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Abstract  

 
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of liver disease 
with a current global prevalence of 25%. NAFLD consists of a spectrum of diseases 
ranging from mild steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis and 
can be diet or drug-induced. The early stages of NAFLD and drug-induced fatty liver 
disease (DIFLD) are reversible. However, the symptoms of steatosis are vague and 
there is a lack of specific and sensitive biomarkers.  
 
The overall aim of this project was to identify metabolite biomarkers for mild steatosis 
using NMR-based metabolomics; HepG2 monolayers and spheroids were used to 
create dietary and drug-induced in vitro models of mild steatosis. 
 
To create the steatotic models HepG2 cells were dosed with various doses of either a 
2:1 mixture of oleic and palmitic acid, tetracycline or valproate and incubated for 24 
hours. To ensure doses were not cytotoxic MTS and LDH assays were conducted. 
Steatosis was confirmed using Oil Red O staining and a triglyceride assay. Cell 
extracts were obtained from all models and analysed by 1H NMR and multivariate 
statistical methods.  
 
While a mixture of oleic and palmitic acid induce an increase in lipid accumulation and 
upregulation of beta-oxidation, tetracycline and valproate affect lipid metabolism by 
reducing beta-oxidation with both eventually leading to NASH. Therefore, changes in 
the TCA cycle metabolites were observed as well as changes in the methylation 
pathways. In particular, there were changes in levels of lactate, choline, homocysteine, 
and arachidonic acid in all models. These metabolites could potentially be useful in a 
panel of biomarkers for the early detection of steatosis.  
 
Literature has suggested that HepG2 monolayers cells have poor CYP expression 
compared to spheroids therefore, this study analysed CYP 2D6, 2E1 and 3A4 
expression in both monolayers and spheroids. The resulting Western blots indicated 
changes in all CYPs in both monolayers and spheroids in response to steatosis.  
 
The results from this project provide a good overview of the major metabolic pathways 
affected in steatosis, regardless of the cause. The use of HepG2 spheroids in drug-
induced steatosis offers a novel in vitro model for biomarker research that has not 
been reported before in the literature.  
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Impact statement  

 
Non-alcoholic fatty liver disease (NAFLD) defines a spectrum of liver diseases ranging 
from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. 
NAFLD has emerged as a public health concern due to its rising global burden. 
 
The initial stage of steatosis has long been considered a relatively benign condition; 
however, fatty livers are vulnerable to further injury and possible rapid progression to 
steatohepatitis. Data suggests that 41% of patients ultimately develop fibrosis and 
predicts that NAFLD may become the major cause of end stage liver disease in the 
coming decades. Incidence rates are set to increase by a further 18.3% in some 
developed countries by 2030. 
 
Many drugs can also induce fatty liver disease (DIFLD) a specific type of drug-induced 
liver injury, characterised by intracellular lipid accumulation in hepatocytes. Such 
drugs include tetracycline, valproic acid and tamoxifen. Annual incidence rates of 
drug-induced liver injury were said to vary widely in population-based studies from 2.7 
to 19.1 cases per 100,000 with approximately 27% of cases having some form of 
steatosis.  
 
While steatosis itself is reversible the difficulty lies in diagnosis since at this stage both 
NAFLD and DIFLD are relatively asymptomatic. Currently liver biopsies remain the 
gold standard for the diagnosis and prognosis of NAFLD and DIFLD. This leaves a 
great unmet need for non-invasive biomarkers that can identify both NAFLD and 
DIFLD before they progress. The lack of biomarkers is further complicated by the fact 
that some patients may have pre-existing NAFLD or NASH before receiving a drug 
known to cause DIFLD. In addition, there is a need for specific biomarkers capable of 
differentiating between underlying NAFLD and DIFLD.  
 
This project will attempt to analyse metabolite changes in both diet and drug-induced 
models of steatosis in HepG2 cells. There is no published comparison between diet 
and drug-induced models therefore this project will offer a novel insight into metabolite 
changes occurring in both models and could help differentiate between the two. This 
will potentially allow more sensitive and specific biomarkers of both diet and drug-
induced steatosis to be identified.  
 
Therapy options are scarce in part due to the lack of reliable disease models for 
research. There is an ongoing need for more human relevant predictive models as 
interspecies differences are a major drawback when extrapolating animal data to 
humans. Therefore, there is growing interest in in vitro models. This project will attempt 
to develop in vitro models of steatosis in HepG2 monolayers and spheroids. The 
morphology of spheroids is more reflective of the liver and will therefore provide a 
more reliable model for the study of steatosis. To date there are no studies in literature 
that have attempted to identify metabolite changes in drug-induced steatosis in HepG2 
spheroids therefore this study offers novel models for the dentification of drug-induced 
biomarkers.   
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Chapter 1  

1.1 Liver Anatomy 
 

The liver is the largest human visceral organ in the body and contributes approximately 

2-3% of the total body weight (Abdel-Misih and Bloomston, 2010). It is positioned on 

the right-hand side of the upper quadrant of the abdominal cavity just below the 

diaphragm and is protected by the ribcage. The human liver consists of four lobes: two 

major lobes (right and left), which are separated by the falciform ligament (Figure 1.1) 

and the caudate and quadrate lobes (Vernon et al., 2020). The quadrate lobe is visible 

on the inferior surface of the right lobe whereas the caudate lobe is located between 

the left and right lobes on the posterior side of the liver (Vernon et al., 2020).  

 

 
Figure 1.1 Gross anatomy of the liver. The liver is divided into the left and right lobes, separated by the 
falciform ligament. (Adapted from Guido et al., 2019). 

 

1.1.1 Blood supply 
 

The liver has a unique dual blood supply; the hepatic artery contributes approximately 

25% of the blood supply while the remaining 75% comes from the hepatic portal vein 

(Abdel-Misih and Bloomston, 2010). The hepatic artery and portal vein enter the liver 

at the hilum where they are divided into the right and left branches to supply the two 

lobes. The hepatic artery arises from the coeliac axis and supplies the liver with 

oxygenated blood (Naish et al., 2009; Abdel-Misih and Bloomston, 2010). Whereas 

the hepatic portal vein forms at the junction of the superior mesenteric vein and the 

splenic vein behind the pancreas and carries nutrient-rich but deoxygenated blood 
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from the gut, spleen and pancreas to the liver (Naish et al., 2009). Deoxygenated blood 

then leaves the liver via the hepatic vein and drains into the inferior vena cava (Figure 

1.2). 

 
Figure 1.2 Overview of hepatic circulation. The hepatic artery supplies the liver with oxygenated blood, 
while the hepatic portal vein carries deoxygenated blood from the body to the liver. Deoxygenated blood 
then flows in the hepatic vein carries towards the inferior vena cava.  

 

1.1.2 Microanatomy 
 

The morphological unit of the liver is classically hexagonal in shape and is known as 

a lobule, with a central vein in the middle (Kietzmann, 2017). The corners of the lobule 

are formed by portal triads consisting of branches from the portal vein, the hepatic 

artery and the bile duct. Lobules are described as consisting of 3 zones; with one zone 

located close to the portal triads (the periportal zone), a second surrounding the central 

vein known as the centrilobular zone and the intermediate area between these two 

zones known as the midzonal regions (Krishna, 2013, Kietzmann, 2017). 

 

While the lobule portrays the anatomical arrangement, the hepatic acinus is the term 

used to define the functional unit of the liver. Hepatic acini have portal triads at the 

centre and the terminal hepatic venule at the periphery (Dixon et al., 2013). Each 

acinus has 3 zones according to the distance from the arterial blood supply (Figure 

1.3). Zone 1 is closest to the arterioles in the portal triads and is the most oxygenated, 

while zone 3 is furthest away and has the lowest supply of oxygen (Kurbel et al., 2003, 

Lautt, 2009). 
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Figure 1.3 The lobular arrangement of the hepatocytes. The lobule portrays the anatomical 
arrangement while the acinus is the functional unit of the liver. The acini have portal triads and are 
separated into 3 zones. Source: (Adapted from Maronpot and Malarkey, 2019). 

 

The main parenchymal cells of the liver are hepatocytes arranged in plates or rows 1-

2 cells thick within the many hexagonal lobules (Krishna, 2013). The rows of 

hepatocytes have blood filled spaces known as sinusoids on each side. The sinusoidal 

spaces are lined with a discontinuous endothelium, in which epithelial cells are highly 

fenestrated allowing unimpeded flow of plasma between sinusoidal blood and the 

perisinusoidal space, known as the space of Disse (Haussinger and Kordes, 2019, 

Sanz-Garcia et al., 2020).  

 

The space of Disse contains hepatic stellate cells (also known as Ito cells) which play 

a key role in fibrogenesis, the storage of vitamin A and fat and the formation of 

connective tissue framework made up of reticulin fibres (Dixon et al, 2013). Kupffer 

cells and phagocytes are also present within the sinusoids. Both form an essential part 

of the reticuloendothelial immune system as they are the first immune cells in the liver 

to encounter gut bacteria, endotoxins and microbial debris transported to the liver via 

the portal vein (Basit et al., 2020). Therefore, they play an essential role in host 

defence (Dixon et al., 2013, Nguyen-Lefebvre and Horuzsko, 2015). Kupffer cells 

facilitate phagocytic removal of foreign particulates and participate in the regulation of 
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inflammatory and repair responses via the secretion of various cytokines into the 

circulation and perisinusoidal space (Cullen and Stalker, 2016).  

 

Located between the individual rows of hepatocytes are bile canaliculi which collect 

bile secreted by the hepatocytes. From the canaliculi bile flows towards larger 

collecting ducts and into the left and right hepatic ducts, which merge to form the 

common hepatic duct. The common bile duct then carries bile either directly to the 

duodenum or to the gallbladder where it is concentrated and stored (Boyer, 2013). 

 

 

1.2 Liver physiology  
 

The liver performs a wide range of vital metabolic functions including bile formation, 

carbohydrate, lipid and protein metabolism, drug metabolism, detoxification, and 

vitamin storage (Boyer, 2013, Vanputte et al., 2013, Kalra et al., 2020).  

 

 

1.2.1 Carbohydrate and protein metabolism and bile formation 
 

The human liver forms and secretes between 600-1000 mL of bile daily (Vanputte et 

al., 2013). Bile is composed mainly of water (95%), bile salts, bilirubin and electrolytes 

and is synthesised in the hepatocytes before being secreted into the bile canaliculi. 

Bile salts serve to emulsify fats and increase their surface area to facilitate their 

absorption by the intestines (Boyer, 2013). Lipophilic substances including cholesterol, 

bilirubin which results from the breakdown of haemoglobin, lipid soluble hormones, 

lecithin or lipophilic toxins are excreted from the body via bile (Vanputte et al., 2013, 

Hundt et al., 2020). 

 

Carbohydrate metabolism is controlled by the liver whereby glucose is stored within 

hepatocytes in the form of glycogen. When blood glucose levels are elevated excess 

glucose is taken up by the liver cells and is used to synthesise glycogen via 

glycogenesis (Postic and Girard, 2004). Similarly, when blood glucose levels are 

depleted glycogenolysis is upregulated within the hepatocytes forming glucose from 

glycogen. 
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Proteins are synthesised from dietary amino acids in the liver. The liver is also where 

the synthesis and secretion of plasma proteins such as albumin and coagulation 

factors take place (Kalra et al., 2020).  

 

 

1.2.2 Lipid metabolism 
 

The liver is the central organ for the control of lipid metabolism via the uptake, 

synthesis, esterification, oxidation, and secretion of long chain fatty acids (Ding et al., 

2018). Fatty acids entering the liver originate from either dietary or endogenous 

sources. Ingested dietary triglycerides are emulsified by bile acids in the intestinal 

lumen before undergoing hydrolysis primarily by pancreatic lipase, yielding sn-2-

monoacylglycerols and free fatty acids (Alves-Bezerra and Cohen, 2017). Following 

hydrolysis, these molecules are taken up by enterocytes in the small intestine and 

synthesised into triglycerides. Triglycerides are then packaged into chylomicrons, 

which are composed of cholesterol, triglycerides and apolipoprotein B48; which are 

then secreted into the lymphatic system and ultimately reach the circulatory system. 

Most triglycerides are taken up by muscle and adipose tissue. The remainder are 

taken up by the liver by receptor mediated endocytosis of the chylomicron remnants 

(Malhi and Gore, 2008, Alves-Bezerra and Cohen, 2017, Puschel and Henkel, 2018). 

Thus, the rate at which fatty acids enter the liver depends on their plasma 

concentration levels.  

 

The liver can also synthesise triglycerides from non-esterified fatty acids taken up from 

the plasma by hepatocytes or via de novo lipogenesis, whereby fatty acids are 

synthesised from carbohydrates such as glucose (Malhi and Gores, 2008). This 

process begins with the conversion of products from glycolysis into acetyl-CoA by 

pyruvate dehydrogenase in the mitochondria. It is then transferred in the cytosol as 

citrate followed by conversion back to acetyl-CoA by ATP-citrate lyase. Acetyl-CoA is 

then converted to malonyl-CoA by acetyl-CoA carboxylase (ACC). Following this fatty 

acid synthetase (FAS) catalyses the production of palmitic acid (a 16-carbon fatty 

acid). Palmitic acid can undergo elongation and desaturation by the actions of 

elongase 6 (ELOVL6) and stearyl-CoA desaturase 1 (SCD1) generating further mono-
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unsaturated fatty acids (Ameer and Zaidi, 2014). Glycerol-3-phosphate 

acyltransferase (GPAT) catalyses the esterification of glycerol-3-phosphate from 

glycolysis by incorporating an acyl moiety at the sn-1 position of the glycerol backbone 

producing lysophosphatidic acid. Phosphatidic acids are then generated from 

lysophosphatidic acid in the presence of 1-acylglycerol-3-phosphate acyltransferase 

(AGPAT). The next step generates diacylglycerols via lipin 1 (Kawano and Cohen, 

2013, Song et al., 2018). Triglycerides are then finally formed by the action of acyl-

CoA: diacylglycerol acyltransferase (DGAT) (Figure 1.4A) (Kawano and Cohen, 2013, 

Ameer and Zaidi, 2014). 

 

 
 
Figure 1.4 A. Overview of de novo lipogenesis and B. Overview of beta-oxidation. Excess fatty acids 
are degraded in the liver via beta-oxidation, while the liver can synthesise fatty acids through de novo 
lipogenesis. The enzymes that catalyse each step of these reactions are shown in red. 

 

As well as synthesising fatty acids by de novo lipogenesis the liver also oxidises long 

chain fatty acids to produce acetyl-CoA via the process of beta-oxidation, as shown in 

Figure 1.4B. Beta-oxidation takes place over four steps: dehydrogenation, hydration, 

oxidation and thiolysis with each step catalysed by a distinct enzyme (Nelson and Cox, 

2012). Prior to beta-oxidation the relatively inert fatty acids must first be activated by 

fatty acyl-CoA synthetase, using up one molecule of coenzyme A and one molecule 

of ATP producing long chain fatty acyl-CoA. The long chain acyl-CoA is then converted 
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to long-chain acyl-carnitine by carnitine palmitoyltransferase 1 (CPT1) allowing its 

transportation by a translocase across the inner mitochondrial membrane into the 

matrix where beta-oxidation takes place (Kumari, 2018). An inner mitochondrial 

membrane carnitine palmitoyltransferase 2 (CPT2) then converts the long-chain 

acylcarnitine back into long-chain acyl-CoA which enters the beta-oxidation pathway. 

Beta-oxidation begins with the oxidation of acyl-CoA by acyl CoA dehydrogenase, a 

double bond is formed between the second and third carbons (C2 and C3) to produce 

trans-Δ2-enoyl-CoA yielding FADH2 from FAD. In the next step the double bond 

between C2 and C3 in trans-Δ2-enoyl-CoA is hydrated by enoyl CoA hydratase to form 

β-hydroxyacyl CoA replacing the double bond with a hydroxyl group on C2. Following 

this the hydroxyl group is then oxidised by NAD+ in a reaction that is catalysed by 3-

hydroxyacyl-CoA dehydrogenase to produce β-ketoacyl CoA and NADH+H+ (Houten, 

2010, Nelson and Cox, 2012). In the fourth and final step which is catalysed by β-

ketothiolase, β-ketoacyl CoA is cleaved by a thiol group of another CoA molecule. The 

cleavage takes place between C2 and C3 producing acetyl CoA which enters the 

Krebs cycle and a 2 carbon shorter fatty acyl-CoA chain; the process repeats until the 

fatty acid chain has been shortened to a 2-carbon acetyl CoA (Mehta, 2013).  

 

Under normal circumstances the liver processes large quantities of fatty acids but 

stores only a small amount in the form of triglycerides, typically less than 5% of the 

total liver volume. This homeostatic control is achieved by balancing fatty acid uptake 

from the plasma and de novo synthesis with fatty acid oxidation and secretion of 

triglycerides into the blood (Alves-Bezerra and Cohen, 2017). For secretion, the liver 

packages triglycerides into very low-density lipoproteins (VLDL) (Kawano and Cohen, 

2013). VLDLs possess a hydrophobic core made up of cholesteryl esters, triglycerides 

and a hydrophilic coating containing a phospholipid monolayer and unesterified 

cholesterol (Tiwari and Siddiqi, 2012, Kawano and Cohen, 2013). Each VLDL is 

stabilised by a single molecule of apolipoprotein B 100 (ApoB 100), which is a key 

structural component (Sundaram and Yao, 2010) and contains a hydrophobic lipid 

binding region that participates in the assembly of lipoproteins and a hydrophilic region 

that interacts with the aqueous environment (Fabbrini et al., 2010). As a result, water-

insoluble triglycerides are converted to a more water-soluble form as VLDLs and thus 

can be secreted from the hepatocytes (Kawano and Cohen, 2013). These triglycerides 

can then be transported to other tissues as lipoproteins for use as a source of energy 
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and for structural components (Ponziani et al., 2015). Triglycerides provide twice as 

much energy compared with carbohydrates and proteins, as the fatty acids within 

triacylglycerols are already in their reduced state (Mehta, 2013). The relatively small 

quantities of triglycerides which are stored within the liver are normally localized in 

cytoplasmic lipid droplets (Alves-Bezerra and Cohen, 2017). 

 

The liver also plays a central role in cholesterol metabolism and under normal 

circumstances the liver is the primary site of cholesterol biosynthesis and excretion 

(Nemes et al., 2016, Puschel and Henkel, 2018). Cholesterol homeostasis is tightly 

controlled through intestinal cholesterol absorption, hepatic de-novo synthesis and 

cholesterol excretion from the body (Nemes et al., 2016, Malhotra et al., 2020). De 

novo synthesis begins with acetyl CoA conversion to 3-hydroxy-3 methylglutaryl-CoA 

(HMG-CoA) by HMG-CoA synthase which is then converted to mevalonate by HMG-

CoA reductase (HMGR) (Nemes et al., 2016, Malhotra et al., 2020, Yang et al., 2020). 

Mevalonate undergoes a series of phosphorylation reactions followed by 

decarboxylation yielding isopentenyl pyrophosphate (IPP). Squalene synthase then 

catalyses a series of condensing reactions leading to the production of squalene (Do 

et al., 2008). From squalene, lanosterol, the first of the sterols is formed (Nemes et al., 

2016, Malhotra et al., 2020, Yang et al., 2020). The newly synthesised cholesterol 

along with the cholesterol absorbed from the intestine are packaged along with 

triglycerides and apolipoprotein B-100 into VLDLs (Malhotra et al., 2020).  As well as 

being the primary site of cholesterol biosynthesis the liver is also the primary site of 

cholesterol excretion, converting it into bile acids and removing free cholesterol and 

neutral sterols via biliary excretion (Nemes et al., 2016).  

 

 

1.2.3 Drug metabolism 
 

The liver is the primary site for the metabolism and detoxification of xenobiotics. The 

liver metabolises a wide range of drugs converting them into more water-soluble forms 

to aid with excretion (Vaja and Rana, 2020). Drug metabolism consists of two phases: 

phase I and phase II. Some drugs undergo only one phase, but for the majority of 

drugs both phase I and phase II metabolism occurs sequentially (Phang-Lyn and 

Llerena, 2020). 
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Phase I reactions are most commonly oxidation reactions, but reduction and 

hydrolysis of drugs may also take place. Oxidation reactions are predominantly 

catalysed by the cytochrome P450 (CYP450) enzymes and occur mainly in the 

smooth endoplasmic reticulum of hepatocytes (Xu et al., 2005, Schonborn, 2010). 

The P450 family is a gene superfamily with 57 members in the human genome, and 

a subset of approximately 15 P450 enzymes belonging to the CYP1, CYP2 and 

CYP3 gene families. Together CYP450s particularly CYP450 

isoforms  CYP3A4,  CYP1A1,  CYP2B6,  CYP2C9, and CYP2E1  mediate 70-80% of 

all drug metabolism reactions (Zollner et al., 2010, Liu et al., 2017, Rey-Bedon et al., 

2022).  

 

Phase II metabolism involves the addition of polar groups to either the parent drug 

molecule or phase I metabolites via various conjugation reactions such as 

glucuronidation. This step increases the polarity of these compounds allowing them to 

be more easily excreted (Crettol et al., 2010, Schonborn, 2010). The enzymes 

responsible for catalysing phase II reactions are collectively known as transferases for 

example glucuronosyltransferase (UGT) (Liu et al., 2017).  

 

Due to the high exposure of the liver to xenobiotics and intermediates formed during 

drug metabolism the liver is particularly susceptible to chemically induced liver toxicity. 

The intermediates formed during metabolism can cause direct injury to hepatocytes 

or induce the inhibition of mitochondrial respiration leading to the production of reactive 

oxygen species (ROS) and a depletion in ATP. This may lead to oxidative stress and 

subsequent inflammatory cell response by the injured hepatocytes. Increased ROS 

levels can directly damage DNA, proteins, enzymes and lipids in cells and induce 

immune-mediated liver damage thus resulting in drug-induced liver injury (DILI) 

(Kolaric et al., 2021). 

 

As well as direct DILI induced by compounds or their metabolites some drugs can also 

cause dysregulated fat metabolism (Kolaric et al., 2021). This leads to an 

accumulation of lipids in liver cells resulting in drug-induced steatosis and NAFLD. 

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/cyp3a4
https://www.sciencedirect.com/topics/medicine-and-dentistry/cytochrome-p450-1a1
https://www.sciencedirect.com/topics/medicine-and-dentistry/cyp2b6
https://www.sciencedirect.com/topics/medicine-and-dentistry/cyp2c9
https://www.sciencedirect.com/topics/medicine-and-dentistry/cyp2e1
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1.3 Non-alcoholic fatty liver disease 
  

Non-alcoholic fatty liver disease (NAFLD) defines a spectrum of liver diseases ranging 

from hepatic steatosis (otherwise known as fatty liver), non-alcoholic steatohepatitis 

(NASH), fibrosis and cirrhosis (Figure 1.5) (Rabinowich and Shibolet, 2015). NAFLD 

is associated with excess fat deposits in the liver in the absence of excessive alcohol 

consumption. It is currently the most common type of liver disease globally with an 

estimated prevalence of about 25% in the general population (Ramos et al., 2022). 

Data suggests that 41% of patients ultimately develop fibrosis and predicts that 

NAFLD may become the major cause of end stage liver disease in the coming 

decades. Incidence rates are set to increase by a further 18.3% in some developed 

countries by 2030 due to an ever-present sedentary lifestyle and greater economic 

growth which could see NASH becoming the leading reason for future liver transplants 

(Muller and Strula, 2019, Ramos et al., 2022). There is a close association between 

NAFLD, diabetes, and obesity with studies reporting NAFLD as the hepatic 

manifestation of metabolic syndrome (Le et al., 2017). It has been suggested that 

individuals are 5 times more likely to develop diabetes if they already have NAFLD 

(Bhatt and Smith, 2015). At the time of diagnosis most patients with NAFLD already 

display clinical manifestations of metabolic syndrome such as diabetes, elevated 

plasma triglyceride, reduced high-density lipoprotein cholesterol levels, obesity and 

high blood pressure (Bhatt and Smith, 2015, Le et al., 2017, Sharma and John, 2020). 

Taking this into account hepatologists recently suggested replacing the term NAFLD 

with metabolic dysfunction-associated fatty liver disease (MAFLD). However currently 

the name remains unchanged as it might create some confusion as many clinical trials 

are currently specific to NASH which is not a major aspect in the MAFLD concept 

molecular basis (Kolaric et al., 2021, Di Pasqua et al., 2022).  
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Figure 1.5 Overview of the spectrum of NAFLD. NAFLD encompasses a spectrum of disease states 
ranging from mild and reversible liver steatosis to more serious and irreversible liver cirrhosis. Adapted 
from Guo et al., 2022.  

 

Obesity, NAFLD and diabetes are all linked to the development of insulin resistance, 

and are associated with increased gluconeogenesis (Gastadelli et al., 2000, Bhatt and 

Smith, 2015, Finck, 2018). The presence of NAFLD in obese patients is associated 

with adipose tissue insulin resistance and greater rates of adipose tissue lipolysis than 

in obese patients without NAFLD (Fabbrini et al., 2010). Excessive release of free fatty 

acids from adipose into circulation increases their delivery to the liver and skeletal 

muscle. This can simultaneously lead to increased intrahepatic triglycerides causing 

insulin resistance in the liver and skeletal muscle (Fabbrini et al., 2010). Skeletal 

muscle insulin resistance and hyperinsulinemia can further increase triglyceride 

accumulation in the liver by stimulating hepatic de novo lipogenesis and triglyceride 

synthesis (Fabbrini et al., 2010, Dharmalingam and Yamasandhi, 2018). De novo 

lipogenesis is further enhanced by insulin resistance as there is a reduced rate of 

glycogen synthesis with increased rates of gluconeogenesis in NAFLD. This increase 

in hepatic glucose and resultant glycolysis provides a substrate for de novo 

lipogenesis (Dharmalingam and Yamasandhi, 2018). These pathological changes 

occur due to the release of pro-inflammatory, procoagulant and pro-oxidant mediators 

and the release of fetuin-A, fibroblast growth factor-21 and retinol-binding protein-4 by 

the liver. Fetuin-A binds and inhibits the insulin receptor tyrosine kinase in the liver 
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and skeletal muscle inhibiting insulin signalling transduction resulting in systemic and 

hepatic insulin resistance (Dharmalingam and Yamasandhi, 2018).  

 

NAFLD typically begins as simple steatosis, defined as when fat accounts for at least 

5% of the liver weight. Steatosis results from either the dysregulated uptake of fats by 

the liver, excess de novo lipogenesis or via the suppression of beta-oxidation (Parry 

and Hodson, 2017, Alves-Bezerra and Cohen, 2017). This disruption to lipid 

metabolism results in the excessive accumulation of fats within the hepatocytes. 

Steatosis has long been considered a relatively benign condition; however, human 

studies have suggested that fatty livers are vulnerable to further injury and possible 

rapid progression to steatohepatitis (Kanuri and Bergheim, 2013).  

 

The mechanism by which NAFLD is associated with increased de novo lipogenesis is 

not fully understood. However, it is thought that elevated circulating insulin and 

glucose activate the sterol regulatory element binding protein 1c (SREBP-1c) and 

carbohydrate response element binding protein (ChREBP) which transcriptionally 

activate genes involved in de novo lipogenesis (Section 1.2.2) (Smith et al., 2020).  

 

Steatosis can manifest in two forms: macrovesicular and microvesicular steatosis. 

Macrovesicular steatosis is characterised by the presence of small to large droplets of 

fat located in the cytoplasm of the hepatocytes, which peripherally displace the 

nucleus and is typically caused by alcohol, diabetes or obesity (Apica and Lee, 2014, 

Rabinowich and Shibolet, 2015). The degree of steatosis and size of the fat droplets 

observed in the macrovesicular state often indicates that no further lipid accumulation 

is likely to occur. Whereas, in microvesicular steatosis very small fat droplets are 

typically observed in the cytoplasm of the hepatocytes. Microvesicular steatosis is 

associated with a number of conditions including acute fatty liver of pregnancy, Reye’s 

syndrome, sodium valproate toxicity and high-dose tetracycline toxicity (Hautekeete 

et al., 1990). Microvesicular steatosis is also related to the severe impairment of beta-

oxidation and as fatty acids are poorly oxidised by the mitochondria this leads to the 

esterification of triglycerides, the main lipid form that accumulates in steatosis 

(Satapathy et al., 2015, Kolaric et al., 2022). Consequently, microvesicular steatosis 

is considered the more severe form since it suggests ongoing active changes in fat 
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accumulation in the liver; however, unlike macrovesicular steatosis there is no 

peripheral displacement of the nucleus (Rabinowich and Shibolet, 2015).  

 

The majority of patients with NAFLD suffer from simple steatosis alone but 

approximately 10-30% will have NASH, characterised by hepatic steatosis alongside 

inflammation (Dyson et al., 2013). This can progress to more serious liver diseases 

such as fibrosis and cirrhosis (Figure 1.5) (Feher and Lengyel, 2003). 

 

The progression of simple steatosis to NASH is a complex process, and the 

mechanisms involved are not fully understood. However, it is thought to be a result of 

multiple parallel hits (Buzzetti et al., 2016, Kim and Lee, 2018, Tilg et al., 2020) often 

due to a combination of oxidative stress, hyperinsulinemia and hepatic iron and lipid 

accumulation (Shifflet and Wu, 2009, Sharma and John 2020). The excessive build-

up of fatty acids leads to oxidative stress which in turn leads to mitochondrial 

dysfunction and an increase in the production of reactive oxygen species (ROS) 

(Nassir and Ibdah, 2014, Peng and Meex, 2018, Li et al., 2019). Mitochondrial 

dysfunction also leads to endoplasmic reticulum (ER) stress, uncoupling of oxidative 

phosphorylation and subsequently ATP depletion (Patel and Sanyal, 2013, Kim and 

Lee, 2018). Excess ROS can then cause direct damage to hepatocytes. Additionally, 

ROS may interact with polyunsaturated fatty acids in the cell membrane producing 

lipid peroxidation intermediates which can diffuse to neighbouring cells causing further 

injury. An increase in lipid peroxidation and oxidative damage to mitochondrial DNA 

further diminish the function of the mitochondria. This establishes a self-perpetuating 

vicious cycle which increases oxidative stress and mitochondrial dysfunction (Ipsen et 

al., 2018). Ultimately the c-Jun N-terminal kinase (JNK) signalling pathway is triggered 

which subsequently alters mitochondrial permeability leading to possible apoptosis 

and necrosis (Patel and Sanyal, 2013, Chen et al., 2015). Additionally, chronic ER 

stress and increased ROS production may stimulate the production of several 

proinflammatory molecules such as the transcription factor nuclear factor-kb (NF-kb), 

tumour necrosis factor (TNF)-α and interleukin (IL)-8. Immune cells such as 

macrophages, Kupffer cells, natural killer cells and T-cells may also be activated and 

release pro-inflammatory chemokines. (Patel and Sanyal, 2013, Kim and Lee, 2018). 

The presence of inflammation and such immune responses alongside steatosis is 

defined as NASH. 
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In obese patients with steatosis the excessive lipid accumulation and resulting 

inflammatory response exacerbates insulin resistance (Kitade et al., 2017, Finck, 

2018). Hypertrophic adipocytes in obesity also secrete inflammatory cytokines such 

as TNF-α, IL-1β and IL-6. These pro-inflammatory cytokines can inhibit insulin 

receptor signalling resulting in reduced hepatic insulin sensitivity (Kitade et al., 2017). 

Thus, the activation of inflammatory pathways and recruitment of immune cells to 

adipose tissue, liver and skeletal muscle leads to acute inflammation, the development 

of insulin resistance and consequently the progression of steatosis to NASH (Kitade 

et al., 2017).  

 

Another mechanism by which the progression of steatosis to NASH is thought to occur 

is via iron overloading. This has been reported in 30-70% of patients with NAFLD and 

NASH (Abe et al., 2019). It can occur because patients with NAFLD have increased 

iron absorption from the duodenum due to upregulation of the divalent metal 

transporter 1 (DMT1) due to increased mRNA levels, which begins to accumulate in 

the liver (Hoki et al., 2015). Studies suggest that iron can induce oxidative stress and 

ROS production by catalysing hydroxyl radical formation via the Fenton reaction 

leading to the formation of hydrogen peroxide. The induced oxidative stress leads to 

further lipid peroxidation, protein modification and DNA damage, thus accelerating the 

progression of NAFLD to NASH (Fargion et al., 2011, Nelson et al., 2011, Britton et 

al., 2016). 

 

Ultimately, NASH will progress to fibrosis since the necro-inflammation that occurs in 

NASH triggers pathological activation of hepatic stellate cells (HSCs) located in the 

space of Disse. This results in differentiation of HSCs from vitamin-A storing cells to 

proliferating, inflammatory myofibroblasts which cause impaired collagen deposition 

and degradation resulting in an imbalance in fibrillar collagen in the liver and ultimately 

leading to cirrhosis (Bataller and Brenner, 2005, Kisseleva, 2017, Tsuchida and 

Friedman, 2017, Romero et al., 2020). 
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1.4 Drug-induced liver steatosis 
 

Alongside NAFLD many drugs can also cause a form of fatty liver disease, known as 

drug-induced fatty liver disease (DIFLD). It is a specific type of drug-induced liver 

injury, characterised by intracellular lipid accumulation in hepatocytes. Such drugs 

include tetracycline, valproic acid and tamoxifen amongst others (Kolaric et al., 2021). 

In a recent report the annual incidence rates of drug-induced liver injury were said to 

vary widely in population-based studies from 2.7 to 19.1 cases per 100,000 with 

approximately 27% of cases having some form of steatosis (Kolaric et al., 2021). This 

represents a considerable number of cases of DIFLD. 

 

DIFLD can present initially as pure microvesicular or macrovesicular steatosis or as 

drug-induced steatohepatitis (DISH). Drugs that cause microvesicular steatosis are 

often associated with acute liver injury and/or dysfunction such as Reye’s syndrome 

(Pavlik et al., 2019). While those leading to macrovesicular steatosis and 

steatohepatitis are more often associated with chronic and slow progressive liver injury 

(Pavlik et al., 2019). Drugs linked to microvesicular steatosis include valproic acid, 

tetracycline, aspirin, ibuprofen and zidovudine (Satapathy et al., 2015).  

 

The main mechanisms behind DIFLD involve the interference with mitochondrial 

respiration including beta-oxidation, oxidative phosphorylation and the TCA cycle 

(Satapathy et al., 2015, Miele et al., 2017, Di Pasqua et al., 2022). DIFLD may also 

be induced by the dysregulation of lipid hepatic homeostasis in terms of increased 

fatty acid uptake, increased de novo lipogenesis (DNL), and decreased transport by 

very low-density lipoprotein (VLDLs) as shown in Figure 1.6 (Patel and Sanyal, 2013, 

Pavlik et al., 2019, Di Pasqua et al., 2022). Steatogenic drugs can also lead to the 

inhibition of the carnitine palmitoyl shuttle and therefore prevent long chain fatty acids 

entering the mitochondria where beta-oxidation occurs (Patel and Sanyal, 2013, Di 

Pasqua et al., 2022). Drugs such as valproate can also upregulate the proliferator-

activated receptor gamma (PPARγ) and cluster of differentiation 36 (CD36) which play 

a role in facilitating fatty acid uptake in the liver and adipose tissue in humans 

(Komulainen et al., 2015, Bai et al., 2017, Yan et al., 2021, Di Pasqua et al., 2022).  

The subsequent mitochondrial dysfunction caused by lipid accumulation leads to 

oxidative stress, including the release of inflammatory cytokines including TNF-alpha, 
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TNF-beta and IL-8 which have chemotactic, proinflammatory and profibrogenic roles 

(Satapathy et al., 2015, Miele et al., 2017, Pavlik et al., 2019, Di Pasqua et al., 2022). 

This results in stellate cells activation and the generation of reactive oxygen species 

(ROS) which elicits the peroxidation of fatty acids leading to further inflammation and 

fibrogenesis via the activation of Kupffer cells and Ito cells (Miele et al., 2017). 

Although drug-induced steatosis begins as a benign and reversible condition the 

subsequent cellular events trigger progression to the more serious condition DISH 

(Pavlik et al., 2019).  

 

  
Figure 1.6 Mechanisms of drug-induced liver steatosis. Adapted from Patel and Sanyal (2013). 

 

1.5 Tetracycline 
 

In this project tetracycline was used to develop a drug-induced in vitro model of 

steatosis. Tetracycline belongs to a class of broad-spectrum bacteriostatic drugs 

usually prescribed to humans for the treatment of upper respiratory, skin and soft 

tissue infections (Choi et al., 2015). Tetracycline acts by inhibiting protein synthesis of 

bacterial cells by binding to the 30s subunit of the ribosomes and preventing 

aminoacyl-tRNA from binding. This prevents the addition of subsequent amino acids 

to the growing protein chain and therefore slows the growth of the bacterium (Patrick, 

2009, Shutter and Akhondi, 2022). 
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Although generally considered a safe drug tetracycline induced hepatotoxicity was first 

described more than 50 years ago (Lewis et al., 1967, Andrade and Tulkens, 2011, 

Glenn and Feldman, 2011, Abdel-Gelil and Mansour, 2019). When administered in 

high doses (3g tetracycline administered intravenously daily for 10 days), tetracycline 

has been reported to induce hepatic steatosis (Robinson and Rywlin, 1970).  

Tetracycline is thought to induce steatosis by inhibiting β-oxidation and the microsomal 

triglyceride transfer protein (MTTP) (Tagliatti and Colet, 2016). A decrease in 

mitochondrial β-oxidation of fatty acids and the inhibition of the microsomal triglyceride 

transfer protein leads to a reduction in the secretion of triglycerides and therefore 

accumulation of VLDLs in the liver (Tagliatti and Colet, 2016). Studies have indicated 

that tetracycline can downregulate genes involved in beta-oxidation including 

peroxisome proliferator activated receptor alpha (PPARα), carnitine palmitoyl 

transferase I (CPT-I), and fatty acid-binding protein 1 (FABP- 1) (Satapathy et al., 

2015, AlGhamdi, 2019).  

Furthermore, doxycycline and monocycline which belong to the same drug class have 

been shown to enhance ROS production in hepatocytes by activation of the 

transcription factor 4 (ATF4) which induces ROS production through the upregulation 

of CYP2E1 (Di Pasqua et al., 2019). This suggests that this class of drugs might be 

capable of inducing NASH.  

 

 

1.6 Valproate  
 

Valproate is another drug that has been shown to induce steatosis in vitro and was 

used in this study for the induction of steatosis in HepG2 cells. Valproate is a broad-

spectrum antiepileptic drug which has been widely used in the treatment of 

convulsions, bipolar and schizoaffective disorders (Mnif et al., 2016, Bai et al., 2017, 

Xu et al., 2019A). Valproate is also used for the treatment of paediatric epilepsy. 

Pharmacologically, valproate acts as a GABA (γ-aminobutyric acid) analogue in the 

central nervous system, blocking voltage-gated ion channels and inhibiting histone 

deacetylase (Rahman and Nguyen, 2022, Allen et al., 2023).  
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Although valproate is generally considered safe there are a wide range of adverse 

effects associated with valproate treatment including hepatotoxicity (Rabinowich and 

Shibolet, 2015). Patients undergoing long-term treatment with valproate develop 

features consistent with metabolic syndrome including substantial weight gain, insulin 

resistance and lipid abnormalities such as inhibited beta-oxidation. (Amacher and 

Chalasani, 2014, Rabinowich and Shibolet, 2015, Chang et al., 2016). Approximately 

61% of patients treated with valproate are diagnosed with hepatic steatosis following 

ultrasound examination (Bai et al., 2017). Hepatic damage is usually accompanied by 

elevations in serum aminotransferase and is pathologically characterised by the 

presence of microvesicular steatosis (Bai et al., 2017).  

 

Despite the number of studies reporting valproate hepatotoxicity the mechanisms 

underlying the development of this liver injury are not fully understood (Bai et al., 

2017). Earlier studies suggested that the accumulation of lipids in the liver following 

valproate treatment is due to an inhibition of beta-oxidation (Amacher and Chalasani, 

2014, Rabinowich and Shibolet, 2015, Bai et al., 2017). Studies have also shown that 

valproate can upregulate the cluster of differentiation 36 (CD36), also known as fatty 

acid translocase, a membrane protein which plays an important role in facilitating fatty 

acid uptake in the liver (Chang et al., 2016, Bai et al., 2017). CD36 expression is 

closely associated with insulin resistance, metabolic syndrome and accelerates the 

development of fatty liver by increasing fatty acid uptake rates in hepatocytes (Bai et 

al., 2017). However, the role it plays in valproate-induced steatosis is not fully 

understood (Chang et al., 2016, Bai et al., 2017). It has also been proposed that the 

formation of valproyl-CoA causes depletion of intramitochondrial CoA affecting beta-

oxidation. This leads to impaired ATP production and inhibition of carnitine 

palmitoyltransferase I (CPT1) which catalyses the transport of long chain fatty acid 

into the mitochondria for beta-oxidation (Amacher and Chalasani, 2014, Rabinowich 

and Shibolet, 2015, Chang et al., 2016).  

 

 

1.7 Models of steatosis  
 

NAFLD has emerged as a public health concern due to its rising global burden, yet 

therapy options are scarce. This is in part due to the lack of reliable disease models 
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for research (Kozyra et al., 2018). Thus, there is an ongoing need for more human 

relevant predictive models for research.  

 

 

1.7.1 Animal models in steatosis 
 

Several animal models of steatosis, NAFLD and NASH are routinely used 

(Boeckmans and Rodrigues, 2018). Examples include the use of genetically modified 

animals such as ob/ob mice which carry a spontaneous mutation in the leptin gene 

making them insulin resistant, hyperinsulinemic, and severely hyperglycemic 

(Nagarajan et al., 2012, Mohammed et al., 2017); dietary induced models such as the 

high fat diet and methionine-choline deficient diet as well as drug-induced models 

using carbon tetrachloride and sodium valproate (Gomez-Lechon et al., 2007).  

 

However, interspecies differences can be a major drawback when extrapolating 

animal data to humans (Boeckmans and Rodrigues, 2018). Additionally, there is an 

increasing demand to reduce the number of animals used in research. This coupled 

with the high cost and time required for animal studies has led to growing interest in 

in vitro models of NAFLD (Grepper et al., 2019). 

 

 

1.7.2 In vitro models of steatosis  
 

Undoubtedly, primary hepatocytes are the “gold standard” for drug metabolism and 

hepatotoxicity studies (Donato et al., 2013). Primary hepatocytes are differentiated 

cells that can express CYP enzymes and can mimic many of the in vivo hepatic 

functions, including drug metabolism. However, they tend to be phenotypically 

unstable, and limitations preventing their routine use include the unavailability of 

continuous supplies of liver tissue for harvesting and lack of reproducibility between 

batches (Donato et al., 2013). This coupled with issues regarding ethics and cost 

greatly limits the use of primary hepatic cells (May et al., 2016).  

 

Alternatively, cell lines derived from hepatocarcinomas present a major advantage 

over primary cell lines due to their easy handling, stable phenotype and unlimited 
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lifespan (Donato et al., 2013, Willebrords et al 2015., Alkhatabeh et al., 2016, Molinaro 

et al., 2020). Many hepatocellular cell lines exist, with one of the most characterised 

and commonly used being the HepG2 cell line (Cui et al, 2010, Garcia-Ruiz et al., 

2015, Willebrords et al., 2015, Alkhatatbeh et al., 2016). This is an immortalised cell 

line derived from the liver tissue of a 15-year-old Caucasian male who had a well 

differentiated hepatocellular carcinoma.  

 

HepG2 cells exhibit an epithelial-like morphology and are non-tumorigenic with high 

proliferation rates (Donato et al., 2015). In addition, HepG2 cells are reported to have 

the biosynthetic capabilities of normal liver parenchymal cells. Thus, these cells are 

highly differentiated and display many of the genotypic features of normal liver cells 

(Gerets et al., 2012). HepG2 cells retain many biochemical functions including the 

potential to secrete lipoproteins, insulin-stimulated glycogen synthesis, albumin 

secretion and glutathione-based detoxification making them a suitable model for 

studying human lipid metabolism and drug-induced liver injury (Gerets et al., 2012, 

Alkhatabeh et al., 2016, Sefried et al., 2018).  

 

However, one of the main limitations of HepG2 cells is linked to their reduced 

metabolic capacities such as urea formation compared with primary hepatocytes 

(Gerets et al., 2012, Kammerer and Kupper, 2018, Sefried et al., 2018). Another 

disadvantage of HepG2 cells is their low level of cytochrome P450 (CYP) enzyme 

expression (Castell et al., 2006, Rodriguez-Antona et al., 2008, Gerets et al., 2012, 

Kammerer and Kupper, 2018, Sefried et al., 2018). Nevertheless, despite the low CYP 

enzyme expression HepG2 cells have been used in a number of toxicity and lipid 

metabolism studies (Cui et al., 2010, Garcia-Perez et al., 2021).  

 

 

1.7.3 Steatosis models in HepG2  

 

The induction of steatosis in HepG2 cells is most commonly achieved by the 

administration of saturated and/or unsaturated fatty acids (Lyall et al., 2018). Oleic and 

palmitic acid are the most abundant fatty acids present in the human body and have 

been used in many in vitro studies to create models of steatosis (Ricchi et al., 2009, 
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Lyall et al., 2018, Zeng et al., 2020). Palmitic acid has been shown to act as a greater 

steatogenic agent at lower concentrations of 0.25 and 0.5 mM after 24 hours whereas 

the steatotic effects of oleic acid are greater at higher concentrations of 0.75 and 1 

mM (Cui et al., 2010, Moravcova et al., 2015, Liang et al., 2015). However, besides 

inducing steatosis palmitic acid has also been shown to exhibit a dose dependent 

cytotoxic effect associated with ROS production, apoptosis and necrosis at high doses 

as excess palmitic acid is poorly incorporated into triglycerides (Cui et al., 2010, 

Moravcova et al., 2015).  

 

Therefore, for the development of a simple steatotic model a combination of oleic and 

palmitic acid is the preferred choice in the literature. A combination of the two induces 

steatosis at lower overall fatty acid concentrations thereby reducing the possibility of 

toxicity and allowing preservation of the functional capacity of cells (Moracova et al., 

2015, Nemecz et al., 2019). The addition of a small amount of palmitic acid to oleic 

acid induces steatosis alongside minor toxic and apoptotic effects creating a benign 

state of chronic mild steatosis (Liang et al., 2015, Moracova et al., 2015, Dave et al., 

2018). Studies have shown that a mixture of the two can induce similar dose 

dependent changes in HepG2 cells to those seen in hepatocytes in vivo (Gomez-

Lechon et al., 2007, Donato et al., 2009, Cui et al, 2010). However, the overall 

concentration of these fatty acids and the ratio of oleic to palmitic acid is critical 

(Moracova et al., 2015, de Sousa et al., 2021). A study by Moracova et al., (2015) 

showed that oleic acid does not affect cell membrane integrity at concentrations less 

than 1 mM while palmitic acid enhances lactate dehydrogenase (LDH) leakage at 

concentrations as low as 0.25 mM. Many ratios have been tested and previous studies 

have used different ratios (3:1, 2:1 or 1:1) of oleic and palmitic acid to induce steatosis 

in HepG2 cells (Donato et al., 2009, Cui et al., 2010). In these studies, the total fatty 

acid concentrations varied from 0.5 to 2 mM and it was shown that the cells exhibited 

intracellular accumulation of lipid droplets and triglycerides (Willebrords et al., 2015). 

Although many ratios have been tested it is frequently reported that administering a 

combined concentration of 0.5 mM oleic and palmitic acid in a 2:1 molar ratio results 

in significant fat accumulation, insulin resistance and low-grade inflammation in 

HepG2 cells after 24 hours representing a mild model of steatosis (Liang et al., 2015, 

Dave et al., 2018).  
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As well as fatty acid models, several drug-induced steatosis models have been 

explored in HepG2 cells including the administration of tetracycline, sodium valproate, 

amiodarone and tamoxifen (Donato et al., 2009). Tetracycline has been commonly 

used and studies have demonstrated that HepG2 cells and rat primary hepatocytes 

treated with tetracycline show increased intracellular lipid accumulation (Donato et al., 

2009, Choi et al., 2015, Garcia-Canaveras et al., 2016). Choi et al., (2015) reported 

that HepG2 cells treated with 100 and 200 μM tetracycline exhibited an increase in 

lipid accumulation after 24 hours. The literature agrees that tetracycline induces a 

concentration-dependent increase in steatosis up to a maximum dose of 800 μM 

before cytotoxicity occurs (Donato et al., 2012). Studies have also shown that single 

doses of valproate between 0.5-5 mM induce steatosis in various cell models (Chang 

et al., 2016, Bai et al., 2017, Yan et al., 2021).  

 

 

1.8 3D spheroid models  

 

Although 2D monolayer cultures are well established for creating in vitro NAFLD 

models and their low cost and easy handling make them suitable for high-throughput 

screening, there are some limitations with their use (Stampar et al., 2021, Ramos et 

al., 2022). The most important being the lack of multiple biological functions including 

cell-to-cell and cell-to-matrix contact which mean 2D cell cultures do not accurately 

mimic the natural cell microenvironment (Bialkowska et al., 2020, Stampar et al., 

2021). This can result in modified cell signalling pathways and reduced expression 

and activities of several hepatic enzymes implicated in the metabolism of xenobiotic 

substances (Pingitore et al., 2019, Ingelman-Sundberg and Lauschke, 2021, Stampar 

et al., 2021). Furthermore, as mentioned above HepG2 cells have reduced CYP 

expression compared to primary hepatocytes making their use in in vitro models less 

reliable. In addition, studies have shown that CYP enzyme expression is further 

downregulated in HepG2 monolayer cells after 24 hours of culturing meaning they are 

less suitable for long term dosing studies (Mizoi et al., 2020, Stampar et al., 2020, 

Ingelman-Sundberg and Lauschke, 2021). 
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Consequently, while monolayers have been routinely used to understand the 

molecular mechanism of disease they do not represent the complexity of human 

tissues. Therefore, there is a growing need for better in vitro models mimicking the 

liver’s complexity and this has led to growing interest in 3D spheroid models (Pingitore 

et al., 2019). 3D culture is emerging as a bridge between the easy-to-use 2D cell 

cultures and more complex in vivo models (Jensen and Teng, 2020). By maintaining 

hepatic cell proliferation within a controlled microenvironment 3D liver models better 

mimic the in vivo phenotype with respect to cell shape, behaviour and morphology and 

create an environment with tightly packed 3D multicellular aggregates providing 

enhanced cell-to-cell contact and extracellular matrix components (Kozyra et al., 2018, 

Pingitore et al., 2019, Bialkowska et al., 2020, Stampar et al., 2021, Ramos et al., 

2022).  

 

Table 1.1. Comparison of 2D and 3D cell culture methods (Adapted from: Kapalczynska et al., 2018).  

Type of culture 2D 3D 

Time of culture formation 24 hours  17 to 21 days  

Culture quality High performance, 
reproducible, easy to interpret, 
simple culture 

Lower performance and 
reproducibility, cultures more 
difficult to carry out 

In vivo imitation Do not mimic the natural 
structure of the tissue  

Mimic the in vivo environment 
more closely  

Cell interactions Deprived of cell to cell and cell 
to extracellular environment 
interactions 

Increased cell to cell and cell to 
extracellular environment  

Characteristics of cells  Changed morphology, loss of 
diverse phenotype and polarity 

Preserved morphology, diverse 
phenotype and polarity 

Access to essential compounds Unlimited access to oxygen, 
nutrients and metabolites 

Variable oxygen, nutrient and 
metabolite access 

Molecular mechanisms Changes in gene expression, 
mRNA splicing, topology and 
biochemistry of cells 

Same expression of genes, 
splicing, topology and 
biochemistry of cells as in vivo 

 

Since the development of the first spheroid model in the 1970s by Sutherland et al., 

(1971) multiple techniques have been used to establish culture systems of increasing 

sophistication; these include spheroids, organoids, liver-on-a-chip and bio-printed 

platforms (Ramos et al., 2022). Spheroids represent a very promising 3D cell model. 

They can be cultured under static or dynamic conditions, using many techniques, 

ranging from hanging drop cultures, spinner flasks, non-adhesive surfaces, micro-

moulding and bioreactors (Stampar et al., 2021).  
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However, the most popular method of spheroid culture in NAFLD studies is by liquid 

overlay in which cell suspensions are cultured on ultra-low adherent surfaces allowing 

cell-cell adhesion rather than adherence to the flask this is shown in Figure 1.7 (Ryu 

et al., 2019). These 3D models have helped to elucidate the role of hepatocytes in 

NAFLD, the mechanism by which insulin resistance elicits de novo lipogenesis and 

lipid accumulation through the administration of monosaccharides and fatty acids as 

they are more reflective of the in vivo environment (Kozyra et al., 2018, Ramos et al., 

2022).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.7 Light microscope images of HepG2 spheroids. A. HepG2 monolayer cells. B. HepG2 
spheroids. 

