V'f - X » : " T ’ #
- ® . 5
~ve 7_:' i I ' 5
"b E, ‘S X
e 1

Aﬂ’“" ’ ‘ r'e ¢ 4.15
wn ' »!“f N

Figure 3.3 Light microscope images obtained of HepG2 cells stained with Oil Red O following treatment
with fatty acids. Cells were dosed with a 2:1 mixture of oleic and palmitic acid at final concentrations of
0, 0.1, 0.25, 0.5 and 1 mM followed by a 24-hour incubation, cells incubated in media only or media
dosed with ethanol (negative controls) were also included. Cells were stained using Oil Red O as
described in Section 2.7. A. media only control, B. ethanol control, C. 0.1 mM, D. 0.25 mM, E. 0.5 mM
and F. 1.0 mM fatty acids. The arrows indicate increased red stain uptake to lipid accumulation.
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3.3.3 Triglyceride assay in the monolayer

While the Oil Red O staining offered a visual confirmation of the increase in triglyceride
accumulation within the cells, it was not possible to quantify how much was present.
Therefore, HepG2 cells treated with fatty acids at the different dose levels were lysed,
as described in Section 2.8, and cell extracts were collected for the quantification of
cellular lipids using a commercial triglyceride assay. The results showed an increase
in triglyceride content in the cells collected from treated groups when compared to the
ethanol control (Figure 3.4). This increase was statistically significant in the 0.25
(p<0.05), 0.5 (p<0.01) and 1 mM (p<0.001) sample groups when compared to the
ethanol control. This would suggest that steatosis has been induced at 0.25 mM and

higher.
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Figure 3.4 Mean triglyceride content in HepG2 cells following treatment with fatty acids. HepG2 cells
were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 (ethanol control), 0.1,
0.25, 0.5 and 1 mM and incubated for 24 hours. A triglyceride assay was conducted as described in
Section 2.8. The values shown represent the mean of six replicates. Error bars represent standard
deviation. Statistically significant differences between treatment groups and controls were analysed
using Kruskal Wallis (*<0.05, **<0.01, ***<0.001).
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3.3.4 Metabolomic analysis in aqueous monolayers cell extracts

In this study HepG2 cell extract samples were also collected following a 24-hour
incubation in culture media supplemented with fatty acids at different dose levels for
NMR analysis. Aqueous extracts were prepared, analysed by NMR and multivariate
analysis was used to determine changes in the metabolite profile in response to the

fatty acids.

Visual inspection of the '"H NMR spectra did not reveal obvious differences between
spectra of samples from fatty acid treated cells and controls. Therefore, multivariate
analysis was employed to statistically analyse metabolomic changes between the
different groups. PCA, an unsupervised method of analysis, was firstly carried out and
a PCA model was constructed using the NMR data from the aqueous cell extracts.
The scores plot obtained (Figure 3.5) revealed some degree of separation between
the different sample groups. All of the control samples, except for sample C1 were
located in the top half of the scores plot, mostly in the upper right quadrant, and were
therefore positive for PC2. There was large intragroup variation and one of the control
samples, C5, was just outside the ellipse. To examine this sample further and to
determine if it was a true outlier the Hotelling’s plot was consulted. It was confirmed
from the Hotelling’s plot (Figure 3.6) that this sample fell just above the 95%
confidence level but was below the 99 percentile. In this project only those samples
that were above the 99% confidence level are considered to be outliers and excluded
from analysis. Therefore, the spectrum for sample C5 was not deemed to be a true

outlier and was thus included in all future analyses.

In the scores plot (Figure 3.5) the aqueous extracts from cells treated with 0.25 and
0.5 mM fatty acids were found on the left side of the plot, negative for PC1 but with
some overlap between the two groups. Meanwhile the samples from cells treated at
0.1 mM were all in the lower right quadrant, while the 1 mM samples were positive for

PC2 with the exception of sample 1(6).
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Figure 3.5 PCA scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 cells dosed
with fatty acids at increasing dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic acid
at0, 0.1, 0.25. 0.5 and 1 mM and incubated for 24 hours. Aqueous cell extract samples were collected,
and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the plot represents
one sample. Grey = ethanol control; pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM; red = 1.0
mM fatty acids.
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Figure 3.6 Hotelling’s T2 plot created from PCA scores plot in Figure 3.5. Samples above the red line
of the 99% confidence level are considered to be true outliers. Sample C5 is circled in red.

As the PCA model did not show distinct sample group separation between the treated
and control groups along with much intragroup variation, the sample spectra were
further analysed using OPLS. This is a supervised statistical approach, used to
visualise inter- and intra-group variation based on sample class differences. The
OPLS scores plot obtained for this model is shown in Figure 3.7. In general, there was
better sample group separation than in the PCA scores plot with sample groups spread
along the horizontal predictive t[1] axis according to class. The control samples were
located on the left of the plot but showed significant intragroup variation along the
orthogonal t[0] axis. Despite this, there was good clustering within the 0.1 mM treated

group, and samples in this group were separate from the controls and found on the
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lower left quadrant of the plot. Similar to the results seen in the PCA plot there
remained some overlap between the 0.25 and 0.5 mM sample groups. This was mostly
due to samples 0.5(2) and 0.25(6) being located close together on the scores plot.
However, it was still possible to visualise separation between the two groups with
samples from the 0.25 mM treated group mostly clustered around the centre of the
scores plot while the 0.5 mM were located in the top right-hand corner. The 1 mM
treated samples were found on the right lower quadrant of the plot and positive for t[1]

separated from all other groups.

Figure 3.7 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = ethanol control; pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM;
red = 1.0 mM fatty acids.

Following OPLS analysis each treated group was then compared directly against the
control group using OPLS-DA analyses to identify changes in metabolites due to the
treatment with fatty acids at each of the different dose levels. Consecutive dose level
groups were also analysed using OPLS-DA to identify dose-related metabolite

changes.

Each of the OPLS-DA scores plots constructed (Figure 3.8) demonstrated good
separation between the ethanol control and the treated groups for each pair-wise
comparison along the t[1] predictive axis. In all plots, the control sample group was
located on the left side of the plot. Additionally, similar to the results obtained from the

PCA and OPLS analyses there was significant intragroup variation along the
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orthogonal t[0] axis for samples from the control group mainly due to control sample 1
(C1).
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Figure 3.8 OPLS-DA scores plots derived from "H NMR spectra of aqueous extracts from HepG2 cells
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected, and
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 mM fatty acid. C. Control vs
0.5 mM fatty acid. D. Control vs 1.0 mM fatty acid.

The OPLS-DA scores plots shown in Figure 3.9 demonstrated good separation
between the consecutive dose level groups along the predictive t[1] axis. In each plot
the lowest dose level group was set as class one in the pair-wise comparison and was
located on the left-hand side of the scores plot. Significant intragroup variation was
observed along the orthogonal t[0] axis particularly for the 0.1, 0.5 and 1 mM treated

groups.
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Figure 3.9 OPLS-DA scores plots derived from "H NMR spectra of aqueous extracts from HepG2 cells
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected, and
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5 vs 1 mM. Pink = 0.1 mM,
green = 0.25 mM, dark blue = 0.5 mM and red = 1.0 mM fatty acids.

Using the OPLS-DA models VIP predictive and S-plots (Figures 3.10 and 3.12) were
generated to determine the metabolite regions in the NMR spectra that contributed
most to the separation of the two groups in each pair-wise comparative scores plots.

The VIP plots revealed NMR regions that were statistically significant and the regions

103



with a VIP value greater than one are highlighted in red in both the VIP and S-plots.
The S-plots were then used to confirm whether peaks within these specific NMR
variable regions had increased or decreased between the two groups being
compared. VIP and S-plots were also constructed for consecutive dose levels and are
shown in Figures 3.11 and 3.13.

Following this, the integrated spectral values were evaluated using a Kruskal-Wallis
test to determine if any of the metabolite regions highlighted in the VIP were

statistically significant between the groups in the pair-wise comparisons.
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Figure 3.10 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts
from HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic
acid at0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected, and NMR analysis
was carried out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs
0.25 mM fatty acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM fatty acid. Variables with
a VIPpred value above 1 were selected as significant and are highlighted in red. Variable regions are

shown along the x-axis.
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Figure 3.11 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts
from HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic
acidat0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected, and NMR analysis
was carried out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C.
0.5 vs 1 mM fatty acids. Variables with a VIPpred value above 1 were selected as significant and are
highlighted in red. Variable regions are shown along the x-axis.
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Figure 3.12 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0,
0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected, and NMR analysis was
carried out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25
mM fatty acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM fatty acid.
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Figure 3.13 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0,
0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected, and NMR analysis was
carried out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5
vs 1 mM fatty acids.

NMR regions that were confirmed as being statistically different were recorded and
the NMR spectra was closely examined to identify multiplicities of the peaks in these
regions to aid with the identification of metabolites. Following identification of peaks

using the Human Metabolome database, it was clear that there were a number of
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metabolite changes including an increase (p<0.001) in peaks that were thought to
belong to alanine and betaine in the extracts from fatty acid treated cells. There also
appeared to be decreases in methylacetate (p<0.01) and lactate (p<0.05). Peaks for
phosphocholine, creatine and serine were all increased in the 0.1, 0.25 and 0.5 mM

treated groups but not in the 1 mM treated group.
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Table 3.1 Chemical shift regions, and potential metabolites, identified as significantly different in the
NMR of aqueous extracts from HepG2 cells treated with increasing concentrations of fatty acids when

compared to control.

'H shift ppm Metabolite Ctrl Ctrl Ctrl Ctrl 0.1 0.25 0.5
aqueous VS VS S S VS VS VS
0.Mm | 0.25 | 0.5m | 1mM | 0.25 | 0.5m | 1mM
M mM M mM M
0.891-0.992(m) Leucine - 1 Prx 1 1 1 ;
1.031-1.062(d) Isoleucine - x> - - 1 - R
1.31-1.35(d) Lactate i ! ! ! - 1 -
1.467-1.501(d) Alanine 1 { Rl B ool 1 1 - 1
1.9-1.93(s) Acetate i - - - - 1 1
2.013-2.18(m) Glutamate, * - - 1 1* 1 *
Homocysteine
2.335-2.345(t of Glutamate, B- ! 1 1 1 1 1 1
d) hydroxybutyrate,
Proline
2.415-2.429(s) Succinate - 1 A 0 1 1 1
2.44-2.48(m) Glutamate i 1 T+ - 1 1 1
2.72-2.74(s) Dimethylamine ! - - l 1 - e
2.81-2.824(s) Aspartate - 0 T 1 1 - 1
3.028(d) 3.03- Creatine, 1 £ 0 - 0 - 1
3.055(s) Phosphocreatine,
Creatinine
3.143-3.1607(s) Choline ! - - ! - 1 1
3.216-3.2301(s) | Phosphocholine 1 1 1 - - - 1
3.255-3.265(s) Betaine, TMAO 1 £ 1 0 1 - 1
3.535-3.55(d) Choline - 0 1 - 1 - 1
3.619-3.628(s) Glycine - ) - - 1 - 1
3.699-3.711(s) Methylacetate U ! ! - 1 1 1
3.73-3.749(s) Citrulline ! - - ! 1 1 1
3.94-3.955(m) Serine 1 A 1 - 1 ! 1
4.09-4.125(d) Proline 1 pr T 0 - - -
4.173-4.199(d) | Phosphocholine 1 1 T* - - - 1
4.26-4.275(m) Threonine - 0 1 - 1 1 N
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5.22-5.245(d) Glucose - R T 1 . : -

8.45-8.469(s) Formate i - - ! - - -

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001)
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3.3.5 Metabolomic analysis in organic monolayers cell extracts

The NMR spectra of organic cell extracts from HepG2 cells dosed with a 2:1 mixture
of oleic and palmitic acid at 0, 0.1, 0.25, 0.5 and 1.0 mM in this study were also

obtained and further analysed using multivariate analysis.

From a visual inspection of the NMR spectra no differences between the control and
the treated groups could be observed. Therefore, a PCA scores plot was constructed
(Figure 3.14A). However, some samples, 0.5(4), 1(1) and 1(2), fell outside the 95%
ellipse in the initial scores plot. The spectra for these samples were examined and re-
processed to rule out experimental or analytical error. Nevertheless, analysis of the
Hotelling’s T2 plot shown in Figure 3.14B confirmed that sample 0.5(4) was above the
99 % confidence level and this sample was therefore excluded from further analysis.
Samples 1(1) and 1(2) were found to be between the 95 % and 99 % confidence level
and were not deemed to be true outliers meaning they were included in all further

analyses.

After the removal of sample 0.5(4), a second PCA model was created, and the
resulting PCA scores plot is shown in Figure 3.15. The figure shows the control
samples were all negative for PC2 whereas the majority of the treated samples were
positive for PC2, thus indicating a difference between the control and treated groups.
Some separation can be seen between the 0.1, 0.25 and 0.5 mM sample groups but
they are not distinctly separated from each other. Meanwhile the 1.0 mM samples
were spread across the left-hand side of the PC1 axis showing great intragroup
variation. Samples 1(1) and 1(2) were still located just outside the ellipse and were re-

checked and remained between the 95 % and 99 % confidence level.
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Figure 3.14 PCA scores and Hotelling’s plot derived from 'H NMR spectra of organic extracts from
HepG2 cells dosed with fatty acids at various dose levels. A. PCA scores plot with no samples excluded.
B. Hotelling’s T2 plot created from PCA scores plots showing samples outside the 95 and 99%
confidence levels. Cells were dosed with a 2:1 mixture of oleic and palmitic acid at 0, 0.1, 0.25. 0.5 and
1 mM and incubated for 24 hours. Samples were collected, and NMR analysis carried out as described
in Sections 2.10 and 2.12. Each spot on the scores plot represent one sample. Grey = Ethanol control;
pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM; red = 1.0 mM. In the Hotelling’s plot (B) samples
above the red line of the 99% confidence level are considered to be outliers.
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Figure 3.15 PCA scores plot derived from "H NMR spectra of organic extracts from HepG2 cells dosed
with fatty acids at various dose levels. PCA scores plot with sample 0.5 (4) excluded. Cells were dosed
with a 2:1 mixture of oleic and palmitic acid at 0, 0.1, 0.25. 0.5 and 1mM and incubated for 24 hours.
Samples were collected, and NMR analysis carried out as described in Sections 2.10 and 2.12. Each
spot on the scores plots represents one sample. Grey = Ethanol control; pink = 0.1 mM; green = 0.25
mM; dark blue = 0.5 mM; red =1.0 mM.

Since the second PCA scores plot (Figure 3.15) did not show definitive separation
between the 0.1, 0.25 and 0.5 mM treated groups a OPLS analysis was conducted.
The resulting OPLS scores plot (Figure 3.16) demonstrates clear separation of the
control and 1 mM samples from all other groups with the control group negative for
t[1] while the 1 mM samples were positive for t[1]. However, large intragroup variation
along the t[0] axis was evident for samples in each of these two groups. The remaining
sample groups (0.1, 0.25 and 0.5 mM) were clustered together in the lower half of the
scores plot, fairly close to the centre of the plot. There was clear separation between
the 0.1 and 0.5 mM samples, however the 0.25 mM samples overlap both of these

groups.
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Figure 3.16 OPLS scores plot derived from 'H NMR spectra of organic cell extracts from HepG2 cells
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid:
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = Ethanol control; pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM;
red = 1.0 mM fatty acids.

Following OPLS analysis all treated groups were compared against the control group
using OPLS-DA. In all OPLS-DA scores plots (Figure 3.17) the control and the treated
groups were separated along the t[1] axis. Orthogonal variation within the groups
along the t[0] axis were also apparent for all sample groups, particularly the control
groups. This reflects similar intragroup variation seen in the PCA and OPLS models
(Figures 3.15 and 3.16). For example, in the 1 mM treated group sample numbers 1,2,
and 3 are separated from the other samples within the group in the PCA and OPLS
scores plots with samples 1 and 2 outside the ellipse and this is clearly visible in the
OPLS-DA plots.
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Figure 3.17 OPLS-DA scores plots derived from 'H NMR spectra of organic extracts from HepG2 cells
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected and
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 mM fatty acid. C. Control vs
0.5 mM fatty acid and D. Control vs 1.0 mM fatty acid. Grey = Ethanol control; pink = 0.1 mM, green =
0.25 mM, dark blue = 0.5 mM and red = 1.0 mM fatty acids.

Consecutive dose levels were also analysed using OPLS-DA analysis. In all OPLS-
DA scores plots (Figure 3.18) the two groups being compared were separated along
the t[1].
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Figure 3.18 OPLS-DA scores plots derived from 'H NMR spectra of organic extracts from HepG2 cells
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected and
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5 vs 1 mM. Grey = Ethanol
control; pink = 0.1 mM, green = 0.25 mM, dark blue = 0.5 mM and red = 1.0 mM fatty acids.

Following the analysis of the OPLS-DA models VIP predictive and S-plots were
generated to determine the metabolite regions contributing most to the separation of
the groups in the pair-wise comparison scores plots. Variable regions with a VIP value

greater than one were highlighted and are shown in red in both plots. Figures 3.19 and
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3.21 show changes in control versus treated groups while Figures 3.20 and 3.22

represent comparison between consecutive dose groups.

Regions of interest according to the VIP list were selected for a Kruskal Wallis analysis
to test for statistical significance. The characteristics of the NMR peaks in these
regions were then determined to enable identification of metabolites and compounds

responsible for these peaks. Table 3.2 shows the identified compounds.
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Figure 3.19 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts from
HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid
at 0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected and NMR analysis
was carried out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs
0.25 mM fatty acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM. Variables with a VIPpred
value above 1 were selected as significant and are highlighted in red. Variable regions are shown along
the x-axis.
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Figure 3.20 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts from
HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid
at 0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected and NMR analysis
was carried out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C.
0.5 vs 1 mM. fatty acid. Variables with a VIPpred value above 1 were selected as significant and are
highlighted in red. Variable regions are shown along the x-axis.
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Figure 3.21 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 cells
treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1,
0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried
out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 mM fatty
acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM.
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Figure 3.22 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 cells
treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1,
0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried
out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25vs 0.5 mM and C. 0.5 vs 1 mM
fatty acid.

According to the Kruskal Wallis test there were no significant increases between these
data sets. However significant decreases (p<0.01) in peaks responsible for fatty acyl
groups and cholesterol (p<0.05) were observed in the 1 mM treated group when
compared to the ethanol control. Some dose related responses could be seen
between the treated and control groups, particularly in acyl groups in triglycerides
which showed a decrease in the 0.1 and 0.25 mM treated groups and increases in the

0.5 and 1 mM groups.
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Table 3.2 Chemical shift regions identified as significantly different in the organic extracts of HepG2
cells treated with different concentrations of fatty acids as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

"H shift ppm Metabolite Ctrl Ctrl Ctrl Ctrl {0.1vs| 0.25 |0.5vs
organic VS VS VS VS 0.25 VS 1mM
0.1m | 0.25 | 0.5m | 1mM mM 0.5m
M mM M M
0.806- Fatty acyl groups 1 - ! 1 ! ! !
0.937(m) and Fatty acids
1.05-1.13(m) Cholesterol ! - - - ! ! !
1.221- Cholesterol 1 - ! l* ! ! !
1.305(s)
1.54-1.62(s) | Arachidonic acid 1 1 1 1 ! 1 !
(ARA)
1.702- Fatty acids - l 1* 1 ! !
1.724(s) Eicosapentaenoic !
acid (EPA)
2.008- Oleic acid ! l 1 1 1 1 1
2.062(q)
2.31- Acyl groups in ! l 1 1 1 1 1
2.365(m) triglycerides
4.145- Glyceryl group in - - - 1 1 1 1
4.203(dd) monoglyceride
4.294- Glyceryl group in - - - 1 - 1 1
4.349(dd) Triglycerides
5.266- Oleic acid - - - 1 - - -
5.322(m)
5.338- Fatty acids ! - - 1 1 1 1
5.433(m) /Monounsaturate
d fatty acids
(MUFA)

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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3.3.6 CYP enzyme expression levels in monolayer HepG2 cells dosed with fatty
acids.

CYP expression in protein extracts from the HepG2 monolayers dosed with a 2:1
mixture of oleic and palmitic acid at different dose levels were analysed using Western
blotting, as described in Section 2.20. A standard protein marker was used for all
Western blots which aided the identification of target proteins (Appendix Figure 8.1).
For all blots, the level constituent cell protein beta actin (Figure 3.23A) was used to
ensure equal loading of different cell samples. Figures 3.23 B, C and D showed
CYP2D6, CYP 3A4 and CYP2E1 expression levels, respectively at the different fatty
acid concentrations. In this study the results showed no real trend for any of the CYP
at the different dose levels. However, as N=1 in this study further experimentation is
needed. Despite this, it is worth pointing out that all CYPs were detected in the

monolayers.

EC 0.1 mM 0.25 mM 0.5mM 1mM

A.Beta actin 42 kDa ” - ” .

B.CYP2D6 55kDa

C.CYP3A4 57kDa . . - . (3

e R

D.CYP2E1 57 kDa - -
- —

Figure 3.23 Western blot analysis of CYP enzyme expression in HepG2 monolayers dosed with fatty
acids. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Cells were dosed with a combination
of oleic and palmitic acid at varying concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were
collected as described in Section 2.16. Western blotting was carried out as described in Section 2.20.
EC: Ethanol control, 0.1 mM, 0.25 mM, 0.5 mM and 1 mM fatty acids.
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Table 3.3 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2
monolayers dosed with fatty acids relative to the ethanol control. Cells were dosed with a combination
of oleic and palmitic acid at varying concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were
collected as described in Section 2.16.

Fatty acid concentration (mM) CYP2D6 CYP3A4 CYP2E1
Ethanol control 8866.73 19733.31 3437.28

0.1 8006.25 33595.34 3877.83

0.25 12146.08 17037.36 3102.69

0.5 5816.64 14519.87 4515.52

1 5650.5 7522.39 2844.05
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3.3.7 3D spheroid model dosed with fatty acids

As mentioned in Section 3.1 this study was interested in the development of a 3D
spheroid model of steatosis. HepG2 spheroids were grown for 17 days and dosed with
a 2:1 mixture of oleic and palmitic acid at dose levels of 0.5 and 0.1 mM fatty acids to
analyse changes in the metabolome and proteome when compared to control. Dose
levels were chosen based on the results of the viability (Section 3.3.1) and triglyceride
assays (Section 3.3.3) as conducted in the monolayers. The low dose chosen as 0.1
mM despite a lack of significance in the monolayer since spheroids are considered to
be more sensitive to toxicants. The high dose was chosen as 0.5 mM to avoid any

cytotoxicity.

3.3.8 Scanning electron microscopy of HepG2 spheroids

To confirm the formation of spheroids cell cultures were visualised using scanning
electron microscopy. Figure 3.24 shows the scanning electron microscopy image of

cultures following incubation after 14 days and confirms the presence of spheroids.

Figure 3.24 Scanning electron microscopy images following 14 days of culture. Spheroids were grown
in low attachment 6-well plates as described in Section 2.3 and images were taken on day 14 of culture.
A. x100 magnification, B, C and D. x500 magnification.
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3.3.9 Cytotoxicity assay for spheroids dosed with fatty acid

A LIVE/DEAD assay was used to visualise viable cells in the spheroids following
dosing with fatty acids at both 0.1 and 0.5 mM after 17 days of growth. The LIVE/DEAD
assay stains viable cells green and non-viable cells red as described in Section 2.22.
Figure 3.25 shows the confocal microscope images of control and fatty acid-treated
spheroids. No red cells were apparent in either control of fatty acid-treated spheroids
confirming that dosing spheroids with 0.1 and 0.5mM fatty acids (Figure 3.25 B and

C) did not cause cell death.

Figure 3.25 Images taken from the LIVE/DEAD assay of spheroids dosed with fatty acids. Spheroids
were grown in low attachment 6-well plates as described in Section 2.3 and dosed with a 2:1
combination of oleic and palmitic acid at concentrations of 0 (ethanol control), 0.1 and 0.5 mM. The
LIVE/DEAD assay was carried out as described in Section 2.22. A. Ethanol control, B. 0.1 mM fatty
acids and C. 0.5 mM fatty acids.

An LDH assay was carried out to determine whether the administration of fatty acids
caused LDH leakage from spheroids into the media due to cytotoxicity. Figure 3.26
confirms that dosing spheroids with fatty acids at both 0.1 and 0.5 mM did not cause
cell death when compared to the ethanol control. The percentage cytotoxicity for the
spheroids treated with 0.1 mM fatty acid was 0.11% while the control and 0.5 mM fatty

acid-treated spheroids showed 0% cytotoxicity.
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Figure 3.26 HepG2 spheroid cell death in response to increasing fatty acid concentration assessed by
LDH assay. HepG2 spheroids were treated with a 2:1 mixture of oleic and palmitic acid at
concentrations of 0, 0.1 and 0.5 mM and incubated for 24 hours as described in Section 2.5.1. The
value obtained for the positive control represents 100% cell death. The LDH assay was carried out as

described in Section 2.21. The values shown represent the mean of six replicates. Error bars represent
standard deviation.

3.3.10 Triglyceride accumulation in spheroids dosed with fatty acids

Lipid accumulation was assessed in HepG2 spheroids in this study using a commercial
triglyceride assay kit. The results shown in Figure 3.27 revealed no difference in
triglyceride accumulation between the control and 0.1 mM fatty acid-treated groups
(30.4 and 29 ug, respectively). However, there was a significant increase (p>0.05) to
48 ug in the 0.5 mM fatty acid-treated group.
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Figure 3.27 Mean triglyceride content in HepG2 spheroids following treatment with fatty acids. HepG2
cells were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 (ethanol control),
0.1 and 0.5 mM fatty acids and incubated for 24 hours. The triglyceride assay was carried out as
described in Section 2.8. The values shown represent the mean of six replicates. Error bars represent
standard deviation. Statistically significant differences were analysed using Kruskal-Wallis (*<0.05).

3.3.11 Metabolomic analysis of aqueous spheroid extracts

HepG2 spheroid sample extracts were collected following a 24-hour incubation in
culture media supplemented with fatty acids two different dose levels (0.1 and 0.5
mM). Aqueous extracts were prepared and analysed by NMR as described in Section
2.11. Multivariate analysis was then used to determine changes in the metabolite

profile of spheroids in response to fatty acids.

Visible inspection of NMR spectra obtained from aqueous spheroid extracts did not
show any differences between treated groups and the control group (data not shown).
Therefore, a PCA scores plot was constructed to identify differences between the
groups, as shown in Figure 3.28. The scores plot demonstrates separation between
the different sample groups with all the control samples positive for PC2 and in the
upper half of the plot while the majority of the treated samples were negative.
However, large intragroup separation can be seen with samples from all groups

spread across the PC1 axis.
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Figure 3.28 PCA scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 spheroids
dosed with a 2:1 mixture of oleic and palmitic acid at different dose levels (0, 0.1 and 0.5 mM). Spheroids
were dosed with 0, 0.1 and 0.5 mM fatty acids and incubated for 24 hours. Samples were collected and
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample.
Grey = Ethanol control; blue = 0.1 mM; red = 0.5 mM.

Following on from the PCA analysis the NMR data was further analysed using OPLS
analysis. The scores plot obtained, shown in Figure 3.29, revealed better inter-group
separation than the PCA model. The majority of the treated samples were positive
along the predictive t[1] axis. Some intragroup variation can be seen for all treated
groups along the orthogonal t[0] axis with samples 0.1 mM (2 and 5) and 0.5 mM (4
and 5) being negative for t[0] while the remainder of their respective groups were
positive. Large intragroup separation was also observed in the ethanol control group

which has 3 samples positive for t{0] and 3 that are negative.
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Figure 3.29 OPLS scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 spheroids
dosed with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1 and
0.5 mM. Spheroids were dosed with 0, 0.1 and 0.5 mM fatty acids and incubated for 24 hours. Samples
were collected and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot
represents one sample. Grey = Ethanol only control; blue = 0.1 mM; red = 0.5 mM.
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Further analysis of the NMR spectra in this study included the generation of OPLS-DA
scores plots to carry out pair-wise comparisons of the control group versus the two
treated groups as well as a direct comparison of the two treated groups. All OPLS-DA
scores plots generated showed clear separation between the sample groups being
compared along the t[1] axis (Figures 3.30) but orthogonal separation within each

group was also visible along the t[0] axis in each plot.
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Figure 3.30 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2
spheroids dosed with a 2:1 mixture of oleic and palmitic acid at varying dose levels. Spheroids were
dosed with a combination of oleic and palmitic acid at 0, 0.1 and 0.5 and incubated for 24 hours.
Samples were collected, and NMR analysis was carried out as described in Sections 2.10 and 2.12.

132



Each spot on the scores plot represents one sample. A. Control vs 0.1 mM fatty acids. B. Control vs
0.5 mM fatty acids. C. 0.1 vs 0.5 mM.

Using the OPLS-DA models VIP predictive and S-plots (Figures 3.31 and 3.32) were
generated to determine the metabolite regions in the NMR spectra that contributed
most to the separation of the two groups in each pair-wise comparative scores plots.
The VIP plots revealed NMR regions that were statistically significant and the regions
with a VIP value greater than one are highlighted in red in both the VIP and S-plots.
The S-plots were then used to confirm whether peaks within these specific NMR
variable regions had increased or decreased between the two groups being

compared.

H]
&
s

EYLFEJEHERRR

133



ViFpred

Figure 3.31 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts
from HepG2 spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations
at 0, 0.1 and 0.5 mM. Samples were collected and NMR analysis was carried out as described in
Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acids. B. Control vs 0.5 fatty acids. C. 0.1 vs 0.5
mM. Variables with a VIPpred value above 1 were selected as significant and are highlighted in red.
Variable regions are shown along the x-axis.
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Figure 3.32 S-plot derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations at 0, 0.1 and
0.5 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried out as
described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acids. B. Control vs 0.5 mM fatty acids.
C.0.1vs 0.5 mM.

Using the spectral regions highlighted in the VIP and S-plots visual inspection of the
"H NMR spectra was conducted to identify the multiplicity of the peaks within these
regions. A Kruskal Wallis test was also conducted to determine if there were any
statistically significant differences between the regions. The Human Metabolome
database and published literature were employed to identify metabolites thought to be
responsible for peaks in the important VIP regions. However, it was not possible to
identify all of the peaks considered significant and many remain unidentified (data not
shown). Despite this, Table 3.4 shows that changes in metabolite peaks thought to
belong to methionine, phosphocholine, betaine and glycine were apparent (although
not statistically significant) in both treated groups when compared to the control.
Succinate was significantly increased (p<0.05) in the 0.5 mM treated group when

compared to the 0.1 mM group.

135



Table 3.4 Chemical shift regions identified as significantly different in the aqueous extracts of HepG2
spheroids treated with different concentrations of fatty acids as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

"H shift ppm Metabolite Ctrl + Ctrl 01+05
agueous 0.1mM +0.5mM mM
0.886-0.974 (m) Acyl groups 1 1 1
(CHs)
1.188-1.212 (d), B- 1 - !
1.166-1.203 (t) hydroxybutyrate
1.314-1.3458 (d) Lactate ! - 1
1.911-1.926 (s) Acetate - 1 1
1.99-2.1 (m) Methionine, 1 1 1
Glutamine
2.294-2.431 (m) Glutamate 0 - 0
2.415-2.431 (s) Succinate - 1 1*
3.03-3.049 (s) Creatine 1 - 1
3.217-3.231(s) Phosphocholine, 1 1 -
Choline
3.255-3.267 (s) Betaine/TMAO 1 1 1
3.5021-3.511 (s) Glycine 1 1 -
3.515-3.552 (dd) Choline - 1 -
3.881-3.919 (dd) Methionine, 1 1 1
Homocysteine
3.937-3.945 (s) Creatine, 1 1 1
Phosphocreatine
5.22-5.245 (d) Glucose - 1 -

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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3.3.12 Metabolomic analysis of organic spheroid extracts

Organic extracts from HepG2 spheroids were also analysed using NMR spectroscopy.
Since visual inspection of the 1D NMR spectra showed no obvious similarities between
the two groups treated with fatty acids and the vehicle control multivariate analysis
was carried out. Clear separation was observed in the PCA scores plot (Figure 3.33)
between the vehicle control group (in grey) and the two treated groups along PC1 with
the exception of sample C1. All samples in the 0.5 mM treated group apart from 0.5(5)
were located in the lower quadrant of the scores plot while the majority of the 0.1 mM
group were in the top right-hand except for 0.1(5) and 0.1(3). However, some
intragroup variation was evident particularly for the 0.1 mM treated group. The PCA
scores plot also showed a lack of complete separation between the 0.1 and 0.5 mM

treatment groups.

Figure 3.33 PCA scores plot derived from 'H NMR spectra of organic extracts from HepG2 spheroids
dosed with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1 and
0.5 mM. Cells were dosed with 0, 0.1 and 0.5 mM valproate and incubated for 24 hours. Samples were
collected, and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents
one sample. Grey = Ethanol control; blue = 0.1 mM; red = 0.5 mM.

As the PCA analysis failed to show clear sample group clustering an OPLS scores plot
was created. However, Figure 3.34 demonstrates that the OPLS analysis revealed
similar results to the PCA (Figure 3.33) with the control groups separated from the
treated groups along the t[1] axis and the treated groups clustered together on the
right-hand side of the scores plots. The intragroup separation within the 0.1 mM groups

was also visible along the t[0] orthogonal axis.
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Figure 3.34 OPLS scores plot derived from '"H NMR spectra of organic extracts from HepG2 spheroids
dosed with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1 and
0.5 mM. Cells were dosed with 0, 0.1 and 0.5 mM valproate and incubated for 24 hours. Samples were
collected and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents
one sample. Grey = Ethanol control; blue = 0.1 mM; red = 0.5 mM.