 

HepG2 spheroids have been reported to have higher expression of some CYP 

enzymes (approximately 2-fold higher) compared to monolayer models (Mizoi et al., 

2020, Stampar et al., 2020 and Ingelman-Sundberg and Lauschke, 2021). They also 

display functional bile canaliculi, increased albumin expression and drug transporters 

and xenobiotic receptors that mediate induction of CYP450 enzymes (Ramaiahgari et 

al., 2014). Spheroids can survive up to 28 days without the need for passaging giving 

them an advantage over monolayers which need to be passaged every 4-5 days (Shah 

et al., 2017, Kozyra et al., 2018). Spheroid cultures can also be used for repeat dose 

studies. Furthermore, upon treatment with pathological concentrations of fatty acids, 

carbohydrates, or insulin, hepatic spheroids enabled induction and investigation of 

steatosis for up to 5 weeks offering an environment more reflective of clinical settings 

(Kozyra et al., 2018, Stampar et al., 2021, Ramos et al., 2022). As spheroids show 

greater expression of genes involved in xenobiotic metabolism, they have increased 

A B 
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sensitivity to hepatotoxins and compounds requiring metabolism (Edmondson et al., 

2014, Shah et al., 2017, Kapalczynska et al., 2018). As there is growing interest in 

their use spheroids have been used in the study of NAFLD and in drug-induced liver 

injury where they display many in vivo phenomena (Kozyra et al., 2018, Lasli et al., 

2019, Cox et al., 2020, Frandsen et al., 2022, Tutty et al., 2022). A study by Kozyra et 

al., (2018) demonstrated that 3D spheroids dosed with oleic and palmitic acid creates 

a steatosis model capable of demonstrating insulin resistance as well as the 

reversibility of steatosis. Frandsen et al., (2022) also reported that HepG2 spheroids 

dosed with oleic and palmitic acid displayed changes in lipid accumulation and other 

lipidome changes similar to those seen in vivo. These studies indicate that 3D models 

are well suited to the study of steatosis. Although 3D spheroid models have been used 

in the study of drug-induced liver injury, studies specifically looking at drug-induced 

steatosis in spheroids are limited.  

 

To further improve in vitro studies and to create an environment that represents the 

complete in vivo phenotype there is also growing interest in co-culturing models with 

Kupffer or stellate cells. These models reflect the impact of cytokine signalling and 

demonstrate the progression to NASH as they are capable of mimicking steatosis as 

well as inflammation (Muller and Strula, 2019, Ouchi et al., 2019, Bialkowska et al., 

2020). Such so-cultured models would provide a powerful tool to examine the effects 

of free fatty acid accumulation on the inflammatory process and give a better 

understanding of the progression of steatosis to NASH (Soret et al., 2020).  

 

 

1.9 Detection and diagnosis of NAFLD  

 

Since NAFLD exists as a spectrum of diseases, there are currently no specific and 

sensitive biomarkers for diagnosis (Sanal, 2015). An early diagnosis of NAFLD is 

dependent on the detection of steatosis (Sanal, 2015). However, steatosis and the 

early stages of NAFLD are typically asymptomatic which means many patients are not 

identified until the disease has progressed to NASH or further (Piazolla and Mangia, 

2020). To date there are also no licensed pharmacological treatments for NAFLD and 

while bariatric surgery is effective in a small proportion of patients, diet and exercise 
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remain the cornerstone of disease management. This is because of evidence that 

suggests a 10% body weight loss allows a reversion of steatosis and inflammation 

(Ramos et al., 2022).  

 

In patients with suspected NAFLD the aminotransferase enzymes, alanine 

transaminase (ALT) and aspartate transaminase (AST), are routinely monitored as 

general liver function tests to identify nonspecific hepatocellular damage (Neuman et 

al., 2014). However, in the absence of advanced liver disease or necrosis it is typical 

to observe normal or only mildly elevated levels of both enzymes (Neuman et al., 

2014). In fact, approximately, 80% of patients with steatosis have normal enzyme 

levels making the measurement of these enzymes very unreliable and non-sensitive, 

they also lack specificity to NAFLD (Neuman et al., 2014).  

 

To date, biopsy remains the “gold standard” for the diagnosis and prognosis of NAFLD 

(Moolla et al., 2020). This is despite the fact it is an expensive and invasive procedure 

with high sampling error and a risk of complications including pain, bleeding and in 

very rare cases death (Piazolla and Mangia, 2020). Due to poor patient acceptance of 

liver biopsies, there is an urgent need for reliable, accurate and non- or minimally 

invasive biomarkers.  

 

In an effort to improve diagnosis of liver disease and injury several non-invasive tools, 

including clinical and imaging-based markers and algorithms, including the fatty liver 

inhibition of progression (FLIP) algorithm, have more recently been developed (Moolla 

et al., 2020). The FLIP algorithm is a simple histological algorithm based on a scoring 

system, known as the SAF score (steatosis, activity, fibrosis) intended for pathologists 

to reliably diagnose NASH (Bedossa, 2014, Moolla et al., 2020). The FLIP algorithm 

uses the presence of steatosis, grade of ballooning-change and lobular inflammation 

to assess the severity of NASH (Lee et al., 2020). Grade 1 or 2 ballooning change 

which is defined as swelling and rounding of hepatocytes and lobular inflammation are 

the minimum diagnostic criteria of NASH used in the FLIP algorithm. Histological 

scoring systems have been very successful in the evaluation of chronic liver diseases 

and although effective in improving diagnosis they do not provide all the information 

that can be conveyed by a liver biopsy and are considered as additional tools to liver 

biopsies (AlShaalan et al., 2015).  
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Alternatively, the fatty liver index comprising BMI, waist circumference serum 

triglyceride and gamma glutamyl transferase (GGT) levels is another algorithm used 

for the diagnosis of NAFLD (AlShaalan et al., 2015). However, the fatty liver index is 

not able to quantify lipid accumulation and does not always correlate well with the 

amount of fat in the liver define by magnetic resonance spectroscopy therefore its use 

as a quantitative biomarker of NAFLD is limited (Fedchuk et al., 2014).  Inflammatory 

cytokines and chemokines including TNF-alpha and interleukin-6 can be used to help 

with the diagnosis of the inflammation associated with NASH (Neuman et al., 2014, 

Piazzolla and Mangi, 2020). Several other tests such as the fibrosis-4 index and the 

liver stiffness measure are available to help rule out the later stages of fibrosis and 

cirrhosis. However, these tests cannot accurately differentiate between steatosis, 

NASH or different severities of NASH. There is also no single test available to identify 

steatosis, or to predict and monitor the disease progression and these tests are best 

used in combination leaving the need for more reliable ways of diagnosis and staging 

NAFLD (Piazzolla and Mangia, 2020).  

 

The importance of diagnosing steatosis early is highlighted by the fact that 20 – 30 

percent of all NAFLD patients progress to NASH, liver fibrosis and cirrhosis and 

NAFLD is the second most common indication for a liver transplant (Drescher et al., 

2019). Reliable non-invasive biomarkers and screening techniques to diagnose 

NAFLD at the earliest stages could present patients with the opportunity to reverse 

the disease (Drescher et al., 2019). In the majority of cases dietary and lifestyle 

changes can positively impact on the severity of both steatosis and NASH. Similarly, 

to NAFLD currently the only way to identify DIFLD is by the use of imaging 

methodologies or liver biopsies. Therefore, there is a great unmet need for non-

invasive biomarkers that are able to identify drug-induced steatosis and 

steatohepatitis. Having reliable biomarkers would be especially beneficial for 

preclinical testing during drug development in order to determine the potential for new 

drugs to induce DILFD (Pavlik et al., 2019). The lack of biomarkers for both NAFLD 

and DIFLD is further complicated by the fact that some patients may have pre-existing 

NAFLD or NASH before receiving a drug known to cause DILFD. In addition, there is 

a need for specific biomarkers that are able to differentiate between underlying NAFLD 

and DILFD (Pavlik et al., 2019).  
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1.10 Biomarker studies 

 

Biomarkers are unbiased differential indicators of disease onset which can help to 

stage disease progression and offer insights into the relative severity of disease 

(Neuman et al., 2014). Methods common for biomarker discovery include proteomic, 

genomic and metabolomic approaches (Kulasingam and Diamandis, 2006).  

 

As explained above there is a great need for improved biomarkers for NAFLD and a 

number of in vivo and in vitro models of steatosis have been used in the search for 

potential biomarkers in NAFLD and DIFLD (Caussy et al., 2019, Masoodi et al., 2021, 

Nimer et al., 2021, Shao et al., 2022A). 

 

Proteomics is typically used to investigate changes in proteins and describes the large-

scale analysis of protein expression patterns, profiles and identification (Miller et al., 

2021). The identification of specific proteins, either as novel biomarkers or as 

over/under expressed markers, can provide useful biomarkers for early diagnosis and 

therapy of disease and toxicity (Lim et al., 2014). The advancement of proteomics 

analysis tools has been taken advantage of for studying NAFLD in terms of the disease 

and diagnosis (Lim et al., 2014, Miller et al., 2021). This has led to changes in 

cytochrome P450 (CYP) enzymes being reported in the livers of patients with 

steatosis, and in both in vivo models of steatosis in experimental animals and in vitro 

models of fat-overloaded cells (Gomez-Lechon et al., 2009). These findings have 

suggested an association between increased lipid deposition and impaired CYP 

expression and activity (Fisher et al., 2009, Gomez-Lechon et al., 2009, Basaranoglu 

et al., 2013, Albadry et al., 2022). 

 

However, one field of biomarker research that has become more popular is the 

application of metabolomic and metabonomic techniques to determine changes to the 

metabolome (Gowda and Raftery, 2016). The metabolome refers to the complete set 

of low molecular weight metabolites that are produced by cells in all metabolic 

pathways (Steuer et al., 2019). Metabolites serve as a direct signature of biochemical 

activity and are easier to correlate with phenotypes unlike genes or proteins whose 

functions are subject to epigenetic regulation and post translational modifications 

(Antcliffe and Gordon, 2016).  
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1.11 Metabolomics and metabonomics 
 

The study of the metabolome focuses on the concentrations and fluxes of low 

molecular weight metabolites found in cells (of molecular weight <1000 Da). In doing 

so studies provide detailed information on metabolite patterns of change and 

quantification of the individual metabolites which can increase understanding of 

biological phenotypes and help with deciphering physiological mechanisms.  

 

Two terms are used for metabolite profiling and quantification: metabolomics and 

metabonomics. Metabolomics is defined as a comprehensive and non-selective 

analytical chemistry approach used to identify and quantify the metabolome under a 

given set of conditions (O’Gorman et al., 2013). While the metabonomic approach is 

typically used to assess patterns of change for the quantitative measurement of 

metabolites in response to a stimulus, such as disease, toxicity, or a drug (Antcliffe 

and Gordon, 2016). Therefore, metabolomic studies can provide accurate 

understanding of biochemical events inside the cell and aid the identification of 

potential biomarkers while metabonomics provides information on pattern profiles. 

(Gitto et al., 2018). While both refer to separate measurements the two terms are often 

used interchangeably.  

 

The study of metabolite changes may identify useful biomarkers or drug targets for 

disease and toxicity (Patti et al., 2012, Cui et al., 2020, Ioannou et al., 2020). As a 

result, metabolomics has become a common omics tool for the study of NAFLD 

focusing on both early detection as well as identification of altered pathways (Patti et 

al., 2012, Ioannou et al., 2020, Perakakis et al., 2020).  

 

The analysis of the metabolome can be carried out using both nuclear magnetic 

resonance (NMR) and mass spectroscopy. Each technique has its own strengths and 

weaknesses highlighted in Table 1.2 with the main issue being the identification and 

validation of metabolites. However, when used together these techniques tend to 

provide complementary data (Antcliffe and Gordon, 2016). NMR spectroscopy was 

employed in this project due to its ability to detect many metabolites in one 

measurement, its reproducibility and easy sample preparation making it more suitable 

for larger metabolomics experiments. It was employed to identify metabolite changes 
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and monitor patterns of metabolite change in HepG2 cells dosed with either fatty acids, 

tetracycline or valproate. 

 

Table 1.2. Comparison of NMR vs Mass spectrometry for metabolomics 

 NMR Mass spectrometry  

Sensitivity Lower but can be improved 
with cryo- and microprobes, 
higher field strength and 
dynamic nuclear polarisation 

High and detection limit reach 
nanomolar 

Selectivity Generally used for 
nonselective analysis, however 
selective experiments are 
available such as TOCSY 

Can be used for selective and 
nonselective analyses 

Sample measurement All metabolites that have NMR 
concentration level can be 
detected in one measurement 

Usually need different 
chromatography techniques for 
difference classes of 
metabolites 

Sample recovery Non-destructive; samples can 
be recovered and stored. 
Therefore, several analyses 
can be carried out on the same 
sample 

Destructive technique but only 
a small amount needed 

Sample preparation Minimal preparation required More demanding, as columns 
and optimisation of ionisation 
conditions are needed 

Reproducibility Very high Moderate 

Target analysis Not relevant for targeted 
analysis 

Superior for targeted analysis 

 

1.11.1 NMR Spectroscopy  
 

The use of 1H NMR spectroscopy enables the simultaneous analysis of low molecular 

weight metabolites from a variety of metabolic pathways (Nicholls et al., 2001). NMR 

is a non-destructive and reproducible technique giving it an advantage over other 

techniques when analysing biological samples, as samples can be recovered and 

stored meaning several analyses can be carried out on the same sample (O’Gorman 

et al., 2013, Emwas, 2015).  

 

NMR spectroscopy uses the spin properties of nuclei in a strong magnetic field to 

analyse chemical structures. Nuclei with an odd number of protons and neutrons 

possess a nuclear spin meaning they can produce their own electromagnetic field 

(Rosen and Brady, 1983). However, the spin properties of protons and neutrons can 

cancel each other out giving a net spin of zero meaning nuclei with an even number 

will not produce an NMR signal (Koutcher and Burt, 1984). Therefore, only isotopes 
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such as 1H, 13C and 15N whose spin quantum number is >1/2 are used for analysis 

(Shenderovich and Limbach, 2021).  

 

When placed in the magnetic field protons within the nuclei have two spin states: one 

in line with the magnetic field and the other opposed to it (Antcliffe and Gordon, 2016). 

A radio frequency is applied which excites the nuclei from their base energy state to a 

higher energy state (Figure 1.8). When the radio frequency is removed the nuclei 

return to their base energy state, they re-emit radio wave photons which produce an 

interference pattern called a free induction decay (FID) (Rosen and Brady, 1983, 

Tognarelli et al., 2015, Antcliffe and Gordon, 2016, Esvan and Zeinyeh, 2020). The 

FID is converted into an NMR spectrum using a mathematical process called Fourier 

transformation (Rosen and Brady, 1983, Esvan and Zeinyeh, 2020). The Fourier 

technique transforms the function of time whereby a single proton is observed as a 

wave in time into a function of frequency, this generates an NMR spectrum with 

chemical shift shown on the x-axis and intensity on the y-axis (Esvan and Zeinyeh, 

2020). Each peak or multiplet on the NMR spectrum represents a different chemical 

environment.  

 

To facilitate data analysis the obtained raw NMR data must first be processed using 

chemical shift referencing, phase and baseline corrections. NMR spectra should be 

referenced against an internal chemical shift standard, this is important for correct 

peak alignment and future multivariate analysis (Emwas et al., 2016, Emwas et al., 

2018). This reference peak is typically set at 0.00ppm when 3-(trimethyl-siyl) propionic 

acid (TSP) is used as the standard for aqueous samples or tetramethylsilane (TMS) 

for organic samples. Each spectrum is then calibrated to this internal chemical shift 

standard. Spectra are then phased to ensure all peaks are above the baseline 

maximising the absorptive character and the symmetry of all NMR peaks over all 

regions of the spectrum. Baseline correction is then applied to ensure any regions 

without peaks appear flat aiding analysis (Emwas et al., 2018). It is also important to 

control pH and temperature while conducting metabolomics experiments (Bhinderwala 

et al., 2022). Changes in pH can have an effect on metabolite stability and can lead to 

degradation or transformation. While temperature fluctuations can also accelerate 

degradation of some metabolites that are sensitive to temperature like amino acids 

and lipids (Trainor et al., 2020, Putko et al., 2024). Alterations in pH and temperature 
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can also have an effect on the chemical equilibrium of ionisable metabolites 

influencing their detection and quantification (Trainor et al., 2020, Putko et al., 2024). 

Furthermore, accurate control of pH and temperature is essential for the proper 

calibration of analytical instruments in NMR ensuring reliable quantification and 

identification of metabolites. Controlling both pH and temperature is also essential for 

maintaining reproducibility and standardisation between experiments (Trainor et al., 

2020, Putko et al., 2024). 

 

 
Figure 1.8 The basis of NMR. Hydrogen nuclei resonate between two spin states providing information 
regarding the chemical structure of molecules. Source: (NMR Lab, 2018). 

 

Despite the ease of use one of the major limitations with using 1H NMR for biological 

samples and biomarker identification is that large quantities of data are generated 

leading to spectral congestion and overlapping of peaks on the chemical shift axis 

making metabolite identification more difficult (de Graaf et al., 2011, Huang et al., 

2015). One solution for this is the application of 2D NMR techniques including J-

resolved (JRES) 1H NMR spectroscopy which can yield a two-dimensional spectrum 

separating chemical shifts and J-couplings into different spectral dimensions aiding 

metabolite identification in complex metabolite mixtures (Huang et al., 2015). 

However, even with this, to compare the metabolite patterns in different sample 

spectra, it is usually necessary to apply statistical data reduction and multivariate 

analysis techniques (Nicholls et al., 2001). 
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1.11.2 Multivariate Statistical Analysis 

 

Prior to multivariate statistical analyses further NMR spectral processing is required. 

The first step is known as binning whereby the individual spectra (sample 

observations) are divided into bins or buckets with fixed or variable widths along the 

x-axis. These buckets represent a chemical shift region on the NMR spectra and are 

sufficiently wide to include one or more NMR peaks. The intensity of all the peaks in 

each bucket is determined by calculating the area under the curve creating a set of 

integrated values for each region along the x-axis of the NMR spectra. This process 

is carried out for all sample spectra in the experiment. The data generated, therefore, 

consists of sample observations (Y) with integrated values for the different chemical 

shift regions (X). From this a data matrix (or bucket table) consisting of columns of 

spectral regions for each sample is created (Sousa et al., 2012, Emwas et al., 2018). 

Since the bucket regions are the same for all samples in the experiment each bucket 

represents a metabolic descriptor and can be compared for all samples. 

 

Before the data can be further processed, the data must be normalised using pareto 

scaling to ensure that data from all samples is directly comparable with each other 

as some samples may have different concentrations of metabolites (Craig et al., 

2006, Kohl et al., 2012). Metabolomics datasets contain a wide range of variability 

from one experiment to the next and can be influenced by many factors that can 

have an effect on metabolite concentration such as the number of cells extracted in 

each experiment. However, this variability can be reduced using pareto scaling. 

Although other scaling methods such as auto-scaling do exist pareto scaling is 

favoured in metabolomics as it offers a balanced approach to handling variance of 

metabolites with difference abundance levels (van den Berg et al., 2006). Some 

metabolites can have higher concentrations which can dominate the analysis 

masking the concentration of low-abundant metabolites. By dividing each variable by 

the square root of its standard deviation pareto scaling can lessen the impact of 

highly abundant metabolites without eliminating their variance thus balancing the 

influence of both high and low abundance metabolites in the analysis. Also, pareto 

scaling does not standardise everything to the same level, as auto-scaling does, 

therefore retaining some degree of biological variation within the dataset (van den 

Berg et al., 2006, Wheelock and Wheelock, 2013, Worley and Powers, 2013). By 
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reducing the dominance of high abundance metabolites Pareto scaling can also 

improve data visualisation in PCA plots and helps enhance performance of statistical 

methods making it easier to identify trends and patterns (van den Berg et al., 2006). 

Metabolomics data often exhibits heteroscedasticity where standard deviations can 

vary complicating statistical analysis and data interpretation. Pareto scaling mitigates 

this by applying a milder scaling factor compared to auto-scaling (van den Berg et 

al., 2006).  

 

 

1.11.3 Principal component analysis 

 

Following normalisation, the first step in multivariate analysis is principal component 

analysis (PCA). PCA is one of the oldest data reduction approaches (Ma and Dai, 

2011) and is a commonly used statistical tool for metabonomic studies. PCA is an 

unsupervised technique used to reduce the dimensionality of the dataset, while at the 

same time preserving as much variability as possible (Jolliffe and Cadima, 2016). The 

creation of a PCA model (Figure 1.9) allows for the identification of a set of unique 

patterns within a data set which capture the greatest variation present in the original 

measurements while at the same time displaying trends and patterns. This is achieved 

in a PCA model by the transformation of the data into fewer dimensions whereby each 

spectral measurement is reduced to a single scores point (Worley and Powers, 2016). 

Data points are then projected onto lower dimensions called principal components 

(PCs). 

 

  
Figure 1.9 PCA Scores Plot.  
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For the creation of sample scores each chemical shift region in an NMR spectrum 

forms an axis in a k-dimensional space and the integrated values for each sample are 

plotted on their corresponding axis within a k-dimensional space. A linear combination 

of the integrated values for each sample observation is calculated, thereby reducing 

the data for one sample spectra to a single integrated value (score). Each original 

spectral sample will have its own score and all scores points can then be projected 

onto a plane forming a scores plot.  

 

Principal component 1 (PC1) describes the largest variation in the dataset, while 

PC2 is orthogonal to PC1 and describes the next level of variation (Figure 1.10) 

(Jolliffe and Cadima, 2016). Each successive PC represents the maximum amount 

of variation possible that was not accounted for in the previous components. The 

goal is to find the best summary of the data using a limited numbers of PCs (Lever et 

al., 2017). Each component captures a certain amount of variance in the total data 

and this is reported in the fraction of variance. In this study the fraction of variances 

for the PCA plots ranged from 45-85% for PC1 and 13-21.8% for PC2.  The first 2 

components were chosen to be analysed in this study as they offer a simplified 

representation of the data while still capturing the most significant sources of 

variation in the dataset (Lever et al., 2017).  

Figure 1.10 Reduction of dimensionality. PC 1 and 2 are projected onto a plane to give a scores plot, 
each variable has a score along each component.  
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Two PCs are rotated and projected onto a plane to produce a scores plot with the x-

axis representing PC1 and the y-axis representing PC2 (Jolliffe and Cadima, 2016). 

Each sample is represented as a score along these two components which shows the 

location of the sample in this model and can be used to detect sample patterns, 

groupings, similarities or differences (Gergen and Harmanescu, 2012). 

 

A loadings plot can then be used to further interpret the scores plot; each point on the 

loadings plot represents a bucket region (variable region) on the NMR spectra and 

reflects the extent of contribution each spectral variable region has on the complete 

data set (Gergen and Harmanescu, 2012). Variables close to the centre of the plot will 

be similar to the mean of the data set whereas those furthest away vary more from the 

mean and contribute most to the sample group separation. Therefore, loadings plots 

show the variable regions responsible for the clustering and separation of sample 

observations on a scores plot. Variables that have positive loadings have higher than 

average values for that variable, and those with a negative loadings have lower than 

average values.  

 

A PCA analysis can also highlight potential sample outliers which fall outside the 95% 

confidence interval and are observed outside the ellipse of the scores plot. Outliers 

identified in a PCA model can be further analysed using the Hotelling’s T2 Range Line 

plot (Mashuri et al., 2021). However, only those samples which fall above the 99% 

confidence level on the Hotelling’s plot are deemed outliers as some biological 

variation must be accounted for. This is the multivariate extension of student’s t-test 

and provides a tolerance range for the data in a two-dimensional scores plot. It shows 

how different each individual sample spectra is from the mean of the samples. If a 

sample exceeds the 95% confidence level it is assumed to be an outlier and removed 

from further analysis (Pretzner et al., 2020). 

 

While PCA is a powerful means of analysing spectral data, it will only reveal 

differences between measurements in its scores if those differences are major 

contributors to the total variability. Therefore, good separation between groups may 

not be visible. Additionally, data sets with large intragroup variation do not allow for 

good intergroup separation on a PCA scores plot as the subtle intergroup spectral 

differences are easily overwhelmed by intragroup spectral variations (Guo et al., 
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2019). Consequently, it is common to use PCA to obtain an overview of the dataset 

and to assess for outliers before further analyses in which groups are separated 

according to class (Guo et al., 2019).  

 

 

1.11.4 OPLS 

 

Unlike PCA, orthogonal partial least squares (OPLS) is a supervised regression 

method that assesses the relationship between sample groups in the spectral dataset 

by assessing changes in a descriptor X variable with respect to the response Y 

variable. OPLS finds the variation in the X variable (NMR spectral data) that is 

correlated with Y (sample class) (Bylesjo et al., 2007). To generate an OPLS model, 

sample classes for each measurement are firstly assigned, thus prior sample class 

knowledge is required for constructing an OPLS model (Worley and Powers, 2016). It 

also displays the components that are not correlated with the Y variable (intragroup or 

orthogonal variation) (Wiklund, 2008). A scores plot is also produced from OPLS 

models. These scores plots show predictive variation between the different groups 

along the t[1]-discriminating component (x-axis) as well as orthogonal variation 

(intragroup) along the t[0]-discriminating component (y-axis). 

 

Essentially, OPLS forces scores-space separation, because the integrated orthogonal 

signal correction filter removes any systematic spectral variation that does not agree 

with the assigned group (Worley and Powers, 2016). Therefore, separation may be 

visible even if it was not in the PCA. 

 

One limitation with OPLS analysis is that data interpretation is compromised when 

there are more than two groups. Therefore, OPLS can be extended to allow for 

discriminate analysis (OPLS-DA) (Figure 1.11) when two groups are comparatively 

analysed at a time (Worley and Powers, 2016). OPLS-DA models are used to identify 

the spectral variables that define the separation between two experimental groups and 

can therefore enable the identification of biologically relevant changes in the 

metabolome (Worley and Powers, 2016).  
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Figure 1.11 OPLS-DA scores plot.  

 

In order to identify metabolite regions contributing to the separation between two 

groups in an OPLS-DA scores plot the variable influence of projection (VIP) is used. 

The VIP summarizes the importance of the X-variables (chemical shift regions) to 

sample separation on the scores plot (Galindo-Prieto, 2015). Any variable regions with 

a VIP value of greater than one are considered to be significant and contribute to group 

separation.  

 

The variable regions can then be further visualised using S-plots which is an OPLS-

DA loadings plot and combines the correlation and covariance from the OPLS-DA into 

a scatter plot (Wiklund, 2008). Each point on the S-plot represents a chemical shift 

region from the original NMR spectra. The variable regions highlighted in red, as 

shown in Figure 1.12, represent regions with a VIP value greater than one, the S-plot 

also allows an increase or decrease in these variables to be identified. Variables 

located in the top right-hand side of the S-plot are increased when compared to the 

sample group assigned 1 in analysis (e.g. a control group). In contrast variables 

located in the bottom left-hand side of the S-plot are decreased when compared to the 

primary group. 
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Figure 1.12 S-plot.  

 

The chemical shift regions determined to be significant can be further validated using 

other statistical methods including the Kruskal-Wallis test. This rank-based 

nonparametric test is often used to determine whether there are statistically 

significant differences between two or more groups. Unlike parametric tests, non-

parametric tests are based on the idea that the data does not follow normal 

distribution. Although parametric tests are more powerful and precise than non-

parametric tests the main disadvantage of these tests are that they are sensitive to 

violations of the assumptions such as normality or independence. If the data does 

not meet the assumptions the results may be inaccurate or misleading. Non-

parametric tests are more robust and flexible compared to parametric tests allowing 

them to handle data that is skewed, has outliers or different scales and units (Nahm, 

2016). As the data in this project did not follow normal distribution and was prone to 

outliers it was decided that the Kruskal-Wallis test would be applied. Chemical shift 

regions were also assigned a p-value to assess their statistical significance. P-values 

are defined as the probability under the assumption of no effect or no difference of 

obtaining a result equal to or more extreme than what was actually observed 

(Dahiru, 2008). P-values can take any value between 0 and 1 where values close to 

0 indicated that the difference is unlikely to be due to chance (Dahiru, 2008). Values 

closer to 0 are deemed to be more significant.  

 

Once the chemical shift regions that are significantly contributing to the group 

separation have been determined, the corresponding metabolites can be identified 

based on the multiplicity of the peaks using the Human Metabolome Database 
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(HMDB) which stores more than 40,000 different metabolites and published literature. 

Metabolites can also be validated by spiking samples with metabolite standards.  

 

 

1.12 CYPs and steatosis 

CYP enzymes are found in all major organs but are most abundant in the liver where 

they are usually expressed in the centrilobular region of hepatic lobules (Albadry et 

al., 2022). Therefore, diseases that affect the liver and hepatotoxicants can have an 

impact on the expression of CYP enzymes. 

CYP2E1 is perhaps one of the most studied CYP enzymes in relation to NAFLD and 

was the first documented as modulated in clinical fatty liver disease (Merrell and 

Cherrington, 2011). CYP 2E1 catalyses the biotransformation of both xenobiotics and 

endogenous molecules including acetone, a ketone body generated in beta-oxidation 

of fatty acids. It can also metabolise glycerol and different fatty acids including 

saturated C12 to C18 fatty acids and some polyunsaturated fatty acids such as 

arachidonic acid and epoxyeicosatrienoic acid (Massart et al., 2022). More recently, 

CYP 2E1 has been shown to potentially play a significant role in adipocyte lipid 

metabolism suggesting it plays a role in lipid metabolism in tissues able to accumulate 

lipids in normal and pathologic conditions (Massart et al., 2022). Additionally, it has 

been shown that CYP 2E1 could also be involved in the synthesis and metabolism of 

lipids by inhibiting PPARα and enhancing SREBP-1c (Wang et al., 2021). The 

pathogenesis of NAFLD is complex and the theory of “two hits” for progressive disease 

is well known. The first hit being steatosis caused by insulin resistance and the second 

is liver damage and inflammation caused by oxidative stress (Wang et al., 2021). The 

majority of studies have reported increased expression and activity of cytochrome 

P450 2E1 (CYP2E1) and this increase is thought to play a role in the pathogenesis of 

NAFLD (Merrell and Cherrington 2011, Garcia-Ruiz et al., 2015, Sukkasem et al., 

2020, Wang et al., 2021). It is thought that mitochondrial dysfunction leads to abnormal 

activation of CYP2E1 producing reactive oxygen species (ROS) promoting oxidative 

stress leading to the progression of NAFLD (Wang et al., 2021). CYP2E1 is also 

involved in fatty acid hydroxylation capable of initiating lipid peroxidation (Bell et al., 

2010). It has also been implicated as a source of nitro-oxidative stress as it is a 
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member of the oxidoreductase cytochrome family, oxidising a variety of small 

molecules including fatty acids further damaging mitochondria leading to the 

progression of NAFLD (Garcia-Ruiz et al., 2015).  

Previous studies in rodent models, human hepatocytes and differentiated human cells 

have reported increases in CYP2E1 in response to fatty acid administration (Sung et 

al., 2004, Yao et al., 2006, Sukkasem at el., 2020). Researchers have also observed 

upregulation in CYP2E1 in morbidly obese patients, general steatosis and NASH due 

to increase lipid accumulation (Weltman et al., 1998, Emery et al., 2003, Videla et al., 

2004, Kohjima et al., 2007, Baker et al., 2010, Merrell and Cherrington, 2011). In 

contrast a number of studies have reported a decrease in CYP2E1 expression and 

activity in obese and NASH mouse models potentially due to the development of 

hyperinsulinemia (Enriquez et al., 1999, Watson et al., 1999, Deng et al., 2005, Ito et 

al., 2007). As CYP 2E1 is involved in lipid metabolism and has been implicated in the 

pathogenesis of NAFLD it was chosen to be analysed in this study to confirm its 

presence in HepG2 cells.  

CYP3A4 is the most abundant CYP enzyme in the liver and accounts for the 

metabolism of over 50% of drugs (Hewitt et al., 2007, Rey-Bedon et al., 2022). Due to 

its major role in drug metabolism a number of investigators have studied the impact of 

disease state on the expression levels of the enzymes and a decrease in expression 

during steatosis and NASH have been reported in rat models (Weltman et al., 1996, 

Zhang et al., 2007, Hanagama et al., 2008, Osabe et al., 2008). Studies have also 

reported decreases in CYP3A4 expression and impaired activity in NAFLD patients 

due to decreased mRNA expression (Weltman et al., 1998, Donato et al., 2006, 

Donato et al., 2007, Rey-Bedon et al., 2022). Lipid accumulation could also cause 

down-regulation of P450s by interfering with transcriptional activation of genes or by 

increasing mRNA degradation leading to decreased expression of these enzymes 

(Donato et al., 2007). 

 

Although few studies have documented changes in CYP2D6 expression and activity 

in NAFLD a general downregulation of enzymatic activity in hepatocytes is observed 

(Donato et al., 2006, Merrell and Cherrington et al., 2011). Previous investigations 

have demonstrated a relationship between NAFLD progression and decreased activity 
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of CYP2D6 and CYP3A4 (Yao et al., 2006, Huang et al., 2019). Taken together the 

increase in CYP2E1 and decreases in CYP2D6 and CYP3A4 expression affect the 

progression of NAFLD via ER and mitochondrial injury (Sukkasem et al., 2020). 

 

In this project three CYP enzymes were chosen to be investigated: CYP 2D6, 2E1 and 

3A4 as increases in CYP2E1 and decreases in CYP3A4 and 2D6 are consistently 

reported in most NAFLD studies (Merrell and Cherrington 2011, Wang et al., 2021, 

Sukkasem et al., 2022, Albadry et al., 2022). 

 

Furthermore, the majority of studies on the measurement of CYP levels in NAFLD or 

steatosis models have been conducted in monolayers or in in vivo models and there 

is little known about changes to CYP enzymes in 3D spheroid models.  

 

 

1.13 Aims and Objectives 

 

The overall aim of this project is to determine the metabolomic profiles of in vitro 

models of steatosis with the intention of identifying potential biomarkers for the early 

diagnosis of steatosis.  

 

The major objectives are: 

1. To develop three in vitro models of hepatic steatosis: a dietary model induced 

by endogenous fatty acids, and two drug-induced models using tetracycline and 

valproate, in HepG2 monolayers and spheroids.  

2. To evaluate and compare metabolite changes in the steatotic cell models using 

NMR metabolomics analysis.  

3. To investigate the reliability of spheroid and monolayer HepG2 cells in the 

investigation of steatosis by comparing metabolite changes and assessing CYP 

expression in all models.  

 

In objective 1, it is known that all three treatments are toxic at high dose levels in 

HepG2 cells therefore the initial goal will be to identify dose levels high enough to 

induce mild steatosis without causing cytotoxicity. This will be determined using Oil 
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Red O staining and a triglyceride assay to confirm lipid accumulation and MTS and 

LDH assays for cytotoxicity evaluation. The results from the dose response 

experiments will be used to determine a suitable low and high dose to be used to 

induce steatosis in spheroids. This is important since it has been suggested that 

spheroids have greater sensitivity to hepatotoxicants. 

 

Objective 2 will use the steatotic models developed and 1H NMR spectroscopy 

metabolomics techniques to compare metabolite patterns and identify metabolite 

changes in response to steatosis in each model. Metabolite changes will be compared 

between the fatty acid and drug-induced models to determine any similar changes that 

might be occurring in both models. There is a great unmet need for markers of both 

diet and drug-induced steatosis, by comparing the models this would allow for 

biomarkers specific to each model to be identified and could help to differentiate 

between the two. 1H NMR spectroscopy will be used for this purpose combined with 

multivariate analysis. 

 

The expression levels of CYP2D6, CYP3A4 and CYP2E1 in both monolayers and 

spheroids treated with fatty acids, tetracycline and valproate will be determined by 

Western blotting. For in vitro models to be reliable they must be capable of reflecting 

physiological functions. There are claims that HepG2 monolayers have been shown 

to have lower CYP expression than 3D spheroids and this will be investigated as part 

of the validation of the models.  
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Chapter Two – Material and methods 
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Chapter 2  

 

2.1 Materials 

 

Methanol, absolute ethanol, isopropanol, chloroform, formalin, hexamethyldisilazane, 

phosphoric acid, dimethyl sulfoxide-d6 (DMSO-d6), chloroform-d, deuterium oxide 

(D2O) and acetic acid were all supplied by Merck, United Kingdom. Glycerol was 

supplied by Fisher Scientific, United Kingdom.  

 

For cell culture Dulbecco’s Modified Eagle high glucose medium (DMEM), Fetal 

Bovine Serum (FBS) and penicillin/streptomycin (HycloneTM) were purchased from 

Thermo Fisher Scientific, Horsham, UK. Phosphate-buffered saline (PBS), trypsin 

HycloneTM were purchased from Merck, UK.  

 

For cell dosing Oleic acid (C18:1), palmitic acid (C16:0), bovine serum albumin (BSA) 

were all from Sigma Aldrich, UK. Tetracycline hydrochloride (cell culture grade) was 

purchased from Affymetrix|Thermo Fisher, Horsham, UK. Sodium Valproate was 

obtained from mpBio, UK.  

 

The nuView Precast Gels were supplied by Generon, Slough, UK. The PVDF Western 

blotting membrane was from Thermo Fisher Scientific, Horsham, UK. Extra thick blot 

paper and Goat Anti-Rabbit IgG (H+L) Horseradish Peroxidase Conjugate were 

obtained from BioRad, Watford, UK. Primary antibodies (Rabbit Polyclonal to 

Cytochrome P450 3A4, 2D6, 2E1) were all supplied by Abcam, Cambridge, UK. Semi 

skimmed milk powder, Tween 20 were purchased from VWR International LDT, 

Lutterworth, UK. SuperSignal™ West Pico PLUS chemiluminescent substrate was 

acquired from Thermo Fisher Scientific, Horsham, UK.  

 

Coomassie blue G250 and Coomassie blue R250 were purchased from Sigma 

Aldrich, UK. Glycine was obtained from VWR International LDT, Lutterworth, UK. Tris 

and sodium chloride (NaCl) came from Thermo Fisher Scientific, Horsham, UK. 3-

(trimethyl-siyl) propionic acid (TSP), potassium hydroxide (KOH), magnesium chloride 

(MgCl2), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS), bromophenol blue, 
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free glycerol reagent (F6428), glycerol standard (G7793), triton x-100, Oil Red O stain, 

dithiothreitol (DTT), soybean trypsin inhibitor (SBTI) and tosyl phenylalanyl 

chloromethyl ketone (TPCK) were all supplied by Sigma Aldrich, United Kingdom  

 

Assay Kits: Triglyceride-Glo Assay Kit, Promega, Chilworth, England. MTS cell 

proliferation assay kit (colorimetric), lactate dehydrogenase (LDH) cytotoxicity assay 

kit II (ab65393) were obtained from Abcam, Cambridge, United Kingdom  

 

 

2.2 HepG2 culture preparation and seeding 

 

HepG2 cells were acquired from AddexBio supplied by Caltag Medsystems, 

Buckingham, UK (3x106 cells per vial, Catalog No: C0015002, Lot:0038272). Cells 

were thawed by gentle agitation in a 37°C water bath for 2 minutes whilst keeping the 

O-ring and cap out of the water to avoid contamination. The vial was then removed 

from the water bath and the outside of the vial decontaminated by spraying with 70 % 

ethanol. All operations from this point on were carried out under strict aseptic 

conditions.  

 

A sterile falcon tube containing 9.0 mL of complete DMEM containing 10 % FBS and 

1 % penicillin/streptomycin (complete culture media) was placed in an incubator at 

37°C, 5 % CO2 for 15 minutes prior to cell recovery to avoid excessive alkalinity. The 

contents of the vial were then transferred to the falcon tube and centrifuged at 125 x 

g for 5 minutes. After centrifugation the supernatant was discarded, and the pellet 

containing live cells was resuspended in 9.0 mL of complete culture media. A 20 μL 

aliquot of the cell suspension was removed to a fresh Eppendorf to which 20 μL of 

trypan blue was added for cell counting using a haemocytometer. The remainder of 

the cells in culture media were dispensed into a new T75 flask which was placed in an 

incubator at 37 °C (5 % CO2) for 24 hours to allow the cells to attach. Cell culture 

media was changed every 48 hours and cells were passaged every 4 days.  

 

For passaging, the HepG2 cell culture was removed from the incubator, media was 

discarded, and the attached cells washed with 8.0 mL of PBS. The PBS was 
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discarded, and 4.0 mL of trypsin was added to the flask for approximately 1 minute to 

detach the cells from the surface of the flask. Detached cells were resuspended in 20 

mL of complete DMEM to stop trypsinisation and centrifuged at 400 x g for 6 minutes. 

After removing the supernatant, the cell pellet was resuspended in 10 mL of culture 

media. 20 μL of the cell suspension was then taken for counting using a 

haemocytometer and approximately 0.25x106 cells per 1.0 mL of media were seeded 

into a new T75 flask.   

 

 

2.3 Spheroid culture preparation  

 

To prepare 3D spheroids in low attachment 6-well plates, HepG2 cells were seeded 

at a density of approximately 0.25x106 cells per mL of complete DMEM; a total of 2.0 

mL was added to each well (0.5x106 cells per well). For spheroid culture in 96-well 

plates approximately 20x103 in 200 μL of media was added to each well.  

 

For all spheroid studies the culture media was changed every second day and 

spheroids were grown for 17 days before dosing.  

 

 

2.4 Dosing  

 

For cell dosing of monolayers, for metabolomics and Oil Red O staining experiments 

HepG2 cells were seeded at a density of approximately 0.25x106 cells per mL of media 

in 6-well plates. A total of 2.0 mL (5x106 cells per well) was added to each well and 

cells were allowed to attach for 24 hours prior to dosing.  

 

Just prior to dosing HepG2 cells were removed from the incubator, media was 

discarded, and the cells were washed with 1.0 mL of PBS. Then 2.0 mL of complete 

cell culture media containing either fatty acids, tetracycline or valproate was added to 

the wells.  
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For spheroid metabolomics experiments, approximately 5x106 cells in 2.0 mL of 

complete media were seeded in low attachment 6-well plates and incubated for 17 

days. The spheroids were removed from the incubator, media was discarded and 

replaced with 2.0 mL of culture media containing each treatment.  

 

In all experiments 6 replicates for each dose level of the 3 different treatment models 

(fatty acids, tetracycline and valproate) were prepared and the plates were incubated 

for 24 hours at 37°C. Each treatment model had a corresponding media only control 

and a media with dosing vehicle control (ethanol containing 1% BSA for the fatty acids 

and DMSO for tetracycline and valproate).  

 

 

2.5 Preparation of cell dosing solutions  

 

2.5.1 Fatty acid solution 

 

A mixture of oleic and palmitic acid (2:1 combination) was used for dosing HepG2 

cells. 50 mM solutions of both oleic and palmitic acid were prepared in ethanol. From 

these solutions a 2:1 ratio oleic acid and palmitic acid stock solution containing 1 % 

bovine serum albumin (BSA) was made. A serial dilution of the stock solution in 

complete DMEM was created to obtain final fatty acid solutions at concentrations of 

0.1, 0.25, 0.5 and 1.0 mM. 5 plates in total were prepared one for each dose level and 

a vehicle control (media containing 2 % ethanol but no fatty acids).   

 

2.5.2 Tetracycline solution   

 

A 160 mM initial stock solution of tetracycline was prepared by dissolving 3.078 mg of 

tetracycline in 4.0 mL of DMSO. This solution was then diluted to give further stock 

solutions of 120, 80, 40 and 20 mM. Final dosing solutions of tetracycline at 

concentrations of 800, 600, 400, 200 and 100 μM tetracycline were prepared by 

adding 10 μL of each of the stock solutions to 1.99 mL of DMEM. Two control groups 

were also prepared: one containing 10 μL of DMSO only and the other consisting of 

media only.   
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2.5.3 Valproate solution 

 

An 800 mM initial stock solution was prepared by dissolving 0.531 g of sodium 

valproate in 4.0 mL of DMSO. This stock solution was serially diluted using DMSO to 

produce solutions at 400, 200 and 100 mM. Final dosing solutions of valproate at 

concentrations of 0.5, 1, 2 and 4 mM were prepared by adding 75 μL of each stock to 

14.925 mL of DMEM. 75 μL of DMSO was also added to 14.925 mL of DMEM to give 

a vehicle control and 6 wells only contained media (blank control). Plates were 

incubated for 24 hours at 37°C.  

 

Monolayer HepG2 cells were dosed with all dose levels of each treatment. However, 

the dose levels for the spheroids were selected based on the results from Oil Red O 

staining and MTS viability assays. Consequently, spheroids were dosed for 24 hours 

at concentrations of 0.1 and 0.5 mM of fatty acid solution, 100 and 600 μM of 

tetracycline and 1.0 and 4.0 mM of sodium valproate. 

 

 

2.6 MTS assay 

 

Cell viability for HepG2 monolayers after dosing with the different treatments was 

assessed using a commercial MTS assay kit. For the assay approximately 5x103 

HepG2 cells in a total volume of 200 μL were seeded in a 96-well plate and allowed 

to attach for 48 hours to allow cells to grow to roughly 10 x103.  

 

Cells were then dosed with either fatty acids, tetracycline or valproate as described in 

Section 2.5. Six replicates at each dose level were used for this assay. The viability of 

the controls (ethanol and DMSO) for each model was also tested. The media was 

removed, and the cells were washed with 100 μL of PBS before 200 μL of fresh media 

was added to each well. Then 20 μL of MTS reagent was added into each well and 

the plate was incubated at 37 oC for 3 hours. Blank wells were prepared by adding 

200 μL of fresh media and 20 μL of MTS reagent. The average absorbance from these 

wells was then subtracted from all test absorbance readings. The plate was shaken 
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briefly on a shaker and the absorbance was read at 490 nm using a plate reader. 

Viability was calculated as follows:  

 

Viability (%) = (absorbance of treated cells/ absorbance of control cells) x 100.  

 

 

2.7 Oil Red O staining 

 

To confirm an increase in lipid accumulation within the monolayer cells or spheroids 

after dosing with the different treatment models Oil Red O staining was carried out. 

 

To prepare the stock staining solution 60 mg of Oil Red O was dissolved in 20 mL of 

ethanol, mixed and allowed to rest at room temperature for 20 minutes. Three parts of 

the stock solution was then added to two parts distilled water and mixed at room 

temperature for 10 minutes before filtering.  

 

For staining, the 6-well plates containing dosed HepG2 cells were removed from the 

incubator and the media was discarded from all wells. Cells were washed with 1.0 mL 

of PBS, which was discarded before cells were fixed in 10% phosphate buffered 

formalin for 15 minutes at room temperature. Cells were then washed with 60% 

ethanol and incubated in 2.0 mL of the Oil Red O solution for 30 minutes. Excess stain 

not taken up by the cells was then washed away by rinsing with distilled water several 

times before visualising the stained cells under a light microscope at x10 

magnification.  

 

To quantify the amount of Oil Red O taken up by the cells 1.25 mL of 100% isopropanol 

was added to each well to destain the cells and the plates were agitated on a shaker 

at room temperature for 10 minutes. The absorbance of the Oil Red O eluted from the 

cells was then read at 520 nm using a spectrophotometer using isopropanol as the 

blank.  
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2.8 Triglyceride Assay 

  

A triglyceride assay was used to quantify the lipid accumulation within the cells and 

spheroids after dosing with either fatty acids, tetracycline or valproate using a 

Triglyceride-GloTM assay kit from Promega, UK.  

 

For the assay approximately 20x103 HepG2 cells in 200 μL of DMEM media were 

plated in 96-well plates and incubated for 24 hours to allow attachment. For spheroid 

seeding approximately 20x103 HepG2 cells in 200 μL of DMEM media were plated in 

a low attachment 96-well plate and incubated for 17 days to allow spheroids to form. 

Cells and spheroids were then dosed with either fatty acids, tetracycline or valproate 

(as described in Section 2.5) and incubated for 24 hours. 

 

Prior to use all components of the triglyceride assay kit were thawed in a water bath 

at 22 oC and mixed to ensure homogeneous solutions. The Reductase Substrate, 

Kinetic Enhancer and Lipoprotein Lipase were then placed on ice while the assay 

buffers and reagents were prepared. The final volumes prepared depended on 

number of samples to be assayed. 

 

To prepare the glycerol lysis solution for the assay 80 μL of Lipoprotein Lipase was 

added per mL of supplied glycerol lysis solution. The glycerol detection reagent for the 

assay was made by adding 10 μL of Reductase Substrate per mL of supplied glycerol 

detection solution. This detection reagent was prepared 1 hour before use and 

incubated at room temperature. After 1 hour 10 μL of Kinetic Enhancer per mL of 

glycerol detection reagent was added.  

 

When all reagents for the assay had been prepared the treated HepG2 cells were 

removed from the incubator and media discarded from each well. Cells were then 

washed twice with 100 μL of PBS. After removing the PBS 50 μL of glycerol lysis 

solution containing lipoprotein lipase was added to all wells, the plate was then shaken 

briefly and incubated for 30 minutes at 37 oC. Following incubation, samples were 

transferred to an opaque white 96-well plate and 50 μL of glycerol detection reagent 

was added to all wells. The plate was shaken for 30-60 seconds by hand before being 



 78 

incubated for 1 hour at room temperature. Luminescence was then recorded using a 

plate-reader.  

 

A standard curve was created by adding 2.0 μL of the 20 mM Glycerol standard 

provided in the kit to 498 μL of Glycerol Lysis solution to produce an 80 μM glycerol 

standard and then serially diluted 2-fold by mixing 200 μL of the standard with 200 μL 

of Glycerol Lysis Solution to give final concentrations of 40, 20, 10, 5, 2.5 and 0 μM 

glycerol. 

 

Final concentrations of triglycerides within the samples were calculated using the 

equation below:  

 

Glycerol concentration of sample= STD x (RLUsample – RLUbackground) / (RLUstandard – RLUbackground)  

 

 

2.9 Scanning electron microscopy 

 

Scanning electron microscopy was used to confirm that spheroids had formed and to 

visualise their 3D structure. Spheroids grown in both 6- and 96-well low attachment 

plates were gently aspirated using a 200 μL pipette tip with the end cut off. Individual 

spheroids were placed on a glass slide ensuring the spheroids did not get caught 

between the pipette and the glass slide as this may disrupt and destroy the 3D 

structure.  

 

The slides were then placed in a container lined with filter paper dampened with 

ethanol and allowed to dry for 10-20 minutes. Slides were then coated in 1.0 mL 10% 

formalin and incubated for 2 hours in the tissue culture hood. To each slide 1.0 mL of 

PBS was briefly added before being dehydrated in a series of ethanol solutions (35, 

50, 75, 95, 100% ethanol) for 10 minutes at each concentration. Slides were then 

placed in a fume hood and 1.0 mL of hexamethyldisilazine was added, the 

hexamethyldisilazine was allowed to evaporate in the fume hood. This acts as an extra 

drying step to remove any remaining water from the sample prior to SEM. 
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For SEM imaging the glass slides were attached to a self-adhesive carbon disc 

mounted on a 25 mm aluminium stub which was coated with 25 mm of gold using a 

sputter coater. The stub was then placed into an FEI Quanta 200 FEG scanning 

electron microscope for imaging at 5KV accelerating voltage using secondary electron 

detection. Spheroids were visualised and images were taken at magnifications of 100x 

and 500x. 

 

 

2.10 Sample collection for 1H-NMR analysis 

 

In the metabonomics studies for both monolayers and spheroids sample collection 

was carried out 24 hours after dosing. Cell culture medium was removed from the 

wells, frozen and stored at -80 °C until analysis.  

 

After removing the media, cells were washed with 1.0 mL of PBS before discarding 

the PBS. Cell metabolism was quenched by adding 400 μL of ice-cold methanol 

followed by 400 μL of ice-cold distilled water. Cells were detached from the well 

surface using a cell scraper to ensure that as few cells as possible remained attached 

to the plate and resuspended in the methanol and water mixture. The cell extracts 

were then transferred into a fresh Eppendorf tube containing 400 μL of chloroform at 

-20°C. Samples were agitated at 14,000 rpm on a tube shaker at 4°C for 20 minutes 

followed by 5 minutes of centrifugation at 16,000 x g.  

 

After centrifugation, the top aqueous layer containing the more polar metabolites was 

removed, placed into a new Eppendorf tube and dried down in a centrifugal vacuum 

concentrator. The bottom organic layer was dried overnight in a fume cupboard. Both 

aqueous and organic extracts were stored at – 80°C until later analyses. 

 

 

2.11 Sample preparation for 1H-NMR-based metabolomics 

 

Media samples were thawed and 250 μL of each sample transferred to an Eppendorf 

tube containing 250 μL of ice-cold methanol/water (8:1). Samples were centrifuged at 
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13,000 rpm for 5 minutes and 100 μL of the supernatant was placed in a new tube and 

dried in a rotary vacuum evaporator. The dried samples were then resuspended in 

600 μL of D2O containing 1.0 mM TSP to provide a reference peak for calibration of 

the NMR spectra. Samples were centrifuged at 10,000 rpm for 20 minutes and 550 μL 

of the supernatant was transferred into 5 mm NMR tubes.  

 

Aqueous extract samples were resuspended in 600 μL of deuterium oxide (D2O) 

containing 1.0 mM TSP. Samples were vortexed for 20 minutes followed by 

centrifugation for another 20 minutes at 10,000 rpm. Then 550 μL of the supernatant 

was transferred to a 5 mm NMR tube for NMR analysis.  

 

The dried organic fractions were resuspended in 600 μL d-chloroform. The samples 

were vortexed for 20 minutes followed by a 20-minute centrifugation step at 

10,000rpm. Then 550 μL of the supernatant was transferred into a 5 mm NMR tube 

for analysis.  