To identify if there are any metabolite differences between the control and the two
treatment groups and also between the 0.1 and 0.5 mM groups OPLS-DA models
were created (Figure 3.35). In Figures 3.35 A and B clear separation was revealed
when the control group was compared with both the 0.1 and 0.5 mM groups. For each
pair-wise comparison the controls were located on the left-hand side of the scores
plots with the exception of control sample 1 (C1) while the respective treated groups
were on the right. Intragroup variation in the 0.1 mM group, as seen in the PCA and
OPLS models, was still visible in the OPLS-DA models.

Figure 3.35 C shows the OPLS-DA scores plot constructed to directly compare the 0.1
mM group with the 0.5 mM group. As expected from the PCA and OPLS models
complete separation between the treated groups along the t[1] axis was not achieved.
Samples 0.1 (4 and 6) were separated from all other samples in the analyses which is
likely due to the large intragroup variation within this sample group. Sample C1 was
also located away from the other control samples and located on the right-hand side

of the scores plot.

The OPLS-DA models were then used to identify treatment-related metabolite peak
changes using the corresponding VIP and S-plots (Figure 3.36 and 3.37) NMR
spectral regions with VIP values higher than 1 (shown in red) were considered to be
significantly different and responsible for sample group separation and were selected

for further analyses.
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Figure 3.35 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2
spheroids dosed with a 2:1 mixture of oleic and palmitic acid at varying dose levels. Cells were dosed
a combination of oleic and palmitic acid at 0, 0.1 and 0.5 and incubated for 24 hours. Samples were
collected, and NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the
scores plot represents one sample. A. Control vs 0.1 mM fatty acids B. Control vs 0.5 mM fatty acids
C. 0.1 vs 0.5 mM fatty acids.

139



286
922
9.8
B9
586
67
682
606
034
0.0600002
9.58
6.58
614
486
a8
382

0.0200002

Figure 3.36 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts from
HepG2 spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations at 0O,
0.1 and 0.5 mM. Samples were collected and NMR analysis was carried out as described in Sections
2.10 and 2.12. A. Control vs 0.1 mM fatty acids B. Control vs 0.5 mM fatty acids C. 0.1 vs 0.5 mM fatty
acids. Variables with a VIPpred value above 1 were selected as significant and are highlighted in red.
Variable regions are shown along the x-axis.
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Figure 3.37 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2
spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations at 0, 0.1 and
0.5 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried out as
described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acids B. Control vs 0.5 mM fatty acids
C. 0.1 vs 0.5 mM fatty acids.

Following the identification of the spectral regions of interested from the VIP and S-
plot models a visual inspection of these regions on the NMR spectra was carried out
to evaluate multiplicity of the peaks within these regions (data shown in Table 3.5).
Several other spectral regions were also identified as contributors to class separation;

however, metabolite identification was not possible. A Kruskal Wallis test was
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conducted to analyse statistically significant differences between the integral spectral

values.

Significant differences between the treated groups and controls included increases
(p<0.01) in fatty acyl groups, cholesterol and monounsaturated fatty acids in the 0.5
mM group. Arachidonic acid was the only metabolite to show a significant decrease
(p<0.01) in both treated groups. A dose dependent response can be seen in the
majority of metabolites with many of them including FA/MUFA, fatty acyl groups and

cholesterol showing significant increases in the 0.5 mM but not in the 0.1 mM.

Table 3.5 Chemical shift regions identified as significantly different in the organic extracts of HepG2
spheroids treated with different concentrations of fatty acids as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

"H shift ppm Metabolite Ctrl + Ctrl 0.1+0.5
agqueous 0.1mM | +0.5mM mM
0.886-0.9262(t) Fatty acyl groups and FA 1 T** 1
1.028-1.038(s) Cholesterol 1 1** -
1.1317-1.168(m) Multiple cholesterol protons 1 1 -
1.5625-1.605(s) Arachidonic acid (ARA) 1 1 !
2.008-2.065(q) Oleic acid 1 1 1
2.3129-2.365(m) Acyl groups in triglycerides 1 T* 1
4.145-4.193(dd) Glyceryl group in 1 1 1
monoglyceride
4.295-4.3404(dd) Glyceryl group in 1 T* 1
triglycerides
5.267-5.315(m) Oleic acid 1 1 1
5.327-5.414(m) Fatty acids/Monounsaturated 1 1 1
fatty acids MUFA

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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3.3.13 CYP enzyme expression levels in spheroid HepG2 cells dosed with fatty
acids

Western blotting of protein extracts in this experiment were performed, as described
in Section 2.20, to analyse CYP expression in the HepG2 spheroids dosed with a 2:1
mixture of oleic and palmitic acid at different dose levels. For all blots, beta actin
(Figure 3.38A) was used as a loading control. Figures 3.38 B, C and D showed
CYP2D6, CYP 3A4 and CYP2E1 expression levels, respectively at the different fatty
acid concentrations. Table 3.6 showed the relative band intensity for each target
protein and revealed no significant dose related change for any of the CYPs. Similar
to the Western blots for the monolayers all CYPs were detected however, no dose
related responses were observed. This would suggest that spheroids do not have a

higher CYP expression than monolayers.

EC 0.1mM 0.25 mM 0.5mM 1mM

A Befaactin42kDa | gy ” = - ” :

o n ™ ©

B. CYP2D6 55 kDa | .

C. CYP3A4 57 kDa

D. CYP2E1 57 kDa

Figure 3.38 Western blot analysis of CYP enzyme expression in HepG2 spheroids dosed with fatty
acids. A. Beta actin, B. CYP 2D6 and C. CYP 3A4. Spheroids were dosed with a combination of oleic
and palmitic acid at varying concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were collected
as described in Section 2.16. Western blotting was carried as described in Section 2.20. EC: Ethanol
control, 0.1 mM, 0.25 mM, 0.5 mM and 1 mM fatty acids.
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Table 3.6 Raw data showing arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 spheroids
dosed with fatty acids. Spheroids were dosed with a combination of oleic and palmitic acid at varying
concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were collected as described in Section 2.16.

Fatty acid concentration
(mM) CYP2D6 CYP3A4 CYP2E1
Ethanol control 15003.12 9384.54 3820.28
0.1 11604.32 9945.903 5014.35
0.25 7191.71 8436.35 4501.64
0.5 15045.58 11642.34 1729.50
1 11819.44 8233.32 1588.79
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3.4 Discussion

The first objective of the present study was to create in vitro models of steatosis in
monolayer cells and 3D spheroids grown from HepG2 cells. The HepG2 cell line was
chosen for this study since it has been widely used for the development of NAFLD
cellular models (Dave et al., 2018, Muller and Strula, 2019, Soret et al., 2021). Many
studies have used HepG2 cells for the evaluation of steatosis primarily because they
can be easily treated with a combination of fatty acids and the resulting steatosis
presents morphological similarities to steatotic hepatocytes in vivo (Cui et al., 2010,
Choi et al., 2015, Dave et al., 2018, Muller and Strula, 2019, Soret et al., 2021). For
this study monolayers were cultured for 24 hours to allow them to attach overnight
before use. Meanwhile spheroids were grown for 17 days in DMEM media prior to
dosing. Selecting the ideal number of days to grow the spheroids before dosing is vital
since the expression of albumin and a number of important drug metabolizing
enzymes including CYP P450 enzymes and transporters (DMETS) increases with time
as the HepG2 spheroids grow (Cox et al., 2020). Many studies have analysed spheroid
growth and proteomic changes at days 7, 14, 21 and 28 (Eilenberger et al., 2019, Cox
et al., 2020, Ellero et al., 2021, Tutty et al., 2022, Gronert et al., 2023). Ellero et al.,
(2021) demonstrated that protein concentration in spheroids grown through the
hanging drop method increased within the first two weeks of culture but then plateaued
from days 14 to 28. While Gronert et al., (2023) demonstrated the highest albumin
expression was observed in the spheroids grown by the forced floating method with a

time-dependent increase up to 1257% at day 21.

Although the ability to culture for longer is an important advantage of 3D spheroids,
when compared to 2D monolayers the longevity of these model systems is limited by
the development of a hypoxic and necrotic core. This unwanted phenomenon due to
the 3D structure of spheroids results from the accumulation of metabolic waste
products and insufficient diffusion of oxygen and nutrients (Eilenberger et al., 2019,
Cox et al., 2020). Development of a necrotic core, however, depends on the size of
the spheroids and, therefore, is typically associated with 3D spheroids formed with
proliferating cells, which become larger over time (Cox et al., 2020). Eilenberger et al.,
(2019) measured spheroid growth, solidity and roundness between days 3 to 5, 6 to

12 and 15 to 18 of growth. They reported an increase in the diameter of the spheroids
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over the first 9 days from 746 £ 12 ym to 857 £ 19 ym which remained stable for the
following days of culture with 810 £ 30 uym for day 12. At days 15 and 18 there were
decreases in diameter to 766 +51 um and 743 + 10 um, respectively indicating the
start of spheroid disintegration. In their study when spheroids were visualised under
the microscope both early (day 3) and mid-stage spheroids (day 6) revealed the
presence of equally distributed chromatin in the nucleus as well as intact cytoplasm,
thus indicating the cells were viable. In contrast, late-stage spheroids at day 18
displayed typical apoptotic characteristics with loss of integrity of the outermost lining
layer (Eilenberger et al., 2019). Taking this into account, in the present study day 17
was chosen for spheroid collection as this was prior to the loss of spheroids cell
viability but still maintained the highest protein expression. However, the spheroids
collected throughout these experiments were different sizes meaning the necrotic core
may have been bigger in some spheroid. Nevertheless, the results from the viability

testing of spheroids showed that they were still viable at the time of analysis.

This study aimed to create two models of mild steatosis using fatty acids. Oleic and
palmitic acid are long-chain fatty acids found in dietary sources meaning normal
healthy subjects are exposed to both in the diet (Juarez-Hernandez et al., 2016, Rada
et al., 2020). However, consistently high levels of dietary palmitic and oleic acid can
lead to increased lipid accumulation in the liver (Ricchi et al., 2009, Lyall et al., 2018,

Zeng et al., 2020) and therefore hepatic steatosis.

The use of oleic and palmitic acid for the development of in vitro models of steatosis
have been described extensively in the literature (Gomez-Lechon et al., 2007, Ricchi
et al.,, 2009, Mei et al., 2011, Garcia-Ruiz et al., 2015, Moracova et al., 2015 and
Eynaudi et al., 2021). Studies have reported that oleic and palmitic acid can induce
steatosis in primary hepatocytes and hepatoma cell lines when administered both
individually and as a mixture (Gomez-Lechon et al., 2007, Ricchi et al., 2009, Mei et
al., 2011, Moracova et al., 2015). However, it is known that palmitic acid at high
concentrations (>250 pM) is poorly incorporated into triglycerides and leads to cellular
apoptosis due to a build-up of free fatty acids (Listenberger et al., 2003, Zhang et al.,
2012). Consequently, it has been shown that dosing cells with palmitic acid alone at
concentrations of 0.5 mM and above increases ROS production and promotes

fibrogenesis, thus creating a cell model more suitable for NASH studies (Moracova et
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al., 2015, Dave et al., 2018). Meanwhile, oleic acid supplementation alone is generally
well tolerated by cells and has been shown to result in a dose-dependent increase in
steatosis in both HepG2 cells and primary hepatocytes (Cui et al., 2010, Moracova et
al., 2015, Alkhatabeh et al., 2016, Dave et al., 2018). Studies have suggested that
oleic acid can induce steatosis at doses as low as 0.1 mM (Cui et al., 2010, Alkhatabeh
et al., 2016). However, high concentrations of oleic acid particularly those above 1 mM
can result in a significant rise in lipid peroxides after 24 hours (Cui et al., 2010, Tie et
al., 2021).

Many studies have demonstrated that treating HepG2 cells with a combination of both
fatty acids is considered more effective for inducing a steatotic state that is similar to
the human phenotype (Fan et al., 2013, Moracova et al., 2015, Dave et al., 2018,
Boeckmans et al., 2018). The addition of a small amount of palmitic acid to the oleic
acid leads to lipid accumulation alongside minor toxic and apoptotic effects. This
creates a model that represents a benign state of chronic mild steatosis which is more
relevant to the human form of steatosis (Liang et al., 2015, Moracova et al., 2015,
Dave et al., 2018).

However, the overall concentration of these fatty acids administered to HepG2 cells
and the ratio of oleic to palmitic acid is critical (Moracova et al., 2015, de Sousa et al.,
2021). While studies have shown that oleic acid does not induce alterations in cell
membrane integrity up to concentrations of 1 mM, palmitic acid enhances LDH
leakage at concentrations of 0.25 mM and above (Moracova et al., 2015, de Sousa et
al., 2021). Additionally, cells dosed with oleic acid had a 33% higher cell viability than
those dosed with palmitic acid at concentrations of 0.5 mM (de Sousa et al., 2021).
Therefore, the use of a dosing solution containing a higher proportion of palmitic acid
(e.g., oleic acid/palmitic acid, 1:2 and 0:3 ratio) is more likely to result in reduced cell
viability as the accumulation of excess palmitate can lead to lipotoxicity and cell death,
thus reflecting a NASH model (Dave et al., 2018). A study using the same ratio (1:1
mixture) of the two fatty acids found a significantly lower LDH leakage from the cells,
indicating reduced cell toxicity at overall fatty acid concentrations of 0.5 and 1 mM

compared to when palmitic acid was administered alone (Moracova et al., 2015).
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Other studies have experimented with different ratios and final concentrations of both
fatty acids. For example, Gomez-Lechon et al., (2007) dosed human primary
hepatocytes and HepG2 cells with different ratios of oleic/palmitic acid (3:0, 2:1, 1:1,
1:2 and 0:3) at concentrations of 0.125-2 mM for 12 and 24 hours. They reported a
dose and time dependent increase in fat accumulation with maximal lipid accumulation
observed at 2 mM after 24 hours of incubation. Dave et al. (2018) demonstrated using
a triglyceride assay that a 2:1 oleic and palmitic acid mixture induced statistically
significant increases in lipid levels without toxicity at dose levels between 0.75-1.5 mM.
It has been frequently reported that a 2:1 oleic and palmitic acid mixture at a dose
level of 0.5 mM induces significant fat accumulation in HepG2 cells and is only
associated with very minor toxicity (Liang et al., 2015, Moracova., 2015, Dave et al.,
2018).

Studies have also investigated many incubation time points including 6, 12, 16, 24 and
48 hours and all reported a maximal dose-dependent increase in lipid accumulation
without causing toxicity at 24 hours (Gomez-Lechon et al., 2007, Moracova et al.,
2015, Dave et al., 2018, Kahn and Kahn, 2021). Therefore, it was decided that in this

study the cells would be incubated in fatty acids for 24 hours.

For this present study, in light of the literature a combination of 2:1 oleic and palmitic
acid was chosen. However, since this study wished to develop models of steatosis it
was important to ensure this chosen ratio of oleic to palmitic acid was not cytotoxic to
the cells. Consequently, monolayer cells were dosed with 2:1 oleic and palmitic acid
at concentrations of 0.1, 0.25, 0.5 and 1.0 mM and MTS and LDH assays were carried

out to evaluation for any cytotoxic effects.

The results of the MTS assay (Figure 3.1) revealed a slight dose dependent decrease
in cell viability at both 0.5 (56 %) and 1 mM (69 %) when compared to the ethanol
control. Meanwhile the LDH assay showed a significant increase in cell death in the
1.0 mM sample group (7 %) when compared to the ethanol control. Overall, these
results are reflective of the literature indicating that a 2:1 ratio of oleic acid and palmitic
acid is generally well tolerated in HepG2 cells (Lechon et al., 2007, Moracova et al.,
2015, Dave et al., 2018, de Sousa et al., 2021). As explained earlier the 1 mM dose

level was considered acceptable for monolayer studies based on the LDH assay
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results but it was decided to use 0.5 mM for future spheroid studies as this dose level

displayed significant triglyceride accumulation without causing significant cytotoxicity.

Cell proliferation assays such as the MTS have two major limitations: the first being
they can give false positive results as they do not actually measure the number of
viable cells, but rather enzymatic activity related to cell metabolism and the second is
they are unable to distinguish between an inhibition of cell proliferation and cell death
(Berridge et al., 2005, Smith et al., 2011). Therefore, they basically measure the
number of metabolically active cells in a sample (Berridge et al., 2005, Kroemer et al.,
2009, Galluzi et al., 2009, Adan et al., 2016). This suggests that the discrepancy
between the MTS and LDH assay results in the current study in which reduced cell
viability values were observed for the 0.5 and 1 mM groups may be due to the steatotic
state of the cells and not direct cytotoxicity. Studies have demonstrated that dosing
with fatty acids results in decreased cell viability and proliferation in HepG2 cells. Plus,
oleic acid has been reported to decrease cell proliferation in HepG2 cells without
inducing cytotoxicity (Cui et al., 2010, Dave et al., 2018). Alternatively, the use of a
LDH assay is a more reliable method of determining cell death as it measures the
leakage of lactate dehydrogenase enzymes from the cell and can detect low level

damage to the cell membrane (Parhamifar et al., 2012).

The next step in the study was to validate the creation of steatosis. Oil Red O staining
of the HepG2 cells after 24 hours incubation with fatty acids demonstrated a clear
dose dependent increase of stain uptake (Figure 3.3). The Triglyceride-Glo™ assay
(Figure 3.4) showed a significant increase in triglyceride accumulation in the 0.25, 0.5
and 1 mM treated groups when compared to the control groups, with the highest
increase in triglyceride concentration (114 ug) seenin the 0.5 and 1 mM groups. These

results suggested that a steatotic state was created at dose levels above 0.25 mM.

In the monolayer study the rationale for using both Oil Red O staining and a triglyceride
assay kit in combination to assess lipid accumulation in this study stems from
limitations each have when used alone. Oil Red O staining is a simple method but
does not allow for accurate quantification of cellular lipids. As a result, quantification
techniques such as commercial assay kits have become increasingly popular and

have been used in many studies of steatosis in HepG2 cells (Dave et al., 2017, Parra-
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Vargas et al., 2018, Zhu et al., 2018, Lu et al., 2019, Tie et al., 2021). The Triglyceride-
Glo™ assay kit used in this study utilises a luminescence-based chemistry allowing
for better sensitivity and extended quantitative range and can detect triglyceride
concentration as low as 1 uM (Wells, 2022). However, the assay kit is expensive, and
several kits were required to conduct all the analyses, therefore its use in larger studies

is not practical.

For the development of the spheroid model dose levels of 0.1 and 0.5 mM
oleic:palmitic acid mixture (2:1) were chosen as both induced lipid accumulation in the
monolayer cells and both showed no, or tolerable, cytotoxicity. HepG2 spheroids have
been shown to have increased sensitivity to hepatotoxins and have considerably lower
EC50 values for many different drugs when compared 2D cultures (Gaskell et al.,
2016), Kammerer, 2021, Tutty et al., 2022). This would suggest that fatty acids could
induce hepatoxicity at lower dose levels than in monolayers. The greater sensitivity
observed in spheroids may be a result of direct cell-cell contacts, increased liver-
specific functionality and structure of the spheroids allowing the hepatotoxins to exert
their effect (Tutty et al., 2022).

In this study the MTS assay was also conducted on the spheroids to assess for
changes to cell viability. However, the results obtained were outside the linear range
of the assay; and were therefore unreliable. This was due to the high number of cells
in the spheroids. The assay was repeated using lower seeding densities; however,
results still fell outside the linear range. Instead of optimising and repeating it an LDH
assay was performed since it is more reliable in confirming cell death in any case. The
LDH assay revealed no significant cytotoxicity at both dose levels (Figure 3.26).
Cytotoxicity in spheroids was also visualised in the LIVE/DEAD assay and confirmed
the spheroids remained viable after 17 days growth and showed no toxic response to
the fatty acid doses used (Figure 3.25). Therefore, the results from the spheroids

showed no real cytotoxicity at either of the dose levels used.

Triglyceride accumulation was also assessed in the spheroids and the results from the
triglyceride assay confirmed mild steatosis in spheroids (Figure 3.27) at 0.5 mM fatty
acids. In the interest of time and following the positive triglyceride assay results Oil

Red O staining was not performed in the spheroids.
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However, staining methods and commercial triglyceride assays have been used
extensively in spheroid and monolayer studies in HepG2 cells. Frandsen et al., (2022)
cultured spheroids for 21 days before treatment with a mixture of 65 uM oleic acid
(OA), and 45 pM palmitic acid and measured lipid content using an AdipoRed
Adipogenesis assay showing a significant increase in lipid accumulation. The
AdipoRed reagent is designed to specifically partition into the fat droplets of
differentiated adipocytes and fluoresces at 572 nm. Pingitore et al., (2019) also dosed
HepG2 spheroids with a mixture of fatty acids, palmitic acid and oleic acid at 500 uM,
the same dose used in this study and used the AdipoRed assay to visualise lipid
accumulation. Their results showed that the fatty acids promoted lipid accumulation
and an increase in total fat content after 48 hours. Gomez-Lechon et al., (2007) dosed
HepG2 cells with a combination of oleic and palmitic acid at concentrations of 0.5, 1
and 2 mM. Lipid accumulation was quantified using Nile Red staining which is a vital
lipophilic dye used to label fat accumulation in the cytosol (Gomez-Lechon et al.,
2007). Also, in their study the total lipid accumulation was measured using a
commercial kit based on the vanillin-phosphoric acid reaction. The results showed an
increase in triglyceride accumulation in HepG2 cells from 105 pg in the control to 278
Mg in the treated group. A combination of both staining and an assay kit were used in
this study to confirm lipid accumulation in monolayers in this study making the results

more reliable.

The next objective of this current study was to analyse changes in the metabolome of
cellular extracts from both models to identify potential biomarkers for the early
detection of steatosis. The use of spheroids potentially allowed for identification of

biomarkers in a model more reflective of the in vivo environment.

The first step in cell metabolomic studies is to determine how many cells are needed
to obtain a good NMR signal as many papers have used different cell counts for their
studies. It has been suggested that most metabolites at biological concentrations can
be detected irrespective of the seeding density (Garcias-Canaveras et al., 2016,
Ramirez et al., 2018, Chen et al., 2018A), but this required confirmation. Various
HepG2 seeding densities have been used in the literature. One study conducted by
Chen et al., (2018B) seeded 1x10* cells in 96-well plates. While Garcias-Canaveras
et al., (2016) and Ramirez et al., (2018) seeded 8x10* cells/cm? and 0.45x108 cells in
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6-well plates, respectively. The cell count used by Ramirez et al., (2018) was similar

to the one used in this study.

A preliminary metabolomics study (not presented in this thesis) tested different
seeding densities in 96-well plates but the NMR signal was too low. It is likely that this
is related to the methods required for metabolomics studies. A vital prerequisite for
conducting reliable metabolomics experiments is the immediate quenching of the
metabolic reactions at sample collection (Dettmer et al., 2011, Bi et al., 2013, Leon et
al., 2013, Muschet et al., 2016). For this step, cells are detached from the surface of
the well and scraped directly in ice-cold methanol/water/chloroform mixture for
quenching (Teng et al., 2009, Dettmer et al., 2011, Hutschenreuther et al., 2012, Bi et
al., 2013, Muschet et al., 2016). This procedure can lead to some experimental error
since not all cells may be scraped from the surface which could subsequently lead to
a reduced number of cells collected potentially leading to intragroup variation.
Alternative methods of detaching cells from the plate include trypsinisation of the cells,
however this is not considered suitable for metabolomics studies as it has been shown
to cause metabolite leakage due to disruption of the cell membrane (Bi et al., 2013).
Consequently, to allow for loss of cells when scraping and quenching it is generally
recommended that between 1-10 million cells should be used for metabolomics
samples. Based on this it was decided not to conduct metabolomics study experiments
using 96-well plates as the cells would not reach a high enough confluency. In addition,
scraping the cells off the bottom of the plate would be difficult and likely to lead to the
loss of some of the cell extract. In the current study 0.5x108 cells were seeded in six
well plates for metabolomics experiments for both the monolayer and the spheroid
models. This was considered suitable as HepG2 cells have a doubling time of 48 hours
which means there were approximately 1x10° cells by the time the samples were
collected. Several preliminary studies were conducted in these studies in order to
validate the methods used. The results obtained in these studies were similar to those
seen in the final studies indicating that the methods used were capable of yielding

reproducible results between experiments.

In this study cells metabolite changes in both monolayers and spheroids were
compared. In monolayers cells attach to the flat surface of the plate. This method of

cell culturing has become increasingly popular due to its simplicity and convenience
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forcing cells to grow on flat surfaces limits cell-cell interaction. However, this can
change the cell metabolism and functioning which could be reflected in the
metabolomics data (Bialkowska et al., 2020). So, while monolayers have been
routinely used to understand the molecular mechanism of disease, they do not

represent the true complexity of human tissues.

3D cultures offer a similar micro-environment to the in vivo situation with respect to
cell shape, behaviour and morphology (Pingitore et al., 2019). Therefore, the use of
3D spheroids could aid in the identification of early diagnostic biomarkers for steatosis
which are more relevant to humans. Although spheroids are more relevant, their use
in metabolomics studies is limited and to date there are few studies using HepG2
spheroids for the study of metabolite changes in steatosis. However, one study
conducted by Kozyra et al.,, (2018) created a 3D steatosis model in primary
hepatocytes using oleic and palmitic acid together with glucose and fructose. The
result of their study indicated that 3D models have the capabilities of displaying many
in vivo phenomena such as insulin resistance and the reversibility of steatosis through
the administration of vitamin E and metformin making them suitable for the study of
steatosis in biology and disease (Kozyra et al., 2018). Frandsen et al., (2022) mapped
the proteome and lipidome changes in early onset NAFLD in HepG2 spheroids
through the administration of oleic and palmitic acid and recorded changes similar to
those in vivo. However, the study aimed to investigate the underlying molecular
changes that occur in NAFLD rather than identify biomarkers for early detection of

steatosis.

In the current study, NMR data obtained for both the spheroids and the monolayer
were subject to unsupervised (PCA) and supervised (OPLS) multivariate analyses.
For all statistical comparison the ethanol sample group, as the vehicle control, was
used instead of the media control since fatty acids were diluted in ethanol. This was
to ensure that any observed differences between the groups were due to the fatty acid
treatment and not related to the ethanol vehicle (Rodriguez-Burford et al., 2003,
Larsson et al., 2020). While it is necessary to use solvents such as ethanol in biological
research for the dilution of therapeutic molecules especially those that are weakly
soluble in water, studies have shown that ethanol can disrupt the physical structure of

biological membranes and affect the growth of HepG2 cells. However, this typically
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occurs at concentrations above 2.5% (Castaneda and Kinne, 2000, Ngyuyen et al.,
2020). Plus, it has been proven that at concentrations between 0.3 and 2 % ethanol
are well tolerated in HepG2 cells (Ngyuyen et al., 2020). Since in the current study the
ethanol concentration did not exceed 2%, it is unlikely to have contributed to any

cytotoxicity and this was confirmed in the MTS and LDH assays.

The PCA scores plots created for both the monolayers and spheroid studies (Figures
3.5, 3.15, 3.28 and 3.33) did not show good separation between the control and fatty
acid groups at the different dose levels. This was the case for both the aqueous and
organic extracts. PCA is a classical tool used to reduce the dimensionality of data and
to filter noise. However, PCA assumes that biological data follow a multivariate normal
distribution and decomposes data based on the maximisation of its variance (Yao et
al.,, 2012). Clear separation may not be seen in PCA models as any differences
between measurements will only be revealed if they are major contributors to the total
variability in the data set (Scholz et al., 2004, Yao et al., 2012, Worley and Powers,
2016). Literature suggests that sample size in relation to the number of variables plays
an important role in the separation observed in a PCA as a larger sample size reduces
the probability of errors (Osborne and Costello, 2004). It has been suggested that the
sample size should be larger than 5 times the number of variables while others
recommend at least 100 samples (Gorsuch, 1983, Hatcher, 1994, Shaukat et al.,
2016). However, these numbers would just not be feasible in cell studies as this would
require a large number of cells. Therefore, for the current study 6 replicates were used
since this is reflective of other studies in the literature. A study in HepG2 cells
conducted by Garcia-Canaveras et al, (2016) used 6 replicates for their metabolomics
study and observed clear separation between treated groups and controls. Another in
vitro metabolomics study in HepG2 cells conducted by Ramirez et al., (2018) used
between 8-20 replicates. Although there was separation between the different
treatments used, dose-dependent changes for individual compounds were not easily
distinguished. Another metabolomics study conducted in HepG2 cells dosed cells with
2,3,7,8-tetrachlorodibenzo-p-dioxin using 5 replicates and did observe separation

between the treated groups (Ruiz-Aracama et al., 2011).

One of the major issues with the use of PCA with low sample numbers is that

intragroup variation can lead to a lack of sample group clustering. It is likely this was
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an issue in the present study as samples from the same groups were located in
different parts of the PCA plot. In cell studies large intragroup variation can be due to
inaccuracies in cell number per well and/or experimental error when collecting cell
samples for NMR observed. Inaccuracies in seeding density could also have an effect
on intragroup variation leading to differences in concentrations of metabolites in
samples (Chen et al., 2013). Intragroup variation was a particular issue in the organic
spheroids extracts as ethanol control sample 1 was located on the opposite side of
the scores plot away from the rest of the samples in the group. This could potentially
be due to a difference in cell seeding density when plating the spheroids which led to
this sample have a different number of cells compared to the rest of the group.
Additionally, outliers were also observed in all metabolomics experiments in this
project possibly due to errors in sample preparation or biological response to dosing
with the fatty acids. Metabolomics datasets often contain outliers because of
analytical, experimental, and biological ambiguity (Kumar et al., 2018). Although clear
separation was not observed for all dose levels in this chapter the control group was
separate from the rest of the treated groups in all PCA plots indicating some treatment-
related response due to the fatty acids. These observations are consistent with many
other metabolomic studies using HepG2 cells who all reported some sample group
clustering, but not clear separation (Ruiz-Aracama et al., 2011, Garcia-Canaveras et
al., 2016, Ramirez et al., 2018, Martinez-Sena et al., 2023).

Due to the limitations of PCA when analysing biological samples OPLS analysis is
often carried out on the spectral data and better group separation is usually expected
due to the sample class input. Unlike PCA, OPLS is more likely to show separation
between experimental groups because its integrated orthogonal signal correction
(OSC) filter removes spectral variation that does not agree with the assigned group
(Worley and Powers, 2016). Thus, this explains the better separation observed for the
OPLS scores plots in this study along the sample class {[1] predictive axes with the
control and the highest dose level tending to be on opposite sides of the score’s plots.
However, in this study the organic extracts of monolayer samples (Figure 3.16) still
showed some overlap between the 0.1, 0.25 and 0.5 mM groups. Plus, the organic
extracts spheroid samples (Figure 3.34) had overlapping between the two treated

dose levels.
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The pair-wise comparison OPLS-DA models in this Chapter allowed for the
identification of many metabolite regions that differed between the treated groups and
controls as well highlighting some dose related changes. However, in general, large
intragroup variation along the orthogonal t[0] axis was observed for all treatment
groups in the study. The intragroup variation seen in this study was more apparent in
organic samples. This observation could indicate that extraction solvents fluctuate in
their effectiveness in extracting metabolites from sample groups and this could explain
the intragroup variation seen in this study (Andersson et al., 2019). There is a risk of
losing more volatile compounds like chloroform during sample collection which would

have an effect on variation within sample groups (Mushtaq et al., 2013).

In this study metabolite changes were identified using the Human Metabolome
database as well as published literature. Some similarities in metabolite changes were
observed in both the monolayer and spheroids (Tables 3.1, 3.2, 3.4 and 3.5) including
decreases in peaks for lactate and increases in succinate, phosphocholine and

betaine and creatine.

A decrease in lactate and an increase in alanine were observed in the monolayer
samples dosed with fatty acids when compared to control. Changes in alanine are
often related to alterations to pyruvate and lactate since the three are linked
metabolically. Pyruvate can be converted to lactate by lactate dehydrogenase and
alanine is produced from the transamination of pyruvate with glutamate by alanine
aminotransferase producing a-ketoglutarate alongside alanine. Pyruvate is an
intermediate in gluconeogenesis and plays an important role in aerobic respiration and
the production of ATP since it is converted to acetyl-CoA by pyruvate dehydrogenase
which then feeds into the TCA cycle (Mayr et al., 2005). In this current study an
increase in alanine was observed in the fatty acid-treated monolayer samples, but not
in the spheroid model. This is similar to studies in humans which reported increases
in alanine concentrations in patients with metabolic syndrome and NASH when
compared to healthy controls (Mannisto et al., 2014, Stechemesser et al., 2017). It has
also been demonstrated that there is an increase in the ratio of alanine/pyruvate in
patients with NAFLD when compared to healthy controls. In particular, the
transcriptional activity of aminotransferases was reported as significantly upregulated

thus increasing alanine levels (Sookoian et al., 2016). Therefore, the observed
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elevation of alanine in this present study could potentially be due to an increase in
transamination of pyruvate in the treated monolayer cells although changes in
pyruvate were not observed. In contrast Song et al., (2013) reported a decrease in
alanine in rats along with decreases in pyruvate and lactate and increases in glucose

implying glycolysis was inhibited in their study.

In this current study a decrease in lactate levels was proposed due to a reduction in
peak sizes in the NMR spectral region at 1.31-1.35 ppm. This decrease when
compared to control was seen at all fatty acid dose levels for the monolayer cells and
in the 0.1 mM dose group of the spheroid experiment. This decrease is similar to that
observed by Song et al., (2013) and shows that the changes observed in the cells and
spheroids are similar to those seen in rats indicating they are useful translational

models of steatosis.

TCA cycle activity has been reported to increase 2-fold in patients with steatosis along
with roughly a 50% increase in mitochondrial anaplerosis pathway activity
predominantly pyruvate carboxylase flux (Sunny et al., 2011, Fletcher et al., 2019).
The increase in TCA cycle activity is linked to an increase in beta-oxidation which
would lead to elevated acetyl-CoA which feeds into the TCA cycle (Gudson et al.,
2014). In this current study an increase in succinate, an intermediate in the TCA cycle,
was observed in the monolayer samples and in the 0.5 mM spheroid samples. This
suggests an increase in TCA activity. Ye et al., (2019) also observed significant
increases in succinate in HepG2 cells when treated with liposoluble extracts.
Additionally, elevated succinate has also been observed in rats fed a high fat diet (Xu
et al., 2019B). Many studies have reported an increase in citrate in NAFLD patients
and in mice due to excess fatty acids but changes in citrate were not observed in this
study (van de Wier et al., 2013, Fontes et al., 2019, Sinton et al., 2019, Sandlers et
al., 2020). Other TCA cycle metabolite levels may have been altered in this study.
However, since many metabolites share similar spectral regions, individual changes

may be masked by overlapping metabolite peaks.

An increase in TCA cycle activity has also been observed in spheroids in the literature.
Sinton et al., (2021) observed increases in the TCA cycle intermediates caused by

anaplerosis from pyruvate and lactate. Their study also reported the inhibition of the
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conversion of succinate to fumarate in steatotic monolayer cells. Other studies have
revealed not only changes in TCA intermediate but also higher ATP levels in fatty acid
treated spheroids compared to control (Frandsen et al., 2022, Tidwell et al., 2022). In
the current study changes in ATP levels were not observed in the spheroid samples,

however future work could investigate this more specifically.

In this present study an increase in B-hydroxybutyrate was observed in the 0.1 mM
spheroid samples and in the 0.25, 0.5 and 1 mM monolayer groups. This is likely due
to excess acetyl-CoA which can be converted into ketone bodies such as B-
hydroxybutyrate and acetate (Song et al., 2013, Watt et al., 2019). Studies have shown
that ketogenesis disposes of as much as three-fold fat entering the liver dysregulating
ketogenesis and contributing to NAFLD pathogenesis (Cotter et al., 2014, Satapati et
al., 2015, Grattagliano et al., 2019, Mooli and Ramakrishnan, 2022). The increases in
B-hydroxybutyrate seen in this study further confirm that beta-oxidation is increased in

the cells due to the influx of fatty acids.

Increased gluconeogenesis may have occurred in the present study as an NMR
spectral region at 5.22-5.245 ppm thought to correspond to glucose was increased in
both the 0.5 mM and 1.0 mM fatty acid monolayer treated groups and the 0.5 mM
spheroid group. However, glucose typically has a number of peaks present on '"H NMR
spectra and in this study the other regions were not detected as being significantly
different according to the VIP plots. This may be due to the presence of other
metabolites within the glucose regions which depending on their concentration could
mask the glucose peaks in terms of statistical differences. Increases in beta-oxidation
can also influence the progression of insulin resistance in NAFLD as the induction of
lipid oxidation is required for the endergonic steps of gluconeogenesis (Sunny et al.,
2011). Chronic activation of mitochondrial oxidation in the setting of lipid overload
increases acetyl-CoA content exceeding the rates of mitochondrial TCA flux resulting
in the activation of pyruvate carboxylase activity which stimulates gluconeogenesis
(Sunny et al., 2011, Samuel and Shulman 2018).

Studies have reported that the exposure of HepG2 cells to 0.5 mM palmitic acid alone
for 24 hours induces insulin resistance in the cells. As a result, palmitic acid

administration has been widely used for the development of an insulin resistance

158



model (Gao et al., 2010, Malik et al., 2019, Zhang et al., 2019). HepG2 cells treated
with palmitic acid at 0.25 mM have also been reported to have altered expression
levels of insulin receptor substrate 1 (IRS1) phosphorylation and GLUT (Zhang et al.,
2019, Malik et al., 2019) as well as significant increases in the protein and mRNA
expression of PEPCK and G6Pase, which are key gluconeogenic enzymes (Liu et al.,
2019). Fatty acids stimulate the phosphorylation of serine residues on IRS-1 and down
regulate the insulin signalling pathway to cause insulin resistance (Denhez et al.,
2020). Therefore, it is possible that in this study palmitic acid may be increasing
gluconeogenesis. Nevertheless, it has also been reported that monounsaturated fatty
acids such as oleic acid can induce gluconeogenesis in bovine hepatocytes and in
humans (Mashek et al., 2002, Sarabhai et al., 2020). However, published literature
has not investigated an increase in gluconeogenesis in HepG2 cells using a
combination of oleic and palmitic acid, therefore future studies could attempt to

analyse this.

Overall, the results in the current studies suggest an increase in beta-oxidation,
changes to acetyl-CoA levels and reduced glycolysis in the monolayer and spheroid
cells treated with fatty acids. This has been reported in many studies in which energy
production is greater from beta-oxidation than glycolysis (Ruiz-Aracama et al., 2011,
Song et al., 2013, Gudson et al., 2014). Increases in fatty acid oxidation have also
been observed in obese patients in response to the excess fatty acid load (Sunny et
al., 2013, Rafiei et al., 2019, Lu et al., 2021). A study in human hepatocytes co-cultured
with primary human hepatic stellate cells exposed to a mixture of oleic and palmitic
acid also demonstrated increased beta-oxidation (Feaver et al., 2016, Rafiei et al.,
2019). Similarly, in high-fat diet fed rats upregulation of fatty acid beta-oxidation has
been observed (Gusdon et al., 2014). However, in their study Gusdon et al (2014)
described the accumulation of incompletely oxidised fatty acid intermediates and
depleted TCA cycle intermediates resulting in exacerbated insulin resistance and the
progression of NAFLD. Untreated HepG2 cells have been reported as having a high
mitochondrial respiration rate, low glycolysis and low rate of lactate production and
therefore they appear to be more dependent on mitochondrial OXPHOS for energy
metabolism (Hsu et al.,, 2015). Consequently, if treatment with fatty acids affects
mitochondrial respiration and induces mitochondrial oxidative stress as a result of

lipotoxicity this could lead to progression of NAFLD. (Garcia-Ruiz et al., 2016). The
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changes in TCA cycle metabolites and its associated anaplerotic pathways seen in
this study are similar to those seen in literature and are reflective of the in vivo
environment. This makes both spheroid and monolayer HepG2 models suitable

steatosis models for the identification of biomarkers.

In this study metabolite changes related to the methyltransferase reactions were
observed in both models. This included a dose dependent increase in methionine in
the spheroids (Table 3.4) and in homocysteine for in both models when compared to
controls. Homocysteine is a sulphur containing amino acid produced from the
methylation of methionine. Under normal conditions the formation and elimination of
homocysteine is strictly balanced, as it is either remethylated back to methionine or
irreversibly metabolised to cystathionine in the transsulfuration pathways (Medici et
al., 2010, Pacana et al., 2015, Li et al., 2020B, Werge et al., 2021).

While an increase in methionine was observed in the spheroid samples in this study
there was no change detected in the monolayer, which may be a result of other peaks
masking methionine on the spectra. Methionine is an essential amino acid which plays
a key role in regulating several cellular functions including metabolic processes and
digestive functioning in mammals (Martinez et al., 2017). Methionine is also a key
intermediate in the production of s-adenosylmethionine (SAM) and glutathione, two
important antioxidants (Jha et al., 2016). Demethylation of SAM converts methionine
sequentially to s-adenosylhomocysteine (SAH) and homocysteine (Zhang et al., 2016,
Werge, 2021). However, changes in SAH and SAM were not apparent in this study.
Ye et al., (2019) also reported increases in methionine due to excess availability of
methyl donors for hypermethylation in HepG2 cells exposed to liposoluble extracts
suggesting an increase in methylation and oxidative stress. Elevated homocysteine
and decreases in SAM have also been implicated in NAFLD (Noga et al., 2002, Craig,
2004).

Methionine has been implicated in NAFLD and several studies have indicated that rats
and mice fed a methionine-supplemented diet exhibit hyperhomocysteinemia and that
an excess in methionine alters hepatic lipid metabolism, induces oxidative stress and
hepatocyte injury potentially leading to the progression of steatosis to NASH (Pogribny
et al., 2005, Zhou et al., 2008, Song et al., 2009, Yamada et al., 2012, Aissa et al.,
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2014, Yao et al., 2016). For this reason, methionine supplementation is used
extensively for the development of NAFLD models (Rinella er al., 2008, Yang et al.,
2018, Li et al., 2018). In contrast one of the most common models for the induction of
NASH is the methionine-choline deficient diet model; this results in steatosis, fibrosis
and oxidative stress (Corbin and Zeisel, 2013, Jha et al., 2014, Sherriff et al., 2015,
Imbard et al.,, 2015). Choline is essential for the de novo synthesis of
phosphatidylcholine which is required for the export of triglycerides via VLDL
packaging meaning a deficiency in choline can cause steatosis (Rinella et al., 2008,
Jha et al., 2014) while methionine can lead to oxidative stress mimicking the ‘two-hit’
model of NAFLD (Jha et al., 2014).

Although the full mechanism by which hyperhomocysteinemia occurs is not
understood elevated levels of methionine drive the transsulfuration pathway leading
to an increase in SAM and SAH and ultimately homocysteine levels (Troen et al., 2003,
Aissa et al., 2014). However, it is unclear why methionine is increased in NAFLD. In
humans hyperhomocysteinemia is associated with metabolic syndrome and NAFLD
(Polyzos et al., 2012, Dai et al., 2016, Kumar et al., 2020). It is thought that the
accumulation of homocysteine in liver cells activates a hepatic unfolded protein
response ultimately leading to oxidative stress and the progression to NASH (Pancana
et al., 2015, Dai et al., 2016). While many studies have investigated the effect of
homocysteine in mice and humans (Hu et al., 2016, Ai et al., 2017, Yan et al., 2020)
in vitro studies are limited. However, it has been suggested that homocysteine can
induced ER stress and enhance lipid biosynthesis and uptake through the activation
of the SREBPs in HepG2 cells exposed to 1 or 5 mM of homocysteine (Werstruck et
al., 2001).

In this study peaks in the region between 3.255-3.265 ppm in the NMR spectra from
both the spheroid and monolayer samples were revealed as being increased
compared to controls. These peaks are thought to correspond to betaine according to
the human metabolome database. The transmethylation reaction of betaine, a one-
carbon metabolism pathway occurs principally in the mitochondria of liver and kidney
cells (Zhao et al, 2018). |In this reaction betaine-homocysteine
methyltransferase (BHMT) catalyses the addition of a methyl group from betaine to

homocysteine to form methionine (Lee et al., 2012, Garrido et al., 2018). Therefore,
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an increase in betaine could also lead to an increase in homocysteine and methionine.
Betaine can also be converted to dimethylglycine (Williams and Schalinske, 2007,
Mailloux et al., 2016, Zhao et al., 2018). Dimethylglycine has two available methyl
groups and can be degraded to sarcosine and ultimately glycine to produce creatine
(Zhao et al., 2018). Increases in both glycine and creatine were seen in both models
in this Chapter (Tables 3.1 and 3.4) indicating that the HepG2 cells may be converting
excess betaine to dimethylglycine although changes in dimethylglycine were not
observed. Human studies have shown that patients with chronic liver disease have
elevated serum homocysteine levels as well as high levels of betaine due to increased
activity of the BHMT (Zhao et al., 2018). In contrast to the increase in glycine seen in
this study it is well established that glycine levels are reduced in NAFLD in human and
rodent models (Zhou et al., 2016, Gaggini et al., 2018, Romero et al., 2020, Ghrayeb
et al., 2023). Glycine plays an important role in metabolic regulation and is the rate
limiting step in glutathione synthesis. In NAFLD patients increased levels of glutamate
and decreases in glycine are observed due to increased transamination of glutathione
by gamma-glutamyltransferase (Gaggini et al., 2018). Elevated homocysteine and
decreases in SAM have also been implicated in NAFLD (Noga et al., 2002, Craig,
2004).

In the monolayer cells in this study decreased levels of formate were observed in the
0.1 and 1.0 mM groups but not in the spheroids. Formate provides carbon groups for
folate metabolism resulting in the formation of tetrahydrofolate (Morrow et al., 2015,
Brosnan and Brosnan, 2016). Formate is also linked to the methionine pathways via
methionine synthase, a vitamin B12-dependent enzyme. (Zhao et al., 2018). In the
presence of vitamin B12 methyl groups are transferred from N-methyltetrahydrofolate
to homocysteine forming methionine and tetrahydrofolate in the methionine salvage
pathway (Halstead et al., 2002, Froese et al., 2018). A decrease in formate levels, as
seen in the 0.1 and 1.0 mM fatty acid-treated monolayer cells (Table 3.1) in this study,
could indicate alterations to one-carbon metabolism and the folate cycle. Studies have
shown that folate depletion can induce oxidative stress in the liver and lead to the
development of more severe NAFLD (Huang et al., 2001, Radziejewska et al., 2020).
Although, the main mechanism behind folate deficiency during NAFLD is not fully
understood (Radziejewska et al., 2020, Vahedi et al., 2020). However, Radziejewska

et al., (2020) reported a decrease in folate levels due to suppressed expression of
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folate transporters in mice fed a high fat diet. Folate depletion can also lead to the
utilisation of betaine and choline for homocysteine remethylation thus disrupting
choline metabolism; this has been shown to increase the severity of steatosis in mice
(Christensen et al., 2010, da Silva et al., 2014, Radziejewska et al., 2020). Yang et al.,
(2018) reported a decrease in formate in mice fed a high fat diet however this has not
been investigated in any in vitro models dosed with fatty acids. Studies in mice have
found that a decrease in folate metabolism results in increased expression of genes
related to lipogenesis which in turn promotes lipid accumulation and disrupted VLDL
secretion from the liver (Christensen et al., 2010, Champier et al., 2012, da Silva et
al., 2014, Radziejewska et al., 2020). In the current study it is possible that the folate
cycle was disrupted thus preventing the methylation of homocysteine by N-
methyltetrahydrofolate (Zira et al., 2013). This could also account for the increase in

homocysteine and methionine seen within the fatty acid-treated cells.

In this study organic metabolites from both the spheroids and the monolayers dosed
with fatty acids were also examined (Tables 3.2 and 3.5). Metabolite changes
identified included monounsaturated fatty acids, triglycerides and arachidonic acid. As
the cells were dosed with fatty acids it was expected that metabolite peaks belonging
to oleic and palmitic acid were present and changes in metabolite regions for oleic

acid were observed in both models but not for palmitic acid.

A decrease in peaks at 1.702-1.724 ppm due to eicosapentaenoic acid (EPA) a
polyunsaturated fatty acid was observed in the 0.25, 0.5 mM and 1.0 mM fatty acid
treated groups. This is likely due to increased beta-oxidation and a possible
accumulation of fatty acids intermediates such as lipid peroxides (Satapati et al.,
2012). It has been suggested that a decrease in polyunsaturated fatty acids is
observed in steatosis and NAFLD since the build-up of fatty acid intermediates are
more susceptible to free radical attack as a result of their carbon-carbon double bonds
and are therefore degraded (Ayala et al., 2014). Both clinical and preclinical studies
have also reported decreases in polyunsaturated fatty acids due to increased
oxidation, again confirming the earlier suggestions of an increase in beta-oxidation in
this study (Arendt, 2015, Depner, 2013, Lytle, 2015, Jump et al., 2017).
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Previous studies have also shown that excess unsaturated fatty acids induce
cytochrome P450 2E1 which stimulates lipid peroxidation, subsequently promoting
apoptosis and cell toxicity (Sung et al., 2004, Cui et al., 2010). This is important since
CYP2E1 can metabolise polyunsaturated fatty acids such as linoleic and arachidonic
acid to generate w-hydroxylated fatty acids which are further metabolised to
dicarboxylic fatty acids; these are known to be cytotoxic at high concentrations (Leung
and Nieto, 2013). While many studies have reported that CYP2E1 expression and
activation is increased in NAFLD the role of CYP2E1 in NAFLD progression is still
under investigation (Bell et al., 2011, Leung and Nieto, 2013). However, compared to
other cytochromes P450, CYP2E1 possesses a remarkably high NADPH oxidase
activity, resulting in significant production of ROS. This can initiate a free radical chain
reaction with unsaturated fatty acids generating toxic lipid intermediates (Hariumaki et
al., 2021). Oleic acid induced steatosis is also associated with significantly decreased
expression of superoxide dismutase-1 (SOD-1) enzyme, a free radical scavenger
enzyme, in HepG2 cells. This demonstrated that in a steatotic state there are
decreased levels of antioxidants that could protect against cellular membrane injury
mediated by lipid peroxidation leading to further mitochondrial damage (Cui et al.,
2010). Reduced antioxidant levels are commonly observed in NAFLD patients. Many
studies have reported depleted levels of glutathione, vitamin E, vitamin C and SOD as
wells as increased levels of lipid peroxidation products and oxidative stress markers
eventually leading to the progression of steatosis to NASH (Garcia-Ruiz and
Fernandez-Checa 2018, Ore and Akinloye 2019, Arroyave-Ospina et al., 2021).

In contrast to the decrease in EPA an increase in arachidonic acid was observed in
the monolayer samples after dosing with fatty acids in this study. Arachidonic acid is
an n-6 polyunsaturated fatty acid and is an important constituent of membrane
phospholipids (Tallima and Ridi, 2018, Lin et al.,, 2022). It is metabolised by
cyclooxygenases and lipoxygenases forming pro-inflammatory prostaglandins and
leukotrienes. Therefore, increased metabolism of arachidonic acid in NAFLD can lead
to inflammation (Puri et al., 2007, Lin et al., 2022). Sztolsztener et al., (2020)
demonstrated that after 3 weeks of high-fat diet feeding in mice there was a shift in
the balance between n-6 and n-3 polyunsaturated fatty acids towards n-6.
Consequently, arachidonic and linoleic acid levels were increased which paralleled

the development of inflammation (Sztolsztener et al., 2020). This shift in balance
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between the n-6 and n-3 in a high fat diet was likely due to overnutrition particularly
since a high-fat diet can serve as an exogenous source of arachidonic acid
(Sztolsztener et al., 2020, Kirk et al., 2022). However, this has not been studied in
HepG2 cells. This increase in arachidonic acid and the role it plays in inflammatory
responses can lead to cytotoxicity and apoptosis in HepG2 cells potentially leading to
NASH (Xu et al., 2003). Lin et al., (2022) reported significant changes in arachidonic
acid metabolism in patients with metabolic dysfunction-associated fatty liver disease.
An in vitro study in HepG2 cells exposed to arachidonic acid (n6) and
docosahexaenoic acid (n3) ratio led to a reduction in mitochondrial activity and
increased triacylglycerol accumulation (Ghazali et al., 2020) Therefore, the increase
in arachidonic acid seen in this study could be contributing to the triglyceride

accumulation seen in the cells as well as increasing inflammatory markers.

In the present study an increase in cholesterol was observed in the spheroid models
(Table 3.5) however, a dose dependent decrease was apparent in the monolayers
(Table 3.2). Cholesterol metabolism in hepatocytes is maintained via a number of
metabolic pathways including cholesterol de novo synthesis, uptake of cholesterol in
the form of LDL and chylomicron and cholesterol excretion in the form of VLDLs (Enjoji
et al., 2012). However, since these pathways are disrupted in NAFLD, SREBPs act as
regulators of cholesterol levels and activate genes involved in the synthesis of
cholesterol and free fatty acids (Enjoji et al., 2012, Chen et al., 2022). Dosing HepG2
cells with palmitic acid has been shown to increase cholesterol levels following 12
hours of treatment as a result of the upregulation of the farnesyl diphosphate synthase
(FDPS) and ABCG1 genes due to increased SREBP-2 expression (Tarling et al.,
2015, Chen et al., 2018B, Chen et al., 2022). Studies have reported that increased
SREBP-2 protein levels and suppression of LDL receptor expression in HepG2 cells
treated with palmitic acid result in free cholesterol accumulation. (Pal et al., 2002,
Chen et al., 2022). Therefore, the increase in cholesterol seen in the spheroid model
could be due to an increase in SREBP levels although the mechanism of this is not
fully understood. Increases in cholesterol have been observed in humans and
disturbances in cholesterol metabolism contribute to the pathophysiology of NAFLD.
Increases in cholesterol synthesis and a decrease in the pathways responsible for the
elimination of cholesterol lead to accumulation of free cholesterol in the liver (Malhotra

et al., 2020). Increases in nuclear SREBP-2 have also been reported in humans with
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NAFLD leading to an increase in HMG-CoA reductase the rate limiting step in
cholesterol synthesis leading to increases in cholesterol (Kerr and Davidson, 2012).
In contrast the decrease in cholesterol observed in the monolayer samples could be
due to increased secretion of VLDLs from the cells. This has been proposed as oleic
acid can potentially increase the packaging of triglyceride and cholesterol into VLDLs
(Dashti and Wolfbauer, 1987). In addition, Dashti and Wolfbauer (1987) showed in
their study that oleic acid induced VLDL secretion in HepG2 cells. Previous studies
using a combination of oleic and palmitic acid have not reported decreases in
cholesterol. Although the spheroids and monolayers show opposing changes in
cholesterol in this study, perhaps as spheroids display a morphology more reflective
of the human liver the fatty acids may be having a similar effect on cholesterol

metabolism as seen in vivo.

Since many studies have investigated changes in other CYP enzymes in the context
of steatosis CYP enzyme expression was investigated in this study. However, despite
other studies suggesting that 3D spheroids have greater expression levels of CYP
enzymes when compared to 2D models this was not observed in the current study
(Mizoi et al., 2020, Stampar et al., 2020 and Ingelman-Sundberg and Lauschke, 2021).
In general, the expression of all 3 CYP enzymes tested was similar in the monolayers
and the spheroid. Similarly, when compared to controls fatty acids had no effect on

CYP expression in both models.

CYP2E1 is one of the most studied CYP enzymes in relation to NAFLD and was the
first documented as modulated in clinical fatty liver disease (Merrell and Cherrington,
2011). The majority of studies have reported an increase in expression and activity of
CYP2E1 with the increase hypothesised to play a role in the pathogenesis of NAFLD
(Merrell and Cherrington 2011, Garcia-Ruiz et al., 2015, Sukkasem et al., 2020).

Increased CYP2E1 expression and concomitant exposure to its substrate drugs can
lead to severe cellular injury due to over production of radical intermediates. This
further supports the findings that CYP2E1 can progress fatty liver disease whether it
is induced by alcohol, or not (Sukkasem et al., 2020). CYP2E1 is a source of nitro-
oxidative stress as it is a member of the oxido-reductase cytochrome family,

responsible for oxidising a variety of small molecules including fatty acids further
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damaging mitochondria leading to the progression of NAFLD (Garcia-Ruiz et al.,
2015). Therefore, the increases in CYP2E1 seen in this study may indicate
progression of steatosis. Researchers have also observed upregulation in CYP2E1 in
morbidly obese patients, general steatosis and NASH (Weltman et al., 1998, Emery
et al., 2003, Videla et al., 2004, Kohjima et al., 2007, Baker et al., 2010). In contrast a
number of studies have reported a decrease in CYP2E1 expression and activity in
mouse models potentially due to the development of hyperinsulinemia (Enriquez et
al., 1999, Watson et al., 1999, Deng et al., 2005, Ito et al., 2007, Cheng et al., 2008).
Few published studies document changes in CYP2D6 expression and activity during
NAFLD (Merrell and Cherrington, 2011). However, a general downregulation of
enzymatic activity in hepatocytes treated with fatty acids at increasing concentrations
has been reported (Donato et al., 2006). Sukkasem et al., (2020) also reported a
decrease in CYP2D6 expression when both palmitic acid and oleic acid were
administered separately to HepG2 cells. CYP2D6 expression and activity has also
been reported to be downregulated in HepG2 monolayers after 24 hours of culture
whereas its expression levels increased to physiologic levels in 3D cultures (Vorrink
et al.,, 2017, Ingelman-Sundberg and Lauschke, 2021). It has been reported that
increasing concentrations (0.25-3 mM) of 2:1 oleic and palmitic acid reduce mRNA
expression in primary human hepatocytes (Donato et al., 2006, Cobbina and Akhlaghi,
2017).

CYP3A4 is the most abundant CYP enzyme in the liver and accounts for over 50% of
drug metabolism (Hewitt et al., 2007). Due to the importance, it plays in the metabolism
of drugs a number of investigators have studied the enzymes role in NAFLD and to
date a decrease in expression in steatosis and NASH have been reported in rat
models (Weltman et al., 1996, Zhang et al., 2007, Hanagama et al., 2008, Osabe et
al., 2008). Studies have also reported decreases in CYP3A4 in NAFLD patients
(Weltman et al., 1998, Donato et al., 2006, Donato et al., 2007). It has been reported
that HepG2 monolayers do not express CYP3A4 but that it is significantly upregulated
in spheroids after 3 days of culture gradually reaching the highest levels at 12 days of

culture (Stampar et al., 2020).

Other CYPs have been implicated as changed in NAFLD including CYP1A2, CYP2C8
and CYP2C9 (Merrell and Cherrington, 2011, Ingelman-Sundberg and Lauschke,
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2021) however, these were not investigated in the present study. Future work could

investigate the expression of these CYPs and their role in the progression of NAFLD.

Although both palmitic and oleic acid have been used successfully in this project and
in the literature to induce steatosis other studies have evaluated different fatty acids.
A study by Garcia-Ruiz et al., (2015) investigated the effects of oleic acid as well as
stearic acid on OXPHOS activity in HepG2 cells in which the administration of 200 uM
oleic acid to HepG2 cells did not show any significant alteration in OXPHOS
complexes. However, in cells treated with the same dose level of palmitic or stearic
acid there was decreased enzyme activity of OXPHOS complexes to about 67%
compared to control (Garcia-Ruiz et al 2015). Future work could therefore increase
the concentration and type of fatty acid administered in order to induce steatosis
ranging from the relatively benign state induced by oleic acid alone to the more toxic
states induced by palmitic and stearic acid. This would allow the progression of
steatosis to be assessed and determine the effect on metabolite changes within the
cells as steatosis progresses to NASH. Studies have also investigated many time
points including 6, 12, 16, 24 and 48 hours in HepG2 cells. This would allow for the
identification of metabolites which would give a broader overview of the changes that
occur during the development of steatosis (Gomez-Lechon et al., 2007, Moracova et
al., 2015, Dave et al., 2018, Kahn and Kahn, 2021). Future work could include the
administration of different concentrations of fatty acids over different time points to

further investigate the progression of steatosis to NASH.
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Chapter Four — Tetracycline induced model of hepatic steatosis
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Chapter 4

4.1 Introduction

In this Chapter tetracycline was used to develop two models (monolayer and 3D
spheroids) of drug-induced steatosis in HepG2 cells. Tetracycline is a broad-spectrum
bacteriostatic drug normally used to treat upper respiratory, skin and soft tissue
infections (Choi et al., 2015). Although generally considered safe tetracycline-induced
hepatotoxicity in humans was first described more than 50 years ago (Andrade and
Tulkens, 2011, Glenn and Feldman, 2011, Abdel-Gelil and Mansour, 2019). While the
mechanisms by which tetracycline induces steatosis are not fully understood it is
thought to include the inhibition of B-oxidation and a reduced secretion of triglycerides
from the liver due to an inhibition of microsomal triglyceride transfer protein (MTTP)
activity (Breen et al., 1972, Letteron et al., 2003, Dash et al., 2017).

It has been reported that high dose levels of intravenous tetracycline (3g tetracycline
administered daily for 10 days) can lead to increased lipid accumulation in the liver in
humans and may result in severe hepatic dysfunction and acute liver failure (Robinson
and Rywlin, 1970). As a result, tetracycline has been used frequently in the literature
for the development of steatosis models for research especially in mice and rat models
(Breen et al., 1975, Freneaux et al., 1988, Chopra and Roberts, 2001, Antherieu et al.,
2011, Donato et al., 2012, Choi et al., 2015, Rabinowich and Shibolet, 2015, Garcia-
Canaveras et al., 2016). The administration of tetracycline has also been shown to
cause a dose dependent lipid accumulation and steatosis in HepG2 cells (Donato et
al., 2013, Choi et al., 2015, Garcia-Canaveras et al., 2016).

Studies in mice suggest that tetracycline inhibits B-oxidation by downregulating genes
involved in fatty acid metabolism pathways including peroxisome proliferator activated
receptor alpha (PPARa), carnitine palmitoyl transferase | (CPT-I), and fatty acid-
binding protein 1 (FABP- 1) (Satapathy et al., 2015, AIGhamdi, 2019, Di Pasqua et al.,
2022). The impairment of fatty acid beta-oxidation is common for many steatogenic
drugs and leads to increased extramitochondrial fatty acid oxidation. Thus, promoting
higher rates of ROS production and lipid peroxidation leading to oxidative stress and

mitochondrial dysfunction. An increase in ROS formation has been reported in HepG2
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cells treated with several steatotic drugs including tetracycline confirming its
mechanism as via the inhibition of beta-oxidation (Donato et al 2009). Accordingly,
Garcia-Canaveras et al., (2016) demonstrated a decrease in glutathione (GSH) levels
in HepG2 cells exposed to tetracycline likely to be an antioxidant response to the
elevated ROS levels. In their study they also reported a decrease in GSH/glutathione
disulfide (GSSG) ratio as well as an increase in cysteine-glutathione (CSSG)

suggesting increased ROS formation.

There are only limited published studies using tetracycline in HepG2 cells. However,
a concentration-dependent lipid accumulation has been reported following single
doses of tetracycline (Donato et al., 2012). Studies by Antherieu et al., (2011) and
Garcia-Canaveras et al., (2016) demonstrated that single doses of tetracycline, as low
as 50 pM, lead to the induction of steatosis. In another study Choi et al., (2015)
demonstrated that mild steatosis occurs 24 hours after a single dose of tetracycline at
100 uM. Meanwhile, Donato et al., (2012) observed a concentration-dependent lipid
accumulation after 24 hours which was significantly different to the control at a dose
level of 200 yM. In general, the literature agrees that tetracycline induces a
concentration-dependent increase in lipid accumulation up to a maximum dose level

of 800 uM before cytotoxicity occurs (Donato et al., 2012).

Since the literature mentions a range of dose levels and the fact there are reports of a
concentration dependent increase in lipid accumulation the first step in this study was
to determine the best dose levels of tetracycline to use. As mentioned above literature
suggests that doses exceeding 800 uM may induce cytotoxicity. Therefore, since this
study wished to develop mild steatosis, without cytotoxicity, it was decided that dose
levels used would not exceed 800 uM. However, if too low a dose level was selected
it could result in suboptimal lipid accumulation. Consequently, it was decided to carry

out an initial dose response study in the HepG2 monolayers.
Once dose levels were confirmed this Chapter then attempted to identify changes in

the metabolome in response to tetracycline as a means of determining potential

steatosis biomarkers.
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As mentioned in previous Chapters there is a great unmet need for non-invasive
biomarkers and especially for drug-induced steatosis (DIS), (Dash et al., 2017, Lopez-
Riera etal., 2017, Pavlik et al., 2019). To date, few studies have been conducted using
tetracycline for the evaluation of biomarkers of drug-induced steatosis (Lopez-Riera et
al., 2017, Pan et al., 2019, Pavlik et al., 2019). However, these studies looked at
microRNA, protein and inflammatory biomarkers, while the current study will focus on
metabolite changes. The main findings of previous studies were inhibited fatty acid
beta-oxidation coupled with mitochondrial dysfunction and oxidative stress. This
Chapter will build on current knowledge and develop a drug-induced 3D spheroid
model. There are currently no published studies investigating tetracycline-induced

steatosis in spheroids.

As described in Chapter 3 HepG2 monolayers have been reported to display lower
CYP enzyme expression when compared to 3D cell cultures (Mizoi et al., 2020,
Stampar et al., 2020 and Ingelman-Sundberg and Lauschke, 2021). Although
dysregulation of the CYP450 enzyme family in dietary induced NAFLD has been
partially characterised (Rey-Bedon et al., 2022), the effect of drug-induced steatosis
on these enzymes has not yet been studied. The expression and activity of many CYP
enzymes have been shown to be altered in dietary-induced steatosis, thus having an
impact on metabolism of xenobiotics and bioavailability resulting in decreased
pharmacotherapeutic effect and/or generation of toxic metabolites, and oxidative
stress (Rey-Bedon et al., 2022).

Therefore, the third objective of this study will be to analyse and compare CYP
expression following the administration of tetracycline in 2D monolayers and 3D

spheroids will be evaluated using Western blotting.

4.2 Tetracycline study design

Monolayer HepG2 cells were plated in 6-well plates. A dose response study was
carried out by administrating tetracycline at dose levels of 100, 200, 400, 600 and 800
MM to HepG2 cells followed by a 24-hour incubation. Six replicates were used for each

dose level.
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For the 3D spheroid model, the HepG2 cells were plated in low attachment 6-well
plates and grown for 17 days before being dosed with fatty acids at concentrations of
0, 100 and 600 uM.
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4.3 Results

4.3.1 Cell viability and cytotoxicity in HepG2 monolayers dosed with tetracycline

To ensure that cell viability was not affected by tetracycline dosing and that the
concentrations used were not cytotoxic. HepG2 cell viability was assessed using an
MTS assay as described in Section 2.6 and a lactate dehydrogenase (LDH) assay, as

described in Section 2.21.

The MTS assay (Figure 4.1) revealed no significant difference in HepG2 cell viability
at dose levels up to 600 uM tetracycline when compared to the DMSO vehicle control
(0 uM). At the highest dose level viability fell to 74%, but statistical analysis revealed

no significance.
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0 100 200 400 600 800
Tetracycline (uM)

Figure 4.1 HepG2 cell viability in response to increasing tetracycline concentrations as assessed by
MTS assay. HepG2 cells were treated with tetracycline at concentrations of 0 (DMSO control), 100,
200, 400, 600 and 800 uM and incubated for 24 hours as described in Section 2.5.2. The MTS assay
was carried out as described in Section 2.6. The values shown represent the mean of six replicates.
Error bars represent standard deviation.