 

 

2.12 1H-NMR spectroscopy 

 

One-dimensional 1H NMR spectra of cell samples were analysed at 500,000 MHz 

using a Bruker DRX-500 spectrometer. One-dimensional spectra were acquired using 

a standard pre-saturation pulse sequence for water suppression with irradiation at the 

water frequency during the relaxation delay of 4s. Following four dummy scans, 

spectra were acquired using 512 scans into 64k points with a spectral width of 

10,248Hz and an acquisition time of 3.20 s. Experiments were conducted at room 

temperature.  

 

Two-dimesional J-resolved (JRES) 1H NMR spectra of cell extracts were measured at 

500,000 MHz on a Bruker DRX-500 spectrometer. JRES spectra were acquired using 

standard pre-saturation pulse sequence for water suppression with irradiation at the 

water frequency during the relaxation delay of 4 s. Following four dummy scans, 

spectra were acquired using 8 scans into 8K points with a spectral width of 8,192 Hz 

and an acquisition time of 0.5 s.  
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All 1H NMR spectra were phase and baseline corrected using Topspin 4.0.8 (Bruker 

Analytik, Rheinstetten, Germany). Data was then reduced using AMIX (Bruker 

Analytik, Rheinstetten, Germany) into buckets of 0.04 ppm wide corresponding to the 

region δ10.0-0.2 ppm giving a total of 250 buckets. The NMR region between 4.6-5.0 

ppm was excluded in all aqueous samples to remove the water region from these 

samples as the residual solvent signal often interferes with analysis of other metabolite 

signals even after solvent signal suppression (Emwas et al., 2018) 

 

The next step in data processing is known as normalisation. The area under the curve 

for each region of the spectra was calculated and expressed as an integral value. Then 

all regions of the spectra were normalised to the sum of the integrals to reduce any 

significant differences in concentration between individual samples.  

  

From Amix the data was imported into Microsoft Excel and converted into bucket 

tables which were then transferred into SIMCA 15 (SIMCA V.15, MKS Umetics AB, 

Sweden). The final step in data processing known as scaling was carried out to reduce 

the noise in the data. This is a column operation that acts on each spectral intensity 

across all samples. Mean-centering scaling was applied whereby the mean of each 

column is subtracted from each value in the column, giving each column a mean of 

zero. Following this, pareto scaling was performed in which each variable was divided 

by the square root of its standard deviation (Craig et al., 2006).   

 

 

2.13 Pattern recognition of 1H NMR analysis 

 

Using SIMCA 15 software, PCA, OPLS, and OPLS-DA analyses were performed. For 

all metabolomics experiments data was first analysed using principal component 

analysis (PCA), an unsupervised method of multivariate statistical analysis (O’Gorman 

et al., 2013). PCA assesses the clustering of the samples in the data set and identifies 

any outliers that may be present. If a sample is outside the 95% confidence ellipse on 

the PCA scores plot it may represent a potential outlier in the dataset which can be 

confirmed using a Hotelling’s T2 plot. Any samples above the 99% confidence interval 

were excluded from further analyses. 
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Following PCA, orthogonal partial least square (OPLS) and orthogonal partial least 

square-dimensional analyses (OPLS-DA) were carried out. OPLS is a supervised 

method of statistical analysis which demonstrates the relationship between X variables 

(NMR regions on the spectra) and Y variables (sample class). It represents a more 

bias form of analysis since the sample class is already known. For all metabonomics 

experiments OPLS scores plots were constructed and used to identify separation 

between the sample groups along a predictive t[1] discriminating component. 

Intragroup (orthogonal) variation is visualised along the t[0] axis.  

 

In each study OPLS-DA analysis was also carried out to compare two sample groups 

at a time. Scores plots were generated for each OPLS-DA model and used to generate 

variable importance of projection (VIP) predictive and S-plots. The VIP summarizes 

the importance of the X-variables (chemical shift regions) to sample separation on the 

scores plot (Galindo-Prieto, 2015). Variables with a VIP score above 1 were 

considered to be statistically significant and therefore thought to contribute to the 

sample separation on the OPLS-DA scores plot. These variables were further 

highlighted on an S-plot (a loadings plot). Variables located in the top right-hand side 

of the S-plot are increased when compared to the primary group (e.g. a control group). 

In contrast variables located in the bottom left-hand side of the S-plot are decreased 

when compared to the primary group. 

 

 

 2.14 Kruskal-Wallis test 

 

The Kruskal-Wallis test is a rank based nonparametric test used to identify statistically 

significant differences between two or more groups of an independent variable on a 

continuous or ordinal dependent variable. It is an extension of the Mann-Whitney U 

test and allows for the comparison of more than two independent groups. The Kruskal-

Wallis is also considered to be the nonparametric alternative to one-way ANOVA.  

 

In this project the Kruskal-Wallis test was performed using SPSS statistics 26 software 

package to confirm statistical significance of metabolite variable regions in the bucket 
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tables that differ between the sample groups in OPLS-DA models. A p-value of less 

than 0.05 was considered to be significant.  

 

 

2.15 Metabolite identification 

 

Following multivariate analyses, the NMR spectra in each study were examined further 

to determine the multiplicity and chemical shifts of the statistically significant variable 

regions identified using the VIP plot and a Kruskal-Wallis test. The S-plot was also 

used to determine if the peaks in these regions were decreased or increased between 

two comparative sample groups. Using this information metabolites with peaks in the 

relevant NMR regions were then identified using the Human Metabolome database 

and published literature. 

 

 

2.16 Protein Collection from HepG2 cells 

 

Protein samples were collected from monolayers and spheroids 24 hours after dosing 

with fatty acids, tetracycline or valproate. For monolayer studies cells were cultured 

and dosed in 6-well plates while spheroids were grown in 96-well plates.  

 

At 24 hours after dosing media was removed from each well and discarded. Then 1.0 

mL of protein lysis buffer was added to each well. To make the protein lysis buffer 150 

mM NaCl, 1% Triton X-100, 50 mM Tris pH 8 and 1.0 mM of each protease inhibitor 

(DTT, SBT1, TPCK) was diluted in 100 mL of water. For monolayer samples 2.0 mL 

of lysis buffer was added to each well while 50 μL of lysis buffer was added for the 

spheroid models.  

 

Cells were scraped and then incubated for 30 minutes in the lysis buffer under 

constant agitation at 4 oC. Samples were then centrifuged at 12,000 rpm for 20 

minutes and the supernatant was collected and frozen at -80 oC.  
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2.17 Bradford Assay  

 

Protein concentration in the HepG2 monolayer and spheroid cell extracts from all 

treatment models were measured using the Bradford assay. Bradford reagent was 

prepared by dissolving 30 mg of Coomassie Blue G250 in 100 mL of absolute ethanol, 

and adding 55 mL of phosphoric acid, and the solution was then made up to 1.0 L with 

water.  

 

To create a standard curve, firstly, a stock solution of BSA (200 μg/mL) was prepared. 

The stock solution of BSA was then diluted in water to produce the following 

concentrations of standard protein: 0 (blank), 1, 2, 3, 4, 5 6 μg/100 μL. The remaining 

steps were carried out in triplicate. To 100 μL of each standard sample 1.0 mL of 

Bradford reagent was added to all tubes, and the tubes were mixed and left for 5 

minutes at room temperature. Then the absorbance for each sample was read at 595 

nm using the blank sample to zero the spectrophotometer.  

 

Protein samples extracted from dosed HepG2 monolayers and spheroids were diluted 

1 in 50 with water. 100 μL of each diluted sample was added to an Eppendorf tube 

with 1.0 mL of Bradford reagent in triplicate and incubated for 5 minutes at room 

temperature. The absorbance was read at 595 nm. The BSA calibration curve was 

used to estimate the protein concentration in the samples taking into account the 

dilution factor.  

 

 

2.18 One-dimensional sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE)  

 

SDS-PAGE describes the method of separating proteins in a gel matrix when an 

electric force is applied. NuView precast gels were used to separate the protein 

samples collected from the dosed cells.  

 

Protein samples from all treatment models were pre-treated with SDS sample buffer. 

A x5 concentrated sample buffer was initially made consisting of 62.5 mM Tris HCl, 
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pH 6.8, 10% glycerol, 2% SDS and 0.05 mg/ml bromophenol blue. This buffer was 

then diluted with water to create a 2.0 mL x2 sample buffer which contained 50 μL of 

dithiothreitol (DTT). DTT is widely used to reduce disulphide bonds in the analysis of 

protein structure and function (Alliegro, 2000). Using the results from the Bradford 

Assay the volume of each sample equivalent to 10 μg protein was calculated and 

transferred to Eppendorf tubes to which an equal volume of the x2 SDS sample buffer 

was added and the sample mixed.  

 

Samples were then heated to 100 oC for approximately 10 minutes and loaded into 

wells of the gel. A blank solution containing SDS sample buffer was loaded into any 

unused wells (10 μL). A protein molecular weight marker (10 μL) was also added to 

one well in each gel to estimate the molecular weight of the proteins of interest. The 

gel was placed in the tank and reservoir buffer (25 mM Tris, 0.19 M glycine and 0.1 % 

SDS) added. A constant voltage of 200 V was applied for 1 hour or until the dye front 

reached the bottom of the gel. Following this, gels were either stained in Coomassie 

blue or used for Western blotting.  

 

 

2.19 Coomassie blue staining  

 

Following electrophoresis proteins were visualised by Coomassie blue staining. Gels 

were incubated overnight in 0.4% Coomassie blue R-250 in 50% methanol and 10% 

acetic acid. Gels were then destained until bands were visible following several 

washes with destaining solution (10% acetic acid, 30% methanol). The molecular 

weight of the proteins present could be estimated by comparison with the standard 

protein molecular weight markers.  

 

 

2.20 Western blotting 

 

For Western blotting, following gel electrophoresis the gels were washed 3 times in 

transfer buffer (48 mM Tris, 39 mM glycine, 20 % methanol) for 5 minutes each wash 

to remove electrophoresis buffer salts.  



 86 

PVDF membrane was cut to the size of the gel and placed in methanol for 2 seconds, 

followed by a brief wash in water to remove the methanol. The PVDF membrane was 

then equilibrated in the transfer buffer for 10 minutes. Two pieces of blotting filter pads 

were saturated in transfer buffer. The semi-dry transfer method was then carried out 

using a Trans-Blot Turbo Transfer machine. To assemble the semi-dry unit a piece of 

filter paper pre-soaked in transfer buffer was placed into the cassette, the equilibrated 

PVDF membrane was placed on top of the filter and air bubbles were removed. The 

gel was then placed onto the membrane followed by a second pre-soaked sheet of 

filter paper. The cassette was closed and placed into the machine. The gel was 

transferred for 30 minutes at 25 volts.  

 

Following the transfer, the PVDF membrane was incubated in blocking solution 

consisting of 1 % powdered milk in high salt tween (HST) buffer (20 mM Tris HCl pH 

7.4; 0.5 M NaCl; 0.5 % Tween 20) overnight at 4 oC, to prevent non-specific binding 

of the antibodies to the membrane proteins. The blocking solution was then removed, 

and membranes were then incubated in primary antibody overnight at 4 oC. The rabbit 

monoclonal antibodies to cytochrome 2D6 and 3A4 were diluted 1:1000 and 2E1 was 

diluted in 1:500 in 1% marvel HST and membranes were incubated in 20 mL of 

antibody solution overnight at 4 oC. Protein samples from all monolayer and spheroid 

models treated with fatty acids, tetracycline and valproate were tested with each 

antibody.  

 

The primary antibody was removed, and membranes were then washed in HST buffer 

3 times for 10 minutes. This was followed by incubation in the secondary antibody, a 

goat anti-rabbit IgG horseradish peroxidase conjugate antibody diluted in 1:3000 in 

blocking solution, for 1 hour at room temperature on an orbital shaker.  

 

The secondary antibody was removed, and the blot membrane was washed again 5 

times for 10 minutes with HST buffer. The membrane was transferred to a Syngene 

GeneGnome detector. A 1.0 mL SuperSignal™ West Pico PLUS Chemiluminescent 

Substrate detection solution was prepared using 500 μL of detection solution 1 and 

500 μL of solution 2. The membrane surface was then covered in the detection solution 

and 5 images were taken at 1-minute intervals. Band intensities were compared using 

ImageJ. 
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2.21 LDH assay 

 

Cell cytotoxicity was evaluated using a commercial Lactate Dehydrogenase (LDH) 

assay which measures LDH leakage from damaged cells. For monolayers 

approximately 20x103 cells were seeded in 96-well adherent plates and incubated for 

24 hours to allow attachment. For spheroids approximately 20x103 cells were also 

seeded in low attachment 96-well plates and grown for 17 days to allow spheroids to 

form. Cells and spheroids were then dosed with the different treatments and incubated 

for a further 24 hours (as described in Section 2.5). After incubation the plates were 

gently shaken to ensure any LDH released from dosed cells into the media, due to 

cytotoxic effects of the treatments, was distributed evenly.  

The LDH positive control powder was reconstituted by adding 100 μL of LDH assay 

buffer and was then aliquoted and stored at -20oC until use. The Water Soluble 

Tetrazolium salt (WST) Substrate Mix was reconstituted in 1.1 mL of ddH2O and mixed 

thoroughly for 10 minutes. To prepare enough reaction mix for 100 assays 200 μL of 

WST Substrate Mix was mixed with 10 mL of LDH assay buffer. 

10 μL of the media from treated cells and spheroids was removed from all wells and 

transferred into a fresh optically clear 96-well plate.  

 

For the assay background control wells were prepared by adding 200 μL of cell culture 

medium to empty wells in triplicate, these wells allowed for the measurement of 

reagent and LDH background absorbance values. The value obtained for the 

background control was then subtracted from all other absorbance readings.  

 

To prepare a positive control for the assay, 30 minutes before the assay was 

conducted 10 μL of cell lysis solution was added to 3 wells containing cells and 

spheroids which had been grown in media only. The cell lysis solution kills the cells 

releasing LDH into the media. After the 30-minute incubation 10 μL of media from 

these positive controls was also added in triplicate to a fresh 96-well plate.  

 

Then 100 μL of LDH Reaction Mix was added to all wells including the background 

controls, the plate was mixed and then incubated for 30 minutes at room temperature. 
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The absorbance of all controls and samples was the read at 450 nm using a plate 

reader.  

 

The data obtained from the plate reader was analysed using the following equation:  

Cytotoxicity (%) = (Test Sample – Low Control) / (High Control – Low Control) X 100 

 

2.22 LIVE/DEAD™ viability 

 

A LIVE/DEAD assay was used to assess viability of the spheroids, the assay is a two-

colour assay used to determine viability of cells based on plasma membrane integrity 

and esterase activity. The LIVE/DEAD assay staining solution contains a mixture of 

two fluorescent dyes that differentially label live and dead cells. The live cell dye labels 

viable cells green, it is membrane permeant and non-fluorescent until ubiquitous 

intracellular esterase removes an ester group producing fluorescence. The dead cell 

dye labels cells with compromised plasma membranes red. It cannot permeate the 

cell membrane and binds to DNA with high affinity. Once bound to the DNA the 

fluorescence increases >30 fold. A modified protocol of the commercially bought 

LIVE/DEAD™ viability assay (Invitrogen, UK) was used. Spheroids were grown for 16 

days and dosed with either fatty acids, tetracycline or valproate and incubated for 24 

hours as described in Section 2.5. 

To create the cell staining solution 5 μL of calcein AM and 20 μL of ethidium 

homodimer-1 were mixed and added to 10 μL of PBS. Following dosing, the culture 

medium was removed from the spheroids and 100 μL of the staining solution was 

added directly to the cells. Cells were then incubated in the staining solution at room 

temperature for 30 minutes. Cells were observed using a Zeiss AxioLab fluorescence 

microscope. The LIVE/DEAD assay was used to visualise cell viable cells; therefore, 

cells viability was not calculated.  
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Chapter Three- Fatty acid-induced model of hepatic steatosis in HepG2 cells
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Chapter 3 

 

3.1 Introduction  

 

In the present study two models of steatosis were created in HepG2 cells (monolayer 

and 3D spheroids) by the administration of fatty acids. Oleic and palmitic acid are the 

most abundant monounsaturated and saturated fatty acids present in the Western diet 

(Ricchi et al., 2009, Lyall et al., 2018, Zeng et al., 2020). Following intestinal 

absorption, both fatty acids are esterified into triglycerides and delivered to the liver in 

lipoproteins (Lyall et al., 2018, Eynaudi et al., 2021). Prolonged exposure to elevated 

levels of both oleic and palmitic acid in the diet are known to induce an increase in 

lipid accumulation in the liver (Ricchi et al., 2009, Lyall et al., 2018, Zeng et al., 2020). 

A similar accumulation of lipids has been demonstrated when both are administered 

to primary hepatocytes and hepatic cell lines. Therefore, it is common for both fatty 

acids to be used in the development of in vitro models of steatosis (Ricchi et al., 2009, 

Lyall et al., 2018, Zeng et al., 2020).  

 

Using the newly created in vitro models, metabolomic and proteomic changes in the 

steatotic cells were investigated.  

 

Many studies have experimented with different ratios and concentrations of oleic and 

palmitic acids varying from 0.5 to 2 mM. However, it has been frequently reported that 

the administration of a combined overall concentration of 0.5 mM oleic/palmitic acid 

(in a 2:1 molar ratio) to HepG2 cells results in significant fat accumulation after 24 

hours (Donato et al., 2009, Cui et al., 2010, Liang et al., 2015, Willebrords et al., 2015, 

Dave et al., 2018).  

 

It has also been widely suggested that the use of a 2:1 combination allows for the 

development of steatosis at a relatively low overall concentration of fatty acids. 

(Moracova et al., 2015, Nemecz et al., 2019). This is of importance since fatty acids 

in excess can be detrimental to cell viability and have been reported to promote ER 

stress and stimulate pro-inflammatory signals resulting in mitochondrial dysfunction 

and ROS (Mazzolini et al., 2020). Since the current study wished to create a model of 



 91 

mild steatosis and avoid cytotoxicity a combination of oleic and palmitic acid at a 2:1 

ratio was chosen. 

 

However, it was important to first determine the optimum dose levels to use since too 

high a dose of fatty acids could result in lipotoxicity and too low a dose could be 

ineffective. Therefore, the first step in this study was to carry out a dose response 

experiment in the HepG2 monolayers to establish the optimal concentration of fatty 

acids that would induce steatosis without causing cytotoxicity. Dose levels of 0.1, 0.25, 

0.5 and 1 mM oleic and palmitic acid (2:1 molar ratio) were evaluated. Steatosis was 

then confirmed using Oil Red O staining and a triglyceride assay. Based on the results 

a low dose capable of inducing early steatosis and a high dose level capable of 

inducing steatosis without cytotoxicity was chosen for the development of the 3D 

spheroid model.  

 

Once the two models were developed the second objective of this study was to identify 

changes in the metabolome of the 2D monolayers and 3D spheroids using NMR 

spectroscopy and multivariate statistical analysis to find potential biomarkers of 

steatosis. Cytochrome P450 changes were also analysed using Western blotting.  

 

The identification of biomarkers for early steatosis is of upmost importance since 

steatosis represents the first stage of NAFLD in humans and can be reversed via a 

change in dietary or lifestyle factors. However, there remains a great need for better 

non-invasive and reliable biomarkers for steatosis since none are currently available 

(Drescher et al., 2019 and Piazolla and Mangia, 2020).   

 

The current study involved the development of both a monolayer and a 3D spheroid 

model of steatosis. Hepatic cell lines express many differentiated hepatic functions, 

such as synthesis and secretion of plasma proteins, cholesterol and triglyceride 

metabolism, bile synthesis and insulin signalling (Donato et al., 2014). However, one 

major limitation associated with the use of monolayer hepatic cell lines is a reduced 

CYP expression when compared to primary hepatocytes. In addition, studies have 

shown that CYP enzyme expression is further downregulated in monolayers after 24 

hours of culturing. Therefore, the rationale for the development of a 3D spheroid model 

in this study is that it is becoming increasingly clear that monolayer cell culture models 
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are inadequate for reflecting the complexity of human tissues due to the loss of liver-

specific functions specifically the expression of phase I and II enzymes (Pingitore et 

al., 2019 and Ingelman-Sundberg and Lauschke, 2021). Meanwhile 3D spheroids 

have been reported to show a higher expression of CYP enzymes when compared to 

2D models (Mizoi et al., 2020, Stampar et al., 2020 and Ingelman-Sundberg and 

Lauschke, 2021). This is a result of heterogeneous cell-to-cell interactions in the 3D 

culture models which offers a similar micro-environment to the in vivo situation. 

Consequently, HepG2 spheroids also display functional bile canaliculi, increased 

albumin expression, drug transporters and xenobiotic receptors that mediate induction 

of CYP450 enzymes (Ramaiahgari et al., 2014). The benefits that 3D culture models 

offer over monolayers has led to growing interest in their use for both disease and 

toxicity studies (Pingitore et al., 2019, Ellero et al., 2021, Balkrishna et al., 2022).  

 

The low CYP expression in monolayers represents a particular limitation for their use 

in in vitro studies since it has been shown that fatty liver disease can affect the 

expression of CYP enzymes with a resulting impact on drug metabolism (Aljomah et 

al., 2015, Woolsey et al., 2015, Jamwal and Barlock, 2020, Sukkasem et al., 2020, 

Albadry et al., 2022). For in vitro models to be reliable for biomarker studies and more 

relevant to humans they must be able to mimic all metabolic pathways.  

 

A decrease in CYP3A4 expression has been commonly reported in NAFLD (Woolsey 

et al., 2015, Jamwal and Barlock, 2020, Albadry et al., 2022). Sukkasem et al (2020) 

also demonstrated down-regulated CYP3A4 in HepG2 cells in response to treatment 

with oleic acid, while in the same paper the administration of palmitic acid reduced the 

expression of CYP3A4 and 2D6 due to reduced mRNA expression. It has also been 

reported that CYP2E1 is downregulated in NALFD patients in terms of protein and 

mRNA expression (Albadry et al., 2022). 

 

However, other studies reported upregulated activity and expression of CYP2E1 in 

NAFLD in mice (Woolsey et al., 2015, Jamwal and Barlock, 2020, Albadry et al., 2022). 

Increased hepatic metabolic substrates such as fatty acids and mitochondrial 

dysfunction can initiate the expression of CYP2E1. High concentrations of ketone 

bodies produced from excessive beta-oxidation can also increases CYP2E1 activity 

and expression (Wang et al., 2021). It is thought that CYP2E1 contributes to oxidative 
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stress through the production of ROS (Massart et al., 2013, Wang et al., 2021, Di 

Pasqua et al., 2022). CYP2E1-mediated hydroxylation of some fatty acids can 

generate cytotoxic lipid intermediates which can further increase ROS production (Bell 

et al., 2010, Aubert et al., 2011, Wang et al., 2021). The administration of oleic and 

palmitic acid has been shown to increase levels of CYP2E1 genes in rodents, human 

hepatocytes and differentiated human cells leading to ER and mitochondrial 

impairment (Sung et al., 2004, Sukkasem et al., 2020).  

 

The majority of studies assessing CYPs in NAFLD or steatosis models have been 

conducted in monolayers but there is little known about alterations to CYP enzyme 

expression in 3D spheroid models. Consequently, the third objective of this study was 

to analyse and compare CYP expression between the monolayer and 3D models and 

to evaluate any dose related changes following the administration of fatty acids. CYP 

expression was evaluated in 2D monolayers and 3D spheroids using Western blotting 

for CYP antibodies.  

 

 

3.2 Fatty acid study design 
 

Monolayer HepG2 cells were plated in 6-well plates. A dose response study was 

carried out by administrating a mixture of 2:1 oleic and palmitic acid at dose levels of 

0.1, 0.25, 0.5 and 1.0 mM to HepG2 cells followed by a 24-hour incubation. Six 

replicates were used for each dose level.  

 

For the 3D spheroid model, the HepG2 cells were plated in low attachment 6-well 

plates and grown for 17 days before being dosed with fatty acids at concentrations of 

0, 0.1 and 0.5 mM.  
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3.3 Results 

 

3.3.1 Cell viability and cytotoxicity in monolayers  

 

In this study HepG2 cell viability in response to the increasing doses of fatty acid was 

assessed using an MTS assay as described in Section 2.6. Cytotoxicity was also 

assessed using the lactate dehydrogenase (LDH) assay as described in Section 2.21.  

 

The MTS assay results, shown in Figure 3.1, revealed no significant difference in 

HepG2 cell viability compared to the ethanol control at dose levels of 0.1 and 0.25 mM 

oleic and palmitic acid. However, when cells were dosed at 0.5 - and 1 -mM cell 

viability was decreased significantly (p<0.01 and 0.001, respectively) relative to the 

ethanol control. At the highest dose level cell viability had fallen to 56% compared to 

the control viability of 100%. 

 

In the same study the LDH assay (Figure 3.2) results demonstrated no statistically 

significant increase in cell death at the lower dose levels (0.1, 0.25 and 0.5 mM) when 

compared to the ethanol control. At 1 mM dose level cell death was approximately 7% 

greater than the ethanol control values (p<0.01). However, this was not considered 

significant when compared to the positive control. Therefore, it was decided that this 

dose level would be acceptable for future studies.   
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Figure 3.1 HepG2 cell viability in response to increasing fatty acid concentration as assessed by MTS 
assay. HepG2 cells were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 
(ethanol control), 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours as described in Section 2.5.1. 
The values shown represent the mean of six replicates. The MTS assay was carried out as described 
in Section 2.6. Error bars represent standard deviation. Statistically significant differences compared to 
the ethanol control were analysed using Kruskal Wallis (**<0.01, ***<0.001). 

 

 

 
Figure 3.2 HepG2 cell death in response to increasing fatty acid concentration assessed by LDH assay. 
HepG2 cells were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 (ethanol 
control), 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours as described in Section 2.5.1. The value 
obtained for the positive control represents 100% cell death. The values shown represent the mean of 
six replicates. The LDH assay was carried out as described in Section 2.21. Error bars represent 
standard deviation. Statistically significant differences compared to the ethanol control were analysed 
using Kruskal Wallis (**<0.01). 
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3.3.2 Oil Red O staining of HepG2 cells  

 

In this study to confirm that the exposure of HepG2 cell to fatty acids lead to an 

increase in intracellular lipid accumulation and to determine if there was a dose-related 

response, the cells were stained with Oil Red O stain. The Oil Red O reagent stains 

intracellular lipids red, therefore fat accumulation becomes clearly visible under a light 

microscope. 

 

The images obtained under the light microscope (Figures 3.3 C-F) suggested a dose 

dependent increase in lipid accumulation in the fatty acid treated cells. This was 

observed as an increase in the number, size and intensity of red stained clusters in 

the dosed cells compared to the control, thus indicating greater stain uptake by these 

cells as a result of increased lipid accumulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3 Light microscope images obtained of HepG2 cells stained with Oil Red O following treatment 
with fatty acids. Cells were dosed with a 2:1 mixture of oleic and palmitic acid at final concentrations of 
0, 0.1, 0.25, 0.5 and 1 mM followed by a 24-hour incubation, cells incubated in media only or media 
dosed with ethanol (negative controls) were also included. Cells were stained using Oil Red O as 
described in Section 2.7. A. media only control, B. ethanol control, C. 0.1 mM, D. 0.25 mM, E. 0.5 mM 
and F. 1.0 mM fatty acids. The arrows indicate increased red stain uptake to lipid accumulation.  
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3.3.3 Triglyceride assay in the monolayer 

 

While the Oil Red O staining offered a visual confirmation of the increase in triglyceride 

accumulation within the cells, it was not possible to quantify how much was present. 

Therefore, HepG2 cells treated with fatty acids at the different dose levels were lysed, 

as described in Section 2.8, and cell extracts were collected for the quantification of 

cellular lipids using a commercial triglyceride assay. The results showed an increase 

in triglyceride content in the cells collected from treated groups when compared to the 

ethanol control (Figure 3.4). This increase was statistically significant in the 0.25 

(p<0.05), 0.5 (p<0.01) and 1 mM (p<0.001) sample groups when compared to the 

ethanol control. This would suggest that steatosis has been induced at 0.25 mM and 

higher.  

 

 

 
Figure 3.4 Mean triglyceride content in HepG2 cells following treatment with fatty acids. HepG2 cells 
were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 (ethanol control), 0.1, 
0.25, 0.5 and 1 mM and incubated for 24 hours. A triglyceride assay was conducted as described in 
Section 2.8. The values shown represent the mean of six replicates. Error bars represent standard 
deviation. Statistically significant differences between treatment groups and controls were analysed 
using Kruskal Wallis (*<0.05, **<0.01, ***<0.001). 
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3.3.4 Metabolomic analysis in aqueous monolayers cell extracts 

 

In this study HepG2 cell extract samples were also collected following a 24-hour 

incubation in culture media supplemented with fatty acids at different dose levels for 

NMR analysis. Aqueous extracts were prepared, analysed by NMR and multivariate 

analysis was used to determine changes in the metabolite profile in response to the 

fatty acids.  

 

Visual inspection of the 1H NMR spectra did not reveal obvious differences between 

spectra of samples from fatty acid treated cells and controls. Therefore, multivariate 

analysis was employed to statistically analyse metabolomic changes between the 

different groups. PCA, an unsupervised method of analysis, was firstly carried out and 

a PCA model was constructed using the NMR data from the aqueous cell extracts. 

The scores plot obtained (Figure 3.5) revealed some degree of separation between 

the different sample groups. All of the control samples, except for sample C1 were 

located in the top half of the scores plot, mostly in the upper right quadrant, and were 

therefore positive for PC2. There was large intragroup variation and one of the control 

samples, C5, was just outside the ellipse. To examine this sample further and to 

determine if it was a true outlier the Hotelling’s plot was consulted. It was confirmed 

from the Hotelling’s plot (Figure 3.6) that this sample fell just above the 95% 

confidence level but was below the 99 percentile. In this project only those samples 

that were above the 99% confidence level are considered to be outliers and excluded 

from analysis. Therefore, the spectrum for sample C5 was not deemed to be a true 

outlier and was thus included in all future analyses. 

 

In the scores plot (Figure 3.5) the aqueous extracts from cells treated with 0.25 and 

0.5 mM fatty acids were found on the left side of the plot, negative for PC1 but with 

some overlap between the two groups. Meanwhile the samples from cells treated at 

0.1 mM were all in the lower right quadrant, while the 1 mM samples were positive for 

PC2 with the exception of sample 1(6).  
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Figure 3.5 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 cells dosed 
with fatty acids at increasing dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic acid 
at 0, 0.1, 0.25. 0.5 and 1 mM and incubated for 24 hours. Aqueous cell extract samples were collected, 
and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the plot represents 
one sample. Grey = ethanol control; pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM; red = 1.0 
mM fatty acids.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Hotelling’s T2 plot created from PCA scores plot in Figure 3.5. Samples above the red line 
of the 99% confidence level are considered to be true outliers. Sample C5 is circled in red.  

 

As the PCA model did not show distinct sample group separation between the treated 

and control groups along with much intragroup variation, the sample spectra were 

further analysed using OPLS. This is a supervised statistical approach, used to 

visualise inter- and intra-group variation based on sample class differences. The 

OPLS scores plot obtained for this model is shown in Figure 3.7. In general, there was 

better sample group separation than in the PCA scores plot with sample groups spread 

along the horizontal predictive t[1] axis according to class. The control samples were 

located on the left of the plot but showed significant intragroup variation along the 

orthogonal t[0] axis. Despite this, there was good clustering within the 0.1 mM treated 

group, and samples in this group were separate from the controls and found on the 
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lower left quadrant of the plot. Similar to the results seen in the PCA plot there 

remained some overlap between the 0.25 and 0.5 mM sample groups. This was mostly 

due to samples 0.5(2) and 0.25(6) being located close together on the scores plot. 

However, it was still possible to visualise separation between the two groups with 

samples from the 0.25 mM treated group mostly clustered around the centre of the 

scores plot while the 0.5 mM were located in the top right-hand corner. The 1 mM 

treated samples were found on the right lower quadrant of the plot and positive for t[1] 

separated from all other groups.  

 

 
Figure 3.7 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells 
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and 
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and 
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = ethanol control; pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM; 
red = 1.0 mM fatty acids.  

 

Following OPLS analysis each treated group was then compared directly against the 

control group using OPLS-DA analyses to identify changes in metabolites due to the 

treatment with fatty acids at each of the different dose levels. Consecutive dose level 

groups were also analysed using OPLS-DA to identify dose-related metabolite 

changes.  

 

Each of the OPLS-DA scores plots constructed (Figure 3.8) demonstrated good 

separation between the ethanol control and the treated groups for each pair-wise 

comparison along the t[1] predictive axis. In all plots, the control sample group was 

located on the left side of the plot. Additionally, similar to the results obtained from the 

PCA and OPLS analyses there was significant intragroup variation along the 
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orthogonal t[0] axis for samples from the control group mainly due to control sample 1 

(C1). 

 

 

 

 

 

C 

A 

B 



 102 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3.8 OPLS-DA scores plots derived from 1H NMR spectra of aqueous extracts from HepG2 cells 
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic 
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected, and 
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 mM fatty acid. C. Control vs 
0.5 mM fatty acid. D. Control vs 1.0 mM fatty acid.  

 

The OPLS-DA scores plots shown in Figure 3.9 demonstrated good separation 

between the consecutive dose level groups along the predictive t[1] axis. In each plot 

the lowest dose level group was set as class one in the pair-wise comparison and was 

located on the left-hand side of the scores plot. Significant intragroup variation was 

observed along the orthogonal t[0] axis particularly for the 0.1, 0.5 and 1 mM treated 

groups.  

  

D 
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Figure 3.9 OPLS-DA scores plots derived from 1H NMR spectra of aqueous extracts from HepG2 cells 
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic 
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected, and 
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5 vs 1 mM. Pink = 0.1 mM, 
green = 0.25 mM, dark blue = 0.5 mM and red = 1.0 mM fatty acids.  

 

Using the OPLS-DA models VIP predictive and S-plots (Figures 3.10 and 3.12) were 

generated to determine the metabolite regions in the NMR spectra that contributed 

most to the separation of the two groups in each pair-wise comparative scores plots. 

The VIP plots revealed NMR regions that were statistically significant and the regions 

A 

B 

C 



 104 

with a VIP value greater than one are highlighted in red in both the VIP and S-plots. 

The S-plots were then used to confirm whether peaks within these specific NMR 

variable regions had increased or decreased between the two groups being 

compared. VIP and S-plots were also constructed for consecutive dose levels and are 

shown in Figures 3.11 and 3.13.  

 

Following this, the integrated spectral values were evaluated using a Kruskal-Wallis 

test to determine if any of the metabolite regions highlighted in the VIP were 

statistically significant between the groups in the pair-wise comparisons. 
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Figure 3.10 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts 
from HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic 
acid at 0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected, and NMR analysis 
was carried out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs 
0.25 mM fatty acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM fatty acid. Variables with 
a VIPpred value above 1 were selected as significant and are highlighted in red. Variable regions are 
shown along the x-axis. 

  

D 
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Figure 3.11 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts 
from HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic 
acid at 0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected, and NMR analysis 
was carried out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 
0.5 vs 1 mM fatty acids. Variables with a VIPpred value above 1 were selected as significant and are 
highlighted in red. Variable regions are shown along the x-axis. 
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Figure 3.12 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 
0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected, and NMR analysis was 
carried out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 
mM fatty acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM fatty acid.  

  

D 
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Figure 3.13 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 
0.1, 0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected, and NMR analysis was 
carried out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5 
vs 1 mM fatty acids.  

 

NMR regions that were confirmed as being statistically different were recorded and 

the NMR spectra was closely examined to identify multiplicities of the peaks in these 

regions to aid with the identification of metabolites. Following identification of peaks 

using the Human Metabolome database, it was clear that there were a number of 
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metabolite changes including an increase (p<0.001) in peaks that were thought to 

belong to alanine and betaine in the extracts from fatty acid treated cells. There also 

appeared to be decreases in methylacetate (p<0.01) and lactate (p<0.05). Peaks for 

phosphocholine, creatine and serine were all increased in the 0.1, 0.25 and 0.5 mM 

treated groups but not in the 1 mM treated group.  
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Table 3.1 Chemical shift regions, and potential metabolites, identified as significantly different in the 
NMR of aqueous extracts from HepG2 cells treated with increasing concentrations of fatty acids when 
compared to control.  

1H shift ppm Metabolite 
aqueous 

Ctrl 
vs 

0.1m
M 

Ctrl 
vs 

0.25
mM 

Ctrl 
vs 

0.5m
M 

Ctrl 
vs 

1mM 

0.1 
vs 

0.25
mM 

0.25 
vs 

0.5m
M 

0.5 
vs 

1mM 

0.891-0.992(m) Leucine - ↑ 
 

↑** 
 

↑ 
 

↑ 
 

↑ 
 

- 

1.031-1.062(d) Isoleucine - ↑** 
 

- - ↑ 
 

- - 

1.31-1.35(d) Lactate  ↓* ↓ 
 

↓ 
 

↓ - ↑ 
 

- 

1.467-1.501(d) Alanine  ↑ 
 

↑*** 
 

↑*** 
 

↑ 
 

↑ 
 

- ↑ 
 

1.9-1.93(s) Acetate  ↓ 
 

- - -  - ↑ 
 

↑ 
 

2.013-2.18(m) Glutamate,  
Homocysteine 

↓* 
 

- 
 

- 
 

↑ 
 

↑* 
 

↑ 
 

↑* 
 

2.335-2.345(t of 
d) 

Glutamate, B-
hydroxybutyrate, 

Proline 

↓ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

2.415-2.429(s) Succinate  - 
 

↑ 
 

↑** 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

2.44-2.48(m) Glutamate ↓ 
 

↑ 
 

↑* 
 

- ↑ 
 

↑ 
 

↑ 
 

2.72-2.74(s) Dimethylamine  ↓ 
 

- - 
 

↓ 
 

↑ 
 

- ↑** 
 

2.81-2.824(s) Aspartate  - ↑ 
 

↑* 
 

↑ 
 

↑ 
 

- ↑ 
 

3.028(d) 3.03-
3.055(s) 

Creatine, 
Phosphocreatine, 

Creatinine  

↑ 
 

↑** 
 

↑ 
 

- ↑ 
 

- ↑ 
 

3.143-3.1607(s) Choline ↓ 
 

- - ↓ 
 

- ↑ 
 

↑ 
 

3.216-3.2301(s) Phosphocholine ↑ 
 

↑ 
 

↑ 
 

- - 
 

- ↑ 
 

3.255-3.265(s) Betaine, TMAO ↑* 
 

↑** 
 

↑ 
 

↑ 
 

↑ 
 

- ↑ 
 

3.535-3.55(d) Choline - ↑ 
 

↑ 
 

- ↑ 
 

- ↑ 
 

3.619-3.628(s) Glycine  - ↑ 
 

- - ↑ 
 

- ↑ 
* 

3.699-3.711(s) Methylacetate ↓** 
 

↓ 
 

↓ 
 

- ↑ 
 

↑ 
 

↑ 
 

3.73-3.749(s) Citrulline  ↓ 
 

- - ↓ 
 

↑ 
 

↑ 
 

↑ 
 

3.94-3.955(m) Serine ↑ 
 

↑** 
 

↑ 
 

- ↑ 
 

↓ 
 

↑ 
 

4.09-4.125(d) Proline ↑ 
 

↑** 
 

↑* 
 

↑ 
 

- - - 

4.173-4.199(d) Phosphocholine  ↑ 
 

↑ 
 

↑** 
 

- - - ↑ 
 

4.26-4.275(m) Threonine  - ↑ ↑ - ↑ ↑ ↑** 
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5.22-5.245(d) Glucose  - - ↑** 
 

↑ 
 

- ↑ 
 

- 

8.45-8.469(s) Formate  ↓ 
 

- - ↓ 
 

- - - 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001) 
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3.3.5 Metabolomic analysis in organic monolayers cell extracts 
 

The NMR spectra of organic cell extracts from HepG2 cells dosed with a 2:1 mixture 

of oleic and palmitic acid at 0, 0.1, 0.25, 0.5 and 1.0 mM in this study were also 

obtained and further analysed using multivariate analysis.  

 

From a visual inspection of the NMR spectra no differences between the control and 

the treated groups could be observed. Therefore, a PCA scores plot was constructed 

(Figure 3.14A). However, some samples, 0.5(4), 1(1) and 1(2), fell outside the 95% 

ellipse in the initial scores plot. The spectra for these samples were examined and re-

processed to rule out experimental or analytical error. Nevertheless, analysis of the 

Hotelling’s T2 plot shown in Figure 3.14B confirmed that sample 0.5(4) was above the 

99 % confidence level and this sample was therefore excluded from further analysis. 

Samples 1(1) and 1(2) were found to be between the 95 % and 99 % confidence level 

and were not deemed to be true outliers meaning they were included in all further 

analyses.  

 

After the removal of sample 0.5(4), a second PCA model was created, and the 

resulting PCA scores plot is shown in Figure 3.15. The figure shows the control 

samples were all negative for PC2 whereas the majority of the treated samples were 

positive for PC2, thus indicating a difference between the control and treated groups. 

Some separation can be seen between the 0.1, 0.25 and 0.5 mM sample groups but 

they are not distinctly separated from each other. Meanwhile the 1.0 mM samples 

were spread across the left-hand side of the PC1 axis showing great intragroup 

variation. Samples 1(1) and 1(2) were still located just outside the ellipse and were re-

checked and remained between the 95 % and 99 % confidence level.  
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Figure 3.14 PCA scores and Hotelling’s plot derived from 1H NMR spectra of organic extracts from 
HepG2 cells dosed with fatty acids at various dose levels. A. PCA scores plot with no samples excluded. 
B. Hotelling’s T2 plot created from PCA scores plots showing samples outside the 95 and 99% 
confidence levels. Cells were dosed with a 2:1 mixture of oleic and palmitic acid at 0, 0.1, 0.25. 0.5 and 
1 mM and incubated for 24 hours. Samples were collected, and NMR analysis carried out as described 
in Sections 2.10 and 2.12. Each spot on the scores plot represent one sample. Grey = Ethanol control; 
pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM; red = 1.0 mM.  In the Hotelling’s plot (B) samples 
above the red line of the 99% confidence level are considered to be outliers. 

 
 
 
 
 

A 
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Figure 3.15 PCA scores plot derived from 1H NMR spectra of organic extracts from HepG2 cells dosed 
with fatty acids at various dose levels. PCA scores plot with sample 0.5 (4) excluded. Cells were dosed 
with a 2:1 mixture of oleic and palmitic acid at 0, 0.1, 0.25. 0.5 and 1mM and incubated for 24 hours. 
Samples were collected, and NMR analysis carried out as described in Sections 2.10 and 2.12. Each 
spot on the scores plots represents one sample. Grey = Ethanol control; pink = 0.1 mM; green = 0.25 
mM; dark blue = 0.5 mM; red =1.0 mM.  

 

Since the second PCA scores plot (Figure 3.15) did not show definitive separation 

between the 0.1, 0.25 and 0.5 mM treated groups a OPLS analysis was conducted. 

The resulting OPLS scores plot (Figure 3.16) demonstrates clear separation of the 

control and 1 mM samples from all other groups with the control group negative for 

t[1] while the 1 mM samples were positive for t[1]. However, large intragroup variation 

along the t[0] axis was evident for samples in each of these two groups. The remaining 

sample groups (0.1, 0.25 and 0.5 mM) were clustered together in the lower half of the 

scores plot, fairly close to the centre of the plot. There was clear separation between 

the 0.1 and 0.5 mM samples, however the 0.25 mM samples overlap both of these 

groups.  
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Figure 3.16 OPLS scores plot derived from 1H NMR spectra of organic cell extracts from HepG2 cells 
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid: 
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and 
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = Ethanol control; pink = 0.1 mM; green = 0.25 mM; dark blue = 0.5 mM; 
red = 1.0 mM fatty acids.  

 

Following OPLS analysis all treated groups were compared against the control group 

using OPLS-DA. In all OPLS-DA scores plots (Figure 3.17) the control and the treated 

groups were separated along the t[1] axis. Orthogonal variation within the groups 

along the t[0] axis were also apparent for all sample groups, particularly the control 

groups. This reflects similar intragroup variation seen in the PCA and OPLS models 

(Figures 3.15 and 3.16). For example, in the 1 mM treated group sample numbers 1,2, 

and 3 are separated from the other samples within the group in the PCA and OPLS 

scores plots with samples 1 and 2 outside the ellipse and this is clearly visible in the 

OPLS-DA plots.   

 

 

 

A 
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Figure 3.17 OPLS-DA scores plots derived from 1H NMR spectra of organic extracts from HepG2 cells 
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic 
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected and 
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 mM fatty acid. C. Control vs 
0.5 mM fatty acid and D. Control vs 1.0 mM fatty acid. Grey = Ethanol control; pink = 0.1 mM, green = 
0.25 mM, dark blue = 0.5 mM and red = 1.0 mM fatty acids.  

 

Consecutive dose levels were also analysed using OPLS-DA analysis. In all OPLS-

DA scores plots (Figure 3.18) the two groups being compared were separated along 

the t[1].  
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Figure 3.18 OPLS-DA scores plots derived from 1H NMR spectra of organic extracts from HepG2 cells 
dosed with fatty acids at varying dose levels. Cells were dosed with a 2:1 mixture of oleic and palmitic 
acid at 0, 0.1, 0.25, 0.5 and 1 mM fatty acids and incubated for 24 hours. Samples were collected and 
NMR analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5 vs 1 mM. Grey = Ethanol 
control; pink = 0.1 mM, green = 0.25 mM, dark blue = 0.5 mM and red = 1.0 mM fatty acids.  

 

Following the analysis of the OPLS-DA models VIP predictive and S-plots were 

generated to determine the metabolite regions contributing most to the separation of 

the groups in the pair-wise comparison scores plots. Variable regions with a VIP value 

greater than one were highlighted and are shown in red in both plots. Figures 3.19 and 

A
  

B 

C 
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3.21 show changes in control versus treated groups while Figures 3.20 and 3.22 

represent comparison between consecutive dose groups.  

 

Regions of interest according to the VIP list were selected for a Kruskal Wallis analysis 

to test for statistical significance. The characteristics of the NMR peaks in these 

regions were then determined to enable identification of metabolites and compounds 

responsible for these peaks. Table 3.2 shows the identified compounds. 
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Figure 3.19 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts from 
HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid 
at 0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected and NMR analysis 
was carried out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs 
0.25 mM fatty acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM. Variables with a VIPpred 
value above 1 were selected as significant and are highlighted in red. Variable regions are shown along 
the x-axis. 

 

 

 

B 
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Figure 3.20 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts from 
HepG2 cells treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid 
at 0, 0.1, 0.25, 0.5 and 1 mM and incubated for 24 hour. Samples were collected and NMR analysis 
was carried out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 
0.5 vs 1 mM. fatty acid. Variables with a VIPpred value above 1 were selected as significant and are 
highlighted in red. Variable regions are shown along the x-axis. 
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Figure 3.21 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 cells 
treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1, 
0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried 
out as described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acid. B. Control vs 0.25 mM fatty 
acid. C. Control vs 0.5 mM fatty acid and D. Control vs 1.0 mM.  
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Figure 3.22 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 cells 
treated with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1, 
0.25, 0.5 and 1 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried 
out as described in Sections 2.10 and 2.12. A. 0.1 vs 0.25 mM. B. 0.25 vs 0.5 mM and C. 0.5 vs 1 mM 
fatty acid. 

 

According to the Kruskal Wallis test there were no significant increases between these 

data sets. However significant decreases (p<0.01) in peaks responsible for fatty acyl 

groups and cholesterol (p<0.05) were observed in the 1 mM treated group when 

compared to the ethanol control. Some dose related responses could be seen 

between the treated and control groups, particularly in acyl groups in triglycerides 

which showed a decrease in the 0.1 and 0.25 mM treated groups and increases in the 

0.5 and 1 mM groups.  
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Table 3.2 Chemical shift regions identified as significantly different in the organic extracts of HepG2 
cells treated with different concentrations of fatty acids as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

1H shift ppm Metabolite 
organic 

Ctrl 
vs 

0.1m
M 

Ctrl 
vs 

0.25
mM 

Ctrl 
vs 

0.5m
M 

Ctrl 
vs 

1mM 

0.1 vs 
0.25
mM 

0.25 
vs 

0.5m
M 

0.5 vs 
1mM 

0.806-
0.937(m) 

Fatty acyl groups 
and Fatty acids  

↑ 
 

- ↓ 
 

↓** 
 

↓ 
 

↓ 
 

↓ 
 

1.05-1.13(m) Cholesterol ↓ 
 

- - - ↓ 
 

↓ 
 

↓ 
 

1.221-
1.305(s) 

Cholesterol ↑ 
 

- ↓ 
 

↓* 
 

↓ 
 

↓ 
 

↓ 
 

1.54-1.62(s) Arachidonic acid 
(ARA) 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↓ 
 

↑ 
 

↓ 
 

1.702-
1.724(s) 

Fatty acids 
Eicosapentaenoic 

acid (EPA) 

- ↓ 
 

↓* 
 

↓*** 
 

 
↓ 

 

↓ 
 

↓ 
 

2.008-
2.062(q) 

Oleic acid  ↓ 
 

↓ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

2.31-
2.365(m) 

Acyl groups in 
triglycerides 

↓ 
 

↓ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

4.145-
4.203(dd) 

Glyceryl group in 
monoglyceride 

- - - ↑ 
 

↑ 
 

↑ 
 

↑ 
 

4.294-
4.349(dd) 

Glyceryl group in 
Triglycerides 

- - - ↑ 
 

- ↑ 
 

↑ 
 

5.266-
5.322(m) 

Oleic acid  - - - ↑ 
 

- - - 

5.338-
5.433(m) 

Fatty acids 
/Monounsaturate

d fatty acids 
(MUFA) 

↓ 
 

- - ↑ 
 

↑ 
 

↑ 
 

↑ 
 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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3.3.6 CYP enzyme expression levels in monolayer HepG2 cells dosed with fatty 
acids.  
 

CYP expression in protein extracts from the HepG2 monolayers dosed with a 2:1 

mixture of oleic and palmitic acid at different dose levels were analysed using Western 

blotting, as described in Section 2.20. A standard protein marker was used for all 

Western blots which aided the identification of target proteins (Appendix Figure 8.1). 

For all blots, the level constituent cell protein beta actin (Figure 3.23A) was used to 

ensure equal loading of different cell samples. Figures 3.23 B, C and D showed 

CYP2D6, CYP 3A4 and CYP2E1 expression levels, respectively at the different fatty 

acid concentrations. In this study the results showed no real trend for any of the CYP 

at the different dose levels. However, as N=1 in this study further experimentation is 

needed. Despite this, it is worth pointing out that all CYPs were detected in the 

monolayers. 

 

 
Figure 3.23 Western blot analysis of CYP enzyme expression in HepG2 monolayers dosed with fatty 
acids. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Cells were dosed with a combination 
of oleic and palmitic acid at varying concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were 
collected as described in Section 2.16. Western blotting was carried out as described in Section 2.20. 
EC: Ethanol control, 0.1 mM, 0.25 mM, 0.5 mM and 1 mM fatty acids. 
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Table 3.3 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 
monolayers dosed with fatty acids relative to the ethanol control. Cells were dosed with a combination 
of oleic and palmitic acid at varying concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were 
collected as described in Section 2.16.  

Fatty acid concentration (mM) CYP2D6 CYP3A4 CYP2E1 

Ethanol control 8866.73 19733.31 3437.28 

0.1 8006.25 33595.34 3877.83 

0.25 12146.08 17037.36 3102.69 

0.5 5816.64 14519.87 4515.52 

1 5650.5 7522.39 2844.05 
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3.3.7 3D spheroid model dosed with fatty acids  
 

As mentioned in Section 3.1 this study was interested in the development of a 3D 

spheroid model of steatosis. HepG2 spheroids were grown for 17 days and dosed with 

a 2:1 mixture of oleic and palmitic acid at dose levels of 0.5 and 0.1 mM fatty acids to 

analyse changes in the metabolome and proteome when compared to control. Dose 

levels were chosen based on the results of the viability (Section 3.3.1) and triglyceride 

assays (Section 3.3.3) as conducted in the monolayers. The low dose chosen as 0.1 

mM despite a lack of significance in the monolayer since spheroids are considered to 

be more sensitive to toxicants. The high dose was chosen as 0.5 mM to avoid any 

cytotoxicity.  

 

 

3.3.8 Scanning electron microscopy of HepG2 spheroids 
 

To confirm the formation of spheroids cell cultures were visualised using scanning 

electron microscopy. Figure 3.24 shows the scanning electron microscopy image of 

cultures following incubation after 14 days and confirms the presence of spheroids.  

 

 
 

Figure 3.24 Scanning electron microscopy images following 14 days of culture. Spheroids were grown 
in low attachment 6-well plates as described in Section 2.3 and images were taken on day 14 of culture. 
A. x100 magnification, B, C and D. x500 magnification.  

 

A B 

C D 
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3.3.9 Cytotoxicity assay for spheroids dosed with fatty acid  
 

A LIVE/DEAD assay was used to visualise viable cells in the spheroids following 

dosing with fatty acids at both 0.1 and 0.5 mM after 17 days of growth. The LIVE/DEAD 

assay stains viable cells green and non-viable cells red as described in Section 2.22. 

Figure 3.25 shows the confocal microscope images of control and fatty acid-treated 

spheroids. No red cells were apparent in either control of fatty acid-treated spheroids 

confirming that dosing spheroids with 0.1 and 0.5mM fatty acids (Figure 3.25 B and 

C) did not cause cell death.  