The LDH assay (Figure 4.2) also demonstrated no statistically significant increases in
cell death for all dose levels of tetracycline when compared to the DMSO control. A

positive control was used in this experiment which represented a cytotoxicity of 100%.

174



120

100

80

60

Cytotoxicity (%)

40

20

0 100 200 400 600 800 Positive
control
Tetracycline concentration (uM)

Figure 4.2 HepG2 cell death in response to increasing tetracycline concentration assessed by LDH
assay. HepG2 cells were treated with tetracycline at concentrations of 0 (DMSO control), 100, 200, 400,
600 and 800 pM and incubated for 24 hours as described in Section 2.5.2. The LDH assay was carried
out as described in Section 2.21. The value obtained for the positive control represents 100% cell death.
The values shown represent the mean of six replicates. Error bars represent standard deviation.

4.3.2 Oil Red O staining

To confirm an increase in lipid accumulation in HepG2 cells following tetracycline
administration and to determine if there was a dose-related response cells were
stained with Oil Red O.

The images obtained under the light microscope suggested there was a dose-related
increase in stain uptake up to a dose level of 600 uM (Figure 4.3 A-F). This was
observed as an increase in the number, size and intensity of cells stained red.

However, above this dose level (800 uM) the number of red stained clusters appeared
to be reduced (Figure 4.3 G).
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Figure 4.3 Light microscope images obtained of HepG2 cells stained with Oil Red O following treatment
with tetracycline. Cells were dosed with tetracycline at final concentrations of 0 (DMSO control), 100,
200, 400, 600 and 800 uM and incubated for 24 hours. Cells were stained using Oil Red O as described
in Section 2.7. A. media only control, B. DMSO control, C. 100 uM, D. 200 uM, E. 400 uM, F. 600 pM
and G. 800 pM. The arrows indicated lipid accumulation.

4.3.3 Triglyceride assay in the monolayer

Oil Red O staining offered a visual representation of the triglyceride accumulation
within the cell; however, it was not possible to quantify how much was present.
Therefore, cell lysates from HepG2 cells treated with tetracycline at the different dose
levels were analysed using a commercial Triglyceride-Glo™ assay kit to quantify
triglyceride content. As shown in Figure 4.4 there was no significant change in
triglyceride accumulation at any of the dose levels tested. In addition, the 400 and 800
MM treated groups had lower triglyceride content when compared to control, which
could be due to the possible slight decrease in cell viability seen in Figure 4.1, although
this was not statistically significant. This does correspond to the change in morphology

observed in Figure 4.3 G.

176



100
90

80
70
60
50
40
30
20
10
0
0 100 200 400 600 800

Tetracycline concentration (uM)

Triglyceride concentration (uM)

Figure 4.4 Triglyceride content in HepG2 cells following treatment with tetracycline. HepG2 cells were
treated with tetracycline at concentrations of 0 (DMSO control), 100, 200, 400, 600 and 800 uM and
incubated for 24 hours. The triglyceride assay was carried out as described in Section 2.8. The values
shown represent the mean of six replicates. Error bars represent standard deviation.

4.3.4 Metabolomic analysis in aqueous monolayers cell extracts

In this study aqueous HepG2 cell extracts were collected following 24-hour incubation
in media supplemented with tetracycline at different dose levels. NMR and multivariate
analysis were used to determine changes in the metabolite profile in response to

tetracycline.

Visual inspection of the '"H NMR spectra did not reveal any obvious differences
between sample groups (data not presented). Therefore, multivariate analysis was
employed. Firstly, an unsupervised method of analysis, PCA was carried out. A PCA
model was constructed and the scores plot obtained (Figure 4.5) revealed some
degree of separation between the different sample groups with the low doses on the
right-hand side of the scores plot and the high doses on the left. The DMSO control
samples were mostly located on the right-hand side of the scores plot, although two
samples from this group were separated from the rest of the group and were negative
for PC1. The 400 (light blue) and 600 (blue) uM samples were clustered on the left-
hand side of the scores plot with some overlap between the two groups while the 100
and 200 uM were on the right-hand side. The 800 yM samples were also mostly
negative for PC1 with the exception of samples 800 uM (2 and 4). Sample 800 uM (2)
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was located outside the ellipse, however upon inspection of the Hotelling’s plot
(Appendix Figure 8.6) it was determined that this sample was not an outlier. All

samples at this dose level were positive for PC2 though.
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Figure 4.5 PCA scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 cells dosed
with tetracycline at increasing dose levels. Cells were dosed with 0 (DMSO control), 100, 200, 400, 600
and 800 uM tetracycline and incubated for 24 hours. Aqueous cell extracts were collected, and NMR
analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. Grey =
DMSO only control; Yellow = 100 uM; Green = 200 pyM; Light blue = 400 uM; Blue = 600 uM; Red =
800 uM.

As the PCA model did not show defined sample group separation the NMR spectra
were further analysed using OPLS. The scores plot is shown in Figure 4.6. Similar to
the PCA plot, the OPLS scores plot does not show clear separation between the
sample groups along the predictive t[1] axis. The DMSO controls and 100 yM sample
group were spread across the t[1] axis. The 200 yM sample group were found on the
left-hand side of the scores plot and the 800 uM group was located on the right.
However, there remains overlap between the 400 and 600 uM groups in the upper
right-hand side of the quadrant. Sample 400 uM (3) was separated from the rest of the
sample group. Significant intragroup variation can be seen in the DMSO control

samples with all samples spread across the t[1] and t[0] axis.
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Figure 4.6 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells
treated with different dose levels of tetracycline. Cells were dosed with 0 (DMSO control), 100, 200,
400, 600 and 800 uM tetracycline and incubated for 24 hours. Aqueous cell extracts were collected,
and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = DMSO only control; Yellow = 100 pM; Green = 200 pM; Light blue =
400 uM; Blue = 600 uM; Red = 800 uM.

Following OPLS analysis each treated group was then compared directly against the
control group using OPLS-DA in order to compare changes in metabolites following
treatment with tetracycline. Consecutive dose levels were also analysed using OPLS-
DA to identify dose related metabolite changes. Each of the OPLS-DA scores plots
constructed (Figure 4.7) demonstrate good separation in each pair-wise comparison
along the t[1] predictive axis, with the exception of the comparison between DMSO
control vs 200 yM. In this scores plot (Figure 4.7 B) DMSO sample (3) was just on the
right-hand side of the scores plot although fairly central, while the rest of the group
was located on the left. Otherwise, the control DMSO sample group was located on
the left side of all plots. Additionally, similar to results obtained from the OPLS
analyses there was significant intragroup variation along the orthogonal t[0] axis for
the DMSO control sample group mainly due to control sample 4 (DMSO 4). This
intragroup variation seemed to be more prominent when the control samples were
compared against dose levels higher than 200 uM as well as when the treated groups
were compared against each other. These samples were rephased several times and

outlier analysis were conducted which confirmed no outliers were present.
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Figure 4.7 OPLS-DA scores plots derived from "H NMR spectra of aqueous extracts from HepG2 cells
dosed with tetracycline at varying dose levels. Cells were dosed with tetracycline at 0, 100, 200, 400,
600 and 800 uM and incubated for 24 hours. Samples were collected, and NMR analysis was carried
out as described in Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. A.
DMSO control vs 100 uM, B. DMSO control vs 200 yM, C. DMSO control vs 400 uyM, D. DMSO control
vs 600 uM, E. DMSO control vs 800 uM, F. 100 vs 200 yM, G. 200 vs 400 puM, H, 400 vs 600 uM, I.
600 vs 800 pM. Grey = DMSO only control; Yellow = 100 uM; Green = 200 uM; Light blue = 400 uM,;
Blue = 600 uM; Red = 800 uM.

Using the OPLS-DA models in Figure 4.7 VIP predictive and S-plots were generated
(Appendix Figures 8.7 and 8.8) to determine the metabolite regions in the NMR
spectra that contributed most to the separation of the two groups in each pair-wise
comparative scores plot. The VIP predictive plots revealed NMR regions that were
statistically significant and the regions with a VIP value greater than one are
highlighted in red in both the VIP and S-plots. S-plots were used to confirm whether
the peaks within the specific NMR variable regions had decreased or increased for

groups in each pair-wise comparison.

Following OPLS-DA analysis, a Kruskal-Wallis test was carried out on the integral
spectral values to investigate if any of the metabolite regions highlighted in the VIP

were statistically significant between the groups in each pair-wise comparison.

NMR regions that were confirmed as being statistically different were recorded. The
spectra were further analysed, and the multiplicities of peaks were determined in these
regions to aid with the identification of metabolites. Many metabolite regions were
observed to be higher in the 100 and 200 uM groups when compared to control but
were then decreased at dose levels above 400 uM and significantly decreased at 600
MM. Examples of some metabolites that followed this trend include isoleucine, lactate,

alanine, glutamate and homocysteine. Significant metabolite changes that were
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observed when the 200 and 400 uM treated groups were compared directly included

decreases lactate, choline and homocysteine (p<0.001). Many significant (p<0.05)

decreases in metabolites were observed in the comparison between the DMSO and

600 uM treated group but not at other dose levels. Also, a large number of metabolite

regions were revealed as significant in the VIP of DMSO versus 800 uM, but it was

not possible to identify metabolite peaks in these regions.

Table 4.1 Chemical shift regions, and potential metabolites, identified as significantly different in the
NMR of aqueous extracts from HepG2 cells treated with increasing concentrations of tetracycline when
compared to control.

'H shift Metabolite Ctrl | Ctrl | Ctrl | Ctrl | Ctrl | 100 | 200 | 400 | 600
ppm aqueous Vs VS VS VS VS VS VS VS VS
100 | 200 | 400 | 600 | 800 | 200 | 400 | 600 | 800
pM | uM | uM | uM | uM
0.89- 1 - - * - - - ! -
0.901 Acyl groups (CHs)
(m)
0.925- T T 1 I - - 1 - T
0.9902 Isoleucine, leucine *
(m)
0.994- T - I I - - I - T
1.057 Valine/lsoleucine
(m)
1.179- - - - * - - - ! 1
1.215
(t), B-hydroxybutyrate
1.2499-
1.2556
(s)
1.31- R
1.3406 Lactate, Threonine el
(dd)
1.468- 1 7 | I - - ! - T
1.4941 Alanine *
(d)
1.915- 1 - - - - - - ! 1
1.922 Acetate *
(s)
1.987- T T I I - T ! - -
2.0957 Isoleucine, **
(m) Glutamate,
Homocysteine, SAH,
Proline
2.0559- Glutamate, 0 0 ! * ! 1 ! ! 1
2.191 Homocysteine b
(m)
2.33- Glutamate, B- 1 1 ! ! ! 1 ! - 1
2.3819 hydroxybutyrate, >
(tof d) Proline
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2.3847- - ! L* -
2.3977 Succinate, Pyruvate
(s)
2.418- Glutamine, 1 ! L* !
2.478 Pantothenic acid e
(m)
2.544- 1 ! L* !
2.558 Citrate **
(s)
2.559- 1 ! L* !
2.573 GSH, GSSG **
(s)
2.669- Methionine, Citrate, 1 - - -
2.7001 SAH
(s)
2.708- - - - -
2.724 Sarcosine
(d)
2.9425- 1 - - -
2.9527 Dimethylglycine
(s)
3.0331- Creatine, 1 ! ! !
3.0496 Phosphocreatine, >
(d) Creatinine
3.216- Choline, 1 U ! !
3.226 Phosphocholine, e
(s) Betaine, TMAO
3.548- 1 ! 1 !
3.5619 Glycine, Sarcosine *
(s)
3.734- Leucine, Alanine, 1 * 1™ !
3.797 Arginine, Lysine, el
(m) Glutamine,
Glutamate, GSH,
GSSG,
Dimethylglycine,
Glucose, Cysteine,
Methylacetate,
Citrulline
3.815- Methionine, - * * !
3.8454 | Homocysteine, (SAH), *
(m) Asparagine, Glucose,
Cystathionine, Serine
3.9276- Creatine, - ! * -
3.9388 Phosphocreatine,
(s) Betaine
3.9415- 1 L* ! !
3.9659 Serine b
(m)
3.984- Cystathionine, 1 l* - -
3.99 Cysteine, Serine,
(m)
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Hippurate, Histidine,

Pantothenic acid
4.087- 1 - - - - - - - -
4.093 Creatine
(s)
4.1001- B-hydroxybutyrate, 1 - - - - - - - -
4.14 (q) Lactate
4.1404- N N N B N A B
4.1909 Phosphocholine fe
(m)
4.2216- Vi -l v -]l e]r ]
4.2698 Threonine e
(m)

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001)
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4.3.5 Metabolomic analysis in organic monolayers cell extracts

NMR spectra of organic extracts from HepG2 cells dosed with tetracycline at 0 (DMSO
control), 100, 200, 400, 600 and 800 uM in this study were also further analysed using

multivariate analysis.

Initial inspection of the NMR spectra revealed no differences between the control and
the treated sample groups (data not shown). Therefore, a PCA model was
constructed, and the resulting PCA scores plot (Figure 4.8) showed the DMSO control
sample groups on the left-hand side of the scores plot (shown in grey) and therefore
negative for PC1 with the exception of sample 4 (DMSO 4) which is on the border of
the ellipse. The spectra for this sample was examined and re-processed and outlier
analysis was carried out to rule out any experimental or analytical error. However, this
sample was not found to be an outlier and was therefore included in further analysis.
The 100 and 200 uM sample groups were spread across the PC1 axis while the 600
and 800 pyM sample groups were mostly clustered in the upper right-hand quadrant,
with the exception of samples 800 (2 and 3). The 400 uM sample group was spread
across PC1 between the other sample groups. Large intragroup variation can be seen

for most sample groups.

04

Figure 4.8 PCA scores plot derived from 'H NMR spectra of organic extracts from HepG2 cells dosed
with tetracycline at increasing dose levels. Cells were dosed with 0 (DMSO control), 100, 200, 400, 600
and 800 uM tetracycline and incubated for 24 hours. Organic cell extracts were collected, and NMR
analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. Grey =
DMSO only control; Yellow = 100 pM; Green = 200 pM; Light blue = 400 uM; Blue = 600 uM; Red =
800 pM.

Since the PCA scores plot showed overlap between all sample groups, OPLS models

were created. The resulting OPLS scores plot (Figure 4.9) demonstrates marginally
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better group separation along the predictive t[1] axis, however there is still some
overlap between sample groups. Significant intragroup separation is evident for the
DMSO control and the 100 and 200 yuM sample groups along the orthogonal t[0] axis,
with sample DMSO (4) just outside the ellipse similar to the PCA.

[e]

to[1] * 1.08059

-0.6 -04 02 02 04 06 08

t[1]* 100316

Figure 4.9 OPLS scores plot derived from NMR spectra of organic cell extracts from HepG2 cells treated
with different dose levels of tetracycline. Cells were dosed with 0 (DMSO control), 100, 200, 400, 600
and 800 pM tetracycline and incubated for 24 hours. Organic cell extracts were collected, and NMR
analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot represents
one sample. Grey = DMSO only control; Yellow = 100 uM; Green = 200 uM; Light blue = 400 uM; Blue
=600 pM; Red = 800 uM.

Following OPLS analysis all treated groups were compared against the DMSO control
group by constructing OPLS-DA plots. Consecutive dose levels were also analysed.
Good sample group separation was observed in all scores plots along the predictive
t[1] axis (Figure 4.10).
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Figure 4.10 OPLS-DA scores plots derived from 'H NMR spectra of organic extracts from HepG2 cells
dosed with tetracycline at varying dose levels. Cells were dosed with tetracycline at 0, 100, 200, 400,
600 and 800 uM and incubated for 24 hours. Samples were collected, and NMR analysis was carried
out as described in Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. A.
DMSO control vs 100 uM, B. DMSO control vs 200 yM, C. DMSO control vs 400 uyM, D. DMSO control
vs 600 uM, E. DMSO control vs 800 uM, F. 100 vs 200 uM, G. 200 vs 400 pyM, H, 400 vs 600 uM, I.
600 vs 800 uM. Grey = DMSO only control; Yellow = 100 uM; Green = 200 uM; Light blue = 400 pM;
Blue = 600 uM; Red = 800 uM.

Following analysis of the OPLS-DA models VIP predictive and S-plots were generated
to determine the metabolite regions contributing most to separation of the groups in

each pair-wise comparison scores plots (Appendix Figures 8.9 and 8.10).

Spectral regions of interest according to the VIP list were selected and further
analysed using a Kruskal Wallis analysis to test for statistical significance. The
characteristics of the peaks in each region were determined to enable metabolite and
compound identification. Table 4.2 shows general increases in fatty acyl groups, fatty
acids and cholesterol with increasing dose, however no statistically significant
changes were observed. Decreases in arachidonic acid compared to the control were
seen in the 100 and 200 uM treated groups but levels were then increased in doses
above 400 pM. According to the Kruskal Wallis test a significant increase in

arachidonic acid was observed when the 400 and 600 uM groups were compared.
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Table 4.2 Chemical shift regions identified as significantly different in the organic extracts of HepG2
cells treated with different concentrations of tetracycline as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

H shift Metabolite Ctrl | Ctrl | Ctrl | Ctrl | Ctrl | 100 | 200 | 400 | 600
ppm aqueous VS VS VS VS VS VS VS VS VS
100 | 200 | 400 | 600 | 800 | 200 | 400 | 600 | 800
M | UM | uM | uM | uM

0.826- Fatty acyl groups 1 1 1 1 1 ! - 1 -
0.953(m) and FA

1.055- {1 A A A A A A A T -
1.112(m) Cholesterol

1.21- R
1.33(s) Cholesterol
1.56- Lt ol

1.596(s) ARA -

1.7013- Fatty acids - - - 1 - 1 - 1 !
1.721 (s) (EPA)

2.004- - - - - - 1 - -

2.061 (q) Oleic acid

2.298- Acyl groups in - - - - - 1 - - -
2.365(m) triglycerides
4.145- Glyceryl group in - - - - - 1 - - -
4.203 (dd) | monoglyceride

4.295- Glyceryl group in - - - - - 1 - - -
4.33(dd) Triglycerides

5.348- FA/MUFA - |- - - - 0 - - -
5.38(m)

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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4.3.6 CYP enzyme expression levels in monolayer HepG2 cells dosed with
tetracycline

In this study CYP expression in protein extracts of HepG2 cell monolayers dosed with
varying concentrations of tetracycline were analysed using Western Blotting. Figure
4.11 shows the blots for CYP2D6, CYP3A4 and CYP2E1. For all blots, beta actin
(Figure 4.11A) was used to ensure equal levels of cell samples were loaded. The raw
data showing band intensity was shown in Table 4.3; this was determined using
densitometry. A dose dependent increase in CYP2E1 was observed. CYP2D6 was
also increased at all dose levels when compared to the DMSO control, although not
in a dose dependent manner. CYP3A4 expression appears to be greater in the highest
dose levels (600 and 800 uM). Time did not permit for repetition of these blots and

therefore N= 1 which means statistical analysis was not possible.

DMSO

control 100 200 400 600 800

A. Beta actin 42 kDa = = Ll L Pa— -

B. CYP2D6 55 kDa L and = - -— —
C.CYP3A4 57kDa - o . 4 i

3 -— —
D. CYP2E1 57 kDa J— -— —_— -

Figure 4.11 Western blot analysis of CYP enzyme expression in HepG2 monolayers dosed with
tetracycline. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Cells were dosed with tetracycline
acid at varying concentrations of 100, 200, 400, 600 and 800 uM and incubated for 24 hours as
described in section 2.5.2. Proteins were collected as described in Section 2.16 and analysed by
Western blotting as described in Section 2.20.
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Table 4.3 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2
monolayers dosed with tetracycline relative to the DMSO control. Cells were dosed with tetracycline at
varying concentrations or 0, 100, 200, 400, 600 and 800 uM and incubated for 24 hours. Proteins were
collected as described in Section 2.16 and analysed by Western blotting as described in Section 2.20.

Tetracycline concentration (uM) | CYP2D6 | CYP3A4 | CYP2E1
DMSO control 2244.03 | 3114.38 | 2103.49

100 9659.08 | 2522.45 | 3101.64

200 12889.54 | 2585.39 | 2284.15

400 3835.28 | 3342.51 | 3388.64

600 9519.66 | 4510.76 | 5133.54

800 11125.18 | 4197.03 | 5944.95
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4.3.7 3D spheroid model dosed with tetracycline

HepG2 spheroids were grown for 17 days before being dosed with either a low or a
high dose (100 and 600 pM) of tetracycline. These doses were chosen based on the
results of the dose response study in the monolayers since they did not induce
cytotoxicity. The purpose was to develop a spheroid model of steatosis using

tetracycline and to analyse changes in the metabolome and CYP expression.

4.3.8 Cytotoxicity in spheroids treated with tetracycline

A LIVE/DEAD assay was used to visualise spheroid viability following dosing with
tetracycline at both 100 and 600 uM after 17 days of growth. In the assay viable cells
are stained green while non-viable cells are stained red. Figure 4.12 shows the
confocal microscope images taken for the 100 and 600 uM treated spheroids and the
DMSO control. No red cells were apparent confirming that spheroids dosed with 100

and 600 pM of tetracycline (Figure 4.12 B and C) did not cause cell death.

Figure 4.12 Images taken from the LIVE/DEAD assay of spheroids dosed with tetracycline. Spheroids
were grown in low attachment 6-well plates as described in Section 2.3 and dosed with tetracycline at
concentrations of 0 (DMSO control), 100 and 600 uM. The LIVE/DEAD assay was carried out as
described in Section 2.22. A. DMSO control, B. 100 uM tetracycline and C. 600 uM tetracycline.

As the LIVE/DEAD assay only offered a visualisation of cytotoxicity it was decided that
an LDH assay would be used as it gave a more quantitative measure of cytotoxicity.
Figure 4.13 confirmed there was no cell death 24 hours after dosing spheroids with
100 and 600 pM of tetracycline when compared to the DMSO control. A positive
control was used in this experiment, results of which represented a cytotoxicity value
of 100%.
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Figure 4.13 HepG2 spheroid cell death in response to increasing tetracycline concentration assessed
by LDH assay. HepG2 spheroids were treated with tetracycline at concentrations of 0, 100 and 600 uM
and incubated for 24 hours as described in Section 2.5.2. The LDH assay was carried out as described
in Section 2.21. The value obtained for the positive control represents 100% cell death. The values
shown represent the mean of six replicates. Error bars represent standard deviation.

4.3.9 Triglyceride accumulation in spheroids

Lipid accumulation was assessed in HepG2 spheroids dosed with tetracycline at dose
levels of 100 and 600 uM by quantification of triglyceride content. The results shown
in Figure 4.14 revealed that while there was an approximate 15% increase in
triglyceride content in the two treated groups compared to the control group this was

not statistically significant.
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Figure 4.14 Mean triglyceride content in HepG2 spheroids following treatment with tetracycline. HepG2
spheroids were treated with tetracycline at concentrations of 0 (DMSO control), 100 and 600 yuM and
incubated for 24 hours as described in Section 2.5.2. The triglyceride assay was carried out as
described in Section 2.8. The values shown represent the mean of six replicates. Error bars represent
standard deviation.

4.3.10 Metabolomic analysis of aqueous spheroid extracts

HepG2 spheroid sample extracts were collected following a 24-hour incubation in
culture media supplemented with tetracycline at the two dose levels. Aqueous extracts
were prepared and analysed by NMR as described in Section 2.10. Multivariate
analysis was then used to determine changes in the metabolite profile of spheroids in

response to tetracycline.

Following a visual inspection of the spectra obtained from aqueous spheroid extracts,
no visible difference were apparent between treated and the control groups (data not
shown). Therefore, multivariate analysis was applied. An initial PCA scores plot
revealed that sample 100 (4) fell outside the ellipse. Upon further inspection of the
Hotelling’s plot this sample was deemed an outlier and removed from further analysis.
In the subsequent PCA scores plot (Figure 4.15) the DMSO 1 sample then fell outside
the 95 % ellipse. However, a Hotelling’s T2 plot (Appendix Figure 8.11) confirmed that
the sample was below the 99 % confidence level which meant it was not an outlier and
was therefore included in further analyses. The remainder of the DMSO samples were
negative for PC2 while the 100 and 600 uM treated groups were positive for PC2 with

the exception of 100 (3). There was slight intergroup separation along PC2.
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Figure 4.15 PCA scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 spheroids
dosed with tetracycline. PCA scores plot with sample 100 (4) excluded. Cells were dosed with
tetracycline at 0, 100 and 600 uM and incubated for 24 hours. Samples were collected, and NMR
analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = DMSO control, dark blue = 100 uM and red = 600 uM.

OPLS, was then used to compare between sample classes. The OPLS scores plot
(Figure 4.16) demonstrated separation of the different sample groups along the
predictive t[1] axis. However, some intragroup variation along the t[0] axis was evident,

mostly for the DMSO control samples.
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Figure 4.16 OPLS scores plot derived from '"H NMR spectra of aqueous HepG2 spheroids extracts
treated with different doses of tetracycline. Cells were dosed with tetracycline at 0, 100 and 600 yM and
incubated for 24 hours. Samples were collected, and NMR analysis carried out as described in Sections
2.10 and 2.12. Each spot on the scores plot represents one sample. Grey = DMSO control, dark blue
=100 uM and red = 600 uM.

Following OPLS analysis OPLS-DA were created to assess pairwise differences
between the individual treated groups and the DMSO control as well as between the

low and high dose groups. In all OPLS-DA scores plots (Figure 4.17) the control and
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the treated groups were separated along the t[1] axis. Good separation was also

observed between the two treated groups (Figure 4.17 C). Orthogonal variation along

the t[0] axis was apparent in the DMSO control group.
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Figure 4.17 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2
spheroids dosed with tetracycline. Spheroids were dosed with tetracycline at 0, 100 and 600 uM and
incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described in
Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. Grey = DMSO control,
dark blue = 100 pM and red = 600 uM. A. Control vs 100 pM tetracycline. B. Control vs 600 uM
tetracycline. C. 100 vs 600 uM tetracycline.
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VIP predictive and S-plots (Appendix Figures 8.12 and 8.13) were generated from the
OPLS-DA models and were used to determine the NMR regions contributing most to

the separation of the groups in the OPLS-DA scores plots.

The spectral regions highlighted in the VIP and S-plots were visually inspected on the
"H NMR spectra to identify the multiplicity of the peaks within these regions. The
Human Metabolome Database and published literature were used to identify
metabolites thought to be within these regions. However, it was not possible to identify
metabolites for all the regions considered to be significant by the VIP and many peaks
remained unidentified (data not shown). Spectral regions were further analysed using

a Kruskal Wallis test to determine any statistical significance.

Table 4.4 shows significant increases in many metabolite regions were observed in
the 600 uM treated group when compared to the DMSO control. These included
metabolite changes in alanine, glutamate and B-hydroxybutyrate. Decreases in lactate
were also seen in both treated groups with a significant decrease (p<0.05) seen in the
600 uM when compared to the DMSO control. Decreases in creatine, phosphocreatine
and creatinine were also seen in both the 100 and 600 uM treatment groups. Dose
dependent changes were apparent when comparing the treated groups with the
control with many of the changes becoming statistically significant with increasing
dose. For example, decreases in isoleucine and succinate were observed in the

treated groups; this was significant only in the higher dose group of 600 uM (p<0.001).
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Table 4.4 Chemical shift regions identified as significantly different in the aqueous extracts of HepG2
spheroids treated with different concentrations of tetracycline as detected by OPLS-DA analysis. The

multiplicity of each peak is shown.

'H shift ppm Metabolite Ctrl + Ctrl 100
agueous 100uM | +600uM | +600uM
0.886-0.974 (m) Acyl groups (CHs) 1 e !
0.982-1.05 (m) Valine, Isoleucine ! 1 !
1.07-1.074(s) Isoleucine 1 - -
1.186-1.214(d) Lysine, Citrulline - - 1
1.314-1.479 (d) Lactate, Threonine ! U !
1.43-1.47(d) Alanine ) pEE* 1
1.805-1.903(m) Lysine, Citrulline T - !
1.912-1.927(s) Acetate ) - !
1.978-2.107(m) Isoleucine, Glutamate, 1* 1 !
Homocysteine, SAH, Proline
2.115-2.137(m) Methionine, Glutamine, ! * !
GSH, GSSG, Homocysteine,
Cystathionine
2.23.245(s) Valine 1> - !
2.307-2.3815(m) B-hydroxybutyrate, ! 1 !
Glutamate, Proline
2.416-2.428(s) Pyruvate, Succinate ! e !
2.48-2.545(m) Citrate - 1* 1
3.034-3.049(s) Creatine, Phosphocreatine, ! 1 !
Creatinine
3.218-3.231(s) Choline, Phosphocholine, 1 ! !
Betaine, TMAO
3.257-3.265(m) Arginine, Taurine, Histidine - ! !
3.34-3.35(s) Glucose, Hypotaurine, ) - !
Pantothenic acid
3.4602-3.494(m) Proline, Taurine, Pantothenic 1 1 -
acid

3.515-3.552 (dd) Glucose, Pantothenic acid ) ! -
3.617-3.629(m) Phosphocholine - ! -
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3.688-3.79 (m) Leucine, Alanine, Arginine, 1 ! !
Lysine, Glutamine,
Glutamate, GSH, GSSG,
Dimethylglycine, Glucose,
Cysteine, Methylacetate,
Citrulline

3.815-3.8454 (m) - 1* !
SAH, Asparagine, Glucose,
Cystathionine, Serine

3.881-3.9205(m) Homocysteine, Methionine, 1 ! !
SAH, Cystathionine
3.947-3.959(s) Creatine, Phosphocreatine, - - !
Betaine
3.9628-3.991(m) Cystathionine, Cysteine, - ! -

Serine, Hippurate, Histidine,
Pantothenic acid

4.085-4.137 (q) B-hydroxybutyrate, Lactate, ! ! !
4.14-4.198(m) Phosphocholine - I !
6.036-6.06(m) NAD - - 1

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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4.3.11 Metabolomic analysis of organic spheroid extracts

Organic extracts from HepG2 spheroids were analysed using '"H NMR spectroscopy.
Visual inspection of the 1D 'H NMR spectra was conducted prior to multivariate
analysis. In the PCA model (Figure 4.18) sample 100 (3) was located just outside the
ellipse, but the corresponding Hotelling’s plot confirmed (Appendix Figure 8.14) this
sample was within the 95 % confidence level and it was therefore included in further
analyses. The PCA shows many samples were spread across the scores plot with no
distinct intergroup separation. Large intragroup variation was observed particularly in
the 600 uM group.

08

044

Figure 4.18 PCA scores plot derived from 'H NMR spectra of organic extracts from HepG2 spheroids
treated with tetracycline. Spheroids were dosed at 0 (DMSO control), 100 and 600 uM and incubated
for 24 hours. Samples were collected, and NMR analysis carried out as described in Sections 2.10 and
2.12. Each spot represents one sample. Grey = DMSO control, dark blue = 100 uM and red = 600 uM.

OPLS analysis was applied to examine sample class separation. The scores plot
(Figure 4.19) shows the DMSO control samples were on the left-hand side of the plot
with some orthogonal separation along the t[0] axis. However, clear group separation
was not observed as both the 100 and 600 uM treated groups were spread across the
predictive t[1] axis with large intragroup separation for both groups and intergroup

overlapping.
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Figure 4.19 OPLS scores plot derived from "H NMR spectra of organic HepG2 spheroids extracts
treated with tetracycline. Cells were dosed with tetracycline at 0, 100 and 600 uM and incubated for 24
hours. Samples were collected, and NMR analysis carried out as described in Sections 2.10 and 2.12.
Each spot on the scores plot represents one sample. Grey = DMSO control, dark blue = 100 yM and
red = 600 pM.

OPLS-DA was carried out to evaluate pair-wise comparisons. The scores plots in
Figure 4.20 A and B revealed separation between the DMSO control and each of the
two treatment groups along the predictive t[1] axis. However, large intragroup variation
is evident for both treatment groups along the orthogonal t[0] axis. For each pair-wise
comparison the controls were on the left-hand side of the scores plot while each

respective treatment group was on the right.

Figure 4.20 C shows the OPLS-DA scores plot constructed to compare the two treated
groups. Samples 100 (1) and 600 (1) were located on opposite sides of the scores
plot from their respective sample groups. This meant the separation between the two
groups along the predictive axis was not distinct. This was also visible in the PCA

scores plot.
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Figure 4.20 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2
spheroids dosed with tetracycline. Spheroids were dosed with tetracycline at 0, 100 and 600 uM and
incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described in
Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. Grey = DMSO control,
dark blue = 100 yM and red = 600 uM. A. Control vs 100 uM tetracycline. B. Control vs 600 uM
tetracycline. C. 100 vs 600 uM tetracycline.

The OPLS-DA models were then used to identify treatment-related metabolite
changes using the corresponding VIP and S-plots (Appendix Figures 8.15 and 8.16)

Spectral regions with a VIP predictive value greater than 1 were highlighted and

204



considered to be significantly different and responsible for the sample separation.

These variable regions are also highlighted in red in the S-plots.

Following identification of the spectral regions of interest from the VIP and S-plot
models a visual inspection of these regions on the spectra was conducted to identify
the multiplicities of the peaks within each region. Using this information metabolites
were identified using the Human Metabolome Database along with published literature
and assigned metabolites and compounds are shown in Table 4.5. A Kruskal Wallis
test was carried out to observe any statistical significance, however, no significance
was observed for any of the NMR regions in this study. Despite the lack of significance,
increases in cholesterol were apparent in both treated groups as well as decreases in
arachidonic acid. Many other metabolite regions were also highlighted in the VIP plots,

but metabolite identification was not possible.
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Table 4.5 Chemical shift regions identified as significantly different in the organic extracts of HepG2
spheroids treated with different concentrations of tetracycline as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

"H shift ppm Metabolite Ctrl + | Ctrl +600 | 100+600
aqueous 100 MM UM
UM
0.826-0.953(m) Fatty acyl groups and FA 1 1 -
1.114-1.131(s) Cholesterol 1 - -
1.2651-1.285(s) Cholesterol 1 1 )
1.5625-1.605(s) ARA ! ! !
2.008-2.065(q) Oleic acid 1 1 -
2.3129-2.365(m) Acyl groups in triglycerides 1 1 1
4.145-4.193(dd) Glyceryl group in 1 - -
monoglyceride
5.327-5.414(m) FA/MUFA 1 1 -

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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4.3.12 CYP enzyme expression levels in HepG2 spheroids dosed with
tetracycline

Western blotting was used to analyse CYP enzyme expression in HepG2 spheroids
dosed with tetracycline in this study. Figure 4.21 shows the blots from CYP2D6,
CYP3A4 and CYP2E1 with beta actin used as the level constituent cell protein to
ensure equal loading levels of samples. The results in Table 4.6 show the raw data of
arbitrary units for all enzymes. The results show an increase in CYP2D6 expression
in the 600 and 800 uM samples. Increased CYP3A4 expression was also observed in
all dose levels compared to the control. However, CYP2E1 levels were decreased in
all dose levels when compared to the DMSO control with the lowest expression being

in the 800 yuM samples. However, as N=1 further analysis is required.

DMSO
onol 100 200 400 600 800

A Betaactind2kDa 8 e

B.CYP2D6 55kDa =

C.CYP3A4 57 kDa

Figure 4.21 Western blot analysis of CYP enzyme expression in HepG2 spheroids dosed with
tetracycline. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Spheroids were dosed with
tetracycline at varying concentrations of 100, 200, 400, 600 and 800 uM as described in Section 2.5.2.
Proteins were collected as described in Section 2.16 and analysed by Western blotting as described in
Section 2.20.
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Table 4.6 Raw data showing arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 spheroids
dosed with tetracycline relative to the DMSO control. Spheroids were dosed with tetracycline at varying
concentrations or 0, 100, 200, 400, 600 and 800 uM as described in Section 2.5.2. Proteins were
collected as described in Section 2.16.

Tetracycline concentration (uM) CYP2D6 CYP3A4 CYP2E1
DMSO control 4160.86 1563.13 16744.02

100 5817.05 3104.45 14621.86

200 4856.64 2676.33 6099.49

400 3899.91 7559.89 5308.83

600 11747.88 9282.66 11821.02

800 7766.76 6389.83 6456.85
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4.4 Discussion

The first objective of this present study was to create in vitro models of tetracycline-
induced steatosis in monolayer HepG2 cells and 3D spheroids. While the majority of
steatosis and steatohepatitis cases result from dietary causes, it is estimated that
around 2% of cases are related to drug-induced side effects (Rabinowich et al., 2015,
Di Pasqua et al., 2022). This form is known as drug-induced hepatic steatosis (DIHS).
Many drugs have been demonstrated to cause DIHS, including antiarrhythmic drugs,
anti-epileptic drugs and antibiotics such valproate and tetracycline (Muller and Strula,
2019, Soret, et al., 2020, Di Pasqua et al., 2022). DIHS has been described as a
chronic disorder associated with long term exposure to the offending drug (Di Pasqua
et al., 2022). While there is no data on the exact incidence rates for drug-induced
steatosis the annual incidences of drug-induced liver injury vary in population-based
studies from 2.7 to 19.1 cases per 100,000 with approximately 27% of all cases

presenting with some form of steatosis (Kolaric et al., 2021).

DIHS presents as either microvesicular or macrovesicular steatosis or as drug-
induced steatohepatitis. Drugs such as methotrexate, tamoxifen and cisplatin which
are associated with macrovesicular steatosis are more often associated with chronic
and slowly progressive liver injury which is likely to progress to NASH (Pavlik et al.,
2019). However, tetracycline is known to result in microvesicular steatosis; the form of
steatosis linked with acute liver injury and/or dysfunction such as Reye’s syndrome.
Microvesicular steatosis is also related to the severe impairment of beta-oxidation and
as fatty acids are poorly oxidised by the mitochondria this leads to the esterification of
triglycerides the main lipid form that accumulates in steatosis (Satapathy et al., 2015,
Kolaric et al., 2022).

To date there are no definitive guidelines for the management of patients with drug-
induced fatty liver disease (DIFLD) (Patel and Sanyal, 2013). There are also no
specific therapeutic drugs for treating the condition with the only option being the
discontinuation of the offending drug (Patel and Sanyal, 2013, Blohm et al., 2017). In
addition, the only way to reliably identify DIFLD is via imaging methodologies or liver
biopsies, which, as previously discussed, can result in delayed detection.
Consequently, there is a great unmet need for non-invasive biomarkers that can

identify drug-induced steatosis and steatohepatitis in clinics as well as during drug
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development (Pavlik et al., 2019). Therefore, this current study wished to create two
in vitro drug-induced models of steatosis using tetracycline and identify drug-induced

biomarkers of steatosis.

Tetracycline is a broad-spectrum antibiotic belonging to the tetracycline family, which
also includes doxycycline, methacycline and minocycline. As mentioned above the
tetracycline family has been shown to induce various types of hepatic injury including
cholestasis, microvesicular steatosis and necrosis (Fromenty et al., 2020). Although
the number of drugs associated with liver lipotoxicity is large and these include
amiodarone, methotrexate, tamoxifen and CCls the tetracycline model for steatosis
research has advantages such as lower cost and mild toxicity, thus creating mild
steatosis (Szalowska et al., 2014, Zhong et al., 2019). Since tetracyclines are widely
used for the treatment of human and animal infections due to their activity against
gram-positive and gram-negative bacteria a tetracycline-induced steatotic model is

relevant to the clinical setting (Willebrords et al., 2015).

Tetracycline induced steatosis was first described over 50 years ago as one of the first
drugs reported to induce microvesicular steatosis (Willebrords et al., 2015). In humans
it has been reported that high doses of intravenous tetracycline (3 g tetracycline daily
for 10 days) can induce fatty liver disease resulting in hepatic dysfunction; however,
this is reversible once treatment is stopped (Robinson and Rywlin, 1970, Andrade and
Tulkens, 2011, Glenn and Feldman, 2011, Abdel-Gelil and Mansour, 2019).
Tetracycline is thought to induce microvesicular steatosis through the inhibition of
genes involved in fatty acid oxidation such as PPARa, CPT1 and fatty acid binding
protein 1, thus leading to impaired beta-oxidation (Freneaux et al., 1988, Fromenty et
al., 1995, Szalowska et al., 2014, Fromenty et al., 2019). Studies have also suggested
that tetracycline influences many genes associated with fatty acid transport and
esterification including the fatty acid transporter CD36 and diacylglycerol
acyltransferase 2 (DGAT2) in HepG2 cells and primary rat hepatocytes (Yin et al.,
2006, Antherieu et al., 2011, Choi et al., 2015, Di Pasqua et al., 2022). Tetracycline
has also been shown to activate transcription factor 4 (ATF4) and induce ROS
production via the upregulation of CYP2E1 (Bruning et al., 2014, Di Pasqua et al.,
2022).
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In the literature tetracycline has been used extensively for the development of
steatosis models, particularly in rodents (Breen et al., 1975, Freneaux et al., 1988,
Chopra and Roberts, 2001, Antherieu et al., 2011, Donato et al., 2012, Chou et al.,
2015, Rabinowich and Shibolet, 2015, Garcia-Canaveras et al., 2016). Dose levels up
to 50 mg/kg in mice have been reported as inducing hepatic steatosis by inhibition of
beta-oxidation (Breen et al., 1975, Freneaux et al., 1988, Chopra and Roberts, 2001,
Choi et al., 2015).

Previous studies have also confirmed that tetracycline administration induces dose
dependent lipid accumulation and steatosis in HepG2 cells (Donato et al., 2013, Choi
et al., 2015, Garcia-Canaveras et al., 2016). This is also thought to be due to
impairment of fatty acid oxidation and has been linked to increased extramitochondrial
fatty acid oxidation, thus promoting higher rates of ROS production and lipid
peroxidation (Donato et al., 2009, Choi et al, 2015, Garcia-Canaveras et al., 2016).

In their studies, Donato et al., (2009) and Garcia-Canaveras et al., (2016) confirmed
the induction of steatosis in HepG2 cells using a triglyceride assay kit. They
demonstrated that tetracycline causes concentration-dependent lipid accumulation
from a dose level of 50 uM. Both studies also demonstrated via a MTT assay that a
decrease in cell viability occurs at 800 uM and higher. Donato et al., (2012) reported
significant increases in ROS production at dose levels of 400 and 800 uM following
single dosing for 24 hours representing a more steatohepatitis model, which ideally
would be avoided in this study. Nevertheless, studies have tested single doses of
100 pM tetracycline and reported mild steatosis after 24 hours (Donato et., 2009,
Antherieu et al., 2011, Choi et al., 2015, Garcia-Canaveras et al., 2016). In
summary, doses below 400 uM are considered to be well tolerated by HepG2 cells
and induce benign lipid accumulation (Donato et al., 2012, Choi et al., 2015, Garcia-
Canaveras et al., 2016). As cellular models are often much simpler than whole
organisms it is necessary to dose them with high drug concentrations to observed
the desired effects. It has been reported that the toxic concentration of tetracycline in
humans in above 10 ug/ml (22uM) which is around 36 times lower than the toxic
concentration in cells (800 uM) (Chopra and Roberts, 2001).
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In this project since various dose levels have been reported to be effective in the
literature a preliminary tetracycline dose response study (data not shown) was
conducted to identify dose levels that could induce mild steatosis for a second larger
metabonomic study. In this preliminary study dose levels of 50, 100, 200 and 400 uM
were used. Oil Red O staining revealed no difference in lipid accumulation in
tetracycline treated HepG2 cells (data not presented). The study did confirm that the
NMR metabolomic techniques were able to detect metabolite changes and that cells
remained viable. However, PCA and OPLS scores plots showed an overlap between
the 50 uM treated group and the controls indicating very little difference at this dose
level. This lack of separation between the 50 uM treated group and the control in the
metabolomics data indicated that this dose level was perhaps too low to induce lipid
accumulation and therefore, it was decided not to test dose levels below 100 uM in
future studies. Some overlap between the 100, 200 and 400 uM treated groups was
also observed reflecting the results seen in the Oil Red O staining. This preliminary
metabolomics study showed overlap between all the dose levels results suggesting
that higher dose levels may be needed to see a difference between control and
treated. Consequently, in the second dose response study (results presented in this
Chapter) tetracycline was administered at concentrations of 0, 100, 200, 400, 600 and
800 pM. 100 uM and 200 uM were included as the low dose groups and dose levels
of 600 and 800 uM were included even though they are greater than the reported
tolerable dose of 400 uM (Donato et al., 2012, Garcia-Canaveras et al., 2016).

Since the current study wished to develop models of mild steatosis it was important to
ensure that the tetracycline dose levels used were not cytotoxic since this was not
tested in the preliminary study. It was expected that doses of 100 and 200 uyM would
be generally well tolerated by the cells (Choi et al., 2015, Garcia-Canaveras et al.,
2016). Donato et al., (2009) reported that 200 yM was the minimum effective
concentration for cytotoxicity before significant effects on the cell membrane were
induced and that 600 uM was the concentration at which there was significant ROS

generation.

The MTS assay (Figure 4.1) revealed slight decreases in cell viability at 400 uM
tetracycline from 100% to 96%, however this was not statistically significant. In the

800 pM treated group cell viability was 75% of control, although this was also not

212



statistically significant. Studies have demonstrated using MTT assays that tetracycline
has an IC10 of around 800 uM and an IC50 of 1350 uM in HepG2 cells following a 24-
hour incubation (Donato et al., 2009, Garcia-Canaveras et al., 2016). Therefore, some
decrease in cell viability was expected in the current study at 800 uM. The LDH assay
revealed no significant cytotoxicity for treated cells compared to the DMSO control at
all dose levels (Figure 4.2). This confirmed that the doses used were well tolerated by
HepG2 cells and could be used for future studies. As described in Chapter 3 the
discrepancy between the results of the MTS and the LDH assay for the 800 uM dose
is likely because cell proliferation assays such as the MTS cannot differentiate

between cell proliferation and cell death (Smith et al., 2011).

Oil Red O staining of the HepG2 monolayers after 24-hour incubation in tetracycline
demonstrated a clear dose-dependent accumulation of lipid up to 600 uM (Figure 4.3).
However, the number of red clusters were reduced in the 800 uM treated group, this
was potentially due to possible reduced cell viability as seen in the MTS assay, albeit
with no significance. Despite the staining results, the triglyceride assay demonstrated
no significant differences in triglyceride accumulation when the treated groups were
compared to the control (Figure 4.4). Increased lipid accumulation was expected at
the dose levels used based on results from other published work. However, as
discussed in Chapter 3 Oil Red O is a fat-soluble dye used to stain neutral lipids,
cholesteryl esters and lipoproteins, therefore it is taken up by all lipids. Meanwhile the
assay only measures free glycerol released from the hydrolysis of extracted
triglycerides within the samples. For this reason, as discussed in Chapter 3 there are
limitations with both staining techniques and assay kits meaning a combination of both
gives a more accurate picture of lipid accumulation. Therefore, the discrepancy seen
between the Oil Red O staining and the triglyceride assay could be due to the fact the
Oil Red O staining allows for the visualisation of all lipids in the samples, not just

triglycerides.

To move forward, the results of the Oil Red O stain were considered as validation of
the model but since there was not a great increase in lipid accumulation it was
concluded that the model developed was of mild steatosis. The results of the
monolayer study were then used to determine appropriate dose levels for the spheroid

study. The 600 uM dose level was chosen as a high dose due to the reduced cell
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viability seen in the 800 uM treatment groups and it was decided to avoid this as the
increased cell-to-cell contact in spheroids is thought to make them more sensitive. As
100 uM tetracycline displayed some increase in lipid accumulation in the monolayer

Oil Red O staining it was chosen as the low dose for spheroids.

In this study an MTS assay was conducted on the spheroid samples however, the
absorbance values were outside the linear range of the assay potentially due to the
higher cell number in the spheroids as cells continued to proliferate for 17 days. The
optimum seeding density for the assay as stated in the protocol was between 5000-
10000 cells but HepG2 cells have a doubling time of around 48 hours. A study by
Chang and Hughes-Fulford (2009) reported that the rate of cell proliferation in 2D and
3D cultures was not significantly different and reported higher cell numbers in
spheroids at early time points. However, the rate of cell proliferation decreased over
time with cell numbers becoming lower and equivalent to those in monolayers by 72
hours and 6 days, respectively. Over time cell proliferation decreases in HepG2
spheroids since they consist of three main zones: an outer proliferating rim, a
quiescent viable zone, and an inner necrotic core (Stampar et al., 2020). Cell
proliferation is also determined by seeding density with lower initial seeding densities
having higher proliferation rates (Chang and Hughes-Fulford, 2009, Stampar et al.,
2022). Stampar et al., (2022) reported spheroid proliferation rates of 82% after 3 days,
which decreased to approximately 68%, 54%, and 13% after 5, 7, and 18 days. At a
higher initial seeding density cell proliferation decreased to 65.5% after 24 hours
(Stampar et al., 2022). The current study tested various initial seeding densities from
5000 cells per well to 40,000. However, following 17 days of growth, regardless of the
initial cell number, the spheroid cultures continued to grow and therefore exceeded
the optimum cell number for the MTS assay. Consequently, it was decided to use the
LDH assay for confirming cell cytotoxicity since it is not limited by cell density and is
more reliable for measuring cell death. The LDH assay showed zero cytotoxicity at
both dose levels in the spheroid samples when compared to the DMSO control (Figure
4.13). Cell viability was also visualised in spheroids using a LIVE/DEAD assay and the
images taken from this assay also revealed no cytotoxicity (Figure 4.12). These results
confirm the spheroid models are stable enough to be treated with tetracycline at the
dose levels used. Following a 24-hour incubation of spheroids in tetracycline with both

dose levels demonstrated a slightly higher accumulation of triglycerides
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(approximately 15% in both) when compared to the DMSO control, although these
were not significantly different (Figure 4.14). Despite this lack of statistical significance

this could suggest very mild steatosis.

Although rodent models of tetracycline induced steatosis are well established there is
a lack of in vitro models and more specifically for drug-induced steatosis or steatosis
in HepG2 spheroids. Tetracycline-induced steatosis has been investigated in HepG2
monolayers and has been previously administered to 3D primary hepatocytes and
HepaRG spheroid models to investigate cholestasis and identify the underlying
mechanism of drug-induced liver injury (Hendriks et al., 2016). It has also been used
in co-culture models with primary hepatocytes, functionally active Kupffer cells (KCs),
stellate cells (SCs), and liver sinusoidal endothelial cells to assess drug-induced liver
diseases including steatosis (Li et al., 2020A, Nudischer et al., 2020). Despite the
wide-spread use in research there are yet no studies describing its effects in HepG2
spheroids. Therefore, this current study offers a novel model for the discovery of early
biomarkers of tetracycline-induced steatosis which could aid diagnosis before
progression to NASH. In this study the spheroid and monolayer experiments
demonstrated mild tetracycline-induced steatosis and lack of cytotoxicity, thus making

these models suitable for biomarker studies.

The subsequent experiments described in this Chapter were designed to analyse
changes in the metabolome of cellular extracts from both the monolayer and spheroids
as means of detecting potential biomarkers. The PCA scores plots created for both
the aqueous and organic monolayers (Figures 4.5 and 4.8) did not show clear
separation between the sample groups. However, there was better group PCA
separation for the spheroids (Figures 4.15 and 4.18) which could suggest tetracycline
was having a greater dose-related response in spheroids. OPLS scores plots for
spheroids further improved the group separation along the t[1] axis. However, while
the OPLS scores plots for the monolayers (Figures 4.6 and 4.9) showed better group
separation than the PCA scores plot there was still some overlap. This would suggest

a lack of dose-related response in the monolayers.

Also, in the monolayer analysis large intragroup variation was observed for the control,
100 and 200 uM treated groups along the orthogonal t[0] axis in both the organic and
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aqueous extracts. However, intragroup variation was observed in all models across
this project which was expected as cell cultures are affected by biological factors
(Badrick, 2021, Frank, 2021, Reddin et al., 2023). For example, every time cells divide
there is a risk that factors such as random mutations or transcription errors occur,
although this is rare (Frank, 2021). In addition, small sample sizes were used in these
experiments which even with strict parameters regarding cell numbers for assays,
absence of contamination and sourcing of reagents data variability is still likely to occur
if there is slightly unequal cell count in each well (Badrick, 2021, Reddin et al., 2023).
This may occur since seeding is conducted manually. The use of small sample sizes
is common for metabolomics studies, due to the scale of the experiments, despite
some studies recommending the use of 100 samples (Gorsuch, 1983, Hatcher, 1994,
Shaukat et al., 2016). However, this number would not be feasible in terms of culture

time, facilities and collecting samples.

In the current study, regardless of the lack of dose response in the monolayers, and
the large intragroup variation, group separation was observed along the predictive {[1]
axis in the OPLS-DA models. Therefore, metabolite peaks contributing to these
separations were identified. Both the monolayer and spheroids displayed changes in
the same metabolites following incubation with tetracycline (Tables 4.1, 4.2, 4.4 and
4.5) including increases in cholesterol and fatty acyl groups, again suggesting possible
steatosis. Decreases were also observed for TCA cycle metabolites such as citrate at
dose levels above 400 uM. Decreases in choline, phosphocholine and betaine were
also observed in both models. Changes in these metabolites are implicated in the
progression of steatosis indicating lipid accumulation in the monolayers. This supports
the Oil Red O assessment of lipid accumulation and casts further doubt on the

triglyceride assay results.

As observed in the fatty acid study described in Chapter 3 metabolite changes related
to the methyltransferase reactions were noted in both models (Tables 4.1 and 4.4).
These included dose dependent decreases in choline and phosphocholine in the
spheroid samples. Choline is an important precursor of phosphatidylcholine (PC) in
the phosphatidylethanolamine N-methyltransferase (PEMT) pathway (Piras et al.,
2022). PC is an essential component in the synthesis of VLDLs and is therefore vital

for the secretion of triglycerides from the liver. The process begins with the hydrolysis
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of PC to produce phosphocholine and diacylglycerol with diacylglycerol undergoing
acylation to produce triglycerides utilising choline. Therefore, depletion of both in the
presence of increased fatty acids could explain the decreases in choline and
phosphocholine seen in this study (Van der Veen et al., 2012, Payne et al., 2014,
Sherriff et al., 2016). Studies in animals have confirmed that choline deficiency in
animals significantly impairs the production and secretion of VLDLs from the liver by
inhibiting the synthesis of phosphatidylcholine (Vance et al., 2008, Rinella et al., 2008,
Lee et al., 2019, Alves-Bezerra and Cohen, 2017, Piras et al., 2022). In the absence
of phosphatidylcholine fat droplets accumulate in the liver (Jha et al., 2014, Chiba et
al., 2016, Piras et al., 2022). However, to date there are no studies looking at choline
in drug-induced steatosis, making it difficult to determine why choline is decreased in

this study.

The PEMT pathway plays a very important role in the development of steatosis.

Studies have demonstrated that PEMT ™/~ knockout mice fed a diet high in fat and
sucrose rapidly develop hepatic steatosis, inflammation, and fibrosis (Zhu et al., 2003,
Waite et al., 2002, Piras et al., 2022). In humans inhibition of the PEMT pathway
impairs phosphatidylcholine synthesis and is associated with increased risk of NAFLD
(Song et al 2005, Bale et al., 2019, Piras et al., 2022). Under normal conditions, the
PEMT pathway produces 30% of the total PC in the liver while the remainder is
synthesized via the Kennedy (CDP-choline) pathway in the presence of choline
(Gibellini and Smith, 2010). However, when dietary choline supply is limited the PEMT
pathway becomes critical since it is the sole source of endogenous choline for
maintaining sufficient supply of PC in the liver (Payne et al., 2014, Sherriff et al., 2016).
In the in vitro experimental situation choline is provided in cell culture media therefore,
there should be sufficient supply for the cells. However, choline uptake may be
decreased in the cells due to tetracycline treatment. Although the literature has not
commented on this in drug-induced models a study by O’'Dwyer et al (2020) reported
that HepG2 cells treated with a mixture of fatty acids display a decrease in choline
uptake along with a decrease in total protein content of the choline transporter-like
protein 1 (CTL1), the reduction of other choline transporters and other CDP-choline
pathway enzymes. Therefore, it is possible tetracycline is having an effect on choline
transporters, thus reducing choline uptake by the cells. Although, decreases in choline

have not been previously reported in tetracycline induced in vitro models.
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Reduced PEMT expression may also contribute to the progression of NAFLD to
NASH, particularly in individuals who are not meeting their daily dietary choline needs
as a result of the increased accumulation of fatty acids in the liver (Piras et al., 2022).
Since choline plays a major role in mitochondrial membrane integrity, decreased
choline levels can lead to impaired mitochondrial bioenergetics and altered beta-
oxidation. This has been observed in rats fed a methionine-choline deficient diet
(Teodoro et al., 2008, Serviddio et al., 2011, Corbin and Zeisel, 2012, Li et al., 2017,
Lee et al., 2019) which is one of the most common models used to study NASH (Corbin
and Zeisel, 2013, Jha et al., 2014, Sherriff et al., 2015, Imbard et al., 2015). Methionine
plays a crucial role in the synthesis of SAM and glutathione, two important antioxidants
(Lu, 2000, Rinella et at., 2008, Lee et al., 2019).

Despite the relatively mild steatosis caused by tetracycline in the current models,
significant decreases (p<0.05) in methionine in the 400 and 600 uM treated groups in
the monolayer (Table 4.1) and in the 600 uM spheroid group were recorded (Table
4.4). Therefore, both methionine and choline were decreased in this study and the

effects of this could be reflective of a methionine-choline deficiency.

There were also decreases in peaks thought to be s-adenosylhomocysteine (SAH).
SAH is produced from the demethylation of SAM converting methionine to SAH and
homocysteine (Zhang et al., 2016, Werge 2021). It has been reported that some drugs
such as methotrexate can affect methylene tetrahydrofolate reductase, the enzyme
which catalyses the generation of methionine to homocysteine thus decreasing
methionine levels (Desouza et al., 2002, Pandit et al., 2017). This results in a decrease
in methionine and SAH and subsequently an increase in homocysteine is observed
due to decreased utilisation in the cycle (Pacana et al., 2015, Pandit et al., 2017). An
increase in homocysteine was not observed in this study; but this could be because it
shares spectral regions with several other metabolites including glutamine, glutathione
and cystathionine. To confirm the absence or presence of homocysteine in this study

future work could spike samples with a homocysteine standard.

In this present study metabolites associated with the TCA cycle and glycolysis
including lactate, alanine, citrate and succinate were altered (Tables 4.1 and 4.4).

Peaks for these metabolites were elevated in the 100 and 200 yM treated groups in
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the monolayer samples when compared to control but were lower at doses of 400 uM
and above. In the spheroid model a decrease in peaks thought to be succinate and
lactate was observed at both dose levels which was significant (p<0.001 and p<0.05
respectively) at the high dose. Alanine appeared to be increased at both dose levels
but was only significant (p<0.001) in the 600 uM treated group. Alanine levels are
closely related to glucose utilisation and the changes observed in this study suggest
that glycolysis and glycogenolysis are upregulated. As tetracycline is a known inhibitor
of beta-oxidation an increase in the levels of these metabolites observed in the
monolayers at low dose levels and spheroids could indicate an increase in glycolytic
activity within the cells. Studies conducted in mice have suggested that the
administration of drugs including methapyrilene, acetaminophen and CCl4 can lead to
an increase in glycolysis and glycogenolysis due to mitochondrial dysfunction and
disrupted beta-oxidation (Craig et al., 2003, Zira et al., 2013, Dargue et al., 2020).
Additionally, a study by Chen et al., (2018A) reported that emodin, a naturally
occurring anthraquinone derivative, increased glycolytic activity and reduced
gluconeogenesis in HepG2 cells. This also backs up the hypothesis that cells switch
to glycolysis in times of oxidative stress as a protective process to compensate for the
loss of ATP coming from beta-oxidation (Chan et al., 2018, Dargue et al., 2020).
However, an increase in glycolysis has not been specifically reported in HepG2 cells

treated with tetracycline.

In this current study although the metabolomics analyses indicate an increase in
glycolytic activity in the cells at the lower dose levels, lactate, alanine and other TCA
cycle metabolites are lower than control at doses of 400 uM and above. Although
these specific metabolite changes have not been mentioned in previous studies the
decreases observed could be related to increased oxidative stress since this has been
reported at dose levels above 400 uM (Donato et al., 2009, Donato et al., 2012).
Although not significant the slight decreases in cell viability seen in the MTS assay at

400 and 800 uM monolayer samples could back up this proposed hypothesis.

Drugs that induce steatosis and steatohepatitis primarily interfere with mitochondrial
respiration, beta-oxidation or both. As the two pathways are metabolically interlinked,
drugs affecting one pathway invariably affect the other. Thus, when hepatic

mitochondrial B-oxidation is severely inhibited, fatty acyl-CoA B-oxidation is impaired
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leading to increases in fatty acyl-CoA and non-esterified fatty acids, which are

converted into triglycerides (Satapathy et al., 2015, Kolaric et al., 2022).

This effect was observed in the current study in organic cell extracts whereby
increases in peak regions corresponding to acyl groups of triglycerides were evident
in both models (Tables 4.2 and 4.5). A study by Donato et al., (2009) reported that
treatment of HepG2 cells with tetracycline does induce mitochondrial membrane
depolarisation. Such mitochondrial dysfunction can lead to an impairment of the
respiratory chain with decreased ATP levels and increased oxidative stress. This in
turn could potentially lead to a decrease in metabolites associated with aerobic
respiration and may explain why metabolites such as succinate, lactate and citrate
were decreased at higher dose levels. All of this points to some degree of

mitochondrial dysfunction and oxidative stress at these dose levels.

It has also been suggested that tetracycline plays a role in the progression of steatosis
by enhancing oxidative stress through activating the transcription factor 4 (ATF4) and
inducing ROS generation via CYP2E1 upregulation (Di Pasqua et al., 2022). The
Western blots in this study do suggest an increase in CYP2E1 expression with
increasing dose level in the monolayers but a decrease was observed in the spheroids
(Tables 4.3 and 4.6).

A further indicator of oxidative stress in this study was the decreased levels of GSH
and GSSG in both models at doses above 400 uM. Whereas, the 100 and 200 yM
groups in the monolayer appeared to have increased levels of these metabolites. In
animal studies glutathione levels initially increase as steatosis is developing before a
progressive decrease and depletion is observed as the disease worsens (Yang et al.,
2000, Grattagliano et al., 2008, Vairetti et al., 2021). The initial increase in glutathione
in rats is likely an antioxidant response for the prevention of lipid and protein oxidation.
It has also been shown that gene expression associated with glutathione is enhanced
at early stages (Lee et al., 2008, Vairetti et al., 2021). In addition, a disruption in redox
homeostasis is a common effect in many drug-induced models of steatosis. The ratio
of glutathione to reduced glutathione (GSH/GSSG) is the principal redox buffer within
cells and changes to this ratio are associated with early oxidative damage (Yuan et

al., 2009, Carretero et al., 2014, Garcia-Canaveras et al., 2016). Garcia-Canaveras et
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al., (2016) observed a dose-dependent decrease in GSH/GSSG ratio in HepG2 cells
dosed with hepatotoxic drugs including tetracycline. Decreases in these metabolites
may have occurred in both models however, these metabolites share spectral regions
with several others and therefore definitive identification was not possible. Future work
could include spiking samples with metabolite standard to confirm their presence and

determine a possible decrease in ATP levels using a commercial assay Kkit.

In this study many NMR regions from the aqueous extracts thought to be important for
sample group separation remain unidentified. Future work could implement the use of
mass spectroscopy to help with identification. Nevertheless, the aqueous metabolite
changes that have been identified indicate changes between controls and treated

groups potentially due to steatotic changes in the cells.

Organic metabolites from both the monolayer and the spheroid models dosed with
tetracycline were also examined in this study (Tables 4.2 and 4.4). Similar metabolite
changes to those seen in the fatty acid-induced model (Chapter 3) were observed.

These included changes in cholesterol, fatty acyl groups and arachidonic acid.

A decrease in peaks at 1.5625-1.605 ppm due to arachidonic acid (ARA) a
polyunsaturated fatty acid was observed in the 100 and 200 uM treated group in the
monolayer and in both spheroid groups. Wang et al., (2011) also reported a decrease
in polyunsaturated fatty acids (PUFA) including arachidonic acid in mice fed both a
high fat diet and CCls. They also suggested that the decrease in PUFA could be a
compensatory response to progressing NAFLD. Fatty acids are precursors for
eicosanoids which are oxidised derivatives of PUFAs formed by the cyclooxygenase
(COX), lipoxygenase (LOX) and cytochrome P450 pathways. They play a role in the
amelioration of hepatotoxicity by decreasing inflammation but can also have pro-
inflammatory effects (Nebert et al., 2008, Wang et al., 2011, Calder, 2020, Shoieb et
al.,, 2020). Arachidonic acid is released from membrane phospholipids by
phospholipase A2 and from phosphatidylinositol bisphosphate by phospholipase C. It
is then converted to prostaglandins by cyclooxygenase which may act as an integral
mediator in inflammatory reactions and in the pathogenesis of several conditions such

as cardiovascular and liver diseases (Di Marzo, 1995, Das et al., 2006, Wang et al.,
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2011, Shoieb et al., 2020). It is possible that increased utilisation of arachidonic acid

contributes to the decrease in levels seen in NAFLD (Wang et al., 2011).

Similar to the fatty acid-induced model (Chapter 3) increases in cholesterol were
observed in all treated groups in this study (Table 4.2 and 4.5), as would be expected
in a steatotic model. In a previous study the administration of tetracycline to rats for 7
days significantly increased triglycerides and LDL-cholesterol by 186.1 % and 81.3%,
respectively when compared to the control group (Santhosh et al., 2006, Shabana et
al., 2012). Increases in cholesterol have been reported for other steatosis inducing
drugs including tamoxifen and amiodarone as a result of decreased VLDL secretion
(Antherieu et al., 2011, Rabinowich and Shibolet, 2015). Increases in cholesterol have
also been observed in animal models treated with amiodarone and tetracycline (Choi
et al., 2015, Rabinowich and Shibolet, 2015, Di Pasqua et al., 2022). Antherieu et al.,
(2011) also demonstrated increases in lanosterol synthase, an intermediate in
cholesterol biosynthesis, in HepaRG cells treated with tetracycline for 14 days
representing an indirect mechanism of phospholipidosis. Several metabolite regions
were also observed as significant in the metabolomic analysis of organic extracts;

however, metabolite identification was not possible.

In this Chapter CYP2D6, CYP2E1 and CYP3A4 expression levels were also analysed
in protein extracts obtained from monolayer and spheroids dosed with tetracycline.
The purpose was to observe the effects of tetracycline on CYP expression levels with
increasing dose and to compare expression in spheroids to monolayers. Many
previous studies have observed lower CYP expression in HepG2 monolayers
compared to spheroids (Mizoi et al., 2020, Stampar et al., 2020 and Ingelman-
Sundberg and Lauschke, 2021). However, the results from this study suggest that
CYP enzyme expression was similar in monolayers and spheroids possibly negating

the argument that monolayers are less relevant to the in vivo state.