 

 
 
Figure 3.25 Images taken from the LIVE/DEAD assay of spheroids dosed with fatty acids. Spheroids 
were grown in low attachment 6-well plates as described in Section 2.3 and dosed with a 2:1 
combination of oleic and palmitic acid at concentrations of 0 (ethanol control), 0.1 and 0.5 mM. The 
LIVE/DEAD assay was carried out as described in Section 2.22. A. Ethanol control, B. 0.1 mM fatty 
acids and C. 0.5 mM fatty acids. 

 

An LDH assay was carried out to determine whether the administration of fatty acids 

caused LDH leakage from spheroids into the media due to cytotoxicity. Figure 3.26 

confirms that dosing spheroids with fatty acids at both 0.1 and 0.5 mM did not cause 

cell death when compared to the ethanol control. The percentage cytotoxicity for the 

spheroids treated with 0.1 mM fatty acid was 0.11% while the control and 0.5 mM fatty 

acid-treated spheroids showed 0% cytotoxicity.  
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Figure 3.26 HepG2 spheroid cell death in response to increasing fatty acid concentration assessed by 
LDH assay. HepG2 spheroids were treated with a 2:1 mixture of oleic and palmitic acid at 
concentrations of 0, 0.1 and 0.5 mM and incubated for 24 hours as described in Section 2.5.1. The 
value obtained for the positive control represents 100% cell death. The LDH assay was carried out as 
described in Section 2.21. The values shown represent the mean of six replicates. Error bars represent 
standard deviation.  

 

 

3.3.10 Triglyceride accumulation in spheroids dosed with fatty acids 
 

Lipid accumulation was assessed in HepG2 spheroids in this study using a commercial 

triglyceride assay kit. The results shown in Figure 3.27 revealed no difference in 

triglyceride accumulation between the control and 0.1 mM fatty acid-treated groups 

(30.4 and 29 μg, respectively). However, there was a significant increase (p>0.05) to 

48 μg in the 0.5 mM fatty acid-treated group.  
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Figure 3.27 Mean triglyceride content in HepG2 spheroids following treatment with fatty acids. HepG2 
cells were treated with a 2:1 mixture of oleic and palmitic acid at concentrations of 0 (ethanol control), 
0.1 and 0.5 mM fatty acids and incubated for 24 hours. The triglyceride assay was carried out as 
described in Section 2.8. The values shown represent the mean of six replicates. Error bars represent 
standard deviation. Statistically significant differences were analysed using Kruskal-Wallis (*<0.05). 

 

 

3.3.11 Metabolomic analysis of aqueous spheroid extracts 

 

HepG2 spheroid sample extracts were collected following a 24-hour incubation in 

culture media supplemented with fatty acids two different dose levels (0.1 and 0.5 

mM). Aqueous extracts were prepared and analysed by NMR as described in Section 

2.11. Multivariate analysis was then used to determine changes in the metabolite 

profile of spheroids in response to fatty acids.  

 

Visible inspection of NMR spectra obtained from aqueous spheroid extracts did not 

show any differences between treated groups and the control group (data not shown). 

Therefore, a PCA scores plot was constructed to identify differences between the 

groups, as shown in Figure 3.28. The scores plot demonstrates separation between 

the different sample groups with all the control samples positive for PC2 and in the 

upper half of the plot while the majority of the treated samples were negative. 

However, large intragroup separation can be seen with samples from all groups 

spread across the PC1 axis.  
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Figure 3.28 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 spheroids 
dosed with a 2:1 mixture of oleic and palmitic acid at different dose levels (0, 0.1 and 0.5 mM). Spheroids 
were dosed with 0, 0.1 and 0.5 mM fatty acids and incubated for 24 hours. Samples were collected and 
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. 
Grey = Ethanol control; blue = 0.1 mM; red = 0.5 mM.   

 

Following on from the PCA analysis the NMR data was further analysed using OPLS 

analysis. The scores plot obtained, shown in Figure 3.29, revealed better inter-group 

separation than the PCA model. The majority of the treated samples were positive 

along the predictive t[1] axis. Some intragroup variation can be seen for all treated 

groups along the orthogonal t[0] axis with samples 0.1 mM (2 and 5) and 0.5 mM (4 

and 5) being negative for t[0] while the remainder of their respective groups were 

positive. Large intragroup separation was also observed in the ethanol control group 

which has 3 samples positive for t[0] and 3 that are negative.   

 

 
Figure 3.29 OPLS scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 spheroids 
dosed with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1 and 
0.5 mM. Spheroids were dosed with 0, 0.1 and 0.5 mM fatty acids and incubated for 24 hours. Samples 
were collected and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot 
represents one sample. Grey = Ethanol only control; blue = 0.1 mM; red = 0.5 mM.   
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Further analysis of the NMR spectra in this study included the generation of OPLS-DA 

scores plots to carry out pair-wise comparisons of the control group versus the two 

treated groups as well as a direct comparison of the two treated groups. All OPLS-DA 

scores plots generated showed clear separation between the sample groups being 

compared along the t[1] axis (Figures 3.30) but orthogonal separation within each 

group was also visible along the t[0] axis in each plot.  

 

 

 

 
Figure 3.30 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2 
spheroids dosed with a 2:1 mixture of oleic and palmitic acid at varying dose levels. Spheroids were 
dosed with a combination of oleic and palmitic acid at 0, 0.1 and 0.5 and incubated for 24 hours. 
Samples were collected, and NMR analysis was carried out as described in Sections 2.10 and 2.12. 

A 
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Each spot on the scores plot represents one sample. A. Control vs 0.1 mM fatty acids. B. Control vs 
0.5 mM fatty acids. C. 0.1 vs 0.5 mM.   

 

Using the OPLS-DA models VIP predictive and S-plots (Figures 3.31 and 3.32) were 

generated to determine the metabolite regions in the NMR spectra that contributed 

most to the separation of the two groups in each pair-wise comparative scores plots. 

The VIP plots revealed NMR regions that were statistically significant and the regions 

with a VIP value greater than one are highlighted in red in both the VIP and S-plots. 

The S-plots were then used to confirm whether peaks within these specific NMR 

variable regions had increased or decreased between the two groups being 

compared.  
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Figure 3.31 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts 
from HepG2 spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations 
at 0, 0.1 and 0.5 mM. Samples were collected and NMR analysis was carried out as described in 
Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acids. B. Control vs 0.5 fatty acids. C. 0.1 vs 0.5 
mM. Variables with a VIPpred value above 1 were selected as significant and are highlighted in red. 
Variable regions are shown along the x-axis. 
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Figure 3.32 S-plot derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations at 0, 0.1 and 
0.5 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried out as 
described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acids. B. Control vs 0.5 mM fatty acids. 
C. 0.1 vs 0.5 mM.   

 

Using the spectral regions highlighted in the VIP and S-plots visual inspection of the 

1H NMR spectra was conducted to identify the multiplicity of the peaks within these 

regions. A Kruskal Wallis test was also conducted to determine if there were any 

statistically significant differences between the regions. The Human Metabolome 

database and published literature were employed to identify metabolites thought to be 

responsible for peaks in the important VIP regions. However, it was not possible to 

identify all of the peaks considered significant and many remain unidentified (data not 

shown). Despite this, Table 3.4 shows that changes in metabolite peaks thought to 

belong to methionine, phosphocholine, betaine and glycine were apparent (although 

not statistically significant) in both treated groups when compared to the control. 

Succinate was significantly increased (p<0.05) in the 0.5 mM treated group when 

compared to the 0.1 mM group.  
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Table 3.4 Chemical shift regions identified as significantly different in the aqueous extracts of HepG2 
spheroids treated with different concentrations of fatty acids as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

 
1H shift ppm Metabolite 

aqueous 
Ctrl + 

0.1mM 
Ctrl 

+0.5mM 
0.1 + 0.5 

mM 

0.886-0.974 (m) Acyl groups 
(CH3) 

↑ 
 

↑ 
 

↑* 
 

1.188-1.212 (d), 
1.166-1.203 (t) 

B-
hydroxybutyrate 

↑* 
 

- ↓ 
 

1.314-1.3458 (d) Lactate ↓ 
 

- ↑ 
 

1.911-1.926 (s) Acetate - ↑ 
 

↑ 
 

1.99-2.1 (m) Methionine, 
Glutamine 

 

↑ 
 

↑ 
 

↑ 
 

2.294-2.431 (m) Glutamate ↑ 
 

- ↑ 
 

2.415-2.431 (s) Succinate - ↑ 
 

↑* 
 

3.03-3.049 (s) Creatine ↑ 
 

- ↑ 
 

3.217-3.231(s) Phosphocholine, 
Choline 

 

↑ 
 

↑ 
 

- 

3.255-3.267 (s) Betaine/TMAO ↑ 
 

↑ 
 

↑ 
 

3.5021-3.511 (s) Glycine ↑ 
 

↑ 
 

- 

3.515-3.552 (dd) Choline - ↑ 
 

- 

3.881-3.919 (dd) Methionine, 
Homocysteine 

 

↑ 
 

↑ 
 

↑ 
 

3.937-3.945 (s) Creatine, 
Phosphocreatine  

↑ 
 

↑ 
 

↑ 
 

5.22-5.245 (d) Glucose - ↑ 
 

- 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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3.3.12 Metabolomic analysis of organic spheroid extracts  

 

Organic extracts from HepG2 spheroids were also analysed using NMR spectroscopy. 

Since visual inspection of the 1D NMR spectra showed no obvious similarities between 

the two groups treated with fatty acids and the vehicle control multivariate analysis 

was carried out. Clear separation was observed in the PCA scores plot (Figure 3.33) 

between the vehicle control group (in grey) and the two treated groups along PC1 with 

the exception of sample C1. All samples in the 0.5 mM treated group apart from 0.5(5) 

were located in the lower quadrant of the scores plot while the majority of the 0.1 mM 

group were in the top right-hand except for 0.1(5) and 0.1(3). However, some 

intragroup variation was evident particularly for the 0.1 mM treated group. The PCA 

scores plot also showed a lack of complete separation between the 0.1 and 0.5 mM 

treatment groups.  

 
 

 
Figure 3.33 PCA scores plot derived from 1H NMR spectra of organic extracts from HepG2 spheroids 
dosed with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1 and 
0.5 mM. Cells were dosed with 0, 0.1 and 0.5 mM valproate and incubated for 24 hours. Samples were 
collected, and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents 
one sample. Grey = Ethanol control; blue = 0.1 mM; red = 0.5 mM.   

 

As the PCA analysis failed to show clear sample group clustering an OPLS scores plot 

was created. However, Figure 3.34 demonstrates that the OPLS analysis revealed 

similar results to the PCA (Figure 3.33) with the control groups separated from the 

treated groups along the t[1] axis and the treated groups clustered together on the 

right-hand side of the scores plots. The intragroup separation within the 0.1 mM groups 

was also visible along the t[0] orthogonal axis.  
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Figure 3.34 OPLS scores plot derived from 1H NMR spectra of organic extracts from HepG2 spheroids 
dosed with fatty acids at different concentrations of a 2:1 mixture of oleic and palmitic acid at 0, 0.1 and 
0.5 mM. Cells were dosed with 0, 0.1 and 0.5 mM valproate and incubated for 24 hours. Samples were 
collected and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents 
one sample. Grey = Ethanol control; blue = 0.1 mM; red = 0.5 mM.   

 

To identify if there are any metabolite differences between the control and the two 

treatment groups and also between the 0.1 and 0.5 mM groups OPLS-DA models 

were created (Figure 3.35). In Figures 3.35 A and B clear separation was revealed 

when the control group was compared with both the 0.1 and 0.5 mM groups. For each 

pair-wise comparison the controls were located on the left-hand side of the scores 

plots with the exception of control sample 1 (C1) while the respective treated groups 

were on the right. Intragroup variation in the 0.1 mM group, as seen in the PCA and 

OPLS models, was still visible in the OPLS-DA models.  

 

Figure 3.35 C shows the OPLS-DA scores plot constructed to directly compare the 0.1 

mM group with the 0.5 mM group. As expected from the PCA and OPLS models 

complete separation between the treated groups along the t[1] axis was not achieved. 

Samples 0.1 (4 and 6) were separated from all other samples in the analyses which is 

likely due to the large intragroup variation within this sample group. Sample C1 was 

also located away from the other control samples and located on the right-hand side 

of the scores plot.  

 

The OPLS-DA models were then used to identify treatment-related metabolite peak 

changes using the corresponding VIP and S-plots (Figure 3.36 and 3.37) NMR 

spectral regions with VIP values higher than 1 (shown in red) were considered to be 

significantly different and responsible for sample group separation and were selected 

for further analyses.  
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Figure 3.35 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2 
spheroids dosed with a 2:1 mixture of oleic and palmitic acid at varying dose levels. Cells were dosed 
a combination of oleic and palmitic acid at 0, 0.1 and 0.5 and incubated for 24 hours. Samples were 
collected, and NMR analysis was carried out as described in Sections 2.10 and 2.12.  Each spot on the 
scores plot represents one sample. A. Control vs 0.1 mM fatty acids B. Control vs 0.5 mM fatty acids 
C. 0.1 vs 0.5 mM fatty acids.  
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Figure 3.36 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts from 
HepG2 spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations at 0, 
0.1 and 0.5 mM. Samples were collected and NMR analysis was carried out as described in Sections 
2.10 and 2.12. A. Control vs 0.1 mM fatty acids B. Control vs 0.5 mM fatty acids C. 0.1 vs 0.5 mM fatty 
acids. Variables with a VIPpred value above 1 were selected as significant and are highlighted in red. 
Variable regions are shown along the x-axis. 

 

A 

C 

B 



 141 

 

 

 
Figure 3.37 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 
spheroids treated with a 2:1 mixture of oleic and palmitic acid at different concentrations at 0, 0.1 and 
0.5 mM and incubated for 24 hours. Samples were collected and NMR analysis was carried out as 
described in Sections 2.10 and 2.12. A. Control vs 0.1 mM fatty acids B. Control vs 0.5 mM fatty acids 
C. 0.1 vs 0.5 mM fatty acids. 

 

Following the identification of the spectral regions of interested from the VIP and S-

plot models a visual inspection of these regions on the NMR spectra was carried out 

to evaluate multiplicity of the peaks within these regions (data shown in Table 3.5). 

Several other spectral regions were also identified as contributors to class separation; 

however, metabolite identification was not possible. A Kruskal Wallis test was 

A 

C 

B 
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conducted to analyse statistically significant differences between the integral spectral 

values.  

 

Significant differences between the treated groups and controls included increases 

(p<0.01) in fatty acyl groups, cholesterol and monounsaturated fatty acids in the 0.5 

mM group. Arachidonic acid was the only metabolite to show a significant decrease 

(p<0.01) in both treated groups. A dose dependent response can be seen in the 

majority of metabolites with many of them including FA/MUFA, fatty acyl groups and 

cholesterol showing significant increases in the 0.5 mM but not in the 0.1 mM.  

 

Table 3.5 Chemical shift regions identified as significantly different in the organic extracts of HepG2 
spheroids treated with different concentrations of fatty acids as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

1H shift ppm Metabolite 
aqueous 

Ctrl + 
0.1mM 

Ctrl 
+0.5mM 

0.1+0.5 
mM 

0.886-0.9262(t) Fatty acyl groups and FA  ↑ 
 

↑** 
 

↑ 
 

1.028-1.038(s) Cholesterol  ↑ 
 

↑** 
 

- 

1.1317-1.168(m) Multiple cholesterol protons  ↑ 
 

↑** 
 

- 

1.5625-1.605(s) Arachidonic acid (ARA) ↓** 
 

↓** 
 

↓ 
 

2.008-2.065(q) Oleic acid  ↑ 
 

↑** 
 

↑ 
 

2.3129-2.365(m) Acyl groups in triglycerides  ↑ 
 

↑** 
 

↑ 
 

4.145-4.193(dd) Glyceryl group in 
monoglyceride  

↑ 
 

↑** 
 

↑ 
 

4.295-4.3404(dd) Glyceryl group in 
triglycerides  

↑ 
 

↑** 
 

↑ 
 

5.267-5.315(m) Oleic acid  ↑ 
 

↑** 
 

↑ 
 

5.327-5.414(m) Fatty acids/Monounsaturated 
fatty acids MUFA 

↑ 
 

↑** 
 

↑ 
 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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3.3.13 CYP enzyme expression levels in spheroid HepG2 cells dosed with fatty 
acids 
 

Western blotting of protein extracts in this experiment were performed, as described 

in Section 2.20, to analyse CYP expression in the HepG2 spheroids dosed with a 2:1 

mixture of oleic and palmitic acid at different dose levels. For all blots, beta actin 

(Figure 3.38A) was used as a loading control. Figures 3.38 B, C and D showed 

CYP2D6, CYP 3A4 and CYP2E1 expression levels, respectively at the different fatty 

acid concentrations. Table 3.6 showed the relative band intensity for each target 

protein and revealed no significant dose related change for any of the CYPs. Similar 

to the Western blots for the monolayers all CYPs were detected however, no dose 

related responses were observed. This would suggest that spheroids do not have a 

higher CYP expression than monolayers.   

 
 
Figure 3.38 Western blot analysis of CYP enzyme expression in HepG2 spheroids dosed with fatty 
acids. A. Beta actin, B. CYP 2D6 and C. CYP 3A4. Spheroids were dosed with a combination of oleic 
and palmitic acid at varying concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were collected 
as described in Section 2.16. Western blotting was carried as described in Section 2.20. EC: Ethanol 
control, 0.1 mM, 0.25 mM, 0.5 mM and 1 mM fatty acids.   
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Table 3.6 Raw data showing arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 spheroids 
dosed with fatty acids. Spheroids were dosed with a combination of oleic and palmitic acid at varying 
concentrations or 0, 0.1, 0.25, 0.5 and 1 mM and proteins were collected as described in Section 2.16.  

 
  

Fatty acid concentration 
(mM) 

 
CYP2D6 

 
CYP3A4 

 
CYP2E1 

Ethanol control 15003.12 9384.54 3820.28 

0.1 11604.32 9945.903 5014.35 

0.25 7191.71 8436.35 4501.64 

0.5 15045.58 11642.34 1729.50 

1 11819.44 8233.32 1588.79 
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3.4 Discussion 

 

The first objective of the present study was to create in vitro models of steatosis in 

monolayer cells and 3D spheroids grown from HepG2 cells. The HepG2 cell line was 

chosen for this study since it has been widely used for the development of NAFLD 

cellular models (Dave et al., 2018, Muller and Strula, 2019, Soret et al., 2021). Many 

studies have used HepG2 cells for the evaluation of steatosis primarily because they 

can be easily treated with a combination of fatty acids and the resulting steatosis 

presents morphological similarities to steatotic hepatocytes in vivo (Cui et al., 2010, 

Choi et al., 2015, Dave et al., 2018, Muller and Strula, 2019, Soret et al., 2021). For 

this study monolayers were cultured for 24 hours to allow them to attach overnight 

before use. Meanwhile spheroids were grown for 17 days in DMEM media prior to 

dosing. Selecting the ideal number of days to grow the spheroids before dosing is vital 

since the expression of albumin and a number of important drug metabolizing 

enzymes including CYP P450 enzymes and transporters (DMETs) increases with time 

as the HepG2 spheroids grow (Cox et al., 2020). Many studies have analysed spheroid 

growth and proteomic changes at days 7, 14, 21 and 28 (Eilenberger et al., 2019, Cox 

et al., 2020, Ellero et al., 2021, Tutty et al., 2022, Gronert et al., 2023). Ellero et al., 

(2021) demonstrated that protein concentration in spheroids grown through the 

hanging drop method increased within the first two weeks of culture but then plateaued 

from days 14 to 28. While Gronert et al., (2023) demonstrated the highest albumin 

expression was observed in the spheroids grown by the forced floating method with a 

time-dependent increase up to 1257% at day 21.  

 

Although the ability to culture for longer is an important advantage of 3D spheroids, 

when compared to 2D monolayers the longevity of these model systems is limited by 

the development of a hypoxic and necrotic core. This unwanted phenomenon due to 

the 3D structure of spheroids results from the accumulation of metabolic waste 

products and insufficient diffusion of oxygen and nutrients (Eilenberger et al., 2019, 

Cox et al., 2020). Development of a necrotic core, however, depends on the size of 

the spheroids and, therefore, is typically associated with 3D spheroids formed with 

proliferating cells, which become larger over time (Cox et al., 2020). Eilenberger et al., 

(2019) measured spheroid growth, solidity and roundness between days 3 to 5, 6 to 

12 and 15 to 18 of growth. They reported an increase in the diameter of the spheroids 
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over the first 9 days from 746 ± 12 µm to 857 ± 19 µm which remained stable for the 

following days of culture with 810 ± 30 µm for day 12. At days 15 and 18 there were 

decreases in diameter to 766 ± 51 µm and 743 ± 10 µm, respectively indicating the 

start of spheroid disintegration. In their study when spheroids were visualised under 

the microscope both early (day 3) and mid-stage spheroids (day 6) revealed the 

presence of equally distributed chromatin in the nucleus as well as intact cytoplasm, 

thus indicating the cells were viable. In contrast, late-stage spheroids at day 18 

displayed typical apoptotic characteristics with loss of integrity of the outermost lining 

layer (Eilenberger et al., 2019). Taking this into account, in the present study day 17 

was chosen for spheroid collection as this was prior to the loss of spheroids cell 

viability but still maintained the highest protein expression. However, the spheroids 

collected throughout these experiments were different sizes meaning the necrotic core 

may have been bigger in some spheroid. Nevertheless, the results from the viability 

testing of spheroids showed that they were still viable at the time of analysis.  

 

This study aimed to create two models of mild steatosis using fatty acids. Oleic and 

palmitic acid are long-chain fatty acids found in dietary sources meaning normal 

healthy subjects are exposed to both in the diet (Juarez-Hernandez et al., 2016, Rada 

et al., 2020). However, consistently high levels of dietary palmitic and oleic acid can 

lead to increased lipid accumulation in the liver (Ricchi et al., 2009, Lyall et al., 2018, 

Zeng et al., 2020) and therefore hepatic steatosis. 

 

The use of oleic and palmitic acid for the development of in vitro models of steatosis 

have been described extensively in the literature (Gomez-Lechon et al., 2007, Ricchi 

et al., 2009, Mei et al., 2011, Garcia-Ruiz et al., 2015, Moracova et al., 2015 and 

Eynaudi et al., 2021). Studies have reported that oleic and palmitic acid can induce 

steatosis in primary hepatocytes and hepatoma cell lines when administered both 

individually and as a mixture (Gomez-Lechon et al., 2007, Ricchi et al., 2009, Mei et 

al., 2011, Moracova et al., 2015). However, it is known that palmitic acid at high 

concentrations (>250 μM) is poorly incorporated into triglycerides and leads to cellular 

apoptosis due to a build-up of free fatty acids (Listenberger et al., 2003, Zhang et al., 

2012). Consequently, it has been shown that dosing cells with palmitic acid alone at 

concentrations of 0.5 mM and above increases ROS production and promotes 

fibrogenesis, thus creating a cell model more suitable for NASH studies (Moracova et 
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al., 2015, Dave et al., 2018). Meanwhile, oleic acid supplementation alone is generally 

well tolerated by cells and has been shown to result in a dose-dependent increase in 

steatosis in both HepG2 cells and primary hepatocytes (Cui et al., 2010, Moracova et 

al., 2015, Alkhatabeh et al., 2016, Dave et al., 2018). Studies have suggested that 

oleic acid can induce steatosis at doses as low as 0.1 mM (Cui et al., 2010, Alkhatabeh 

et al., 2016). However, high concentrations of oleic acid particularly those above 1 mM 

can result in a significant rise in lipid peroxides after 24 hours (Cui et al., 2010, Tie et 

al., 2021). 

 

Many studies have demonstrated that treating HepG2 cells with a combination of both 

fatty acids is considered more effective for inducing a steatotic state that is similar to 

the human phenotype (Fan et al., 2013, Moracova et al., 2015, Dave et al., 2018, 

Boeckmans et al., 2018). The addition of a small amount of palmitic acid to the oleic 

acid leads to lipid accumulation alongside minor toxic and apoptotic effects. This 

creates a model that represents a benign state of chronic mild steatosis which is more 

relevant to the human form of steatosis (Liang et al., 2015, Moracova et al., 2015, 

Dave et al., 2018).  

 

However, the overall concentration of these fatty acids administered to HepG2 cells 

and the ratio of oleic to palmitic acid is critical (Moracova et al., 2015, de Sousa et al., 

2021). While studies have shown that oleic acid does not induce alterations in cell 

membrane integrity up to concentrations of 1 mM, palmitic acid enhances LDH 

leakage at concentrations of 0.25 mM and above (Moracova et al., 2015, de Sousa et 

al., 2021). Additionally, cells dosed with oleic acid had a 33% higher cell viability than 

those dosed with palmitic acid at concentrations of 0.5 mM (de Sousa et al., 2021). 

Therefore, the use of a dosing solution containing a higher proportion of palmitic acid 

(e.g., oleic acid/palmitic acid, 1:2 and 0:3 ratio) is more likely to result in reduced cell 

viability as the accumulation of excess palmitate can lead to lipotoxicity and cell death, 

thus reflecting a NASH model (Dave et al., 2018). A study using the same ratio (1:1 

mixture) of the two fatty acids found a significantly lower LDH leakage from the cells, 

indicating reduced cell toxicity at overall fatty acid concentrations of 0.5 and 1 mM 

compared to when palmitic acid was administered alone (Moracova et al., 2015).  
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Other studies have experimented with different ratios and final concentrations of both 

fatty acids. For example, Gomez-Lechon et al., (2007) dosed human primary 

hepatocytes and HepG2 cells with different ratios of oleic/palmitic acid (3:0, 2:1, 1:1, 

1:2 and 0:3) at concentrations of 0.125-2 mM for 12 and 24 hours. They reported a 

dose and time dependent increase in fat accumulation with maximal lipid accumulation 

observed at 2 mM after 24 hours of incubation. Dave et al. (2018) demonstrated using 

a triglyceride assay that a 2:1 oleic and palmitic acid mixture induced statistically 

significant increases in lipid levels without toxicity at dose levels between 0.75-1.5 mM. 

It has been frequently reported that a 2:1 oleic and palmitic acid mixture at a dose 

level of 0.5 mM induces significant fat accumulation in HepG2 cells and is only 

associated with very minor toxicity (Liang et al., 2015, Moracova., 2015, Dave et al., 

2018).  

 

Studies have also investigated many incubation time points including 6, 12, 16, 24 and 

48 hours and all reported a maximal dose-dependent increase in lipid accumulation 

without causing toxicity at 24 hours (Gomez-Lechon et al., 2007, Moracova et al., 

2015, Dave et al., 2018, Kahn and Kahn, 2021). Therefore, it was decided that in this 

study the cells would be incubated in fatty acids for 24 hours.  

 

For this present study, in light of the literature a combination of 2:1 oleic and palmitic 

acid was chosen. However, since this study wished to develop models of steatosis it 

was important to ensure this chosen ratio of oleic to palmitic acid was not cytotoxic to 

the cells. Consequently, monolayer cells were dosed with 2:1 oleic and palmitic acid 

at concentrations of 0.1, 0.25, 0.5 and 1.0 mM and MTS and LDH assays were carried 

out to evaluation for any cytotoxic effects.  

 

The results of the MTS assay (Figure 3.1) revealed a slight dose dependent decrease 

in cell viability at both 0.5 (56 %) and 1 mM (69 %) when compared to the ethanol 

control. Meanwhile the LDH assay showed a significant increase in cell death in the 

1.0 mM sample group (7 %) when compared to the ethanol control. Overall, these 

results are reflective of the literature indicating that a 2:1 ratio of oleic acid and palmitic 

acid is generally well tolerated in HepG2 cells (Lechon et al., 2007, Moracova et al., 

2015, Dave et al., 2018, de Sousa et al., 2021). As explained earlier the 1 mM dose 

level was considered acceptable for monolayer studies based on the LDH assay 
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results but it was decided to use 0.5 mM for future spheroid studies as this dose level 

displayed significant triglyceride accumulation without causing significant cytotoxicity. 

 

Cell proliferation assays such as the MTS have two major limitations: the first being 

they can give false positive results as they do not actually measure the number of 

viable cells, but rather enzymatic activity related to cell metabolism and the second is 

they are unable to distinguish between an inhibition of cell proliferation and cell death 

(Berridge et al., 2005, Smith et al., 2011). Therefore, they basically measure the 

number of metabolically active cells in a sample (Berridge et al., 2005, Kroemer et al., 

2009, Galluzi et al., 2009, Adan et al., 2016). This suggests that the discrepancy 

between the MTS and LDH assay results in the current study in which reduced cell 

viability values were observed for the 0.5 and 1 mM groups may be due to the steatotic 

state of the cells and not direct cytotoxicity. Studies have demonstrated that dosing 

with fatty acids results in decreased cell viability and proliferation in HepG2 cells. Plus, 

oleic acid has been reported to decrease cell proliferation in HepG2 cells without 

inducing cytotoxicity (Cui et al., 2010, Dave et al., 2018). Alternatively, the use of a 

LDH assay is a more reliable method of determining cell death as it measures the 

leakage of lactate dehydrogenase enzymes from the cell and can detect low level 

damage to the cell membrane (Parhamifar et al., 2012).  

 

The next step in the study was to validate the creation of steatosis. Oil Red O staining 

of the HepG2 cells after 24 hours incubation with fatty acids demonstrated a clear 

dose dependent increase of stain uptake (Figure 3.3). The Triglyceride-GloTM assay 

(Figure 3.4) showed a significant increase in triglyceride accumulation in the 0.25, 0.5 

and 1 mM treated groups when compared to the control groups, with the highest 

increase in triglyceride concentration (114 μg) seen in the 0.5 and 1 mM groups. These 

results suggested that a steatotic state was created at dose levels above 0.25 mM.  

 

In the monolayer study the rationale for using both Oil Red O staining and a triglyceride 

assay kit in combination to assess lipid accumulation in this study stems from 

limitations each have when used alone. Oil Red O staining is a simple method but 

does not allow for accurate quantification of cellular lipids. As a result, quantification 

techniques such as commercial assay kits have become increasingly popular and 

have been used in many studies of steatosis in HepG2 cells (Dave et al., 2017, Parra-
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Vargas et al., 2018, Zhu et al., 2018, Lu et al., 2019, Tie et al., 2021). The Triglyceride-

GloTM assay kit used in this study utilises a luminescence-based chemistry allowing 

for better sensitivity and extended quantitative range and can detect triglyceride 

concentration as low as 1 μM (Wells, 2022). However, the assay kit is expensive, and 

several kits were required to conduct all the analyses, therefore its use in larger studies 

is not practical.   

 

For the development of the spheroid model dose levels of 0.1 and 0.5 mM 

oleic:palmitic acid mixture (2:1) were chosen as both induced lipid accumulation in the 

monolayer cells and both showed no, or tolerable, cytotoxicity. HepG2 spheroids have 

been shown to have increased sensitivity to hepatotoxins and have considerably lower 

EC50 values for many different drugs when compared 2D cultures (Gaskell et al., 

2016), Kammerer, 2021, Tutty et al., 2022). This would suggest that fatty acids could 

induce hepatoxicity at lower dose levels than in monolayers. The greater sensitivity 

observed in spheroids may be a result of direct cell-cell contacts, increased liver-

specific functionality and structure of the spheroids allowing the hepatotoxins to exert 

their effect (Tutty et al., 2022).  

 

In this study the MTS assay was also conducted on the spheroids to assess for 

changes to cell viability. However, the results obtained were outside the linear range 

of the assay; and were therefore unreliable. This was due to the high number of cells 

in the spheroids. The assay was repeated using lower seeding densities; however, 

results still fell outside the linear range. Instead of optimising and repeating it an LDH 

assay was performed since it is more reliable in confirming cell death in any case. The 

LDH assay revealed no significant cytotoxicity at both dose levels (Figure 3.26). 

Cytotoxicity in spheroids was also visualised in the LIVE/DEAD assay and confirmed 

the spheroids remained viable after 17 days growth and showed no toxic response to 

the fatty acid doses used (Figure 3.25). Therefore, the results from the spheroids 

showed no real cytotoxicity at either of the dose levels used.  

 

Triglyceride accumulation was also assessed in the spheroids and the results from the 

triglyceride assay confirmed mild steatosis in spheroids (Figure 3.27) at 0.5 mM fatty 

acids. In the interest of time and following the positive triglyceride assay results Oil 

Red O staining was not performed in the spheroids.  
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However, staining methods and commercial triglyceride assays have been used 

extensively in spheroid and monolayer studies in HepG2 cells. Frandsen et al., (2022) 

cultured spheroids for 21 days before treatment with a mixture of 65 μM oleic acid 

(OA), and 45 μM palmitic acid and measured lipid content using an AdipoRed 

Adipogenesis assay showing a significant increase in lipid accumulation. The 

AdipoRed reagent is designed to specifically partition into the fat droplets of 

differentiated adipocytes and fluoresces at 572 nm. Pingitore et al., (2019) also dosed 

HepG2 spheroids with a mixture of fatty acids, palmitic acid and oleic acid at 500 μM, 

the same dose used in this study and used the AdipoRed assay to visualise lipid 

accumulation. Their results showed that the fatty acids promoted lipid accumulation 

and an increase in total fat content after 48 hours. Gomez-Lechon et al., (2007) dosed 

HepG2 cells with a combination of oleic and palmitic acid at concentrations of 0.5, 1 

and 2 mM. Lipid accumulation was quantified using Nile Red staining which is a vital 

lipophilic dye used to label fat accumulation in the cytosol (Gomez-Lechon et al., 

2007). Also, in their study the total lipid accumulation was measured using a 

commercial kit based on the vanillin-phosphoric acid reaction. The results showed an 

increase in triglyceride accumulation in HepG2 cells from 105 μg in the control to 278 

μg in the treated group. A combination of both staining and an assay kit were used in 

this study to confirm lipid accumulation in monolayers in this study making the results 

more reliable. 

 

The next objective of this current study was to analyse changes in the metabolome of 

cellular extracts from both models to identify potential biomarkers for the early 

detection of steatosis. The use of spheroids potentially allowed for identification of 

biomarkers in a model more reflective of the in vivo environment.  

 

The first step in cell metabolomic studies is to determine how many cells are needed 

to obtain a good NMR signal as many papers have used different cell counts for their 

studies. It has been suggested that most metabolites at biological concentrations can 

be detected irrespective of the seeding density (Garcias-Canaveras et al., 2016, 

Ramirez et al., 2018, Chen et al., 2018A), but this required confirmation. Various 

HepG2 seeding densities have been used in the literature. One study conducted by 

Chen et al., (2018B) seeded 1x104 cells in 96-well plates. While Garcias-Canaveras 

et al., (2016) and Ramirez et al., (2018) seeded 8x104 cells/cm2 and 0.45x106 cells in 
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6-well plates, respectively. The cell count used by Ramirez et al., (2018) was similar 

to the one used in this study.  

 

A preliminary metabolomics study (not presented in this thesis) tested different 

seeding densities in 96-well plates but the NMR signal was too low. It is likely that this 

is related to the methods required for metabolomics studies. A vital prerequisite for 

conducting reliable metabolomics experiments is the immediate quenching of the 

metabolic reactions at sample collection (Dettmer et al., 2011, Bi et al., 2013, Leon et 

al., 2013, Muschet et al., 2016). For this step, cells are detached from the surface of 

the well and scraped directly in ice-cold methanol/water/chloroform mixture for 

quenching (Teng et al., 2009, Dettmer et al., 2011, Hutschenreuther et al., 2012, Bi et 

al., 2013, Muschet et al., 2016). This procedure can lead to some experimental error 

since not all cells may be scraped from the surface which could subsequently lead to 

a reduced number of cells collected potentially leading to intragroup variation. 

Alternative methods of detaching cells from the plate include trypsinisation of the cells, 

however this is not considered suitable for metabolomics studies as it has been shown 

to cause metabolite leakage due to disruption of the cell membrane (Bi et al., 2013). 

Consequently, to allow for loss of cells when scraping and quenching it is generally 

recommended that between 1-10 million cells should be used for metabolomics 

samples. Based on this it was decided not to conduct metabolomics study experiments 

using 96-well plates as the cells would not reach a high enough confluency. In addition, 

scraping the cells off the bottom of the plate would be difficult and likely to lead to the 

loss of some of the cell extract. In the current study 0.5x106 cells were seeded in six 

well plates for metabolomics experiments for both the monolayer and the spheroid 

models. This was considered suitable as HepG2 cells have a doubling time of 48 hours 

which means there were approximately 1x106 cells by the time the samples were 

collected. Several preliminary studies were conducted in these studies in order to 

validate the methods used. The results obtained in these studies were similar to those 

seen in the final studies indicating that the methods used were capable of yielding 

reproducible results between experiments.   

 

In this study cells metabolite changes in both monolayers and spheroids were 

compared. In monolayers cells attach to the flat surface of the plate. This method of 

cell culturing has become increasingly popular due to its simplicity and convenience 
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forcing cells to grow on flat surfaces limits cell-cell interaction. However, this can 

change the cell metabolism and functioning which could be reflected in the 

metabolomics data (Bialkowska et al., 2020). So, while monolayers have been 

routinely used to understand the molecular mechanism of disease, they do not 

represent the true complexity of human tissues.  

 

3D cultures offer a similar micro-environment to the in vivo situation with respect to 

cell shape, behaviour and morphology (Pingitore et al., 2019). Therefore, the use of 

3D spheroids could aid in the identification of early diagnostic biomarkers for steatosis 

which are more relevant to humans. Although spheroids are more relevant, their use 

in metabolomics studies is limited and to date there are few studies using HepG2 

spheroids for the study of metabolite changes in steatosis. However, one study 

conducted by Kozyra et al., (2018) created a 3D steatosis model in primary 

hepatocytes using oleic and palmitic acid together with glucose and fructose. The 

result of their study indicated that 3D models have the capabilities of displaying many 

in vivo phenomena such as insulin resistance and the reversibility of steatosis through 

the administration of vitamin E and metformin making them suitable for the study of 

steatosis in biology and disease (Kozyra et al., 2018). Frandsen et al., (2022) mapped 

the proteome and lipidome changes in early onset NAFLD in HepG2 spheroids 

through the administration of oleic and palmitic acid and recorded changes similar to 

those in vivo. However, the study aimed to investigate the underlying molecular 

changes that occur in NAFLD rather than identify biomarkers for early detection of 

steatosis.  

  

In the current study, NMR data obtained for both the spheroids and the monolayer 

were subject to unsupervised (PCA) and supervised (OPLS) multivariate analyses. 

For all statistical comparison the ethanol sample group, as the vehicle control, was 

used instead of the media control since fatty acids were diluted in ethanol. This was 

to ensure that any observed differences between the groups were due to the fatty acid 

treatment and not related to the ethanol vehicle (Rodríguez-Burford et al., 2003, 

Larsson et al., 2020). While it is necessary to use solvents such as ethanol in biological 

research for the dilution of therapeutic molecules especially those that are weakly 

soluble in water, studies have shown that ethanol can disrupt the physical structure of 

biological membranes and affect the growth of HepG2 cells. However, this typically 
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occurs at concentrations above 2.5% (Castaneda and Kinne, 2000, Ngyuyen et al., 

2020). Plus, it has been proven that at concentrations between 0.3 and 2 % ethanol 

are well tolerated in HepG2 cells (Ngyuyen et al., 2020). Since in the current study the 

ethanol concentration did not exceed 2%, it is unlikely to have contributed to any 

cytotoxicity and this was confirmed in the MTS and LDH assays.  

 

The PCA scores plots created for both the monolayers and spheroid studies (Figures 

3.5, 3.15, 3.28 and 3.33) did not show good separation between the control and fatty 

acid groups at the different dose levels. This was the case for both the aqueous and 

organic extracts. PCA is a classical tool used to reduce the dimensionality of data and 

to filter noise. However, PCA assumes that biological data follow a multivariate normal 

distribution and decomposes data based on the maximisation of its variance (Yao et 

al., 2012). Clear separation may not be seen in PCA models as any differences 

between measurements will only be revealed if they are major contributors to the total 

variability in the data set (Scholz et al., 2004, Yao et al., 2012, Worley and Powers, 

2016). Literature suggests that sample size in relation to the number of variables plays 

an important role in the separation observed in a PCA as a larger sample size reduces 

the probability of errors (Osborne and Costello, 2004). It has been suggested that the 

sample size should be larger than 5 times the number of variables while others 

recommend at least 100 samples (Gorsuch, 1983, Hatcher, 1994, Shaukat et al., 

2016). However, these numbers would just not be feasible in cell studies as this would 

require a large number of cells. Therefore, for the current study 6 replicates were used 

since this is reflective of other studies in the literature. A study in HepG2 cells 

conducted by Garcia-Canaveras et al, (2016) used 6 replicates for their metabolomics 

study and observed clear separation between treated groups and controls. Another in 

vitro metabolomics study in HepG2 cells conducted by Ramirez et al., (2018) used 

between 8-20 replicates. Although there was separation between the different 

treatments used, dose-dependent changes for individual compounds were not easily 

distinguished. Another metabolomics study conducted in HepG2 cells dosed cells with 

2,3,7,8-tetrachlorodibenzo-p-dioxin using 5 replicates and did observe separation 

between the treated groups (Ruiz-Aracama et al., 2011).  

 

One of the major issues with the use of PCA with low sample numbers is that 

intragroup variation can lead to a lack of sample group clustering. It is likely this was 
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an issue in the present study as samples from the same groups were located in 

different parts of the PCA plot. In cell studies large intragroup variation can be due to 

inaccuracies in cell number per well and/or experimental error when collecting cell 

samples for NMR observed. Inaccuracies in seeding density could also have an effect 

on intragroup variation leading to differences in concentrations of metabolites in 

samples (Chen et al., 2013). Intragroup variation was a particular issue in the organic 

spheroids extracts as ethanol control sample 1 was located on the opposite side of 

the scores plot away from the rest of the samples in the group. This could potentially 

be due to a difference in cell seeding density when plating the spheroids which led to 

this sample have a different number of cells compared to the rest of the group. 

Additionally, outliers were also observed in all metabolomics experiments in this 

project possibly due to errors in sample preparation or biological response to dosing 

with the fatty acids. Metabolomics datasets often contain outliers because of 

analytical, experimental, and biological ambiguity (Kumar et al., 2018). Although clear 

separation was not observed for all dose levels in this chapter the control group was 

separate from the rest of the treated groups in all PCA plots indicating some treatment-

related response due to the fatty acids. These observations are consistent with many 

other metabolomic studies using HepG2 cells who all reported some sample group 

clustering, but not clear separation (Ruiz-Aracama et al., 2011, Garcia-Canaveras et 

al., 2016, Ramirez et al., 2018, Martinez-Sena et al., 2023).  

 

Due to the limitations of PCA when analysing biological samples OPLS analysis is 

often carried out on the spectral data and better group separation is usually expected 

due to the sample class input. Unlike PCA, OPLS is more likely to show separation 

between experimental groups because its integrated orthogonal signal correction 

(OSC) filter removes spectral variation that does not agree with the assigned group 

(Worley and Powers, 2016). Thus, this explains the better separation observed for the 

OPLS scores plots in this study along the sample class t[1] predictive axes with the 

control and the highest dose level tending to be on opposite sides of the score’s plots. 

However, in this study the organic extracts of monolayer samples (Figure 3.16) still 

showed some overlap between the 0.1, 0.25 and 0.5 mM groups. Plus, the organic 

extracts spheroid samples (Figure 3.34) had overlapping between the two treated 

dose levels.  



 156 

The pair-wise comparison OPLS-DA models in this Chapter allowed for the 

identification of many metabolite regions that differed between the treated groups and 

controls as well highlighting some dose related changes. However, in general, large 

intragroup variation along the orthogonal t[0] axis was observed for all treatment 

groups in the study. The intragroup variation seen in this study was more apparent in 

organic samples. This observation could indicate that extraction solvents fluctuate in 

their effectiveness in extracting metabolites from sample groups and this could explain 

the intragroup variation seen in this study (Andersson et al., 2019). There is a risk of 

losing more volatile compounds like chloroform during sample collection which would 

have an effect on variation within sample groups (Mushtaq et al., 2013).  

 

In this study metabolite changes were identified using the Human Metabolome 

database as well as published literature. Some similarities in metabolite changes were 

observed in both the monolayer and spheroids (Tables 3.1, 3.2, 3.4 and 3.5) including 

decreases in peaks for lactate and increases in succinate, phosphocholine and 

betaine and creatine.  

 

A decrease in lactate and an increase in alanine were observed in the monolayer 

samples dosed with fatty acids when compared to control. Changes in alanine are 

often related to alterations to pyruvate and lactate since the three are linked 

metabolically. Pyruvate can be converted to lactate by lactate dehydrogenase and 

alanine is produced from the transamination of pyruvate with glutamate by alanine 

aminotransferase producing α-ketoglutarate alongside alanine. Pyruvate is an 

intermediate in gluconeogenesis and plays an important role in aerobic respiration and 

the production of ATP since it is converted to acetyl-CoA by pyruvate dehydrogenase 

which then feeds into the TCA cycle (Mayr et al., 2005). In this current study an 

increase in alanine was observed in the fatty acid-treated monolayer samples, but not 

in the spheroid model. This is similar to studies in humans which reported increases 

in alanine concentrations in patients with metabolic syndrome and NASH when 

compared to healthy controls (Mannisto et al., 2014, Stechemesser et al., 2017). It has 

also been demonstrated that there is an increase in the ratio of alanine/pyruvate in 

patients with NAFLD when compared to healthy controls. In particular, the 

transcriptional activity of aminotransferases was reported as significantly upregulated 

thus increasing alanine levels (Sookoian et al., 2016). Therefore, the observed 
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elevation of alanine in this present study could potentially be due to an increase in 

transamination of pyruvate in the treated monolayer cells although changes in 

pyruvate were not observed. In contrast Song et al., (2013) reported a decrease in 

alanine in rats along with decreases in pyruvate and lactate and increases in glucose 

implying glycolysis was inhibited in their study.  

 

In this current study a decrease in lactate levels was proposed due to a reduction in 

peak sizes in the NMR spectral region at 1.31-1.35 ppm. This decrease when 

compared to control was seen at all fatty acid dose levels for the monolayer cells and 

in the 0.1 mM dose group of the spheroid experiment. This decrease is similar to that 

observed by Song et al., (2013) and shows that the changes observed in the cells and 

spheroids are similar to those seen in rats indicating they are useful translational 

models of steatosis. 

 

TCA cycle activity has been reported to increase 2-fold in patients with steatosis along 

with roughly a 50% increase in mitochondrial anaplerosis pathway activity 

predominantly pyruvate carboxylase flux (Sunny et al., 2011, Fletcher et al., 2019). 

The increase in TCA cycle activity is linked to an increase in beta-oxidation which 

would lead to elevated acetyl-CoA which feeds into the TCA cycle (Gudson et al., 

2014). In this current study an increase in succinate, an intermediate in the TCA cycle, 

was observed in the monolayer samples and in the 0.5 mM spheroid samples. This 

suggests an increase in TCA activity. Ye et al., (2019) also observed significant 

increases in succinate in HepG2 cells when treated with liposoluble extracts. 

Additionally, elevated succinate has also been observed in rats fed a high fat diet (Xu 

et al., 2019B). Many studies have reported an increase in citrate in NAFLD patients 

and in mice due to excess fatty acids but changes in citrate were not observed in this 

study (van de Wier et al., 2013, Fontes et al., 2019, Sinton et al., 2019, Sandlers et 

al., 2020). Other TCA cycle metabolite levels may have been altered in this study. 

However, since many metabolites share similar spectral regions, individual changes 

may be masked by overlapping metabolite peaks.  

 

An increase in TCA cycle activity has also been observed in spheroids in the literature. 

Sinton et al., (2021) observed increases in the TCA cycle intermediates caused by 

anaplerosis from pyruvate and lactate. Their study also reported the inhibition of the 
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conversion of succinate to fumarate in steatotic monolayer cells. Other studies have 

revealed not only changes in TCA intermediate but also higher ATP levels in fatty acid 

treated spheroids compared to control (Frandsen et al., 2022, Tidwell et al., 2022). In 

the current study changes in ATP levels were not observed in the spheroid samples, 

however future work could investigate this more specifically.  

 

In this present study an increase in β-hydroxybutyrate was observed in the 0.1 mM 

spheroid samples and in the 0.25, 0.5 and 1 mM monolayer groups. This is likely due 

to excess acetyl-CoA which can be converted into ketone bodies such as β-

hydroxybutyrate and acetate (Song et al., 2013, Watt et al., 2019). Studies have shown 

that ketogenesis disposes of as much as three-fold fat entering the liver dysregulating 

ketogenesis and contributing to NAFLD pathogenesis (Cotter et al., 2014, Satapati et 

al., 2015, Grattagliano et al., 2019, Mooli and Ramakrishnan, 2022). The increases in 

β-hydroxybutyrate seen in this study further confirm that beta-oxidation is increased in 

the cells due to the influx of fatty acids.  

 

Increased gluconeogenesis may have occurred in the present study as an NMR 

spectral region at 5.22-5.245 ppm thought to correspond to glucose was increased in 

both the 0.5 mM and 1.0 mM fatty acid monolayer treated groups and the 0.5 mM 

spheroid group. However, glucose typically has a number of peaks present on 1H NMR 

spectra and in this study the other regions were not detected as being significantly 

different according to the VIP plots. This may be due to the presence of other 

metabolites within the glucose regions which depending on their concentration could 

mask the glucose peaks in terms of statistical differences. Increases in beta-oxidation 

can also influence the progression of insulin resistance in NAFLD as the induction of 

lipid oxidation is required for the endergonic steps of gluconeogenesis (Sunny et al., 

2011). Chronic activation of mitochondrial oxidation in the setting of lipid overload 

increases acetyl-CoA content exceeding the rates of mitochondrial TCA flux resulting 

in the activation of pyruvate carboxylase activity which stimulates gluconeogenesis 

(Sunny et al., 2011, Samuel and Shulman 2018).  

 

Studies have reported that the exposure of HepG2 cells to 0.5 mM palmitic acid alone 

for 24 hours induces insulin resistance in the cells. As a result, palmitic acid 

administration has been widely used for the development of an insulin resistance 
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model (Gao et al., 2010, Malik et al., 2019, Zhang et al., 2019). HepG2 cells treated 

with palmitic acid at 0.25 mM have also been reported to have altered expression 

levels of insulin receptor substrate 1 (IRS1) phosphorylation and GLUT (Zhang et al., 

2019, Malik et al., 2019) as well as significant increases in the protein and mRNA 

expression of PEPCK and G6Pase, which are key gluconeogenic enzymes (Liu et al., 

2019). Fatty acids stimulate the phosphorylation of serine residues on IRS-1 and down 

regulate the insulin signalling pathway to cause insulin resistance (Denhez et al., 

2020). Therefore, it is possible that in this study palmitic acid may be increasing 

gluconeogenesis. Nevertheless, it has also been reported that monounsaturated fatty 

acids such as oleic acid can induce gluconeogenesis in bovine hepatocytes and in 

humans (Mashek et al., 2002, Sarabhai et al., 2020). However, published literature 

has not investigated an increase in gluconeogenesis in HepG2 cells using a 

combination of oleic and palmitic acid, therefore future studies could attempt to 

analyse this.  

 

Overall, the results in the current studies suggest an increase in beta-oxidation, 

changes to acetyl-CoA levels and reduced glycolysis in the monolayer and spheroid 

cells treated with fatty acids. This has been reported in many studies in which energy 

production is greater from beta-oxidation than glycolysis (Ruiz-Aracama et al., 2011, 

Song et al., 2013, Gudson et al., 2014). Increases in fatty acid oxidation have also 

been observed in obese patients in response to the excess fatty acid load (Sunny et 

al., 2013, Rafiei et al., 2019, Lu et al., 2021). A study in human hepatocytes co-cultured 

with primary human hepatic stellate cells exposed to a mixture of oleic and palmitic 

acid also demonstrated increased beta-oxidation (Feaver et al., 2016, Rafiei et al., 

2019). Similarly, in high-fat diet fed rats upregulation of fatty acid beta-oxidation has 

been observed (Gusdon et al., 2014). However, in their study Gusdon et al (2014) 

described the accumulation of incompletely oxidised fatty acid intermediates and 

depleted TCA cycle intermediates resulting in exacerbated insulin resistance and the 

progression of NAFLD. Untreated HepG2 cells have been reported as having a high 

mitochondrial respiration rate, low glycolysis and low rate of lactate production and 

therefore they appear to be more dependent on mitochondrial OXPHOS for energy 

metabolism (Hsu et al., 2015). Consequently, if treatment with fatty acids affects 

mitochondrial respiration and induces mitochondrial oxidative stress as a result of 

lipotoxicity this could lead to progression of NAFLD. (Garcia-Ruiz et al., 2016). The 
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changes in TCA cycle metabolites and its associated anaplerotic pathways seen in 

this study are similar to those seen in literature and are reflective of the in vivo 

environment. This makes both spheroid and monolayer HepG2 models suitable 

steatosis models for the identification of biomarkers.  