Alterations in CYP expression have been well documented during NAFLD in vivo and
in vitro with studies generally reporting increased CYP2E1 along with decreases in
CYP3A4 and CYP2D6 (Sukkasem et al., 2020). Few published studies have
documented the effects of tetracycline on CYP expression. Despite N equalling 1 in

the present study expression was generally higher in the treated compared to the
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DMSO control in both the spheroids and the monolayer samples. However, such

changes have not been reported in the literature.

Members of the P450 enzyme family participate in the generation of oxidative changes
in drug-induced fatty liver via increased production of the free oxygen radical H202. In
the context of hepatic steatosis, CYP2E1 and CYP3A4 are involved in the metabolism
of long chain fatty acids (Satapathy et al., 2015). As discussed in Chapter 3 CYP2E1
is a source of nitro-oxidative stress and is responsible for oxidising a variety of small
molecules including fatty acids and thereby initiate lipid peroxidation. In this study a
dose dependent increase in CYP2E1 was observed in the monolayer cells while,
decreases were observed in the spheroid samples. Therefore, it is unclear what effect
tetracycline is having on CYP2E1 expression and further work is needed to validate
this.

In this study CYP3A4 expression was decreased in the 100 and 200 uM monolayer
samples when compared to control but then increased in the higher doses which could
mean higher doses of tetracycline increase CYP3A4 expression. CYP3A4 is controlled
by the transcription factor PPARa which governs gene expression and is involved in
intracellular fatty acid disposal (Kersten et al., 1999). Alterations of PPARa play an
important role in the development of steatohepatitis and in a decrease of CYP3A4
expression. Tetracycline is known to inhibit beta-oxidation by downregulating genes
involved in the pathway including PPARa (Satapathy et al., 2015, AIGhamdi, 2019, Di
Pasqua et al., 2022), thus potentially decreasing CYP3A4 expression. Yasuda et al.,
(2015) demonstrated that tetracyclines at concentrations of 10 and 50 uM induce
significant increases in CYP3A4 mRNA which could increase expression. General
increases in CYP3A4 were also observed in the spheroid models. The Western blot
results in this study are not entirely consistent with the literature. Also, no repeat blots
were completed due to time constraints of the project. Therefore, further work is
needed to fully understand the effect of tetracycline on CYP expression in both

monolayers and spheroids.
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Chapter Five- Valproate induced steatosis in HepG2 cells
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Chapter 5

5.1 Introduction

In the previous Chapter (Chapter 4) tetracycline was administered to monolayer
HepG2 cells and 3D spheroids to create in vitro models of drug-induced steatosis.
The data presented in Chapter 4 agreed with published work that tetracycline caused
some steatosis. However, there are many drugs reported to induce steatosis

via different mechanisms. Thus, evaluating multiple drug-induced models for the
identification of biomarkers of steatosis would provide greater specificity and

sensitivity for the detection of early stages of NAFLD.

In this current Chapter two models of hepatic steatosis (monolayers and 3D spheroids)
in HepG2 cells were developed using valproate. Valproate (VPA) is a broad-spectrum
anti-epileptic drug which has been widely prescribed to humans for the treatment of
convulsions, migraines and bipolar disorders (Chateauvieux et al., 2010, Bai et al.,
2017, Rahman and Nguyen, 2021). It has been a first-line therapy in the treatment of
epilepsy for more than 30 years. However, valproate is linked to various adverse drug
reactions, including hepatotoxicity, obesity and bone marrow suppression
(Tsiropoulos et al., 2009, Bai et al., 2017, Xu et al., 2019A). Consequently, there has
been widespread global concern surrounding the regular exposure to the drug (Zhang
et al., 2014).

Valproate is known to induce mild steatosis (Szalowska et al., 2014) but has a delayed
onset in humans ranging from weeks to months and in some cases years following
the initial exposure, and is also dose dependent (Mnif et al., 2016, Pirozzi et al., 2019).
Studies that report valproate-induced steatosis following prolonged exposure times
claim that this makes it harder to predict in patients (Luef et al., 2009, Farinelli et al.,
2015, Mnif et al., 2016, Pirozzi et al., 2019). However, the liver injury is frequently
resolved with dose reduction or drug discontinuation. Approximately 61% of patients
treated with valproate have been diagnosed with hepatic steatosis mostly by
ultrasound examination and nearly 25% of patients show progression which increases
the risk of NASH and cirrhosis (Luef et al., 2009, Zhang et al., 2014, Farinelli et al.,
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2015). Increased lipid accumulation in liver was reported by Luef et al., (2009) in a
population who had been taking valproate for at least 2 years, and by Xu et al., (2019)
in patients who had been taking valproate for at least 2 months. In rodent models it
has also been reported that after dosing with 100, 150, 250 and 500 mg/kg per day

valproate caused significant lipid accumulation (Zhang et al., 2014, Jutric et al., 2022).

The mechanisms behind valproate-induced hepatotoxicity have been studied for many
years but are not yet fully understood (Zhang et al., 2014, Komulainen et al., 2015,
Bai et al., 2017, Gai et al., 2020, Yan et al., 2021). However, it is known that all types
of valproate related hepatotoxicity feature mitochondrial injury, oxidative stress, and
microvesicular steatosis with varying degrees of inflammation and cholestasis (Gai et
al., 2020). Microvesicular hepatosteatosis is typical and it has been suggested that
impairment of fatty acid beta-oxidation plays a central role in the accumulation of
triglycerides and the development of lactic acidosis (Pirozzi et al., 2019, Yan et al.,
2021). However, it is not clear whether mitochondrial injury and oxidative stress are
secondary to the lipid accumulation or are primary events in the onset of the liver
injury. In addition, upregulation of the proliferator-activated receptor gamma (PPARYy)
and cluster of differentiation 36 (CD36) dependent lipid uptake in response to
valproate in primary hepatocytes have also been demonstrated (Komulainen et al.,
2015, Bai et al., 2017, Yan et al., 2021).

Valproic acid is metabolized by both phase-lI and phase-Il enzyme systems as well as
fatty acid B-oxidation. Cytochrome P450 enzymes including CYP2A6, CYP2B6,
CYP2C9, and CYP3AS5 are involved as well as UDP-glucuronyltransferase enzymes
(Bennett and Shad, 2021). The main metabolite formed, valproyl-CoA, can inhibit
hepatic carnitine palmitoyl-transferase (CPT) 1A, a pivotal enzyme in mitochondrial
fatty acid beta-oxidation in vivo and in vitro (Mnif et al., 2016, Pirozzi et al., 2019).
Valproyl-CoA can also cause depletion of intra mitochondrial CoA affecting fatty acid
B-oxidation and lead to reduced ATP production (Mnif et al., 2016). Although both
valproate and tetracycline affect fatty acid beta-oxidation the mechanisms through
which they cause lipid accumulation are slightly different. While tetracycline
downregulates genes involved in beta-oxidation, valproate has an effect on enzymes
associated with beta-oxidation and upregulates proteins associated with lipid

accumulation. Therefore, the evaluation of valproate alongside the tetracycline model
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in Chapter 4 enables comparison of differing mechanisms of drug-induced steatosis

(DIHS) and their impact on metabolites.

Single doses between 0.5-5 mM of valproate have been previously used for
development of in vitro models of steatosis using HepG2 cells and FL83B cells (Chang
et al., 2016, Bai et al., 2017, Yan et al., 2021). Yan et al., (2021) demonstrated using
Oil Red O staining and a triglyceride assay kit increased lipid accumulation in HepG2
cells following a single dose of valproate at 2 mM after a 24-hour incubation period.
They also reported a significant increase in lipid accumulation in cells dosed at 1 and
2 mM after 48 hours, this was greater than in the 24 hours however, cell viability
decreased. In another study, Bai et al., (2017) confirmed that incubating HepG2 cells
in 1, 2.5 and 5-mM valproate for 24 hours resulted in a concentration-dependent
increase in intracellular lipids, and this was further enhanced when the incubation time
was extended to 48 hours. Other studies in HepG2 cells have reported 2 mM as the
highest dose level before mitochondrial activity is affected by the drug (Komulainen et
al., 2015, Pirozzi et al., 2019, Yan et al., 2021). Thus, the literature shows quite a wide
range of dosing concentrations following a single dose but does confirm that valproate

is useful for in vitro studies of steatosis.

In this Chapter the objective was to create two valproate-induced steatosis models: in
HepG2 monolayer and 3D spheroids. An initial dose response study ranging from 0.5-
4 mM in the monolayer cells was conducted to test efficacy in creating mild steatosis

and cytotoxicity.

In the literature in vivo and in vitro studies have used omics techniques to assess
mechanisms of valproate induced steatosis and to measure various lipid biomarkers
(Tong et al., 2005, Cuykx et al., 2018A, Xu et al., 2019A, Shnayder et al., 2023). Cuykx
et al., (2018A) used liquid chromatography and accurate mass-mass spectrometry
(LC-AM/MS) metabolomics to profile steatosis progression through toxicological
fingerprinting in HepaRG cells. Xu et al., (2019) conducted lipidomic profiling in
children treated with valproate for at least two months and found increased hepatic
triglyceride accumulation and disrupted hepatic gene expressions involved in lipid
metabolism and the Akt-PPARy pathway. Tong et al.,, (2005) investigated lipid

peroxidation biomarkers in rats and found decreases in beta-oxidation metabolites as
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well as increases in lipid peroxidation markers indicating that valproate treatment can
induce oxidative stress. However, there are no studies focussing specifically on
biomarkers of mild steatosis and no NMR metabolomics studies of HepG2 monolayer
or spheroid cells dosed with valproate. Therefore, the current study will identify
changes in the metabolome of both models using NMR spectroscopy and multivariate
statistical analysis in search of potential biomarkers of steatosis. CYP enzyme
expression will also be assessed in both monolayers and spheroids as it has been

suggested CYP expression is higher in spheroids.

5.2 Valproate study design

Monolayer HepG2 cells were plated in 6-well plates. A dose response study was
carried out by administrating tetracycline at dose levels of 0.5, 1, 2 and 4 mM to HepG2

cells followed by a 24-hour incubation. Six replicates were used for each dose level.
For the 3D spheroid model, the HepG2 cells were plated in low attachment 6-well

plates and grown for 17 days before being dosed with fatty acids at concentrations of
0,1 and 4 mM.
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5.3 Results

5.3.1 Cell viability and cytotoxicity in monolayers

In this study cytotoxicity was assessed using MTS and LDH assays.

The MTS assay results (Figure 5.1) revealed a slight decrease in cell viability with
increasing dose of valproate when compared to the DMSO control. The 4 mM dose

demonstrated the lowest viability (88%) when compared to control. However, there

was no statistically significant change at any dose level when compared to the DMSO

) 0.5 1 2 4

Valproate concentration (mM)

control.

120

100
80
60
40
20

0

0 (DMSO control
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Figure 5.1 HepG2 cell viability in response to increasing valproate concentration as assessed by MTS
assay. HepG2 cells were treated with valproate at concentrations of 0 (DMSO control), 0.5, 1, 2 and 4
mM and incubated for 24 hours as described in Section 2.5.3. The MTS assay was carried out as
described in Section 2.6. The values shown represent the mean of six replicates. Error bars represent
standard deviation.

In the same study the LDH assay (Figure 5.2) suggested no significant cell death at
any of the dose levels used (0.5, 1, 2 and 4 mM) when compared to the DMSO control

or to the positive control.
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Figure 5.2 HepG2 cell death in response to increasing valproate concentration assessed by LDH assay.
HepG2 cells were treated with valproate at concentrations of 0 (DMSO control), 0.5, 1, 2 and 4 mM and
incubated for 24 hours as described in Section 2.5.3. The value obtained for the positive control
represents 100% cell death. The LDH assay was carried out as described in Section 2.21. The values
shown represent the mean of six replicates. Error bars represent standard deviation.

5.3.2 Oil Red O staining

To confirm a dose-related increase in intracellular lipid accumulation, the cells were
stained with Oil Red O. The images obtained under the light microscope as shown in
Figure 5.3 suggest a dose dependent increase in lipid accumulation in the treated
groups (Figures 5.3 C-F) compared to DMSO control (Figure 5.3B). An increase in the

number, size and intensity of the red clusters indicated a greater stain uptake by these
cells is shown by the arrows.
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Figure 5.3 Light microscopy images obtained of
Red O. Cells were dosed with valproate at final concentrations of 0 (DMSO controls), 0.5, 1, 2 and 4
mM followed by a 24-hour incubation as described in Section 5.2.3, cells incubated in media only were
also stained and visualised to act as negative controls. Cells were stained using Oil Red O as described
in Section 2.7. A. Media only control, B. DMSO control, C. 0.5 mM, D. 1 mM, E. 2 mM and F. 4 mM.

5.3.3 Triglyceride assay in the monolayer

To quantify the triglyceride accumulation HepG2 cells treated with valproate were
lysed and cell lysate samples were collected for triglyceride quantification using a
commercial assay. Although a clear dose dependent response was not observed
(Figure 5.4) the triglyceride content in the treated cells did appear to be greater than
in the DMSO control at all dose levels. However, no statistical significance was
observed at any dose level. Despite this there was around a 25% increase in lipid
accumulation at 1 and 2 mM when compared to the DMSO control, but this is not as

obvious as the results from the Oil Red O staining.
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Figure 5.4 Mean triglyceride content in HepG2 cells following treatment with valproate. HepG2 cells
were treated with valproate at concentrations of 0 (DMSO control), 0.5, 1, 2 and 4 mM and incubated
for 24 hours as described in Section 5.2.3. The triglyceride assay was carried out as described in
Section 2.8. The values shown represent the mean of six replicates. Error bars represent standard
deviation.

5.3.4 Metabolomic analysis of aqueous monolayer cell extracts

Upon confirmation of no cytotoxicity and slight increases in lipid content within the
cells, suggesting possible mild steatosis, the metabolomic profile of the valproate

model was investigated.

'H NMR spectra of aqueous extracts were visually inspected but no obvious
differences between sample groups were observed (data not shown). Consequently,
multivariate analysis was employed to statistically analyse metabolomic differences
between the groups. An initial PCA scores plot was created but sample 0.5 mM (1)
was located outside the ellipse (Appendix Figure 8.17). The spectra for this sample
was reanalysed and following inspection of the Hotelling’s plot (Appendix Figure 8.18)
it was determined that this sample was a true outlier and was excluded from analysis.
A second PCA scores plot was created (Figure 5.5). Some degree of sample group
separation was observed, albeit with intragroup variation. The DMSO control samples
were located on the top right-hand side of the scores plot and were therefore positive
for PC1 with the exception of sample DMSO (5) which was negative. The 1 mM treated

group was located on the left side of the scores plot and was therefore negative for
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PC1, while the 4 mM sample group was clustered together and positive for PC1. The
4 mM group was marginally separated from the other treated groups along the PC2
axis. In the scores plot sample 4 mM (6) was located outside the ellipse but further

analysis of the spectra revealed it was not an outlier (Appendix Figure 8.19).

-5 -4 -3 -2 -1 0 1 2 3 4

Figure 5.5 PCA scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 cells dosed
with valproate at various dose levels. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM valproate and
incubated for 24 hours. Aqueous cell extract samples were collected, and NMR analysis carried out as
described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey = DMSO only
control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.

Sample spectra were then further analysed using OPLS, in order to visualise inter-
and intra-group variation based on class differences. The OPLS scores plot revealed
better class separation than the PCA between the treated groups along the predictive
t[1] axis with a little overlap between groups. The DMSO controls and the 0.5 mM
treated group were located on the left-hand side of the scores plot. The 1 mM treated
group was clustered around the centre of the scores plot while the 4 mM treated group
was located in the bottom right quadrant of the scores plot. Some intragroup variation
was also observed for the majority of the sample groups along the orthogonal t[0] axis
(Figure 5.6).
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Figure 5.6 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells
treated with different dose levels of valproate. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM
valproate and incubated for 24 hours. Aqueous cell extract samples were collected, and NMR analysis
carried out as described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey
= DMSO only control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.

OPLS-DA was then carried out in order to identify changes in metabolites following
treatment with valproate at the different dose levels when compared to the DMSO
controls. Consecutive dose levels were also analysed to determine dose-related

differences.

All OPLS-DA scores plots shown in Figure 5.7 demonstrated good separation between
the control and the treated groups as well as for consecutive dose groups for each
pair-wise comparison along the predictive t[1] axis. In all scores plots the DMSO
control group was located on the left-hand side of the scores plot when compared
against the treated groups while the treated groups were on the right. Significant
intragroup variation was observed in all sample groups along the orthogonal t[0] axis
but, in particular, for the 0.5 and 4 mM treated groups with samples 0.5 (4) and 4 (6)

being separated from the rest of the group.
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Figure 5.7 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2 cells
dosed with valproate at varying dose levels. Cells were dosed with valproate at 0, 0.5, 1, 2 and 4 mM
and incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described
in Sections 2.10 and 2.12. Each spot on the plot represents one sample. A. Control vs 0.5 mM valproate
B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM valproate. E. 0.5 vs 1
mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Grey = DMSO only control; green = 0.5
mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.

VIP and S-plots were generated to determine the metabolite regions in the NMR
spectra contributing to the separation of the groups in each pair-wise comparative
scores plot. Spectral regions with a VIP value greater than one are highlighted in red

in both the VIP and S-plots. S-plots were then used to confirm whether peaks within
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these specific NMR regions had increased or decreased between the groups.
(Appendix Figures 8.20 and 8.21).

Following multivariate analysis, the integrated spectral values for each region were
evaluated using a Kruskal-Walls test to determine if any of the metabolite regions

highlighted in the VIP were statistically significant in each pair-wise comparison.

NMR regions that were confirmed as being statistically different were closely
examined to identify metabolite peaks in these regions to aid the identification of
metabolites. These identifications were also confirmed by checking other peak regions
for each metabolite. Following identification, metabolites were identified as shown in
Table 5.1. Decreases were observed for many metabolites including leucine,
glutathione, homocysteine and methionine. Significant increases (p<0.001) in acetate
were observed in the 4 mM treated groups compared to the DMSO control. Many other
metabolite regions were also significant however metabolite identification was not

possible.

Table 5.1 Chemical shift regions with potential metabolite identifications, determined to be significantly
different in the NMR of aqueous extracts from HepG2 cells treated with increasing concentrations of
valproate when compared to control.

H shift Metabolite Ctrl | Ctrl | Ctrl | Ctrl | 0.5 | 1vs | 2vs
ppm aqueous vs | vs1|vs2|vs4|vs1| 2m | 4m
o5 | MM | mM | mM | mM M M
mM
0.857- Acyl groups (CHs) ! - - - L* T -
0.902(t)
0.948- Leucine, Isoleucine - L* - - ! 1 -
0.969(m)
1.015- Valine, Isoleucine - ! - - - ™ -
1.027(s)
1.237- B-hydroxybutyrate ! - - - * T -
1.297(m)
1.306- Lactate, Threonine 1 1 1 0 ! 0 !
1.347(d)
1.459- ! ! 1 1 - - -
1.498(d) Alanine
1.913- Acetate 1 - ER - 1 )
1.923(s)
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T ! - I i
2.025- Isoleucine, Glutamate,
2.086(m) Homocysteine, SAH,
Proline
Methionine, ! ! U ! 1
2.105- Glutamine, GSH,
2.194(m) | GSSG, Homocysteine,
Cystathionine
2.327- Glutamate, B- - L* ! l* 1
2.382(tofd) hydroxybutyrate,
Proline
2.385- Succinate, Pyruvate - - ! - -
2.395(s)
2.426- Glutamine, 1 L* - ! ™
2.477(m) Pantothenic acid
2.508- Citrate, 1 l* - el 1
2.575(q) GSH, GSSG
2.671- Methionine, Citrate, 1 - - ! 1
2.699(m) SAH
2.707- Sarcosine 1 - - ! 1
2.723(d)
2.791- Homocysteine, 1 - 1 - -
2.812(d) Asparagine
2.989- SAH, GSH, GSSG, - 1 - l* 1
3.005(s) Cysteine
3.02- Creatine, 1 ! - l* ™
3.05(d) Phosphocreatine,
Creatinine
3.214- Choline, 1 ! 1 ! ™
3.23(s) Phosphocholine,
Betaine, TMAO
3.252- Arginine, Proline, - ! - - -
3.278(m) Taurine, TMAO,
Histidine
Arginine, Proline, - i ! ! T
3.291- Taurine, TMAO,
3.338(2xd) Histidine
Leucine, Alanine, ! 1 l* l* 1
3.734- Arginine, Lysine,
3.797(m) | Glutamine, Glutamate,

GSH, GSSG,
Dimethylglycine,
Glucose, Cysteine,
Citrulline
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SAH, Asparagine, 1 ! - ! 1* 1 -
3.813- Glucose,
3.86(m) Cystathionine, Serine

Homocysteine, - * - - U 1 !
3.879- Methionine, SAH,
3.919(dd) Cystathionine
Creatine, - ! - - ! 1
3.926- Phosphocreatine,
3.9402(s) Betaine
Cystathionine, 1 ! 1 - ! 1 -
3.983- Cysteine, Serine,
3.992(m) Hippurate, Histidine
8.529- ATP - ¥ - - L - -
8.587(s)

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated
group was determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001)
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5.3.5 Metabolomic analysis of organic monolayer cell extracts

In this study the organic extracts from HepG2 cells were also analysed.

Visual inspection of the NMR spectra showed no difference between the treated and
control groups (data not shown). Therefore, a PCA scores plot was constructed as
shown in Figure 5.8. Sample 2 (4) was located outside the ellipse however, the
Hotelling’s plot (Appendix Figure 8.22) revealed it was below the 99% confidence level
and it was therefore included in further analysis. The resulting scores plot did not
demonstrate good separation between the control and the two treated groups with
much overlap observed on the right side of the plot. However, the majority of the 2 and
4 mM samples were located on the left side of the scores plot separated from the other

treatment groups with the exception of samples 4 mM (2) and 4 mM (3).

064

024

aad e “we

Figure 5.8 PCA scores plot derived from 'H NMR spectra of organic extracts from HepG2 cells dosed
with valproate at various dose levels. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM valproate and
incubated for 24 hours. Organic cell extract samples were collected, and NMR analysis carried out as
described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey = DMSO only
control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.

As the PCA score plot failed to show distinct group separation an OPLS scores plot
was constructed. Figure 5.9 shows slightly better clustering within each group along
the predictive t[1] axis with the DMSO and the maijority of the 0.5 mM treated group
on the left-hand side of the scores plot and the 1 mM treated group close to the centre.
Large intragroup variation was observed for all groups along the orthogonal t[0] axis

with the exception of the 1 mM treated group.
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Figure 5.9 OPLS scores plot derived from NMR spectra of organic cell extracts from HepG2 cells treated
with different dose levels of valproate. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM valproate and
incubated for 24 hours. Organic cell extract samples were collected, and NMR analysis carried out as
described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey = DMSO only
control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.

Following OPLS analysis OPLS-DA scores plots were constructed to identify
metabolite changes between treated groups and the DMSO control and dose-
dependent changes. Figure 5.10 shows that in each scores plot the two groups being
compared are separated along the predictive t[1] axis with the exception of the 2 and
4 mM groups where some overlap is observed. However, large intragroup variation

was observed in all treated groups along the orthogonal t[0] axis.
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Figure 5.10 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2 cells
dosed with valproate at varying dose levels. Cells were dosed with valproate at 0, 0.5, 1, 2 and 4 mM
and incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described
in Sections 2.10 and 2.12. Each spot on the plot represents one sample. A. Control vs 0.5 mM valproate
B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. Control vs 4 mM valproate. E. 0.5 vs 1
mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Grey = DMSO only control; green = 0.5
mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.

Following OPLS-DA analysis VIP predictive and S-plots were generated and variable
regions with a VIP value greater than one were highlighted in red in both plots
(Appendix Figures 8.23 and 8.24).

Following multivariate analysis, the NMR spectra were further analysed to determine
the multiplicity of the significant spectral regions highlighted in the VIP to aid metabolite
identification. Significant changes in metabolites observed in this study included
decreases in cholesterol in the 0.5, 2 and 4 mM treated groups. Dose-dependent
increases in arachidonic acid were observed in all dose levels and these increases
were significant at the higher doses (2 mM, p<0.001, 4 mM p<0.01). Similar to the
aqueous samples many NMR regions were highlighted in the VIP plot, but metabolite

243



identification was not possible. A Kruskal Wallis test was then conducted to determine

statistical significance of variable regions, as shown in Table 5.2.

Table 5.2 Chemical shift regions identified as significantly different in the organic extracts of HepG2
cells treated with different concentrations of valproate as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

"H shift Metabolite Ctrl | Ctrl | Ctrl | Ctrl | 0.5 | 1vs | 2vs
ppm aqueous vs |vs1 |vs2|vsd4d|vs1| 2m | 4m
o5 | MM | mM | mM | mM M M
mM
0.875- Fatty acyl - - ! 1 ! 1
0.895(m) groups, fatty
acids
1.093- Cholesterol ! - l* 1 1*
1.189(m)
1.259- Cholesterol ! 1 ! ! 1 ! 1
1.286(s)
1.546- ARA 1 1 AP A 1 1 !
1.617(s)
2.29- Acyl groups in ! L* ! 1
2.362(m) triglycerides
3.744- Unidentified L*
3.809(m)
5.344- FA/MUFA ! L* ! 1 ¥
5.412(m)

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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5.3.6 CYP enzyme expression levels in HepG2 monolayers dosed with valproate

CYP enzyme expression in HepG2 cells treated with valproate was evaluated by
Western blotting. Figure 5.11 shows the blots for CYP2D6, CYP3A4 and CYP2E1 with
the level constituent cell protein beta actin (Figure 5.11A) ensuring equal loading of
different cell samples. Table 5.3 displays the raw data of band intensities for each
CYP. Levels of CYP2D6 were lower at all valproate dose levels when compared to the
DMSO control but there was no dose-related trend. There was a decrease in CYP2E1
levels when compared to the DMSO control. While increases in CYP3A4 levels were
observed at all dose levels. However, there appeared to be no dose-related trends in
CYP expression in response to valproate. Also, as N=1 in this study further

experiments would be needed to confirm these changes.

DMSO
control 0o5mM 1TmM 2mM 4mM

B.CYP2D6 55kDa

C.OPIM 57kDa s M B8 8
|
D.OYP2E! 57Kk [l s MR N

Figure 5.11 Western blot analysis of CYP enzyme expression in HepG2 cells dosed with valproate. A.
Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Monolayers were dosed with valproate at varying
concentrations of 0, 0.5, 1, 2 and 4 and proteins were collected as described in Section 2.16. Western
blotting was carried out as described in Section 2.20.
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Table 5.3 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2
monolayers dosed with valproate relative to the DMSO control. Monolayers were dosed with valproate

at varying concentrations or 0, 0.5, 1, 2 and 4 mM and proteins were collected as described in Section
2.16.

Valproate concentration CYP2D6 CYP3A4 CYP2E1
mM

DMS(O cgntrol 16572.46 2395.08 10487.1

0.5 1728.55 9856.08 6473.68

410.09 5384.71 8488.29

2 1732.67 9409.25 7985.48

4 1266.55 7522.78 8868.56
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5.3.7 3D spheroid model dosed with valproate

HepG2 spheroids were grown for 17 days before being dosed with valproate at dose
levels of 1 and 4 mM and incubated for 24 hours. Changes in the metabolome
following dosing were analysed. Changes in CYP enzyme expression were also

analysed using Western blotting.

5.3.8 Cytotoxicity in HepG2 spheroids dosed with valproate

Cytotoxicity in spheroids dosed with 1 and 4 mM valproate was visualised using the
LIVE/DEAD assay. The images taken from the assay are shown in Figure 5.12 and
revealed no observed cytotoxicity at either dose level. The LIVE/DEAD assay stains

viable cells green and non-viable cells red.

Figure 5.12 Images taken from the LIVE/DEAD assay of spheroids dosed with valproate. Spheroids
were grown in low attachment 6-well plates as described in Section 2.3 and dosed with valproate at
concentrations of 0 (DMSO control), 1 and 4 mM. The LIVE/DEAD assay was carried out as described
in Section 2.22. A. DMSO control, B. 1 mM valproate and C. 4 mM valproate.

Cytotoxicity in this study was assessed using an LDH assay. Figure 5.13 confirmed
there was no cell death at either dose levels. While the positive control used in the
assay had a cytotoxicity value of 100%, the cytotoxicity value for the 1 and 4 mM

groups was 0%.
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Figure 5.13 HepG2 spheroid cell death in response to increasing valproate concentration assessed by
LDH assay. HepG2 spheroids were treated with valproate at concentrations of 0, 1 and 4 mM and
incubated for 24 hours as described in Section 2.5.3. The LDH assay was carried out as described in
Section 2.21. The value obtained for the positive control represents 100% cell death. The values shown
represent the mean of six replicates. Error bars represent standard deviation.

5.3.9 Triglyceride accumulation

Triglyceride accumulation was assessed in the HepG2 spheroids. The results shown
in Figure 5.14 revealed an increase in triglyceride accumulation in both treated groups
when compared to the DMSO control. There was a significant increase (39%) in

triglyceride accumulation in the 1 mM treated group when compared to the DMSO
control.
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Figure 5.14 Mean triglyceride content in HepG2 spheroids following treatment with valproate. HepG2
cells were treated with valproate at concentrations of 0 (DMSO control), 1 and 4 mM valproate and
incubated for 24 hours as described in Section 5.2.3. The values shown represent the mean of six
replicates. Error bars represent standard deviation. The triglyceride assay was carried out as described
in Section 2.8. Statistically significant differences were analysed using Kruskal-Wallis (**<0.01).

5.3.10 Metabolomic analysis of aqueous spheroid extracts

NMR spectra from aqueous spheroid extracts were visually examined but no
differences were observed (data not presented). Therefore, a PCA scores plot was
created as shown in Figure 5.15. In the scores plot good separation is apparent
between the 3 groups with the DMSO control group located on the right-hand side of
the scores plot and therefore positive for PC1, while the 4 mM treated group was
negative. The 1 mM treated group was located between the DMSO control and the 4

mM group.
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Figure 5.15 PCA scores plot derived from "H NMR spectra of aqueous extracts from HepG2 spheroids
dosed with valproate at different dose levels (0, 1 and 4 mM). Spheroids were dosed with 0, 1 and 4
mM valproate and incubated for 24 hours as described in Section 5.2.3. Samples were collected and
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample.
Grey=DMSO control; Blue=1 mM; Red=4 mM valproate.

Spectra were further analysed using OPLS. The resulting scores plot shown in Figure
5.16 demonstrated good separation between the groups along the predictive t[1] axis,
with the DMSO group located on the left side of the scores plot and the 4 mM on the
right.
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Figure 5.16 OPLS scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 spheroids
dosed with valproate at different concentrations. Spheroids were dosed with 0, 1 and 4 mM valproate
and incubated for 24 hours as described in Section 5.2.3. Samples were collected and NMR analysis
carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. Grey=DMSO
control; Blue=1 mM; Red=4 mM valproate.

OPLS-DA analysis was conducted for pair-wise comparisons of the control against
each of the two treated groups as well as a direct comparison of the two treated

groups. All OPLS-DA scores plots generated showed clear separation along the t[1]
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axis, intragroup variation was also observed along the orthogonal t[0] axis in all scores
plots (Figure 5.17).
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Figure 5.17 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2
spheroids dosed with valproate at varying dose levels. Spheroids were dosed with valproate at 0, 1 and
4 mM and incubated for 24 hours as described in Section 5.2.3. Spheroids were collected and NMR
analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey=DMSO control; Blue=1 mM; Red=4 mM valproate. A. Control vs 1 mM

valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.
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VIP predictive and S-plots (Appendix Figures 8.25 and 8.26) were generated from the
OPLS-DA models and variable regions with a VIP greater than one were highlighted

and shown in red in both models.

Following NMR analysis, the integrated spectral values were evaluated using a
Kruskal-Wallis test to determine any statistically significant variable regions. The NMR
spectra were then closely examined to identify metabolite peaks in these regions to
aid the identification of metabolites. This revealed that significant decreases in
essential amino acids including leucine, isoleucine and valine were observed in the
treated groups, as well as significant decreases in succinate, glycine, acetate and
choline. Alanine was significantly (p<0.05) increased in both treated groups. A
significant increase (p<0.01) in B-hydroxybutyrate was also observed. Again, there

were a large number of unidentified regions not shown in table.

Table 5.4 Chemical shift regions, and potential metabolites, identified as significantly different in the
NMR of aqueous extracts from HepG2 spheroids treated with increasing concentrations of valproate
when compared to control.

"H shift ppm Metabolite Ctrlvs | Ctrlvs 1vs
agqueous TmM 4mM 4mM
0.857-0.901(t) Acyl groups (CHs) 1 A 1
0.9125-1.0467(m) Leucine, isoleucine, Valine U 1 L*
1.236-1.296(m) B-hydroxybutyrate - 1> -
1.3107-1.3505(d) Lactate, threonine - 1 T
1.4207-1.479(d) Alanine T ™ -
1.806-1.851(m) Lysine, Citrulline - 1 !
1.912-1.927(s) Acetate 1 1 -
1.978-2.107(m) Isoleucine, Glutamate, el ! 1
Homocysteine, SAH, proline
2.3818-2.3975(d) B-hydroxybutyrate, e ! 1
Glutamate, Proline
2.416-2.428(s) Succinate l* 1 -
3.034-3.049(s) Creatine 1** - 1
3.218-3.231(s) Choline, Phosphocholine l* U -
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3.257-3.265(s) Betaine, TMAO 1 i -

3.34-3.35(s) Glucose, Hypotaurine, ! 1 !
Pantothenic acid
3.388-3.395(s) Betaine - 1 -
3.459-3.495(m) Glucose, Pantothenic acid - e !
3.502-3.5113(s) Glycine L* 1 !
3.536-3.552(dd) Choline L* 1 -
3.688-3.748 (m) Isoleucine, Valine, ! 1 !
Threonine, Choline
3.881-3.9204(s) Creatine L e !
3.947-3.955(s) Creatine, Phosphocreatine, ! U !
Betaine
4.085-4.137 (q) B-hydroxybutyrate, Lactate, ! - 1
6.81-6.863(d) 4-hydroxybenzoic acid - - !