 

In this study metabolite changes related to the methyltransferase reactions were 

observed in both models. This included a dose dependent increase in methionine in 

the spheroids (Table 3.4) and in homocysteine for in both models when compared to 

controls. Homocysteine is a sulphur containing amino acid produced from the 

methylation of methionine. Under normal conditions the formation and elimination of 

homocysteine is strictly balanced, as it is either remethylated back to methionine or 

irreversibly metabolised to cystathionine in the transsulfuration pathways (Medici et 

al., 2010, Pacana et al., 2015, Li et al., 2020B, Werge et al., 2021).  

 

While an increase in methionine was observed in the spheroid samples in this study 

there was no change detected in the monolayer, which may be a result of other peaks 

masking methionine on the spectra. Methionine is an essential amino acid which plays 

a key role in regulating several cellular functions including metabolic processes and 

digestive functioning in mammals (Martinez et al., 2017). Methionine is also a key 

intermediate in the production of s-adenosylmethionine (SAM) and glutathione, two 

important antioxidants (Jha et al., 2016). Demethylation of SAM converts methionine 

sequentially to s-adenosylhomocysteine (SAH) and homocysteine (Zhang et al., 2016, 

Werge, 2021). However, changes in SAH and SAM were not apparent in this study. 

Ye et al., (2019) also reported increases in methionine due to excess availability of 

methyl donors for hypermethylation in HepG2 cells exposed to liposoluble extracts 

suggesting an increase in methylation and oxidative stress. Elevated homocysteine 

and decreases in SAM have also been implicated in NAFLD (Noga et al., 2002, Craig, 

2004).   

 

Methionine has been implicated in NAFLD and several studies have indicated that rats 

and mice fed a methionine-supplemented diet exhibit hyperhomocysteinemia and that 

an excess in methionine alters hepatic lipid metabolism, induces oxidative stress and 

hepatocyte injury potentially leading to the progression of steatosis to NASH (Pogribny 

et al., 2005, Zhou et al., 2008, Song et al., 2009, Yamada et al., 2012, Aissa et al., 
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2014, Yao et al., 2016). For this reason, methionine supplementation is used 

extensively for the development of NAFLD models (Rinella er al., 2008, Yang et al., 

2018, Li et al., 2018). In contrast one of the most common models for the induction of 

NASH is the methionine-choline deficient diet model; this results in steatosis, fibrosis 

and oxidative stress (Corbin and Zeisel, 2013, Jha et al., 2014, Sherriff et al., 2015, 

Imbard et al., 2015). Choline is essential for the de novo synthesis of 

phosphatidylcholine which is required for the export of triglycerides via VLDL 

packaging meaning a deficiency in choline can cause steatosis (Rinella et al., 2008, 

Jha et al., 2014) while methionine can lead to oxidative stress mimicking the ‘two-hit’ 

model of NAFLD (Jha et al., 2014). 

 

Although the full mechanism by which hyperhomocysteinemia occurs is not 

understood elevated levels of methionine drive the transsulfuration pathway leading 

to an increase in SAM and SAH and ultimately homocysteine levels (Troen et al., 2003, 

Aissa et al., 2014). However, it is unclear why methionine is increased in NAFLD. In 

humans hyperhomocysteinemia is associated with metabolic syndrome and NAFLD 

(Polyzos et al., 2012, Dai et al., 2016, Kumar et al., 2020). It is thought that the 

accumulation of homocysteine in liver cells activates a hepatic unfolded protein 

response ultimately leading to oxidative stress and the progression to NASH (Pancana 

et al., 2015, Dai et al., 2016). While many studies have investigated the effect of 

homocysteine in mice and humans (Hu et al., 2016, Ai et al., 2017, Yan et al., 2020) 

in vitro studies are limited. However, it has been suggested that homocysteine can 

induced ER stress and enhance lipid biosynthesis and uptake through the activation 

of the SREBPs in HepG2 cells exposed to 1 or 5 mM of homocysteine (Werstruck et 

al., 2001).  

 

In this study peaks in the region between 3.255-3.265 ppm in the NMR spectra from 

both the spheroid and monolayer samples were revealed as being increased 

compared to controls. These peaks are thought to correspond to betaine according to 

the human metabolome database. The transmethylation reaction of betaine, a one-

carbon metabolism pathway occurs principally in the mitochondria of liver and kidney 

cells (Zhao et al., 2018). In this reaction betaine-homocysteine 

methyltransferase (BHMT) catalyses the addition of a methyl group from betaine to 

homocysteine to form methionine (Lee et al., 2012, Garrido et al., 2018). Therefore, 
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an increase in betaine could also lead to an increase in homocysteine and methionine. 

Betaine can also be converted to dimethylglycine (Williams and Schalinske, 2007, 

Mailloux et al., 2016, Zhao et al., 2018). Dimethylglycine has two available methyl 

groups and can be degraded to sarcosine and ultimately glycine to produce creatine 

(Zhao et al., 2018). Increases in both glycine and creatine were seen in both models 

in this Chapter (Tables 3.1 and 3.4) indicating that the HepG2 cells may be converting 

excess betaine to dimethylglycine although changes in dimethylglycine were not 

observed. Human studies have shown that patients with chronic liver disease have 

elevated serum homocysteine levels as well as high levels of betaine due to increased 

activity of the BHMT (Zhao et al., 2018). In contrast to the increase in glycine seen in 

this study it is well established that glycine levels are reduced in NAFLD in human and 

rodent models (Zhou et al., 2016, Gaggini et al., 2018, Romero et al., 2020, Ghrayeb 

et al., 2023). Glycine plays an important role in metabolic regulation and is the rate 

limiting step in glutathione synthesis. In NAFLD patients increased levels of glutamate 

and decreases in glycine are observed due to increased transamination of glutathione 

by gamma-glutamyltransferase (Gaggini et al., 2018). Elevated homocysteine and 

decreases in SAM have also been implicated in NAFLD (Noga et al., 2002, Craig, 

2004).  

 

In the monolayer cells in this study decreased levels of formate were observed in the 

0.1 and 1.0 mM groups but not in the spheroids. Formate provides carbon groups for 

folate metabolism resulting in the formation of tetrahydrofolate (Morrow et al., 2015, 

Brosnan and Brosnan, 2016). Formate is also linked to the methionine pathways via 

methionine synthase, a vitamin B12-dependent enzyme. (Zhao et al., 2018). In the 

presence of vitamin B12 methyl groups are transferred from N-methyltetrahydrofolate 

to homocysteine forming methionine and tetrahydrofolate in the methionine salvage 

pathway (Halstead et al., 2002, Froese et al., 2018). A decrease in formate levels, as 

seen in the 0.1 and 1.0 mM fatty acid-treated monolayer cells (Table 3.1) in this study, 

could indicate alterations to one-carbon metabolism and the folate cycle. Studies have 

shown that folate depletion can induce oxidative stress in the liver and lead to the 

development of more severe NAFLD (Huang et al., 2001, Radziejewska et al., 2020). 

Although, the main mechanism behind folate deficiency during NAFLD is not fully 

understood (Radziejewska et al., 2020, Vahedi et al., 2020). However, Radziejewska 

et al., (2020) reported a decrease in folate levels due to suppressed expression of 
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folate transporters in mice fed a high fat diet. Folate depletion can also lead to the 

utilisation of betaine and choline for homocysteine remethylation thus disrupting 

choline metabolism; this has been shown to increase the severity of steatosis in mice 

(Christensen et al., 2010, da Silva et al., 2014, Radziejewska et al., 2020). Yang et al., 

(2018) reported a decrease in formate in mice fed a high fat diet however this has not 

been investigated in any in vitro models dosed with fatty acids. Studies in mice have 

found that a decrease in folate metabolism results in increased expression of genes 

related to lipogenesis which in turn promotes lipid accumulation and disrupted VLDL 

secretion from the liver (Christensen et al., 2010, Champier et al., 2012, da Silva et 

al., 2014, Radziejewska et al., 2020). In the current study it is possible that the folate 

cycle was disrupted thus preventing the methylation of homocysteine by N-

methyltetrahydrofolate (Zira et al., 2013). This could also account for the increase in 

homocysteine and methionine seen within the fatty acid-treated cells.  

 

In this study organic metabolites from both the spheroids and the monolayers dosed 

with fatty acids were also examined (Tables 3.2 and 3.5). Metabolite changes 

identified included monounsaturated fatty acids, triglycerides and arachidonic acid.  As 

the cells were dosed with fatty acids it was expected that metabolite peaks belonging 

to oleic and palmitic acid were present and changes in metabolite regions for oleic 

acid were observed in both models but not for palmitic acid. 

 

A decrease in peaks at 1.702-1.724 ppm due to eicosapentaenoic acid (EPA) a 

polyunsaturated fatty acid was observed in the 0.25, 0.5 mM and 1.0 mM fatty acid 

treated groups. This is likely due to increased beta-oxidation and a possible 

accumulation of fatty acids intermediates such as lipid peroxides (Satapati et al., 

2012). It has been suggested that a decrease in polyunsaturated fatty acids is 

observed in steatosis and NAFLD since the build-up of fatty acid intermediates are 

more susceptible to free radical attack as a result of their carbon-carbon double bonds 

and are therefore degraded (Ayala et al., 2014). Both clinical and preclinical studies 

have also reported decreases in polyunsaturated fatty acids due to increased 

oxidation, again confirming the earlier suggestions of an increase in beta-oxidation in 

this study (Arendt, 2015, Depner, 2013, Lytle, 2015, Jump et al., 2017).  
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Previous studies have also shown that excess unsaturated fatty acids induce 

cytochrome P450 2E1 which stimulates lipid peroxidation, subsequently promoting 

apoptosis and cell toxicity (Sung et al., 2004, Cui et al., 2010). This is important since 

CYP2E1 can metabolise polyunsaturated fatty acids such as linoleic and arachidonic 

acid to generate ω-hydroxylated fatty acids which are further metabolised to 

dicarboxylic fatty acids; these are known to be cytotoxic at high concentrations (Leung 

and Nieto, 2013). While many studies have reported that CYP2E1 expression and 

activation is increased in NAFLD the role of CYP2E1 in NAFLD progression is still 

under investigation (Bell et al., 2011, Leung and Nieto, 2013). However, compared to 

other cytochromes P450, CYP2E1 possesses a remarkably high NADPH oxidase 

activity, resulting in significant production of ROS. This can initiate a free radical chain 

reaction with unsaturated fatty acids generating toxic lipid intermediates (Hariumaki et 

al., 2021). Oleic acid induced steatosis is also associated with significantly decreased 

expression of superoxide dismutase-1 (SOD-1) enzyme, a free radical scavenger 

enzyme, in HepG2 cells. This demonstrated that in a steatotic state there are 

decreased levels of antioxidants that could protect against cellular membrane injury 

mediated by lipid peroxidation leading to further mitochondrial damage (Cui et al., 

2010). Reduced antioxidant levels are commonly observed in NAFLD patients. Many 

studies have reported depleted levels of glutathione, vitamin E, vitamin C and SOD as 

wells as increased levels of lipid peroxidation products and oxidative stress markers 

eventually leading to the progression of steatosis to NASH (Garcia-Ruiz and 

Fernandez-Checa 2018, Ore and Akinloye 2019, Arroyave-Ospina et al., 2021).  

 

In contrast to the decrease in EPA an increase in arachidonic acid was observed in 

the monolayer samples after dosing with fatty acids in this study. Arachidonic acid is 

an n-6 polyunsaturated fatty acid and is an important constituent of membrane 

phospholipids (Tallima and Ridi, 2018, Lin et al., 2022). It is metabolised by 

cyclooxygenases and lipoxygenases forming pro-inflammatory prostaglandins and 

leukotrienes. Therefore, increased metabolism of arachidonic acid in NAFLD can lead 

to inflammation (Puri et al., 2007, Lin et al., 2022). Sztolsztener et al., (2020) 

demonstrated that after 3 weeks of high-fat diet feeding in mice there was a shift in 

the balance between n-6 and n-3 polyunsaturated fatty acids towards n-6. 

Consequently, arachidonic and linoleic acid levels were increased which paralleled 

the development of inflammation (Sztolsztener et al., 2020). This shift in balance 
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between the n-6 and n-3 in a high fat diet was likely due to overnutrition particularly 

since a high-fat diet can serve as an exogenous source of arachidonic acid 

(Sztolsztener et al., 2020, Kirk et al., 2022). However, this has not been studied in 

HepG2 cells. This increase in arachidonic acid and the role it plays in inflammatory 

responses can lead to cytotoxicity and apoptosis in HepG2 cells potentially leading to 

NASH (Xu et al., 2003). Lin et al., (2022) reported significant changes in arachidonic 

acid metabolism in patients with metabolic dysfunction-associated fatty liver disease. 

An in vitro study in HepG2 cells exposed to arachidonic acid (n6) and 

docosahexaenoic acid (n3) ratio led to a reduction in mitochondrial activity and 

increased triacylglycerol accumulation (Ghazali et al., 2020) Therefore, the increase 

in arachidonic acid seen in this study could be contributing to the triglyceride 

accumulation seen in the cells as well as increasing inflammatory markers.  

 

In the present study an increase in cholesterol was observed in the spheroid models 

(Table 3.5) however, a dose dependent decrease was apparent in the monolayers 

(Table 3.2). Cholesterol metabolism in hepatocytes is maintained via a number of 

metabolic pathways including cholesterol de novo synthesis, uptake of cholesterol in 

the form of LDL and chylomicron and cholesterol excretion in the form of VLDLs (Enjoji 

et al., 2012). However, since these pathways are disrupted in NAFLD, SREBPs act as 

regulators of cholesterol levels and activate genes involved in the synthesis of 

cholesterol and free fatty acids (Enjoji et al., 2012, Chen et al., 2022). Dosing HepG2 

cells with palmitic acid has been shown to increase cholesterol levels following 12 

hours of treatment as a result of the upregulation of the farnesyl diphosphate synthase 

(FDPS) and ABCG1 genes due to increased SREBP-2 expression (Tarling et al., 

2015, Chen et al., 2018B, Chen et al., 2022). Studies have reported that increased 

SREBP-2 protein levels and suppression of LDL receptor expression in HepG2 cells 

treated with palmitic acid result in free cholesterol accumulation. (Pal et al., 2002, 

Chen et al., 2022). Therefore, the increase in cholesterol seen in the spheroid model 

could be due to an increase in SREBP levels although the mechanism of this is not 

fully understood. Increases in cholesterol have been observed in humans and 

disturbances in cholesterol metabolism contribute to the pathophysiology of NAFLD. 

Increases in cholesterol synthesis and a decrease in the pathways responsible for the 

elimination of cholesterol lead to accumulation of free cholesterol in the liver (Malhotra 

et al., 2020). Increases in nuclear SREBP-2 have also been reported in humans with 
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NAFLD leading to an increase in HMG-CoA reductase the rate limiting step in 

cholesterol synthesis leading to increases in cholesterol (Kerr and Davidson, 2012). 

In contrast the decrease in cholesterol observed in the monolayer samples could be 

due to increased secretion of VLDLs from the cells. This has been proposed as oleic 

acid can potentially increase the packaging of triglyceride and cholesterol into VLDLs 

(Dashti and Wolfbauer, 1987). In addition, Dashti and Wolfbauer (1987) showed in 

their study that oleic acid induced VLDL secretion in HepG2 cells. Previous studies 

using a combination of oleic and palmitic acid have not reported decreases in 

cholesterol. Although the spheroids and monolayers show opposing changes in 

cholesterol in this study, perhaps as spheroids display a morphology more reflective 

of the human liver the fatty acids may be having a similar effect on cholesterol 

metabolism as seen in vivo.  

 

Since many studies have investigated changes in other CYP enzymes in the context 

of steatosis CYP enzyme expression was investigated in this study. However, despite 

other studies suggesting that 3D spheroids have greater expression levels of CYP 

enzymes when compared to 2D models this was not observed in the current study 

(Mizoi et al., 2020, Stampar et al., 2020 and Ingelman-Sundberg and Lauschke, 2021). 

In general, the expression of all 3 CYP enzymes tested was similar in the monolayers 

and the spheroid. Similarly, when compared to controls fatty acids had no effect on 

CYP expression in both models.  

 

CYP2E1 is one of the most studied CYP enzymes in relation to NAFLD and was the 

first documented as modulated in clinical fatty liver disease (Merrell and Cherrington, 

2011). The majority of studies have reported an increase in expression and activity of 

CYP2E1 with the increase hypothesised to play a role in the pathogenesis of NAFLD 

(Merrell and Cherrington 2011, Garcia-Ruiz et al., 2015, Sukkasem et al., 2020).  

 

Increased CYP2E1 expression and concomitant exposure to its substrate drugs can 

lead to severe cellular injury due to over production of radical intermediates. This 

further supports the findings that CYP2E1 can progress fatty liver disease whether it 

is induced by alcohol, or not (Sukkasem et al., 2020). CYP2E1 is a source of nitro-

oxidative stress as it is a member of the oxido-reductase cytochrome family, 

responsible for oxidising a variety of small molecules including fatty acids further 
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damaging mitochondria leading to the progression of NAFLD (Garcia-Ruiz et al., 

2015). Therefore, the increases in CYP2E1 seen in this study may indicate 

progression of steatosis. Researchers have also observed upregulation in CYP2E1 in 

morbidly obese patients, general steatosis and NASH (Weltman et al., 1998, Emery 

et al., 2003, Videla et al., 2004, Kohjima et al., 2007, Baker et al., 2010). In contrast a 

number of studies have reported a decrease in CYP2E1 expression and activity in 

mouse models potentially due to the development of hyperinsulinemia (Enriquez et 

al., 1999, Watson et al., 1999, Deng et al., 2005, Ito et al., 2007, Cheng et al., 2008).  

Few published studies document changes in CYP2D6 expression and activity during 

NAFLD (Merrell and Cherrington, 2011). However, a general downregulation of 

enzymatic activity in hepatocytes treated with fatty acids at increasing concentrations 

has been reported (Donato et al., 2006). Sukkasem et al., (2020) also reported a 

decrease in CYP2D6 expression when both palmitic acid and oleic acid were 

administered separately to HepG2 cells. CYP2D6 expression and activity has also 

been reported to be downregulated in HepG2 monolayers after 24 hours of culture 

whereas its expression levels increased to physiologic levels in 3D cultures (Vorrink 

et al., 2017, Ingelman-Sundberg and Lauschke, 2021). It has been reported that 

increasing concentrations (0.25-3 mM) of 2:1 oleic and palmitic acid reduce mRNA 

expression in primary human hepatocytes (Donato et al., 2006, Cobbina and Akhlaghi, 

2017). 

 

CYP3A4 is the most abundant CYP enzyme in the liver and accounts for over 50% of 

drug metabolism (Hewitt et al., 2007). Due to the importance, it plays in the metabolism 

of drugs a number of investigators have studied the enzymes role in NAFLD and to 

date a decrease in expression in steatosis and NASH have been reported in rat 

models (Weltman et al., 1996, Zhang et al., 2007, Hanagama et al., 2008, Osabe et 

al., 2008). Studies have also reported decreases in CYP3A4 in NAFLD patients 

(Weltman et al., 1998, Donato et al., 2006, Donato et al., 2007). It has been reported 

that HepG2 monolayers do not express CYP3A4 but that it is significantly upregulated 

in spheroids after 3 days of culture gradually reaching the highest levels at 12 days of 

culture (Stampar et al., 2020).  

 

Other CYPs have been implicated as changed in NAFLD including CYP1A2, CYP2C8 

and CYP2C9 (Merrell and Cherrington, 2011, Ingelman-Sundberg and Lauschke, 
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2021) however, these were not investigated in the present study. Future work could 

investigate the expression of these CYPs and their role in the progression of NAFLD.  

 

Although both palmitic and oleic acid have been used successfully in this project and 

in the literature to induce steatosis other studies have evaluated different fatty acids. 

A study by Garcia-Ruiz et al., (2015) investigated the effects of oleic acid as well as 

stearic acid on OXPHOS activity in HepG2 cells in which the administration of 200 μM 

oleic acid to HepG2 cells did not show any significant alteration in OXPHOS 

complexes. However, in cells treated with the same dose level of palmitic or stearic 

acid there was decreased enzyme activity of OXPHOS complexes to about 67% 

compared to control (Garcia-Ruiz et al 2015). Future work could therefore increase 

the concentration and type of fatty acid administered in order to induce steatosis 

ranging from the relatively benign state induced by oleic acid alone to the more toxic 

states induced by palmitic and stearic acid. This would allow the progression of 

steatosis to be assessed and determine the effect on metabolite changes within the 

cells as steatosis progresses to NASH. Studies have also investigated many time 

points including 6, 12, 16, 24 and 48 hours in HepG2 cells. This would allow for the 

identification of metabolites which would give a broader overview of the changes that 

occur during the development of steatosis (Gomez-Lechon et al., 2007, Moracova et 

al., 2015, Dave et al., 2018, Kahn and Kahn, 2021). Future work could include the 

administration of different concentrations of fatty acids over different time points to 

further investigate the progression of steatosis to NASH. 
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Chapter Four – Tetracycline induced model of hepatic steatosis 
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Chapter 4 

 

4.1 Introduction  
 

In this Chapter tetracycline was used to develop two models (monolayer and 3D 

spheroids) of drug-induced steatosis in HepG2 cells. Tetracycline is a broad-spectrum 

bacteriostatic drug normally used to treat upper respiratory, skin and soft tissue 

infections (Choi et al., 2015). Although generally considered safe tetracycline-induced 

hepatotoxicity in humans was first described more than 50 years ago (Andrade and 

Tulkens, 2011, Glenn and Feldman, 2011, Abdel-Gelil and Mansour, 2019). While the 

mechanisms by which tetracycline induces steatosis are not fully understood it is 

thought to include the inhibition of β-oxidation and a reduced secretion of triglycerides 

from the liver due to an inhibition of microsomal triglyceride transfer protein (MTTP) 

activity (Breen et al., 1972, Letteron et al., 2003, Dash et al., 2017).  

 

It has been reported that high dose levels of intravenous tetracycline (3g tetracycline 

administered daily for 10 days) can lead to increased lipid accumulation in the liver in 

humans and may result in severe hepatic dysfunction and acute liver failure (Robinson 

and Rywlin, 1970). As a result, tetracycline has been used frequently in the literature 

for the development of steatosis models for research especially in mice and rat models 

(Breen et al., 1975, Freneaux et al., 1988, Chopra and Roberts, 2001, Antherieu et al., 

2011, Donato et al., 2012, Choi et al., 2015, Rabinowich and Shibolet, 2015, Garcia-

Canaveras et al., 2016). The administration of tetracycline has also been shown to 

cause a dose dependent lipid accumulation and steatosis in HepG2 cells (Donato et 

al., 2013, Choi et al., 2015, Garcia-Canaveras et al., 2016).  

 

Studies in mice suggest that tetracycline inhibits β-oxidation by downregulating genes 

involved in fatty acid metabolism pathways including peroxisome proliferator activated 

receptor alpha (PPARα), carnitine palmitoyl transferase I (CPT-I), and fatty acid-

binding protein 1 (FABP- 1) (Satapathy et al., 2015, AlGhamdi, 2019, Di Pasqua et al., 

2022). The impairment of fatty acid beta-oxidation is common for many steatogenic 

drugs and leads to increased extramitochondrial fatty acid oxidation. Thus, promoting 

higher rates of ROS production and lipid peroxidation leading to oxidative stress and 

mitochondrial dysfunction. An increase in ROS formation has been reported in HepG2 
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cells treated with several steatotic drugs including tetracycline confirming its 

mechanism as via the inhibition of beta-oxidation (Donato et al 2009). Accordingly, 

Garcia-Canaveras et al., (2016) demonstrated a decrease in glutathione (GSH) levels 

in HepG2 cells exposed to tetracycline likely to be an antioxidant response to the 

elevated ROS levels. In their study they also reported a decrease in GSH/glutathione 

disulfide (GSSG) ratio as well as an increase in cysteine-glutathione (CSSG) 

suggesting increased ROS formation.  

 

There are only limited published studies using tetracycline in HepG2 cells. However, 

a concentration-dependent lipid accumulation has been reported following single 

doses of tetracycline (Donato et al., 2012). Studies by Antherieu et al., (2011) and 

Garcia-Canaveras et al., (2016) demonstrated that single doses of tetracycline, as low 

as 50 μM, lead to the induction of steatosis. In another study Choi et al., (2015) 

demonstrated that mild steatosis occurs 24 hours after a single dose of tetracycline at 

100 μM. Meanwhile, Donato et al., (2012) observed a concentration-dependent lipid 

accumulation after 24 hours which was significantly different to the control at a dose 

level of 200 μM. In general, the literature agrees that tetracycline induces a 

concentration-dependent increase in lipid accumulation up to a maximum dose level 

of 800 μΜ before cytotoxicity occurs (Donato et al., 2012).  

 

Since the literature mentions a range of dose levels and the fact there are reports of a 

concentration dependent increase in lipid accumulation the first step in this study was 

to determine the best dose levels of tetracycline to use. As mentioned above literature 

suggests that doses exceeding 800 μM may induce cytotoxicity. Therefore, since this 

study wished to develop mild steatosis, without cytotoxicity, it was decided that dose 

levels used would not exceed 800 μM. However, if too low a dose level was selected 

it could result in suboptimal lipid accumulation. Consequently, it was decided to carry 

out an initial dose response study in the HepG2 monolayers.  

 

Once dose levels were confirmed this Chapter then attempted to identify changes in 

the metabolome in response to tetracycline as a means of determining potential 

steatosis biomarkers.  
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As mentioned in previous Chapters there is a great unmet need for non-invasive 

biomarkers and especially for drug-induced steatosis (DIS), (Dash et al., 2017, Lopez-

Riera et al., 2017, Pavlik et al., 2019). To date, few studies have been conducted using 

tetracycline for the evaluation of biomarkers of drug-induced steatosis (Lopez-Riera et 

al., 2017, Pan et al., 2019, Pavlik et al., 2019). However, these studies looked at 

microRNA, protein and inflammatory biomarkers, while the current study will focus on 

metabolite changes. The main findings of previous studies were inhibited fatty acid 

beta-oxidation coupled with mitochondrial dysfunction and oxidative stress. This 

Chapter will build on current knowledge and develop a drug-induced 3D spheroid 

model. There are currently no published studies investigating tetracycline-induced 

steatosis in spheroids.  

 

As described in Chapter 3 HepG2 monolayers have been reported to display lower 

CYP enzyme expression when compared to 3D cell cultures (Mizoi et al., 2020, 

Stampar et al., 2020 and Ingelman-Sundberg and Lauschke, 2021). Although 

dysregulation of the CYP450 enzyme family in dietary induced NAFLD has been 

partially characterised (Rey-Bedon et al., 2022), the effect of drug-induced steatosis 

on these enzymes has not yet been studied. The expression and activity of many CYP 

enzymes have been shown to be altered in dietary-induced steatosis, thus having an 

impact on metabolism of xenobiotics and bioavailability resulting in decreased 

pharmacotherapeutic effect and/or generation of toxic metabolites, and oxidative 

stress (Rey-Bedon et al., 2022).  

 

Therefore, the third objective of this study will be to analyse and compare CYP 

expression following the administration of tetracycline in 2D monolayers and 3D 

spheroids will be evaluated using Western blotting.  

 

 

4.2 Tetracycline study design  

 

Monolayer HepG2 cells were plated in 6-well plates. A dose response study was 

carried out by administrating tetracycline at dose levels of 100, 200, 400, 600 and 800 

μM to HepG2 cells followed by a 24-hour incubation. Six replicates were used for each 

dose level.  

https://www.sciencedirect.com/topics/medicine-and-dentistry/xenobiotic-agent
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For the 3D spheroid model, the HepG2 cells were plated in low attachment 6-well 

plates and grown for 17 days before being dosed with fatty acids at concentrations of 

0, 100 and 600 μM.  
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4.3 Results 
 

4.3.1 Cell viability and cytotoxicity in HepG2 monolayers dosed with tetracycline 

 

To ensure that cell viability was not affected by tetracycline dosing and that the 

concentrations used were not cytotoxic. HepG2 cell viability was assessed using an 

MTS assay as described in Section 2.6 and a lactate dehydrogenase (LDH) assay, as 

described in Section 2.21.  

 

The MTS assay (Figure 4.1) revealed no significant difference in HepG2 cell viability 

at dose levels up to 600 μM tetracycline when compared to the DMSO vehicle control 

(0 μM). At the highest dose level viability fell to 74%, but statistical analysis revealed 

no significance.  

 
 

 
Figure 4.1 HepG2 cell viability in response to increasing tetracycline concentrations as assessed by 
MTS assay. HepG2 cells were treated with tetracycline at concentrations of 0 (DMSO control), 100, 
200, 400, 600 and 800 μM and incubated for 24 hours as described in Section 2.5.2. The MTS assay 
was carried out as described in Section 2.6. The values shown represent the mean of six replicates. 
Error bars represent standard deviation.  

 

The LDH assay (Figure 4.2) also demonstrated no statistically significant increases in 

cell death for all dose levels of tetracycline when compared to the DMSO control. A 

positive control was used in this experiment which represented a cytotoxicity of 100%. 
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Figure 4.2 HepG2 cell death in response to increasing tetracycline concentration assessed by LDH 
assay. HepG2 cells were treated with tetracycline at concentrations of 0 (DMSO control), 100, 200, 400, 
600 and 800 μM and incubated for 24 hours as described in Section 2.5.2. The LDH assay was carried 
out as described in Section 2.21. The value obtained for the positive control represents 100% cell death. 
The values shown represent the mean of six replicates. Error bars represent standard deviation. 

 

4.3.2 Oil Red O staining  
 

To confirm an increase in lipid accumulation in HepG2 cells following tetracycline 

administration and to determine if there was a dose-related response cells were 

stained with Oil Red O.  

 

The images obtained under the light microscope suggested there was a dose-related 

increase in stain uptake up to a dose level of 600 μM (Figure 4.3 A-F). This was 

observed as an increase in the number, size and intensity of cells stained red. 

However, above this dose level (800 μM) the number of red stained clusters appeared 

to be reduced (Figure 4.3 G).  
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Figure 4.3 Light microscope images obtained of HepG2 cells stained with Oil Red O following treatment 
with tetracycline. Cells were dosed with tetracycline at final concentrations of 0 (DMSO control), 100, 
200, 400, 600 and 800 μM and incubated for 24 hours. Cells were stained using Oil Red O as described 
in Section 2.7. A. media only control, B. DMSO control, C. 100 μM, D. 200 μM, E. 400 μM, F. 600 μM 
and G. 800 μM. The arrows indicated lipid accumulation.  

 

4.3.3 Triglyceride assay in the monolayer  
 

Oil Red O staining offered a visual representation of the triglyceride accumulation 

within the cell; however, it was not possible to quantify how much was present. 

Therefore, cell lysates from HepG2 cells treated with tetracycline at the different dose 

levels were analysed using a commercial Triglyceride-GloTM assay kit to quantify 

triglyceride content. As shown in Figure 4.4 there was no significant change in 

triglyceride accumulation at any of the dose levels tested. In addition, the 400 and 800 

μM treated groups had lower triglyceride content when compared to control, which 

could be due to the possible slight decrease in cell viability seen in Figure 4.1, although 

this was not statistically significant. This does correspond to the change in morphology 

observed in Figure 4.3 G.  

 
 
 

A B C 

F E D 

G 
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Figure 4.4 Triglyceride content in HepG2 cells following treatment with tetracycline. HepG2 cells were 
treated with tetracycline at concentrations of 0 (DMSO control), 100, 200, 400, 600 and 800 μM and 
incubated for 24 hours. The triglyceride assay was carried out as described in Section 2.8. The values 
shown represent the mean of six replicates. Error bars represent standard deviation.  

 

4.3.4 Metabolomic analysis in aqueous monolayers cell extracts 

 

In this study aqueous HepG2 cell extracts were collected following 24-hour incubation 

in media supplemented with tetracycline at different dose levels. NMR and multivariate 

analysis were used to determine changes in the metabolite profile in response to 

tetracycline.  

 

Visual inspection of the 1H NMR spectra did not reveal any obvious differences 

between sample groups (data not presented). Therefore, multivariate analysis was 

employed. Firstly, an unsupervised method of analysis, PCA was carried out. A PCA 

model was constructed and the scores plot obtained (Figure 4.5) revealed some 

degree of separation between the different sample groups with the low doses on the 

right-hand side of the scores plot and the high doses on the left. The DMSO control 

samples were mostly located on the right-hand side of the scores plot, although two 

samples from this group were separated from the rest of the group and were negative 

for PC1. The 400 (light blue) and 600 (blue) μM samples were clustered on the left-

hand side of the scores plot with some overlap between the two groups while the 100 

and 200 μM were on the right-hand side. The 800 μM samples were also mostly 

negative for PC1 with the exception of samples 800 μM (2 and 4). Sample 800 μM (2) 
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was located outside the ellipse, however upon inspection of the Hotelling’s plot 

(Appendix Figure 8.6) it was determined that this sample was not an outlier. All 

samples at this dose level were positive for PC2 though.  

 

 
Figure 4.5 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 cells dosed 
with tetracycline at increasing dose levels. Cells were dosed with 0 (DMSO control), 100, 200, 400, 600 
and 800 μM tetracycline and incubated for 24 hours. Aqueous cell extracts were collected, and NMR 
analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. Grey = 
DMSO only control; Yellow = 100 μM; Green = 200 μM; Light blue = 400 μM; Blue = 600 μM; Red = 
800 μM.   

 

As the PCA model did not show defined sample group separation the NMR spectra 

were further analysed using OPLS. The scores plot is shown in Figure 4.6. Similar to 

the PCA plot, the OPLS scores plot does not show clear separation between the 

sample groups along the predictive t[1] axis. The DMSO controls and 100 μM sample 

group were spread across the t[1] axis. The 200 μM sample group were found on the 

left-hand side of the scores plot and the 800 μM group was located on the right. 

However, there remains overlap between the 400 and 600 μM groups in the upper 

right-hand side of the quadrant. Sample 400 μM (3) was separated from the rest of the 

sample group. Significant intragroup variation can be seen in the DMSO control 

samples with all samples spread across the t[1] and t[0] axis.  
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Figure 4.6 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells 
treated with different dose levels of tetracycline. Cells were dosed with 0 (DMSO control), 100, 200, 
400, 600 and 800 μM tetracycline and incubated for 24 hours. Aqueous cell extracts were collected, 
and NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = DMSO only control; Yellow = 100 μM; Green = 200 μM; Light blue = 
400 μM; Blue = 600 μM; Red = 800 μM.   

 

Following OPLS analysis each treated group was then compared directly against the 

control group using OPLS-DA in order to compare changes in metabolites following 

treatment with tetracycline. Consecutive dose levels were also analysed using OPLS-

DA to identify dose related metabolite changes. Each of the OPLS-DA scores plots 

constructed (Figure 4.7) demonstrate good separation in each pair-wise comparison 

along the t[1] predictive axis, with the exception of the comparison between DMSO 

control vs 200 μM. In this scores plot (Figure 4.7 B) DMSO sample (3) was just on the 

right-hand side of the scores plot although fairly central, while the rest of the group 

was located on the left. Otherwise, the control DMSO sample group was located on 

the left side of all plots. Additionally, similar to results obtained from the OPLS 

analyses there was significant intragroup variation along the orthogonal t[0] axis for 

the DMSO control sample group mainly due to control sample 4 (DMSO 4). This 

intragroup variation seemed to be more prominent when the control samples were 

compared against dose levels higher than 200 μM as well as when the treated groups 

were compared against each other. These samples were rephased several times and 

outlier analysis were conducted which confirmed no outliers were present.   
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Figure 4.7 OPLS-DA scores plots derived from 1H NMR spectra of aqueous extracts from HepG2 cells 
dosed with tetracycline at varying dose levels. Cells were dosed with tetracycline at 0, 100, 200, 400, 
600 and 800 μM and incubated for 24 hours. Samples were collected, and NMR analysis was carried 
out as described in Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. A. 
DMSO control vs 100 μM, B. DMSO control vs 200 μM, C. DMSO control vs 400 μM, D. DMSO control 
vs 600 μM, E. DMSO control vs 800 μM, F. 100 vs 200 μM, G. 200 vs 400 μM, H, 400 vs 600 μM, I. 
600 vs 800 μM. Grey = DMSO only control; Yellow = 100 μM; Green = 200 μM; Light blue = 400 μM; 
Blue = 600 μM; Red = 800 μM.   

 

Using the OPLS-DA models in Figure 4.7 VIP predictive and S-plots were generated 

(Appendix Figures 8.7 and 8.8) to determine the metabolite regions in the NMR 

spectra that contributed most to the separation of the two groups in each pair-wise 

comparative scores plot. The VIP predictive plots revealed NMR regions that were 

statistically significant and the regions with a VIP value greater than one are 

highlighted in red in both the VIP and S-plots. S-plots were used to confirm whether 

the peaks within the specific NMR variable regions had decreased or increased for 

groups in each pair-wise comparison.  

 

Following OPLS-DA analysis, a Kruskal-Wallis test was carried out on the integral 

spectral values to investigate if any of the metabolite regions highlighted in the VIP 

were statistically significant between the groups in each pair-wise comparison.  

 

NMR regions that were confirmed as being statistically different were recorded. The 

spectra were further analysed, and the multiplicities of peaks were determined in these 

regions to aid with the identification of metabolites. Many metabolite regions were 

observed to be higher in the 100 and 200 μM groups when compared to control but 

were then decreased at dose levels above 400 μM and significantly decreased at 600 

μM. Examples of some metabolites that followed this trend include isoleucine, lactate, 

alanine, glutamate and homocysteine. Significant metabolite changes that were 

I 
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observed when the 200 and 400 μM treated groups were compared directly included 

decreases lactate, choline and homocysteine (p<0.001). Many significant (p<0.05) 

decreases in metabolites were observed in the comparison between the DMSO and 

600 μM treated group but not at other dose levels. Also, a large number of metabolite 

regions were revealed as significant in the VIP of DMSO versus 800 μM, but it was 

not possible to identify metabolite peaks in these regions.  

 

Table 4.1 Chemical shift regions, and potential metabolites, identified as significantly different in the 
NMR of aqueous extracts from HepG2 cells treated with increasing concentrations of tetracycline when 
compared to control.  

1H shift 
ppm 

Metabolite 
aqueous 

Ctrl 
vs 

100 
μM 

Ctrl 
vs 

200 
μM 

Ctrl 
vs 

400 
μM 

Ctrl 
vs 

600
μM 

Ctrl 
vs 

800
μM 

100 
vs 

200 

200 
vs 

400 

400 
vs 

600 

600 
vs 

800 

0.89-
0.901 
(m) 

 
Acyl groups (CH3) 

↑ 
 

- - ↓* - - - ↓ 
 

- 

0.925-
0.9902 

(m) 

 
Isoleucine, leucine 

↑ 
 

↑ 
 

↓ ↓* - - ↓ 
* 

- ↑ 
 

0.994-
1.057 
(m) 

 
Valine/Isoleucine 

↑ 
 

- ↓ ↓ - - ↓* - ↑ 
 

1.179-
1.215 

(t), 
1.2499-
1.2556 

(s) 

 
 

B-hydroxybutyrate 

- - - ↓* - - - ↓ 
 

↑ 
 

1.31-
1.3406 

(dd) 

 
Lactate, Threonine 

↑ 
 

↑ 
 

↓ ↓** ↓ 
 

↓ 
 

↓ 
*** 

↓ 
 

↑ 
 

1.468-
1.4941 

(d) 

 
Alanine 

↑ 
 

↑ 
 

↓ ↓* - - ↓ 
* 

- ↑ 
 

1.915-
1.922 

(s) 

 
Acetate 

↑ 
 

- - - - - - ↓ 
 

↑ 
* 

1.987-
2.0957 

(m) 

 
Isoleucine, 
Glutamate, 

Homocysteine, SAH, 
Proline 

 

↑ 
 

↑ 
 

↓ ↓* - ↑ 
 

↓ 
** 

- - 

2.0559-
2.191 
(m) 

Glutamate, 
Homocysteine 

↑ 
 

↑ 
 

↓ ↓* ↓ 
 
 

↑ 
 

↓ 
*** 

↓ 
 

↑ 
 

2.33-
2.3819 
(t of d) 

Glutamate, B-
hydroxybutyrate, 

Proline 

↑ 
 

↑ 
 

↓ ↓ ↓ 
 

↑ 
 

↓ 
** 

- ↑ 
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2.3847-
2.3977 

(s) 

 
Succinate, Pyruvate 

- - ↓ ↓* - - - - - 

2.418-
2.478 
(m) 

Glutamine, 
Pantothenic acid 

 

↑ 
 

↑ 
 

↓ ↓* ↓ 
 

↑ 
 

↓ 
*** 

↑ 
 

↑ 
 

2.544-
2.558 

(s) 

 
Citrate 

↑ 
 

↑ 
 

↓ ↓* ↓ 
 

- ↓ 
** 

- ↑ 
 

2.559-
2.573 

(s) 

 
GSH, GSSG 

 

↑ 
 

↑ 
 

↓ ↓* ↓ 
 

- ↓ 
** 

- ↑ 
 

2.669-
2.7001 

(s) 

Methionine, Citrate, 
SAH 

 

↑ 
 

↑ 
 

- - - - - - ↑ 
 

2.708-
2.724 

(d) 

 
Sarcosine 

- - - - - - - - ↑ 
 

2.9425-
2.9527 

(s) 

 
Dimethylglycine 

- ↑ 
 

- - - - - - ↑ 
 

3.0331-
3.0496 

(d) 

Creatine, 
Phosphocreatine, 

Creatinine 

- ↑ 
 

↓ ↓ - ↑ 
 

↓ 
** 

↑ 
 

↑ 
 

3.216-
3.226 

(s) 

Choline, 
Phosphocholine, 
Betaine, TMAO 

 

- ↑ 
 

↓* ↓ ↓ ↑ 
 

↓ 
*** 

↑ 
 

↑ 
 

3.548-
3.5619 

(s) 

 
Glycine, Sarcosine 

 

↑ 
 

↑ 
 

↓ ↓** ↓ - ↓ 
* 

- ↑ 
 

3.734-
3.797 
(m) 

Leucine, Alanine, 
Arginine, Lysine, 

Glutamine, 
Glutamate, GSH, 

GSSG, 
Dimethylglycine, 

Glucose, Cysteine, 
Methylacetate, 

Citrulline 
 

↑ 
 

↑ 
 

↓* ↓** ↓ ↑ 
 

↓ 
*** 

↑ 
 

↑ 
 

3.815-
3.8454 

(m) 

Methionine, 
Homocysteine, (SAH), 
Asparagine, Glucose, 
Cystathionine, Serine 

- - ↓* ↓* - - ↓ 
* 

↑ 
 

↑ 
 

3.9276-
3.9388 

(s) 

Creatine, 
Phosphocreatine, 

Betaine 
 

- - ↓ ↓* - - - - - 

3.9415-
3.9659 

(m) 

 
Serine 

- ↑ 
 

↓* ↓ ↓ ↑ 
 

↓ 
*** 

↑ 
 

↑ 
 

3.984-
3.99 
(m) 

Cystathionine, 
Cysteine, Serine, 

↑ 
 

↑ 
 

↓* - - - - - - 
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Hippurate, Histidine, 
Pantothenic acid 

 

4.087-
4.093 

(s) 

 
Creatine 

↑ 
 

- - - - - - - - 

4.1001-
4.14 (q) 

B-hydroxybutyrate, 
Lactate 

 

↑ 
 

- - - - - - - - 

4.1404-
4.1909 

(m) 

 
Phosphocholine 

 

↑ 
 

↑ 
 

↓* ↓* ↓ ↑ 
 

↓ 
*** 

↑ 
 

↑ 
 

4.2216-
4.2698 

(m) 

 
Threonine 

↓ ↑ 
 

- ↓ - ↑ 
 

↓ 
*** 

↑ 
 

↑ 
 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001) 
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4.3.5 Metabolomic analysis in organic monolayers cell extracts 
 

NMR spectra of organic extracts from HepG2 cells dosed with tetracycline at 0 (DMSO 

control), 100, 200, 400, 600 and 800 μM in this study were also further analysed using 

multivariate analysis.  

 

Initial inspection of the NMR spectra revealed no differences between the control and 

the treated sample groups (data not shown). Therefore, a PCA model was 

constructed, and the resulting PCA scores plot (Figure 4.8) showed the DMSO control 

sample groups on the left-hand side of the scores plot (shown in grey) and therefore 

negative for PC1 with the exception of sample 4 (DMSO 4) which is on the border of 

the ellipse. The spectra for this sample was examined and re-processed and outlier 

analysis was carried out to rule out any experimental or analytical error. However, this 

sample was not found to be an outlier and was therefore included in further analysis. 

The 100 and 200 μM sample groups were spread across the PC1 axis while the 600 

and 800 μM sample groups were mostly clustered in the upper right-hand quadrant, 

with the exception of samples 800 (2 and 3). The 400 μM sample group was spread 

across PC1 between the other sample groups. Large intragroup variation can be seen 

for most sample groups.  

 

 
Figure 4.8 PCA scores plot derived from 1H NMR spectra of organic extracts from HepG2 cells dosed 
with tetracycline at increasing dose levels. Cells were dosed with 0 (DMSO control), 100, 200, 400, 600 
and 800 μM tetracycline and incubated for 24 hours. Organic cell extracts were collected, and NMR 
analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. Grey = 
DMSO only control; Yellow = 100 μM; Green = 200 μM; Light blue = 400 μM; Blue = 600 μM; Red = 
800 μM.   

 

Since the PCA scores plot showed overlap between all sample groups, OPLS models 

were created. The resulting OPLS scores plot (Figure 4.9) demonstrates marginally 
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better group separation along the predictive t[1] axis, however there is still some 

overlap between sample groups. Significant intragroup separation is evident for the 

DMSO control and the 100 and 200 μM sample groups along the orthogonal t[0] axis, 

with sample DMSO (4) just outside the ellipse similar to the PCA.  

 

 
Figure 4.9 OPLS scores plot derived from NMR spectra of organic cell extracts from HepG2 cells treated 
with different dose levels of tetracycline. Cells were dosed with 0 (DMSO control), 100, 200, 400, 600 
and 800 μM tetracycline and incubated for 24 hours. Organic cell extracts were collected, and NMR 
analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot represents 
one sample. Grey = DMSO only control; Yellow = 100 μM; Green = 200 μM; Light blue = 400 μM; Blue 
= 600 μM; Red = 800 μM.   

 

Following OPLS analysis all treated groups were compared against the DMSO control 

group by constructing OPLS-DA plots. Consecutive dose levels were also analysed. 

Good sample group separation was observed in all scores plots along the predictive 

t[1] axis (Figure 4.10).  

  



 188 

 

  

  

  

  

A 

D 

C 

B 



 189 

  

 

 

 

E 

G 

F 

H 



 190 

 
Figure 4.10 OPLS-DA scores plots derived from 1H NMR spectra of organic extracts from HepG2 cells 
dosed with tetracycline at varying dose levels. Cells were dosed with tetracycline at 0, 100, 200, 400, 
600 and 800 μM and incubated for 24 hours. Samples were collected, and NMR analysis was carried 
out as described in Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. A. 
DMSO control vs 100 μM, B. DMSO control vs 200 μM, C. DMSO control vs 400 μM, D. DMSO control 
vs 600 μM, E. DMSO control vs 800 μM, F. 100 vs 200 μM, G. 200 vs 400 μM, H, 400 vs 600 μM, I. 
600 vs 800 μM. Grey = DMSO only control; Yellow = 100 μM; Green = 200 μM; Light blue = 400 μM; 
Blue = 600 μM; Red = 800 μM.   

 

Following analysis of the OPLS-DA models VIP predictive and S-plots were generated 

to determine the metabolite regions contributing most to separation of the groups in 

each pair-wise comparison scores plots (Appendix Figures 8.9 and 8.10). 

 

Spectral regions of interest according to the VIP list were selected and further 

analysed using a Kruskal Wallis analysis to test for statistical significance. The 

characteristics of the peaks in each region were determined to enable metabolite and 

compound identification. Table 4.2 shows general increases in fatty acyl groups, fatty 

acids and cholesterol with increasing dose, however no statistically significant 

changes were observed. Decreases in arachidonic acid compared to the control were 

seen in the 100 and 200 μM treated groups but levels were then increased in doses 

above 400 μM. According to the Kruskal Wallis test a significant increase in 

arachidonic acid was observed when the 400 and 600 μM groups were compared. 

  

I 
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Table 4.2 Chemical shift regions identified as significantly different in the organic extracts of HepG2 
cells treated with different concentrations of tetracycline as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

1H shift 
ppm 

Metabolite 
aqueous 

Ctrl 
vs 

100 
μM 

Ctrl 
vs 

200 
μM 

Ctrl 
vs 

400 
μM 

Ctrl 
vs 

600
μM 

Ctrl 
vs 

800
μM 

100 
vs 

200 

200 
vs 

400  

400 
vs 

600 

600 
vs 

800  

0.826-
0.953(m) 

 

Fatty acyl groups 
and FA 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↓ - ↑ 
 

- 

1.055-
1.112(m) 

 

 
Cholesterol 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↓ - ↑ 
 

- 

1.21-
1.33(s) 

 

 
Cholesterol 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↑ 
 

↓ - ↑ 
 

↓ 

1.56-
1.596(s) 

 

 
ARA 

↓* ↓ ↑ 
 

↑ 
 

↑ 
 

↑ 
 

 
- 

↑* 
 

↓ 

1.7013-
1.721 (s) 

 

Fatty acids 
(EPA) 

- - - ↑ 
 

- ↑ 
 

- ↑ 
 

↓ 

2.004-
2.061 (q) 

 

 
Oleic acid 

- - - - - ↑ 
 

- -  

2.298-
2.365(m) 

 

Acyl groups in 
triglycerides 

- - - - - ↑ 
 

- - - 

4.145-
4.203 (dd) 
 

Glyceryl group in 
monoglyceride 

- - - - - ↑ 
 

- - - 

4.295-
4.33(dd) 

 

Glyceryl group in 
Triglycerides 

- - - - - ↑ 
 

- - - 

5.348-
5.38(m) 

 

FA/MUFA - - - - - ↑ 
 

- - - 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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4.3.6 CYP enzyme expression levels in monolayer HepG2 cells dosed with 
tetracycline 
 

In this study CYP expression in protein extracts of HepG2 cell monolayers dosed with 

varying concentrations of tetracycline were analysed using Western Blotting. Figure 

4.11 shows the blots for CYP2D6, CYP3A4 and CYP2E1. For all blots, beta actin 

(Figure 4.11A) was used to ensure equal levels of cell samples were loaded. The raw 

data showing band intensity was shown in Table 4.3; this was determined using 

densitometry. A dose dependent increase in CYP2E1 was observed. CYP2D6 was 

also increased at all dose levels when compared to the DMSO control, although not 

in a dose dependent manner. CYP3A4 expression appears to be greater in the highest 

dose levels (600 and 800 μM). Time did not permit for repetition of these blots and 

therefore N= 1 which means statistical analysis was not possible.  

 

 

Figure 4.11 Western blot analysis of CYP enzyme expression in HepG2 monolayers dosed with 
tetracycline. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Cells were dosed with tetracycline 
acid at varying concentrations of 100, 200, 400, 600 and 800 μM and incubated for 24 hours as 
described in section 2.5.2. Proteins were collected as described in Section 2.16 and analysed by 
Western blotting as described in Section 2.20.   
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Table 4.3 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 
monolayers dosed with tetracycline relative to the DMSO control. Cells were dosed with tetracycline at 
varying concentrations or 0, 100, 200, 400, 600 and 800 μM and incubated for 24 hours. Proteins were 
collected as described in Section 2.16 and analysed by Western blotting as described in Section 2.20.  

 

Tetracycline concentration (μM) CYP2D6 CYP3A4 CYP2E1 

DMSO control 2244.03 3114.38 2103.49 

100 9659.08 2522.45 3101.64 

200 12889.54 2585.39 2284.15 

400 3835.28 3342.51 3388.64 

600 9519.66 4510.76 5133.54 

800 11125.18 4197.03 5944.95 
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4.3.7 3D spheroid model dosed with tetracycline  
 

HepG2 spheroids were grown for 17 days before being dosed with either a low or a 

high dose (100 and 600 μM) of tetracycline. These doses were chosen based on the 

results of the dose response study in the monolayers since they did not induce 

cytotoxicity. The purpose was to develop a spheroid model of steatosis using 

tetracycline and to analyse changes in the metabolome and CYP expression.  

 

 

4.3.8 Cytotoxicity in spheroids treated with tetracycline 
 

A LIVE/DEAD assay was used to visualise spheroid viability following dosing with 

tetracycline at both 100 and 600 μM after 17 days of growth. In the assay viable cells 

are stained green while non-viable cells are stained red. Figure 4.12 shows the 

confocal microscope images taken for the 100 and 600 μM treated spheroids and the 

DMSO control. No red cells were apparent confirming that spheroids dosed with 100 

and 600 μM of tetracycline (Figure 4.12 B and C) did not cause cell death.  

 
Figure 4.12 Images taken from the LIVE/DEAD assay of spheroids dosed with tetracycline. Spheroids 
were grown in low attachment 6-well plates as described in Section 2.3 and dosed with tetracycline at 
concentrations of 0 (DMSO control), 100 and 600 μM. The LIVE/DEAD assay was carried out as 
described in Section 2.22. A. DMSO control, B. 100 μM tetracycline and C. 600 μM tetracycline. 

 

As the LIVE/DEAD assay only offered a visualisation of cytotoxicity it was decided that 

an LDH assay would be used as it gave a more quantitative measure of cytotoxicity. 

Figure 4.13 confirmed there was no cell death 24 hours after dosing spheroids with 

100 and 600 μM of tetracycline when compared to the DMSO control. A positive 

control was used in this experiment, results of which represented a cytotoxicity value 

of 100%. 
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Figure 4.13 HepG2 spheroid cell death in response to increasing tetracycline concentration assessed 
by LDH assay. HepG2 spheroids were treated with tetracycline at concentrations of 0, 100 and 600 μM 
and incubated for 24 hours as described in Section 2.5.2. The LDH assay was carried out as described 
in Section 2.21. The value obtained for the positive control represents 100% cell death. The values 
shown represent the mean of six replicates. Error bars represent standard deviation.  

 

4.3.9 Triglyceride accumulation in spheroids 
 

Lipid accumulation was assessed in HepG2 spheroids dosed with tetracycline at dose 

levels of 100 and 600 μM by quantification of triglyceride content. The results shown 

in Figure 4.14 revealed that while there was an approximate 15% increase in 

triglyceride content in the two treated groups compared to the control group this was 

not statistically significant.  
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Figure 4.14 Mean triglyceride content in HepG2 spheroids following treatment with tetracycline. HepG2 
spheroids were treated with tetracycline at concentrations of 0 (DMSO control), 100 and 600 μM and 
incubated for 24 hours as described in Section 2.5.2. The triglyceride assay was carried out as 
described in Section 2.8. The values shown represent the mean of six replicates. Error bars represent 
standard deviation.  

 

4.3.10 Metabolomic analysis of aqueous spheroid extracts 
 

HepG2 spheroid sample extracts were collected following a 24-hour incubation in 

culture media supplemented with tetracycline at the two dose levels. Aqueous extracts 

were prepared and analysed by NMR as described in Section 2.10. Multivariate 

analysis was then used to determine changes in the metabolite profile of spheroids in 

response to tetracycline.  

 

Following a visual inspection of the spectra obtained from aqueous spheroid extracts, 

no visible difference were apparent between treated and the control groups (data not 

shown). Therefore, multivariate analysis was applied. An initial PCA scores plot 

revealed that sample 100 (4) fell outside the ellipse. Upon further inspection of the 

Hotelling’s plot this sample was deemed an outlier and removed from further analysis. 

In the subsequent PCA scores plot (Figure 4.15) the DMSO 1 sample then fell outside 

the 95 % ellipse. However, a Hotelling’s T2 plot (Appendix Figure 8.11) confirmed that 

the sample was below the 99 % confidence level which meant it was not an outlier and 

was therefore included in further analyses. The remainder of the DMSO samples were 

negative for PC2 while the 100 and 600 μM treated groups were positive for PC2 with 

the exception of 100 (3). There was slight intergroup separation along PC2. 
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Figure 4.15 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 spheroids 
dosed with tetracycline. PCA scores plot with sample 100 (4) excluded. Cells were dosed with 
tetracycline at 0, 100 and 600 μM and incubated for 24 hours. Samples were collected, and NMR 
analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = DMSO control, dark blue = 100 μM and red = 600 μM.  

 

OPLS, was then used to compare between sample classes. The OPLS scores plot 

(Figure 4.16) demonstrated separation of the different sample groups along the 

predictive t[1] axis. However, some intragroup variation along the t[0] axis was evident, 

mostly for the DMSO control samples. 

 
 

 
Figure 4.16 OPLS scores plot derived from 1H NMR spectra of aqueous HepG2 spheroids extracts 
treated with different doses of tetracycline. Cells were dosed with tetracycline at 0, 100 and 600 μM and 
incubated for 24 hours. Samples were collected, and NMR analysis carried out as described in Sections 
2.10 and 2.12. Each spot on the scores plot represents one sample. Grey = DMSO control, dark blue 
= 100 μM and red = 600 μM. 

 

Following OPLS analysis OPLS-DA were created to assess pairwise differences 

between the individual treated groups and the DMSO control as well as between the 

low and high dose groups. In all OPLS-DA scores plots (Figure 4.17) the control and 
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the treated groups were separated along the t[1] axis. Good separation was also 

observed between the two treated groups (Figure 4.17 C). Orthogonal variation along 

the t[0] axis was apparent in the DMSO control group.  

 

 

 
Figure 4.17 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2 
spheroids dosed with tetracycline. Spheroids were dosed with tetracycline at 0, 100 and 600 μM and 
incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described in 
Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. Grey = DMSO control, 
dark blue = 100 μM and red = 600 μM. A. Control vs 100 μM tetracycline. B. Control vs 600 μM 
tetracycline. C. 100 vs 600 μM tetracycline.  

 

A 

B 
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VIP predictive and S-plots (Appendix Figures 8.12 and 8.13) were generated from the 

OPLS-DA models and were used to determine the NMR regions contributing most to 

the separation of the groups in the OPLS-DA scores plots.  

 

The spectral regions highlighted in the VIP and S-plots were visually inspected on the 

1H NMR spectra to identify the multiplicity of the peaks within these regions. The 

Human Metabolome Database and published literature were used to identify 

metabolites thought to be within these regions. However, it was not possible to identify 

metabolites for all the regions considered to be significant by the VIP and many peaks 

remained unidentified (data not shown). Spectral regions were further analysed using 

a Kruskal Wallis test to determine any statistical significance.  

 

Table 4.4 shows significant increases in many metabolite regions were observed in 

the 600 μM treated group when compared to the DMSO control. These included 

metabolite changes in alanine, glutamate and β-hydroxybutyrate. Decreases in lactate 

were also seen in both treated groups with a significant decrease (p<0.05) seen in the 

600 μM when compared to the DMSO control. Decreases in creatine, phosphocreatine 

and creatinine were also seen in both the 100 and 600 μM treatment groups. Dose 

dependent changes were apparent when comparing the treated groups with the 

control with many of the changes becoming statistically significant with increasing 

dose. For example, decreases in isoleucine and succinate were observed in the 

treated groups; this was significant only in the higher dose group of 600 μM (p<0.001). 
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Table 4.4 Chemical shift regions identified as significantly different in the aqueous extracts of HepG2 
spheroids treated with different concentrations of tetracycline as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

1H shift ppm Metabolite 
aqueous 

Ctrl + 
100uM 

Ctrl 
+600uM 

100 
+600uM 

0.886-0.974 (m) Acyl groups (CH3)  ↑ 
 

↓*** 
 

↓ 
 

0.982-1.05 (m) Valine, Isoleucine ↓ 
 

↓*** 
 

↓ 
 

1.07-1.074(s) Isoleucine ↑ 
 

- - 

1.186-1.214(d) Lysine, Citrulline - - ↓ 
 

1.314-1.479 (d) Lactate, Threonine ↓ 
 

↓* 
 

↓ 
 

1.43-1.47(d) Alanine ↑ 
 

↑*** 
 

↑ 
 

1.805-1.903(m) Lysine, Citrulline ↑* 
 

- ↓ 
 

1.912-1.927(s) Acetate ↑ 
 

- ↓ 
 

1.978-2.107(m) Isoleucine, Glutamate, 
Homocysteine, SAH, Proline 

 

↑* 
 

↓** 
 

↓ 
 

2.115-2.137(m) Methionine, Glutamine, 
GSH, GSSG, Homocysteine, 

Cystathionine 
 

↓ 
 

↓* 
 

↓ 
 

2.23.245(s) Valine ↑** 
 

- ↓ 
 

2.307-2.3815(m) B-hydroxybutyrate, 
Glutamate, Proline 

 

↓ 
 

↑* 
 

↓ 
 

2.416-2.428(s) Pyruvate, Succinate ↓ 
 

↓*** 
 

↓ 
 

2.48-2.545(m) Citrate - ↓* 
 

↓ 
 

3.034-3.049(s) Creatine, Phosphocreatine, 
Creatinine 

↓ 
 

↓** 
 

↓ 
 

3.218-3.231(s) Choline, Phosphocholine, 
Betaine, TMAO 

 

↑ 
 

↓ 
 

↓ 
 

3.257-3.265(m) Arginine, Taurine, Histidine 
 

- ↓ 
 

↓ 
 

3.34-3.35(s) Glucose, Hypotaurine, 
Pantothenic acid 

 

↑ 
 

- ↓ 
 

3.4602-3.494(m) Proline, Taurine, Pantothenic 
acid 

 

↑ 
 

↑ 
 

- 

3.515-3.552 (dd) Glucose, Pantothenic acid 
 

↑ 
 

↓ 
 

- 

3.617-3.629(m) Phosphocholine - ↓ - 
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3.688-3.79 (m) Leucine, Alanine, Arginine, 
Lysine, Glutamine, 

Glutamate, GSH, GSSG, 
Dimethylglycine, Glucose, 
Cysteine, Methylacetate, 

Citrulline 
 

↑ 
 

↓ 
 

↓ 
 

3.815-3.8454 (m)  
 SAH, Asparagine, Glucose, 

Cystathionine, Serine 
 

- ↓* 
 

↓ 
 

3.881-3.9205(m) Homocysteine, Methionine, 
SAH, Cystathionine 

 

↑ 
 

↓ 
 

↓ 
 

3.947-3.959(s) Creatine, Phosphocreatine, 
Betaine  

 

- - ↓ 
 

3.9628-3.991(m) Cystathionine, Cysteine, 
Serine, Hippurate, Histidine, 

Pantothenic acid 
 

- ↓ 
 

- 

4.085-4.137 (q) B-hydroxybutyrate, Lactate,  
 

↓ 
 

↓ 
 

↓ 
 

4.14-4.198(m) Phosphocholine 
 

- ↓** 
 

↓ 
 

6.036-6.06(m) NAD - - ↑ 
 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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4.3.11 Metabolomic analysis of organic spheroid extracts 

 

Organic extracts from HepG2 spheroids were analysed using 1H NMR spectroscopy. 

Visual inspection of the 1D 1H NMR spectra was conducted prior to multivariate 

analysis. In the PCA model (Figure 4.18) sample 100 (3) was located just outside the 

ellipse, but the corresponding Hotelling’s plot confirmed (Appendix Figure 8.14) this 

sample was within the 95 % confidence level and it was therefore included in further 

analyses. The PCA shows many samples were spread across the scores plot with no 

distinct intergroup separation. Large intragroup variation was observed particularly in 

the 600 μM group.  

 

  
Figure 4.18 PCA scores plot derived from 1H NMR spectra of organic extracts from HepG2 spheroids 
treated with tetracycline. Spheroids were dosed at 0 (DMSO control), 100 and 600 μM and incubated 
for 24 hours. Samples were collected, and NMR analysis carried out as described in Sections 2.10 and 
2.12. Each spot represents one sample. Grey = DMSO control, dark blue = 100 μM and red = 600 μM. 

 

OPLS analysis was applied to examine sample class separation. The scores plot 

(Figure 4.19) shows the DMSO control samples were on the left-hand side of the plot 

with some orthogonal separation along the t[0] axis. However, clear group separation 

was not observed as both the 100 and 600 μM treated groups were spread across the 

predictive t[1] axis with large intragroup separation for both groups and intergroup 

overlapping.  

 



 203 

 
Figure 4.19 OPLS scores plot derived from 1H NMR spectra of organic HepG2 spheroids extracts 
treated with tetracycline. Cells were dosed with tetracycline at 0, 100 and 600 μM and incubated for 24 
hours. Samples were collected, and NMR analysis carried out as described in Sections 2.10 and 2.12. 
Each spot on the scores plot represents one sample. Grey = DMSO control, dark blue = 100 μM and 
red = 600 μM. 

 

OPLS-DA was carried out to evaluate pair-wise comparisons. The scores plots in 

Figure 4.20 A and B revealed separation between the DMSO control and each of the 

two treatment groups along the predictive t[1] axis. However, large intragroup variation 

is evident for both treatment groups along the orthogonal t[0] axis. For each pair-wise 

comparison the controls were on the left-hand side of the scores plot while each 

respective treatment group was on the right. 

 

Figure 4.20 C shows the OPLS-DA scores plot constructed to compare the two treated 

groups. Samples 100 (1) and 600 (1) were located on opposite sides of the scores 

plot from their respective sample groups. This meant the separation between the two 

groups along the predictive axis was not distinct. This was also visible in the PCA 

scores plot.  
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Figure 4.20 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2 
spheroids dosed with tetracycline. Spheroids were dosed with tetracycline at 0, 100 and 600 μM and 
incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described in 
Sections 2.10 and 2.12. Each spot on the scores plot represents one sample. Grey = DMSO control, 
dark blue = 100 μM and red = 600 μM. A. Control vs 100 μM tetracycline. B. Control vs 600 μM 
tetracycline. C. 100 vs 600 μM tetracycline.  

 

The OPLS-DA models were then used to identify treatment-related metabolite 

changes using the corresponding VIP and S-plots (Appendix Figures 8.15 and 8.16) 

Spectral regions with a VIP predictive value greater than 1 were highlighted and 

A 

B 

C 
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considered to be significantly different and responsible for the sample separation. 

These variable regions are also highlighted in red in the S-plots.  

  

Following identification of the spectral regions of interest from the VIP and S-plot 

models a visual inspection of these regions on the spectra was conducted to identify 

the multiplicities of the peaks within each region. Using this information metabolites 

were identified using the Human Metabolome Database along with published literature 

and assigned metabolites and compounds are shown in Table 4.5. A Kruskal Wallis 

test was carried out to observe any statistical significance, however, no significance 

was observed for any of the NMR regions in this study. Despite the lack of significance, 

increases in cholesterol were apparent in both treated groups as well as decreases in 

arachidonic acid. Many other metabolite regions were also highlighted in the VIP plots, 

but metabolite identification was not possible.  
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Table 4.5 Chemical shift regions identified as significantly different in the organic extracts of HepG2 
spheroids treated with different concentrations of tetracycline as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

1H shift ppm Metabolite 
aqueous 

Ctrl + 
100 
μM 

Ctrl +600 
μM 

100+600 
μM 

0.826-0.953(m) Fatty acyl groups and FA ↑ 
 

↑ 
 

- 

1.114-1.131(s) Cholesterol  ↑ 
 

- - 

1.2651-1.285(s) Cholesterol ↑ 
 

↑ 
 

↑ 
 

1.5625-1.605(s) ARA ↓ 
 

↓ 
 

↓ 
 

2.008-2.065(q) Oleic acid ↑ 
 

↑ 
 

- 

2.3129-2.365(m) Acyl groups in triglycerides ↑ 
 

↑ 
 

↑ 
 

4.145-4.193(dd) Glyceryl group in 
monoglyceride 

↑ 
 

- - 

5.327-5.414(m) FA/MUFA ↑ 
 

↑ 
 

- 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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4.3.12 CYP enzyme expression levels in HepG2 spheroids dosed with 
tetracycline  
 

Western blotting was used to analyse CYP enzyme expression in HepG2 spheroids 

dosed with tetracycline in this study. Figure 4.21 shows the blots from CYP2D6, 

CYP3A4 and CYP2E1 with beta actin used as the level constituent cell protein to 

ensure equal loading levels of samples. The results in Table 4.6 show the raw data of 

arbitrary units for all enzymes. The results show an increase in CYP2D6 expression 

in the 600 and 800 μM samples. Increased CYP3A4 expression was also observed in 

all dose levels compared to the control. However, CYP2E1 levels were decreased in 

all dose levels when compared to the DMSO control with the lowest expression being 

in the 800 μM samples. However, as N=1 further analysis is required. 

 
Figure 4.21 Western blot analysis of CYP enzyme expression in HepG2 spheroids dosed with 
tetracycline. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Spheroids were dosed with 
tetracycline at varying concentrations of 100, 200, 400, 600 and 800 μM as described in Section 2.5.2.  
Proteins were collected as described in Section 2.16 and analysed by Western blotting as described in 
Section 2.20.  
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Table 4.6 Raw data showing arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 spheroids 
dosed with tetracycline relative to the DMSO control. Spheroids were dosed with tetracycline at varying 
concentrations or 0, 100, 200, 400, 600 and 800 μM as described in Section 2.5.2. Proteins were 
collected as described in Section 2.16.  

Tetracycline concentration (μM) CYP2D6 CYP3A4 CYP2E1 

DMSO control 4160.86 1563.13 16744.02 

100 5817.05 3104.45 14621.86 

200 4856.64 2676.33 6099.49 

400 3899.91 7559.89 5308.83 

600 11747.88 9282.66 11821.02 

800 7766.76 6389.83 6456.85 
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4.4 Discussion 
 

The first objective of this present study was to create in vitro models of tetracycline-

induced steatosis in monolayer HepG2 cells and 3D spheroids. While the majority of 

steatosis and steatohepatitis cases result from dietary causes, it is estimated that 

around 2% of cases are related to drug-induced side effects (Rabinowich et al., 2015, 

Di Pasqua et al., 2022). This form is known as drug-induced hepatic steatosis (DIHS). 

Many drugs have been demonstrated to cause DIHS, including antiarrhythmic drugs, 

anti-epileptic drugs and antibiotics such valproate and tetracycline (Muller and Strula, 

2019, Soret, et al., 2020, Di Pasqua et al., 2022). DIHS has been described as a 

chronic disorder associated with long term exposure to the offending drug (Di Pasqua 

et al., 2022). While there is no data on the exact incidence rates for drug-induced 

steatosis the annual incidences of drug-induced liver injury vary in population-based 

studies from 2.7 to 19.1 cases per 100,000 with approximately 27% of all cases 

presenting with some form of steatosis (Kolaric et al., 2021).  

 

DIHS presents as either microvesicular or macrovesicular steatosis or as drug-

induced steatohepatitis. Drugs such as methotrexate, tamoxifen and cisplatin which 

are associated with macrovesicular steatosis are more often associated with chronic 

and slowly progressive liver injury which is likely to progress to NASH (Pavlik et al., 

2019). However, tetracycline is known to result in microvesicular steatosis; the form of 

steatosis linked with acute liver injury and/or dysfunction such as Reye’s syndrome. 

Microvesicular steatosis is also related to the severe impairment of beta-oxidation and 

as fatty acids are poorly oxidised by the mitochondria this leads to the esterification of 

triglycerides the main lipid form that accumulates in steatosis (Satapathy et al., 2015, 

Kolaric et al., 2022).  

 

To date there are no definitive guidelines for the management of patients with drug-

induced fatty liver disease (DIFLD) (Patel and Sanyal, 2013). There are also no 

specific therapeutic drugs for treating the condition with the only option being the 

discontinuation of the offending drug (Patel and Sanyal, 2013, Blohm et al., 2017). In 

addition, the only way to reliably identify DIFLD is via imaging methodologies or liver 

biopsies, which, as previously discussed, can result in delayed detection. 

Consequently, there is a great unmet need for non-invasive biomarkers that can 

identify drug-induced steatosis and steatohepatitis in clinics as well as during drug 
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development (Pavlik et al., 2019). Therefore, this current study wished to create two 

in vitro drug-induced models of steatosis using tetracycline and identify drug-induced 

biomarkers of steatosis.  

 

Tetracycline is a broad-spectrum antibiotic belonging to the tetracycline family, which 

also includes doxycycline, methacycline and minocycline. As mentioned above the 

tetracycline family has been shown to induce various types of hepatic injury including 

cholestasis, microvesicular steatosis and necrosis (Fromenty et al., 2020). Although 

the number of drugs associated with liver lipotoxicity is large and these include 

amiodarone, methotrexate, tamoxifen and CCl4 the tetracycline model for steatosis 

research has advantages such as lower cost and mild toxicity, thus creating mild 

steatosis (Szalowska et al., 2014, Zhong et al., 2019). Since tetracyclines are widely 

used for the treatment of human and animal infections due to their activity against 

gram-positive and gram-negative bacteria a tetracycline-induced steatotic model is 

relevant to the clinical setting (Willebrords et al., 2015).  

 

Tetracycline induced steatosis was first described over 50 years ago as one of the first 

drugs reported to induce microvesicular steatosis (Willebrords et al., 2015). In humans 

it has been reported that high doses of intravenous tetracycline (3 g tetracycline daily 

for 10 days) can induce fatty liver disease resulting in hepatic dysfunction; however, 

this is reversible once treatment is stopped (Robinson and Rywlin, 1970, Andrade and 

Tulkens, 2011, Glenn and Feldman, 2011, Abdel-Gelil and Mansour, 2019). 

Tetracycline is thought to induce microvesicular steatosis through the inhibition of 

genes involved in fatty acid oxidation such as PPARα, CPT1 and fatty acid binding 

protein 1, thus leading to impaired beta-oxidation (Freneaux et al., 1988, Fromenty et 

al., 1995, Szalowska et al., 2014, Fromenty et al., 2019). Studies have also suggested 

that tetracycline influences many genes associated with fatty acid transport and 

esterification including the fatty acid transporter CD36 and diacylglycerol 

acyltransferase 2 (DGAT2) in HepG2 cells and primary rat hepatocytes (Yin et al., 

2006, Antherieu et al., 2011, Choi et al., 2015, Di Pasqua et al., 2022). Tetracycline 

has also been shown to activate transcription factor 4 (ATF4) and induce ROS 

production via the upregulation of CYP2E1 (Bruning et al., 2014, Di Pasqua et al., 

2022).  
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In the literature tetracycline has been used extensively for the development of 

steatosis models, particularly in rodents (Breen et al., 1975, Freneaux et al., 1988, 

Chopra and Roberts, 2001, Antherieu et al., 2011, Donato et al., 2012, Chou et al., 

2015, Rabinowich and Shibolet, 2015, Garcia-Canaveras et al., 2016). Dose levels up 

to 50 mg/kg in mice have been reported as inducing hepatic steatosis by inhibition of 

beta-oxidation (Breen et al., 1975, Freneaux et al., 1988, Chopra and Roberts, 2001, 

Choi et al., 2015).  

 

Previous studies have also confirmed that tetracycline administration induces dose 

dependent lipid accumulation and steatosis in HepG2 cells (Donato et al., 2013, Choi 

et al., 2015, Garcia-Canaveras et al., 2016). This is also thought to be due to 

impairment of fatty acid oxidation and has been linked to increased extramitochondrial 

fatty acid oxidation, thus promoting higher rates of ROS production and lipid 

peroxidation (Donato et al., 2009, Choi et al, 2015, Garcia-Canaveras et al., 2016).  

 

In their studies, Donato et al., (2009) and Garcia-Canaveras et al., (2016) confirmed 

the induction of steatosis in HepG2 cells using a triglyceride assay kit. They 

demonstrated that tetracycline causes concentration-dependent lipid accumulation 

from a dose level of 50 μM. Both studies also demonstrated via a MTT assay that a 

decrease in cell viability occurs at 800 μΜ and higher. Donato et al., (2012) reported 

significant increases in ROS production at dose levels of 400 and 800 μM following 

single dosing for 24 hours representing a more steatohepatitis model, which ideally 

would be avoided in this study. Nevertheless, studies have tested single doses of 

100 μΜ tetracycline and reported mild steatosis after 24 hours (Donato et., 2009, 

Antherieu et al., 2011, Choi et al., 2015, Garcia-Canaveras et al., 2016). In 

summary, doses below 400 μM are considered to be well tolerated by HepG2 cells 

and induce benign lipid accumulation (Donato et al., 2012, Choi et al., 2015, Garcia-

Canaveras et al., 2016). As cellular models are often much simpler than whole 

organisms it is necessary to dose them with high drug concentrations to observed 

the desired effects. It has been reported that the toxic concentration of tetracycline in 

humans in above 10 μg/ml (22μM) which is around 36 times lower than the toxic 

concentration in cells (800 μM) (Chopra and Roberts, 2001).  
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In this project since various dose levels have been reported to be effective in the 

literature a preliminary tetracycline dose response study (data not shown) was 

conducted to identify dose levels that could induce mild steatosis for a second larger 

metabonomic study. In this preliminary study dose levels of 50, 100, 200 and 400 μΜ 

were used. Oil Red O staining revealed no difference in lipid accumulation in 

tetracycline treated HepG2 cells (data not presented). The study did confirm that the 

NMR metabolomic techniques were able to detect metabolite changes and that cells 

remained viable. However, PCA and OPLS scores plots showed an overlap between 

the 50 μΜ treated group and the controls indicating very little difference at this dose 

level. This lack of separation between the 50 μM treated group and the control in the 

metabolomics data indicated that this dose level was perhaps too low to induce lipid 

accumulation and therefore, it was decided not to test dose levels below 100 μM in 

future studies. Some overlap between the 100, 200 and 400 μΜ treated groups was 

also observed reflecting the results seen in the Oil Red O staining. This preliminary 

metabolomics study showed overlap between all the dose levels results suggesting 

that higher dose levels may be needed to see a difference between control and 

treated. Consequently, in the second dose response study (results presented in this 

Chapter) tetracycline was administered at concentrations of 0, 100, 200, 400, 600 and 

800 μM. 100 μM and 200 μM were included as the low dose groups and dose levels 

of 600 and 800 μM were included even though they are greater than the reported 

tolerable dose of 400 μM (Donato et al., 2012, Garcia-Canaveras et al., 2016). 

 

Since the current study wished to develop models of mild steatosis it was important to 

ensure that the tetracycline dose levels used were not cytotoxic since this was not 

tested in the preliminary study. It was expected that doses of 100 and 200 μM would 

be generally well tolerated by the cells (Choi et al., 2015, Garcia-Canaveras et al., 

2016). Donato et al., (2009) reported that 200 μM was the minimum effective 

concentration for cytotoxicity before significant effects on the cell membrane were 

induced and that 600 μM was the concentration at which there was significant ROS 

generation.  

 

The MTS assay (Figure 4.1) revealed slight decreases in cell viability at 400 μM 

tetracycline from 100% to 96%, however this was not statistically significant. In the 

800 μM treated group cell viability was 75% of control, although this was also not 
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statistically significant. Studies have demonstrated using MTT assays that tetracycline 

has an IC10 of around 800 μM and an IC50 of 1350 μM in HepG2 cells following a 24-

hour incubation (Donato et al., 2009, Garcia-Canaveras et al., 2016). Therefore, some 

decrease in cell viability was expected in the current study at 800 μM. The LDH assay 

revealed no significant cytotoxicity for treated cells compared to the DMSO control at 

all dose levels (Figure 4.2). This confirmed that the doses used were well tolerated by 

HepG2 cells and could be used for future studies. As described in Chapter 3 the 

discrepancy between the results of the MTS and the LDH assay for the 800 μM dose 

is likely because cell proliferation assays such as the MTS cannot differentiate 

between cell proliferation and cell death (Smith et al., 2011).  

 

Oil Red O staining of the HepG2 monolayers after 24-hour incubation in tetracycline 

demonstrated a clear dose-dependent accumulation of lipid up to 600 μM (Figure 4.3). 

However, the number of red clusters were reduced in the 800 μM treated group, this 

was potentially due to possible reduced cell viability as seen in the MTS assay, albeit 

with no significance. Despite the staining results, the triglyceride assay demonstrated 

no significant differences in triglyceride accumulation when the treated groups were 

compared to the control (Figure 4.4). Increased lipid accumulation was expected at 

the dose levels used based on results from other published work. However, as 

discussed in Chapter 3 Oil Red O is a fat-soluble dye used to stain neutral lipids, 

cholesteryl esters and lipoproteins, therefore it is taken up by all lipids. Meanwhile the 

assay only measures free glycerol released from the hydrolysis of extracted 

triglycerides within the samples. For this reason, as discussed in Chapter 3 there are 

limitations with both staining techniques and assay kits meaning a combination of both 

gives a more accurate picture of lipid accumulation. Therefore, the discrepancy seen 

between the Oil Red O staining and the triglyceride assay could be due to the fact the 

Oil Red O staining allows for the visualisation of all lipids in the samples, not just 

triglycerides.  

 

To move forward, the results of the Oil Red O stain were considered as validation of 

the model but since there was not a great increase in lipid accumulation it was 

concluded that the model developed was of mild steatosis. The results of the 

monolayer study were then used to determine appropriate dose levels for the spheroid 

study. The 600 μM dose level was chosen as a high dose due to the reduced cell 



 214 

viability seen in the 800 μM treatment groups and it was decided to avoid this as the 

increased cell-to-cell contact in spheroids is thought to make them more sensitive. As 

100 μM tetracycline displayed some increase in lipid accumulation in the monolayer 

Oil Red O staining it was chosen as the low dose for spheroids.  

 

In this study an MTS assay was conducted on the spheroid samples however, the 

absorbance values were outside the linear range of the assay potentially due to the 

higher cell number in the spheroids as cells continued to proliferate for 17 days. The 

optimum seeding density for the assay as stated in the protocol was between 5000-

10000 cells but HepG2 cells have a doubling time of around 48 hours. A study by 

Chang and Hughes-Fulford (2009) reported that the rate of cell proliferation in 2D and 

3D cultures was not significantly different and reported higher cell numbers in 

spheroids at early time points. However, the rate of cell proliferation decreased over 

time with cell numbers becoming lower and equivalent to those in monolayers by 72 

hours and 6 days, respectively. Over time cell proliferation decreases in HepG2 

spheroids since they consist of three main zones: an outer proliferating rim, a 

quiescent viable zone, and an inner necrotic core (Stampar et al., 2020). Cell 

proliferation is also determined by seeding density with lower initial seeding densities 

having higher proliferation rates (Chang and Hughes-Fulford, 2009, Stampar et al., 

2022). Stampar et al., (2022) reported spheroid proliferation rates of 82% after 3 days, 

which decreased to approximately 68%, 54%, and 13% after 5, 7, and 18 days. At a 

higher initial seeding density cell proliferation decreased to 65.5% after 24 hours 

(Stampar et al., 2022). The current study tested various initial seeding densities from 

5000 cells per well to 40,000. However, following 17 days of growth, regardless of the 

initial cell number, the spheroid cultures continued to grow and therefore exceeded 

the optimum cell number for the MTS assay. Consequently, it was decided to use the 

LDH assay for confirming cell cytotoxicity since it is not limited by cell density and is 

more reliable for measuring cell death. The LDH assay showed zero cytotoxicity at 

both dose levels in the spheroid samples when compared to the DMSO control (Figure 

4.13). Cell viability was also visualised in spheroids using a LIVE/DEAD assay and the 

images taken from this assay also revealed no cytotoxicity (Figure 4.12). These results 

confirm the spheroid models are stable enough to be treated with tetracycline at the 

dose levels used. Following a 24-hour incubation of spheroids in tetracycline with both 

dose levels demonstrated a slightly higher accumulation of triglycerides 
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(approximately 15% in both) when compared to the DMSO control, although these 

were not significantly different (Figure 4.14). Despite this lack of statistical significance 

this could suggest very mild steatosis.  

 

Although rodent models of tetracycline induced steatosis are well established there is 

a lack of in vitro models and more specifically for drug-induced steatosis or steatosis 

in HepG2 spheroids. Tetracycline-induced steatosis has been investigated in HepG2 

monolayers and has been previously administered to 3D primary hepatocytes and 

HepaRG spheroid models to investigate cholestasis and identify the underlying 

mechanism of drug-induced liver injury (Hendriks et al., 2016). It has also been used 

in co-culture models with primary hepatocytes, functionally active Kupffer cells (KCs), 

stellate cells (SCs), and liver sinusoidal endothelial cells to assess drug-induced liver 

diseases including steatosis (Li et al., 2020A, Nudischer et al., 2020). Despite the 

wide-spread use in research there are yet no studies describing its effects in HepG2 

spheroids. Therefore, this current study offers a novel model for the discovery of early 

biomarkers of tetracycline-induced steatosis which could aid diagnosis before 

progression to NASH. In this study the spheroid and monolayer experiments 

demonstrated mild tetracycline-induced steatosis and lack of cytotoxicity, thus making 

these models suitable for biomarker studies.  

 

The subsequent experiments described in this Chapter were designed to analyse 

changes in the metabolome of cellular extracts from both the monolayer and spheroids 

as means of detecting potential biomarkers. The PCA scores plots created for both 

the aqueous and organic monolayers (Figures 4.5 and 4.8) did not show clear 

separation between the sample groups. However, there was better group PCA 

separation for the spheroids (Figures 4.15 and 4.18) which could suggest tetracycline 

was having a greater dose-related response in spheroids. OPLS scores plots for 

spheroids further improved the group separation along the t[1] axis. However, while 

the OPLS scores plots for the monolayers (Figures 4.6 and 4.9) showed better group 

separation than the PCA scores plot there was still some overlap. This would suggest 

a lack of dose-related response in the monolayers. 

 

Also, in the monolayer analysis large intragroup variation was observed for the control, 

100 and 200 μM treated groups along the orthogonal t[0] axis in both the organic and 
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aqueous extracts. However, intragroup variation was observed in all models across 

this project which was expected as cell cultures are affected by biological factors 

(Badrick, 2021, Frank, 2021, Reddin et al., 2023). For example, every time cells divide 

there is a risk that factors such as random mutations or transcription errors occur, 

although this is rare (Frank, 2021). In addition, small sample sizes were used in these 

experiments which even with strict parameters regarding cell numbers for assays, 

absence of contamination and sourcing of reagents data variability is still likely to occur 

if there is slightly unequal cell count in each well (Badrick, 2021, Reddin et al., 2023). 

This may occur since seeding is conducted manually. The use of small sample sizes 

is common for metabolomics studies, due to the scale of the experiments, despite 

some studies recommending the use of 100 samples (Gorsuch, 1983, Hatcher, 1994, 

Shaukat et al., 2016). However, this number would not be feasible in terms of culture 

time, facilities and collecting samples.  

 

In the current study, regardless of the lack of dose response in the monolayers, and 

the large intragroup variation, group separation was observed along the predictive t[1] 

axis in the OPLS-DA models. Therefore, metabolite peaks contributing to these 

separations were identified. Both the monolayer and spheroids displayed changes in 

the same metabolites following incubation with tetracycline (Tables 4.1, 4.2, 4.4 and 

4.5) including increases in cholesterol and fatty acyl groups, again suggesting possible 

steatosis. Decreases were also observed for TCA cycle metabolites such as citrate at 

dose levels above 400 μM. Decreases in choline, phosphocholine and betaine were 

also observed in both models. Changes in these metabolites are implicated in the 

progression of steatosis indicating lipid accumulation in the monolayers. This supports 

the Oil Red O assessment of lipid accumulation and casts further doubt on the 

triglyceride assay results.  

 

As observed in the fatty acid study described in Chapter 3 metabolite changes related 

to the methyltransferase reactions were noted in both models (Tables 4.1 and 4.4). 

These included dose dependent decreases in choline and phosphocholine in the 

spheroid samples. Choline is an important precursor of phosphatidylcholine (PC) in 

the phosphatidylethanolamine N-methyltransferase (PEMT) pathway (Piras et al., 

2022). PC is an essential component in the synthesis of VLDLs and is therefore vital 

for the secretion of triglycerides from the liver. The process begins with the hydrolysis 
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of PC to produce phosphocholine and diacylglycerol with diacylglycerol undergoing 

acylation to produce triglycerides utilising choline. Therefore, depletion of both in the 

presence of increased fatty acids could explain the decreases in choline and 

phosphocholine seen in this study (Van der Veen et al., 2012, Payne et al., 2014, 

Sherriff et al., 2016). Studies in animals have confirmed that choline deficiency in 

animals significantly impairs the production and secretion of VLDLs from the liver by 

inhibiting the synthesis of phosphatidylcholine (Vance et al., 2008, Rinella et al., 2008, 

Lee et al., 2019, Alves-Bezerra and Cohen, 2017, Piras et al., 2022). In the absence 

of phosphatidylcholine fat droplets accumulate in the liver (Jha et al., 2014, Chiba et 

al., 2016, Piras et al., 2022). However, to date there are no studies looking at choline 

in drug-induced steatosis, making it difficult to determine why choline is decreased in 

this study.  

 

The PEMT pathway plays a very important role in the development of steatosis. 

Studies have demonstrated that PEMT−/− knockout mice fed a diet high in fat and 

sucrose rapidly develop hepatic steatosis, inflammation, and fibrosis (Zhu et al., 2003, 

Waite et al., 2002, Piras et al., 2022). In humans inhibition of the PEMT pathway 

impairs phosphatidylcholine synthesis and is associated with increased risk of NAFLD 

(Song et al 2005, Bale et al., 2019, Piras et al., 2022). Under normal conditions, the 

PEMT pathway produces 30% of the total PC in the liver while the remainder is 

synthesized via the Kennedy (CDP-choline) pathway in the presence of choline 

(Gibellini and Smith, 2010). However, when dietary choline supply is limited the PEMT 

pathway becomes critical since it is the sole source of endogenous choline for 

maintaining sufficient supply of PC in the liver (Payne et al., 2014, Sherriff et al., 2016). 

In the in vitro experimental situation choline is provided in cell culture media therefore, 

there should be sufficient supply for the cells. However, choline uptake may be 

decreased in the cells due to tetracycline treatment. Although the literature has not 

commented on this in drug-induced models a study by O’Dwyer et al (2020) reported 

that HepG2 cells treated with a mixture of fatty acids display a decrease in choline 

uptake along with a decrease in total protein content of the choline transporter-like 

protein 1 (CTL1), the reduction of other choline transporters and other CDP-choline 

pathway enzymes. Therefore, it is possible tetracycline is having an effect on choline 

transporters, thus reducing choline uptake by the cells. Although, decreases in choline 

have not been previously reported in tetracycline induced in vitro models. 
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Reduced PEMT expression may also contribute to the progression of NAFLD to 

NASH, particularly in individuals who are not meeting their daily dietary choline needs 

as a result of the increased accumulation of fatty acids in the liver (Piras et al., 2022).   

Since choline plays a major role in mitochondrial membrane integrity, decreased 

choline levels can lead to impaired mitochondrial bioenergetics and altered beta-

oxidation. This has been observed in rats fed a methionine-choline deficient diet 

(Teodoro et al., 2008, Serviddio et al., 2011, Corbin and Zeisel, 2012, Li et al., 2017, 

Lee et al., 2019) which is one of the most common models used to study NASH (Corbin 

and Zeisel, 2013, Jha et al., 2014, Sherriff et al., 2015, Imbard et al., 2015). Methionine 

plays a crucial role in the synthesis of SAM and glutathione, two important antioxidants 

(Lu, 2000, Rinella et at., 2008, Lee et al., 2019).  

 

Despite the relatively mild steatosis caused by tetracycline in the current models, 

significant decreases (p<0.05) in methionine in the 400 and 600 μM treated groups in 

the monolayer (Table 4.1) and in the 600 μM spheroid group were recorded (Table 

4.4). Therefore, both methionine and choline were decreased in this study and the 

effects of this could be reflective of a methionine-choline deficiency.  

 

There were also decreases in peaks thought to be s-adenosylhomocysteine (SAH). 

SAH is produced from the demethylation of SAM converting methionine to SAH and 

homocysteine (Zhang et al., 2016, Werge 2021). It has been reported that some drugs 

such as methotrexate can affect methylene tetrahydrofolate reductase, the enzyme 

which catalyses the generation of methionine to homocysteine thus decreasing 

methionine levels (Desouza et al., 2002, Pandit et al., 2017). This results in a decrease 

in methionine and SAH and subsequently an increase in homocysteine is observed 

due to decreased utilisation in the cycle (Pacana et al., 2015, Pandit et al., 2017). An 

increase in homocysteine was not observed in this study; but this could be because it 

shares spectral regions with several other metabolites including glutamine, glutathione 

and cystathionine. To confirm the absence or presence of homocysteine in this study 

future work could spike samples with a homocysteine standard.  

 

In this present study metabolites associated with the TCA cycle and glycolysis 

including lactate, alanine, citrate and succinate were altered (Tables 4.1 and 4.4). 

Peaks for these metabolites were elevated in the 100 and 200 μM treated groups in 
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the monolayer samples when compared to control but were lower at doses of 400 μM 

and above. In the spheroid model a decrease in peaks thought to be succinate and 

lactate was observed at both dose levels which was significant (p<0.001 and p<0.05 

respectively) at the high dose. Alanine appeared to be increased at both dose levels 

but was only significant (p<0.001) in the 600 μM treated group. Alanine levels are 

closely related to glucose utilisation and the changes observed in this study suggest 

that glycolysis and glycogenolysis are upregulated. As tetracycline is a known inhibitor 

of beta-oxidation an increase in the levels of these metabolites observed in the 

monolayers at low dose levels and spheroids could indicate an increase in glycolytic 

activity within the cells. Studies conducted in mice have suggested that the 

administration of drugs including methapyrilene, acetaminophen and CCl4 can lead to 

an increase in glycolysis and glycogenolysis due to mitochondrial dysfunction and 

disrupted beta-oxidation (Craig et al., 2003, Zira et al., 2013, Dargue et al., 2020). 

Additionally, a study by Chen et al., (2018A) reported that emodin, a naturally 

occurring anthraquinone derivative, increased glycolytic activity and reduced 

gluconeogenesis in HepG2 cells. This also backs up the hypothesis that cells switch 

to glycolysis in times of oxidative stress as a protective process to compensate for the 

loss of ATP coming from beta-oxidation (Chan et al., 2018, Dargue et al., 2020). 

However, an increase in glycolysis has not been specifically reported in HepG2 cells 

treated with tetracycline.  

 

In this current study although the metabolomics analyses indicate an increase in 

glycolytic activity in the cells at the lower dose levels, lactate, alanine and other TCA 

cycle metabolites are lower than control at doses of 400 μM and above. Although 

these specific metabolite changes have not been mentioned in previous studies the 

decreases observed could be related to increased oxidative stress since this has been 

reported at dose levels above 400 μM (Donato et al., 2009, Donato et al., 2012). 

Although not significant the slight decreases in cell viability seen in the MTS assay at 

400 and 800 μM monolayer samples could back up this proposed hypothesis. 

 

Drugs that induce steatosis and steatohepatitis primarily interfere with mitochondrial 

respiration, beta-oxidation or both. As the two pathways are metabolically interlinked, 

drugs affecting one pathway invariably affect the other. Thus, when hepatic 

mitochondrial β-oxidation is severely inhibited, fatty acyl-CoA β-oxidation is impaired 
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leading to increases in fatty acyl-CoA and non-esterified fatty acids, which are 

converted into triglycerides (Satapathy et al., 2015, Kolaric et al., 2022).  

 

This effect was observed in the current study in organic cell extracts whereby 

increases in peak regions corresponding to acyl groups of triglycerides were evident 

in both models (Tables 4.2 and 4.5). A study by Donato et al., (2009) reported that 

treatment of HepG2 cells with tetracycline does induce mitochondrial membrane 

depolarisation. Such mitochondrial dysfunction can lead to an impairment of the 

respiratory chain with decreased ATP levels and increased oxidative stress. This in 

turn could potentially lead to a decrease in metabolites associated with aerobic 

respiration and may explain why metabolites such as succinate, lactate and citrate 

were decreased at higher dose levels. All of this points to some degree of 

mitochondrial dysfunction and oxidative stress at these dose levels. 

 

It has also been suggested that tetracycline plays a role in the progression of steatosis 

by enhancing oxidative stress through activating the transcription factor 4 (ATF4) and 

inducing ROS generation via CYP2E1 upregulation (Di Pasqua et al., 2022). The 

Western blots in this study do suggest an increase in CYP2E1 expression with 

increasing dose level in the monolayers but a decrease was observed in the spheroids 

(Tables 4.3 and 4.6).  

 

A further indicator of oxidative stress in this study was the decreased levels of GSH 

and GSSG in both models at doses above 400 μM. Whereas, the 100 and 200 μM 

groups in the monolayer appeared to have increased levels of these metabolites. In 

animal studies glutathione levels initially increase as steatosis is developing before a 

progressive decrease and depletion is observed as the disease worsens (Yang et al., 

2000, Grattagliano et al., 2008, Vairetti et al., 2021). The initial increase in glutathione 

in rats is likely an antioxidant response for the prevention of lipid and protein oxidation. 

It has also been shown that gene expression associated with glutathione is enhanced 

at early stages (Lee et al., 2008, Vairetti et al., 2021). In addition, a disruption in redox 

homeostasis is a common effect in many drug-induced models of steatosis. The ratio 

of glutathione to reduced glutathione (GSH/GSSG) is the principal redox buffer within 

cells and changes to this ratio are associated with early oxidative damage (Yuan et 

al., 2009, Carretero et al., 2014, Garcia-Canaveras et al., 2016). Garcia-Canaveras et 
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al., (2016) observed a dose-dependent decrease in GSH/GSSG ratio in HepG2 cells 

dosed with hepatotoxic drugs including tetracycline. Decreases in these metabolites 

may have occurred in both models however, these metabolites share spectral regions 

with several others and therefore definitive identification was not possible. Future work 

could include spiking samples with metabolite standard to confirm their presence and 

determine a possible decrease in ATP levels using a commercial assay kit.  

 

In this study many NMR regions from the aqueous extracts thought to be important for 

sample group separation remain unidentified. Future work could implement the use of 

mass spectroscopy to help with identification. Nevertheless, the aqueous metabolite 

changes that have been identified indicate changes between controls and treated 

groups potentially due to steatotic changes in the cells.  

 

Organic metabolites from both the monolayer and the spheroid models dosed with 

tetracycline were also examined in this study (Tables 4.2 and 4.4). Similar metabolite 

changes to those seen in the fatty acid-induced model (Chapter 3) were observed. 

These included changes in cholesterol, fatty acyl groups and arachidonic acid.  

 

A decrease in peaks at 1.5625-1.605 ppm due to arachidonic acid (ARA) a 

polyunsaturated fatty acid was observed in the 100 and 200 μM treated group in the 

monolayer and in both spheroid groups. Wang et al., (2011) also reported a decrease 

in polyunsaturated fatty acids (PUFA) including arachidonic acid in mice fed both a 

high fat diet and CCl4. They also suggested that the decrease in PUFA could be a 

compensatory response to progressing NAFLD. Fatty acids are precursors for 

eicosanoids which are oxidised derivatives of PUFAs formed by the cyclooxygenase 

(COX), lipoxygenase (LOX) and cytochrome P450 pathways.  They play a role in the 

amelioration of hepatotoxicity by decreasing inflammation but can also have pro-

inflammatory effects (Nebert et al., 2008, Wang et al., 2011, Calder, 2020, Shoieb et 

al., 2020). Arachidonic acid is released from membrane phospholipids by 

phospholipase A2 and from phosphatidylinositol bisphosphate by phospholipase C. It 

is then converted to prostaglandins by cyclooxygenase which may act as an integral 

mediator in inflammatory reactions and in the pathogenesis of several conditions such 

as cardiovascular and liver diseases (Di Marzo, 1995, Das et al., 2006, Wang et al., 
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2011, Shoieb et al., 2020). It is possible that increased utilisation of arachidonic acid 

contributes to the decrease in levels seen in NAFLD (Wang et al., 2011). 

 

Similar to the fatty acid-induced model (Chapter 3) increases in cholesterol were 

observed in all treated groups in this study (Table 4.2 and 4.5), as would be expected 

in a steatotic model. In a previous study the administration of tetracycline to rats for 7 

days significantly increased triglycerides and LDL-cholesterol by 186.1 % and 81.3%, 

respectively when compared to the control group (Santhosh et al., 2006, Shabana et 

al., 2012). Increases in cholesterol have been reported for other steatosis inducing 

drugs including tamoxifen and amiodarone as a result of decreased VLDL secretion 

(Antherieu et al., 2011, Rabinowich and Shibolet, 2015). Increases in cholesterol have 

also been observed in animal models treated with amiodarone and tetracycline (Choi 

et al., 2015, Rabinowich and Shibolet, 2015, Di Pasqua et al., 2022). Antherieu et al., 

(2011) also demonstrated increases in lanosterol synthase, an intermediate in 

cholesterol biosynthesis, in HepaRG cells treated with tetracycline for 14 days 

representing an indirect mechanism of phospholipidosis. Several metabolite regions 

were also observed as significant in the metabolomic analysis of organic extracts; 

however, metabolite identification was not possible.  

 

In this Chapter CYP2D6, CYP2E1 and CYP3A4 expression levels were also analysed 

in protein extracts obtained from monolayer and spheroids dosed with tetracycline. 

The purpose was to observe the effects of tetracycline on CYP expression levels with 

increasing dose and to compare expression in spheroids to monolayers. Many 

previous studies have observed lower CYP expression in HepG2 monolayers 

compared to spheroids (Mizoi et al., 2020, Stampar et al., 2020 and Ingelman-

Sundberg and Lauschke, 2021). However, the results from this study suggest that 

CYP enzyme expression was similar in monolayers and spheroids possibly negating 

the argument that monolayers are less relevant to the in vivo state.  

 

Alterations in CYP expression have been well documented during NAFLD in vivo and 

in vitro with studies generally reporting increased CYP2E1 along with decreases in 

CYP3A4 and CYP2D6 (Sukkasem et al., 2020). Few published studies have 

documented the effects of tetracycline on CYP expression. Despite N equalling 1 in 

the present study expression was generally higher in the treated compared to the 
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DMSO control in both the spheroids and the monolayer samples. However, such 

changes have not been reported in the literature.   

 

Members of the P450 enzyme family participate in the generation of oxidative changes 

in drug-induced fatty liver via increased production of the free oxygen radical H2O2. In 

the context of hepatic steatosis, CYP2E1 and CYP3A4 are involved in the metabolism 

of long chain fatty acids (Satapathy et al., 2015). As discussed in Chapter 3 CYP2E1 

is a source of nitro-oxidative stress and is responsible for oxidising a variety of small 

molecules including fatty acids and thereby initiate lipid peroxidation. In this study a 

dose dependent increase in CYP2E1 was observed in the monolayer cells while, 

decreases were observed in the spheroid samples. Therefore, it is unclear what effect 

tetracycline is having on CYP2E1 expression and further work is needed to validate 

this.  

 

In this study CYP3A4 expression was decreased in the 100 and 200 μM monolayer 

samples when compared to control but then increased in the higher doses which could 

mean higher doses of tetracycline increase CYP3A4 expression. CYP3A4 is controlled 

by the transcription factor PPARα which governs gene expression and is involved in 

intracellular fatty acid disposal (Kersten et al., 1999). Alterations of PPARα play an 

important role in the development of steatohepatitis and in a decrease of CYP3A4 

expression. Tetracycline is known to inhibit beta-oxidation by downregulating genes 

involved in the pathway including PPARα (Satapathy et al., 2015, AlGhamdi, 2019, Di 

Pasqua et al., 2022), thus potentially decreasing CYP3A4 expression. Yasuda et al., 

(2015) demonstrated that tetracyclines at concentrations of 10 and 50 μM induce 

significant increases in CYP3A4 mRNA which could increase expression. General 

increases in CYP3A4 were also observed in the spheroid models. The Western blot 

results in this study are not entirely consistent with the literature. Also, no repeat blots 

were completed due to time constraints of the project. Therefore, further work is 

needed to fully understand the effect of tetracycline on CYP expression in both 

monolayers and spheroids.  
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Chapter Five- Valproate induced steatosis in HepG2 cells 
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Chapter 5  

 

5.1 Introduction  
 

In the previous Chapter (Chapter 4) tetracycline was administered to monolayer 

HepG2 cells and 3D spheroids to create in vitro models of drug-induced steatosis.  

The data presented in Chapter 4 agreed with published work that tetracycline caused 

some steatosis. However, there are many drugs reported to induce steatosis  

via different mechanisms. Thus, evaluating multiple drug-induced models for the 

identification of biomarkers of steatosis would provide greater specificity and 

sensitivity for the detection of early stages of NAFLD.  

 

In this current Chapter two models of hepatic steatosis (monolayers and 3D spheroids) 

in HepG2 cells were developed using valproate. Valproate (VPA) is a broad-spectrum 

anti-epileptic drug which has been widely prescribed to humans for the treatment of 

convulsions, migraines and bipolar disorders (Chateauvieux et al., 2010, Bai et al., 

2017, Rahman and Nguyen, 2021). It has been a first-line therapy in the treatment of 

epilepsy for more than 30 years. However, valproate is linked to various adverse drug 

reactions, including hepatotoxicity, obesity and bone marrow suppression 

(Tsiropoulos et al., 2009, Bai et al., 2017, Xu et al., 2019A). Consequently, there has 

been widespread global concern surrounding the regular exposure to the drug (Zhang 

et al., 2014).  

 

Valproate is known to induce mild steatosis (Szalowska et al., 2014) but has a delayed 

onset in humans ranging from weeks to months and in some cases years following 

the initial exposure, and is also dose dependent (Mnif et al., 2016, Pirozzi et al., 2019). 

Studies that report valproate-induced steatosis following prolonged exposure times 

claim that this makes it harder to predict in patients (Luef et al., 2009, Farinelli et al., 

2015, Mnif et al., 2016, Pirozzi et al., 2019). However, the liver injury is frequently 

resolved with dose reduction or drug discontinuation. Approximately 61% of patients 

treated with valproate have been diagnosed with hepatic steatosis mostly by 

ultrasound examination and nearly 25% of patients show progression which increases 

the risk of NASH and cirrhosis (Luef et al., 2009, Zhang et al., 2014, Farinelli et al., 
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2015). Increased lipid accumulation in liver was reported by Luef et al., (2009) in a 

population who had been taking valproate for at least 2 years, and by Xu et al., (2019) 

in patients who had been taking valproate for at least 2 months. In rodent models it 

has also been reported that after dosing with 100, 150, 250 and 500 mg/kg per day 

valproate caused significant lipid accumulation (Zhang et al., 2014, Jutric et al., 2022).   