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001)
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5.3.11 Metabolomic analysis of organic spheroid extracts

Organic extracts from HepG2 spheroids were analysed using '"H NMR. A PCA scores
plot shown in Figure 5.18 did not show clear separation between the two treated
groups, while samples from the DMSO control group were spread across the plot. The
DMSO 1 sample was located just outside the ellipse, but this was determined not to

be an outlier and therefore it was included in further analysis (Appendix Figure 8.27).

06

Figure 5.18 PCA scores plot derived from 'H NMR spectra of organic extracts from HepG2 spheroids
dosed with valproate at different dose levels (0, 1 and 4 mM). Spheroids were dosed with 0, 1 and 4
mM valproate and incubated for 24 hours as described in Section 2.5.3. Samples were collected and
NMR analysis carried out as described in Section 2.10 and 2.12. Each spot represents one sample.

Grey=DMSO control; Blue=1 mM; Red=4 mM valproate.

The OPLS scores plot (Figure 5.19) also failed to show clear separation between the
two treated groups along the predictive t[1] axis. While large intragroup variation could
be seen in the DMSO control group, with sample DMSO 6 located just outside the
ellipse (Appendix Figure 8.28).
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Figure 5.19 OPLS scores plot derived from 'H NMR spectra of organic extracts from HepG2 spheroids
dosed with valproate at different concentrations. Spheroids were dosed with 0, 1 and 4 mM valproate
and incubated for 24 hours as described in Section 2.5.3. Samples were collected and NMR analysis
carried out as described in Section 2.10 and 2.12. Each spot represents one sample. Grey=DMSO
control; Blue=1 mM; Red=4 mM valproate.

Pair-wise comparisons between the treated and control groups and the two treated
groups was also conducted. The resulting OPLS-DA scores plots shown in Figure 5.20
did produce separation of the groups along the t[1] axis with the DMSO control group
located on the left side of the plots in Figure 5.20 A and B. However, large intragroup
variation could be seen across the orthogonal t[0] axis between treated groups in
Figure 5.20 C and between the DMSO control and treated (Figure 5.20 A and B).
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Figure 5.20 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2
spheroids dosed with valproate at varying dose levels. Spheroids were dosed with valproate at 0, 1 and
4 mM and incubated for 24 hours as described in Section 2.5.3. Spheroids were collected and NMR
analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey=DMSO control; Blue=1 mM; Red=4 mM valproate. A. Control vs 1 mM

valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.

VIP and S-plots were generated from the OPLS-DA models and regions with VIP
predictive value greater than 1 were highlighted and can be seen in red in Appendix
Figures 8.29 and 8.30.
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Spectral regions highlighted in the VIP were examined to determine the peak
characteristics in order to aid metabolite identification using the Human Metabolome
database. Kruskal-Wallis was used performed to determine if any statistically

significant changes were apparent.

Following identification, increases in fatty acyl groups were observed at both dose
levels as well as increases in arachidonic acid. However, the Kruskal-Wallis only
revealed two regions at 0.886-0.9262 and 1.5625-1.605 ppm which were significant.
Furthermore, many other NMR regions were highlighted as contributing to group
separation in the VIP plots but identification of the metabolites in these regions was

not possible.

Table 5.5 Chemical shift regions identified as significantly different in the organic extracts of HepG2
spheroids treated with different concentrations of valproate as detected by OPLS-DA analysis. The
multiplicity of each peak is shown.

H shift ppm Metabolite Ctrlvs | Ctrlvs 4 1vs4
aqueous 1 mM mM mM
0.692-0.7127(s) Unidentified - - !
0.886-0.9262(t) Fatty acyl groups, fatty acids 1 1 1
1.25-1.377(d/s) Cholesterol - ! 1
1.5625-1.605(s) ARA T 0 !
2.008-2.065(q) Oleic acid - - !
2.3129-2.365(m) Acyl groups in triglycerides - - !
4.145-4.193(dd) Glyceryl groups in - -
monoglycerides
5.327-5.414(m) FA/MUFA - - !

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, g=quartet, m=multiplet. An increase or decrease in the treated group was
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).
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5.3.12 CYP enzyme expression levels in HepG2 spheroids dosed with valproate

CYP expression in HepG2 spheroids treated with valproate was analysed using
Western blotting. Blots for CYP2D6, CYP3A4 and CYP2E1 are shown in Figure 5.21
with the constituent cell protein beta actin ensuring that equal amounts of protein

sample was loaded for each treated group.

The results in Table 5.6 shows the raw data of band intensity from the blots for each
CYP. Although n=1 some changes in CYP expression was observed. Overall
expression of CYP2D6 appeared to be lower in the treated groups relative to the
DMSO control. Levels of CYP3A4 tended to be greater in all treated groups than the
DMSO control. CYP2E1 expression appeared to be increased in the 1 mM treated

groups but was lower in the other treated groups when compared to the DMSO control.

DMSO
o 05mM 1TmM 2mM 4 mM
A. Betaactin 42kDa . . i . & o
I8
B.CYP2D6 55kDa "8 - "
C.CYP3A4 57kDa — J— B - e

— - -
D.CYP2E1 o7kDa mw @ - W

Figure 5.21 Western blot analysis of CYP enzyme band intensities in HepG2 spheroids dosed with
valproate. Spheroids were dosed with valproate at varying concentrations of 1 and 4 mM and proteins
were collected as described in Section 2.16. Western blotting was carried out as described in Section
2.20. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6.
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Table 5.6 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 spheroid
dosed with valproate relative to the DMSO control. Spheroids were dosed with valproate at varying
concentrations or 0, 0.5, 1, 2 and 4 mM and proteins were collected as described in Section 2.16.

Valproate CYP2D6 CYP3A4 CYP2E1
concentration (mM)
DMSO control 15012.92 6284.13 9972.49
0.5 8303.37 9230.25 9051.903
1 6409.44 12368.37 13325.27
2 11289.56 9730.004 8206.73
4 7614.38 6358.29 5032.12
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5.4 Discussion

Studies suggest that following prolonged treatment with valproate, around 61% of
patient’s treated are diagnosed with hepatic steatosis (Luef et al., 2009, Zhang et al.,
2014, Farinelli et al., 2015). Valproate is also associated with weight gain, with the
frequency of developing obesity in children treated with valproate ranging from 10-
70%, thereby increasing the risk of developing NAFLD given the link between the two
(Farinelli et al., 2015).

The exact mechanism for valproate induced hepatotoxicity remains unclear and is
likely multifactorial (Farinelli et al., 2015, Komulainen et al., 2015, Yan et al., 2021).
However, many in vivo and in vitro studies have reported that valproate-induced liver
injury is associated with microvesicular steatosis, mitochondrial injury and oxidative
stress (Tsiropoulos et al., 2009, Gai et al., 2014, Komulainen et al., 2015, Bai et al.,
2017, Yan et al., 2021). It has been reported that valproate upregulates the cluster
differentiation 36 (CD36) protein, which plays an important role in facilitating fatty acid
uptake in the liver and adipose tissue in humans (Chang et al., 2016, Bai et al., 2017,
Yan et al., 2021). This is supported by Bai et al., (2017) who reported a dose-
dependent increase in CD36 expression in mice treated with valproate at 100, 250
and 500 mg/kg for 14 days with a 2-fold increase at the highest dose level. Their study
also demonstrated a similar pattern in HepG2 cells exposed to valproate (1, 2.5 and 5
mM) for 24 hours. An in vitro study by Chang et al., (2016) in mouse FL83B cells also
indicated an increase in CD36 expression following 24-hour dosing with 1 mM

valproate.

Various in vitro studies have demonstrated a concentration-dependent increase in
hepatic lipid accumulation in HepG2 cells in response to valproate treatment (0.5-5
mM) for up to 48 hours. Rodent models have also used different valproate
concentrations (100 — 750 mg/kg) to induce steatosis over a wide range of exposure
times (Lewis et al., 1982, Kesterson et al., 1984, Zhang et al., 2014, Bai et al., 2017).
Lewis et al.,, (1982) reported that 750 mg/kg valproate produced substantial
microvesicular steatosis after 48 hours in rats. While Bai et al., (2017) demonstrated
a significant increase in VLDL in mouse liver following consecutive intragastric

valproate administrations of 500 mg/kg for 14 days. Incubating HepG2 cells with
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valproate for 24 hours has previously resulted in an increase in lipid accumulation (Bai
et al., 2017, Yan et al., 2021), therefore, the exposure time chosen in this study was
24 hours.

Valproate is generally well tolerated in HepG2 cells and studies using dose levels up
to 5 mM have not demonstrated cytotoxicity (Bai et al., 2017), whereas others have
reported impaired mitochondrial activity following 24 hour dosing with 2 mM
valproate (Komulainen et al., 2015, Pirozzi et al., 2019, Yan et al., 2021). Despite
this Yan et al., (2021) assessed the viability at different concentrations (0.5, 1 and 2
mM) of valproate for 24 and 48 hours in HepG2 cells using an MTT assay and only
observed decreased viability at 2 mM after 48 hours. Chang et al., (2016) reported
significant cytotoxicity at high doses of 5 and 10 mM due to lipotoxicity and suggest
these dose levels are more suited to the creation of NASH models. As discussed in
Chapter 4 the cells must be dosed with higher concentrations of drugs to observe the
desired effects, therefore toxic concentrations of valproate in humans are around 5
times less than (150 ug/ml, 1050 uM) compared to those in cells (> 5-10 mM)

(Twiesselmann et al., 2008).

Consequently, the current study examined dose levels of 0.5, 1, 2 and 4 mM valproate
to induce mild steatosis but avoid cytotoxicity. Neither the MTS or LDH assay (Figures
5.1 and 5.2) revealed significant changes to cell viability or cytotoxicity, respectively

after 24 hours.

Oil Red O staining of the monolayer revealed a dose dependent increase in lipid
accumulation (Figure 5.3). However, the Triglyceride-Glo assay did not show a
corresponding significant increase in triglyceride accumulation in the treated groups.
Nevertheless, triglyceride content was slightly greater in the treated groups compared
to the control with a 25% increase in lipid accumulation observed at 1 and 2 mM. Yan
et al., (2021), using a triglyceride assay kit, did find that triglyceride accumulation was
increased following dosing with 2 mM valproate after 24 hours and following dosing
with 1 and 2 mM valproate after 48 hours. Similar to the present study Bai et al., (2017),
using Oil Red O staining observed a concentration-dependent increase in lipid content
in HepG2 cells following a 24-hour incubation with valproate at doses of 1, 2.5 and 5

mM. They observed a further increase when the incubation time was extended to 48
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hours. The studies by Yan et al., (2021) and Bai et al., (2017) dosed for 24 and 48
hours and reported greater lipid accumulation at the later time point (Bai et al., 2017,
Yan et al., 2021). However, valproate is rapidly metabolised and has a half-life of 9-
16 hours in vitro (Van Breda et al., 2018), therefore, to conduct prolonged exposure
studies, repeated dosing is necessary. A study by Van Breda et al., (2018) exposed
primary hepatocytes to repeated doses of valproate every 24 hours for 3 and 5 days
to test mechanisms of steatosis and demonstrated possible inhibition of B-oxidation
and increased uptake of fatty acids due to increased expression of the CD36
transporter. However, HepG2 cells have a doubling time of 48 hours and would
become too confluent if grown for longer periods of time. Studies that have dosed for
longer used different cells lines including primary hepatocytes and FL83B cells which
may be more suited to longer exposure time (Chang et al., 2016, Van Breda et al.,
2018). A study by Katsura et al., (2002) maintained primary hepatocytes for more than
56 days. Nevertheless, on the basis of the Oil Red O staining and the apparent
increases in triglycerides though not significant, it does appear that a mild state of
steatosis was induced indicating valproate can be used as a model of mild steatosis

in monolayer HepG2 cells and is suitable for potential biomarker study.

In the literature HepG2 spheroid steatotic models using valproate have not been
previously reported. In this Chapter 1 and 4 mM valproate were chosen as the low and
high dose levels. The 4 mM dose level was chosen since it did not induce any
cytotoxicity in the monolayers. The 1 mM dose level was chosen as the low dose for
spheroids because the 0.5 mM dose level was too similar to controls in the

metabolomics analysis of monolayers.

To assess cytotoxicity, an MTS assay was conducted for the spheroid experiment as
for the monolayers; However, the results were not reliable as the absorbance readings
were outside the linear range for the assay. This was due to the high cell count in the
spheroids after 17 days of growth. The assay was repeated using different cell seeding
densities starting as low as 1x102 cells however, after 17 days of culture the cell count
still exceeded that of the linear range of the assay. The LDH assay revealed zero
cytotoxicity when compared to the DMSO control indicating both doses were well
tolerated. The LIVE/DEAD assay confirmed a lack of cytotoxicity in the spheroids
(Figure 5.12).
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Following a 24-hour incubation in valproate spheroids dosed with both levels of
valproate had greater triglyceride content when compared to the DMSO control as
assessed by the triglyceride assay. The 1 mM treated group had the highest
triglyceride content and was significantly increased (p<0.01) when compared to
control. However, there was no statistical significance for the increase seen in the 4
mM treated group. This lower triglyceride content in the 4 mM group than for the 1 mM
may be due to decreased cell viability at this dose level as was seen in the monolayers.
It is known that spheroids are more susceptible to hepatotoxicants due to their
increased cell-to-cell contact (Stampar et al., 2020 and Ingelman-Sundberg and
Lauschke, 2021). This was not reflected in the LDH assay but as mentioned above it
was not possible to obtain results for cell proliferation in the MTS assay. As mentioned
in previous Chapters one of the main issues with spheroids is that the core may
become necrotic due to a lack of nutrients in that region; this could have an effect on
cell viability. Additionally, as spheroids continue to grow cell proliferation is slowed
(Stampar et al., 2022). These phenomena could be the reason for the difference seen

in lipid accumulation between the two dose levels.

The increases in triglyceride content in the spheroid groups (Figure 5.14) along with
slight increases in lipid accumulation for the monolayers (Figure 5.4) confirms
valproate can successfully create HepG2 monolayers and spheroid models of mild

steatosis.

Using these models, this Chapter investigated changes in the metabolome of
monolayer and spheroid cellular extracts. The monolayers PCA scores plots for both
the aqueous and organic extracts (Figures 5.5 and 5.8) did not show clear separation
between the sample groups. Whereas there was separation between the two treated
groups in relation to the DMSO control in the aqueous spheroid sample PCA scores

plot (Figure 5.15), but not for the organic extracts (Figure 5.18).

In general, all OPLS scores plots showed better separation between the groups but
there was still some overlap for the 0.5 mM and DMSO control groups in the
monolayers (Figures 5.6 and 5.9). This suggests that the 0.5 mM valproate dose was
not influencing the cell metabolome and the dose level was too low. Some intragroup

variation was also observed in all groups along the orthogonal t[0] axis. As discussed
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in Chapter 4 cell cultures are more susceptible to intragroup variation due to biological
factors so this was expected (Badrick, 2021, Frank, 2021, Reddin et al., 2023). The
overlap between dose groups and lack of separation observed in some plots may also
be due to the small sample size. Additionally, some samples fell outside the ellipse
which would have likely skewed the average of the data set causing other samples to
overlap. This was observed in the organic spheroid model with two of the DMSO
control samples (1 and 6) falling outside the ellipse in the OPLS and PCA, respectively.
It is common to use 6 replicates in metabolomics studies, but some suggest using
larger sample sizes to improve separation and statistical analysis (Gorsuch, 1983,
Hatcher, 1994, Shaukat et al., 2016). However, as previously discussed it is not
feasible to use a large number of cell samples for metabolomics studies. Also, it is
possible that the lack of sample separation seen in the score’s plots could be due to
sampling errors when collecting samples and inaccuracies in counting cell numbers
per well. While haemocytometers are an integral part of cell culture their use is not
free from error as they require manual counting meaning human error is inevitable at
various stages. Any error in cell count would affect the number of cells in each well
and could give rise to intragroup variation. Intragroup variation was similar across
spheroid and monolayer samples indicating that both models are susceptible to

sampling errors.

The pair-wise comparisons in the OPLS-DA scores plots revealed good separation in
all sample group comparisons with the exception of the 2 and 4 mM treated organic
monolayer samples (Figure 5.10 G) which showed some overlap between the two

groups.

In this study metabolite peaks responsible for separation of the different groups in
OPLS-DA models were identified with similar metabolite changes revealed for both
the monolayer and spheroid models (Tables 5.1, 5.2, 5.4 and 5.5). These changes
include increases in lactate and alanine and decreases in methionine and glutamine.
As well as decreases in cholesterol and increases in arachidonic acid. The similar
findings for both models further confirm the reliability of spheroids for in vitro
hepatotoxicity studies. This is important since most research is focused on the

development of better in vitro models, but little progress has been made on using 3D
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spheroids. To date no studies have used HepG2 spheroids dosed with valproate to

investigate biomarkers.

For both the spheroid and monolayer treated cell extracts in this study glucose levels
were decreased following valproate treatment, indicating a potential increase in
glycolysis within the cells. Many drugs including valproate have been shown to inhibit
mitochondrial beta-oxidation. Therefore, it has been suggested that glycolysis is
upregulated in drug-induced steatosis to compensate for reduced production of ATP
from beta-oxidation (Chan et al., 2018, Dargue et al., 2020). In a previous study
decreased ATP levels were observed in HepG2 cells cultured in galactose medium in
response to valproate (Komulainen et al., 2015). However, in the same study cells
grown in glucose medium had higher ATP levels indicating an increase in ATP

production from glycolysis.

Valproate has been reported to have an impact on mitochondrial metabolism through
inhibition of a-ketoglutarate dehydrogenase, a key enzyme in the TCA cycle leading
to a decrease in the TCA cycle and ATP production (Salsaa et al., 2020). It is also
known to decrease carnitine levels which transports fatty acids to the mitochondria for
oxidation (Luder et al., 1990, El Hage et al., 2012, Salsaa et al., 2020). In a study
conducted by Zhang et al., (2014) it was observed that valproate treated rats displayed
decreased levels of citrate, a key TCA metabolite. A change in citrate could not be
confirmed in this study however, significant decreases in succinate, another TCA cycle
metabolite (p<0.05 and 0.01) were observed in both treated groups in the spheroid
samples. Therefore, the current study and evidence from the literature suggest an
increase in glycolysis may be occurring in our models to compensate for the inhibition
of mitochondrial bioenergetics. Salsaa et al., (2020) reported that yeast cells dosed
with 0.6 mM valproate for either 5 or 10 hours fermented pyruvate, the end-product of
glycolysis, into ethanol in response to valproate. Studies in humans have also reported
increases in glycolysis following daily valproate administration for at least 2 months
(Huoetal., 2014, Xu et al., 2019A). Enhanced glycolysis leads to increased production
of acetyl-CoA which cannot enter the TCA cycle due to reduced TCA activity. This can
result in an accumulation of acetyl-CoA which is then converted to ketone bodies. In
a study by Huo et al., (2014) an increase in acetate was reported in humans following

valproate administration indicating the presence of increased ketone bodies since
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acetyl-CoA can be hydrolysed to acetate by acetyl-CoA hydrolase. In this current study
significant increases in acetate were observed in the 2 and 4 mM treated groups in

the monolayers which could confirm a possible increase in glycolysis.

An increase in glycolysis and glycogenolysis has been observed for other drugs
including methapyrilene, acetaminophen and CCls that induce mitochondrial
dysfunction in mice (Craig et al., 2003, Zira et al., 2013, Dargue et al., 2020). Chen et
al., (2018) reported that emodin, a naturally occurring anthraquinone derivative,
increased glycolytic activity and reduced gluconeogenesis in HepG2 cells via

mitochondrial dysfunction.

Significant increases in lactate and alanine were also identified in the current study in
the high dose spheroid samples (Table 5.4) as well as increases in the 2 and 4 mM
monolayer samples (Table 5.1). This is consistent with a number of previous studies
reporting impaired beta-oxidation in drug-induced steatosis in HepG2 cells and mice
models (Donato et al., 2009, Begriche et al., 2010, Choi et al., 2015, Garcia-
Canaveras et al., 2016, Fromenty, 2019, Salsaa et al., 2020). A metabolomics study
conducted by Huo et al., (2014) assessing hepatotoxicity in epileptic patients also
demonstrated increases in lactate and alanine following dosing with valproate. In the
literature lactate and alanine are the most commonly reported metabolite changes
when it comes to hepatoxicity with lactic acidosis being frequently described in drug-
induced steatosis (Cuykx et al., 2018A, Lee and Kim, 2019, Dargue et al., 2020). Thus,
the changes in lactate for both models are in agreement with changes observed in
literature confirming the use of spheroids as a model of steatosis and again suggests

a potential switch to glycolysis in these cells.

The present study revealed significant decreases in essential amino acids including
leucine, isoleucine and valine in both treated spheroid groups and in the 1 mM
monolayer groups (Table 5.1). Amino acids can be utilised in hepatocytes for the
production of ATP as an adaptive response to compensate for the loss of ATP when
beta-oxidation is impaired (Rui et al., 2014, Zhang et al., 2014). Therefore, these
findings are in agreement with valproate inhibition of beta-oxidation and the use of
amino acids as an alternative source of ATP production. Decreases in leucine and

isoleucine were demonstrated in a study by Zhang et al., (2014) in which rats were
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treated with valproate for 8 weeks. Previous studies have also reported decreases in
amino acids such as leucine in CCls drug-induced liver injury due to the
downregulation of energy metabolism in HepG2 cells and in rats (Li et al., 2014, Oh et
al., 2022). As the liver plays a major role in amino acid metabolism disturbances to
amino acid levels are well documented and play an important role in the pathological
process of drug-induced liver injury (Nicholson et al., 2003, Kaspar et al., 2009, Yu et
al., 2017, An et al., 2020).

In the monolayer study (Table 5.1) a metabolite region at 2.105-2.194 ppm was
decreased in all treated groups when compared to control. According to databases
this region may contain peaks belonging to many metabolites, including methionine
and glutathione. As described in Chapter 4 methionine is an essential amino acid and
is a key intermediate in transsulfuration pathway for the production of s-
adenosylmethionine (SAM) and glutathione, two important antioxidants (Jha et al.,
2016). It is unclear whether SAM levels were affected in this current study as no
metabolite regions for this were identified. Since SAM levels are dependent on the
availability of methionine obtained from the diet and its production by de novo
synthesis in the presence of methyl-tetrahydrofolate and vitamin B12, any decreases
in methionine are likely to decrease SAM (Ornoy et al., 2020). SAM is a methyl donor
for nearly all methylation reactions in the body and is converted to S-
adenosylhomocysteine (SAH) through the donation of active methyl groups in the
methylation pathway (Shrubsole et al., 2015, Zhang et al., 2016, Ornoy et al., 2020,
Werge, 2021). Any changes in methionine would also have an effect on homocysteine
as it is formed in methionine recycling by the conversion of SAH to homocysteine
adenosine by SAH hydrolase. Significant decreases (p<0.001) in homocysteine were
seen in the 1 mM spheroid group (Table 5.4) as well as decreases in all monolayer
groups (Table 5.1) in this study. Nearly 50% of the homocysteine formed is then further

converted to cysteine by the transsulfuration pathway for further glutathione formation.

In the current study peaks in many regions potentially corresponding to cysteine and
cystathionine, intermediates in the transsulfuration pathway were also decreased. This
was observed in the monolayer samples; however, these metabolite identifications
could not be validated since many metabolites have peaks in the same spectral

regions. Studies have reported that a deficiency in methionine results in post-
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transcriptional down-regulation of cystathionine (3-synthase, the first enzyme involved
in the transsulfuration of homocysteine to cystathionine. This would then lead to an
accumulation of homocysteine (Jhee and Kruger, 2005, Tang et al., 2009, Caballero
et al., 2010). A decrease in methionine can therefore contribute to greater levels of
homocysteine due to decreased utilisation of homocysteine leading to oxidative stress
and progression to NASH (Pacana et al., 2015). Consequently, studies have shown
that mice and rats fed a methionine deficient diet also exhibit hyperhomocysteinemia
which can lead to oxidative stress and consequently NASH (Tang et al., 2009,
Caballero et al., 2010, Aissa et al., 2014, Pacana et al., 2015). However, in this study
it appears that homocysteine was decreased in all models although this decrease
cannot be confirmed as homocysteine shares its metabolite regions with other
metabolite peaks. Future work could spike standard samples with homocysteine to
confirm. The decrease in many methyltransferase pathways metabolites seen in this
study are indicative of disruption in the methylation pathway but this requires future

work for confirmation.

Many studies have reported that valproate can cause an impairment in the methionine
cycle (Alonso-Aperte et al., 1999, Ubeda et al., 2002, Chateauvieux et al., 2010, Chen
et al., 2014, Ornoy et al., 2020). Plus, it has been suggested that alterations in the
methionine cycle could be the common mechanism underlying the hepatotoxic,
teratogenic and antifolate effects of valproate (Alonso-Aperte et al., 1999,
Chateauvieux et al., 2010, Chen et al., 2014). It has been demonstrated that valproate
can lead to a reduction in methionine adenosyltransferases (MAT), the enzyme
responsible for the production of methionine from SAM. In one study Ubeda et al.,
(2002) noted a 56% reduction in MAT activity after 1 hour in rats treated with 400
kg/mg valproate. The reduced MAT activity is concomitant with decreased cellular
levels of glutathione with glutathione depletion seemingly a direct consequence of
valproate treatment in rats following single dosing due to increased glutathione S-
transferase activity (Ubeda et al., 2002). Therefore, a reduction in MAT activity could
be related to oxidative stress. However, it is still unclear whether the first insult is
glutathione depletion that leads to decreased MAT activity or the other way round
(Ubeda et al., 2002). In this study peaks potentially belonging to glutathione were
observed as decreased in all treated monolayer groups and were significantly (p<0.05)
decreased in the 4 mM group compared to the DMSO control (Table 5.1). This could
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be linked to decreases in MAT activity. However, despite similarities for many
metabolite changes in this study between monolayer and spheroids changes in

glutathione were not observed in the spheroids.

The link between valproate treatment and decreased levels of glutathione (GSH) are
considered to be due to exhaustion of GSH stores and a consequent increase in
oxidative stress further leading to depletion of GSH. Sokmen et al., (2012) reported
depleted GSH levels in a rat study indicating valproate-induced tissue injury was
associated with oxidative stress. Other studies have also reported that valproate leads
to an increased generation of free radicals and oxidative stress (Tong et al., 2005,
Kiang et al., 2011). As this study wished to create a model of mild steatosis these
changes in glutathione and homocysteine highlight the importance of choosing dose
levels that do not cause significant oxidative stress. This could be confirmed in future
studies using assay kits such as the Comet assay which measures DNA damage due

to oxidative stress.

Valproate has been reported to have an effect on vitamin B6 in a study by Ubeda el
al., (2002), where they observed a 54% decrease in plasma B6 concentrations in rats.
It is thought that chronic treatment with anticonvulsant drugs in humans may induce
vitamin B6 deficiency and impair homocysteine/methionine metabolism (Schwaninger
et al., 1999). However, Ubeda et al., (2002) administered a single dose of valproate to
rats and still observed decreases in vitamin B6 suggesting the decrease in B6 was the
result of dysregulation of the methionine cycle. The balance between methionine,
folate and B12 regulates the activity of the folate and methionine cycles which are
mechanistically co-dependent. The folate cycle converts tetrahydrofolate (THF) into
5,10-methyleneTHF by serine hydroxymethyltransferase (SHMT), a reaction that is
coupled with the hydroxylation of serine to glycine and requires B6 as a cofactor.
Vitamin B6 is also a cofactor for the conversion of homocysteine to cysteine via
transsulfuration for use in glutathione synthesis (Lyon et al., 2020). This could mean
that decreases in vitamin B6 could lead to reduced glutathione and cause increases
in serine. Changes in serine were not observed in either of the two models in this
current study. However significant decreases in glycine (p<0.05 and 0.01) were
observed in the low and high dose of the spheroid samples indicating a potential

decrease in B6 activity. Decreased levels of glycine have been linked with insulin
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resistance and the progression of NAFLD to fibrosis (Hasegawa et al., 2020), however
further research is needed to confirm changes in glycine levels in valproate induced

steatosis.

The remethylation of methionine can take place via two independent pathways one
being the 5,10-methyleneTHF dependent pathway and the other the betaine-
dependent remethylation pathway, if homocysteine is present. The latter is catalysed
by betaine-homocysteine methyltransferase (BHMT) which utilises a methyl group
from betaine to form dimethylglycine and methionine (Chen et al., 2014). It has been
shown that BHMT expression is downregulated in HepG2 cells treated with valproate
in part by inducing NFxB a repressor for the human BHMT gene (Chen et al., 2014).
In the present study a significant decrease in betaine was observed in spheroids
treated with valproate at both doses indicating a potential decrease in BHMT

expression in the spheroids but not in the monolayer samples.

In this study many changes in the methyltransferase pathways were reported which
agree with the literature. However, there are only a few studies highlighting these
changes in HepG2 cells and none specifically looking at valproate induced steatosis
in spheroids. Therefore, this valproate study offers an insight into a novel model of
steatosis in HepG2 spheroids and shows their suitability for in vitro studies. However,
a limitation of this study was that it was not possible to validate all metabolite changes
involved in the methyltransferase pathways as many of the metabolite peaks overlap
in similar spectral regions. Despite the overlapping peaks the metabolites in these
regions are all linked to the methyltransferase pathways supporting the hypothesis
that valproate is having an effect on the pathway as a whole meaning this pathway

could be useful in a panel of biomarkers of steatosis.

In the organic extracts, increases in arachidonic acid were noted in both the spheroid
and the monolayer valproate-treated groups with significant increases (p<0.01)
observed in both the 2 and 4 mM treated groups. This increase in arachidonic acid
could be due to the activation of the arachidonic acid metabolism pathway due to the
inhibition of beta-oxidation induced by valproate (Cuykx et al., 2018A). Arachidonic
acid is known to be a precursor of inflammatory molecules, such as

the prostaglandins. Increased arachidonic acid has also been documented in humans
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and mice and is linked to inflammation and increased oxidative stress (Ma et al., 2016,
Wells et al., 2016).

Decreases in cholesterol peaks were observed in the monolayer samples and in the
4 mM spheroid treated groups in this study. Studies have reported that valproate can
reduce cholesterol levels in rats and humans due to decreased levels of acetyl-CoA
(Zhang et al., 2014, Kusumastuti and Jaeri, 2020). There were also many metabolite
regions determined to be important for group separation in the organic samples, but it
was not possible to identify the individual lipid molecules in this project. This is
because organic metabolites mainly consist of fatty acid groups of different chain
lengths and it is hard to differentiate them using NMR-based metabolomics. Future
studies could employ the use of mass spectroscopy in an attempt to elucidate some
of the structures of the fatty acids in an attempt to identify more of the organic

metabolites.

In this Chapter Western blotting was used to analyse CYP expression levels in the
steatotic HepG2 monolayers and spheroids following dosing with valproate. As
mentioned in the previous Chapters changes to CYP expression levels in NAFLD are
well established with the most documented changes being increases in CYP2E1 and
decreases in CYP3A4 and CYP2D6 (Satapathy et al., 2015, Sukkasem et al., 2020,
Di Pasqua et al., 2022). However, to date, studies reporting the effects of valproate on
CYP expression in HepG2 cells in the context of steatosis are limited. HepG2
monolayers are thought in general to have lower CYP expression than spheroids. But
this would require confirmation especially in the context of steatosis and therefore in

this study CYP expression was evaluated in both monolayers and spheroids.

Although N=1 increased CYP3A4 levels were observed in both models at all tested
doses when compared to the DMSO control however no dose dependent patterns
were observed (Tables 5.3 and 5.6). Valproate has been reported to significantly
upregulate CYP3A4 mRNA in primary hepatocytes and increase gene expression of
CYP3A4 genes in primary hepatocytes and HepG2 cells via the activation of the
pregnane X receptor (PXR) (Cerveny et al., 2007, Yan et al., 2021). Most studies in
the literature report a decrease in CYP3A4 expression and activity in humans and cells
in dietary-induced NAFLD (Hanagama et al., 2008, Osabe et al., 2008, Sukkasem et
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al., 2020). Despite this a study by Huang et al., (2019) observed an increase in
CYP3A4 expression in LO2 cells dosed with fatty acids due to increased miRNA

expression indicating that CYP3A4 is induced by steatosis.

CYP2D6 expression levels were demonstrated to be lower than the DMSO controls in
both models in this study (Tables 5.3 and 5.6). In general, CYP2DG6 levels are thought
to be decreased in steatosis due to reduced mRNA expression and this has been
observed in HepG2 cells dosed with fatty acids (Sukkasem et al., 2020). However, as
this was a single experiment with no repeats it is difficult to make any firm conclusions.
The effect of valproate on CYP2D6 expression have not been well documented.
However, a study by Wen et al., (2001) demonstrated that concentrations ranging from
50 to 1000 uM valproate showed minimal inhibitory effects on CYP2D6 activity in

human liver microsomes.

Although only single experiments were conducted in this study a decrease in CYP2E1
expression levels was observed in the monolayers (Table 5.3) and in the 0.5, 2 and 4
mM spheroid groups (Table 5.6) while increases were seen in the 1 mM spheroid
groups. Studies in the literature have mainly demonstrated an increase in expression
and activity of CYP2E1 in response to lipid accumulation with the increase
hypothesised to play a role in the progression of NAFLD (Merrell and Cherrington
2011, Garcia-Ruiz et al., 2015, Sukkasem et al., 2020). Although the effect of valproate
on CYP2E1 expression in the context of steatosis has not previously been
investigated. Nevertheless, studies in rat hepatocytes have also reported that
valproate-induced oxidative stress and mitochondrial dysfunction is a result of
metabolic activation of CYP2E1 and have shown that ROS formation was prevented
by CYP2E1 inhibitors (Zhu et al., 2017, Meseguer et al., 2021, Shnayder et al., 2023).