 

The mechanisms behind valproate-induced hepatotoxicity have been studied for many 

years but are not yet fully understood (Zhang et al., 2014, Komulainen et al., 2015, 

Bai et al., 2017, Gai et al., 2020, Yan et al., 2021). However, it is known that all types 

of valproate related hepatotoxicity feature mitochondrial injury, oxidative stress, and 

microvesicular steatosis with varying degrees of inflammation and cholestasis (Gai et 

al., 2020). Microvesicular hepatosteatosis is typical and it has been suggested that 

impairment of fatty acid beta-oxidation plays a central role in the accumulation of 

triglycerides and the development of lactic acidosis (Pirozzi et al., 2019, Yan et al., 

2021). However, it is not clear whether mitochondrial injury and oxidative stress are 

secondary to the lipid accumulation or are primary events in the onset of the liver 

injury. In addition, upregulation of the proliferator-activated receptor gamma (PPARγ) 

and cluster of differentiation 36 (CD36) dependent lipid uptake in response to 

valproate in primary hepatocytes have also been demonstrated (Komulainen et al., 

2015, Bai et al., 2017, Yan et al., 2021).  

 

Valproic acid is metabolized by both phase-I and phase-II enzyme systems as well as 

fatty acid β-oxidation. Cytochrome P450 enzymes including CYP2A6, CYP2B6, 

CYP2C9, and CYP3A5 are involved as well as UDP-glucuronyltransferase enzymes 

(Bennett and Shad, 2021). The main metabolite formed, valproyl-CoA, can inhibit 

hepatic carnitine palmitoyl-transferase (CPT) 1A, a pivotal enzyme in mitochondrial 

fatty acid beta-oxidation in vivo and in vitro (Mnif et al., 2016, Pirozzi et al., 2019). 

Valproyl-CoA can also cause depletion of intra mitochondrial CoA affecting fatty acid 

β-oxidation and lead to reduced ATP production (Mnif et al., 2016). Although both 

valproate and tetracycline affect fatty acid beta-oxidation the mechanisms through 

which they cause lipid accumulation are slightly different. While tetracycline 

downregulates genes involved in beta-oxidation, valproate has an effect on enzymes 

associated with beta-oxidation and upregulates proteins associated with lipid 

accumulation. Therefore, the evaluation of valproate alongside the tetracycline model 
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in Chapter 4 enables comparison of differing mechanisms of drug-induced steatosis 

(DIHS) and their impact on metabolites.  

 

Single doses between 0.5-5 mM of valproate have been previously used for 

development of in vitro models of steatosis using HepG2 cells and FL83B cells (Chang 

et al., 2016, Bai et al., 2017, Yan et al., 2021). Yan et al., (2021) demonstrated using 

Oil Red O staining and a triglyceride assay kit increased lipid accumulation in HepG2 

cells following a single dose of valproate at 2 mM after a 24-hour incubation period. 

They also reported a significant increase in lipid accumulation in cells dosed at 1 and 

2 mM after 48 hours, this was greater than in the 24 hours however, cell viability 

decreased. In another study, Bai et al., (2017) confirmed that incubating HepG2 cells 

in 1, 2.5 and 5-mM valproate for 24 hours resulted in a concentration-dependent 

increase in intracellular lipids, and this was further enhanced when the incubation time 

was extended to 48 hours. Other studies in HepG2 cells have reported 2 mM as the 

highest dose level before mitochondrial activity is affected by the drug (Komulainen et 

al., 2015, Pirozzi et al., 2019, Yan et al., 2021). Thus, the literature shows quite a wide 

range of dosing concentrations following a single dose but does confirm that valproate 

is useful for in vitro studies of steatosis.  

 

In this Chapter the objective was to create two valproate-induced steatosis models: in 

HepG2 monolayer and 3D spheroids. An initial dose response study ranging from 0.5-

4 mM in the monolayer cells was conducted to test efficacy in creating mild steatosis 

and cytotoxicity.  

 

In the literature in vivo and in vitro studies have used omics techniques to assess 

mechanisms of valproate induced steatosis and to measure various lipid biomarkers 

(Tong et al., 2005, Cuykx et al., 2018A, Xu et al., 2019A, Shnayder et al., 2023). Cuykx 

et al., (2018A) used liquid chromatography and accurate mass-mass spectrometry 

(LC-AM/MS) metabolomics to profile steatosis progression through toxicological 

fingerprinting in HepaRG cells. Xu et al., (2019) conducted lipidomic profiling in 

children treated with valproate for at least two months and found increased hepatic 

triglyceride accumulation and disrupted hepatic gene expressions involved in lipid 

metabolism and the Akt-PPARγ pathway. Tong et al., (2005) investigated lipid 

peroxidation biomarkers in rats and found decreases in beta-oxidation metabolites as 
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well as increases in lipid peroxidation markers indicating that valproate treatment can 

induce oxidative stress. However, there are no studies focussing specifically on 

biomarkers of mild steatosis and no NMR metabolomics studies of HepG2 monolayer 

or spheroid cells dosed with valproate. Therefore, the current study will identify 

changes in the metabolome of both models using NMR spectroscopy and multivariate 

statistical analysis in search of potential biomarkers of steatosis. CYP enzyme 

expression will also be assessed in both monolayers and spheroids as it has been 

suggested CYP expression is higher in spheroids.  

 

 

5.2 Valproate study design 

 

Monolayer HepG2 cells were plated in 6-well plates. A dose response study was 

carried out by administrating tetracycline at dose levels of 0.5, 1, 2 and 4 mM to HepG2 

cells followed by a 24-hour incubation. Six replicates were used for each dose level.  

 

For the 3D spheroid model, the HepG2 cells were plated in low attachment 6-well 

plates and grown for 17 days before being dosed with fatty acids at concentrations of 

0, 1 and 4 mM.  
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5.3 Results  
 

5.3.1 Cell viability and cytotoxicity in monolayers 

 

In this study cytotoxicity was assessed using MTS and LDH assays. 

 

The MTS assay results (Figure 5.1) revealed a slight decrease in cell viability with 

increasing dose of valproate when compared to the DMSO control. The 4 mM dose 

demonstrated the lowest viability (88%) when compared to control. However, there 

was no statistically significant change at any dose level when compared to the DMSO 

control.   

 

 
Figure 5.1 HepG2 cell viability in response to increasing valproate concentration as assessed by MTS 
assay. HepG2 cells were treated with valproate at concentrations of 0 (DMSO control), 0.5, 1, 2 and 4 
mM and incubated for 24 hours as described in Section 2.5.3. The MTS assay was carried out as 
described in Section 2.6. The values shown represent the mean of six replicates. Error bars represent 
standard deviation.  

 

In the same study the LDH assay (Figure 5.2) suggested no significant cell death at 

any of the dose levels used (0.5, 1, 2 and 4 mM) when compared to the DMSO control 

or to the positive control.  
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Figure 5.2 HepG2 cell death in response to increasing valproate concentration assessed by LDH assay. 
HepG2 cells were treated with valproate at concentrations of 0 (DMSO control), 0.5, 1, 2 and 4 mM and 
incubated for 24 hours as described in Section 2.5.3. The value obtained for the positive control 
represents 100% cell death. The LDH assay was carried out as described in Section 2.21. The values 
shown represent the mean of six replicates. Error bars represent standard deviation.  

 

5.3.2 Oil Red O staining  
 

To confirm a dose-related increase in intracellular lipid accumulation, the cells were 

stained with Oil Red O. The images obtained under the light microscope as shown in 

Figure 5.3 suggest a dose dependent increase in lipid accumulation in the treated 

groups (Figures 5.3 C-F) compared to DMSO control (Figure 5.3B). An increase in the 

number, size and intensity of the red clusters indicated a greater stain uptake by these 

cells is shown by the arrows.  
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Figure 5.3 Light microscopy images obtained of HepG2 cells treated with valproate and stained with Oil 
Red O. Cells were dosed with valproate at final concentrations of 0 (DMSO controls), 0.5, 1, 2 and 4 
mM followed by a 24-hour incubation as described in Section 5.2.3, cells incubated in media only were 
also stained and visualised to act as negative controls. Cells were stained using Oil Red O as described 
in Section 2.7. A. Media only control, B. DMSO control, C. 0.5 mM, D. 1 mM, E. 2 mM and F. 4 mM.  

 

5.3.3 Triglyceride assay in the monolayer 
 

To quantify the triglyceride accumulation HepG2 cells treated with valproate were 

lysed and cell lysate samples were collected for triglyceride quantification using a 

commercial assay. Although a clear dose dependent response was not observed 

(Figure 5.4) the triglyceride content in the treated cells did appear to be greater than 

in the DMSO control at all dose levels. However, no statistical significance was 

observed at any dose level. Despite this there was around a 25% increase in lipid 

accumulation at 1 and 2 mM when compared to the DMSO control, but this is not as 

obvious as the results from the Oil Red O staining.  

 
 

A C B 

E D F 
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Figure 5.4 Mean triglyceride content in HepG2 cells following treatment with valproate. HepG2 cells 
were treated with valproate at concentrations of 0 (DMSO control), 0.5, 1, 2 and 4 mM and incubated 
for 24 hours as described in Section 5.2.3. The triglyceride assay was carried out as described in 
Section 2.8. The values shown represent the mean of six replicates. Error bars represent standard 
deviation.  

 

5.3.4 Metabolomic analysis of aqueous monolayer cell extracts  
 

Upon confirmation of no cytotoxicity and slight increases in lipid content within the 

cells, suggesting possible mild steatosis, the metabolomic profile of the valproate 

model was investigated.  

 

1H NMR spectra of aqueous extracts were visually inspected but no obvious 

differences between sample groups were observed (data not shown). Consequently, 

multivariate analysis was employed to statistically analyse metabolomic differences 

between the groups. An initial PCA scores plot was created but sample 0.5 mM (1) 

was located outside the ellipse (Appendix Figure 8.17). The spectra for this sample 

was reanalysed and following inspection of the Hotelling’s plot (Appendix Figure 8.18) 

it was determined that this sample was a true outlier and was excluded from analysis. 

A second PCA scores plot was created (Figure 5.5). Some degree of sample group 

separation was observed, albeit with intragroup variation. The DMSO control samples 

were located on the top right-hand side of the scores plot and were therefore positive 

for PC1 with the exception of sample DMSO (5) which was negative. The 1 mM treated 

group was located on the left side of the scores plot and was therefore negative for 
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PC1, while the 4 mM sample group was clustered together and positive for PC1. The 

4 mM group was marginally separated from the other treated groups along the PC2 

axis. In the scores plot sample 4 mM (6) was located outside the ellipse but further 

analysis of the spectra revealed it was not an outlier (Appendix Figure 8.19).  

 

  
Figure 5.5 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 cells dosed 
with valproate at various dose levels. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM valproate and 
incubated for 24 hours. Aqueous cell extract samples were collected, and NMR analysis carried out as 
described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey = DMSO only 
control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.   

 

Sample spectra were then further analysed using OPLS, in order to visualise inter- 

and intra-group variation based on class differences. The OPLS scores plot revealed 

better class separation than the PCA between the treated groups along the predictive 

t[1] axis with a little overlap between groups. The DMSO controls and the 0.5 mM 

treated group were located on the left-hand side of the scores plot. The 1 mM treated 

group was clustered around the centre of the scores plot while the 4 mM treated group 

was located in the bottom right quadrant of the scores plot. Some intragroup variation 

was also observed for the majority of the sample groups along the orthogonal t[0] axis 

(Figure 5.6).  

 



 234 

  
Figure 5.6 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells 
treated with different dose levels of valproate. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM 
valproate and incubated for 24 hours. Aqueous cell extract samples were collected, and NMR analysis 
carried out as described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey 
= DMSO only control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.   

 

OPLS-DA was then carried out in order to identify changes in metabolites following 

treatment with valproate at the different dose levels when compared to the DMSO 

controls. Consecutive dose levels were also analysed to determine dose-related 

differences.  

 

All OPLS-DA scores plots shown in Figure 5.7 demonstrated good separation between 

the control and the treated groups as well as for consecutive dose groups for each 

pair-wise comparison along the predictive t[1] axis. In all scores plots the DMSO 

control group was located on the left-hand side of the scores plot when compared 

against the treated groups while the treated groups were on the right. Significant 

intragroup variation was observed in all sample groups along the orthogonal t[0] axis 

but, in particular, for the 0.5 and 4 mM treated groups with samples 0.5 (4) and 4 (6) 

being separated from the rest of the group.  
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Figure 5.7 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2 cells 
dosed with valproate at varying dose levels. Cells were dosed with valproate at 0, 0.5, 1, 2 and 4 mM 
and incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described 
in Sections 2.10 and 2.12. Each spot on the plot represents one sample. A. Control vs 0.5 mM valproate 
B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM valproate. E. 0.5 vs 1 
mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Grey = DMSO only control; green = 0.5 
mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.   

 

VIP and S-plots were generated to determine the metabolite regions in the NMR 

spectra contributing to the separation of the groups in each pair-wise comparative 

scores plot. Spectral regions with a VIP value greater than one are highlighted in red 

in both the VIP and S-plots. S-plots were then used to confirm whether peaks within 

F 

E 

G 
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these specific NMR regions had increased or decreased between the groups. 

(Appendix Figures 8.20 and 8.21). 

 

Following multivariate analysis, the integrated spectral values for each region were 

evaluated using a Kruskal-Walls test to determine if any of the metabolite regions 

highlighted in the VIP were statistically significant in each pair-wise comparison.  

 

NMR regions that were confirmed as being statistically different were closely 

examined to identify metabolite peaks in these regions to aid the identification of 

metabolites. These identifications were also confirmed by checking other peak regions 

for each metabolite. Following identification, metabolites were identified as shown in 

Table 5.1. Decreases were observed for many metabolites including leucine, 

glutathione, homocysteine and methionine. Significant increases (p<0.001) in acetate 

were observed in the 4 mM treated groups compared to the DMSO control. Many other 

metabolite regions were also significant however metabolite identification was not 

possible.  

 

Table 5.1 Chemical shift regions with potential metabolite identifications, determined to be significantly 
different in the NMR of aqueous extracts from HepG2 cells treated with increasing concentrations of 
valproate when compared to control.  

1H shift 
ppm 

Metabolite 
aqueous 

Ctrl 
vs 
0.5 
mM 

Ctrl 
vs 1 
mM 

Ctrl 
vs 2 
mM 

Ctrl 
vs 4 
mM 

0.5 
vs 1 
mM 

1 vs 
2m
M 

2 vs 
4m
M 

0.857-
0.902(t) 

Acyl groups (CH3) ↓ 
 

- - - ↓* 
 

↑* 
 

- 

0.948-
0.969(m) 

Leucine, Isoleucine - ↓* 
 

- - ↓ 
 

↑ 
 

- 

1.015-
1.027(s) 

Valine, Isoleucine - ↓ 
 

- - - ↑* 
 

- 

1.237-
1.297(m) 

B-hydroxybutyrate ↓ 
 

- - - ↓* ↑* 
 

- 

1.306-
1.347(d) 

Lactate, Threonine ↑ ↓** 
 

↑ 
 

↑ 
 

↓ 
 

↑ 
 

↓ 
 

1.459-
1.498(d) 

 
Alanine 

↓ 
 

↓ 
 

↑ 
 
 

↑ 
 

- - - 

1.913-
1.923(s) 

Acetate ↑ - ↑* 
 

↑*** 
 

- ↑ 
 

↑ 
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2.025-

2.086(m) 

 
Isoleucine, Glutamate, 
Homocysteine, SAH, 

Proline 
 

↑ ↓ 
 

- - ↓* ↑ 
 

- 

 
2.105-

2.194(m) 

Methionine, 
Glutamine, GSH, 

GSSG, Homocysteine, 
Cystathionine 

 

↓ 
 

↓ 
 

↓ 
 

↓** 
 

↓ 
 

↑ 
 

↓ 
 

2.327-
2.382(tofd) 

Glutamate, B-
hydroxybutyrate, 

Proline 

- ↓* 
 

↓ 
 

↓ 
 

↓* 
 

↑ 
 

↓ 
 

2.385-
2.395(s) 

Succinate, Pyruvate - - - ↓ 
 

- - - 

2.426-
2.477(m) 

Glutamine, 
Pantothenic acid 

 

↑ ↓* 
 

↑ 
 

- ↓ 
 

↑* 
 

↓ 
 

2.508-
2.575(q) 

 Citrate, 
GSH, GSSG 

↑ ↓* 
 

↑ 
 

- ↓** 
 

↑ 
 

- 

2.671-
2.699(m) 

Methionine, Citrate, 
SAH 

 

↑ - ↑ 
 

- ↓ 
 

↑ 
 

- 

2.707-
2.723(d)  

Sarcosine ↑ - ↑ 
 

- ↓ 
 

↑* 
 

- 

2.791-
2.812(d) 

Homocysteine, 
Asparagine 

↑ - ↑ 
 

↑** 
 

- - ↑ 
 

2.989-
3.005(s) 

SAH, GSH, GSSG, 
Cysteine 

 

- ↓** 
 

- - ↓* 
 

↑ 
 

- 

3.02-
3.05(d) 

Creatine, 
Phosphocreatine, 

Creatinine 

↑ ↓ 
 

↑ 
 

- ↓* 
 

↑* 
 

↓ 
 

3.214-
3.23(s) 

Choline, 
Phosphocholine, 
Betaine, TMAO 

 

↑ ↓ 
 

↑ 
 

↑ 
 

 ↓ 
 

↑* 
 

↓ 
 

3.252-
3.278(m) 

Arginine, Proline, 
Taurine, TMAO, 

Histidine 
 

- ↓ 
 

↑ 
 

- - - - 

 
3.291-

3.338(2xd) 

Arginine, Proline, 
Taurine, TMAO, 

Histidine 
 

- ↓** 
 

↓ ↓ ↓ 
 

↑* 
 

↓ 
 

 
3.734-

3.797(m) 

Leucine, Alanine, 
Arginine, Lysine, 

Glutamine, Glutamate, 
GSH, GSSG, 

Dimethylglycine, 
Glucose, Cysteine, 

Citrulline 

↓ 
 

↓** 
 

↓ 
 

↓* ↓* 
 

↑ 
 

↓ 
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S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated 
group was determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001) 

  

 
3.813-

3.86(m) 

 SAH, Asparagine, 
Glucose, 

Cystathionine, Serine 
 

↑ ↓ 
 

- ↓ ↓* 
 

↑ 
 

- 

 
3.879-

3.919(dd) 

Homocysteine, 
Methionine, SAH, 

Cystathionine 
 

- ↓* 
 

- - ↓** 
 

↑ 
 

↓ 
 

 
3.926-

3.9402(s) 

Creatine, 
Phosphocreatine, 

Betaine  
 

- ↓ 
 

- - ↓ 
 

↑ 
 

 

 
3.983-

3.992(m) 

Cystathionine, 
Cysteine, Serine, 

Hippurate, Histidine 
 

↑ ↓ 
 

↑ - ↓ 
 

↑ 
 

- 

8.529-
8.587(s) 

ATP 
 

- ↓*  
 

- - ↓*** 
 

- - 
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5.3.5 Metabolomic analysis of organic monolayer cell extracts  
 

In this study the organic extracts from HepG2 cells were also analysed.  

 

Visual inspection of the NMR spectra showed no difference between the treated and 

control groups (data not shown). Therefore, a PCA scores plot was constructed as 

shown in Figure 5.8. Sample 2 (4) was located outside the ellipse however, the 

Hotelling’s plot (Appendix Figure 8.22) revealed it was below the 99% confidence level 

and it was therefore included in further analysis. The resulting scores plot did not 

demonstrate good separation between the control and the two treated groups with 

much overlap observed on the right side of the plot. However, the majority of the 2 and 

4 mM samples were located on the left side of the scores plot separated from the other 

treatment groups with the exception of samples 4 mM (2) and 4 mM (3).  

 

  
Figure 5.8 PCA scores plot derived from 1H NMR spectra of organic extracts from HepG2 cells dosed 
with valproate at various dose levels. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM valproate and 
incubated for 24 hours. Organic cell extract samples were collected, and NMR analysis carried out as 
described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey = DMSO only 
control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.   

 

As the PCA score plot failed to show distinct group separation an OPLS scores plot 

was constructed. Figure 5.9 shows slightly better clustering within each group along 

the predictive t[1] axis with the DMSO and the majority of the 0.5 mM treated group 

on the left-hand side of the scores plot and the 1 mM treated group close to the centre. 

Large intragroup variation was observed for all groups along the orthogonal t[0] axis 

with the exception of the 1 mM treated group.  
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Figure 5.9 OPLS scores plot derived from NMR spectra of organic cell extracts from HepG2 cells treated 
with different dose levels of valproate. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM valproate and 
incubated for 24 hours. Organic cell extract samples were collected, and NMR analysis carried out as 
described in Sections 2.10 and 2.12. Each spot on the plot represents one sample. Grey = DMSO only 
control; green = 0.5 mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.   

 

Following OPLS analysis OPLS-DA scores plots were constructed to identify 

metabolite changes between treated groups and the DMSO control and dose-

dependent changes. Figure 5.10 shows that in each scores plot the two groups being 

compared are separated along the predictive t[1] axis with the exception of the 2 and 

4 mM groups where some overlap is observed. However, large intragroup variation 

was observed in all treated groups along the orthogonal t[0] axis.  
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Figure 5.10 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2 cells 
dosed with valproate at varying dose levels. Cells were dosed with valproate at 0, 0.5, 1, 2 and 4 mM 
and incubated for 24 hours. Samples were collected, and NMR analysis was carried out as described 
in Sections 2.10 and 2.12. Each spot on the plot represents one sample. A. Control vs 0.5 mM valproate 
B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. Control vs 4 mM valproate. E. 0.5 vs 1 
mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Grey = DMSO only control; green = 0.5 
mM; light blue = 1 mM; blue = 2 mM; red = 4 mM.   

 

Following OPLS-DA analysis VIP predictive and S-plots were generated and variable 

regions with a VIP value greater than one were highlighted in red in both plots 

(Appendix Figures 8.23 and 8.24). 

 

Following multivariate analysis, the NMR spectra were further analysed to determine 

the multiplicity of the significant spectral regions highlighted in the VIP to aid metabolite 

identification. Significant changes in metabolites observed in this study included 

decreases in cholesterol in the 0.5, 2 and 4 mM treated groups. Dose-dependent 

increases in arachidonic acid were observed in all dose levels and these increases 

were significant at the higher doses (2 mM, p<0.001, 4 mM p<0.01). Similar to the 

aqueous samples many NMR regions were highlighted in the VIP plot, but metabolite 

F 

G 
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identification was not possible. A Kruskal Wallis test was then conducted to determine 

statistical significance of variable regions, as shown in Table 5.2.  

 

Table 5.2 Chemical shift regions identified as significantly different in the organic extracts of HepG2 
cells treated with different concentrations of valproate as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
  

1H shift 
ppm 

Metabolite 
aqueous 

Ctrl 
vs 
0.5 
mM 

Ctrl 
vs 1 
mM 

Ctrl 
vs 2 
mM 

Ctrl 
vs 4 
mM 

0.5 
vs 1 
mM 

1 vs 
2m
M 

2 vs 
4m
M 

0.875-
0.895(m) 

Fatty acyl 
groups, fatty 

acids  

- - ↓ 
 

 ↑ ↓ 
 

↑ 

1.093-
1.189(m) 

Cholesterol ↓ 
 

- ↓* 
 

 ↑ ↓* 
 

 

1.259-
1.286(s) 

Cholesterol ↓ 
 

↑ ↓ 
 

↓ 
 

↑ ↓ 
 

↑ 

1.546-
1.617(s) 

ARA ↑ ↑ ↑** ↑** ↑ ↑ ↓ 
 

2.29-
2.362(m) 

Acyl groups in 
triglycerides 

↓ 
 

 ↓* 
 

↓ 
 

↑   

3.744-
3.809(m) 

Unidentified  
 

  ↓* 
 

    

5.344-
5.412(m) 

FA/MUFA ↓ 
 

 ↓* 
 

↓ 
 

↑ ↓* 
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5.3.6 CYP enzyme expression levels in HepG2 monolayers dosed with valproate 
 

CYP enzyme expression in HepG2 cells treated with valproate was evaluated by 

Western blotting. Figure 5.11 shows the blots for CYP2D6, CYP3A4 and CYP2E1 with 

the level constituent cell protein beta actin (Figure 5.11A) ensuring equal loading of 

different cell samples. Table 5.3 displays the raw data of band intensities for each 

CYP. Levels of CYP2D6 were lower at all valproate dose levels when compared to the 

DMSO control but there was no dose-related trend. There was a decrease in CYP2E1 

levels when compared to the DMSO control. While increases in CYP3A4 levels were 

observed at all dose levels. However, there appeared to be no dose-related trends in 

CYP expression in response to valproate. Also, as N=1 in this study further 

experiments would be needed to confirm these changes.   

 

 
Figure 5.11 Western blot analysis of CYP enzyme expression in HepG2 cells dosed with valproate. A. 
Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. Monolayers were dosed with valproate at varying 
concentrations of 0, 0.5, 1, 2 and 4 and proteins were collected as described in Section 2.16. Western 
blotting was carried out as described in Section 2.20.  
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Table 5.3 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 
monolayers dosed with valproate relative to the DMSO control. Monolayers were dosed with valproate 
at varying concentrations or 0, 0.5, 1, 2 and 4 mM and proteins were collected as described in Section 
2.16.  

Valproate concentration 
(mM) 

CYP2D6 CYP3A4 CYP2E1 

DMSO control 16572.46 2395.08 10487.1 

0.5 1728.55 9856.08 6473.68 

1 410.09 5384.71 8488.29 

2 1732.67 9409.25 7985.48 

4 1266.55 7522.78 8868.56 
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5.3.7 3D spheroid model dosed with valproate 
 

HepG2 spheroids were grown for 17 days before being dosed with valproate at dose 

levels of 1 and 4 mM and incubated for 24 hours. Changes in the metabolome 

following dosing were analysed. Changes in CYP enzyme expression were also 

analysed using Western blotting.  

 

 

5.3.8 Cytotoxicity in HepG2 spheroids dosed with valproate 
 

Cytotoxicity in spheroids dosed with 1 and 4 mM valproate was visualised using the 

LIVE/DEAD assay. The images taken from the assay are shown in Figure 5.12 and 

revealed no observed cytotoxicity at either dose level. The LIVE/DEAD assay stains 

viable cells green and non-viable cells red.  

 
Figure 5.12 Images taken from the LIVE/DEAD assay of spheroids dosed with valproate. Spheroids 
were grown in low attachment 6-well plates as described in Section 2.3 and dosed with valproate at 
concentrations of 0 (DMSO control), 1 and 4 mM. The LIVE/DEAD assay was carried out as described 
in Section 2.22. A. DMSO control, B. 1 mM valproate and C. 4 mM valproate. 

 

Cytotoxicity in this study was assessed using an LDH assay. Figure 5.13 confirmed 

there was no cell death at either dose levels. While the positive control used in the 

assay had a cytotoxicity value of 100%, the cytotoxicity value for the 1 and 4 mM 

groups was 0%.  
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Figure 5.13 HepG2 spheroid cell death in response to increasing valproate concentration assessed by 
LDH assay. HepG2 spheroids were treated with valproate at concentrations of 0, 1 and 4 mM and 
incubated for 24 hours as described in Section 2.5.3. The LDH assay was carried out as described in 
Section 2.21.  The value obtained for the positive control represents 100% cell death. The values shown 
represent the mean of six replicates. Error bars represent standard deviation.  

 

5.3.9 Triglyceride accumulation 
 

Triglyceride accumulation was assessed in the HepG2 spheroids. The results shown 

in Figure 5.14 revealed an increase in triglyceride accumulation in both treated groups 

when compared to the DMSO control. There was a significant increase (39%) in 

triglyceride accumulation in the 1 mM treated group when compared to the DMSO 

control.  
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Figure 5.14 Mean triglyceride content in HepG2 spheroids following treatment with valproate. HepG2 
cells were treated with valproate at concentrations of 0 (DMSO control), 1 and 4 mM valproate and 
incubated for 24 hours as described in Section 5.2.3. The values shown represent the mean of six 
replicates. Error bars represent standard deviation. The triglyceride assay was carried out as described 
in Section 2.8. Statistically significant differences were analysed using Kruskal-Wallis (**<0.01). 

 

5.3.10 Metabolomic analysis of aqueous spheroid extracts  
 

NMR spectra from aqueous spheroid extracts were visually examined but no 

differences were observed (data not presented). Therefore, a PCA scores plot was 

created as shown in Figure 5.15. In the scores plot good separation is apparent 

between the 3 groups with the DMSO control group located on the right-hand side of 

the scores plot and therefore positive for PC1, while the 4 mM treated group was 

negative. The 1 mM treated group was located between the DMSO control and the 4 

mM group.  
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Figure 5.15 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 spheroids 
dosed with valproate at different dose levels (0, 1 and 4 mM). Spheroids were dosed with 0, 1 and 4 
mM valproate and incubated for 24 hours as described in Section 5.2.3. Samples were collected and 
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. 
Grey=DMSO control; Blue=1 mM; Red=4 mM valproate.  

 

Spectra were further analysed using OPLS. The resulting scores plot shown in Figure 

5.16 demonstrated good separation between the groups along the predictive t[1] axis, 

with the DMSO group located on the left side of the scores plot and the 4 mM on the 

right.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.16 OPLS scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 spheroids 
dosed with valproate at different concentrations. Spheroids were dosed with 0, 1 and 4 mM valproate 
and incubated for 24 hours as described in Section 5.2.3. Samples were collected and NMR analysis 
carried out as described in Sections 2.10 and 2.12. Each spot represents one sample. Grey=DMSO 
control; Blue=1 mM; Red=4 mM valproate. 

 

OPLS-DA analysis was conducted for pair-wise comparisons of the control against 

each of the two treated groups as well as a direct comparison of the two treated 

groups. All OPLS-DA scores plots generated showed clear separation along the t[1] 
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axis, intragroup variation was also observed along the orthogonal t[0] axis in all scores 

plots (Figure 5.17).   

 
 

 

 

 
Figure 5.17 OPLS-DA scores plots derived from NMR spectra of aqueous extracts from HepG2 
spheroids dosed with valproate at varying dose levels. Spheroids were dosed with valproate at 0, 1 and 
4 mM and incubated for 24 hours as described in Section 5.2.3. Spheroids were collected and NMR 
analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey=DMSO control; Blue=1 mM; Red=4 mM valproate. A. Control vs 1 mM 
valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.  

 

A 

B 

C 
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VIP predictive and S-plots (Appendix Figures 8.25 and 8.26) were generated from the 

OPLS-DA models and variable regions with a VIP greater than one were highlighted 

and shown in red in both models.  

 

Following NMR analysis, the integrated spectral values were evaluated using a 

Kruskal-Wallis test to determine any statistically significant variable regions. The NMR 

spectra were then closely examined to identify metabolite peaks in these regions to 

aid the identification of metabolites. This revealed that significant decreases in 

essential amino acids including leucine, isoleucine and valine were observed in the 

treated groups, as well as significant decreases in succinate, glycine, acetate and 

choline. Alanine was significantly (p<0.05) increased in both treated groups. A 

significant increase (p<0.01) in β-hydroxybutyrate was also observed. Again, there 

were a large number of unidentified regions not shown in table. 

 

Table 5.4 Chemical shift regions, and potential metabolites, identified as significantly different in the 
NMR of aqueous extracts from HepG2 spheroids treated with increasing concentrations of valproate 
when compared to control.  

1H shift ppm Metabolite 
aqueous 

Ctrl vs 
1mM 

Ctrl vs 
4mM 

1 vs 
4mM 

0.857-0.901(t) Acyl groups (CH3) ↑ 
 

↑*** 
 

↑ 
 

0.9125-1.0467(m) Leucine, isoleucine, Valine ↓** 
 

↓*** 
 

↓* 
 

1.236-1.296(m) B-hydroxybutyrate - ↑** 
 

- 

1.3107-1.3505(d) Lactate, threonine - ↑** 
 

↑* 
 

1.4207-1.479(d) Alanine ↑* 
 

↑* 
 

- 

1.806-1.851(m) Lysine, Citrulline 
 

- ↓** 
 

↓ 
 

1.912-1.927(s) Acetate ↓** 
 

↓* 
 

- 

1.978-2.107(m) Isoleucine, Glutamate, 
Homocysteine, SAH, proline 

 

↓*** 
 

↓ 
 

↑ 
 

2.3818-2.3975(d) B-hydroxybutyrate, 
Glutamate, Proline 

 

↓*** 
 

↓ 
 

↑ 
 

2.416-2.428(s) Succinate ↓* 
 

↓** 
 

- 

3.034-3.049(s) Creatine ↓** 
 

- ↑ 
 

3.218-3.231(s) Choline, Phosphocholine ↓* 
 

↓* 
 

- 
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3.257-3.265(s) Betaine, TMAO ↓* 
 

↓** 
 

- 

3.34-3.35(s) Glucose, Hypotaurine, 
Pantothenic acid 

↓ 
 

↓** 
 

↓ 
 

3.388-3.395(s) Betaine - 
 

↓** 
 

- 

3.459-3.495(m) Glucose, Pantothenic acid 
 

- ↓*** 
 

↓ 
 

3.502-3.5113(s) Glycine  ↓* 
 

↓** 
 

↓ 
 

3.536-3.552(dd) Choline ↓* 
 

↓** 
 

- 

3.688-3.748 (m) Isoleucine, Valine, 
Threonine, Choline 

 

↓ 
 

↓*** 
 

↓ 
 

3.881-3.9204(s) Creatine ↓** 
 

↓*** 
 

↓ 
 

3.947-3.955(s) Creatine, Phosphocreatine, 
Betaine  

 

↓ 
 

↓* 
 

↓ 
 

4.085-4.137 (q) B-hydroxybutyrate, Lactate,  
 

↓ 
 

- ↑ 
 

6.81-6.863(d) 4-hydroxybenzoic acid 
 

- - ↓ 
 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001) 
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5.3.11 Metabolomic analysis of organic spheroid extracts 
 

Organic extracts from HepG2 spheroids were analysed using 1H NMR. A PCA scores 

plot shown in Figure 5.18 did not show clear separation between the two treated 

groups, while samples from the DMSO control group were spread across the plot. The 

DMSO 1 sample was located just outside the ellipse, but this was determined not to 

be an outlier and therefore it was included in further analysis (Appendix Figure 8.27).  

 
 

 
Figure 5.18 PCA scores plot derived from 1H NMR spectra of organic extracts from HepG2 spheroids 
dosed with valproate at different dose levels (0, 1 and 4 mM). Spheroids were dosed with 0, 1 and 4 
mM valproate and incubated for 24 hours as described in Section 2.5.3. Samples were collected and 
NMR analysis carried out as described in Section 2.10 and 2.12.  Each spot represents one sample. 
Grey=DMSO control; Blue=1 mM; Red=4 mM valproate.  

 

The OPLS scores plot (Figure 5.19) also failed to show clear separation between the 

two treated groups along the predictive t[1] axis. While large intragroup variation could 

be seen in the DMSO control group, with sample DMSO 6 located just outside the 

ellipse (Appendix Figure 8.28).  
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Figure 5.19 OPLS scores plot derived from 1H NMR spectra of organic extracts from HepG2 spheroids 
dosed with valproate at different concentrations. Spheroids were dosed with 0, 1 and 4 mM valproate 
and incubated for 24 hours as described in Section 2.5.3. Samples were collected and NMR analysis 
carried out as described in Section 2.10 and 2.12. Each spot represents one sample. Grey=DMSO 
control; Blue=1 mM; Red=4 mM valproate. 

 

Pair-wise comparisons between the treated and control groups and the two treated 

groups was also conducted. The resulting OPLS-DA scores plots shown in Figure 5.20 

did produce separation of the groups along the t[1] axis with the DMSO control group 

located on the left side of the plots in Figure 5.20 A and B. However, large intragroup 

variation could be seen across the orthogonal t[0] axis between treated groups in 

Figure 5.20 C and between the DMSO control and treated (Figure 5.20 A and B). 
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Figure 5.20 OPLS-DA scores plots derived from NMR spectra of organic extracts from HepG2 
spheroids dosed with valproate at varying dose levels. Spheroids were dosed with valproate at 0, 1 and 
4 mM and incubated for 24 hours as described in Section 2.5.3. Spheroids were collected and NMR 
analysis was carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey=DMSO control; Blue=1 mM; Red=4 mM valproate. A. Control vs 1 mM 
valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate.  

 

VIP and S-plots were generated from the OPLS-DA models and regions with VIP 

predictive value greater than 1 were highlighted and can be seen in red in Appendix 

Figures 8.29 and 8.30.   

A 

B 

C 
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Spectral regions highlighted in the VIP were examined to determine the peak 

characteristics in order to aid metabolite identification using the Human Metabolome 

database. Kruskal-Wallis was used performed to determine if any statistically 

significant changes were apparent.   

 

Following identification, increases in fatty acyl groups were observed at both dose 

levels as well as increases in arachidonic acid. However, the Kruskal-Wallis only 

revealed two regions at 0.886-0.9262 and 1.5625-1.605 ppm which were significant. 

Furthermore, many other NMR regions were highlighted as contributing to group 

separation in the VIP plots but identification of the metabolites in these regions was 

not possible.  

 

Table 5.5 Chemical shift regions identified as significantly different in the organic extracts of HepG2 
spheroids treated with different concentrations of valproate as detected by OPLS-DA analysis. The 
multiplicity of each peak is shown. 

1H shift ppm Metabolite 
aqueous 

Ctrl vs 
1 mM 

Ctrl vs 4 
mM  

1 vs 4 
mM 

0.692-0.7127(s) Unidentified - - ↓ 
 

0.886-0.9262(t) Fatty acyl groups, fatty acids ↑ 
 

↑ 
 

↓** 
 

1.25-1.377(d/s) Cholesterol - ↓ 
 

↓ 
 

1.5625-1.605(s) ARA ↑*  
 

↑ 
 

↓ 
 

2.008-2.065(q) Oleic acid - - ↓ 
 

2.3129-2.365(m) Acyl groups in triglycerides  - - ↓ 
 

4.145-4.193(dd) Glyceryl groups in 
monoglycerides 

 - - 

5.327-5.414(m) FA/MUFA - - ↓ 
 

 
S=singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, m=multiplet. An increase or decrease in the treated group was 
determined and these were further analysed statistically using a Kruskal-Wallis test (*<0.05, **<0.01, ***<0.001).  
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5.3.12 CYP enzyme expression levels in HepG2 spheroids dosed with valproate 
 

CYP expression in HepG2 spheroids treated with valproate was analysed using 

Western blotting. Blots for CYP2D6, CYP3A4 and CYP2E1 are shown in Figure 5.21 

with the constituent cell protein beta actin ensuring that equal amounts of protein 

sample was loaded for each treated group.  

 

The results in Table 5.6 shows the raw data of band intensity from the blots for each 

CYP. Although n=1 some changes in CYP expression was observed. Overall 

expression of CYP2D6 appeared to be lower in the treated groups relative to the 

DMSO control. Levels of CYP3A4 tended to be greater in all treated groups than the 

DMSO control. CYP2E1 expression appeared to be increased in the 1 mM treated 

groups but was lower in the other treated groups when compared to the DMSO control.  

 
 

 
Figure 5.21 Western blot analysis of CYP enzyme band intensities in HepG2 spheroids dosed with 
valproate. Spheroids were dosed with valproate at varying concentrations of 1 and 4 mM and proteins 
were collected as described in Section 2.16. Western blotting was carried out as described in Section 
2.20. A. Beta actin, B. CYP 2D6, C. CYP 3A4 and D. CYP2D6. 
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Table 5.6 Raw data showing the arbitrary band intensities for CYP2D6, 3A4 and 2E1 in HepG2 spheroid 
dosed with valproate relative to the DMSO control. Spheroids were dosed with valproate at varying 
concentrations or 0, 0.5, 1, 2 and 4 mM and proteins were collected as described in Section 2.16.  

Valproate 
concentration (mM) 

CYP2D6 CYP3A4 CYP2E1 

DMSO control 15012.92 6284.13 9972.49 

0.5 8303.37 9230.25 9051.903 

1 6409.44 12368.37 13325.27 

2 11289.56 9730.004 8206.73 

4 7614.38 6358.29 5032.12 
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5.4 Discussion  
 

Studies suggest that following prolonged treatment with valproate, around 61% of 

patient’s treated are diagnosed with hepatic steatosis (Luef et al., 2009, Zhang et al., 

2014, Farinelli et al., 2015). Valproate is also associated with weight gain, with the 

frequency of developing obesity in children treated with valproate ranging from 10-

70%, thereby increasing the risk of developing NAFLD given the link between the two 

(Farinelli et al., 2015).  

  

The exact mechanism for valproate induced hepatotoxicity remains unclear and is 

likely multifactorial (Farinelli et al., 2015, Komulainen et al., 2015, Yan et al., 2021). 

However, many in vivo and in vitro studies have reported that valproate-induced liver 

injury is associated with microvesicular steatosis, mitochondrial injury and oxidative 

stress (Tsiropoulos et al., 2009, Gai et al., 2014, Komulainen et al., 2015, Bai et al., 

2017, Yan et al., 2021). It has been reported that valproate upregulates the cluster 

differentiation 36 (CD36) protein, which plays an important role in facilitating fatty acid 

uptake in the liver and adipose tissue in humans (Chang et al., 2016, Bai et al., 2017, 

Yan et al., 2021). This is supported by Bai et al., (2017) who reported a dose-

dependent increase in CD36 expression in mice treated with valproate at 100, 250 

and 500 mg/kg for 14 days with a 2-fold increase at the highest dose level. Their study 

also demonstrated a similar pattern in HepG2 cells exposed to valproate (1, 2.5 and 5 

mM) for 24 hours. An in vitro study by Chang et al., (2016) in mouse FL83B cells also 

indicated an increase in CD36 expression following 24-hour dosing with 1 mM 

valproate.   

 

Various in vitro studies have demonstrated a concentration-dependent increase in 

hepatic lipid accumulation in HepG2 cells in response to valproate treatment (0.5-5 

mM) for up to 48 hours. Rodent models have also used different valproate 

concentrations (100 – 750 mg/kg) to induce steatosis over a wide range of exposure 

times (Lewis et al., 1982, Kesterson et al., 1984, Zhang et al., 2014, Bai et al., 2017). 

Lewis et al., (1982) reported that 750 mg/kg valproate produced substantial 

microvesicular steatosis after 48 hours in rats. While Bai et al., (2017) demonstrated 

a significant increase in VLDL in mouse liver following consecutive intragastric 

valproate administrations of 500 mg/kg for 14 days. Incubating HepG2 cells with 
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valproate for 24 hours has previously resulted in an increase in lipid accumulation (Bai 

et al., 2017, Yan et al., 2021), therefore, the exposure time chosen in this study was 

24 hours. 

 

Valproate is generally well tolerated in HepG2 cells and studies using dose levels up 

to 5 mM have not demonstrated cytotoxicity (Bai et al., 2017), whereas others have 

reported impaired mitochondrial activity following 24 hour dosing with 2 mM 

valproate (Komulainen et al., 2015, Pirozzi et al., 2019, Yan et al., 2021). Despite 

this Yan et al., (2021) assessed the viability at different concentrations (0.5, 1 and 2 

mM) of valproate for 24 and 48 hours in HepG2 cells using an MTT assay and only 

observed decreased viability at 2 mM after 48 hours. Chang et al., (2016) reported 

significant cytotoxicity at high doses of 5 and 10 mM due to lipotoxicity and suggest 

these dose levels are more suited to the creation of NASH models. As discussed in 

Chapter 4 the cells must be dosed with higher concentrations of drugs to observe the 

desired effects, therefore toxic concentrations of valproate in humans are around 5 

times less than (150 μg/ml, 1050 μM) compared to those in cells (> 5-10 mM) 

(Twiesselmann et al., 2008).  

 

Consequently, the current study examined dose levels of 0.5, 1, 2 and 4 mM valproate 

to induce mild steatosis but avoid cytotoxicity. Neither the MTS or LDH assay (Figures 

5.1 and 5.2) revealed significant changes to cell viability or cytotoxicity, respectively 

after 24 hours.  

 

Oil Red O staining of the monolayer revealed a dose dependent increase in lipid 

accumulation (Figure 5.3). However, the Triglyceride-Glo assay did not show a 

corresponding significant increase in triglyceride accumulation in the treated groups. 

Nevertheless, triglyceride content was slightly greater in the treated groups compared 

to the control with a 25% increase in lipid accumulation observed at 1 and 2 mM. Yan 

et al., (2021), using a triglyceride assay kit, did find that triglyceride accumulation was 

increased following dosing with 2 mM valproate after 24 hours and following dosing 

with 1 and 2 mM valproate after 48 hours. Similar to the present study Bai et al., (2017), 

using Oil Red O staining observed a concentration-dependent increase in lipid content 

in HepG2 cells following a 24-hour incubation with valproate at doses of 1, 2.5 and 5 

mM. They observed a further increase when the incubation time was extended to 48 
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hours. The studies by Yan et al., (2021) and Bai et al., (2017) dosed for 24 and 48 

hours and reported greater lipid accumulation at the later time point (Bai et al., 2017, 

Yan et al., 2021). However, valproate is rapidly metabolised and has a half-life of 9-

16 hours in vitro (Van Breda et al., 2018), therefore, to conduct prolonged exposure 

studies, repeated dosing is necessary. A study by Van Breda et al., (2018) exposed 

primary hepatocytes to repeated doses of valproate every 24 hours for 3 and 5 days 

to test mechanisms of steatosis and demonstrated possible inhibition of β-oxidation 

and increased uptake of fatty acids due to increased expression of the CD36 

transporter. However, HepG2 cells have a doubling time of 48 hours and would 

become too confluent if grown for longer periods of time. Studies that have dosed for 

longer used different cells lines including primary hepatocytes and FL83B cells which 

may be more suited to longer exposure time (Chang et al., 2016, Van Breda et al., 

2018). A study by Katsura et al., (2002) maintained primary hepatocytes for more than 

56 days. Nevertheless, on the basis of the Oil Red O staining and the apparent 

increases in triglycerides though not significant, it does appear that a mild state of 

steatosis was induced indicating valproate can be used as a model of mild steatosis 

in monolayer HepG2 cells and is suitable for potential biomarker study.  

 

In the literature HepG2 spheroid steatotic models using valproate have not been 

previously reported. In this Chapter 1 and 4 mM valproate were chosen as the low and 

high dose levels. The 4 mM dose level was chosen since it did not induce any 

cytotoxicity in the monolayers. The 1 mM dose level was chosen as the low dose for 

spheroids because the 0.5 mM dose level was too similar to controls in the 

metabolomics analysis of monolayers.  

 

To assess cytotoxicity, an MTS assay was conducted for the spheroid experiment as 

for the monolayers; However, the results were not reliable as the absorbance readings 

were outside the linear range for the assay. This was due to the high cell count in the 

spheroids after 17 days of growth. The assay was repeated using different cell seeding 

densities starting as low as 1x103 cells however, after 17 days of culture the cell count 

still exceeded that of the linear range of the assay. The LDH assay revealed zero 

cytotoxicity when compared to the DMSO control indicating both doses were well 

tolerated. The LIVE/DEAD assay confirmed a lack of cytotoxicity in the spheroids 

(Figure 5.12).  
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Following a 24-hour incubation in valproate spheroids dosed with both levels of 

valproate had greater triglyceride content when compared to the DMSO control as 

assessed by the triglyceride assay. The 1 mM treated group had the highest 

triglyceride content and was significantly increased (p<0.01) when compared to 

control. However, there was no statistical significance for the increase seen in the 4 

mM treated group. This lower triglyceride content in the 4 mM group than for the 1 mM 

may be due to decreased cell viability at this dose level as was seen in the monolayers. 

It is known that spheroids are more susceptible to hepatotoxicants due to their 

increased cell-to-cell contact (Stampar et al., 2020 and Ingelman-Sundberg and 

Lauschke, 2021). This was not reflected in the LDH assay but as mentioned above it 

was not possible to obtain results for cell proliferation in the MTS assay. As mentioned 

in previous Chapters one of the main issues with spheroids is that the core may 

become necrotic due to a lack of nutrients in that region; this could have an effect on 

cell viability. Additionally, as spheroids continue to grow cell proliferation is slowed 

(Stampar et al., 2022). These phenomena could be the reason for the difference seen 

in lipid accumulation between the two dose levels.  

 

The increases in triglyceride content in the spheroid groups (Figure 5.14) along with 

slight increases in lipid accumulation for the monolayers (Figure 5.4) confirms 

valproate can successfully create HepG2 monolayers and spheroid models of mild 

steatosis.  

 

Using these models, this Chapter investigated changes in the metabolome of 

monolayer and spheroid cellular extracts. The monolayers PCA scores plots for both 

the aqueous and organic extracts (Figures 5.5 and 5.8) did not show clear separation 

between the sample groups. Whereas there was separation between the two treated 

groups in relation to the DMSO control in the aqueous spheroid sample PCA scores 

plot (Figure 5.15), but not for the organic extracts (Figure 5.18).  

 

In general, all OPLS scores plots showed better separation between the groups but 

there was still some overlap for the 0.5 mM and DMSO control groups in the 

monolayers (Figures 5.6 and 5.9). This suggests that the 0.5 mM valproate dose was 

not influencing the cell metabolome and the dose level was too low. Some intragroup 

variation was also observed in all groups along the orthogonal t[0] axis. As discussed 
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in Chapter 4 cell cultures are more susceptible to intragroup variation due to biological 

factors so this was expected (Badrick, 2021, Frank, 2021, Reddin et al., 2023). The 

overlap between dose groups and lack of separation observed in some plots may also 

be due to the small sample size. Additionally, some samples fell outside the ellipse 

which would have likely skewed the average of the data set causing other samples to 

overlap. This was observed in the organic spheroid model with two of the DMSO 

control samples (1 and 6) falling outside the ellipse in the OPLS and PCA, respectively. 

It is common to use 6 replicates in metabolomics studies, but some suggest using 

larger sample sizes to improve separation and statistical analysis (Gorsuch, 1983, 

Hatcher, 1994, Shaukat et al., 2016). However, as previously discussed it is not 

feasible to use a large number of cell samples for metabolomics studies. Also, it is 

possible that the lack of sample separation seen in the score’s plots could be due to 

sampling errors when collecting samples and inaccuracies in counting cell numbers 

per well. While haemocytometers are an integral part of cell culture their use is not 

free from error as they require manual counting meaning human error is inevitable at 

various stages. Any error in cell count would affect the number of cells in each well 

and could give rise to intragroup variation. Intragroup variation was similar across 

spheroid and monolayer samples indicating that both models are susceptible to 

sampling errors. 

 

The pair-wise comparisons in the OPLS-DA scores plots revealed good separation in 

all sample group comparisons with the exception of the 2 and 4 mM treated organic 

monolayer samples (Figure 5.10 G) which showed some overlap between the two 

groups.  

 

In this study metabolite peaks responsible for separation of the different groups in 

OPLS-DA models were identified with similar metabolite changes revealed for both 

the monolayer and spheroid models (Tables 5.1, 5.2, 5.4 and 5.5). These changes 

include increases in lactate and alanine and decreases in methionine and glutamine. 

As well as decreases in cholesterol and increases in arachidonic acid. The similar 

findings for both models further confirm the reliability of spheroids for in vitro 

hepatotoxicity studies. This is important since most research is focused on the 

development of better in vitro models, but little progress has been made on using 3D 
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spheroids. To date no studies have used HepG2 spheroids dosed with valproate to 

investigate biomarkers.  

 

For both the spheroid and monolayer treated cell extracts in this study glucose levels 

were decreased following valproate treatment, indicating a potential increase in 

glycolysis within the cells. Many drugs including valproate have been shown to inhibit 

mitochondrial beta-oxidation. Therefore, it has been suggested that glycolysis is 

upregulated in drug-induced steatosis to compensate for reduced production of ATP 

from beta-oxidation (Chan et al., 2018, Dargue et al., 2020). In a previous study 

decreased ATP levels were observed in HepG2 cells cultured in galactose medium in 

response to valproate (Komulainen et al., 2015). However, in the same study cells 

grown in glucose medium had higher ATP levels indicating an increase in ATP 

production from glycolysis.  

 

Valproate has been reported to have an impact on mitochondrial metabolism through 

inhibition of α-ketoglutarate dehydrogenase, a key enzyme in the TCA cycle leading 

to a decrease in the TCA cycle and ATP production (Salsaa et al., 2020). It is also 

known to decrease carnitine levels which transports fatty acids to the mitochondria for 

oxidation (Luder et al., 1990, El Hage et al., 2012, Salsaa et al., 2020). In a study 

conducted by Zhang et al., (2014) it was observed that valproate treated rats displayed 

decreased levels of citrate, a key TCA metabolite. A change in citrate could not be 

confirmed in this study however, significant decreases in succinate, another TCA cycle 

metabolite (p<0.05 and 0.01) were observed in both treated groups in the spheroid 

samples. Therefore, the current study and evidence from the literature suggest an 

increase in glycolysis may be occurring in our models to compensate for the inhibition 

of mitochondrial bioenergetics. Salsaa et al., (2020) reported that yeast cells dosed 

with 0.6 mM valproate for either 5 or 10 hours fermented pyruvate, the end-product of 

glycolysis, into ethanol in response to valproate. Studies in humans have also reported 

increases in glycolysis following daily valproate administration for at least 2 months 

(Huo et al., 2014, Xu et al., 2019A). Enhanced glycolysis leads to increased production 

of acetyl-CoA which cannot enter the TCA cycle due to reduced TCA activity. This can 

result in an accumulation of acetyl-CoA which is then converted to ketone bodies. In 

a study by Huo et al., (2014) an increase in acetate was reported in humans following 

valproate administration indicating the presence of increased ketone bodies since 
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acetyl-CoA can be hydrolysed to acetate by acetyl-CoA hydrolase. In this current study 

significant increases in acetate were observed in the 2 and 4 mM treated groups in 

the monolayers which could confirm a possible increase in glycolysis.  

 

An increase in glycolysis and glycogenolysis has been observed for other drugs 

including methapyrilene, acetaminophen and CCl4 that induce mitochondrial 

dysfunction in mice (Craig et al., 2003, Zira et al., 2013, Dargue et al., 2020). Chen et 

al., (2018) reported that emodin, a naturally occurring anthraquinone derivative, 

increased glycolytic activity and reduced gluconeogenesis in HepG2 cells via 

mitochondrial dysfunction.  

 

Significant increases in lactate and alanine were also identified in the current study in 

the high dose spheroid samples (Table 5.4) as well as increases in the 2 and 4 mM 

monolayer samples (Table 5.1). This is consistent with a number of previous studies 

reporting impaired beta-oxidation in drug-induced steatosis in HepG2 cells and mice 

models (Donato et al., 2009, Begriche et al., 2010, Choi et al., 2015, Garcia-

Canaveras et al., 2016, Fromenty, 2019, Salsaa et al., 2020). A metabolomics study 

conducted by Huo et al., (2014) assessing hepatotoxicity in epileptic patients also 

demonstrated increases in lactate and alanine following dosing with valproate. In the 

literature lactate and alanine are the most commonly reported metabolite changes 

when it comes to hepatoxicity with lactic acidosis being frequently described in drug-

induced steatosis (Cuykx et al., 2018A, Lee and Kim, 2019, Dargue et al., 2020). Thus, 

the changes in lactate for both models are in agreement with changes observed in 

literature confirming the use of spheroids as a model of steatosis and again suggests 

a potential switch to glycolysis in these cells.  

 

The present study revealed significant decreases in essential amino acids including 

leucine, isoleucine and valine in both treated spheroid groups and in the 1 mM 

monolayer groups (Table 5.1). Amino acids can be utilised in hepatocytes for the 

production of ATP as an adaptive response to compensate for the loss of ATP when 

beta-oxidation is impaired (Rui et al., 2014, Zhang et al., 2014). Therefore, these 

findings are in agreement with valproate inhibition of beta-oxidation and the use of 

amino acids as an alternative source of ATP production. Decreases in leucine and 

isoleucine were demonstrated in a study by Zhang et al., (2014) in which rats were 
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treated with valproate for 8 weeks. Previous studies have also reported decreases in 

amino acids such as leucine in CCl4 drug-induced liver injury due to the 

downregulation of energy metabolism in HepG2 cells and in rats (Li et al., 2014, Oh et 

al., 2022). As the liver plays a major role in amino acid metabolism disturbances to 

amino acid levels are well documented and play an important role in the pathological 

process of drug-induced liver injury (Nicholson et al., 2003, Kaspar et al., 2009, Yu et 

al., 2017, An et al., 2020).  

 

In the monolayer study (Table 5.1) a metabolite region at 2.105-2.194 ppm was 

decreased in all treated groups when compared to control. According to databases 

this region may contain peaks belonging to many metabolites, including methionine 

and glutathione. As described in Chapter 4 methionine is an essential amino acid and 

is a key intermediate in transsulfuration pathway for the production of s-

adenosylmethionine (SAM) and glutathione, two important antioxidants (Jha et al., 

2016). It is unclear whether SAM levels were affected in this current study as no 

metabolite regions for this were identified. Since SAM levels are dependent on the 

availability of methionine obtained from the diet and its production by de novo 

synthesis in the presence of methyl-tetrahydrofolate and vitamin B12, any decreases 

in methionine are likely to decrease SAM (Ornoy et al., 2020). SAM is a methyl donor 

for nearly all methylation reactions in the body and is converted to S-

adenosylhomocysteine (SAH) through the donation of active methyl groups in the 

methylation pathway (Shrubsole et al., 2015, Zhang et al., 2016, Ornoy et al., 2020, 

Werge, 2021). Any changes in methionine would also have an effect on homocysteine 

as it is formed in methionine recycling by the conversion of SAH to homocysteine 

adenosine by SAH hydrolase.  Significant decreases (p<0.001) in homocysteine were 

seen in the 1 mM spheroid group (Table 5.4) as well as decreases in all monolayer 

groups (Table 5.1) in this study. Nearly 50% of the homocysteine formed is then further 

converted to cysteine by the transsulfuration pathway for further glutathione formation.  

 

In the current study peaks in many regions potentially corresponding to cysteine and 

cystathionine, intermediates in the transsulfuration pathway were also decreased. This 

was observed in the monolayer samples; however, these metabolite identifications 

could not be validated since many metabolites have peaks in the same spectral 

regions. Studies have reported that a deficiency in methionine results in post-
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transcriptional down-regulation of cystathionine β-synthase, the first enzyme involved 

in the transsulfuration of homocysteine to cystathionine. This would then lead to an 

accumulation of homocysteine (Jhee and Kruger, 2005, Tang et al., 2009, Caballero 

et al., 2010). A decrease in methionine can therefore contribute to greater levels of 

homocysteine due to decreased utilisation of homocysteine leading to oxidative stress 

and progression to NASH (Pacana et al., 2015). Consequently, studies have shown 

that mice and rats fed a methionine deficient diet also exhibit hyperhomocysteinemia 

which can lead to oxidative stress and consequently NASH (Tang et al., 2009, 

Caballero et al., 2010, Aissa et al., 2014, Pacana et al., 2015). However, in this study 

it appears that homocysteine was decreased in all models although this decrease 

cannot be confirmed as homocysteine shares its metabolite regions with other 

metabolite peaks. Future work could spike standard samples with homocysteine to 

confirm. The decrease in many methyltransferase pathways metabolites seen in this 

study are indicative of disruption in the methylation pathway but this requires future 

work for confirmation. 

 

Many studies have reported that valproate can cause an impairment in the methionine 

cycle (Alonso-Aperte et al., 1999, Ubeda et al., 2002, Chateauvieux et al., 2010, Chen 

et al., 2014, Ornoy et al., 2020). Plus, it has been suggested that alterations in the 

methionine cycle could be the common mechanism underlying the hepatotoxic, 

teratogenic and antifolate effects of valproate (Alonso-Aperte et al., 1999, 

Chateauvieux et al., 2010, Chen et al., 2014). It has been demonstrated that valproate 

can lead to a reduction in methionine adenosyltransferases (MAT), the enzyme 

responsible for the production of methionine from SAM. In one study Ubeda et al., 

(2002) noted a 56% reduction in MAT activity after 1 hour in rats treated with 400 

kg/mg valproate. The reduced MAT activity is concomitant with decreased cellular 

levels of glutathione with glutathione depletion seemingly a direct consequence of 

valproate treatment in rats following single dosing due to increased glutathione S-

transferase activity (Ubeda et al., 2002). Therefore, a reduction in MAT activity could 

be related to oxidative stress. However, it is still unclear whether the first insult is 

glutathione depletion that leads to decreased MAT activity or the other way round 

(Ubeda et al., 2002). In this study peaks potentially belonging to glutathione were 

observed as decreased in all treated monolayer groups and were significantly (p<0.05) 

decreased in the 4 mM group compared to the DMSO control (Table 5.1). This could 
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be linked to decreases in MAT activity. However, despite similarities for many 

metabolite changes in this study between monolayer and spheroids changes in 

glutathione were not observed in the spheroids.  

 

The link between valproate treatment and decreased levels of glutathione (GSH) are 

considered to be due to exhaustion of GSH stores and a consequent increase in 

oxidative stress further leading to depletion of GSH. Sokmen et al., (2012) reported 

depleted GSH levels in a rat study indicating valproate-induced tissue injury was 

associated with oxidative stress. Other studies have also reported that valproate leads 

to an increased generation of free radicals and oxidative stress (Tong et al., 2005, 

Kiang et al., 2011). As this study wished to create a model of mild steatosis these 

changes in glutathione and homocysteine highlight the importance of choosing dose 

levels that do not cause significant oxidative stress. This could be confirmed in future 

studies using assay kits such as the Comet assay which measures DNA damage due 

to oxidative stress.  

 

Valproate has been reported to have an effect on vitamin B6 in a study by Ubeda el 

al., (2002), where they observed a 54% decrease in plasma B6 concentrations in rats. 

It is thought that chronic treatment with anticonvulsant drugs in humans may induce 

vitamin B6 deficiency and impair homocysteine/methionine metabolism (Schwaninger 

et al., 1999). However, Ubeda et al., (2002) administered a single dose of valproate to 

rats and still observed decreases in vitamin B6 suggesting the decrease in B6 was the 

result of dysregulation of the methionine cycle. The balance between methionine, 

folate and B12 regulates the activity of the folate and methionine cycles which are 

mechanistically co-dependent. The folate cycle converts tetrahydrofolate (THF) into 

5,10-methyleneTHF by serine hydroxymethyltransferase (SHMT), a reaction that is 

coupled with the hydroxylation of serine to glycine and requires B6 as a cofactor. 

Vitamin B6 is also a cofactor for the conversion of homocysteine to cysteine via 

transsulfuration for use in glutathione synthesis (Lyon et al., 2020). This could mean 

that decreases in vitamin B6 could lead to reduced glutathione and cause increases 

in serine. Changes in serine were not observed in either of the two models in this 

current study. However significant decreases in glycine (p<0.05 and 0.01) were 

observed in the low and high dose of the spheroid samples indicating a potential 

decrease in B6 activity. Decreased levels of glycine have been linked with insulin 
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resistance and the progression of NAFLD to fibrosis (Hasegawa et al., 2020), however 

further research is needed to confirm changes in glycine levels in valproate induced 

steatosis.  

 

The remethylation of methionine can take place via two independent pathways one 

being the 5,10-methyleneTHF dependent pathway and the other the betaine-

dependent remethylation pathway, if homocysteine is present. The latter is catalysed 

by betaine-homocysteine methyltransferase (BHMT) which utilises a methyl group 

from betaine to form dimethylglycine and methionine (Chen et al., 2014). It has been 

shown that BHMT expression is downregulated in HepG2 cells treated with valproate 

in part by inducing NFxB a repressor for the human BHMT gene (Chen et al., 2014). 

In the present study a significant decrease in betaine was observed in spheroids 

treated with valproate at both doses indicating a potential decrease in BHMT 

expression in the spheroids but not in the monolayer samples. 

 

In this study many changes in the methyltransferase pathways were reported which 

agree with the literature. However, there are only a few studies highlighting these 

changes in HepG2 cells and none specifically looking at valproate induced steatosis 

in spheroids. Therefore, this valproate study offers an insight into a novel model of 

steatosis in HepG2 spheroids and shows their suitability for in vitro studies. However, 

a limitation of this study was that it was not possible to validate all metabolite changes 

involved in the methyltransferase pathways as many of the metabolite peaks overlap 

in similar spectral regions. Despite the overlapping peaks the metabolites in these 

regions are all linked to the methyltransferase pathways supporting the hypothesis 

that valproate is having an effect on the pathway as a whole meaning this pathway 

could be useful in a panel of biomarkers of steatosis.  

 

In the organic extracts, increases in arachidonic acid were noted in both the spheroid 

and the monolayer valproate-treated groups with significant increases (p<0.01) 

observed in both the 2 and 4 mM treated groups. This increase in arachidonic acid 

could be due to the activation of the arachidonic acid metabolism pathway due to the 

inhibition of beta-oxidation induced by valproate (Cuykx et al., 2018A). Arachidonic 

acid is known to be a precursor of inflammatory molecules, such as 

the prostaglandins. Increased arachidonic acid has also been documented in humans 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/prostaglandin
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and mice and is linked to inflammation and increased oxidative stress (Ma et al., 2016, 

Wells et al., 2016).  

  

Decreases in cholesterol peaks were observed in the monolayer samples and in the 

4 mM spheroid treated groups in this study. Studies have reported that valproate can 

reduce cholesterol levels in rats and humans due to decreased levels of acetyl-CoA 

(Zhang et al., 2014, Kusumastuti and Jaeri, 2020). There were also many metabolite 

regions determined to be important for group separation in the organic samples, but it 

was not possible to identify the individual lipid molecules in this project. This is 

because organic metabolites mainly consist of fatty acid groups of different chain 

lengths and it is hard to differentiate them using NMR-based metabolomics. Future 

studies could employ the use of mass spectroscopy in an attempt to elucidate some 

of the structures of the fatty acids in an attempt to identify more of the organic 

metabolites.  

 

In this Chapter Western blotting was used to analyse CYP expression levels in the 

steatotic HepG2 monolayers and spheroids following dosing with valproate. As 

mentioned in the previous Chapters changes to CYP expression levels in NAFLD are 

well established with the most documented changes being increases in CYP2E1 and 

decreases in CYP3A4 and CYP2D6 (Satapathy et al., 2015, Sukkasem et al., 2020, 

Di Pasqua et al., 2022). However, to date, studies reporting the effects of valproate on 

CYP expression in HepG2 cells in the context of steatosis are limited. HepG2 

monolayers are thought in general to have lower CYP expression than spheroids. But 

this would require confirmation especially in the context of steatosis and therefore in 

this study CYP expression was evaluated in both monolayers and spheroids.  

 

Although N=1 increased CYP3A4 levels were observed in both models at all tested 

doses when compared to the DMSO control however no dose dependent patterns 

were observed (Tables 5.3 and 5.6). Valproate has been reported to significantly 

upregulate CYP3A4 mRNA in primary hepatocytes and increase gene expression of 

CYP3A4 genes in primary hepatocytes and HepG2 cells via the activation of the 

pregnane X receptor (PXR) (Cerveny et al., 2007, Yan et al., 2021). Most studies in 

the literature report a decrease in CYP3A4 expression and activity in humans and cells 

in dietary-induced NAFLD (Hanagama et al., 2008, Osabe et al., 2008, Sukkasem et 
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al., 2020). Despite this a study by Huang et al., (2019) observed an increase in 

CYP3A4 expression in LO2 cells dosed with fatty acids due to increased miRNA 

expression indicating that CYP3A4 is induced by steatosis.   

 

CYP2D6 expression levels were demonstrated to be lower than the DMSO controls in 

both models in this study (Tables 5.3 and 5.6). In general, CYP2D6 levels are thought 

to be decreased in steatosis due to reduced mRNA expression and this has been 

observed in HepG2 cells dosed with fatty acids (Sukkasem et al., 2020). However, as 

this was a single experiment with no repeats it is difficult to make any firm conclusions. 

The effect of valproate on CYP2D6 expression have not been well documented. 

However, a study by Wen et al., (2001) demonstrated that concentrations ranging from 

50 to 1000 µM valproate showed minimal inhibitory effects on CYP2D6 activity in 

human liver microsomes.  

 

Although only single experiments were conducted in this study a decrease in CYP2E1 

expression levels was observed in the monolayers (Table 5.3) and in the 0.5, 2 and 4 

mM spheroid groups (Table 5.6) while increases were seen in the 1 mM spheroid 

groups. Studies in the literature have mainly demonstrated an increase in expression 

and activity of CYP2E1 in response to lipid accumulation with the increase 

hypothesised to play a role in the progression of NAFLD (Merrell and Cherrington 

2011, Garcia-Ruiz et al., 2015, Sukkasem et al., 2020). Although the effect of valproate 

on CYP2E1 expression in the context of steatosis has not previously been 

investigated. Nevertheless, studies in rat hepatocytes have also reported that 

valproate-induced oxidative stress and mitochondrial dysfunction is a result of 

metabolic activation of CYP2E1 and have shown that ROS formation was prevented 

by CYP2E1 inhibitors (Zhu et al., 2017, Meseguer et al., 2021, Shnayder et al., 2023).  

 

Although there are few studies reporting the effect of valproate on CYP expression in 

HepG2 cells in the context of steatosis the results in this study suggest that CYP 

expression in both monolayers and spheroids is similar. It is clear that valproate does 

affect CYP expression levels. However, future work could include repeated 

experimentation to validate these changes. 
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Chapter Six- Conclusions and future work 
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Chapter 6 
 

6.1 Conclusions  
 

 

6.1.1 Steatosis 
 

The aim of this project was to firstly develop models of dietary and drug-induced 

hepatic steatosis in HepG2 monolayers and spheroids and then to use the models for 

the evaluation of metabolite pathways that change in steatosis. This project wished to 

compare metabolite changes in both dietary and drug-induced steatosis to find 

common biomarkers for early steatosis. Steatotic models were created using either a 

combination of oleic and palmitic acid, tetracycline or valproate since these are the 

most commonly used models in the literature (Donato et al., 2009, Cui et al., 2010, 

Choi et al., 2015, Garcia-Canaveras et al., 2016, Bai et al., 2017, Yan et al., 2021). 

While the mechanisms by which tetracycline, valproate and fatty acids induce 

steatosis in cells have been reviewed in literature (Cui et al., 2010, Choi et al, 2015, 

Garcia-Canaveras et al., 2016) a direct comparison of metabolite changes has not 

been previously conducted. Overlap between metabolites or related biochemical 

pathways could allow for the identification of reliable markers for steatosis that are 

common across all mechanisms leading to NAFLD. This could potentially contribute 

to biomarker panels to increase sensitivity and specificity for diagnosis.  

 

While monolayers have been routinely used to study the molecular mechanism of 

disease and for the development of in vitro models of steatosis, they do not represent 

the true complexity and physiology of human tissues (Bialkowska et al., 2020). 3D 

cultures offer a micro-environment more representative of the in vivo phenotype 

(Pingitore et al., 2019). Therefore, the use of 3D spheroids could potentially aid in the 

search for early diagnostic biomarkers for steatosis which are more relevant to the in 

vivo situation.   

 

In this project the three models were validated in terms of lipid accumulation and 

steatotic state using Oil Red O staining and a commercial triglyceride assay kit. In 

Chapter 3 dose-dependent increases in triglyceride accumulation were revealed in the 

triglyceride assay for the fatty acid treated groups. These increases were statistically 
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significant in the 0.25 (p<0.05), 0.5 (p<0.01) and 1 mM (p<0.001) sample groups when 

compared to the ethanol control (Figure 3.4) confirming steatosis in these groups. 

However, Chapter 4 only revealed slight increases in lipid accumulation which were 

not significant using the triglyceride assay for the tetracycline treated groups 

compared to the DMSO controls. The highest percentage increase (approximately 

7%) was observed in the 200 μM group (Figure 4.4). Chapter 5 demonstrated 

increases in lipid accumulation in the 0.5, 1 and 2 mM valproate treated groups. 

Although not significant, there was around a 25% increase in triglycerides at 1 and 2 

mM when compared to the DMSO control (Figure 5.4). Despite the lack of significance 

seen in the tetracycline and valproate models the Oil Red O staining in all Chapters 

(Figure 3.3, 4.3 and 5.3) allowed the validation of the models as these results 

confirmed dose-dependent increases in lipid accumulation in the treated monolayers.  

 

A major goal for the project was to develop 3D spheroid models of steatosis. Spheroids 

are considered more reflective of the in vivo environment and would therefore provide 

a potential improvement to the use of monolayers in in vitro studies. We successfully 

created steatotic spheroid models for each of the three treatment types: fatty acids 

(0.1 and 0.5 mM), tetracycline (100 and 600 μM) and valproate (1 and 4 mM). The 

LDH assay confirmed a lack of cytotoxicity in all models. Significant increases in 

triglyceride accumulation (57%) were observed in the 0.5 mM fatty acid treatment 

groups (Chapter 3) and the 1 mM valproate treatment groups (39%) (Chapter 5) 

indicating mild steatosis in these spheroid models. This is in contrast to the non-

significant increases in triglyceride in the fatty acid- and valproate-treated monolayers. 

This could suggest that the spheroid model more readily develops steatosis, 

potentially due to the increased cell-to-cell contact. Increases in triglyceride were 

observed in the tetracycline treated spheroids (Chapter 4) using the triglyceride assay, 

however these were not significant.  

 

Despite the lack of statistical significance for some of the increases in triglyceride 

levels determined by the triglyceride assay in some of the models; it was concluded 

that the dose levels chosen induce mild steatosis, without cytotoxicity in both 

monolayers and spheroids using the Oil Red O staining.  
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6.1.2 Metabolomics  
 

A number of studies in the literature have used metabolomic techniques in humans 

and in rodent models to show alterations in metabolic pathways in NAFLD/NASH with 

the most common alterations observed involving changes to amino acid, bile and lipid 

metabolism (Caussy et al., 2019, Masoodi et al., 2021, Nimer et al., 2021, Shao et al., 

2022B). However, few in vitro metabolomics studies have been conducted with fatty 

acids, tetracycline and valproate (Garcias-Canaveras et al., 2016, Chang et al., 2016, 

Ramirez et al., 2017) and to date no studies have investigated metabolite changes in 

steatosis induced by tetracycline or valproate in HepG2 spheroids.  

 

The results from the metabolomics studies in Chapters 3,4 and 5 provided an insight 

into the mechanisms through which steatosis is achieved in each model. While a 

mixture of oleic and palmitic acid induce an increase in lipid accumulation and 

upregulation of beta-oxidation, tetracycline and valproate reduce beta-oxidation with 

both eventually leading to NASH (Cui et al., 2010, Choi et al, 2015, Garcia-Canaveras 

et al., 2016). These changes in metabolites could become part of a panel of possible 

biomarkers for the early diagnosis of steatosis. Following this, pathway analysis was 

completed for low and high dose groups in both monolayers and spheroids from all 

three models. These metabolites changes were then compared using a heatmap to 

identify pathways and metabolites that would increase sensitivity and specificity when 

diagnosing steatosis.  

 

Figures 6.1, 6.2 and 6.3 show changes in metabolites from both monolayers and 

spheroids at a low and high dose for each treatment. The doses are colour coded and 

increases in metabolites are represented as solid boxed lines while decreases are 

dashed. 
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Figure 6.1 Overview of the biochemical pathways affected by 
the administration of fatty acids to induce steatosis (Chapter 
3). Metabolites were identified using 1H NMR spectroscopy 
following dosing of HepG2 cells with a 2:1 combination of 
oleic and palmitic acid at concentrations of 0.1mM (low dose) 
and 0.5 mM (high dose) for 24 hours. Major pathways 
affected included the TCA cycle, the methyltransferase 
pathways and the transsulfuration pathways. Solid boxed 
lines represent an increase in metabolites while dashed lines 
represent a decrease. 

Monolayers   
• Low dose 
• High dose  
Spheroids 

• Low dose 
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Figure 6.2 Overview of the biochemical pathways affected by 
the administration of tetracycline to induce steatosis (Chapter 
4). Metabolites were identified using 1H NMR spectroscopy 
following dosing of HepG2 cells with tetracycline at 
concentrations of 100 μM (low dose) and 600 μM (high dose) 
for 24 hours. Major pathways affected included the TCA cycle, 
the methyltransferase pathways and the transsulfuration 
pathways. Solid boxed lines represent an increase in 
metabolites while dashed lines represent a decrease.  
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Figure 6.3 Overview of the biochemical pathways affected by 
the administration of valproate, to induce steatosis (Chapter 
5). Metabolites were identified using 1H NMR spectroscopy 
following dosing of HepG2 cells with tetracycline at 
concentrations of 1 mM (low dose) and 4 mM (high dose) for 
24 hours. Major pathways affected included the TCA cycle, the 
methyltransferase pathways and the transsulfuration 
pathways. Solid boxed lines represent an increase in 
metabolites while dashed lines represent a decrease.  
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Metabolite changes observed in the pathway analysis in the figures above were grouped according 

to their respective pathways to identify the pathways most affected by each treatment. Increases in 

metabolites are shown in red while decreases are shown in blue.  

 

 

Figure 6.4 Heatmap showing metabolites changes across the three treatment groups. A low and high dose for each 
monolayer and spheroid models was analysed for each treatment. Each metabolite was grouped to their respective 
pathway. Increases= red, decreases=blue.  
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Figure 6.4 shows common metabolites in the metabolic pathways (Figures 6.1, 6.2, 

6.3) that were altered across the three models of steatosis. The pathway with the most 

metabolites affected across all three models was the CDP-choline pathway and the 

most affected metabolite was phosphocholine which showed changes across all 

treated groups. The methionine cycle also had many altered metabolites including 

homocysteine and methionine.  

 

Methionine may be useful for distinguishing between drug-induced and fatty acid-

induced steatosis since it was decreased in the monolayer valproate groups and in 

the high dose monolayer and both spheroid groups in the tetracycline models 

demonstrating this is perhaps a common change in drug-induced steatosis. Whereas, 

in contrast an increase in methionine was observed in the fatty acid spheroid models, 

but not the monolayers.  

 

In this project changes in homocysteine levels were observed in all models. Decreases 

in all valproate-treated groups were observed as well as in the tetracycline high dose 

groups. While homocysteine increased in the low dose tetracycline groups, this may 

have been due to other peaks in this region creating conflicting results. A decrease in 

the fatty acid monolayer occurred while increases in both spheroid groups were seen, 

this could be related to the increase in methionine seen in the spheroids. However, it 

may also be due to the metabolite regions containing peaks from other metabolites. 

Alterations to homocysteine levels in NAFLD are conflicting in the literature. Some 

studies in humans have found that circulating homocysteine is increased in NAFLD 

compared to controls while others have observed decreases (Gulsen et al., 2005, De 

Carvalho et al., 2013, Pastore et al., 2014, Jia et al., 2015). Therefore, the conflicting 

changes seen in these models are not different from the literature. However, it is 

important to highlight homocysteine as a potential biomarker of NAFLD since levels 

do change in response to both fatty acids and drugs and other studies have also 

reported the link between homocysteine and the disease mechanisms.  

 

Homocysteine is formed during methionine turn-over by the conversion of s-

adenosylhomocysteine (SAH) to homocysteine and adenosine by SAH hydrolase. In 

this project decreases in SAH were seen in both valproate models and in the high 

doses of both monolayer and spheroids in the tetracycline. As changes in SAH as well 
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as other methyltransferase metabolites were only observed in the high doses of the 

tetracycline model this could indicate that tetracycline could be inducing a more mild 

form of steatosis as determined in the triglyceride assay results. Changes in SAH were 

not apparent in the fatty acid model at all despite being expected as alterations to 

methionine and homocysteine were observed. The changes to SAH and homocystine 

could indicate that the two drugs were having an effect on methylene tetrahydrofolate 

reductase thereby decreasing methionine levels and could represent potential 

biomarkers for drug-induced steatosis.  

 

In both drug-induced models alterations to metabolites associated with the 

transsulfuration pathways (TSP) were observed with decreases in cystathione and 

glutathione in the monolayer treated groups of both valproate and tetracycline and in 

the spheroid treated groups of the tetracycline. However, changes in the TSP were 

not observed in either of the fatty acid models in this study. Studies associated with 

fatty acid induced steatosis have also not commented on changes in the TSP. 

Nevertheless, the TSP could be a pathway of interest in drug-induced steatosis and 

its metabolites could potentially be part of a panel of biomarkers.  

 

The decreases in methionine seen in the drug-induced models could result in post-

transcriptional down-regulation of cystathionine β-synthase, the first enzyme in the 

transsulfuration of homocysteine to cystathionine, leading to decreases in glutathione 

(Jhee and Kruger, 2005, Tang et al., 2009, Caballero et al., 2010). Homocysteine is 

also involved in the TSP where it is converted to cysteine via the intermediate 

cystathionine and plays a key role in sulfur metabolism and the redox environment of 

cells (Werge et al., 2021). Nearly 50% of the homocysteine formed is further converted 

to cysteine by the transsulfuration pathway for further glutathione formation therefore, 

any decreases in homocysteine could cause decreases in TSP metabolites (Werge et 

al., 2021). As increases in methionine and homocysteine were seen in the fatty acid 

spheroid model and would be readily available for use in the TSP this may be why 

changes in glutathione and other TSP metabolites were not observed in this model.  

 

In this study elevated betaine levels were observed in both the fatty acid models while 

general decreases were seen in the tetracycline and valproate models once again 

highlighting the different mechanisms inducing steatosis in these models. The 
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decrease in betaine seen in the drug-induced models could potentially be due to 

increased SAM which in turn inhibits BHMT activity (Ji et al., 2007). Overaccumulation 

of SAM has also been reported to downregulate BHMT expression in HepG2 cells 

treated with valproate in part by inducing NFxB a repressor for the human BHMT gene 

as discussed in Chapter 5 (Chen et al., 2014). Although betaine levels in HepG2 cells 

treated with tetracycline have not been described in the literature the decrease in 

betaine seen in the 600 μM treated groups of the spheroids and monolayers may be 

due to the same mechanisms. The differences in betaine levels between the drug-

induced models and the fatty acids model was expected. Nevertheless, both an 

increase and a decrease change in betaine levels can be linked to NAFLD, therefore, 

betaine is a possible metabolite biomarker of interest. The differentiation between 

increased or decreased levels could help determine the cause of steatosis.  

 

In this study decreases in the CDP-pathway metabolites including choline and 

phosphocholine were observed in the high doses of the tetracycline models, the 

valproate, spheroid models and the low dose monolayer. A decrease in choline was 

also observed in the 0.1 mM monolayer fatty acid samples indicating similar changes 

in both models. It has been hypothesised that tetracycline has an effect on choline 

metabolism subsequently leading to fatty liver (Gwee,1982). But little research has 

been conducted to explore this and there are no previous studies investigating the 

effect of valproate on choline. Figure 6.4 shows that the metabolites most affected in 

terms of score belong to the CDP-choline pathway as they were changed in all three 

treatment groups. This suggests that monitoring changes to the CDP-choline pathway 

could prove to be a very effective means of detecting early steatosis.  

 

This project also revealed changes to TCA intermediates in all three models as 

summarised in Figures 6.1, 6.2 and 6.3. In the fatty acid model increases in succinate 

were observed in the two high dose groups for the spheroid and monolayer models. 

In contrast citrate and succinate were decreased in both drug-induced models. This is 

easily explained by the mechanisms by which steatosis is induced by the different 

treatment types. In NAFLD induced by high fat diet mitochondrial beta-oxidation is 

upregulated driving an increase in TCA cycle activity (Sunny et al., 2011, Fabbrini and 

Magkos, 2015, Fletcher et al., 2019). In contrast, tetracycline and valproate are known 

inhibitors of fatty acid oxidation (Miele et al., 2017). In order to make up for the loss of 
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acetyl-CoA from beta-oxidation it is hypothesised that glycolysis is upregulated in 

drug-induced steatosis (Chan et al., 2018, Dargue et al., 2020). This current study also 

suggests this occurs since decreases in glucose were observed in both valproate 

models and in the 600 μM monolayer tetracycline group. Meanwhile in the fatty acid 

model glucose was increased in both high doses of the spheroid and monolayers 

potentially indicating upregulated beta-oxidation. Thus, the measurement of TCA cycle 

metabolites could represent potential markers for beta-oxidation and the presence of 

steatosis.  

 

In this study decreases in lactate occurred in both fatty acid models as well as in the 

high dose monolayer tetracycline and the spheroid model. Decreases in lactate are 

usually coupled with decreases in alanine and are associated with hyperlipidaemia 

and reduced pyruvate. However, increases in alanine were seen in the monolayer fatty 

acid groups but not the spheroids and also in the 4 mM monolayer group and both 

spheroid valproate treated groups. It is unclear why conflicting results were observed. 

Elevated alanine levels are potentially related to an increase in transamination of 

pyruvate. According to literature lactic acidosis is common in drug-induced steatosis 

and therefore an increase in lactate was expected in the drug-induced models (Cuykx 

et al., 2018B, Lee and Kim, 2019, Dargue et al., 2020). As it was increases in lactate 

were observed the high dose valproate models were observed. Lactic acidosis is 

caused by TCA cycle inhibition, and this is shown in the valproate model with the 

decreases in TCA cycle intermediates (Massart et al., 2013). Decreases in TCA cycle 

metabolites also occurred in the tetracycline model despite the decreases in lactate. 

Regardless, the conflicting changes in lactate, alanine and glucose were all altered in 

the three treatment models which suggests they may be important for the detection of 

early steatosis.  

 

Figure 6.4 revealed changes in metabolites associated with the urea cycle in all three 

models, in particular decreases in citrulline in the 0.1 mM monolayer fatty acid, both 

spheroid and monolayer 600 μM tetracycline and in the 1 mM monolayer and 4 mM 

spheroid valproate groups. Again, like many other metabolites identified in this study, 

the changes in urea cycle metabolites only occurred in some groups and it is unclear 

why. Nevertheless, these results demonstrate that all treatments were affecting 

citrulline levels but cannot be confirmed as the changes were not consistent across all 
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groups. It has been previously suggested that the genes for urea cycle enzymes 

carbamoylphosphate synthetase (CPS1) and ornithine transcarbamylase (OTC) are 

modified in NAFLD due to mitochondrial injury leading to reduced expression and 

function and ultimately hyperammonaemia (De Chiara et al., 2018, Gallego-Duran et 

al., 2022, Thomesen et al., 2023). OTC catalyses the reaction between carbamoyl 

phosphate and ornithine to form citrulline and phosphate. Thus, the decreases seen 

in citrulline in this study may indicate that OTC gene expression is reduced in HepG2 

cells although this remains to be confirmed. As decreases in citrulline were common 

in all treatment groups this would indicate citrulline has potential as a biomarker 

regardless of the steatotic cause. 

 

Alterations in amino acids were also observed in this study with increases in the 0.5 

mM monolayer of the fatty acid model, however, decreases were apparent in the high 

dose monolayer and both dose levels for the spheroids in the tetracycline and 

valproate models. Increased amino acids, seen in the fatty acid model, have been 

previously reported in NAFLD (Kalhan et al., 2011). In contrast, Zhang et al., (2014) 

demonstrated decreases in leucine and isoleucine in rats treated with valproate 

potentially due to an adaptive response by hepatocytes to compensate for the loss of 

ATP produced from beta-oxidation. Increases in branched-chain amino acids and 

glutamate have been implicated in insulin resistance and in obese patients with 

NAFLD. However, their role in NAFLD is yet to be elucidated and it remains unclear 

whether the change in serum amino acid levels in subjects with NAFLD and NASH is 

the result of altered hepatic metabolism or insulin resistance (Hasegawa et al., 2020). 

Although as the models present in this study represent mild steatosis insulin resistance 

is unlikely. Nevertheless, amino acid levels are of interest for the detection of NAFLD 

and could be useful for distinguishing between drug-induced steatosis and diet 

induced.  

 

Organic metabolites were also identified in this project with the main metabolite 

changes across the three groups being in arachidonic acid, cholesterol and in multiple 

fatty acyl groups. Changes in cholesterol and fatty acyl groups were expected due to 

the increased lipid accumulation in the cells which would also confirm steatosis. 

Arachidonic acid has been implicated in NAFLD and is associated with increased 
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inflammation and the production of pro-inflammatory prostaglandins and leukotrienes 

which play a role in the progression of steatosis.  

 

In summary in this project many metabolite changes were observed, and some 

similarities were identified between the different models. Furthermore, the 

metabolomics studies revealed similar changes in spheroids when compared to the 

monolayers which indicates they are useful in vitro models for the study of steatosis. 
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6.1.3 CYP enzyme expression 

 

In this project 3D HepG2 spheroids models of steatosis were developed to determine 

if they represent a more advanced in vitro model than monolayers.  For in vitro models 

to be reliable in biomarker studies and relevant to humans they should mimic all 

metabolic pathways. Spheroids are thought to have increased CYP enzyme 

expression compared to monolayers. This is important since CYP enzymes play a role 

in the development and progression of NAFLD (Aljomah et al., 2015, Woolsey et al., 

2015, Jamwal and Barlock, 2020, Sukkasem et al., 2020, Albadry et al., 2022). In each 

Chapter in this thesis the expression levels of CYP 2D6, 3A4 and 2E1 were 

determined in all models using Western blotting. However, the blots suggested no real 

difference in CYP expression when monolayers and spheroids were compared and 

for all blots N=1. Therefore, it cannot be confirmed whether CYP expression in 

spheroids was better than monolayers as this would require repeated blots and 

statistical analysis in future work.  

 

Nevertheless, the use of HepG2 spheroids particularly in the drug-induced models 

have offered a novel insight into metabolite changes in an in vitro model which is 

considered more reflective of the in vivo environment in terms of architecture and 

physiology due to increased cell-to-cell contact.  

 

 

6.2 Limitations and future work  

 

This project had some limitations including the lack of validation for the metabolites 

identified. Peak identification was mostly reliant on one-dimensional NMR 

spectroscopy; this was supplemented using J-RES spectroscopy but not all peaks 

could be confirmed using J-RES due to overlapping peaks. Although NMR is a non-

destructive reproducible method of analysing metabolites there are some issues with 

metabolite identification as NMR techniques have low to moderate sensitivity when 

compared to other techniques (Alexandri et al., 2017, Williamson and Hatzakis, 2017, 

Emwas et al., 2019). 1H NMR spectroscopy is also restricted by relatively small 

chemical shift windows meaning there is a greater likelihood of overlapping peaks 
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particularly in complex biological samples (Hughes et al., 2015, Alexandri et al., 2017, 

Emwas et al., 2019). Overlapping of peaks can lead to greater ambiguity in metabolite 

identification particularly when identifying lipids as many fatty acids share the same 

spectral regions and biomolecules have complex structures and often switch between 

different conformations. (Hughes et al., 2015, Alexandri et al., 2017, Emwas et al., 

2019). Therefore, although many metabolite changes were identified in the 

metabolomics analysis in this study, it was not possible to identify all the metabolites 

particularly those in organic extracts. Nevertheless, to ensure that the metabolites 

identified in this experiment were as accurate as possible, metabolite peaks were only 

assigned if all peaks for each metabolite were present in the NMR spectra regardless 

of their significance in the VIP lists. Also, JRES was used to decipher overlapping 

peaks where assigning multiplicity was more difficult in order to give the most accurate 

identification possible. Future work could focus more on 2D NMR methods including 

J-resolved (JRES) NMR spectroscopy and also employ the use of mass spectrometry 

to help identify some of the unidentified metabolites. Metabolite identification could 

also be validated by spiking samples with known metabolite standards. 

  

It is important to phase and baseline correct spectra to ensure peaks are in their 

absorptive mode and to remove noise, artefacts and baseline drifts allowing for 

accurate identification and quantification of signals (Emwas et al., 2018). Phasing also 

improves the resolution of closely spaced peaks, which is crucial when trying to 

distinguish between different chemical environments particularly in complex biological 

samples. Errors in phasing can result in shifts in peak position particularly in crowded 

regions of the spectrum resulting in incorrect chemical shift assignments and mistakes 

in metabolite identification. Spectra were manually phased, and baseline corrected in 

this study which allows for fine-tuning of peak shapes particularly when phasing 

spectra with overlapping peaks and crowded regions (Ernst et al., 1990, Claridge, 

2016, Emwas et al., 2018). Although this process is time consuming and automatic 

phasing is possible, automatic phasing relies on algorithms which can struggle with 

complex spectra and overlapping peaks. Manual baseline correction allows for tailored 

adjustments of the baseline which can be particularly useful for complex spectra and 

can allow the user to address noise spikes and artefacts that automatic correction may 

miss (Ernst et al., 1990, Claridge, 2016, Emwas et al., 2018). However, automatic 

spectra can consistently apply the same phasing procedure across multiple spectra 
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reducing variability.  Although spectra were manually phased and baseline in the same 

way there was potential for human error which could have introduced errors in peak 

shapes leading to incorrect metabolite identification or outliers. 

Additionally, metabolite peaks were identified solely based on literature and the 

Human Metabolome database. While the Human Metabolome Database (HMDB) is 

perhaps the most extensive public metabolomic spectral database to date and stores 

more than 40,000 different metabolites the physical diversities of metabolites make 

them difficult to identify (Xiao et al., 2012, Alonso et al., 2015). The development of 

innovative computational strategies has been a major driver in overcoming some of 

the challenges with metabolite identification (Johnson et al., 2016). There are now 

online tools available including MetaboHunter which matches the reference peak 

positions against a list of detected peak positions automatically. FOCUS is an 

algorithm that follows the same metabolite identification approach but with the added 

advantage that it can discriminate between partially overlapping metabolites (Alonso 

et al., 2013, Alonso et al., 2015). These online tools could be implemented in future 

work to validate metabolite identification.  

The metabolite changes that were observed are connected to the onset and 

progression of steatosis but are also associated with general liver injury including 

oxidative stress and cholestasis (Martinez-Sena et al., 2023). Therefore, identifying 

changes in these metabolites alone would not give an accurate diagnosis of steatosis. 

But could be useful in a panel of biomarkers. The in vitro models described in this 

project could also be improved by 3D co-culturing HepG2 cells with Kupffer or stellate 

cells as this would provide a better representation of the complete in vivo phenotype. 

Co-cultured models also demonstrate the impact of cytokine signalling and would 

allow for the progression of steatosis to NASH and fibrosis to be assessed (Muller and 

Strula, 2019, Ouchi et al., 2019, Bialkowska et al., 2020). Although studies have 

demonstrated the use of HepG2 cells in 3D spheroid co-culturing none have 

conducted metabolomics studies to find potential biomarkers of steatosis. This would 

be of great interest for future work as metabolite changes identified in co-cultured 

models would have greater sensitivity and have greater specificity to the different 

stages of NAFLD. Additionally, steatosis is usually associated with prolonged and 

repeated exposure particularly when it is drug-induced as patients take repeated 
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doses for long periods of time. Future work could include repeat dosing studies using 

tetracycline and valproate in 3D spheroids. This would allow for more accurate 

metabolite analysis which were more reflective of clinical settings and would identify 

more sensitive biomarkers for drug-induced steatosis. Also, to validate the current 

models as mild models of steatosis in the cells it would be necessary to test for 

oxidative stress markers as more severe forms of steatosis are associated with 

increased ROS production and oxidative stress (Donato et al., 2009). This could be 

measured using assays that measure DNA/RNA damage, lipid peroxidation and 

protein oxidation/nitration as well as levels of ATP.  

 

The techniques used in this study could also be applied to clinical research in patients 

taking the drugs used in this study particularly valproate. As valproate treatment is 

usually long term NMR metabolomics and multivariate analysis of blood and urine 

samples could offer a non-invasive technique to assess the development and or 

progression of steatosis in patients.  

 

Despite the limitations this thesis has provided a novel overview of the major 

metabolite pathways affected in mild steatosis regardless of how it has been induced 

and this will aid the future search for sensitive biomarkers for the early detection of 

steatosis.  
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Chapter 8 

 

8.1 Appendix  
 
Protein marker used for all Western blots to help identify size of target protein.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.1 Protein marker displaying molecular weight of proteins used in Western blotting 

 
 

 
Figure 8.2 Representative 1H NMR spectra of aqueous cell extracts from HepG2 cells. Cells were 
seeded in 6-well plates and allowed to attach for 24 hour before dosing. A. Control, B. 0.1 mM fatty 
acid, C. 0.5 mM fatty acid.  
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Figure 8.3 Representative 1H NMR spectra of organic cell extracts from HepG2 cells. Cells were 
seeded in 6-well plates and allowed to attach for 24 hour before dosing. A. Control, B. 0.1 mM fatty 
acid, C. 0.5 mM fatty acid. 

 

 
Figure 8.4 Representative 1H NMR spectra of aqueous spheroid extracts from HepG2 cells. 
Spheroids were seeded in low attachment 6-well plates and allowed to grow for 17 days before 
dosing. A. Control, B. 0.5 mM valproate, C. 4 mM valproate. 

 
Figure 8.5 Representative 1H NMR spectra of organic spheroid extracts from HepG2 cells. Spheroids 
were seeded in low attachment 6-well plates and allowed to grow for 17 days before dosing. A. 
Control, B 100 μM tetracycline, C. 800 μM tetracycline.   
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8.1.2 Metabolomic analysis of aqueous monolayer extracts dosed with 
tetracycline  
 

 
Figure 8.6 Hotelling’s T2 plot created from PCA scores plot in Figure 4.5. Samples above the red line 
of the 99% confidence level are considered to be true outliers. Sample 800(2) is circled in red.  
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Figure 8.7 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts of 
HepG2 cells treated with tetracycline at different concentrations. Cells were dosed at final 
concentrations of 0 (DMSO control), 100, 200, 400, 600 and 800 μM and incubated for 24 hours. 
Samples were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. 
DMSO control vs 100 μM, B. DMSO control vs 200 μM, C. DMSO control vs 400 μM, D. DMSO 
control vs 600 μM, E. DMSO control vs 800 μM, F. 100 vs 200 μM, G. 200 vs 400 μM, H, 400 vs 600 
μM, I. 600 vs 800 μM. 
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Figure 8.8 S-plot derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
cells treated with tetracycline at different concentrations. Samples were collected, and NMR analysis 
was carried out as described in Sections 2.10 and 2.13. A. DMSO control vs 100 μM, B. DMSO 
control vs 200 μM, C. DMSO control vs 400 μM, D. DMSO control vs 600 μM, E. DMSO control vs 
800 μM, F. 100 vs 200 μM, G. 200 vs 400 μM, H, 400 vs 600 μM, I. 600 vs 800 μM. 

 

8.1.3 Metabolomic analysis of organic monolayer extracts dosed with 
tetracycline  
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Figure 8.9 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts of 
HepG2 cells treated with tetracycline at different concentrations. Cells were dosed at final 
concentrations of 0 (DMSO control), 100, 200, 400, 600 and 800 μM and incubated for 24 hours. 
Samples were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. 
DMSO control vs 100 μM, B. DMSO control vs 200 μM, C. DMSO control vs 400 μM, D. DMSO 
control vs 600 μM, E. DMSO control vs 800 μM, F. 100 vs 200 μM, G. 200 vs 400 μM, H. 400 vs 600 
μM, I. 600 vs 800 μM. 
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Figure 8.10 S-plot derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 
cells treated with tetracycline at different concentrations. Samples were collected, and NMR analysis 
was carried out as described in Sections 2.10 and 2.13. A. DMSO control vs 100 μM, B. DMSO 
control vs 200 μM, C. DMSO control vs 400 μM, D. DMSO control vs 600 μM, E. DMSO control vs 
800 μM, F. 100 vs 200 μM, G. 200 vs 400 μM, H, 400 vs 600 μM, I. 600 vs 800 μM. 
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8.1.4 Metabolomic analysis of aqueous spheroid extracts dosed with 
tetracycline  
 

 
 
Figure 8.11 Hotelling’s T2 plot created from PCA scores plot shown in Figure 4.15. Samples above 
the red line of the 99 % confidence level are considered to be outliers. Sample DMSO (1) is circled in 
red.  
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Figure 8.12 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts 
from HepG2 spheroids dosed with tetracycline at different concentrations. Spheroids were treated 
with either 0 (DMSO control), 100 or 600 μM tetracycline. Samples were collected and NMR analysis 
was carried out as described in Sections 2.10 and 2.12. A. Control vs 100 μM tetracycline. B. Control 
vs 600 μM tetracycline. C. 100 vs 600 μM tetracycline. Variables with a VIPpred value above 1 were 
selected as significant and were highlighted in red.  
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Figure 8.13 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
spheroids treated with tetracycline at different concentrations. Spheroids were treated with either 0 
(DMSO control), 100 or 600 μM tetracycline. Samples were collected and NMR analysis was carried 
out as described in Sections 2.10 and 2.13. A. Control vs 100 μM tetracycline. B. Control vs 600 μM 
tetracycline. C. 100 vs 600 μM tetracycline.  

 

8.1.5 Metabolomic analysis of organic spheroid extracts dosed with tetracycline 
 

 
Figure 8.14 Hotelling’s T2 plot created from PCA scores plot in Figure 4.18. Samples above the red 
line of the 99% confidence level are considered to be true outliers. Sample 100 (3) is circled in red.  
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Figure 8.15 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts 
from HepG2 spheroids dosed with tetracycline at different concentrations. Spheroids were treated 
with either 0 (DMSO control), 100 or 600 μM tetracycline. Samples were collected and NMR analysis 
was carried out as described in Sections 2.10 and 2.13. A. Control vs 100 μM tetracycline. B. Control 
vs 600 μM tetracycline. C. 100 vs 600 μM tetracycline. Variables with a VIPpred value above 1 were 
selected as significant and were highlighted in red.  
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Figure 8.16 S-plots derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 
spheroids treated with tetracycline at different concentrations. Spheroids were treated with either 0 
(DMSO control), 100 or 600 μM tetracycline. Samples were collected and NMR analysis was carried 
out as described in Sections 2.10 and 2.13. A. Control vs 100 μM tetracycline. B. Control vs 600 μM 
tetracycline. C. 100 vs 600 μM tetracycline. 

 
 

8.1.6 Metabolomic analysis of aqueous monolayer extracts dosed with valproate  
 
 

 
Figure 8.17 PCA scores plot derived from 1H NMR spectra of aqueous extracts from HepG2 cells 
dosed with valproate at various dose levels. Cells were dosed with DMSO, 0.5, 1, 2 and 4 mM 
valproate and incubated for 24 hours. Aqueous cell extract samples were collected, and NMR 
analysis carried out as described in Sections 2.10 and 2.13. Each spot on the plot represents one 
sample. Grey = DMSO only control; green = 0.5 mM; light blue =  1 mM; blue = 2 mM;  red = 4 mM. 
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Figure 8.18 Hotelling’s T2 plot created from PCA scores plot in Figure 8.13. Samples above the red 
line of the 99% confidence level are considered to be true outliers. Sample 0.5 (1) is circled in red.  

 

 
 

Figure 8.19 Hotelling’s T2 plot created from PCA scores plots in Figure 5.5. Samples above the red 
line of the 99% confidence level are considered to be true outliers. Sample 4 (6) is circled in red.   
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Figure 8.20 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts 
from HepG2 cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples 
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control 
vs 0.5 mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM 
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Variables with a 
VIPpred value above 1 were selected as significant and are highlighted in red. 
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Figure 8.21 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples were 
collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 0.5 
mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM 
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. 

 

8.1.7 Metabolomic analysis of organic monolayer extracts dosed with valproate 
 

 
 
Figure 8.22 Hotelling’s T2 plot created from PCA scores plots in Figure 5.8. Samples above the red 
line of the 99% confidence level are considered to be true outliers. Sample 2 (4) is circled in red.   
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Figure 8.23 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts 
from HepG2 cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples 
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control 
vs 0.5 mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM 
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. Variables with a 
VIPpred value above 1 were selected as significant and are highlighted in red. 
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Figure 8.24 S-plots derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 
cells treated with different concentrations of valproate at 0, 0.5, 1, 2 and 4 mM. Samples were 
collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 0.5 
mM valproate B. Control vs 1 mM valproate C. Control vs 2 mM valproate. D. control vs 4 mM 
valproate. E. 0.5 vs 1 mM valproate. F. 1 vs 2 mM valproate. G. 2 vs 4 mM valproate. 
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8.1.8 Metabolomic analysis of aqueous spheroid extracts dosed with valproate   
 

 

 

 
Figure 8.25 VIP predictive plots derived from OPLS-DA models of NMR spectra of aqueous extracts 
from HepG2 spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples 
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control 
vs 1 mM valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate. 
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Figure 8.26 S-plots derived from OPLS-DA models of NMR spectra of aqueous extracts from HepG2 
spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples were collected 
and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 1 mM 
valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate. 
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8.1.9 Metabolomic analysis of organic spheroid extracts dosed with valproate  
 

 
Figure 8.27 Hotelling’s T2 plot created from PCA scores plots in Figure 5.18. Samples above the red 
line of the 99% confidence level are considered to be true outliers. Sample DMSO (1) is circled in red.   

 

 
Figure 8.28 Hotelling’s T2 plot created from PCA scores plots in Figure 5.19. Samples above the red 
line of the 99% confidence level are considered to be true outliers. Sample DMSO (6) is circled in red.   
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Figure 8.29 VIP predictive plots derived from OPLS-DA models of NMR spectra of organic extracts 
from HepG2 spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples 
were collected and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control 
vs 1 mM valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate. 
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Figure 8.30 S-plots derived from OPLS-DA models of NMR spectra of organic extracts from HepG2 
spheroids treated with valproate at different concentrations (0, 1 and 4 mM). Samples were collected 
and NMR analysis was carried out as described in Sections 2.10 and 2.13. A. Control vs 1 mM 
valproate; B. Control vs 4 mM valproate; C. 1 vs 4 mM valproate. 

8.1.10 Validation of OPLS-DA models in Fatty acid treated groups  
 
OPLS discriminate analysis was validated using the leave-one-out method. The 
scores plots below show an example of the results from this validation in the 
aqueous monolayer group treated with fatty acids.  
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Figure 8.31 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells 
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and 
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and 
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = ethanol control; green = 0.25 mM; dark blue = 0.5 mM; red = 1.0 mM 
fatty acids. 

 
Figure 8.32 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells 
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and 
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and 
NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = ethanol control; dark blue = 0.5 mM; red = 1.0 mM fatty acids. 

 
Figure 8.33 OPLS scores plot derived from NMR spectra of aqueous cell extracts from HepG2 cells 
treated with different dose levels of fatty acids. Cells were dosed with a 2:1 mixture of oleic acid and 
palmitate at 0, 0.1, 0.25, 0.5 and 1.0 mM and incubated for 24 hours. Samples were collected, and 
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NMR analysis carried out as described in Sections 2.10 and 2.12. Each spot on the scores plot 
represents one sample. Grey = ethanol control; red = 1.0 mM fatty acids. 
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