Although there are few studies reporting the effect of valproate on CYP expression in
HepG2 cells in the context of steatosis the results in this study suggest that CYP
expression in both monolayers and spheroids is similar. It is clear that valproate does
affect CYP expression levels. However, future work could include repeated

experimentation to validate these changes.

272



Chapter Six- Conclusions and future work
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Chapter 6

6.1 Conclusions

6.1.1 Steatosis

The aim of this project was to firstly develop models of dietary and drug-induced
hepatic steatosis in HepG2 monolayers and spheroids and then to use the models for
the evaluation of metabolite pathways that change in steatosis. This project wished to
compare metabolite changes in both dietary and drug-induced steatosis to find
common biomarkers for early steatosis. Steatotic models were created using either a
combination of oleic and palmitic acid, tetracycline or valproate since these are the
most commonly used models in the literature (Donato et al., 2009, Cui et al., 2010,
Choi et al., 2015, Garcia-Canaveras et al., 2016, Bai et al., 2017, Yan et al., 2021).
While the mechanisms by which tetracycline, valproate and fatty acids induce
steatosis in cells have been reviewed in literature (Cui et al., 2010, Choi et al, 2015,
Garcia-Canaveras et al., 2016) a direct comparison of metabolite changes has not
been previously conducted. Overlap between metabolites or related biochemical
pathways could allow for the identification of reliable markers for steatosis that are
common across all mechanisms leading to NAFLD. This could potentially contribute

to biomarker panels to increase sensitivity and specificity for diagnosis.

While monolayers have been routinely used to study the molecular mechanism of
disease and for the development of in vitro models of steatosis, they do not represent
the true complexity and physiology of human tissues (Bialkowska et al., 2020). 3D
cultures offer a micro-environment more representative of the in vivo phenotype
(Pingitore et al., 2019). Therefore, the use of 3D spheroids could potentially aid in the
search for early diagnostic biomarkers for steatosis which are more relevant to the in

vivo situation.

In this project the three models were validated in terms of lipid accumulation and
steatotic state using Oil Red O staining and a commercial triglyceride assay kit. In
Chapter 3 dose-dependent increases in triglyceride accumulation were revealed in the

triglyceride assay for the fatty acid treated groups. These increases were statistically
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significant in the 0.25 (p<0.05), 0.5 (p<0.01) and 1 mM (p<0.001) sample groups when
compared to the ethanol control (Figure 3.4) confirming steatosis in these groups.
However, Chapter 4 only revealed slight increases in lipid accumulation which were
not significant using the triglyceride assay for the tetracycline treated groups
compared to the DMSO controls. The highest percentage increase (approximately
7%) was observed in the 200 uyM group (Figure 4.4). Chapter 5 demonstrated
increases in lipid accumulation in the 0.5, 1 and 2 mM valproate treated groups.
Although not significant, there was around a 25% increase in triglycerides at 1 and 2
mM when compared to the DMSO control (Figure 5.4). Despite the lack of significance
seen in the tetracycline and valproate models the Oil Red O staining in all Chapters
(Figure 3.3, 4.3 and 5.3) allowed the validation of the models as these results

confirmed dose-dependent increases in lipid accumulation in the treated monolayers.

A major goal for the project was to develop 3D spheroid models of steatosis. Spheroids
are considered more reflective of the in vivo environment and would therefore provide
a potential improvement to the use of monolayers in in vitro studies. We successfully
created steatotic spheroid models for each of the three treatment types: fatty acids
(0.1 and 0.5 mM), tetracycline (100 and 600 uM) and valproate (1 and 4 mM). The
LDH assay confirmed a lack of cytotoxicity in all models. Significant increases in
triglyceride accumulation (57%) were observed in the 0.5 mM fatty acid treatment
groups (Chapter 3) and the 1 mM valproate treatment groups (39%) (Chapter 5)
indicating mild steatosis in these spheroid models. This is in contrast to the non-
significant increases in triglyceride in the fatty acid- and valproate-treated monolayers.
This could suggest that the spheroid model more readily develops steatosis,
potentially due to the increased cell-to-cell contact. Increases in triglyceride were
observed in the tetracycline treated spheroids (Chapter 4) using the triglyceride assay,

however these were not significant.

Despite the lack of statistical significance for some of the increases in triglyceride
levels determined by the triglyceride assay in some of the models; it was concluded
that the dose levels chosen induce mild steatosis, without cytotoxicity in both

monolayers and spheroids using the Oil Red O staining.
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6.1.2 Metabolomics

A number of studies in the literature have used metabolomic techniques in humans
and in rodent models to show alterations in metabolic pathways in NAFLD/NASH with
the most common alterations observed involving changes to amino acid, bile and lipid
metabolism (Caussy et al., 2019, Masoodi et al., 2021, Nimer et al., 2021, Shao et al.,
2022B). However, few in vitro metabolomics studies have been conducted with fatty
acids, tetracycline and valproate (Garcias-Canaveras et al., 2016, Chang et al., 2016,
Ramirez et al., 2017) and to date no studies have investigated metabolite changes in

steatosis induced by tetracycline or valproate in HepG2 spheroids.

The results from the metabolomics studies in Chapters 3,4 and 5 provided an insight
into the mechanisms through which steatosis is achieved in each model. While a
mixture of oleic and palmitic acid induce an increase in lipid accumulation and
upregulation of beta-oxidation, tetracycline and valproate reduce beta-oxidation with
both eventually leading to NASH (Cui et al., 2010, Choi et al, 2015, Garcia-Canaveras
et al., 2016). These changes in metabolites could become part of a panel of possible
biomarkers for the early diagnosis of steatosis. Following this, pathway analysis was
completed for low and high dose groups in both monolayers and spheroids from all
three models. These metabolites changes were then compared using a heatmap to
identify pathways and metabolites that would increase sensitivity and specificity when

diagnosing steatosis.

Figures 6.1, 6.2 and 6.3 show changes in metabolites from both monolayers and
spheroids at a low and high dose for each treatment. The doses are colour coded and
increases in metabolites are represented as solid boxed lines while decreases are
dashed.
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Metabolite changes observed in the pathway analysis in the figures above were grouped according

to their respective pathways to identify the pathways most affected by each treatment. Increases in

metabolites are shown in red while decreases are shown in blue.
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Figure 6.4 shows common metabolites in the metabolic pathways (Figures 6.1, 6.2,
6.3) that were altered across the three models of steatosis. The pathway with the most
metabolites affected across all three models was the CDP-choline pathway and the
most affected metabolite was phosphocholine which showed changes across all
treated groups. The methionine cycle also had many altered metabolites including

homocysteine and methionine.

Methionine may be useful for distinguishing between drug-induced and fatty acid-
induced steatosis since it was decreased in the monolayer valproate groups and in
the high dose monolayer and both spheroid groups in the tetracycline models
demonstrating this is perhaps a common change in drug-induced steatosis. Whereas,
in contrast an increase in methionine was observed in the fatty acid spheroid models,

but not the monolayers.

In this project changes in homocysteine levels were observed in all models. Decreases
in all valproate-treated groups were observed as well as in the tetracycline high dose
groups. While homocysteine increased in the low dose tetracycline groups, this may
have been due to other peaks in this region creating conflicting results. A decrease in
the fatty acid monolayer occurred while increases in both spheroid groups were seen,
this could be related to the increase in methionine seen in the spheroids. However, it
may also be due to the metabolite regions containing peaks from other metabolites.
Alterations to homocysteine levels in NAFLD are conflicting in the literature. Some
studies in humans have found that circulating homocysteine is increased in NAFLD
compared to controls while others have observed decreases (Gulsen et al., 2005, De
Carvalho et al., 2013, Pastore et al., 2014, Jia et al., 2015). Therefore, the conflicting
changes seen in these models are not different from the literature. However, it is
important to highlight homocysteine as a potential biomarker of NAFLD since levels
do change in response to both fatty acids and drugs and other studies have also

reported the link between homocysteine and the disease mechanisms.

Homocysteine is formed during methionine turn-over by the conversion of s-
adenosylhomocysteine (SAH) to homocysteine and adenosine by SAH hydrolase. In
this project decreases in SAH were seen in both valproate models and in the high

doses of both monolayer and spheroids in the tetracycline. As changes in SAH as well
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as other methyltransferase metabolites were only observed in the high doses of the
tetracycline model this could indicate that tetracycline could be inducing a more mild
form of steatosis as determined in the triglyceride assay results. Changes in SAH were
not apparent in the fatty acid model at all despite being expected as alterations to
methionine and homocysteine were observed. The changes to SAH and homocystine
could indicate that the two drugs were having an effect on methylene tetrahydrofolate
reductase thereby decreasing methionine levels and could represent potential

biomarkers for drug-induced steatosis.

In both drug-induced models alterations to metabolites associated with the
transsulfuration pathways (TSP) were observed with decreases in cystathione and
glutathione in the monolayer treated groups of both valproate and tetracycline and in
the spheroid treated groups of the tetracycline. However, changes in the TSP were
not observed in either of the fatty acid models in this study. Studies associated with
fatty acid induced steatosis have also not commented on changes in the TSP.
Nevertheless, the TSP could be a pathway of interest in drug-induced steatosis and

its metabolites could potentially be part of a panel of biomarkers.

The decreases in methionine seen in the drug-induced models could result in post-
transcriptional down-regulation of cystathionine p-synthase, the first enzyme in the
transsulfuration of homocysteine to cystathionine, leading to decreases in glutathione
(Jhee and Kruger, 2005, Tang et al., 2009, Caballero et al., 2010). Homocysteine is
also involved in the TSP where it is converted to cysteine via the intermediate
cystathionine and plays a key role in sulfur metabolism and the redox environment of
cells (Werge et al., 2021). Nearly 50% of the homocysteine formed is further converted
to cysteine by the transsulfuration pathway for further glutathione formation therefore,
any decreases in homocysteine could cause decreases in TSP metabolites (Werge et
al., 2021). As increases in methionine and homocysteine were seen in the fatty acid
spheroid model and would be readily available for use in the TSP this may be why

changes in glutathione and other TSP metabolites were not observed in this model.

In this study elevated betaine levels were observed in both the fatty acid models while
general decreases were seen in the tetracycline and valproate models once again

highlighting the different mechanisms inducing steatosis in these models. The
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decrease in betaine seen in the drug-induced models could potentially be due to
increased SAM which in turn inhibits BHMT activity (Ji et al., 2007). Overaccumulation
of SAM has also been reported to downregulate BHMT expression in HepG2 cells
treated with valproate in part by inducing NFxB a repressor for the human BHMT gene
as discussed in Chapter 5 (Chen et al., 2014). Although betaine levels in HepG2 cells
treated with tetracycline have not been described in the literature the decrease in
betaine seen in the 600 uM treated groups of the spheroids and monolayers may be
due to the same mechanisms. The differences in betaine levels between the drug-
induced models and the fatty acids model was expected. Nevertheless, both an
increase and a decrease change in betaine levels can be linked to NAFLD, therefore,
betaine is a possible metabolite biomarker of interest. The differentiation between

increased or decreased levels could help determine the cause of steatosis.

In this study decreases in the CDP-pathway metabolites including choline and
phosphocholine were observed in the high doses of the tetracycline models, the
valproate, spheroid models and the low dose monolayer. A decrease in choline was
also observed in the 0.1 mM monolayer fatty acid samples indicating similar changes
in both models. It has been hypothesised that tetracycline has an effect on choline
metabolism subsequently leading to fatty liver (Gwee,1982). But little research has
been conducted to explore this and there are no previous studies investigating the
effect of valproate on choline. Figure 6.4 shows that the metabolites most affected in
terms of score belong to the CDP-choline pathway as they were changed in all three
treatment groups. This suggests that monitoring changes to the CDP-choline pathway

could prove to be a very effective means of detecting early steatosis.

This project also revealed changes to TCA intermediates in all three models as
summarised in Figures 6.1, 6.2 and 6.3. In the fatty acid model increases in succinate
were observed in the two high dose groups for the spheroid and monolayer models.
In contrast citrate and succinate were decreased in both drug-induced models. This is
easily explained by the mechanisms by which steatosis is induced by the different
treatment types. In NAFLD induced by high fat diet mitochondrial beta-oxidation is
upregulated driving an increase in TCA cycle activity (Sunny et al., 2011, Fabbrini and
Magkos, 2015, Fletcher et al., 2019). In contrast, tetracycline and valproate are known

inhibitors of fatty acid oxidation (Miele et al., 2017). In order to make up for the loss of
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acetyl-CoA from beta-oxidation it is hypothesised that glycolysis is upregulated in
drug-induced steatosis (Chan et al., 2018, Dargue et al., 2020). This current study also
suggests this occurs since decreases in glucose were observed in both valproate
models and in the 600 yM monolayer tetracycline group. Meanwhile in the fatty acid
model glucose was increased in both high doses of the spheroid and monolayers
potentially indicating upregulated beta-oxidation. Thus, the measurement of TCA cycle
metabolites could represent potential markers for beta-oxidation and the presence of

steatosis.

In this study decreases in lactate occurred in both fatty acid models as well as in the
high dose monolayer tetracycline and the spheroid model. Decreases in lactate are
usually coupled with decreases in alanine and are associated with hyperlipidaemia
and reduced pyruvate. However, increases in alanine were seen in the monolayer fatty
acid groups but not the spheroids and also in the 4 mM monolayer group and both
spheroid valproate treated groups. It is unclear why conflicting results were observed.
Elevated alanine levels are potentially related to an increase in transamination of
pyruvate. According to literature lactic acidosis is common in drug-induced steatosis
and therefore an increase in lactate was expected in the drug-induced models (Cuykx
et al., 2018B, Lee and Kim, 2019, Dargue et al., 2020). As it was increases in lactate
were observed the high dose valproate models were observed. Lactic acidosis is
caused by TCA cycle inhibition, and this is shown in the valproate model with the
decreases in TCA cycle intermediates (Massart et al., 2013). Decreases in TCA cycle
metabolites also occurred in the tetracycline model despite the decreases in lactate.
Regardless, the conflicting changes in lactate, alanine and glucose were all altered in
the three treatment models which suggests they may be important for the detection of

early steatosis.

Figure 6.4 revealed changes in metabolites associated with the urea cycle in all three
models, in particular decreases in citrulline in the 0.1 mM monolayer fatty acid, both
spheroid and monolayer 600 uM tetracycline and in the 1 mM monolayer and 4 mM
spheroid valproate groups. Again, like many other metabolites identified in this study,
the changes in urea cycle metabolites only occurred in some groups and it is unclear
why. Nevertheless, these results demonstrate that all treatments were affecting

citrulline levels but cannot be confirmed as the changes were not consistent across all
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groups. It has been previously suggested that the genes for urea cycle enzymes
carbamoylphosphate synthetase (CPS1) and ornithine transcarbamylase (OTC) are
modified in NAFLD due to mitochondrial injury leading to reduced expression and
function and ultimately hyperammonaemia (De Chiara et al., 2018, Gallego-Duran et
al., 2022, Thomesen et al., 2023). OTC catalyses the reaction between carbamoyl
phosphate and ornithine to form citrulline and phosphate. Thus, the decreases seen
in citrulline in this study may indicate that OTC gene expression is reduced in HepG2
cells although this remains to be confirmed. As decreases in citrulline were common
in all treatment groups this would indicate citrulline has potential as a biomarker

regardless of the steatotic cause.

Alterations in amino acids were also observed in this study with increases in the 0.5
mM monolayer of the fatty acid model, however, decreases were apparent in the high
dose monolayer and both dose levels for the spheroids in the tetracycline and
valproate models. Increased amino acids, seen in the fatty acid model, have been
previously reported in NAFLD (Kalhan et al., 2011). In contrast, Zhang et al., (2014)
demonstrated decreases in leucine and isoleucine in rats treated with valproate
potentially due to an adaptive response by hepatocytes to compensate for the loss of
ATP produced from beta-oxidation. Increases in branched-chain amino acids and
glutamate have been implicated in insulin resistance and in obese patients with
NAFLD. However, their role in NAFLD is yet to be elucidated and it remains unclear
whether the change in serum amino acid levels in subjects with NAFLD and NASH is
the result of altered hepatic metabolism or insulin resistance (Hasegawa et al., 2020).
Although as the models present in this study represent mild steatosis insulin resistance
is unlikely. Nevertheless, amino acid levels are of interest for the detection of NAFLD
and could be useful for distinguishing between drug-induced steatosis and diet

induced.

Organic metabolites were also identified in this project with the main metabolite
changes across the three groups being in arachidonic acid, cholesterol and in multiple
fatty acyl groups. Changes in cholesterol and fatty acyl groups were expected due to
the increased lipid accumulation in the cells which would also confirm steatosis.

Arachidonic acid has been implicated in NAFLD and is associated with increased
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inflammation and the production of pro-inflammatory prostaglandins and leukotrienes

which play a role in the progression of steatosis.

In summary in this project many metabolite changes were observed, and some
similarities were identified between the different models. Furthermore, the
metabolomics studies revealed similar changes in spheroids when compared to the

monolayers which indicates they are useful in vitro models for the study of steatosis.
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6.1.3 CYP enzyme expression

In this project 3D HepG2 spheroids models of steatosis were developed to determine
if they represent a more advanced in vitro model than monolayers. For in vitro models
to be reliable in biomarker studies and relevant to humans they should mimic all
metabolic pathways. Spheroids are thought to have increased CYP enzyme
expression compared to monolayers. This is important since CYP enzymes play a role
in the development and progression of NAFLD (Aljomah et al., 2015, Woolsey et al.,
2015, Jamwal and Barlock, 2020, Sukkasem et al., 2020, Albadry et al., 2022). In each
Chapter in this thesis the expression levels of CYP 2D6, 3A4 and 2E1 were
determined in all models using Western blotting. However, the blots suggested no real
difference in CYP expression when monolayers and spheroids were compared and
for all blots N=1. Therefore, it cannot be confirmed whether CYP expression in
spheroids was better than monolayers as this would require repeated blots and

statistical analysis in future work.

Nevertheless, the use of HepG2 spheroids particularly in the drug-induced models
have offered a novel insight into metabolite changes in an in vitro model which is
considered more reflective of the in vivo environment in terms of architecture and

physiology due to increased cell-to-cell contact.

6.2 Limitations and future work

This project had some limitations including the lack of validation for the metabolites
identified. Peak identification was mostly reliant on one-dimensional NMR
spectroscopy; this was supplemented using J-RES spectroscopy but not all peaks
could be confirmed using J-RES due to overlapping peaks. Although NMR is a non-
destructive reproducible method of analysing metabolites there are some issues with
metabolite identification as NMR techniques have low to moderate sensitivity when
compared to other techniques (Alexandri et al., 2017, Williamson and Hatzakis, 2017,
Emwas et al., 2019). '"H NMR spectroscopy is also restricted by relatively small

chemical shift windows meaning there is a greater likelihood of overlapping peaks
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particularly in complex biological samples (Hughes et al., 2015, Alexandri et al., 2017,
Emwas et al., 2019). Overlapping of peaks can lead to greater ambiguity in metabolite
identification particularly when identifying lipids as many fatty acids share the same
spectral regions and biomolecules have complex structures and often switch between
different conformations. (Hughes et al., 2015, Alexandri et al., 2017, Emwas et al.,
2019). Therefore, although many metabolite changes were identified in the
metabolomics analysis in this study, it was not possible to identify all the metabolites
particularly those in organic extracts. Nevertheless, to ensure that the metabolites
identified in this experiment were as accurate as possible, metabolite peaks were only
assigned if all peaks for each metabolite were present in the NMR spectra regardless
of their significance in the VIP lists. Also, JRES was used to decipher overlapping
peaks where assigning multiplicity was more difficult in order to give the most accurate
identification possible. Future work could focus more on 2D NMR methods including
J-resolved (JRES) NMR spectroscopy and also employ the use of mass spectrometry
to help identify some of the unidentified metabolites. Metabolite identification could

also be validated by spiking samples with known metabolite standards.

It is important to phase and baseline correct spectra to ensure peaks are in their
absorptive mode and to remove noise, artefacts and baseline drifts allowing for
accurate identification and quantification of signals (Emwas et al., 2018). Phasing also
improves the resolution of closely spaced peaks, which is crucial when trying to
distinguish between different chemical environments particularly in complex biological
samples. Errors in phasing can result in shifts in peak position particularly in crowded
regions of the spectrum resulting in incorrect chemical shift assignments and mistakes
in metabolite identification. Spectra were manually phased, and baseline corrected in
this study which allows for fine-tuning of peak shapes particularly when phasing
spectra with overlapping peaks and crowded regions (Ernst et al., 1990, Claridge,
2016, Emwas et al., 2018). Although this process is time consuming and automatic
phasing is possible, automatic phasing relies on algorithms which can struggle with
complex spectra and overlapping peaks. Manual baseline correction allows for tailored
adjustments of the baseline which can be particularly useful for complex spectra and
can allow the user to address noise spikes and artefacts that automatic correction may
miss (Ernst et al., 1990, Claridge, 2016, Emwas et al., 2018). However, automatic

spectra can consistently apply the same phasing procedure across multiple spectra
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reducing variability. Although spectra were manually phased and baseline in the same
way there was potential for human error which could have introduced errors in peak

shapes leading to incorrect metabolite identification or outliers.

Additionally, metabolite peaks were identified solely based on literature and the
Human Metabolome database. While the Human Metabolome Database (HMDB) is
perhaps the most extensive public metabolomic spectral database to date and stores
more than 40,000 different metabolites the physical diversities of metabolites make
them difficult to identify (Xiao et al., 2012, Alonso et al., 2015). The development of
innovative computational strategies has been a major driver in overcoming some of
the challenges with metabolite identification (Johnson et al., 2016). There are now
online tools available including MetaboHunter which matches the reference peak
positions against a list of detected peak positions automatically. FOCUS is an
algorithm that follows the same metabolite identification approach but with the added
advantage that it can discriminate between partially overlapping metabolites (Alonso
et al., 2013, Alonso et al., 2015). These online tools could be implemented in future

work to validate metabolite identification.

The metabolite changes that were observed are connected to the onset and
progression of steatosis but are also associated with general liver injury including
oxidative stress and cholestasis (Martinez-Sena et al., 2023). Therefore, identifying
changes in these metabolites alone would not give an accurate diagnosis of steatosis.
But could be useful in a panel of biomarkers. The in vitro models described in this
project could also be improved by 3D co-culturing HepG2 cells with Kupffer or stellate
cells as this would provide a better representation of the complete in vivo phenotype.
Co-cultured models also demonstrate the impact of cytokine signalling and would
allow for the progression of steatosis to NASH and fibrosis to be assessed (Muller and
Strula, 2019, Ouchi et al., 2019, Bialkowska et al., 2020). Although studies have
demonstrated the use of HepG2 cells in 3D spheroid co-culturing none have
conducted metabolomics studies to find potential biomarkers of steatosis. This would
be of great interest for future work as metabolite changes identified in co-cultured
models would have greater sensitivity and have greater specificity to the different
stages of NAFLD. Additionally, steatosis is usually associated with prolonged and

repeated exposure particularly when it is drug-induced as patients take repeated
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doses for long periods of time. Future work could include repeat dosing studies using
tetracycline and valproate in 3D spheroids. This would allow for more accurate
metabolite analysis which were more reflective of clinical settings and would identify
more sensitive biomarkers for drug-induced steatosis. Also, to validate the current
models as mild models of steatosis in the cells it would be necessary to test for
oxidative stress markers as more severe forms of steatosis are associated with
increased ROS production and oxidative stress (Donato et al., 2009). This could be
measured using assays that measure DNA/RNA damage, lipid peroxidation and

protein oxidation/nitration as well as levels of ATP.

The techniques used in this study could also be applied to clinical research in patients
taking the drugs used in this study particularly valproate. As valproate treatment is
usually long term NMR metabolomics and multivariate analysis of blood and urine
samples could offer a non-invasive technique to assess the development and or

progression of steatosis in patients.

Despite the limitations this thesis has provided a novel overview of the major
metabolite pathways affected in mild steatosis regardless of how it has been induced
and this will aid the future search for sensitive biomarkers for the early detection of

steatosis.
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Chapter 8

8.1 Appendix
Protein marker used for all Western blots to help identify size of target protein.
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Figure 8.1 Protein marker displaying molecular weight of proteins used in Western blotting
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Figure 8.2 Representative '"H NMR spectra of aqueous cell extracts from HepG2 cells. Cells were
seeded in 6-well plates and allowed to attach for 24 hour before dosing. A. Control, B. 0.1 mM fatty
acid, C. 0.5 mM fatty acid.
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Figure 8.3 Representative '"H NMR spectra of organic cell extracts from HepG2 cells. Cells were
seeded in 6-well plates and allowed to attach for 24 hour before dosing. A. Control, B. 0.1 mM fatty
acid, C. 0.5 mM fatty acid.
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Figure 8.4 Representative '"H NMR spectra of aqueous spheroid extracts from HepG2 cells.
Spheroids were seeded in low attachment 6-well plates and allowed to grow for 17 days before
dosing. A. Control, B. 0.5 mM valproate, C. 4 mM valproate.
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Figure 8.5 Representative '"H NMR spectra of organic spheroid extracts from HepG2 cells. Spheroids
were seeded in low attachment 6-well plates and allowed to grow for 17 days before dosing. A.
Control, B 100 uM tetracycline, C. 800 uM tetracycline.
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8.1.2 Metabolomic analysis of aqueous monolayer extracts dosed with
tetracycline
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Figure 8.6 Hotelling’s T2 plot created from PCA scores plot in Figure 4.5. Samples above the red line
of the 99% confidence level are considered to be true outliers. Sample 800(2) is circled in red.
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VIPpred

Figure 8.7 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts of
HepG2 cells treated with tetracycline at different concentrations. Cells were dosed at final
concentrations of 0 (DMSO control), 100, 200, 400, 600 and 800 uM and incubated for 24 hours.
Samples were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A.
DMSO control vs 100 uM, B. DMSO control vs 200 yM, C. DMSO control vs 400 uM, D. DMSO

control vs 600 uM, E. DMSO control vs 800 uM, F. 100 vs 200 pyM, G. 200 vs 400 puM, H, 400 vs 600
pM, 1. 600 vs 800 pM.
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Figure 8.8 S-plot derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
cells treated with tetracycline at different concentrations. Samples were collected, and NMR analysis
was carried out as described in Sections 2.10 and 2.13. A. DMSO control vs 100 uM, B. DMSO
control vs 200 uM, C. DMSO control vs 400 uM, D. DMSO control vs 600 uM, E. DMSO control vs
800 pM, F. 100 vs 200 uM, G. 200 vs 400 pyM, H, 400 vs 600 pM, I. 600 vs 800 pM.

8.1.3 Metabolomic analysis of organic monolayer extracts dosed with
tetracycline
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Figure 8.9 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts of
HepG2 cells treated with tetracycline at different concentrations. Cells were dosed at final
concentrations of 0 (DMSO control), 100, 200, 400, 600 and 800 uM and incubated for 24 hours.
Samples were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A.
DMSO control vs 100 uM, B. DMSO control vs 200 yM, C. DMSO control vs 400 uM, D. DMSO
control vs 600 uM, E. DMSO control vs 800 uM, F. 100 vs 200 uM, G. 200 vs 400 uM, H. 400 vs 600
MM, 1. 600 vs 800 uM.
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Figure 8.10 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2
cells treated with tetracycline at different concentrations. Samples were collected, and NMR analysis
was carried out as described in Sections 2.10 and 2.13. A. DMSO control vs 100 uM, B. DMSO
control vs 200 uM, C. DMSO control vs 400 uM, D. DMSO control vs 600 uM, E. DMSO control vs
800 uM, F. 100 vs 200 pM, G. 200 vs 400 uM, H, 400 vs 600 uM, 1. 600 vs 800 uM.
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8.1.4 Metabolomic analysis of aqueous spheroid extracts dosed with

tetracycline
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Figure 8.11 Hotelling’s T2 plot created from PCA scores plot shown in Figure 4.15. Samples above
the red line of the 99 % confidence level are considered to be outliers. Sample DMSO (1) is circled in

red.
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Figure 8.12 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts
from HepG2 spheroids dosed with tetracycline at different concentrations. Spheroids were treated
with either 0 (DMSO control), 100 or 600 uM tetracycline. Samples were collected and NMR analysis
was carried out as described in Sections 2.10 and 2.12. A. Control vs 100 uM tetracycline. B. Control
vs 600 puM tetracycline. C. 100 vs 600 uM tetracycline. Variables with a VIPpred value above 1 were
selected as significant and were highlighted in red.
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Figure 8.13 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
spheroids treated with tetracycline at different concentrations. Spheroids were treated with either 0
(DMSO control), 100 or 600 uM tetracycline. Samples were collected and NMR analysis was carried
out as described in Sections 2.10 and 2.13. A. Control vs 100 uM tetracycline. B. Control vs 600 uM
tetracycline. C. 100 vs 600 uM tetracycline.

8.1.5 Metabolomic analysis of organic spheroid extracts dosed with tetracycline
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Figure 8.14 Hotelling’s T2 plot created from PCA scores plot in Figure 4.18. Samples above the red
line of the 99% confidence level are considered to be true outliers. Sample 100 (3) is circled in red.
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Figure 8.15 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts
from HepG2 spheroids dosed with tetracycline at different concentrations. Spheroids were treated
with either 0 (DMSO control), 100 or 600 uM tetracycline. Samples were collected and NMR analysis
was carried out as described in Sections 2.10 and 2.13. A. Control vs 100 uM tetracycline. B. Control
vs 600 pM tetracycline. C. 100 vs 600 uM tetracycline. Variables with a VIPpred value above 1 were
selected as significant and were highlighted in red.
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Figure 8.16 S-plots derived from OPLS-DA models of NMR spectra of organic extracts from HepG2
spheroids treated with tetracycline at different concentrations. Spheroids were treated with either 0
(DMSO control), 100 or 600 uM tetracycline. Samples were collected and NMR analysis was carried
out as described in Sections 2.10 and 2.13. A. Control vs 100 uM tetracycline. B. Control vs 600 pM
tetracycline. C. 100 vs 600 uM tetracycline.

8.1.6 Metabolomic analysis of aqueous monolayer extracts dosed with valproate

4+
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Figure 8.17 PCA scores plot derived from 'H NMR spectra of aqueous extracts from HepG2 cells
dosed with valproate at various dose levels. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM
valproate and incubated for 24 hours. Aqueous cell extract samples were collected, and NMR
analysis carried out as described in Sections 2.10 and 2.13. Each spot on the plot represents one
sample. Grey = DMSO only control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red =4 mM.
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Figure 8.18 Hotelling’s T2 plot created from PCA scores plot in Figure 8.13. Samples above the red
line of the 99% confidence level are considered to be true outliers. Sample 0.5 (1) is circled in red.

13q
[F2Crngss)

104

8

T [racritisw)

Ze

H

=5

i

24

0 - -

] 5 % 2 8 @ ¥ & © £ 8 ® ¥ @ @ £ 8 = ¥ @ @ T @ ®m T @ ©

éSRS{RS{32335:::::::&:&:&;:;;;:
: £ £ £ £ £ = s = =
a o o o o o

Figure 8.19 Hotelling’s T2 plot created from PCA scores plots in Figure 5.5. Samples above the red
line of the 99% confidence level are considered to be true outliers. Sample 4 (6) is circled in red.
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Figure 8.20 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts
from HepG2 cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control
vs 0.5 mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Variables with a
VIPpred value above 1 were selected as significant and are highlighted in red.
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Figure 8.21 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples were
collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 0.5
mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate.

8.1.7 Metabolomic analysis of organic monolayer extracts dosed with valproate
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Figure 8.22 Hotelling’s T2 plot created from PCA scores plots in Figure 5.8. Samples above the red
line of the 99% confidence level are considered to be true outliers. Sample 2 (4) is circled in red.
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Figure 8.23 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts
from HepG2 cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control
vs 0.5 mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Variables with a
VIPpred value above 1 were selected as significant and are highlighted in red.
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Figure 8.24 S-plots derived from OPLS-DA models of NMR spectra of organic extracts from HepG2
cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples were
collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 0.5
mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate.
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8.1.8 Metabolomic analysis of aqueous spheroid extracts dosed with valproate
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Figure 8.25 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts
from HepG2 spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control

vs 1 mM valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.
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Figure 8.26 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2
spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples were collected

and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 1 mM
valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.
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8.1.9 Metabolomic analysis of organic spheroid extracts dosed with valproate
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Figure 8.27 Hotelling’s T2 plot created from PCA scores plots in Figure 5.18. Samples above the red
line of the 99% confidence level are considered to be true outliers. Sample DMSO (1) is circled in red.
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Figure 8.28 Hotelling’s T2 plot created from PCA scores plots in Figure 5.19. Samples above the red
line of the 99% confidence level are considered to be true outliers. Sample DMSO (6) is circled in red.
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Figure 8.29 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts
from HepG2 spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control
vs 1 mM valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.
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Figure 8.30 S-plots derived from OPLS-DA models of NMR spectra of organic extracts from HepG2
spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples were collected
and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 1 mM
valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.

8.1.10 Validation of OPLS-DA models in Fatty acid treated groups
OPLS discriminate analysis was validated using the leave-one-out method. The

scores plots below show an example of the results from this validation in the
aqueous monolayer group treated with fatty acids.
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Figure 8.31 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = ethanol control; green = 0.25 mM; dark blue = 0.5 mM; red = 1.0 mM
fatty acids.
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Figure 8.32 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = ethanol control; dark blue = 0.5 mM; red = 1.0 mM fatty acids.
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Figure 8.33 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and

palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and
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NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot
represents one sample. Grey = ethanol control; red = 1.0 mM fatty acids.
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